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Abstract

This work presents an innovative approach to a common task on
robotics: grasping a set of objects.

Grasping is one of the earliest and most common tasks developed
in robotics.

Modern-day robots can be carefully hand-programmed to carry out
many complex manipulation tasks. However, autonomously grasp-
ing a previously unknown object still remains a challenging prob-
lem. This Thesis presents a new framework, inspired by the classi-
cal sense-model-act architecture and the knowledge processing of
Cognitive Robotics. The framework tries to generalize the grasp-
ing task to a generic action, where Reinforcement Learning and
Cloud Robotics play an important role.

In fact, the sense module receives the input from RGB-D sensors
and uses state-of-art vision algorithms for segmentation and detection
of objects in point clouds.

The model module takes the input from the sense node and uses
a novel Reinforcement learning algorithm that improves the internal
model by using the experience of past actions in a particular manner:
it stores the experience information in an ontology database that can
also be used by other robots performing the same task. Ontology
communication is done by using modern web-application standards in
order to generalize and scale better the system. The grasping action
itself uses another state-of-art algorithm. It takes the input object
and the gripper’s geometry and it generates some high-level grasping
poses. These poses are then filtered by the learning algorithm.

Finally, the act module takes the model ’s output and executes
the motion planning algorithm to complete the task.

This architecture is very modular and can be easily adapted to
perform different tasks or to execute them on other robots.
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1 Introduction

1.1 Objectives

The main objective of this Thesis is the development of a complete pipeline
that involves the classical sense-model-act architecture in which the model
part implements a new algorithm that combines reinforcement learning and
ontology reasoning. The specific task to be performed by the robot will be the
grasping of a set of objects. Nevertheless the pipeline can be easily adapted
to carry out many different tasks. The communication between modules will
be implemented using another novel approach that involves cloud robotics
and uses some common web application’s standards like Json and HTTP
POST calls. Figure 1 presents a high level scheme of the pipeline. The
sense module receives the scene’s point cloud data and then it passes it
to the segmentation algorithm that gets the list of valid objects. This list is
passed to the model module that sends every object to the cloud server.
The cloud server first extracts different descriptors of the object’s point cloud
and then it searches the object on the RDF database. If the object is found
it also retrieves the grasping information and sends it to the act module.
Otherwise, it passes to the Reinforcement Learning algorithm which learns
to grasp the novel object. Finally with the grasping information it calls the
act module in order to perform the grasping action on the object. For each
action the act module returns a reward that completes the Reinforcement
Learning’s cycle.

All the experiments will be done using the Aldebaran’s humanoid robot
Nao.

1.2 Thesis’s structure

This thesis is structured as follows:

• Introduction.

• Sense module.

• Model module.

• Act module.

• Experiments.
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Figure 1: Pipeline’s high level scheme reproducing the three components of
the sense-model-act architecture.
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• Conclusions and further work.

The whole pipeline is implemented using the ROS middleware [2],
specifically the ROS Indigo version. The modules are mainly written in
the C++ language.

The first part presents the problem of detecting a set of single objects
(or also a set of objects in a clutter) from a RGB-sensor’s output. The
chapter begins with the description of the ASUS PrimeSense ’s hardware
(the RGB-D sensor used). The problem is described as a tabletop object
detection problem. A section covers the segmentation algorithms used by
the module and some details of the implemented code.

The second part describes the Model module . This is the most impor-
tant module because it contains the learning algorithm. First there’s a brief
introduction to Reinforcement learning and then an introduction to ontolo-
gies. Some nodes of this module run on an external server that uses the
infrastructure developed for the Core project [27]. So there’s an entire sec-
tion describing the cloud part’s details. After this part, there’s a review of
2D and 3D features descriptors, which are important because they are used
on the object’s classification. The last part of this chapter introduces the
agile grasp algorithm [6] used to retrieve the grasping positions.

The following chapter gives a description of the act module . It also
presents a brief introduction to the motion planning library MoveIT! and
a description of the Nao’s hardware.

The experiment’s chapter shows the results of grasping objects on a table-
top scenario. There are two types of experiments: single objects and objects
in a clutter. Another interesting test is done using previously grasped ob-
jects found on the ontology database. The last test of this chapter is done by
asking the robot a specific object’s class to demonstrate that the reasoning
module works.

