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Abstract

Timely and effective monitoring of events is crucial across various domains,
ranging from healthcare to finance and emergency responses. This thesis con-
siders the problem of selecting optimal monitoring points for events occurring
over a finite time horizon, where events follow diverse distributions. That is, the
event has unknown timing but it is boundedwithin a finite timewindow and its
probability density function is known. The primary objective is to minimize the
age of information related to an event by apriori strategically placing monitor-
ing points on a normalized time scale using optimization techniques that mini-
mize a penalty function. The analysis considers single and multiple monitoring
points. Moreover, several popular distributions for are considered the event.
Closed-form solutions are derived when the statistical distribution of the event
is known, while numerical simulations are employed for scenarios with multi-
ple monitoring points or complex distributions. The findings reveal intriguing
trends, including saturation and uniformity of monitoring times under certain
distributions, demonstrated through graphical representations generated from
numerical analyses.





Sommario

Il monitoraggio tempestivo ed efficace degli eventi è cruciale in vari settori, dalla
finanza alla assistenza sanitaria e alle risposte di emergenza. Questa tesi consid-
era il problema della selezione dei punti di monitoraggio ottimali per gli eventi
che si verificano entro un orizzonte temporale finito, dove gli eventi seguono dis-
tribuzioni diverse. In altre parole, l’evento ha unmomento sconosciutoma è lim-
itato entro una finestra temporale finita e la sua funzione di densità di probabilità
è nota. L’obiettivo principale è quello diminimizzare l’età delle informazioni rel-
ative a un evento posizionando strategicamente i punti di monitoraggio su una
scala temporale normalizzata utilizzando tecniche di ottimizzazione che min-
imizzano una funzione di penalità. L’analisi considera punti di monitoraggio
singoli e multipli. Inoltre, vengono considerate diverse distribuzioni popolari
per l’evento. Soluzioni in forma chiusa sono derivate quando la distribuzione
statistica del evento è nota, mentre simulazioni numeriche sono impiegate per
scenari con punti di monitoraggio multipli o distribuzioni complesse. I risultati
rivelano tendenze intriganti, tra cui la saturazione e l’uniformità dei tempi di
monitoraggio sotto alcune distribuzioni, dimostrate attraverso rappresentazioni
grafiche generate da analisi numeriche.





Contents

1 Introduction 1
1.1 Overview of Age of Information . . . . . . . . . . . . . . . . . . . 1

1.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Key Characteristics . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Uniformly Distributed Event With Two Monitoring Points 9
2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Uniformly Distributed Event With Multiple Monitoring Points 15
3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Numerical Simulation of Monitoring Points Placement . . . . . . 18

3.3.1 Numerical Simulation Results . . . . . . . . . . . . . . . . . 20

4 Gaussian Distribution 23
4.1 Numerical Simulation For Gaussian Distribution . . . . . . . . . . 25

4.1.1 Results from numerical simulation for Gaussian distribution 26

5 Conclusions and Future Works 29

6 Appendix 31
6.1 Code to minimize the penalty function for uniform distribution . 31
6.2 Code to minimize the penalty function for Gaussian distribution . 33

Bibliography 37

vii





1
Introduction

1.1 OVERVIEW OF AGE OF INFORMATION

In many real-world applications, timely event monitoring is essential for ef-
fective decision-making and response. Whether in healthcare, finance, surveil-
lance, transportation networks, or emergency services, the ability to quickly and
accurately detect events can significantly impact outcomes. In these systems,
the timeliness and freshness of information are crucial for performance and re-
liability. The concept of Age of Information (AoI) has emerged as a key metric
for quantifying the freshness of information in systems.

1.1.1 DEFINITION

Age of Information (AoI) is a metric used to quantify the freshness of infor-
mation in a system that monitors events. It is defined as the time elapsed since
the last received update was generated at the source. Mathematically, at any
given time 𝑡 the Age of Information Δ(𝑡) can be expressed as a random process
[27]:

Δ(𝑡) = 𝑡 − 𝑢(𝑡)
where 𝑢(𝑡) is the timestamp of the most recent update received before or at time
𝑡.

Several factors can affect the Age of Information (AoI) in real-time systems.
One key factor is the timing of information retrieval, known as the ”polling
time”—the specific moment when we decide to check for updates. In this work,
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1.1. OVERVIEW OF AGE OF INFORMATION

the objective is to strategically place monitoring points based on the event’s dis-
tribution to minimize the AoI by reducing update delays. Thereby maximiz-
ing the freshness and relevance of the information available for decision-making
processes. This finds applications in the following fields:

1.1.2 APPLICATIONS

• Real-Time Traffic Management

– Traffic management systems rely on real-time data from vehicles to
monitor and control traffic flow. By optimizing polling delay, traf-
fic control centers can ensure that they have the freshest information,
enabling better decision-making for traffic light adjustments, conges-
tion management, and route optimization. For example, during peak
hours for certain intersection based on the historical data, the sys-
tem increases the frequency of polling data from traffic sensors. This
ensures that the information about traffic flow and congestion is up-
dated more frequently. Thus, leading to a more efficient allocation of
computing resources and energy.

• E-Health

– Health monitoring systems, including wearable devices and remote
patient monitoring solutions, rely on low Age of Information (AoI)
to deliver accurate and timely health data. This is essential for facil-
itating prompt diagnosis and intervention. Many of these systems
operate on small internal batteries, making it crucial to minimize the
frequency of updates to extend battery life. This can be achieved by
scheduling measurements during specific times of the day when the
patient is more vulnerable to health issues. Such timing considera-
tions can be informed not only by the clock but also by the patient’s
activity levels and other health indicators.

