
michele marostica

A L O O P C L O S U R E A P P R O A C H F O R H U M A N O I D S
N AV I G AT I O N

A L O O P C L O S U R E A P P R O A C H F O R H U M A N O I D S
N AV I G AT I O N

Candidate: michele marostica

Advisor: prof . enrico pagello

Co-Advisor: ph .d. alberto pretto

An approach to the loop closure problem, robust to severe view-point changes.

Laurea Magistrale in Ingegneria Informatica
Department of Information Engineering

Università degli Studi di Padova

October 2013

Michele Marostica: A loop closure approach for humanoids navigation, An
approach to the loop closure problem, robust to severe view-point
changes., © October 2013

supervisors:
Prof. Enrico Pagello
Ph.D. Alberto Pretto

location:
Padova

Dedicated to my whole family, my friends and Silvia that supported
me a lot in the work for this thesis.

A special thanks goes to my advisor: Prof. Enrico Pagello and my
supervisor: Ph.D. Alberto Pretto for their time, willingness and for

everything that they taught to me. I’d like to thank also Mauro
Antonello and all the people: professors, researchers and students
that I encountered in the IAS-Lab for their hospitality and courtesy.

A B S T R A C T

In this thesis we propose a novel approach to the loop closure prob-
lem for humanoid robots navigation, an approach robust to view-
point severe changes.

Vision-based state-of-the-art works on the loop closure problem
works well if the robot re-pass through the same place with the same
or a very similar view-point.

The proposed approach work under the assumption of planar fea-
tures (derived from the Manhattan assumption). We estimate the planes
of the feature’s points and then extract image’s patches that lies on
such planes. On these patches, that are an estimated frontal view of
the features, we compute the descriptors that are used to perform the
matches versus the map.

The planes extraction is done with the ego-motion estimation data
that is provided with the input dataset.

With these view-point normalized features, we demonstrate the
possibility to perform loop closure detection under severe view-point
changes.

S O M M A R I O

In questa tesi proponiamo un nuovo approccio al problema del "loop
closure" per robot umanoidi, approccio che risulta robusto a impor-
tanti cambi del punto di vista.

I lavori attuali dello stato dell’arte, che vogliono risolvere il prob-
lema del loop closure e che si basano sulla visione, lavorano bene se
il robot ripassa nello stesso posto con lo stesso o con un simile punto
di vista.

L’approccio proposto lavora sotto l’assunzione di feature planari
(una derivazione dell’assunzion Manhattan). Vengono stimati i pi-
ani su cui poggiano le feature. Poi vengono estratti degli intorni
dell’immagine nei punti delle feature che stanno sul piano stimato.
Questi intorni o patch sono una stima di una vista frontale delle fea-
ture, su essi vengono calcolati i descrittori che saranno poi utilizzati
nei confronti contro la mappa.

L’estrazione dei piani è ottenuta grazie ai dati di stima dell’ego-
motion forniti assieme al dataset usato.

Con queste feature normalizzate rispetto al punto di vista dimos-
triamo la possibilità di segnalare un loop closure anche con severi
cambiamenti del punto di vista.

vii

C O N T E N T S

1 introduction 1

1.1 Organization of the thesis 1

1.2 The Simultaneous Localization and Mapping (SLAM)
problem 1

1.2.1 Problem definition 2

1.2.2 Issues and open problems 3

1.3 Humanoid robots 5

1.3.1 Common robots 5

2 perception 9

2.1 Perception 9

2.1.1 Laser scanners 9

2.1.2 Inertial Measurement Units 10

2.1.3 Vision 10

3 data 13

3.1 Filtering tecniques 13

3.1.1 Kalman filter 14

3.1.2 Extended Kalman Filter (EKF) 14

3.1.3 Particle filter 15

3.1.4 Rao-Blackwellized Particle Filter (RBPF) 16

4 models 17

4.1 Probabilistic models 17

4.1.1 Probabilistic motion models 17

4.1.2 Probabilistic measurement models 19

4.1.3 Probabilistic data association models 21

5 localization 25

5.1 Localization 25

5.1.1 Probabilistic localization algorithms 25

6 mapping 29

6.1 Mapping 29

6.1.1 Plane classification 30

6.1.2 3D Grid map 31

6.1.3 Feature-based map 33

6.1.4 Loop closure 35

7 state-of-the-art algorithms tests 37

7.1 Loop closure algorithms tests 37

7.1.1 OpenFAB-MAP 38

7.1.2 GUI and results 39

7.1.3 Naive Vector of Bags of Words (BoWs) approach 42

7.1.4 OpenFAB-MAP and Nearest Neighbour Distance
Ratio (NNDR) 43

ix

x contents

8 a loop closure approach robust to severe view-
point changes 45

8.1 Motivations 45

8.2 Choice of key-frames 46

8.3 Transformations involved in the triangulation 48

8.4 Plane estimation 49

8.5 Feature extraction 53

8.6 Results and comparisons 56

9 remarks 59

9.1 Comments and remarks 59

bibliography 61

L I S T O F F I G U R E S

Figure 1 Particles distrubution in a corridor. a) future
set; b) posterior set; c) raw odometry sampling
in the same corridor. 16

Figure 2 Example of the mixture model of a laser finder
from [29]. The shape is formed by a gaussian
centered on the true value zk∗

t , an exponential
from 0 to zk∗

t for possible unexpected objects, a
failure peak at zmax and a random uniform for
random measures 20

Figure 3 On left the initial distribution (observation like-
lihood of laser data) and on right the final dis-
tribution with 95% of confidence inside the de-
picted ellipse. 27

Figure 4 Map generated after the classify algorithm, QRIO
walks around two obstacles. 31

Figure 5 Coordinate definition. 32

Figure 6 3D grid map example. 32

Figure 7 Feature-based map. 33

Figure 8 Example of HRP2 walk in circle. 35

Figure 9 Dataset frames samples 37

Figure 10 Open FAB-MAP 2 activity diagram 39

Figure 11 Graphic User Interface sample 39

Figure 12 OpenFAB-MAP vanilla results 40

Figure 13 Two good match: a) in the room and b) in the
corridor. 41

Figure 14 False negative match from the black band’s frames 41

Figure 15 False positive match from the black band’s frames 42

Figure 16 A comparison of approaches and parameters
changes: a) OpenFAB-MAP vanilla; b) Naive
Vector (NV) with NNDR 0.65; c) NV with NNDR

0.5; d) NV with NNDR 0.8. 43

Figure 17 A comparison of approaches and parameters
changes: a) OpenFAB-MAP vanilla; b) OpenFAB-
MAP with NNDR 0.65; c) OpenFAB-MAP with
NNDR 0.5; d) NV with NNDR 0.65. 44

Figure 18 Sample frames of a desired loop closure detec-
tion. Frame left exiting the room, frame right
re-entering the room. 45

Figure 19 Triangulation of feature points by two views. 47

Figure 20 Matches of features extracted from a couple of
time and space near frames. 47

xi

Figure 21 The transformations involved: W is the refer-
ence world frame, P1, P2 are the poses of the
Inertial Measurement Unit (IMU) in the two frames
involved in the triangulation. g12 is the trans-
formation from camera 1 to camera 2. gIC is
the transformation from the camera frame to
the IMU frame. gWx is the transformation from
Px to the world frame W. 48

Figure 22 Spherical coordinates. 50

Figure 23 Pyramid’s levels. 50

Figure 24 Initial guesses for normals. 51

Figure 25 Projection of the reference frame (left) pixels in
the current frame (right). 52

Figure 26 3D projection of the reference frame pixels fea-
ture point’s planes. 53

Figure 27 The coordinate frame attached to the feature
point. 54

Figure 28 Example of patches back-projected in the ref-
erence frame. 54

Figure 29 Examples of extracted patches. 55

Figure 30 Results in the form of confusion matrix: on left
the base approach with the false positive; on
right with the geometric refinement to drop
such false positive. 57

Figure 31 The true positive loop closure detected by the
proposed approach. 57

Figure 32 The false positive detected on left, rejected on
right with the geometric verification. 57

Figure 33 The of FAB-MAP and NV compared to the pro-
posed approach. 58

Figure 34 Map coverage. 58

A C R O N Y M S

slam Simultaneous Localizationa and Mapping

pdf Probability Density Function

pf Particle Filter

imu Inertial Measurement Unit

sad Sum of Absolute Difference

xii

acronyms xiii

ssd Sum of Squared Difference

ncc Normalized Cross Correlation

ekf Extended Kalman Filter

rbpf Rao-Blackwellized Particle Filter

ml Maximum Likelihood

kld Kullback-Lieber Divergence

idf Inverse Document Frequency

ransac Random Sample Consensus

nv Naive Vector

bow Bag of Words

nndr Nearest Neighbour Distance Ratio

pcl Point Cloud Library

lmfit Levenberg-Marquardt least-squares minimization

1
I N T R O D U C T I O N

1.1 organization of the thesis

The aim of this thesis is to explore some solution to the loop closure
problem for humanoids navigation in indoor environment.

Such indoor environment are very challenging since in most struc-
tured buildings spaces look very similar, in some cases the appear-
ance of different floor levels are equal.

Vision based approaches suffer a lot this problematic. If not enough
state-of-the-art works demonstrated to work well when closing the
loop with a very similar view-point. We demonstrate the possibility
to obtain features descriptor more invariant to view-point changes by
extracting an estimated frontal view of the features.

The first part of this thesis is an introduction to the Simultaneous
Localizationa and Mapping (SLAM) problem of which the loop clo-
sure is a sub-problem. Followed by a description of some common
humanoid robots.

The second part is an overview of the tools and algorithms in-
cluded in the probabilistic framework adopted by the community to
solve the SLAM problem.

In the third part we test a state-of-the-art algorithm, FAB-MAP, on
an indoor environment and in the subsequent section we describe our
approach and we compare the results.

1.2 the simultaneous localization and mapping (slam)
problem

Thanks to the high level of degree of freedom that humanoid robots
have, they can move into a three dimensional space in many ways.
They can walk, they can crawl or they can go up and down the stairs.
In order to achieve high level tasks a humanoid robot must know
it’s pose and the environment that surround it. This can be viewed
as answering at two robot’s characteristic questions: Where i am? and
What does the world look like?

Answer to these questions, when as input you have only the set of
measurements and the set of controls applied to the robot, means to
solve the following problem: the SLAM problem. The SLAM problem is

1

2 introduction

actually well defined in the robotics community as a moving sensor
platform (wheeled, humanoids, etc.) constructing a representation of
its environment while concurrently estimating its ego-motion.

In this document I will provide a description of some state-of-the-
art approaches to the SLAM problem for humanoid robots with a focus
on the loop closure problem.

Although some recent approaches reached good results in various
large outdoor environment [13] and [4], the SLAM problem still re-
mains quite open, and a robust solution is not ready yet.

Sometimes this is due to some strict assumptions that each system
takes into account in its approximations. Most of time they assume
independence between variables or they approximate the correlation
structure.

Furthermore, state of the art works cannot reach a precise geomet-
ric consistency in large scale maps and in the best of my knowledge
there has not been attempt to solve drastic failure recovery with hu-
manoid robots.

As also stated in [20] persistence is still a problem since a robot
should operate robustly for a long period of time. If it needs to do
tasks that make it pass in the same environment different times, it
should be able to reuse the map. But at the same time a robot cannot
see its life as a big one mission, it would be infeasible for computational
costs. As ideal the robot should be capable to expand the map when it
sees new areas of the environment while improve the old parts when
it repass throw them.

1.2.1 Problem definition

According to literature (see [1], [29]) the right framework for solving
the chicken-egg SLAM problem is probabilistic. Inputs are a set of mea-
surements z1:t and a set of controls u1:t, the subscripts mean that they
are measurements and controls from time 1 to t. There are two formu-
lations of the problem: the first is the online SLAM problem, it involves
estimating the posterior over the actual pose along with the map:

p(xt, m|z1:t, u1:t) (1)

Where xt is the pose of the robot a time t and m is the map.
The second formulation is the full SLAM problem which has the goal

to calculate a posterior over the entire path x1:t instead of just the
current pose xt:

p(x1:t, m|z1:t, u1:t) (2)

The difference between on-line and full SLAM problems has conse-
quences on the type of algorithms that can be used on. The on-line
version can be viewed as the resulting of integrating out past poses
from the full SLAM problem [29]:

1.2 the simultaneous localization and mapping (slam) problem 3

p(xt, m|z1:t, u1:t) =
∫ ∫

· · ·
∫

p(x1:t, m|z1:t, u1:t) dx1 dx2 . . . dxt−1 (3)

Many algorithms for the on-line SLAM problem are incremental:
they discard past measurements and controls once they have been
processed, it means that above integrations are made one at a time.