The last chapter contains a discussion on the experiment’s results and
some suggestions on possible future work that could be done in order to
extend the analysis proposed by this Thesis.

1.3 Introduction to the sense-model-act framework

A robotic paradigm is a mental model of how a robot operates, The sense-
model-act framework is a robotic paradigm composed by three elements
that a robot must have in order to operate:
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• Sense - the robot acquires information about the environment using
this element. The information is, for example, sensor’s feedback, like
images, force sensor’s feedback, etc.

• Model - the robot takes the sensed data and have to respond accord-
ingly to it. This element creates an action’s sequence (plan) to be
executed.

• Act - this element executes the action’s sequence generated by the the
Model module.

This paradigm was among the first proposed in the 70’s, it implies a closed
world model. The external world’s representation is an idealized model and
the robot is not part of it. The paradigm is useful if the sensing phase is
slow, and the environment is static. The act phase should be fast enough in
order to jump immediately to the sense phase again and read new changes
on the environment.

The model phase is the real bottleneck of this framework, because the
module may have to handle many states produced by the sense module in-
puts. More states means generating more possible actions and then decide
the best action to take at a certain time.

Figure 2 shows the relation between the different phases of the sense-
model-act framework. In this case the sensing and action along with the
environment are showed together in the lower part of the scheme. This
lower part remembers the scheme of another well known machine learning
framework: Reinforcement learning. The idea behind this Thesis’s work is
to improve the model phase by using Reinforcement learning and to speed
up the entire pipeline by using the accumulated knowledge shared on the
database that resides on the cloud.

1.4 Software - ROS Middleware

The entire Thesis’s pipeline is implemented using ROS (Robot Operating
System).

ROS is a robotics opensource middleware. The main vantage of this mid-
dleware is the infrastructure layer, that’s shared by all platforms using the
operating system. In this way there are many of libraries already imple-
mented and of easy integration. The robotics community is very active on
developing new libraries for this system, so we can find a lot of algorithms,
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Figure 2: The sense-model-act scheme. The different phases that compose
the sense-model-act modules are detailed.
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Figure 3: ROS Indigo version’s logo. The framework’s version used in this
Thesis’s work.

simulations, etc. For a proper introduction to ROS visit the official website
([2]). The version used in this Thesis is the Indigo version (figure 3) running
on Ubuntu 14.04 LTS.

1.5 Software - the Gazebo simulator

Gazebo is an open source simulator for robotics1. It offers the ability to ac-
curately and efficiently simulate populations of robots in complex indoor and
outdoor environments. It has a robust physics engine, high-quality graphics
and convenient programmatic and graphical interfaces.

Gazebo is compatible with a particular XML file used in ROS as standard,
the Universal Robotic Description Format (URDF) that serves to describe
all the elements of a robot.

1http://gazebosim.org/
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1.5.1 Modifying the Nao’s URDF model

The Nao’s ROS model is implemented by the package nao description .
This package is necessary to run the real Nao and the virtual Nao. This
section shows how to modify the nao description package in order to add a
virtual kinect that will help later to calculate the distance to objects and to
use the simulation on the recognition’s pipeline.

Inside this package there are two files:

• nao sensors.xacro

• naoGazebo.xacro

Note that the file’s extension is not .urdf but .xacro. Xacro is an XML
Macro language which permits to reduce large XML expressions using
some macro definitions, see2 for details.

These two .xacro files where modified in order to add the RGB-D sensor
(kinect) to the robot.

On the first file the following section was added (at the top of the head
joint)

< j o i n t name=” camera depth jo in t ” type=” f i x e d ”>
<o r i g i n xyz=”0 0 0” rpy=”0 0 0” />
<parent l i n k=”CameraDepth3 frame” />
<c h i l d l i n k=” camera depth frame ” />

</j o i n t>

< l i n k name=” camera depth frame ”>
< i n e r t i a l >

<mass value=” 0 .01 ” />
<o r i g i n xyz=”0 0 0” rpy=” 0 .0 0 .0 0 .0 ” />
< i n e r t i a ixx=” 0.001 ” ixy=” 0 .0 ” i x z=” 0 .0 ”

iyy=” 0.001 ” iy z=” 0 .0 ”
i z z=” 0.001 ” />

</ i n e r t i a l >
</l ink>

< j o i n t name=” c a m e r a d e p t h o p t i c a l j o i n t ” type=” f i x e d ”>
<o r i g i n xyz=”0 0 0” rpy=”0 0 0” />
<parent l i n k=” camera depth frame ” />
<c h i l d l i n k=” camera depth opt i ca l f rame ” />