• Trading

– Optimal monitoring is very important in the world of trading. For in-
stance, during periods of high volatility, firms may increase the fre-
quency of data polling from market feeds to capture fleeting price
movements. This approach enables more effective use of algorithms
and computational resources, ultimately enhancing trading perfor-
mance.
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• Sensor Networks

– Sensor networks deployed for environmental monitoring, industrial
automation, or smart cities are typically placed in the field with in-
ternal batteries and limited transmission access. Consequently, the
frequency of data transmission is restricted. Therefore, it is essential
to optimize the transmission of status updates to minimize Age of In-
formation (AoI). This can be achieved by analyzing the distribution of
the monitored events and identifying the most effective observation
points.

• Server Monitoring

– In the context of server monitoring, determining the optimal times
to check the status of servers can greatly enhance the reliability and
performance of IT infrastructure. Byminimizing the AoI, administra-
tors can ensure that they have the most recent data regarding server
health, load, and performance. This approach can prevent poten-
tial downtime and quickly address issues, thereby maintaining high
availability and efficiency in data centers and cloud environments.

• Handling Interrupts

– Another crucial application of this optimization problem is in han-
dling interrupts in computing systems. Determiningwhen to poll de-
vices for interrupts can optimize the balance between responsiveness
and resource utilization. By strategically placingpolling intervals, the
system can minimize latency and ensure timely processing of device
requests without unnecessary overhead. This is particularly impor-
tant in real-time operating systems and embedded systems, where
timely handling of interrupts is critical for system stability and per-
formance.

1.1.3 KEY CHARACTERISTICS

It is important to note that, in addition to the update policy, several factors
can influence Age of Information (AoI) in real-life scenarios. For example,

1. Update Generation Rate:

• The rate at which new updates are generated can impact AoI. Higher
update rates can potentially reduce AoI, provided the system can
handle the increased traffic without introducing significant delays
[17].
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2. Transmission Delay:

• The time it takes for an update to travel from the source to the des-
tination affects AoI. Lower transmission delays lead to fresher infor-
mation [26].

3. Queueing Delay:

• Updates often need to wait in a queue before being transmitted, es-
pecially in systems with limited bandwidth or high traffic. Longer
queueing times increase AoI [18].

4. Update Loss:

• Packet losses or dropped updates due to network issues or buffer
overflows can lead to increased AoI, as the receiver will rely on older
information until the next successful update [23].

5. Processing Delay:

• The time required to process an update once it reaches its destination
also affects AoI. Faster processing reduces AoI [16].

6. Update Policy:

• The strategy for sending updates (e.g., periodic updates, event-driven
updates) can impact AoI. Optimal policies aim to minimize AoI by
balancing the update frequency and system load [12].

7. Network Congestion:

• High levels of network congestion can increase both transmission and
queueing delays, leading to higher AoI [4].

8. Resource Allocation:

• Allocation of resources such as bandwidth and computing power can
affect the timeliness of updates. Adequate resources help maintain
lower AoI [19].

9. Network Topology:

• The structure and layout of the network can impact AoI. More com-
plex topologies might introduce additional delays due to routing and
multiple hops [10].
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10. Prioritization Mechanisms:

• Systems that prioritize newer updates or critical information can help
reduce AoI by ensuring timely delivery of the most relevant data [9].

11. Feedback Mechanisms:

• Mechanisms that provide feedback on the status of updates (e.g., ac-
knowledgments) can help inmanaging and reducingAoI by ensuring
updates are successfully received and processed [3].

12. Synchronization:

• In systems where multiple sources provide updates, synchronization
mechanisms can impact AoI by ensuring coherent and timely updates
[20].

1.2 RELATED WORK

A lot of interesting work utilizes Age of Information as a primarymetric. For
example, [31] looks for optimal scheduling of sensor updates in real-time sys-
tems tominimize the age of information, considering the impact of transmission
delays. It derives a closed-form expression for the average age of information
and evaluates performance under different conditions. Another interesting ap-
plication is shown in [14] that analyzes a status updating system where timely
information at the destination is critical, using the AoI metric to assess freshness
over an erasure channel. It determines the optimal failure tolerance for various
erasure probabilities and provides bounds for average AoI and peak AoI, focus-
ing on whether to continue sending the current update or switch to a new one
based on the percentage of successful receptions.

More practical results include [29] that introduces the Age of Task-oriented
Information (AoTI) metric to accurately measure system freshness in industrial
wireless sensor networks, which rely on multiple types of sensing data for tasks
like fire alarms. It aims to minimize long-term AoTI by optimizing access selec-
tions and sampling frequencies through a Learning-based Access selection and
Sampling frequency Control (LASC) algorithm. Or [1] that proposes a Mutable
Sensor Data Analytics approach to minimize Age of Information related metrics
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in the Internet of Underwater Things. It utilizes block-chain and gradient de-
scendent learning to classify noise and irrelevant data in order to avoid transmit-
ting them. Thus, reducing age of information for relevant data. Another inter-
esting work [5] explores optimizing sensor data transmission schedules in smart
agriculture and industry, where external sources provide non-controllable up-
dates. By proposing an online dynamic programming method to minimize Age
of Information (AoI), the study identifies optimal transmission intervals and ad-
dresses data redundancy challenges.

There are also many works that approach Age of Information optimization
using game theory. [7] studies the problem where users participate in the data
aggregationprocess aiming tomaximize their individual utility, balancing global
AoI and personal costs. This is useful to optimize modern federated learning al-
gorithms. The paper that includes the same authors [6] also tackles the problem
of optimal update policy. It aims to offer a new standpoint for timely status up-
date considering both the AoI and the Age of Incorrect Information (AoII) for
machine learning applications. Another work [13] uses federated learning to
minimize network energy consumption for industrial IoT while managing AoI
constraints.

The study [30] investigates how sensor correlation affects theAge of Informa-
tion (AoI) under concurrent and time-division multiple access scenarios, show-
ing that concurrent transmissions improve AoI more significantly, and demon-
strates through simulations that ML techniques can optimize transmission poli-
cies and reduce resource usage without impacting AoI.