A key aspect of the SLAM problem is that it involves a mixture of
continuous and discrete estimation components: the location of objects
in the map and the robot pose are continuous but the reasoning on
correspondence between newly detected object and object previously
detected is discrete.

Given that, inferring correspondences between newly detected ob-
ject and object previously detected is fundamental to achieve good
results it is preferable to explicitly put this variable into the problem
definition:

p(xt, m, ct|z1:t, u1:t) (4)

for the on-line case and

p(x1:t, m, ct|z1:t, u1:t) (5)

for the full SLAM.
So now we get the on-line posterior from:

p(xt, m, ct|z1:t, u1:t)

=
∫ ∫

· · ·
∫

∑
c1

∑
c2

· · ·∑
ct−1

p(x1:t, m, c1:t|z1:t, u1:t) dx1 dx2 . . . dxt−1

(6)

Estimating such full posterior contains all the information we need
about the map and the pose or the path [29].

As we will see a trade-off between accuracy and computational
costs (both time and memory) is required. So approximation is ubiq-
uitous in real SLAM applications, obviously due to the high dimen-
sionality of continuous variables and the large number of correspon-
dence parameters required.

1.2.2 Issues and open problems

Trying to solve the SLAM problem with sensors uncertainty, combined
with computational constraints have the consequence of raising up
some issues and challenges.

representation issues The final objective is to give to the robot
a useful map where it can do high level tasks, so what is it necessary
to represent and how? The possibilities to build a map fall between

4 introduction

a set of landmarks (as example visual features) just for cite some
works: [5],[4],[30],[13]; or a dense set of data (as example laser scan
data), again to cite some: [12], [10], [23].

There are many ways to represent Probability Density Function
(PDF), two of them are more popular than others: in Kalman’s Filter
based SLAM Gaussian distribution are assumed for all PDFs (somehow
limited but easy to implement) [5], in contrast in Particle Filter (PF)
based SLAM sampling is used to estimate a generalized PDF (more
general but may require a lot of sample) [10].

unstructured and dynamic environments In real world
applications a robot has to operate autonomously for hours or even
days, travelling for kilometres into 3D environment. So there is a need
of light-weight map with features that are invariant to robot motion
(as example SIFT [18] features are scale invariant).

Another problem rise up when we face that real world evolve with
time, it is dynamic. Not only due to other moving objects, that should
be identified and isolated, but also the light changes during the day.
Summarizing, maps should be invariant also to light, temperature,
whether, . . . the list can be very long.

data associations We encounter data association issues when
we try to associate data from sensors observations to a portion of
the map or a specific landmark. Data association must be robust or
instead spurious measurement will be associated improperly giving
for example a wrong pose estimation.

loop closure Noisy sensors and uncertainty in estimation let
grow the drift in time. So without a drift correction procedure, if a
robot walk in circle, it will not be able to know it.

The loop closure is the solution to the drift problem. It is the correc-
tion of the robot path and the estimated position of map components.
When the robot sense a place that it have seen before, it should review
the whole map (or a part) to remove some of the accumulated error.

A successful SLAM algorithm should be able to close loops effi-
ciently since the map can be very large and it may have to respect
deadlines in a real-time operation. In recent years some attempt to
the loop closure issue has been made with notably success also in
very large outdoor environment [13] [4].

An interesting approach in loop closure is the one from Galvez [9].
They look for timing consistency before accept the loop closure. When
they have a candidate set of possible loop closing location they take
into account only the subset that satisfies temporal consistence with
previously viewed locations.

1.3 humanoid robots 5

failure detection and recovery If the track of features is
lost due to motion blur, too fast motion, occlusions or not mapped
dynamic object in the environment (and other problems like the Kid-
napped Robot Problem) the construction of a consistent map or the
estimation of the ego-motion can become infeasible.

Other problems rise if the sampling rate of an IMU is not sufficient
to detect a peak, that can be caused by a robot accidental drop or
a hit. The estimated ego-motion will consequently diverge from the
real one. For these and other reasons a failure detection system must
be prepared to have a robust SLAM.

After the detection of the failure event the system should recover
itself without loosing past information like the map. In some sense
we can see it as the start of a new map that has to be merged to the
old one. This approach can be found in works like the one from Eade
and Drummand [6].

Another approach has been developed by Klein and Murray in [17]
where in their key-frame-based SLAM they use directly the key-frames
sensed after a failure detection. They compare them with all the key-
frames stored in the map and relocate the robot into the most similar
one.

1.3 humanoid robots

The first key point that distinguish state-of-the-art works on SLAM

for humanoid robots is the generation of the data. Data can come as
examples from sensed frames from a video system or range data from
laser scanners or inertial informations coming from an inertial sensor
like an IMU. In following sections I will introduce them after a brief
introduction on common humanoid robots.

1.3.1 Common robots

In the last few years, humanoid robots have become a popular re-
search tool. They are assumed to offer new perspectives compared
to wheeled vehicles since they are, for example, able to access dif-
ferent types of terrain and climb stairs. More generally, their human-
like body can help when acting in a world designed for humans. The
drawback of humanoids is that several tasks that can be easily carried
out with wheeled robots are hard to achieve with legged systems. In
such tasks are included stable motion with a payload and the accu-
rate execution of motion commands. Even motion planning can be
very hard due to the high level of degree of freedom that a humanoid
robot has.

Since they have to simulate humans, a humanoid robot should have
a stereo vision system on its head. So as consequence the majority of
SLAM approaches for humanoids are vision based.

6 introduction

(a) HRP2 vision system (b) SONY QRIO

(c) NAO with a laser rangefinder
on his head

(d) Non-robot configuration. An
IMU-camera system on the
hardhat of an operator.

In fig. 1a you can see a quite diffused robot, the HRP2. It has com-
parable size as a human, 154cm height and 58kg weight. HRP-2 has a
stereo vision system composed of three cameras(Fig. 1a upper right).
Two horizontal cameras are separated by 144mm, and the third cam-
era is 70mm upper than them. Relatively short focus lens is used
whose standoff is from 0.5m to 4m. The shutter speed of the cam-
era is controllable by a computer to adapt various lighting condition.
Through a plastic shield in front of the cameras (Fig. 1a lower right),
the object image is distorted. It is practically difficult to model the
shield shape and the position of the camera precisely. So it’s used to
remove the shield from the robot [8].

Other robots have very similar configurations like QRIO (fig. 1b)
from SONY. This is a small size humanoid robot. QRIO stood approx-
imately 0.6m tall and weight 7.3kg. QRIO’s slogan was "Makes life
fun, makes you happy!". Sadly on January 26, 2006, on the same day

1.3 humanoid robots 7

as SONY announced its discontinuation of AIBO and other products,
it announced that it would stop development of QRIO.

Recently some robots get updated with a small laser range finder
collocated on their head, as example you can see the NAO robot in
figure 1c. This open new prospective on SLAM for humanoid robots
because data from such devices are very accurate. Oßwald and col-
leagues presented an approach with this robot configuration to climb
a spiral staircase. They proposed an improved localization of the
robot using both range and vision data [25]. The laser scanner re-
sulted to be extremely accurate on the floor plane but quite noisy
when climbing stairs due to motors drifts on robot motions and to
hardware constraints that do not enable the scanner to see the area
just in front of robot feet. So a combination of laser data, vision and a
preloaded model of the stairs was used to achieve such good results
in estimating robot location.

A quite diffused way is the non-robot configuration. Since humanoid
robots are very expensive or since most of them are not really ready
for real world operations, quite often researchers opt to simulate an
humanoid robot with a real human. Another motivation is that some
tasks like vision are not very related to the real cinematic of the robot
so having a real humanoid robot sometimes is not strictly required.
For example see figure 1d for a video system attached on a hat and
other sensors in a backpack. This is taken from the work of Soatto,
Pretto and Tsotsos [30], they used this non-robot configuration to esti-
mate the ego-motion using a singular camera with an attached IMU.

2
P E R C E P T I O N

2.1 perception

The basic thing that a robot, or a general autonomous system need
is the knowledge about its environment. To gather such knowledge,
if not hard-coded, robots must rely on their set of sensors and ac-
quire data from them. Raw data isn’t really useful so an intermediate
task of data elaboration and/or noise reduction is required (see sec-
tion 3.1).

It’s possible to classify sensors in base of their characteristics [26]:

proprioceptive a sensor is proprioceptive if it measures values in-
ternal to the system (ex. the battery voltage);

exteroceptive a sensor is exteroceptive if it in contrast measures
values from the external environment (ex. vision);

active a sensor is active when it emit energy into the environment
and than measure the response (ex. a sonar);

passive a sensor is passive when it measure the environment energy
that enter the sensor (ex. a microphone).

As you saw in section (1.3) in state of the art humanoid robots
have only three main type of exteroceptive sensors: vision (in stereo
or monocular way), laser scanners and IMUs. In [7] its possible to find
a large description of a very lot of other sensors.

2.1.1 Laser scanners

A Laser scanner or, laser range finder or lidar is a time-of-flight sen-
sors. They consist of a transmitter that emit a collimated beam and a
receiver capable of detecting the component of light coaxial with the
transmitted beam. They estimate the distance of a point calculating
the time that the beam need to come back to the receiver. They are 2D
or 3D, for this scope a mechanical system is used to rotate in one or
two axes a mirror to cover the whole scene. They are very expensive
due to such mechanism and to the need of very fast electronic boards.

9

10 perception

2.1.2 Inertial Measurement Units

Into an IMU there are a set of (three orthogonal) accelerometers and
(three orthogonal) gyroscopes used to estimate its relative 6-DoF pose
(x,y,z for position and roll, pitch and yaw for orientation), velocity and
acceleration.

The gyroscope data is integrated to estimate the orientation, while
accelerometers estimate the instant acceleration. The knowledge of
the gravity vector make possible to transform such acceleration rela-
tive to it and after an integration the velocity is known. Integrating
again will give the estimation of the position. The only thing that is
missing is the value of the initial velocity, this can be assumed as zero.
IMUs are high affected to drift, drift in gyros cause a wrong estima-
tion/subtraction of the gravity vector that will rise a quadratic error
in the position due to the double integration.

Since all IMUs will drift after a while they need to be coupled with
other system that externally time by time correct their estimation.

In order to have good results IMUs often come with a calibration
matrix that contains information about wrong axes displacement of
accelerometers and gyros. This calibration is very expensive and each
IMU needs its calibration, this is the difference between expensive and
calibrated IMUs versus cheap and uncalibrated ones (the difference in
price can vary in some order of magnitude).

2.1.3 Vision

As human being, we choice vision to be our favorite sense, so it tend
to be the same when thinking about humanoids. With the enormous
amount of data regarding the environment provided by vision we
can infer high level informations necessary to do high level tasks.
Actually video systems are ubiquitous in the world that surround us
and videocameras can be very cheap. It’s no surprising the fact that
every humanoid robot have a video system.

image formation A lot of work has been done in the fields of
image capturing, image processing and image analysis; the last two
combined are known as computer vision. Such works gave us the pin-
hole camera model and a general perspective projection model resulting in
the following relation between coordinates of a pixel in an image and
its 3D counterparts:

λx′ = KΠ0gXo (7)

Where λ ∈ <+ is a scalar parameter, x′ = Kx are the calibrated image
coordinates, K is the camera calibration matrix and x are the uncali-
brated image coordinates, Π0 is the standard projection matrix [I, 0]
from <3 to <2, g is the euclidean transformation from the camera
frame to the world frame, and X0 are point’s coordinates [19].

2.1 perception 11

correspondence problem The above relation let us become
capable of image formation and skip to image analysis, where from
a series of images consequent in time we search for features and try
to track them during the image flow in time. As stated in [19]: Here image stand for

being a pixel
generated by a point
in space through the
pin-hole camera
model.