</j o i n t>

2http://wiki.ros.org/xacro
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< l i n k name=” camera depth opt i ca l f rame ”>
< i n e r t i a l >

<mass value=” 0.001 ” />
<o r i g i n xyz=”0 0 0” rpy=”0 0 0” />
< i n e r t i a ixx=” 0.0001 ” ixy=” 0 .0 ” i x z=” 0 .0 ”

iyy=” 0.0001 ” iy z=” 0 .0 ”
i z z=” 0.0001 ” />

</ i n e r t i a l >
</l ink>

< j o i n t name=” camera rgb jo in t ” type=” f i x e d ”>
<o r i g i n xyz=”0 −0.005 0” rpy=”0 0 0” />
<parent l i n k=”CameraDepth3 frame” />
<c h i l d l i n k=” camera rgb frame ” />

</j o i n t>

< l i n k name=” camera rgb frame ”>
< i n e r t i a l >

<mass value=” 0.001 ” />
<o r i g i n xyz=”0 0 0” />
< i n e r t i a ixx=” 0.0001 ” ixy=” 0 .0 ” i x z=” 0 .0 ”

iyy=” 0.0001 ” iy z=” 0 .0 ”
i z z=” 0.0001 ” />

</ i n e r t i a l >
</l ink>

< j o i n t name=” c a m e r a r g b o p t i c a l j o i n t ” type=” f i x e d ”>
<o r i g i n xyz=”0 0 0” rpy=”0 0 0” />
<parent l i n k=” camera rgb frame ” />
<c h i l d l i n k=” camera rgb opt i ca l f r ame ” />

</j o i n t>

< l i n k name=” camera rgb opt i ca l f r ame ”>
< i n e r t i a l >

<mass value=” 0.001 ” />
<o r i g i n xyz=”0 0 0” />
< i n e r t i a ixx=” 0.0001 ” ixy=” 0 .0 ” i x z=” 0 .0 ”

iyy=” 0.0001 ” iy z=” 0 .0 ”
i z z=” 0.0001 ” />

</ i n e r t i a l >
</l ink>

Note that the origin TAG of the camera rgb joint

< j o i n t name=” camera rgb jo in t ” type=” f i x e d ”>
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<o r i g i n xyz=”0 −0.005 0” rpy=”0 0 0” />
<parent l i n k=”CameraDepth3 frame” />
<c h i l d l i n k=” camera rgb frame ” />

</j o i n t>

defines the relative position of the RGB-D sensor to the robot’s head joint.
The second file, naoGazebo.xacro add the RGB-D sensor as a virtual

device, so the camera takes the images of the virtual scene and elaborates
them as real images. The following section was added after the normal RGB
camera’s section:

<gazebo r e f e r e n c e=”CameraDepth3 frame”>
<s enso r type=”depth” name=” openni camera camera a le ”>

<always on>true</always on>
<update rate >20.0</ update rate>
<camera>

<h o r i z o n t a l f o v >1.2</ h o r i z o n t a l f o v >
<image>

<format>R8G8B8</format>
<width>640</width>
<height >480</height>

</image>
<c l i p>

<near >0.05</near>
<f a r >8.0</ far>

</c l i p>
</camera>
<plug in name=” k i n e c t c a m e r a c o n t r o l l e r ”
f i l ename=” l i b g a z e b o r o s o p e n n i k i n e c t . so ”>

<cameraName>k i n e c t a l e </cameraName>
<alwaysOn>true</alwaysOn>
<updateRate>10</updateRate>
<imageTopicName>
/CameraDepth3 frame/ rgb/ image raw
</imageTopicName>
<depthImageTopicName>
/CameraDepth3 frame/depth/ image raw
</depthImageTopicName>
<pointCloudTopicName>
/CameraDepth3 frame/depth/ po in t s
</pointCloudTopicName>
<cameraInfoTopicName>
/CameraDepth3 frame/ rgb/ camera in fo
</cameraInfoTopicName>
<depthImageCameraInfoTopicName>
/CameraDepth3 frame/depth/ camera in fo

14



Figure 4: The Nao robot with the RGB-D sensor on Gazebo.