It is worth noting that techniques developed to optimize Age of Information
can also be used in other settings. Work [2] argues that both energy provision
and data networking issues stem from efficient resource management, which
can be addressed using dynamic programming, and demonstrates how energy
management in smartmicro grids can be optimized using a framework designed
for the optimization of age of information.

However, Age of Information cannot be used for certain scenarios. For ex-
ample, [15] mentions that AoI cannot address non-linearity that can be useful
in designing novel sensing approaches. Therefore, the authors employed the
urgency of information (UoI) framework for their study by combining the time-
liness and context associated with information updates.

Another interesting metric is Value of Information (VoI) used in the study
[11]. It is used to account for remote process estimation and timing constraints.
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CHAPTER 1. INTRODUCTION

This metric allows the authors to study the problem of the pragmatic communi-
cation with multiple clients.

Next chapters will discuss the mathematical formulation of the problem, the
derivation of the objective function, and the optimization techniques used to
find the optimal monitoring points.
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2
Uniformly Distributed Event With

Two Monitoring Points

This chapter addresses the problem of finding optimal monitoring points for
events that are uniformly distributed over a finite time horizon. Specifically, we
focus on the scenario where two monitoring points are to be optimally placed
to minimize the Age of Information (AoI). In the case of one monitoring point,
results for the distribution with triangular shape were presented in [28].

2.1 PROBLEM STATEMENT

Given a time horizon [0, 1], where an event can occur at any time 𝑡 ∈ [0, 1]
with uniform probability, our goal is to determine the optimal placement of two
monitoring points, 𝑡1 and 𝑡2, such that the AoI is minimized.

To formally state the problem:

• Objective: Minimize the expected Age of Information (AoI) for an event
that follows uniform distribution over a normalized time-window [0, 1].

• Variables: The locations of the two monitoring points, 𝑡1 and 𝑡2, where
0 ≤ 𝑡1 < 𝑡2 ≤ 1.

• Constraints: The monitoring points must be placed within the time hori-
zon [0, 1].

By strategically placing the monitoring points, we aim to derive closed-form
solutions or numerical approximations that yield the minimum AoI. This prob-
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lem is significant as it lays the groundwork formore complex scenarios involving
multiple events, more monitoring points, and varying distributions.

The remainder of this chapter will discuss the derivation of the objective
function, and the optimization techniques used to find the optimal monitoring
points.

2.2 DERIVATION

Suppose we have two monitoring points, 𝑡1, 𝑡2, such that 𝑡2 > 𝑡1 and we use
a linear penalty function. The following figure shows how the penalty function
changes depending on the relative positions of an event and a monitoring time
on the time axis.

Figure 2.1: Linear penalty function

As shown in the figure, the penalty increases when the monitoring point is
further away. When the monitoring point is before the event, the penalty con-
tinues to accumulate until the end of the time window.

By taking similar approach as in [28], we are able to derive the expected value
of the total penalty.

Firstly, detection time for two monitoring points can be expressed as:

𝐷(𝑡1, 𝑡2, 𝑥) = 𝑡1 + (𝑡2 − 𝑡1)𝑢(𝑥 − 𝑡1) + (1 − 𝑡2)𝑢(𝑥 − 𝑡2) (2.1)
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Then, the penalty function is the following:

𝑝𝑡 ,𝑥(𝑢) =

𝑢 − 𝑥, if 𝑥 < 𝑢 < 𝐷(𝑡1, 𝑡2, 𝑥)
0, otherwise

(2.2)

It equals to zero before the event has happened and after the event has been
detected. Whereas it grows linearly after the event has happened but it is not
yet detected.

Thus, the total penalty over a finite window for an event that occurs at time
x given 𝑡1, 𝑡2 is an integral of the penalty over the time window:

𝑃(𝑡1, 𝑡2, 𝑥) =
∫ 1

0
𝑝𝑡 ,𝑥(𝑢)𝑑𝑢 =


∫ 𝑡1
𝑥 (𝑢 − 𝑥) 𝑑𝑢 if 𝑡1 > 𝑥∫ 𝑡2
𝑥 (𝑢 − 𝑥) 𝑑𝑢 if 𝑡2 > 𝑥 > 𝑡1∫ 1
𝑥 (𝑢 − 𝑥) 𝑑𝑢 if 1 > 𝑥 > 𝑡2

𝑃(𝑡1, 𝑡2, 𝑥) =

(𝑡1−𝑥)2

2 if 𝑡1 > 𝑥
(𝑡2−𝑥)2

2 if 𝑡2 > 𝑥 > 𝑡1
(1−𝑥)2

2 if 1 > 𝑥 > 𝑡2

Now, considering that an event has a uniform distribution in [0,1], we can
derive the expected value for the penalty:

𝐸[𝑃(𝑡1, 𝑡2, 𝑥)] =
∫ 𝑡1

0

(𝑡1 − 𝑥)2
2

𝑑𝑥 +
∫ 𝑡2

𝑡1

(𝑡2 − 𝑥)2
2

𝑑𝑥 +
∫ 1

𝑡2

(1 − 𝑥)2
2

𝑑𝑥

=
𝑡3
1
6
+ (𝑡3

2 − 3𝑡1𝑡2
2 + 3𝑡2

1𝑡2 − 𝑡3
1)

6
− (𝑡3

2 − 3𝑡2
2 + 3𝑡2 − 1)

6

=
(−3𝑡1𝑡2

2 + 3𝑡2
1𝑡2 + 3𝑡2

2 − 3𝑡2 + 1)
6

= 𝑔(𝑡1, 𝑡2, 𝑥)

(2.3)

And our goal is to minimize this value, or, to solve an optimization problem:

arg min
𝑡1,2

𝐸[𝑃(𝑡1, 𝑡2, 𝑥)], s.t. 0 < 𝑡1 < 𝑡2 < 1 (2.4)

Figure 2.2 shows how the function looks like on the 3D plane.