The correspondence problem consists in establishing which point
in one image corresponds to which point in another, in the sense
of being the image of the same point in space.

Normally images in the flow are taken each from a different van-
tage point, so some computation has to take place in order to achieve
feature matching. The intuition is that we have to model all possible
transformation (translation, affine transformations, projections) that
a feature can be affected during the image flow, in other words the
motion model of that feature.

Saying that Ii(x) is the image of a point x into picture i, we have to
choose a class of transformation h and then we can approximate the
matching of a feature from two pictures as:

I1(x) = I2(h(x)) + n(h(x)) (8)

where n is an additive noise term (occlusion were not taken into ac-
count).

So the formulation of the correspondence problem easily become
the solution of an optimization problem [19]:

ĥ = arg min
h

∑
x̃∈W(x)

‖I1(x̃)− I2(h(x̃))‖2 (9)

Here we have to look for the particular transformation ĥ that min-
imize the effect of noise, subject to equation (8) integrated over a
window W.

The choice of how to compute the discrepancy criteria, in this case
the norm, is critical in the quality of the results and the computational
effort needed for the calculation.

This approach is stated for point features, but it can be straight-
forward expanded for other geometric features like lines, edges or
corners and also for high level features like doors, tables or patch
features like Harris or SIFT. When it is necessary to work on features
that cover a patch of pixels, there are various criteria applicable. As
examples there are: the Sum of Absolute Difference (SAD) which just
iteratively sum the subtraction pixel by pixel of the patch I2 from I1,
the Sum of Squared Difference (SSD) which is very similar but uses
more multiplication operations by squaring the differences before ag-
gregation; and there is the Normalized Cross Correlation (NCC) that
is more complex because it involves multiplications, division and
square roots operations. As the computational complexity increase
also the robustness of method increase in fact NCC is more distinctive
from SAD and SSD in case of affine intensity changes [19].

12 perception

feature extraction principles With the objective in mind
of creating a map that is useful to the robot, that is as general as
possible in terms of environmental dynamics (light, temperature, . . .)
and also invariant in the point of view, some principles must be taken
into account in the feature extraction procedure.

3
D ATA

3.1 filtering tecniques

Filtering techniques are applied to have a better estimate of the state
of the environment and of the robot due to the fact that raw sensors
data is unreliable and unprecise taken alone.

Algorithm 1: Bayes filter algorithm
Input: bel(xt−1, ut, zt)

Output: bel(xt)

1 forall the xt do
2 bel(xt) =

∫
p(xt|ut, xt−1)bel(xt−1)dxt−1

3 bel(xt) = ηp(zt|xt)bel(xt)

4 end
5 return bel(xt)

All filtering algorithms in probabilistic robotics are based on the
Bayes filter that is the recursive algorithm (algorithm 1). It takes as
input the belief state at time t-1, the control at time t: ut and the
measurement at time t: zt. The output is the belief state at time t:
bel(xt).

The update rule of Bayes filter algorithm consists on two steps: the
prediction (line 2 of the algorithm) and the measurement update (line 3

of the algorithm). In the prediction step the filter try to estimate the
belief only using information on the previous belief bel(xt−1) and the
control applied to the robot, so it consists of an integration (or summa-
tion) of the product of two distribution: the conditioned probability
p(xt|ut, xt−1) and the previous belief. The subsequent step refine the
prediction using the information of actual measurement. For each
possible xt it multiples the previous prediction by the conditioned
probability to see measurement zt assuming to be in state xt: p(zt|xt).
The result is finally normalized to guarantee that it is a probability, it
must be that: bel(xt) ∈ [0, 1].

As is visible, the belief respect the Markov assumption (see sec. 4.1)
in which it completely represent the past of the robot.

13

14 data

In a real application Bayes filter cannot be used because it cannot be
implemented on a digital computer and approximation is mandatory
also to maintain computational costs under control.

3.1.1 Kalman filter

The Kalman filter is a class of implementations of the Bayes filter that
is applicable on continuous linear Gaussian systems.

Algorithm 2: Kalman filter algorithm
Input: µt−1, Σt−1, ut, zt

Output: µt, Σt

1 µt = Atµt−1 + Btut

2 Σt = AtΣt−1AT
t + Rt

3 Kt = ΣtCT
t (CtΣtCT

t + Qt)−1

4 µt = µt + Kt(zt − Ctµt)

5 Σt = (I − KtCt)Σt

6 return µt, Σt

Gaussians can be represented with their moments (the mean µ and
the covariance Σ). The implementation of the Bayes filter via such pa-
rameterzation is the Kalman filter (see algorithm 2). To have a correct
estimate of the belief we need it to be gaussian. So three conditions
must be met:

1. the initial belief must be gaussian;

2. the state transition probability must be a linear function with
an added gaussian noise independent variable;

3. also the measurement probability must be a linear function with
an added gaussian noise independent variable.

When a system meet these assumption it is called a Gaussian system.
In algorithm 2 it is explicit how the system is linear. Here x, u and

z are vectors so also µ must be a vector and Σ must be a matrix.
The rest of variables: A, B and C are matrices too. Q represents the
covariance of the zero-mean noise that affect the measurement and R
the covariance of the zero-mean noise that modelize the uncertainty
of the state transition.

3.1.2 Extended Kalman Filter (EKF)

The Kalman filter can be extended to non-linear problems. This can
be achieved by calculating the tangent to the non linear function that

3.1 filtering tecniques 15

describe the probabilities. It is done by Taylor expansion of such func-
tion in a specific point obtaining the Jacobians of that non linear prob-
ability functions. Such Jacobians are used in the filter in place of the
two non linear functions and the result is the EKF.

In lot of works like the one by Davison [5] in 2007 and previously
by quite the same team in 2006 [24] EKFs were used to manage noise.
This combination, EKF-SLAM, is defined by Thrun [29] as the earliest
and the most influential SLAM algorithm.

3.1.3 Particle filter

Algorithm 3: Particle filter algorithm
Input: Xt−1, ut, zt

Output: Xt

1 X t = Xt = ∅
2 for m = 1 to M do
3 sample x[m]

t ∼ p(xt|ut, x[m]
t−e)

4 w[m]
t = p(zt|x[m]

t)

5 X t = X t + 〈x[m]
t , w[m]

t 〉
6 end
7 for i = 1 to M do
8 draw i with probability ∝ w[i]

t

9 add x[i]t to Xt

10 end
11 return Xt

The Particle filter (algorithm 3) is an another kind of an approxi-
mated solution of the Bayes Filter. The key idea is to represent the
posterior density functions of the state by means of a set of M par-
ticles x[1], x[2], ..., x[M]. Each particle represents an hypothesis of the
state (as examples the robot path): the denser a subregion of the state
space is populated by particles, the more likely it is that the true state
falls into that region [29]. The algorithm take as input the particle set
at time t− 1, the control and the measurement at time t. The first loop
(lines 2-6) construct the respective bel(xt) of the Bayes filter. The term
w[m]

t is called the importance factor, it weights the sampled particle
basing on the probability to see measurement zt in that hypothetical
state. Then the second loop (lines 7-10) resample the particles weight-
ing their probability to be correct by the importance factor computed
before. The output correspond to the bel(xt) of the Bayes filter.

You can see an example in fig. 1.

16 data

Figure 1: Particles distrubution in a corridor. a) future set; b) posterior set;
c) raw odometry sampling in the same corridor.

3.1.4 Rao-Blackwellized Particle Filter (RBPF)

The use of Rao-Blackwellized particle filters by Grisetti in 2007 [10]
and Kwak in 2009 [23] is one of the last approach to solve the SLAM

problem with a 3D grid map. The structure of the SLAM problem
enables particle filters to be applicable in real-time. The term ’Rao-
Blackwellization’ means factoring of a state into a sampled part and
an analytical part. SLAM using RBPF computes the posterior over maps
and a robot’s path. The mathematical-key insight of RBPF-SLAM per-
tains to the fact that the full SLAM posterior can be factored as fol-
lows [29]:

p(x1:t, m|z1:t, u1:t) = p(x1:t|z1:t, u1:t, c1:t)
N

∏
n=1

p(mn|x1:t, z1:t, c1:t) (10)

where x1:t is the robot path from the start up to time t, m is the map
with N independent variables, and z1:t, u1:t and c1:t are the measure-
ments, controls and correspondences up to time t, respectively. In
other words if correspondences are known each feature in the map is
independent of each other.

So as stated before a particle filter is used to represent the posterior
over some variables, and a Gaussian (like EKF) to represent all the
other.

Montemerlo and Thrun introduced the Fast-SLAM method, [21].
Fast-SLAM is an instance of the RBPF and it uses particles to represent
the posterior over the complete robot path and Gaussians to represent
the posterior over landmark positions.

Grisetti et al. have developed this grid-based RBPF-SLAM generating
a 2D map with a laser finder [10]. Kwak extended the Grisetti work
with the stereo vision of an humanoid robot and a scheduling of grid
matching to reduce computational cost [23].

4
M O D E L S

4.1 probabilistic models

As an engineer the first thing to do after the statement and the under-
standing of the problem is the definition of the models of the systems
involved in the solution to the problem. In our case: a motion model
of the robot for ego-motion estimation, a set of sensors models and a
data association model for mapping.

The choice of the models have repercussions in all consequent steps
that take us to the solution.

The goal of these probabilistic models is to accurately describe the
uncertainty of components like the motion actuators, the measure-
ment read from sensors and the correspondence problem.

In practice the following models some times overestimate this un-
certainty leading to algorithms that are very robust to infringements
of the strict Markov Assumption.

Managing this assumption is fundamental in probabilistic robotics
since it is the basis of the Bayesian Filter (presented in section 3.1)
which is the basis of all the following probabilistic algorithms and
models.

A system is on the Markov assumption if past and future data are
independent if one knows the current state xt [29].

So violations can be due to:

• unmodeled dynamics;

• inaccuracies into probabilistic models;

• approximation errors.

Most of these problematics can be resolved with an integration in
the probabilistic model at the drawback of major computational costs
and a major complexity in the implementation of the model.

4.1.1 Probabilistic motion models

The probabilistic motion model describe the conditional probability
that the robot is in state xt after control ut from state xt−1:

p(xt|ut, xt−1). (11)

17

18 models

The variable of a motion model is the pose of the robot relative to
a world frame. The pose is composed of six elements: three Cartesian
coordinates T (x,y,z) and three Euler coordinates for rotation Ω (yaw,
pitch and roll).

We need to estimate the robot ego-motion and since the real motion
is affected by noise therefore we should add noise variable to the
system. If we can read the velocities of the robot from sensors (from
an IMU or from an estimation from a camera or odometry) a simple
model is the following:{

Tt+dt = Tt + (Vt + nVt)dt

Ωt+dt = LogSO(3)(R(Ωt)R((ωt + nωt)dt))
(12)

Where nVt and nωt are Gaussian noise. This model results in prac-
tice good and robust lots of situations. The case that makes this model
fails is when higher order derivative of velocities have correlation
structures. This is the case of walking gaits in humanoids robots, or
when the robot hits something. The following model includes these
problematics and it is robust in real application to such walking gaits.

Jones and Soatto in [13] presented a model to estimate in real time
the motion from monocular visual and inertial measurements. They
used a random walk with four level of differentiation in the transla-
tion states as motion model:

Tt+dt = Tt + Vtdt + 1
2 atdt2 + 1

6 ξtdt3

Ωt+dt = LogSO(3)(R(Ωt)R(ωtdt)R(1
2 wtdt2))

Vt+dt = Vt + atdt + 1
2 ξtdt2

ωt+dt = ωt + wtdt

at+dt = at + ξtdt

wt+dt = wt + nwt

ξt+dt = ξt + nξt

(13)

Where t is the time index, dt is the time interval between discrete
steps. V and ω are respectively the translational and the rotational
velocities. a and w are translational and rotational accelerations. ξ

is the translation jerk (the derivative of the translation acceleration).
And finally nwt and nξt are two white noise process.

As described in [19], R(Ωt) = exp(Ω̂t) is the rotation matrix corre-
sponding to the rotation vector Ωt, where Ω̂t is the skew-symmetric
matrix corresponding to Ωt, and LogSO(3)(R(Ωt)) = Ωt is the rotation
vector Ωt corresponding to the rotation matrix R(Ωt).