</depthImageCameraInfoTopicName>
<frameName>camera depth opt i ca l f rame
</frameName>
<base l i n e >0.1</ bas e l i n e>
<d i s t o r t i o n k 1 >0.0</ d i s t o r t i o n k 1 >
<d i s t o r t i o n k 2 >0.0</ d i s t o r t i o n k 2 >
<d i s t o r t i o n k 3 >0.0</ d i s t o r t i o n k 3 >
<d i s t o r t i o n t 1 >0.0</ d i s t o r t i o n t 1 >
<d i s t o r t i o n t 2 >0.0</ d i s t o r t i o n t 2 >
<pointCloudCutof f >0.4</ pointCloudCutof f>

<pointCloudCutoffMax >5.0</pointCloudCutoffMax>
</plugin>

</sensor>
</gazebo>

The most interesting tags of this listing are the ones named TopicName
because the RGB-D sensor’s output will be published using these topics.

The final result is showed in figure 4, where the Gazebo’s Nao presents
the new RGB-D sensor at the head’s top.
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Figure 5: Laboratory objects prepared for the tabletop detection’s problem.

2 The sense module

The perception module is composed by a group of ROS nodes and a RGB-D
sensor.

These two components are used to solve the Tabletop object detection
problem that will be presented as the first part of our grasping task.

The entry point for the grasping task is the sense module, this task is
designed as follows: there are N objects on a table (in a clutter manner and
not) and the robot must pick up every object and place it on a box that
resides near the table’s side, this is the Tabletop detection problem. The task
is designed in such way in order to have the best conditions for the object’s
perception.

Figure 5 shows some objects disposed for the tabletop detection’s prob-
lem.

The design of the whole module tries to reach the following constrains:

• There isn’t prior knowledge of the scene.

• Not using a database to detect the object and the corresponding com-
plete 3D model.

• Not having an offline learning’s phase.
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Some popular alternatives to detect objects are the tabletop object detector
module3, originally created by Willow Garage for the ROS platform. The
purpose of this module is to provide a means of recognizing simple household
objects placed on a table such that they can be manipulated effectively. This
module uses a similar algorithm for the segmentation step but in order to
recognize an object, it uses a model database, so the module can’t recognize
an unknown object and the database is the classical relational SQL database,
not well suited for sharing knowledge between robots.

Another popular alternative is the Object recognition kitchen (ORK)
framework4 that’s also being developed by the Willow Garage’s team. It’s a
complete framework providing a lot of algorithms for object detection, e.g. for
transparent objects, non textured objects, articulated, etc. It also contains
an entire pipeline’s implementation for object detection, giving the database
layer, input/output handling and more. The problem with this library is
that not provides the latest state-of-art algorithms for object detection and
the database is a classic relational SQL database, being hard to scale and
handle many objects at the same time. Lastly being a complete framework
it’s not easy to integrate with ROS (but provides some ROS communication
functions).

Two interesting works serve as inspiration to the development of this
module, the first is [18], in this Thesis a complete pipeline is implemented,
following the objectives of the present module. A ROS node was released
containing all the implemented code, rail object detection , but the prob-
lem is that this node is implemented using an old ROS version and thus parts
of the module must be rewritten in order to use it with the INDIGO version.

The second work is [19]. This technical report proposes a similar pipeline
to that of the first, but using the latest state-of-art algorithms for segmenta-
tion (using the implementation present in the PCL library). This work will
be the starting point of the sense’s module implementation.

Before starting with the sense module’s description the following three
sections will explain the tools needed and used on the development of the
module.

3http://wiki.ros.org/tabletop object detector
4http://wg-perception.github.io/object recognition core/
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2.1 Software - The Point Cloud Library

The Point Cloud Library (PCL) is an open source project (BSD license)
for 3D geometry processing and point cloud processing. This project was
originally develop by Willow Garage in 2010 as a ROS package. The library
is divided in the following modules:

• filters

• features

• keypoints

• registration

• kdtree

• octree

• segmentation

• sample consensus

• surface

• recognition

• io

• visualization

The PCL is the tool used in this Thesis to work with point clouds that
are the outputs of RGD-D sensors. As stated before, the entire sense module
uses state-of-art algorithms that are implemented inside the PCL library.

2.2 Software - The OpenCV library

OpenCV (Open Source Computer Vision Library) is a popular open source
library (using the BSD license) that contains a lot of implementations of
computer vision algorithms. It’s cross-platform and although being devel-
oped mainly on C++ there are bindings for popular languages like java,
python and C#.