Now, we just need to minimize 𝑔 in two variables. For this we first need to
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Figure 2.2: Expected value function for two monitoring points

find the gradient of 𝑔 that is equal to:

∇𝑔 =


−3𝑡2

2 + 6𝑡1𝑡2
6

−6𝑡1𝑡2 + 3𝑡2
1 + 6𝑡2 − 3

6

 (2.5)

∇𝑔 = 0 ⇔

𝑡2 = 2𝑡1
𝑡1 = 2𝑡2 − 1

(2.6)

Where this values were found by solving the quadratic equation:

−6𝑡1𝑡2 + 3𝑡2
1 + 6𝑡2 − 3 = 0 (2.7)

𝑡2
1 − 2𝑡1𝑡2 + (2𝑡2 − 1) = 0 (2.8)

Solutions for this quadratic equation are:

𝑡11,2 =
2𝑡2 ±

√(2𝑡2 − 2)2
2

=
2𝑡2 ± (2 − 2𝑡2)

2
=

[
1, cannot be since 𝑡1 < 𝑡2 < 1

2𝑡2 − 1

(2.9)

𝑡1 = 4𝑡1 − 1 => 𝑡1 =
1
3

(2.10)
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Finally, we have: 
𝑡1 = 1

3 ,

𝑡2 = 2
3

(2.11)

This is an expected result, as from geometric interpretation of a problem,
it corresponds to minimizing the areas of triangles that represent the penalty
function. By repeating the calculations with more monitoring points, it can be
easily shown that monitoring times should be evenly spaced and they should
separate the distribution in equal parts to achieve the minimal total penalty for
this distribution.

Next, we will look at a more general statement of this problem.
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3
Uniformly Distributed Event With

Multiple Monitoring Points

3.1 PROBLEM STATEMENT

Now we consider a more general statement of the problem where we can
place an arbitrary number of monitoring points and they are constrained be-
tween [0, a], where 𝑎 ≤ 1.

• Objective: Minimize the expected Age of Information (AoI) for an event
that follows uniform distribution over [0, 𝑎].

• Variables: The locations of kmonitoring points, 𝑡1, 𝑡2, ..., 𝑡𝑘 where 0 ≤ 𝑡1 <
𝑡2 < 𝑡𝑛 < 𝑡𝑘 ≤ 1.

• Constraints: Themonitoring pointsmust be placedwithin the normalized
time horizon [0, 1].

This is a more general statement of the problem that allows for more inter-
esting results. In this case, we pay a higher penalty if the event was not detected
(monitoring point was placed before an event actually took place) since our lin-
ear penalty increases up until the end of the time window, that is until 1. For
example, for server monitoring, the interval [0, 𝑎] can represent a specific time
windowduringwhich server activity is of particular interest. Parameter 𝑎 might
correspond to peak hours when server load is highest and the probability of en-
countering performance issues or failures is greater.
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3.2. DERIVATION

3.2 DERIVATION

By following similar derivation path as in the chapter 2, we can write the
expression for the total penalty as a function of several monitoring points:

𝑃(𝑡1, 𝑡2, ..., 𝑡𝑘 , 𝑥) =



(𝑡1−𝑥)2
2 if 𝑡1 > 𝑥

(𝑡2−𝑥)2
2 if 𝑡2 > 𝑥 > 𝑡1

...
(𝑡𝑘−𝑥)2

2 if 𝑡𝑘 > 𝑥 > 𝑡𝑘−1
(1−𝑥)2

2 if 𝑎 > 𝑥 > 𝑡𝑘

𝑃(𝑡 , 𝑥) =

(𝑡−𝑥)2

2 if 𝑡 > 𝑥
(1−𝑥)2

2 if 𝑎 > 𝑥 > 𝑡

The PDF for uniform distribution in [a, b] is given by:

𝑓 (𝑥) = 1
𝑏 − 𝑎

(3.1)

Now, similarly to the previous case, we want to derive the expected value for
the penalty:

𝐸[𝑃(𝑡1, 𝑡2, ..., 𝑡𝑘 , 𝑥)] =
∫ 𝑡1

0

(𝑡1 − 𝑥)2
2𝑎

𝑑𝑥 +
∫ 𝑡2

𝑡1

(𝑡2 − 𝑥)2
2𝑎

𝑑𝑥 + ... +
∫ 𝑎

𝑡𝑘

(1 − 𝑥)2
2𝑎

𝑑𝑥

(3.2)

And this equality is actually valid only for 𝑡 ≤ 𝑎 because of the constraints
for the penalty function. However, this does not represent a problem since if we
place a monitoring point at time t ≥ a, we can always move it to t = a and it will
not increase our penalty. This is because the event x is bound to happen in the
interval [0, a]. Therefore, we can utilize this formula for constraint optimization
provided we only consider its values on the interval [0, a]. Thus, we will also
need to check edge value at t = a to find the actual minimum.

For 1 monitoring point, we can easily find its optimal position:
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𝐸[𝑃(𝑡1, 𝑥)] =
∫ 𝑡1

0

(𝑡1 − 𝑥)2
2𝑎

𝑑𝑥 +
∫ 𝑎

𝑡1

(1 − 𝑥)2
2𝑎

𝑑𝑥

=
3𝑡2

1 − 3𝑡1 + 𝑎3 − 3𝑎2 + 3𝑎
6𝑎

= 𝑔(𝑡1, 𝑥)
(3.3)

𝑑𝑔
𝑑𝑡1

=
6𝑡1 − 3

6𝑎
(3.4)

𝑡1 = 0.5 (3.5)

This seems to be the optimal point. This is the same result from the previous
statement. However, for values of a ≤ 0.5, this is not admissible. Therefore,
noticing that the function is decreasing on the interval [0, 0.5], we conclude that
the optimal point is t = a. For larger values of 𝑎, we take value t = 0.5 as this is
the minimum point of the expectation function. This is an interesting saturation
effect that arises due to the minimum of the expectation being outside of the
distribution for the event. We can also expect this effect to appear when we
consider more than one monitoring point. In this case a saturation value could
be shifted due to the change of the minimum point of a new expected value
function.