In addition to this motion model, their work includes as variables
the camera-to-IMU calibration and the gravity vector.

They introduced the concept of a sufficiently exciting motion se-
quence that is required in order to have a good estimation of the

4.1 probabilistic models 19

trajectory. The constraint is that the motion undergone by the sens-
ing platform has non-zero linear acceleration and non-constant ro-
tational axis. Under this assumption both the gravity vector and the
camera-to-IMU calibration become estimable. Unfortunately many rel-
evant motions like planar motions or constant speed do not respect
these conditions and since both variables are not inferable. In such
situations they decided to saturate the filter to prevent from drift.

In 2012 Tsotsos, Pretto and Soatto applied the work to the specific
case of ego-motion estimation on humanoid robots [30].

For humanoids the quasi-periodicity of walking gaits and accelera-
tions due to contact forces cause a correlation structure in such acceler-
ations.

The robot pose is modeled by integrating the unknown angular
and linear velocity, and the velocity is integrated by the unknown
acceleration witch is further the integration of the unknown jerk. It
is visible that this absence of knowledge is propagated until an high
order of derivative that can be represented as white noise. At this
level gaits are well modeled.

This is the reason to include such high order derivatives, the jerk ξ,
in the model. It enables the capture of such correlations.

The strength point of this work is its independence from robot dy-
namics and sensors calibration.

4.1.2 Probabilistic measurement models

The second part of the system that need a probabilistic model is the
set of sensors that measure the environment. Measurement models
contain details of how sensors take informations about the physical
world. Such models are sensor specific, so a different model is needed
for each different type of sensor. In probabilistic robotics these models
have to capture the sensor’s noise. A formal definition is the condi-
tional probability to see a certain measurement in a specific position
of the map:

p(zt|xt, m) (14)

Where zt is the actual measurement, xt is the actual pose of the
robot and m is the map. Most sensors, when queried, generate a lot
of measurement values instead of just one, so we can name this set of
measurement with an overscript:

zt = {z1
t , . . . , zK

t } (15)

Where zk
t is a single measurement value. The probability distribu-

tion become:

p(zt|xt, m) =
K

∏
k=1

p(zk
t |xt, m) (16)

20 models

with the assumption of independencies of the noise between each
measurement. As for the Markov assumption this is true only for the
ideal case.

The map is represented of a set of objects within their character-
istics m = {m1, m2, . . . , mN}. As we will see in section 6.1, maps are
usually modeled in two ways: location based maps or feature based
maps.

In location based maps data is volumetric, they represent each loca-
tion in the world and also the free space, so here each location has a
list of elements mn. Each element mn in the list contains a feature and
its displacement in the world relative to the world frame. A feature
based map instead keeps informations only on the available features
at specific locations.

Figure 2: Example of the mixture model of a laser finder from [29]. The
shape is formed by a gaussian centered on the true value zk∗

t , an
exponential from 0 to zk∗

t for possible unexpected objects, a failure
peak at zmax and a random uniform for random measures

The shape of the PDF (16) can vary a lot from different kind of
sensor since each of them can have a different set measurement errors
to model, so the resulting PDF will be a mixture model. This mixture
model carry intrinsic parameters that must be set correctly in order to
have a good estimation. These parameters can be set by hand, but a
robust approach should use a parameter estimator. For example with
a reference dataset Z = {zi} with associated position X = {xi} and a
Maximum Likelihood (ML) estimator algorithm.

When a PDF is not known or its estimation can be exponential in
time or more often when the independence assumption of equation
(16) is not good; it is possible to approximate it to a known one or a
simpler one.

The similarity metric between two distribution P(Z) and Q(Z) is
the Kullback-Lieber Divergence (KLD):

DKL(P, Q) = ∑
x∈X

P(x) log
P(x)
Q(x)

(17)

4.1 probabilistic models 21

where the sum is over all possible states in the distribution. This sim-
ilarity is zero when the two distribution are equivalent or strictly
larger otherwise [3].

The naive Bayes approximation is an approach to this problem with
the strictly condition of independence between each variable on all
the others.

In the case of vision, where locations are described by features, an
high dimensional discrete probability distribution is generated. Chow
and Liu trees is an approach to approximate discrete distribution that
loosen this constraint of independence with the condition that each
variable can be dependent on at most one other variable. This lead to
a graph structure. In a graph with n variables there can be nn−2 trees
and Chow and Liu in [2] developed a polynomial time algorithm to
choose the best one. This technique is used in state of the art work
FAB-MAP [3], [4].

Formally the Chow and Liu algorithm search the tree-structured
Bayesian Network Q(Z)opt that minimize the KLD respect to the ref-
erence distribution P(Z). The first step involve the construction of a
mutual information graph G. With n variables G is a complete graph
where each edge (zi, zj) is weighted with the mutual information be-
tween zi and zj:

I(zi, zj) = ∑
zi∈Ω,zj∈Ω

p(zi, zj) log
p(zi, zj)

p(zi)p(zj)
(18)

over all possible states of z. This value is zero for independent vari-
ables or larger otherwise.

Chow and Liu proved that the maximum-weight spanning tree in the
mutual information graph is the resulting Q(Z)opt. Doing this we
exclude all minor dependencies between variables obtaining a fast
tree structure where to efficiently search only for most important con-
ditional dependencies between variables. In their work they proved
also that the maximum likelihood can be obtained directly from co-
occurrence frequency in training data.

4.1.3 Probabilistic data association models

Data association models are required when comparing measured lo-
cation to the set of locations that compose the map. So these models
should tell us if the actual location is a new one, so we should expand
the map or if the robot is in a previous visited location and it has to
perform the loop closure.

These models are mainly used in appearance based SLAM such as
FAB-MAP [4]. In that work data is represented as bag-of-word in the
sense that each scene is a collection of feature or words from a set or
vocabulary. A scene at time k is represented as Zk = {z1, z2, . . . , z|v|}
where |v| is the size of the vocabulary and zi is a boolean variable

22 models

which is 1 if the feature i is present into the scene, 0 otherwise. They
represent the map as a set of disjoint locations, with nk locations at
time k: Lk = {L1, L2, . . . , Lnk}.

Each location Lj have an associated appearance model with extra
variables ei that describe the event that in that location exist an object
that generates the feature zi. So a location become the set: {p(e1 =

1|Lj), . . . , p(e|v| = 1|Lj)}. A detector model is specified by:

D =

{
p(zi = 1|ei = 0) false positve

p(zi = 0|ei = 1) false negative
(19)

The extra set of variables e let the system to easily merge data from
multiple sensors with different error characteristics and it facilitates
factoring the distribution p(Z|Lj) into two parts. The first is a simple
model for each location composed of independent variables ei, and
the second is a model that make use of Chow and Liu trees to incor-
porate correlations between detections of appearance words.

The objective is to estimate the robot position at time k given the
set of measurement from time 1 to k, Z k. This is done by taking the
location that maximize the conditioned probability:

p(Li|Z k) =
p(Zk|Li,Z k−1)p(Li|Z k−1)

p(Zk|Z k−1)
(20)

it is a Bayes recursive estimation with three factors: the prior belief
p(Li|Z k−1), the observation likelihood p(Zk|Li,Z k−1) and the normal-
izing term p(Zk|Z k−1).

The observation likelihood is computed using a Chow-Liu approx-
imation, given the tree which is computed offline with training data,
the conditioned probability become:

p(Zk|Li) ≈ p(zr|Li)
|v|

∏
q=2

p(zq|zpq , Li) (21)

where zpq is the father of the node q in the tree. And including the ei
variables into the approximation:

p(zq|zpq , Li) = ∑
seq∈{0,1}

p(zq|eq = seq , zpq , Li)p(eq = seq |zpq , Li) (22)

A further approximation that involve independence between ap-
pearance words and locations and between p(ej) and words different
from zj makes the term p(zq|eq = seq , zpq , Li) composed only of factors
that are directly inferable from training data. The result is a very fast
implementation of the approximation.

Another probabilistic approach that is used in feature based maps
is the one introduced by Jones in [13]. In this work the map is divided
in locations that are composed by nodes that share a portion of their

4.1 probabilistic models 23

set of feature together. They generate a query with the list of all the
features that appear in a location and its neighbor and then use a
scoring function based on the Inverse Document Frequency (IDF):

Si =
K

∑
k=1

f k
q f k

n

log N/FK (23)

where N is the number of nodes, K is the number of terms, f k
q is the

number of times that the term k appears in the query list, f k
n is the

number of times term k appears in node i’s list, and Fk is the number
of documents in which term k appears at least once.

To have a metric on the location instead of the node, for each can-
didate location the score is the sum of all scores of nodes that fall in
that location normalized by the total number of feature that appear
in that location.

Without this division of locations in nodes the query will obtain
results spread in the whole graph with many false positive, instead
in this way only nodes with covisibility constraints should generate
candidates.

After getting some candidates Random Sample Consensus (RANSAC)
can select the best one. Jones et al. in their work make use of the grav-
ity information from the IMU and with the fact that their co-visibility
graph has an unique global scale it is possible to block some degree of
freedom and to search exhaustively the right location in the candidate
set.

5
L O C A L I Z AT I O N

5.1 localization

The naive approach to the localization of the robot is to center the map
in the robot position, delete features or voxels far away from it and
maintain and updating only a window around the current position
(Sabe et al. [14]).

Another approach is to build a complete map step by step in an
incremental way and track the robot position in that map.

Sometimes the map is known a priori so the robot have only the
task to localize itself in that map.

In a probabilistic map-based localization approach one should track
probabilities of all possible positions of the robot. This is obviously
due to the fact that sensors are affected by measurement errors and
also by aliasing.

In order to achieve a good estimation of a body trajectory, or as
usual in literature the robot ego-motion estimation problem, most
common sensors used are inertials (like IMUs). Other approaches uses
vision systems like mono-SLAM [5], visual odometry [28], visual SLAM [1]
or FAB-MAP [4]. Furthermore mixture of sensors can be used like
IMU-vision [13], laser range and vision [25] or more.

The tracking of the robot pose can be affected by drift problems
when repeating the same operations like walking in circle.

5.1.1 Probabilistic localization algorithms

The straightforward implementation of the Bayes filter for the local-
ization problem is the Markov localization. The only difference with
algorithm (1) is that Markov localization needs as input also the map
m and it uses it into the measurement model that become: p(zt|xt, m);
and into the motion model that become p(xt|ut, xt−1, m).

If the initial pose is known at x̂0 the starting belief is set to it:

bel(x0) =

{
1 if x0 = x̂0,

0 otherwise
(24)

25

26 localization

Instead if it is not known a priori it is set to a uniform probability
distribution over all possible positions:

bel(x0) =
1
|X| (25)

Where X is the set of all possible position x0.
As consequence as being direct implementation of the Bayes filter,

this algorithm is not useful in practice. In next paragraphs there are
other algorithms that can be used for localization in real time appli-
cations.

As EKF is a special case of the Bayes filter, EKF localization is a spe-
cial case of Markov localization. EKF localization represent the belief
bel(xt) in a parametric manner with its first and second moments µt

and Σt of a Gaussian PDF.
Particle filters are used in Montecarlo localization, where the belief

is represented by a set of M particles Xt = {x[1]t , x[2]t , ..., x[M]
t }. The

initial pose is distributed in M initial random particles from the prior
distribution p(x0) and giving to them the same importance factor 1

M .
The advantage of the use of the particle filter is that it can approx-

imate every possible distribution, and we need only to increase the
number of such particles to improve the approximation. As conse-
quence the parameter M must being set as a trade off between accu-
racy and computational performances.

As stated in [29] a common approach is to continue sampling until
an new pair of control and measurement arrive to the filter. In this
way the system is adaptive to the amount of resource available. Ob-
viously to avoid filter divergence a minimum number of particles is
required.

Montecarlo localization can be modified to get some failure recov-
ery capabilities. When the number of particles is small over a large
volume of space is quite common that the filter will not be able to
predict the correct pose. The idea is to generate random particles and
add them to the particle set. This can help in case of the kidnapped
robot problem, doing so let the set of particle converge in time to the
new correct pose of the robot.