18



Figure 6: The main parts that conforms the MS Kinect.

OpenCV is used as the primary vision library in ROS, where there are
conversion functions between image formats and ROS messages.

In this Thesis this library is mainly used because it’s integrated inside
ROS and because it contains the algorithm’s implementations that extract
image descriptors from images (see the dedicated section on this chapter).

2.3 Hardware - The RGB-D sensor

The sense module makes use of the Microsoft’s RGB-D sensor: the Kinect .
the Microsoft Kinect is a console Xbox accessory, and became the fastest
selling consumer electronics device in the world after its launch in November
2010.

Kinect and other RGB-D or 3D sensors consist of a color (RGB) camera
and depth (D) sensor, figure 6 shows the kinect’s main parts. The color
sensor takes the RGB values, the IR Depth sensor combined with the IR
emitter takes the depth values and the microphone array is used for speech
recognition. In order to see objects, they must be placed at a minimum
distance of 1.2 meters to a maximum distance of 3.5 meters. The output
camera’s resolution is 640x380 pixels at running at 30Hz.

Typically the RGB-D sensor’s output is a point cloud image, an RGB-
D image. Since the kinect’s release lots of researches around the world are
producing different datasets and using this device on a wide range of appli-
cations.

Generally, RGB-D sensors are low accuracy and low precision devices.
Diverse studies (i.e. [16]), show that their accuracy is on the order of 2-
3%. At a distance of 4m from the sensor, this corresponds to RMS error

19



Figure 7: Calibration procedure in order to associate the correct pixel with
the correct depxel.

on the order of 10cm. This level of accuracy is quite satisfactory in e.g.
human interaction applications. However, it may appear unsuitable in some
specific robotic uses (e.g. grasping). Since grasping is our actual task to be
performed, a calibration procedure was applied to the camera. The rgb and
depth camera in the kinect need to be calibrated in order to associate the
correct pixel with the correct depxel.

This procedure can be done by using an specific ROS’s package5. The
calibration process improves the level of accuracy, for example the figure (7)
shows the image’s color quality before and after the calibration procedure.

2.4 Tabletop object detection problem

The main task of the sense module is detecting the objects that the robot
has to interact with.

The tabletop object detection phase is composed of 3 different steps, first
the plane’s table must be separated from objects:

• Table plane estimation (by RANSAC): the first step is find the
table’s plane. This is done using the RANSAC (RANdom SAmple
Consensus”) algorithm [11], witch is an iterative method to estimate
the parameters of a mathematical model from a dataset containing
outliers, so the method return witch points of the input dataset fits

5http://wiki.ros.org/openni launch/Tutorials/IntrinsicCalibration
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a certain model (with some level of accuracy the algorithm is non-
deterministic). In our case the input model to fit will be a plane, the
table’s plane. The points of the table are detected estimating first a
plane in the point cloud, all the points which belong to such a plane
are the points of the table.

• Calculating the 2D Convex Hull of the table: The hull could
be defined as the points that conform the outermost boundary of the
point’s set, like a shell around the volume. So once we have the points
of the table’s plane model, a 2D convex hull is computed in order to get
a 2D shape (the plane itself) containing those points. Figure 8 shows
a table’s plane and the calculated hull.

• 3D Polygonal prism creation and projection: the hull calculated
on the previous step is extruded at a given height, creating a 3D prism.
All the points that lie inside this prism are extracted. So all the points
are projected on the table plane previously estimated and all the points
which projections belong to the 2D convex hull are considered to be
points of tabletop objects.

The main vantage of this algorithm is that it’s able to detect the tabletop
objects by detecting the table’s plane, so other possible planes of the scene
like the floor’s plane will be discarded since the projections of that planes on
the table’s plane don’t belong to the table’s convex hull.

This part uses the PCL’s implementations. A tutorial about using a
planar model with RANSAC is found here6, for convex hull there’s another
tutorial7 and the 3D prism calculation is showed in this tutorial8.

2.5 Point cloud Segmentation

Segmentation is the process where the scene’s point cloud is divided (seg-
mented) onto different point clouds one by every detected object, so the final
result is a set of separated point clouds. This process gives the vantage of
working with smaller point clouds, so the performance of many algorithms
that use these point clouds can be improved a lot.