Now, similar approach could be used to understand what happens with two
monitoring points:

𝐸[𝑃(𝑡1, 𝑡2, 𝑥)] =
∫ 𝑡1

0

(𝑡1 − 𝑥)2
2𝑎

𝑑𝑥 +
∫ 𝑡2

𝑡1

(𝑡2 − 𝑥)2
2𝑎

+
∫ 𝑎

𝑡1

(1 − 𝑥)2
2𝑎

𝑑𝑥

=
−3𝑡1𝑡2

2 + 3𝑡2
1𝑡2 − 3𝑡2

2 + 3𝑡2 − 𝑎3 + 3𝑎2 − 3𝑎
6𝑎

= 𝑔(𝑡1, 𝑡2, 𝑥)
(3.6)

where expectation is defined for 𝑡1 ≤ 𝑡2 ≤ a.
This expected total penalty is similar as for the uniform distribution defined

on [0,1]. However, this time, 𝑡2 cannot be larger than a (due to previous discus-
sion). Therefore, for values of 𝑎 < 2

3 , 𝑡2 = 𝑎. If we substitute value for 𝑡2 inside
the equation for the expected total penalty:

𝐸[𝑃(𝑡1, 𝑡2, 𝑥)] =
3𝑡2

1 − 3𝑡1𝑎 − 𝑎2

6
= ℎ(𝑡1, 𝑥) (3.7)
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Its derivative is equal to:

𝑑ℎ
𝑑𝑡1

=
6𝑡1 − 3𝑎

6
(3.8)

From here, minimum is achieved at 𝑡1 = 𝑎
2 .

Thus, we have two cases.
1) 𝑎 < 2

3 : in this case, 𝑡2 = 𝑎 and 𝑡1 = 𝑎/2.
2) 𝑎 ≥ 2

3 : in this case, 𝑡2 = 2
3 and 𝑡1 = 1

3 (as it was shown for the case of uniform
distribution on [0, 1]).

This again can be described as a saturation effect. Depending on the value
of the penalty, we might want either not to pay ’undetected’ penalty at all or
it becomes more efficient to pay this ’undetected’ penalty sometimes to reduce
’late detection’ penalty.

As the number of terms grows, the calculations become more and more te-
dious. Therefore, numerical simulation could be a good way to address this
problem for the number of monitoring points larger than two.

3.3 NUMERICAL SIMULATIONOFMONITORINGPOINTS PLACE-
MENT

To address the problem of optimal placement of multiple monitoring points
for a uniformdistribution, a Python-based optimization approachwas employed.
Here is an explanation of the code and its functionality:

num_points = 4
x = Symbol('x')

Herewedefine num_points, which specifies the number ofmonitoringpoints.
A symbolic variable x is created for symbolic integration.

def get_total_penalty_func(num_of_points, a):
t = [Symbol("t" + str(i)) for i in range(1, num_of_points + 1)]
func = list()
for i in range(num_of_points):

func.append((t[i] - x) ** 2 / (2*a))
func.append((1 - x) ** 2 / (2*a))
return func
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The get_total_penalty_func function constructs the total penalty function
based on the number of monitoring points and parameter a. It creates a list of
penalty terms for each monitoring point.

def get_expected_penalty_func(func, a):
t = ([Symbol("t" + str(i)) for i in range(1, len(func))])
t.insert(0, 0)
t.append(a)
integrals = list()
for idx, term in enumerate(func):

integrals.append(integrate(term, (x, t[idx], t[idx + 1])))
return integrals

The get_expected_penalty_func function computes the expected penalty
function by integrating the penalty terms over the time intervals between mon-
itoring points.

def objective(x, fun):
keys = ["t" + str(i) for i in range(1, num_points + 1)]
subs = {key: value for key, value in zip(keys, x)}
return fun.evalf(subs=subs)

The objective function evaluates the total expected penalty by substituting
the current values of the monitoring points into the symbolic expression.

a_pos = np.linspace(0, 1.0, 21)
t_vals = list()
t0 = [0 for i in range(num_points)]

cons = ([{'type': 'ineq', 'fun': lambda x: x[i + 1] - x[0]} for i
in range(num_points - 1)])

We create an array of parameters ’a’ for which we want to find the optimal
monitoring points. Constraints ensure that the monitoring points are ordered.

for a in a_pos:
pen_func = get_total_penalty_func(num_points, a)
e_func = get_expected_penalty_func(pen_func, a)
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res = 0
for p in e_func:

res = res + p
bounds = ((0, a) for i in range(num_points))
solution = minimize(objective, t0, res, method='SLSQP', bounds=bounds,
constraints=cons)
t_vals.append(solution.x)

plt.plot(a_pos, t_vals, 'o')
plt.ylim([0, 1])
plt.title("Optimal value for t with " + str(num_points) + " monitoring points",
fontsize="20")
plt.xlabel("a", fontsize="20")
plt.ylabel("t", fontsize="20")
t_labels = ['t' + str(i) for i in range(1, num_points+1)]
plt.legend(t_labels)
plt.savefig("uniform2_" + str(num_points) + ".png")
plt.show()

Finally, the code evaluates the optimalmonitoring points across different val-
ues of a_param andplots the results, showing how the optimalmonitoring points
vary with changes in a_param. Notice, that possible monitoring points are also
upper-bounded by a. This is because of the discussion at the end of subsection
3.2. Full code can be found in the Appendix.

3.3.1 NUMERICAL SIMULATION RESULTS

The results for different numbers of monitoring points obtained using this
numerical simulation are presented below.