KLD-sampling (see section 4.1.2, equation (17)) is a variant of the
Montecarlo localization. The objective of this variant is to determine
the necessary number of particles measuring the approximation qual-
ity.

In the work by Oßwald et al. [25] the environment map is known
a priori and they used range laser finder data with the Montecarlo
Localization algorithm to estimate the robot pose (pose comprise the
location and the orientation of the robot) over this map:

1. They transform the particle’s pose according to the odometry in-
formation accumulated since the last integration. Starting from

5.1 localization 27

this initial pose estimate, a scan matcher based on gradient de-
scent improves the particle pose by fitting the current laser scan
in the given 3D environment model.

2. As the most likely pose returned by the scan matcher already
provides a good estimate of the robot’s pose, they assume that
the meaningful regions of the proposal distribution will be in
the vicinity. Hence, they sample {x1(i), ..., x(i)k } from a uniform
distribution within a fixed range around the pose returned by
the scan matcher.

3. At each sample point x(i)j , the algorithm evaluates the observa-

tion likelihood p(lt, Ct|m, x(i)j) based on the current laser scan
lt and the set of camera images Ct. They assume that the laser
measurement and the measurements from the individual im-
ages are conditionally independent.

4. A multivariate Gaussian distribution is fitted to the proposal
distribution, from which it then draws the new particle poses
in the resampling step because the algorithm can evaluate the
proposal distribution only at sample points so it has to fit a
continuous distribution to the sample values.

5. Then importance weights of the new particles are computed.

Results of such technique can be viewed in figure 3, on left the
initial distribution and on right the final distribution with 95% of
confidence inside the depicted ellipse.

Figure 3: On left the initial distribution (observation likelihood of laser data)
and on right the final distribution with 95% of confidence inside
the depicted ellipse.

6
M A P P I N G

6.1 mapping

The most serious problem in describing the environment in 3D is
that it consumes a large amount of memory and computing power.
With the advance of computer technology, this restriction is relaxed in
some degree. However it is still a serious problem for self-contained
robots because of their size and weight limitation.

A number of systems assume the world is known in advance, i.e.
they only work in simulation. Or sometimes severe restrictions took
place to the environment or possible robot actions.

The simplest way to make a 3D map from range data can be using
raw points as is or making polygons by connecting those points. But
when simply accumulating maps, the amount of consumed memory
increases. In addition, polygons equal to an obstacle, but it is difficult
to distinguish a vacant space and a hidden space.

The analogous in visions system is to store each frame captured
and merge all them to form a full detailed map.

The problem of construct a correct representation of the environ-
ment is somehow dual to the problem of the estimation of the robot
position in that environment. In fact the definition of the specifics
that describe the way that the map are being constructed have a great
impact in how the robot pose is represented. Sometimes the accuracy
of the robot position is limited by the coarseness of the map.

The grade of precision required is derived by the type of task that
the robot has to do into the environment. And that grade, or the type
of features that are used is also a consequent of the kind and the
accuracy of the set of sensors equipped in the robot.

Maps can also be divided into two category basing on the manner
to represent the environment. A map is topological if it uses a coarse
graph-like to represents the environment. Nodes of such graph are
rough sets features or in some recent works locations that include a
superset of features that one might expect to see when visiting such
locations. The other kind of maps are metric in that the environment
is divided in regulary-spaced grids. This division of the space is not
dependent on features displacement or shape.

29

30 mapping

Various approach has been developed in recent years to release
such restrictions and I will discuss some of them in the following
subsections.

The mapping problem in probabilistic robotics is to give the follow-
ing estimation:

p(m|z1:t, x1:t) (26)

Where m is the representation of the map, z1:t and x1:t are respectively
the set of measurement and the robot positions from time 1 to time t.

6.1.1 Plane classification

Gutmann, Fukuchi and Fujita in their proposed method [12], they
build a 3D environment map using occupancy grid and floor height
maps. The resulting representation classifies areas into one of six dif-
ferent types while also providing object height information. The en-
vironment types that they wish to distinguish are designed for the
navigation of the robot and are composed of types of regions where
the robot can walk ordinarily (floor), require the robot to step up or
down (stairs), allow the robot to crawl underneath an object (tunnel),
are blocked (obstacle), are unsafe because the robot might fall down
(border) or at last haven’t yet been sensed (unknown).

They represent the environment by a regular 2D floor and obsta-
cle grid map which is created from sensor data under the following
assumptions:

1. The world is separated into floor and obstacles.

2. The floor is planar and horizontal (or else it is an obstacle).

3. There are no multiple floor levels at the same location.

4. The robot is able to distinguish between floor and obstacles and
can estimate their relative position and height using its sensors.

Note that these assumption still allow the representation of obstacles
above the floor where the robot can crawl underneath.

It is important that the floor height can be estimated precisely since
kinematic constraints of humanoid robots need accurate information
to ensure stable walking or climbing. On the other hand, obstacle
heights are allowed to be imprecise since the only aim is to avoid
them.

To classify voxels three parameters are needed:

obstacle detection : The highest occupied cell above a given floor
height h f defines the obstacle height at (x, y);

ceiling detection : the lowest occupied cell above h f defines the
height of the ceiling at (x, y);

6.1 mapping 31

floor change detection : In the 8-neighborhood U(x, y), the floor
change ∆h(x, y) is the maximum height difference to the floor
height h f Floor(x, y)

So if a cell of the map has a ceil height higher than the robot (maybe
in one of its pose) this cell is classified as a tunnel. If the ceil is low
and the height is high the cell become an obstacle. If there is a small
∆h the cell is classified as a stair and so on. For a real example see
figure 4. A nice video of a real (not simulated) example can be found
at http://www.ijrr.org/ijrr_2008/096316.htm

Figure 4: Map generated after the classify algorithm, QRIO walks around
two obstacles.

6.1.2 3D Grid map

3D grid maps represent the environment in a fine grained grid over
continuous space. The map m is composed of grid cells mi: m = {mi},
where:

mi =

{
1 if the cell is occupied

0 otherwise
(27)

And p(mi) is the probability that the cell mi is occupied.
The mapping problem can be factorized in the following way:

p(m|z1:t, x1:t) = ∏
i

p(mi|z1:t, x1:t) (28)

The price of this decomposition is the fact that dependencies between
adjacent cells are ignored.

Obviously mapping algorithm should update only the set of grid
cells that are effectively in the space measured by the set of sensors of
the robot with an inversed sensor model that tell us the state of such
cells based on the measurement.

Kanehriro et al. [8] in 2005 proposed a 3D grid map approach to
the map generation. In their work a high resolution of the grid wasn’t
necessary because the map is built to find a movable space and not
for object recognition (that need high resolution). The 3D grid map is
generated after the SAD algorithm presented in section 2.1.3. A grid

http://www.ijrr.org/ijrr_2008/096316.htm

32 mapping

Figure 5: Coordinate definition.

point gr is converted to the camera coordinate system gc(x, y, z) and
then to the screen coordinate system gs(col, row) (figure 5).

If gs is within the screen, the following procedure is executed.

1. If a 3D coordinate for gs is calculated, Z coordinate of it and z
are compared and gr is labeled according to its result.

a) If an absolute difference of them is smaller than a grid res-
olution, the grid is occupied by an obstacle. So it is labeled
as Occupied.

b) If z is larger, the grid is vacant. So it is labeled as Vacant.

c) If z is smaller, the grid is hidden by an obstacle. So it is
labeled as Hidden.

2. If a 3D coordinate is not calculated, the grid is labeled as Un-
known.

You can see an example in figure 6. Map data is accumulated during
the map generation.

Figure 6: 3D grid map example.

Like in Kanehiro work, Kwak et al. used the same method but with
a different approach on the voxel generation. They followed a statisti-
cal approach with a RBPF and a scheduling system for grid matching

6.1 mapping 33

in data accumulation [23]. They made the following algorithm taking
as input robot pose xt and range data zt and returning as output the
updated particle set:

1. Predict the pose of the robot based on odometry.

2. If the range data is the first (nothing to match) register the data
and return.

3. Else compute the importance weight and average likelihood.
Compute Neff.

4. If computed values satisfy thresholds:

a) Compute the means of poses and maps.

b) Search the best pose using gradient descent method.

c) Update the mean map with the range data at the best pose.

d) Reset particles with the resulting data of matching.

5. Else update all the maps of the particles with the range data.

6.1.3 Feature-based map

The map is feature-based when features are extracted and tracked
between images (fig. 7). Features are salient patches from raw data
of a single measurement. Sometimes feature have 2D or 3D points
associated to localize them in space.

Features are extracted from raw data that come from sensors, in
humanoid robots the common feature based maps are constructed
with visual features from the robot camera’s frames.

One of the first work that uses a feature-based map in a SLAM ap-
proach is the Davison’s one. In that work they assumes a Gaussian
uncertainty for the whole state vector, therefore they maintain the
mean and the covariance of the camera and features pose [5]. They
based the estimation of the posterior density function over the state
on a EKF.

Figure 7: Feature-based map.

When they find a new feature they try to localize it with a 3D point:
after the identification and first measurement of a new feature they
draw a 3D line into the map along which the feature must lie. This

34 mapping

is a semi-infinite line, starting at the estimated camera position and
heading to infinity along the feature viewing direction. All possible
3D locations of the feature point lie somewhere along this line, the
depth is not known due to the use of a single camera.

A set of discrete depth hypotheses is uniformly distributed along
this line, which can be thought of as a one-dimensional probability
density over depth, represented by a 1D particle distribution.

So they make the approximation of depth over the next few time-
steps as this new feature is re-observed.

Once they have obtained a good depth estimate in the form of a
peaked depth PDF, a conversion of the feature to ’fully initialized’
with a standard 3D Gaussian representation is done.

A problem arise when the number of features is too high and on-
the-fly decisions need to be made about when new features should
be identified and initialized, as well as when it might be necessary
to delete a feature. They found that with a wide angle camera 12

features are enough to localize the robot. This work resulted not good
in scaling.

With the aim to develop high scalable maps, recent approaches
made use of advanced storing techniques. BoW to limit the amount of
necessary memory for each location, and the inverted index as a stor-
ing technique to obtain fast search performances in the place recogni-
tion phase.

The first step is to represent an image as the set of its most dis-
criminative interest points. This is called bag-of-features technique [26].
Spatial information are lost but lot of space is saved and similarity be-
tween locations can be measured as the number of common features.

An improvement can be achieved with the visual words technique
were each feature is viewed as a single number, namely a word. So the
set of all words become a vocabulary. The vocabulary are constructed
offline with train data and then used by the system [4], [9].

The construction is done by clustering similar features in a spe-
cial feature discrete space (if the feature descriptor is as example a
SURF 64bit, then the space will have 64 dimension). The space is then
separated in Voronoi regions to divide clusters and one very distinc-
tive descriptor for each cluster of features is chosen. That descriptor
become the one that represent the cluster. The set of all cluster’s de-
scriptors become the vocabulary.

Doing this the dimensionality is drastically reduced and now fast
comparison can be made. Obviously the number of words/clusters is
crucial to achieve good comparison results. In literature (see [32] for
a good comparison) there isn’t any specific indication of the absolute
best cardinality of a visual words vocabulary. A trade-off between
discriminativity (more words) and generalizability (less words) must
be choose.

6.1 mapping 35

New features extracted from test data are spanned into the discrete
feature space and the closer cluster descriptor is taken in place on the
original feature’s descriptor.

With this schema, Zk, the captured image at time k is stored in this
type of BoW:

Zk = {z1, z2, . . . , z|v|} (29)

where |v| is the number of words in the vocabulary and zi is the
number of word’s of dictionary index i that are present in the image.

With binary-bag-of-words zi is 0 if the word i is not present in the
image, 1 otherwise [9].

Instead of storing a list of all locations with for each of them a list
of the features present in that location, it is preferable to store in the
inverse way, a list of all the features where each of them point to a list
of all locations that contains that feature. This is called the inverted
file system technique [33]. It is derived from the information retrieval
field.

As summary I can state that the combination of the inverse index
and the bag-of-visual-words is the state of the art golden standard for
feature based maps.

6.1.4 Loop closure

All the sensors are affected by noise, so over time the drift from the
ground truth can only increase. Nevertheless a robot should be able
to recognize a previously visited location and hence correct its pose
estimation. This problem is called the loop closure detection.

