

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Chimica e dei Materiali

Relazione per la prova finale «Thin Pure Plate Lead: Technology and Patent Analysis»

Tutor universitario: Prof. Christian Durante

Tutor aziendale: Dott.ssa Silvia Cazzanti

Laureando: Samuele Manauzzi

Padova, 13/09/2024

TPPL = Thin Pure Plate Lead

For this purpose \rightarrow Fiamm grid based on TPPL technology was compared with 2 other grids, with the same technology, from competitors.

ww.dii.unipd.it

UNIVERSITÀ DEGLI STUDI

DI PADOVA

TIN CONTENT VS. GRID 'PROPERTIES AND CORROSION'

- Intergranular matrix → eutectic mixture with lamellar morphology → Volta's effect → grain boundaries subjected to corrosion
- Higher tin content \rightarrow larger grains

DI INGEGNERIA

Tin content affects ion and electron transportation through passivation layer \rightarrow determine corrosion rate

PASSIVATION LAYER (P.L.):

- Formation between grid and PAM, made of Pb and Sn oxides
- Sn < 0.8% wt.: pitting (mesoporous Sn(II)) + conductive PbO_{x(1 < x < 2)}
- 0.8% < Sn < 2.6% wt.: stable SnO₂ + conductive PbO_{x(1 < x < 2)}
- Sn > 2.6% wt.: excessive Sn segregated → severe intergranular corrosion

From left to right: Pure lead, 0.3% Sn, 0.6% Sn, 1.0% Sn

P.L. is formed for the couple: Pb + H₂SO₄ \rightarrow fine grain array is preferable \rightarrow more corrosion resistant To obtain a fine grain array \rightarrow suggested fast cooling rate of 0.8-1.5 °C/s

	FIAMM grid	Competitor 1	Competitor 2
Weight loss	3	1	2
Corrosion rate	3	1	2
Sn (%)	6 <mark>n (%)</mark> < 1		≈ 0
Average perim. (μm)	84,57	64,4	116,19

Legend: best performance = 1; worst performance = 3

Best configuration in terms of corrosion resistance: Competitor 1

- very low tin content \rightarrow no pitting and low conductivity
- fine grain array \rightarrow inhibited corrosion thanks to P.L. presence

Grid's tin content vs. corrosion resistance:

- Fiamm grid: highest Sn concentration →
 → worst corrosion resistance → highest weight loss and corrosion rate
- Competitor grids: similar Sn content →
 → other parameters affect grid corrosion

Grid's grain size vs. corrosion resistance:

- Competitor grid 1: fine grain array →
 → best corrosion resistance → lowest weight loss and corrosion rate
- Competitor grid 2: coarse grain array →
 → weight loss and corrosion rate slightly higher than Competitor grid 1

PROBLEM	SOLUTION	DRAWINGS	PATENT	APPLICANT
Corrosion Shedding Deformation	<u>Grid pattern:</u> The cross-section of the hole is a triangular structure Reinforcing polymeric frame and ribs		CN215955327U CN211957792U	HOPPECKE CAMEL
Shedding Corrosion	<u>Post treatment:</u> Recrystallization is obtained by deformation and annealing Sandblasting improves active mass adhesion		CA2468022A1 CN109065890A	INTEGRAN TECHNOLOGIES JIANGSU HUAFU STORAGE NEW TECH
Quality casting (no reference to alloy composition)	Casting wheel with a concave groove on the peripheral surface. The molten lead is continuously solidified in the concave groove. Casting speed is about 300 mm/s, diameter of the rotating wheel is 250 mm and thickness of the lead lattice is 3 mm.		JPH0665035B2 JPS6012668A	HITACHI

• **DESIGN FEATURES:**

- Sn as close as possible to 0% wt.
- The ribs mesh is triangular
- Reinforcing polymeric frame and ribs

• CASTING PARAMETERS:

- Fast cooling rate to obtain fine grain arrays: 0.8-1.5 °C/s
- Casting speed: 300 mm/s ($\phi_{wheel} = 250$ mm; thickness_{grid} = 3 mm)

• **POST TREATMENT:**

- Mechanical deformation among 40-95°C
- Annealing between 150 and 330°C (T_m)
- Sandblasting to improve active mass adhesion and prevent shedding

to prevent grid deformation and shedding

to ensure recrystallization

Company subject to the management and coordination of Resonac Corporation