As we can see, monitoring points from Figure 3.1 correspond to the previ-
ously derived results. Optimal monitoring time for an event distributed uni-
formly in [0, a] and with linear penalty applied is chosen as a when 𝑎 < 0.5.
And then it is set to 0.5 for 𝑎 > 0.5. (Ignore slight deviations for the points after
saturation value has been reached. These are caused by approximations used in
the optimizer that allow it to converge faster).
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CHAPTER 3. UNIFORMLY DISTRIBUTED EVENT WITH MULTIPLE MONITORING
POINTS

Figure 3.1: Numerical simulation results for 1 monitoring point

For two monitoring points results also correspond. As we can see, the satu-
ration value is larger than before. This was discussed before and it is caused by
the fact, that for the uniform distribution [0, 1], optimal monitoring time 𝑡2 = 2

3 .
But for values of 𝑎 < 2

3 , this becomes 𝑡2 = 𝑎.

Figure 3.2: Numerical simulation
results for 2 monitoring points

Figure 3.3: Numerical simulation
results for 3 monitoring points

Results with a larger number of monitoring points support our conclusions
about increasing saturation value for larger number of monitoring points. Also,
it shows us that inside the interval [0, a], monitoring points are distributed uni-
formly. This is evident from the figures for 3, 4, and 10 monitoring points.
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Figure 3.4: Numerical simulation
results for 4 monitoring points

Figure 3.5: Numerical simulation
results for 10 monitoring points
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4
Gaussian Distribution

We can extend these results to a more sophisticated and realistic case, where
an event follows a Gaussian distribution.

• Objective: Minimize the expected Age of Information (AoI) for an event
that follows Gaussian distribution truncated between [0, 1].

• Variables: The locations of kmonitoring points, 𝑡1, 𝑡2, ..., 𝑡𝑘 where 0 ≤ 𝑡1 <
𝑡2 < 𝑡𝑛 < 𝑡𝑘 ≤ 1.

• Constraints: Themonitoring pointsmust be placedwithin the normalized
time horizon [0, 1].

We can consider two different distributions. First, we can look at the trun-
cated Gaussian on the range [0, 1] centered at 0.5 with variance equal to 1. Then,
we can look at normal distribution also truncated on the range [0, 1]. Expression
and derivation for the PDF of a truncated Gaussian distribution can be found in
[8].

𝑓 (𝑥;𝜇, 𝜎, 𝑎, 𝑏) =


1
𝜎𝜙( 𝑥−𝜇𝜎 )

Φ
(
𝑏−𝜇
𝜎

)
−Φ( 𝑎−𝜇𝜎 ) for 𝑎 ≤ 𝑥 ≤ 𝑏

0 otherwise

where:

𝜙(𝑧) = 1√
2𝜋

𝑒−
𝑧2
2

is the PDF of the standard normal distribution, and
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Φ(𝑧) =
∫ 𝑧

−∞
𝜙(𝑡) 𝑑𝑡

is the CDF of the standard normal distribution.

Given a Gaussian distribution with mean 𝜇 = 0.5 and variance 𝜎2 = 1, trun-
cated to the interval [0, 1], the probability density function (PDF) is given by:

𝑓 (𝑥) =


1√
2𝜋

𝑒−
(𝑥−0.5)2

2

Φ(0.5)−Φ(−0.5) for 0 ≤ 𝑥 ≤ 1

0 otherwise

For now, assume we have only one monitoring point. Thus, total penalty
depending on the position of an event and a monitoring point is:

𝑃(𝑡 , 𝑥) =

(𝑡−𝑥)2

2 if 𝑡 > 𝑥
(1−𝑥)2

2 if 𝑎 > 𝑥 > 𝑡

We aim to compute the integral:

𝐼 =
∫ 𝑡1

0
𝑓 (𝑥) · (𝑡1 − 𝑥)2

2
𝑑𝑥

Substituting 𝑓 (𝑥) into the integral, we get:

𝐼 =
∫ 𝑡1

0

1√
2𝜋
𝑒−

(𝑥−0.5)2
2

Φ(0.5) −Φ(−0.5) ·
(𝑡1 − 𝑥)2

2
𝑑𝑥

This simplifies to:

𝐼 =
1√

2𝜋(Φ(0.5) −Φ(−0.5))
∫ 𝑡1

0
𝑒−

(𝑥−0.5)2
2 · (𝑡1 − 𝑥)2

2
𝑑𝑥

This is the integral that we get:∫ 𝑡1

0
𝑒−

(𝑥−0.5)2
2 · (𝑡1 − 𝑥)2

2
𝑑𝑥

Solving this integral by hand is unfeasible, so the optimizationwas donewith
the help of numerical simulation.
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4.1 NUMERICAL SIMULATION FOR GAUSSIAN DISTRIBU-
TION

We use similar approach as before, this time we define truncated Gaussian
PDF:

x = Symbol('x')
u = Symbol('u')

normalization_factor = norm.cdf((b - mu) / sigma) - norm.cdf((a - mu) / sigma)

def gaussian_pdf(x):
return (1 / (sigma * sqrt(2 * np.pi))) * exp(-0.5 *
((x - mu) / sigma) ** 2) / normalization_factor

And we also generate an expression for detection function and derive total
penalty function:

def detection_function(u, x):
return Abs(u - x)

def get_total_penalty_func(num_of_points):
t = [Symbol("t" + str(i)) for i in range(1, num_of_points + 1)]
t.append(b)
penalty_func = []
print(t)
for idx, term in enumerate(t):

penalty_func.append(integrate(detection_function(term, x), (u, x, t[idx])))
return penalty_func

Finally, we generate expected value function that will later be used for opti-
mization:

def get_expected_penalty_func(func):
integrals = []
t = ([Symbol("t" + str(i)) for i in range(1, len(func))])
t.insert(0, a)

25



4.1. NUMERICAL SIMULATION FOR GAUSSIAN DISTRIBUTION

t.append(b)
for idx, term in enumerate(func):

integrals.append(integrate(term * gaussian_pdf(x), (x, t[idx], t[idx + 1])))
return integrals

The rest of the script is similar to the one used for uniform distribution. Full
code can be found in Appendix 6.2. Mu, sigma, a, b parameters can be adjusted
to investigate different Gaussian distributions.