Davison et al. with their mono-SLAM [5] resolved such problem
with a reasonable error (fig 8). As stated in section 6.1.3 this is one
of the first approaches and it is not scalable as it work only for small
loops and a few amount of features.

Figure 8: Example of HRP2 walk in circle.

They correct the position of the robot in the map when they find
correspondence between new and old features.

36 mapping

In location based approaches the way to determine a loop closure
is slightly different. Every time that a new location is sensed it is com-
pared to the whole map looking for a match. This is done in feature-
based map by extracting the new location feature set and comparing
it with the older locations in the map.

The inverted file system technique (introduced in section 6.1.3) let the
system take a new level of performances. It is used in most, if not all,
of recent works as examples [13], [30], [4] and lot more.

In the case of visual words (introduced in section 6.1.3) the first
index is the vocabulary of all possible words. The set of features of
a sensed frame is quantized to the correspondent cluster descriptors
set. The cluster descriptors are used to search all the locations that
contain them. And a candidate set is constructed with the locations
that contains much sensed features.

An interesting approach to skim the candidate set is the one from
Galvez [9], they look for timing consistency before to accept the loca-
tion. When they have a candidate set of possible loop closing location
they take into account only the subset that satisfies temporal consis-
tence with previously viewed locations.

When a candidate set is ready the common approach is to apply a
geometric verification using RANSAC to select the best location [4].

In the work of Jones et al. [13] they didn’t need to do that since
they used an IMU-vision approach with a powerful model that cuts
away some degree of freedoms like the gravity vector and the fact
that they used a unique global scale. This let them to exhaustively ex-
amine each candidate with a number of test linear with the number
of candidates, avoiding so the RANSAC approximation and its compu-
tational cost.

7
S TAT E - O F - T H E - A RT A L G O R I T H M S T E S T S

7.1 loop closure algorithms tests

Since the development of self-driving cars gained a quite amount of
attention in recent years (thanks also to the DARPA’s challenges), the
development of SLAM approaches got a boost.

A number of approaches to solve open problems came out like [29], [4]
and lot more. Such approaches are made focusing on wheeled vehi-
cles in outdoor environments. It would be appreciable if they can be
applied straightforward to humanoids.

For this purpose I will test some of these loop closure approaches
and a combination of them on an indoor dataset. Which is a typical
environment for a humanoid robot that have to navigate inside a
building.

The dataset consists of a loop of a corridor, starting and ending
inside a small room. For screen-shots see figure 9.

Figure 9: Dataset frames samples

37

38 state-of-the-art algorithms tests

The dataset is composed of 8436 frames of a video recordered at
33fps with the non-robot configuration in figure 1d in section 1.3,
suited with a ground truth log of the camera pose inferred on the
data collected by the attached IMU.

Checking the whole dataset against the map is way too expensive
and relative useless because consecutive frames are really similar. So
we used the pseudo-metric (equation 30) described in Whelan’s pa-
per [31] to skim frames:

mab = ‖r(P−1
aR

PbR)‖2 + ‖Pat − Pbt‖2 (30)

Where r : SO(3)→ R3 is the function that provide the rotation vector
form of some rotation matrix R, and a and b are two poses.

The metric is sensitive to both rotation and translation movement.
When a threshold is reached the relative frame is passed to the place
recognition system. This distance is computed between the current
frame pose and the last frame pose that has been passed to the place
recognition system.

7.1.1 OpenFAB-MAP

FAB-MAP has become the golden standard for loop closure [9]. It has
been released also as part of the OpenCV library (see http://opencv.
org).

The work flow to obtain the loop closure prediction is well ex-
plained in the documentation and it is composed of the following
steps:

train dataset descriptor extraction : the whole train dataset
(composed of over a thousand of indoor images taken from the
web) is iterated and for each image the features descriptors are
extracted and stored into a matrix;

vocabulary creation : the set of descriptors are spanned in the
descriptor space and clustered;

generation of train data : the whole train dataset is reiterated,
the set of visual word are extracted from each image and stored
in a matrix;

chou-liu tree generation : using the above train data the tree
is computed (see section 4.1.3 for details on Chow-Liu trees);

on-line or off-line run : the setup is now complete and the al-
gorithm can now make the prediction, on-line if the frames are
passed one at a time or as an off-line batch process if the images
are passed all together.

The activity diagram in figure 10 depict the way you have to use the
OpenFAB-MAP class of OpenCV. You have to iterate the whole test

http://opencv.org
http://opencv.org

7.1 loop closure algorithms tests 39

Figure 10: Open FAB-MAP 2 activity diagram

dataset, and chose which images pass to OpenFAB-MAP, for each
of that images you have to compute the Bag-of-Words descriptor us-
ing the cv::of2::BOWImgDescriptorExtractor and check it against the
map with the method cv::of2::FabMap::compare(...). The results are
stored in an vector of cv::of2::IMatch objects. The first element of the
vector contains the probability that the frame is related to a new place.
The rest are one object for each location in the map that contains the
estimated probability that the frame is related to that location.

7.1.2 GUI and results

In order to have a better idea of what OpenFAB-MAP is doing frame
by frame, we prepared a graphic user interface.

Figure 11: Graphic User Interface sample

In figure 11 you can see how the GUI is structured:

frame views two frames are displayed, on left there is the actual
frame, on right the most similar map’s frame (green if the match
is accepted, red otherwise);

information displays under the frames there are 2 small text
displays that show useful informations like: the actual frame

40 state-of-the-art algorithms tests

number, the number of similar descriptor of the two images, the
index of the map’s similar frame and the match value computed
by FAB-MAP;

match plot on the bottom left there is a plot of the matching vec-
tor, gray lines are the match values (peaks over the red line are
accepted), green line are likelihood values. There is one line for
each frame in the map plus one: the first is for the probability
to have a new place;

ground truth plot since the ego-motion estimation is provided
we take it as the ground truth. It is plotted on bottom right, this
is useful to see if matches are coherent. If not that means a false
positive matches.

The red line is the camera path. Each yellow dot refer to a frame
in the map. A dot is green if the actual frame is matched with
a map’s frame and that match is accepted as a loop closure. A
dot is green if the actual frame is matched with a map’s frame
but that match is not accepted as a loop closure and the frame
is added to the map as a new place.

Figure 12: OpenFAB-MAP vanilla results

The figure 12 is a plot of the prediction result of a OpenFAB-MAP
on-line run in the form of a confusion matrix. There is a row for
each frame that is passed to OpenFAB-MAP. The white pixel is at the
pseudo-diagonal if the frame is related to a new place in the map. If
a loop closure is detected the white pixel is in the column of index
equal to the matched frame map’s index.

There are four coloured bands, two in red and two in orange. The
red bands refer to frames related to the small room in which the loop

7.1 loop closure algorithms tests 41

starts and ends. The orange bands refer to frames related to the first
corridor.

Loop closure detection are expected only in these two areas (not
the whole bands but only the in the columns indices that correspond
to frames of the same area).

Figure 13: Two good match: a) in the room and b) in the corridor.

In figure 13 there are two good matches, one in the small room at
the end of the dataset and one in the corridor outside the room when
the camera is returning to the room.

Figure 14: False negative match from the black band’s frames

42 state-of-the-art algorithms tests

In figure 14 there is an example of a false negative loop closure
detection, in this case OpenFAB-MAP failed to detect that the camera
has returned inside the room.

Figure 15: False positive match from the black band’s frames

As you can see there are a lot of false positives, this is because
FAB-MAP works only in the space of the appearance and it has not
information on the path of the camera, in figure 15 you can see one
of this false positive taken in the black band (the part of the loop that
should not generate loop closures).

7.1.3 Naive Vector of BoWs approach

To have a comparison with another approach I decided to use a Naive
Vector (NV) approach. The NV approach has two phases:

BoWs comparison compare BoW descriptors in the descriptor space (R|V|+ where
|V| is the size of the vocabulary) with the L2 norm. We then
populate a candidate set of the k most similar BoWs;

Descriptors comparison select the best candidate using a constraint in the similarity
of the feature’s descriptors between the actual frame and the
frames related to the candidate set.

The feature’s descriptors are compared using the Nearest Neigh-
bour Distance Ratio (NNDR) described in [22]. With this metric the
threshold is applied to the distance ratio between the first and the
second nearest neighbour. Thus, the regions A is matched to region
B if:

‖DA − DB‖ < ε‖DA − DC‖ (31)

where DX is the descriptor of a region X, DB and DC are the first and
the second nearest neighbor to DA.

The parameter ε ∈ (0, 1] has to be decided empirically. Next to 1 if
the constraint need to be permissive or next to 0 otherwise. As you
see in next paragraph I tried three values for this parameter: 0.5, 0.65,
and 0.8. Tests outside this range resulted useless.

7.1 loop closure algorithms tests 43

Figure 16: A comparison of approaches and parameters changes: a)
OpenFAB-MAP vanilla; b) NV with NNDR 0.65; c) NV with NNDR

0.5; d) NV with NNDR 0.8.

In figure 16 there is the comparison between the confusion matrices
of the pure OpenFAB-MAP and the NV approach with three different
values for ε parameter.

The first thing that is visible is that for ε = 0.5 the constraint is too
restrictive and no loop closure is accept with the exception of the last
frame which is very similar to the first one.

With ε = 0.8 we obtain the inverse result, in fact the constraint now
is too permissive and quite all the comparison result in a loop closure
detection.

By setting the parameter ε = 0.65 we obtained quite a good result.
As you can see there is very few false positive matches comparing to
the OpenFAB-MAP results, and the system is still capable to recog-
nize both the corridor and the room.

7.1.4 OpenFAB-MAP and NNDR

Due to the hardness of the dataset in which al lot of location are
similar each other, OpenFAB-MAP generates a lot of false positive
loop closure.

To remove some of such false positive we decide to try to apply the
NNDR constraint at the candidate that OpenFAB-MAP suggests as a
loop closure.

In figure 17 there is a comparison between the vanilla version of
OpenFAB-MAP (a), two with the NNDR constraint (b) and (c) and the
best result obtained with the NV approach (d).

44 state-of-the-art algorithms tests

Figure 17: A comparison of approaches and parameters changes: a)
OpenFAB-MAP vanilla; b) OpenFAB-MAP with NNDR 0.65; c)
OpenFAB-MAP with NNDR 0.5; d) NV with NNDR 0.65.

As you can see lot of false positive are rejected, especially by setting
ε = 0.5.

The next step is to make use of the camera path estimation that
is given with the dataset. It has been extracted from an IMU sensor
attached to the camera. With spatial informations should be possible
to reject other false positive loop closures detections.

Beyond the number of false positives, the system cannot recognize
the loop closure in the entrance of the room. Especially the NV ap-
proach recognize the room well only when the robot re-seat on the
chair from where the video started. It would be very nice if it is possi-
ble to recognize that place from the entrance. There, matches are very
bad because feature descriptors are not robust to this severe view-
point changes of the library and the posters.

8
A L O O P C L O S U R E A P P R O A C H R O B U S T T O S E V E R E
V I E W- P O I N T C H A N G E S

8.1 motivations

Some problems raised up form the tests on FAB-MAP and NV ap-
proaches to the loop closure problem. For this reason we decided to
exploit the information of the ego-motion estimation that is suited in
the input data set.

In particular we focused on the difficulties that take that approaches
to reject the loop closure detection in the first frames of the re-entering
in the room, see example frames in fig. 18

Figure 18: Sample frames of a desired loop closure detection. Frame left
exiting the room, frame right re-entering the room.

The same problem appears also in [9] where loop closures are de-
tected only when passing through a place in the same view-point
verse. This can be solved or simplified using an omnidirectional cam-
era but it isn’t the case of our input dataset. The aim is to obtain
features descriptors that are less invariant to such severe view-point
changes. The best will be to have a frontal view of each feature [11].

By exploiting the ego-motion estimation informations one can lo-
cate the feature points in space by triangulation. The triangulation
process need 2 video frames that see the same set of features and that
are near in space to avoid large drift error of the ego-motion estima-
tion.

45

46 a loop closure approach robust to severe view-point changes

Once a feature is located in space one can imagine to stretch and
rotate the image frame to obtain an estimation of a frontal view of
that feature.