4.1.1 RESULTS FROM NUMERICAL SIMULATION FOR GAUSSIAN DISTRI-
BUTION

Results obtained using the script in appendix are presented below. First set
of results are for Gaussian distribution with mean 0.5 and variance 1 truncated
on the range [0, 1].

Figure 4.1: Numerical simulation
results for Gaussian distribution
(0.5, 1) with 1 monitoring point

Figure 4.2: Numerical simulation
results for Gaussian distribution
(0.5, 1) with 2 monitoring points
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Figure 4.3: Numerical simulation
results for Gaussian distribution
(0.5, 1) with 3 monitoring points

Figure 4.4: Numerical simulation
results for Gaussian distribution
(0.5, 1) with 10 monitoring points

These results suggest that we aim to place monitoring points symmetrically
around the mean. Moreover, these points divide the CDF into equal parts. For
example, consider two monitoring points. The optimal placement, according to
the simulation, is at t=0.5. This point is where the CDF of the Gaussian distribu-
tion is equal to 0.5. For two monitoring points, the positions are approximately
𝑡1 = 0.33 and 𝑡2 = 0.66. CDF(0.33) ≈ 0.33 and CDF(0.66) ≈ 0.66. This is reminis-
cent of the uniform distribution case, where points were distributed to divide
the uniform distribution into equal parts.

Below, the results for Gaussian distributionwithmean 0 and variance 1 trun-
cated on the range [0, 1] are presented:

Figure 4.5: Numerical simulation
results for Gaussian distribution
(0, 1) with 1 monitoring point

Figure 4.6: Numerical simulation
results for Gaussian distribution
(0, 1) with 2 monitoring points
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Figure 4.7: Numerical simulation
results for Gaussian distribution
(0, 1) with 3 monitoring points

Figure 4.8: Numerical simulation
results for Gaussian distribution
(0, 1) with 10 monitoring points

For three monitoring points, the script provides the following results:

Optimal monitoring points:
t1 = 0.24088284534397714
t2 = 0.4839413806269648
t3 = 0.7348199976076049

These are not precise locations as numerical analysis uses a finite number
of steps to converge. Thus, this is a close approximation. If we check the CDF
at those points, we get approximately 27%, 54%, 78%. If we take into account
approximations, this suggests that CDF indeed should be divided in equal parts
to minimize the penalty.
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5
Conclusions and Future Works

This thesis explored the optimalmonitoring point placement strategy tomin-
imize the age of information. This strategy can be used to create and refine up-
date policies for various applications. For example, the time required to com-
plete a computational task on a server or edge device can be modeled using a
Gaussian distribution. By estimating this distribution, one can determine opti-
mal instants for checking whether the task has been completed.

In thiswork, we first explored events that follow a normalized uniformdistri-
bution, establishing a theoretical foundation for addressingmore complex cases.

Next, a more complex scenario was investigated, where the event follows a
uniform distribution over the interval [0,a]. The findings in this case revealed
intriguing trends, such as saturation and uniformity in monitoring times, which
are evident in the figures from the numerical simulations.

Following this, we examined the Gaussian distribution. This was done with
the help of numerical simulations, as the calculationswere otherwise unfeasible.
In the case of the Gaussian distribution with a mean of 0.5 and variance of 1, the
monitoring points were distributed symmetrically around the mean. Moreover,
the placement of monitoring points aimed to divide the CDF into equal parts
to minimize the total penalty, similar to the uniform distribution case. For the
Gaussian distribution with a mean of 0 and variance of 1, the monitoring points
were no longer symmetrical. However, they still divided the CDF into equal
parts within the truncated range. This result means that further calculations
can be simplified by referencing the CDF and placing points so that they divide
the CDF into equal parts.
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Further worksmay extend this results by exploringwhat happenswith other
distributions and in the case of non-linear penalty function (thus, employing a
metric different from AoI). In that case, it is likely that the symmetry will disap-
pear. Moreover, one can explore what happens in the case of discrete distribu-
tions.

Another interesting extension would be to create adaptive monitoring sys-
tem. It would dynamically adjust monitoring points based on incoming data.
This would be particularly useful in environmentswhere event distributions can
change over time. This can also include cases with unknown distributions that
can be learnt over time. Some of the possible approaches to this problem include
Approximate Bayesian Computation (ABC) [24] and Kernel Density Estimation
(KDE) [25]

One can also aim to minimize two metrics at the same time, i.e. AoI and the
cost of monitoring. By considering, for example, energy consumption [21] iden-
tified conditions where feedback is advantageous or detrimental depending on
feedback costs and channel reliability. Furthermore, one can include impacts of
other factors that affect AoI, such as communication, queuing and other delays.
This issue is addressed, for instance, in [22].

To conclude, this work provided a brief overview of current studies that in-
volve Age of Information metric and provided a way to optimize update policy
based on the event’s underlying distribution. This builds an interesting founda-
tion for future studies on optimal timely monitoring of events over a finite time
horizon.
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6
Appendix

6.1 CODE TO MINIMIZE THE PENALTY FUNCTION FOR UNI-
FORM DISTRIBUTION

1 import numpy as np
2 from scipy.optimize import minimize
3 from sympy import *
4 import matplotlib.pyplot as plt
5

6 num_points = 4
7 x = Symbol('x')
8

9

10 def get_total_penalty_func(num_of_points , a):
11 t = [Symbol("t" + str(i)) for i in range(1, num_of_points + 1)]
12 func = list()
13 for i in range(num_of_points):
14 func.append((t[i] - x) ** 2 / (2 * a))
15 func.append((1 - x) ** 2 / (2 * a))
16 return func
17

18

19 def get_expected_penalty_func(func, a):
20 t = ([Symbol("t" + str(i)) for i in range(1, len(func))])
21 t.insert(0, 0)
22 t.append(a)
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23 integrals = list()
24 for idx, term in enumerate(func):
25 integrals.append(integrate(term, (x, t[idx], t[idx + 1])))
26 return integrals
27

28

29 def objective(x, fun):
30 keys = ["t" + str(i) for i in range(1, num_points + 1)]
31 subs = {key: value for key, value in zip(keys, x)}
32 return fun.evalf(subs=subs)
33

34

35 a_pos = np.linspace(0, 1.0, 21)
36 t_vals = list()
37 t0 = [0 for i in range(num_points)]
38 # Constrain each variable , so that t[i+1] > t[i]
39 cons = ([{'type': 'ineq', 'fun': lambda x: x[i + 1] - x[0]} for i in

range(num_points - 1)])
40

41 for a in a_pos:
42 pen_func = get_total_penalty_func(num_points , a)
43 e_func = get_expected_penalty_func(pen_func , a)
44 res = 0
45 for p in e_func:
46 res = res + p
47 bounds = ((0, a) for i in range(num_points))
48 solution = minimize(objective , t0, res, method='SLSQP', bounds=

bounds, constraints=cons)
49 t_vals.append(solution.x)
50

51 plt.plot(a_pos, t_vals, 'o')
52 plt.ylim([0, 1])
53 plt.title("Optimal value for t with " + str(num_points) + "

monitoring points", fontsize="20")
54 plt.xlabel("a", fontsize="20")
55 plt.ylabel("t", fontsize="20")
56 t_labels = ['t' + str(i) for i in range(1, num_points + 1)]
57 plt.legend(t_labels)
58 plt.savefig("uniform2_" + str(num_points) + ".png")
59 plt.show()

Code 6.1: Python code that produces optimal monitoring points depending on
the ’a’ parameter and the number of monitoring points
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6.2 CODE TOMINIMIZE THE PENALTY FUNCTION FORGAUS-
SIAN DISTRIBUTION

1 import numpy as np
2 from scipy.optimize import minimize
3 import matplotlib.pyplot as plt
4 from scipy.stats import norm
5 from sympy import Symbol, integrate , exp, sqrt, pi, Abs
6

7 # Define parameters for the Gaussian distribution
8 mu = 0
9 sigma = 1

10 a = 0
11 b = 1
12 num_points = 10
13 x = Symbol('x')
14 u = Symbol('u')
15

16 normalization_factor = norm.cdf((b - mu) / sigma) - norm.cdf((a - mu)
/ sigma)

17

18

19 def gaussian_pdf(x):
20 return (1 / (sigma * sqrt(2 * np.pi))) * exp(-0.5 * ((x - mu) /

sigma) ** 2) / normalization_factor
21

22

23 def gaussian_standard_pdf(x):
24 return (1 / (sigma * sqrt(2 * pi))) * exp(-0.5 * ((x - mu) /

sigma) ** 2)
25

26

27 def detection_function(u, x):
28 return Abs(u - x)
29

30

31 def get_total_penalty_func(num_of_points):
32 t = [Symbol("t" + str(i)) for i in range(1, num_of_points + 1)]
33 t.append(b)
34 penalty_func = []
35 print(t)
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36 for idx, term in enumerate(t):
37 penalty_func.append(integrate(detection_function(term, x), (u

, x, t[idx])))
38 return penalty_func
39

40

41 def get_expected_penalty_func(func):
42 integrals = []
43 t = ([Symbol("t" + str(i)) for i in range(1, len(func))])
44 t.insert(0, a)
45 t.append(b)
46 for idx, term in enumerate(func):
47 integrals.append(integrate(term * gaussian_pdf(x), (x, t[idx

], t[idx + 1])))
48 return integrals
49

50

51 def objective(t_values):
52 keys = ["t" + str(i) for i in range(1, num_points + 1)]
53 subs = {key: value for key, value in zip(keys, t_values)}
54 return sum([penalty.evalf(subs=subs) for penalty in

total_expected_penalty])
55

56

57 penalty_func = get_total_penalty_func(num_points)
58 total_expected_penalty = get_expected_penalty_func(penalty_func)
59

60 t0 = [0 for _ in range(num_points)]
61

62 # Bounds for t: each t should be within [t_min, t_max]
63 bounds = [(a, b) for _ in range(num_points)]
64

65 # Constraints to ensure t[i] < t[i+1]
66 constraints = [{'type': 'ineq', 'fun': lambda t: t[i + 1] - t[i]} for

i in range(num_points - 1)]
67

68 solution = minimize(objective , t0, method='SLSQP', bounds=bounds,
constraints=constraints)

69 optimal_points = solution.x
70 print("Final value " + str(objective(optimal_points)))
71

72 print('Optimal monitoring points:')
73 for i, t in enumerate(optimal_points , 1):
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74 print(f't{i} = {t}')
75

76 # Plotting the Gaussian PDF and optimal monitoring points
77 x_vals = np.linspace(a, b, 1000)
78 y_vals = [float(gaussian_pdf(val)) for val in x_vals]
79

80 plt.plot(x_vals, y_vals, label='Gaussian PDF')
81 plt.scatter(optimal_points , [float(gaussian_pdf(val)) for val in

optimal_points], color='red', zorder=5)
82 plt.title('Optimal Monitoring Points on Gaussian Distribution')
83 plt.xlabel('Time')
84 plt.ylabel('Probability Density')
85 plt.legend()
86 plt.savefig("gaussian1_" + str(num_points) + ".png")
87 plt.show()

Code 6.2: Python code that produces optimal monitoring points for Gaussian
distribution depending on it’s parameters and number of monitoring points
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