The proposed approach is based on the strong assumption of pla-
nar features (see it as a derivation of the Manhattan assumption [16]).
Under this hypothesis one can:

• estimate the plane where the feature point lays (or equivalently
the plane’s normal);

• take a neighbourhood around the feature point in 3D accord-
ingly to the plane;

• re-project that set of points on the image;

• extract the related patch of pixels from the image.

That patch will be our estimated frontal view of the feature.

8.2 choice of key-frames

The triangulation require the selection of couples of video frames.
These frames should be chose related to poses that are distant enough
to have a good parallax but not too far because they have to share a
large portion of the scene in order to get a lot of features.

For this reason also the orientation is a crucial parameter. If the two
frames are related to poses distant enough but one is orientated on
left and the other on right, probably no portion on the scene will be
shared by that frames and no features can be extracted and located
in space by a triangulation.

Starting from the first, a frame is taken and labelled as reference
frame.

The distance (L2 norm between relative poses) from the reference
frame and current frame is measured and when a threshold (an input
parameter) is reached the current frame is chose as support frame for
the triangulation. The threshold must be set in order to guarantee
enough parallax of the features viewed by the two different points of
view.

Also the orientation is checked in order to ensure that the 2 frames
will share a big portion of the scene. The orientation is checked versus
a threshold (an input parameter) with the metric (considering only
the rotation part) described in equation 30 in section 7.1.

As depicted in fig. 19, (PA, PB) are the selected couple of frames.
From each frame features are extracted and then a match is per-
formed to select a subset of features that are visible in both reference
and current frames. Since these two frames are near in time and space,
lots of features will be in this subset and will be good for triangula-
tion. The fig. 20 is an example of a real couple of frames with the
matched features highlighted.

8.2 choice of key-frames 47

Figure 19: Triangulation of feature points by two views.

Figure 20: Matches of features extracted from a couple of time and space
near frames.

48 a loop closure approach robust to severe view-point changes

If the cardinality of the subset of matched features is too low the
couple is rejected and the current frame is taken as reference frame
to build a new couple.

8.3 transformations involved in the triangulation

The input data of the robot pose is related to the IMU pose. For com-
putation simplicity and consistency when we triangulate the feature
points we want to put everything in the coordinate system of the
reference frame. Due to how the camera-IMU system is built some
transformations need to take place in order to obtain data consistent
for our triangulation framework.

Figure 21: The transformations involved: W is the reference world frame,
P1, P2 are the poses of the IMU in the two frames involved in the
triangulation. g12 is the transformation from camera 1 to camera
2. gIC is the transformation from the camera frame to the IMU

frame. gWx is the transformation from Px to the world frame W.

In figure fig. 21 such transformations are depicted in detail:

W is the world coordinate system;

P1, P2 are the reference and current IMU poses relative to W;

C are the poses of the camera;

gIC is the fixed transform from the camera to the IMU frame;

gW1, gW2 are the transformations from the reference and current IMU poses
to W;

g12 is the transformation from camera 2 to camera 1.

8.4 plane estimation 49

All poses in the ego-motion estimation log are in reference of the
world frame W.

We take (an arbitrary choice) the camera pose of the reference frame
as the coordinate system where we make al the computations. This
choice affect the projection matrices that have to be passes to OpenCV
for the triangulation.

The function cv::triangulatePoints() is made for stereo vision sys-
tems. If we know the transformation g12 from the camera 2 to camera
1 we can simulate a stereo vision system using our two views of
the same scene. We can get it following the transformations chain in
fig. 21:

g12 = gIC
−1 · g2

−1 · g1 · gIC; (32)

All the variables are known: gx from the ego-motion estimation and
gIC is an input parameter.

With that transformation one can obtain a set of triangulated points.
In fact the projection matrices become:{

Pr = Π0

Pc = Π0 · g12
(33)

Where Π0 is the standard projection matrix [I, 0] (as in sec. 2.1.3),
Pr is the projection matrix relative to the reference frame, and Pc is
relative to the current frame. These matrices can be passed to the
OpenCV function for the triangulation.

The identity matrix is used instead of camera parameters (intrinsic
and extrinsic) because the set of input points has been undistorted
and modified as if they has been taken by an ideal camera.

This can be done in OpenCV by using the function cv::undistortPoints
(...) that take as input: the camera matrix and the distortion coeffi-
cients; and return as output the ideal points.

8.4 plane estimation

The assumption of planar features is exploited in the successive step:
the estimation of the plane of each feature. It is done by a minimiza-
tion process. Taking a neighbour of pixel around the feature point in
the reference image, projecting them on the 3D plane of the feature and
then back project the set of 3D points in the current image. The residu-
als to minimize are the differences between the intensity of pixels in
the current and the reference images.

The minimization is done with the support of the Point Cloud Li-
brary (PCL) for data management and visualization and the Levenberg-
Marquardt least-squares minimization (lmfit) library for the minimiza-
tion process. The optimization is done one normal at a time.

The minimization operates on spherical coordinates (ρ, φ, θ) in fig. 22

of the plane’s normal. There are only 2 variable since ρ = 1 because
normals are versors.

50 a loop closure approach robust to severe view-point changes

Figure 22: Spherical coordinates.

The process is done in a pyramid of kp levels (kp is an input pa-
rameter) where level 0 is the original image. At level i the image is a
sub-sampled version of the original image by a 2i scale (see fig. 23).

Figure 23: Pyramid’s levels.

The process starts at the higher level of the pyramid where the im-
age is very coarse, letting to make a first fast refinement of the initial
guess. At the end of each level the result is passed to the subsequent
as its initial guess. When the optimization finish to work on the level
0 the result is considered as our estimated plane’s normal.

The normal’s initial guess nig is taken for simplicity as the direction
feature-point to camera as visible in fig. 24:

nig =
fi

‖ fi‖
(34)

Where fi is a 3D feature point considered as a vector attached to
the origin. The resulting spherical coordinates are computed using
the MATLAB like function car2sph() exposed in alg. 4. There is also
the reverse version sph2car() exposed in alg. 5.

To compute the residuals a neighbour of pixels around each 2D
feature point from the reference frame is taken, the diameter dp is an
input parameter (performances are very sensible to this parameter).
These sets of pixels are projected in 3D using OpenCV functions on
the respective planes and then back projected in the current frame. In

8.4 plane estimation 51

Algorithm 4: car2sph
Input: A versor n
Output: θ, φ

1 θ = atan2(nz, sqrt(n2
x + n2

y));
2 φ = atan2(ny, nx);
3 return θ, φ

Algorithm 5: sph2car
Input: θ, φ

Output: A versor n
1 nx = cos(θ) · cos(φ);
2 ny = cos(θ) · sin(φ);
3 nz = sin(θ);
4 return n

Figure 24: Initial guesses for normals.

52 a loop closure approach robust to severe view-point changes

fig. 25 it is visible an exaggerated example with diameter dp = 128px
in reference frame on left and in the current frame on right.

Figure 25: Projection of the reference frame (left) pixels in the current frame
(right).

The lmfit library work with the Levemberg-Marquardt algorithm for
the minimization a generic sum of squares.

In our case these squares are the difference between a pixel in-
tensity in the reference Ii,r frame and its counterpart in the current
frameIi,c:

sum_to_minimize =
N

∑
i=0
‖Ii,r − Ii,c‖2 (35)

The parameters for the minimization are the spherical coordinates
of the norm under process. To limit the variability of the parameters,
in order to keep the normal near the initial guess of each level of the
pyramid, a weight is added to each term wi of the sum of squares to
minimize:

θi,di f f = ‖θi − θig‖
φi,di f f = ‖φi − φig‖

wi =

{
1.0 if (θi,di f f < maxdi f f and φi,di f f < maxdi f f)

e(1+φi,di f f)·(1+θi,di f f) otherwise
(36)

Where maxdi f f is an input parameter (as example π/4), θig and φig
are the spherical coordinates of the initial guess of each level of the
pyramid.

The sum to minimize with the weight will become:

sum_to_minimize =
N

∑
i=0

(wi · ‖Ii,r − Ii,c‖)2 (37)

In 3D, the points will results like in fig. 26. The estimated normals
are visible in white.

8.5 feature extraction 53

Figure 26: 3D projection of the reference frame pixels feature point’s planes.

8.5 feature extraction

In order to extract a feature descriptor one have to define the key-
point of the feature. In OpenCV the key-point variables are:

• the point coordinates (the pixel in the image);

• the diameter of the meaningful key-point neighbourhood;

• the angle;

• the response (a value useless in our case);

• the octave.

With the estimated planes it is possible to extract a set of patches of
images according to that planes. The coordinates are set right in the
center of each patch.

It is possible to fix the scale degree of freedom for the descriptor
extraction process. In fact with the patch it is possible to set the diam-
eter as big as the patch width (the patch width is an input parameter,
for example 32px). And the octave is set to 0.

The least degree of freedom is the rotation angle that can be set to
a fixed value (−1 for the OpenCV case) by computing it accordingly
to the gravity vector. The gravity vector is known from the IMU data.

So we have: the plane normal and the gravity. And we have to
append to the 3D feature point a coordinate frame.

The Z axis is set equal to the estimated normal. Considering the
plane determined by the feature point, the normal and the gravity
vectors it is possible to determine the X axis by setting it perpendicu-
lar to that plane as in fig. 27.

And consequently the Y axis must be perpendicular to both X and
Z. Everything is recap in equation 38

Z = n

X = g× Z

Y = Z× X

(38)

54 a loop closure approach robust to severe view-point changes

Figure 27: The coordinate frame attached to the feature point.

Now with no more degrees of freedom it is possible to extract a
patch of a feature that will simulate a frontal view of the feature,
which is also scale and rotation normalized.

In fig. 28 it is visible an example of a back-projection of the ex-
tracted patches in the reference frame. And in fig. 29 there are exam-
ples of that patches.

Figure 28: Example of patches back-projected in the reference frame.

A SURF descriptor is computed for each extracted patch by setting
the key-point in the center of each patch and with parameters accord-
ing to what said before.

As you will see in the results section and in fig. 30 all these compu-
tation leads to a nice results but some false positive loop closures still

8.5 feature extraction 55

Figure 29: Examples of extracted patches.

being detected. To drop these false positives a geometric consistency
metric on the spatial distribution of matched features is evaluated.

Only the subset M of features that has been matched in the compar-
ison between the current frame and the candidate of the loop closure,
is considered. Since the triangulation give us the estimation of the
3D points of the features, it is possible to compute all inter-features
distances.

The new score metric have to consider both the number of matches
and the similarity of the spatial distribution of features.

If |M| = n we have (n
2) couples of features and relative distances to

evaluate.
A couple of feature (f cu

i , f cu
j) in the current frame is the counterpart

of the couple (f ca
k , f ca

l) in the candidate frame if the features f cu
i and f cu

j
has been respectively matched with the features f ca

k and f ca
l . A pair

of such couples is called related.
Now consider for notation simplicity the symbol f f rame

h as both the
feature and the 3D point related to that feature. The context can dis-
tinguish the usage.

The difference of the distances ∆dt = |(‖ f cu
i − f cu

j ‖ − ‖ f ca
k − f ca

l ‖)|
from each pair of related couple of features is computed.

Each ∆dt term have to contribute to the score by passing it to a
function φ : R+ → [0, 1]:

φ(∆dt) =

{
1 if ∆dt = 0

k k ∈ [0, 1) otherwise
(39)

To avoid discontinuity the function should continuously decrement
its value as ∆dt increase. A suitable function is the exponential:

φ(∆dt) = e−kslope·∆dt (40)

56 a loop closure approach robust to severe view-point changes

The variable kslope ∈ R+ \ {0} is an input parameter which deter-
mine how fast the function goes to 0.

The new score function become:

score = n · ∑
(n

2)
t=1 φ(∆dt)

(n
2)

(41)

The normalization by the number of couples and then the multi-
plication by the number of matches let us to obtain a score function
that is sensible to both the spatial distribution of features and the car-
dinality of the matches set. The computation is made accordingly to
the algorithm 6.

Algorithm 6: The score computation algorithm
Input: M, Fcu, Fca

Output: The score s
// Each element in M is a pair of indices: the first

relative to the current frame’s feature set, the
second to the candidate’s features set

1 sum = 0
2 for i=1 to n-1 do
3 for j=i+1 to n do
4 d1 = ‖Fcu

M[i]. f irst − Fcu
M[j]. f irst‖

5 d2 = ‖Fca
M[i].second − Fca

M[j].second‖
6 ∆d = |d1 − d2|
7 sum = sum + e−kslope·∆d

8 end
9 end

10 return
2 · sum
(n− 1)

8.6 results and comparisons

The proposed approach without the geometric check is capable to
detect a loop closure in the desired area of the path. In fig. 30 there
are the compared results in the form of confusion matrices (same as in
the previous chapter). The white spot in the bottom left is our desired
loop closure detection, the corresponding screen-shot is in fig. 31. But
as you can see there is also a false positive in the version without
the geometric check. That white spot correspond the screen-shot in
fig. 32. This false positive can be easily dropped with the geometric
verification, in fact on right there is no more false positives.

The first thing that is visible in the comparison of fig.33 is the dif-
ferent density of pixels and relative comparisons. In fact the number
of comparisons is drastically reduced because of the need of couples

8.6 results and comparisons 57

Figure 30: Results in the form of confusion matrix: on left the base approach
with the false positive; on right with the geometric refinement to
drop such false positive.

Figure 31: The true positive loop closure detected by the proposed ap-
proach.

Figure 32: The false positive detected on left, rejected on right with the geo-
metric verification.

58 a loop closure approach robust to severe view-point changes

Figure 33: The of FAB-MAP and NV compared to the proposed approach.

of frames distant enough each other. This doesn’t means that areas of
the path are ignored, because such areas are the source of the trian-
gulated features. As visible in fig. 34 the map is full covered except
for a initial small place.

Figure 34: Map coverage.

To make a comparison possible we coloured the corresponding
parts of the corridor and the room in orange and red like for the
FAB-MAP and NV confusion matrices.

As visible we dropped all false positive but at the price of no detec-
tion in the outer corridor. This is due to the triangulation that limit
us to use only a portion of the image.

9
R E M A R K S

9.1 comments and remarks

From the performance point of view almost all recent state of the
art works run in real-time systems but with considerable differences
in the scale that they support. Furthermore most works are not spe-
cific for humanoids and their problematics. Only a few number of
approaches to solve SLAM problem for humanoids robots has been
proposed during last decade. This kind of robots are expected to be-
come our helpers in day life or at work, but lot has to be done before
achieving that. Actual map representation are quite coarse to be used
by humanoid robots to make high level tasks like tight a screw. Also
humanoids itself have to be improved, in their control and planning.
Such problems are very hard due to the high degree of freedom that
humanoids offer.

Feature based SLAM demonstrated to be more efficient in term of
computational costs. So future works may have to concentrate in this
way.

The most natural approach that came up from state of the art works
is the combination of an IMU and a video system [13] [30], because
human effectively use them in a similar way. That system should be
improved with some failure detection and recovery algorithm in or-
der to help the robot if it falls or if it take a hit. This because the IMU

can fail to record an acceleration and it make the estimated path to
diverge from the ground truth.

An overall remark over these state of the art works is that the right
way to develop an efficient and functional system is to take cutting-
edge developed algorithm from other related research fields and try
to apply them to the SLAM problem. A SLAM approach should be
constructed in a modular way from the beginning so if a component
from a different approach result more accurate or efficient it should
be easily added to the system.

Most systems are divided in a back-end and a front-end ([13], [31], [20]
and lot more). In the former take place all the optimizer that main-
tain the map given the constraint that arrive from the front-end. The
front-end is responsible to the data association and in particular for
the place recognition.

59

60 remarks

Restricting the view on the loop closure problem, the state of art
works are divided in two main categories. One consider the loop clo-
sure detector as an oracle, and they put all their trust on it. Back-end
based on optimization (like [15]) are very sensible to outliers and false
positives and to avoid them a lot of computation is necessary.

In the other way of thinking the loop closure detector should be
as light as possible. The light loop closure detector operate in the
real-time front-end. A verification of the correctness is computed by
the back-end [27]. This way the back-end should be elastic enough
to support efficiently even severe modifications of the estimated path
and map.

The proposed approach demonstrated the concept that the assump-
tion of planar features in structured buildings can be used for a place
recognition system for loop closures detections. Performances of the
implementation was beyond the scope of this thesis, in fact it has bad
timing performances due to the long optimization phase. It can take
up to 1h to elaborate the 10m video used as input dataset. As future
work a re-engineering process of the system should take place.

B I B L I O G R A P H Y

[1] Pretto Alberto. Visual-SLAM for Humanoid Robots. PhD thesis,
Universitá degli studi di Padova, Scuola di Dottorato di Ricerca
in Ingegneria dell’Informazione, 2009.

[2] C. Chow and C. Liu. Approximating discrete probability distri-
butions with dependence trees. IEEE Transactions on Information
Theory, vol. IT-14, no., May 1968.

[3] Mark Cummins and Paul Newman. Fab-map: Probabilistic lo-
calization and mapping in the space of appearance. International
Journal of Robotics Research, 2008.

[4] Mark Cummins and Paul Newman. Appearance-only SLAM at
large scale with FAB-MAP 2.0. The International Journal of Robotics
Research, 2010.

[5] A.J. Davison, I.D. Reid, N.D. Molton, and O. Stasse. Monoslam:
Real-time single camera slam. Dept. of Comput., Imperial Coll.,
London, June 2007.

[6] Ethan Eade and Tom Drummond. Unified loop closing and re-
covery for real time monocular slam. In Proc. of the British Ma-
chine Video Conference, BMVC, 2008.

[7] H.R. Evereth. Sensors for Mobile Robot: Theory and Applications.
A.K. Peters LTD., 1995.

[8] Kanehiro Fumio et al. Whole body locomotion planning of hu-
manoid robots based on a 3d grid map. Proceedings of the 2005
IEEE International Conference on Robotics and Automation, April
2005.

[9] Dorian Galvez-Lopez and Juan D. Tardos. Real-time loop detec-
tion with bags of binary words. IROS2011, 2011.

[10] Giorgio Grisetti, Stachniss Cyrill, and Burgard Wolfram. Im-
proved techniques for grid mapping with rao-blackwellized par-
ticle filters. IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO.
1, FEBRUARY 2007.

[11] S. Hinterstoisser, O. Kutter, N. Navab, P. Fua, and V. Lepetit.
Real-time learning of accurate patch rectification. 2012 IEEE Con-
ference on Computer Vision and Pattern Recognition, 2009.

61

62 bibliography

[12] Gutmann Jens-Steffen, Fukuchi Masaki, and Fujita Masahiro.
3d perception and environment map generation for humanoid
robot navigation. Springer-Verlag Berlin and Heidelberg GmbH &
Co. K, September 2008.

[13] Eagle S. Jones and Stefano Soatto. Visual-inertial navigation,
mapping and localization: A scalable real-time causal approach.
Submitted to the Intl. J. of Robotics Research, August 27, 2009 Revised
May 10, 2010; Accepted September 23, 2010, 2009.

[14] Sabe K., Fukuchi M., Gutmann J.-S., Ohashi T., Kawamoto K.,
and Yoshigahara T. Obstacle avoidance and path planning for
humanoid robots using stereo vision. Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, 2004.

[15] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. iSAM:
Incremental smoothing and mapping. IEEE Trans. on Robotics
(TRO), 2008.

[16] Young Min Kim, Jennifer Dolson, Michael Sokolsky, Vladlen
Koltun, and Sebastian Thrun. Interactive acquisition of residen-
tial floor plans. ICRA, page 3055-3062. IEEE, (2012), 2012.

[17] Georg Klein and David Murray. Improving the agility of
keyframe-based slam. Computer Vision – ECCV 2008, 2008.

[18] D. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 2004.

[19] YI Ma, Stefano Soatto, Jana Kosecka, and S. Shankar Sastry. An
Invitation to 3-D Vision. Springer, 2004.

[20] J.B. McDonald, M. Kaess, C. Cadena, J. Neira, and J.J. Leonard.
Real-time 6-dof multi-session visual slam over large scale envi-
ronments. Journal of Robotics and Autonomous Systems, RAS, 2013.

[21] Montemerlo Michael and Thrun Sebastian. Fastslam: A scalable
method for the simultaneous localization and mapping problem
in robotics. The International Journal of Robotics Research 2008 27:
1117, January 2007.

[22] Krystian Mikolajczyk and Cordelia Schmid. A performance eval-
uation of local descriptors. IEEE Transaction on Pattern Analysis
and Machine Intelligence, 2005.

[23] Kwak Nosan, Stasse Olivier, Foissotte Torea, and Kazuhito Yokoi.
3d grid and particle based slam for a humanoid robot. 9th IEEE-
RAS International Conference on Humanoid Robots, December 2009.

[24] Stasse Olivier, J. Davison Andrew, Sellaouti Ramzi, and Yokoi
Kazuhito. Real-time 3d slam for humanoid robot considering
pattern generator information. JRL, CNRS/AIST, ISRI, June 2006.

bibliography 63

[25] Oßwald S., Hornung A., and M. Bennewitz. Improved propos-
als for highly accurate localization using range and vision data.
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2012, to appear.

[26] Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza.
Introduction to Autonomous Mobile Robots II edition. The MIT Press,
2011.

[27] Niko Sunderhauf and Peter Protzel. Brief-gist - closing the loop
by simple mean. In proc. of the IEEE Intelligent Robots and System
(IROS), 2011.

[28] Y. Takaoka, Y. Kida, S. Kagami, H. Mizoguchi, and T. Kanade. 3d
map building for a humanoid robot by using visual odometry.
Proceedings of 2004 IEEE International Conference on Systems, Man
and Cybernetics, 2004.

[29] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents). The MIT
Press, 2005. ISBN 0262201623.

[30] Konstantine Tsotsos, Alberto Pretto, and Stefano Soatto. Visual-
inertial ego-motion estimation for humanoid platforms. 2012.

[31] Thomas Whelans, Michael Kaess, John J. Leonard, and John Mc-
Donald. Deformation-based loop closure for large scale dense
rgb-d slam. IROS2013, 2013.

[32] Jun Yang, Yu-Gang Jiang, Alexander G. Hauptmann, and Chong-
Wah Ngo. Evaluating bag-of-visual-words representations in
scene classification. ACM Multimedia Information Retrieval (MIR),
2007.

[33] JUSTIN ZOBEL and ALISTAIR MOFFAT. Inverted files for text
search engines. ACM Computing Surveys, 2006.

	Dedication
	Abstract
	Sommario
	Contents
	List of Figures
	Acronyms
	1 Introduction
	1.1 Organization of the thesis
	1.2 The Simultaneous Localization and Mapping (SLAM) problem
	1.2.1 Problem definition
	1.2.2 Issues and open problems

	1.3 Humanoid robots
	1.3.1 Common robots

	2 Perception
	2.1 Perception
	2.1.1 Laser scanners
	2.1.2 Inertial Measurement Units
	2.1.3 Vision

	3 Data
	3.1 Filtering tecniques
	3.1.1 Kalman filter
	3.1.2 Extended Kalman Filter (EKF)
	3.1.3 Particle filter
	3.1.4 Rao-Blackwellized Particle Filter (RBPF)

	4 Models
	4.1 Probabilistic models
	4.1.1 Probabilistic motion models
	4.1.2 Probabilistic measurement models
	4.1.3 Probabilistic data association models

	5 Localization
	5.1 Localization
	5.1.1 Probabilistic localization algorithms

	6 Mapping
	6.1 Mapping
	6.1.1 Plane classification
	6.1.2 3D Grid map
	6.1.3 Feature-based map
	6.1.4 Loop closure

	7 State-of-the-art algorithms tests
	7.1 Loop closure algorithms tests
	7.1.1 OpenFAB-MAP
	7.1.2 GUI and results
	7.1.3 Naive Vector of BoWs approach
	7.1.4 OpenFAB-MAP and NNDR

	8 A loop closure approach robust to severe view-point changes
	8.1 Motivations
	8.2 Choice of key-frames
	8.3 Transformations involved in the triangulation
	8.4 Plane estimation
	8.5 Feature extraction
	8.6 Results and comparisons

	9 Remarks
	9.1 Comments and remarks

	Bibliography