6http://www.pointclouds.org/documentation/tutorials/project_inliers.php
7http://www.pointclouds.org/documentation/tutorials/hull_2d.php
8http://robotica.unileon.es/mediawiki/index.php/PCL/OpenNI_tutorial_3:

_Cloud_processing_%28advanced%29
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(a) table’s point cloud.

(b) Calculated hull.

Figure 8: These figures show the tabletop’s point cloud and the calculated
hull.
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So once the objects have been detected (using the previous section’s meth-
ods), another phase must be performed: the point cloud segmentation phase.

2.5.1 The supervoxel concept

The principal goal is to deconstruct a scene into separate object parts without
the need for training or classification. As psycho-physical studies suggest, in
humans the lowest level decomposition of objects into parts is closely inter-
twined with 3D concave/convex relationships. The VCCS (Voxel Cloud
Connectivy Segmentation) algorithm [15] used in this phase (an overview
of which is given in 9, the image was taken from this9 tutorial) tries to reliably
identify regions of local convexity in point cloud data.

The VCCS algorithm over-segments 3D point cloud data into patches.
These patches are called supervoxels. A supervoxel is a group of voxels that
share similar properties. Supervoxels are the 3D analog of superpixels10.
Using voxels is possible since modern RGB-D sensors provide the object’s
3D geometry as output.

The VCCS algorithm is divided in the following phases:

1. Generation the labeling of points. This is done using a variant of k-
means clustering. The result of this phase is a voxelized point cloud.

2. Adjacency Graph construction. Using the voxelized point cloud the
graph is constructed and is a key element for the segmentation.

3. Spatial Seeding. In this phase the algorithm selects some point cloud’s
points that will be used to initialize the supervoxels.

4. Features and Distance Measure. Supervoxels are clusters in a 39 di-
mensional space. This vector is created using the spatial coordinates,
the point’s color information and a 33-dimensional feature vector that
is obtained using the Fast Point Feature Histograms (FPFH)
algorithm [22]. This a local geometry extractor method.

9http://pointclouds.org/documentation/tutorials/supervoxel_clustering.

php
10Superpixel: A polygonal part of a digital image, larger than a normal pixel, that is

rendered in the same colour and brightness.
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Figure 9: the VCCS algorithm’s phases.
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5. Flow Constrained Clustering. The last phase assigns at every point
cloud’s voxel a supervoxel. This is done iteratively, using a local k-
means clustering method.

The supervoxels method works directly on point clouds, which has advan-
tages over other methods which operate with projected images. An impor-
tant characteristic of this algorithm is the ability to segment clouds coming
from many sensor observations i.e. using multiple cameras or accumulated
clouds from one. Computationally, this is advantageous, as the speed of this
method is dependent on the number of occupied voxels in the scene, and not
the number of observed pixels. As observations will have significant overlap,
this means that it is cheaper to segment the overall voxel cloud than the
individual 2D observations.

2.5.2 Segmentation algorithm

Using the supervoxels of the previous section there are a lot of interesting
algorithms to perform object’s segmentation. The Object Partitioning
using Local Convexity [7] is a good algorithm that can be found in the
last PCL’s release, the version 1.7.

There’s another state-of-art algorithm that can be found in the the not
stable release of the PCL’S library, the 1.8. This is the Local Convex
Connected Patches Segmentation (LCCP) [7] that is a state-of-art
algorithm for segmentation using supervoxels as input.

2.5.3 LCCP algorithm

The Local Convex Connected Patches Segmentation (as other seg-
mentation algorithms based on voxels) takes the assumption that objects are
convex . This true for many objects but not for all and is good to have
present this condition on the experiment’s phase.

The principal goal is to deconstruct a scene into separate object parts
without the need for training or classification. As psycho-physical stud-
ies suggest, in humans the lowest level decomposition of objects into parts
is closely intertwined with 3D concave/convex relationships. The VCCS
(Voxel Cloud Connectivy Segmentation) algorithm [15] used in this
phase (an overview of which is given in 10) tries to reliably identify regions
of local convexity in point cloud data.
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Figure 10: Segmentation phases using the VCCS algorithm. The image
was taken from [15]
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The VCCS algorithm over-segments 3D point cloud data into patches.
These patches are called supervoxels. A supervoxel is a group of voxels that
share similar properties. Supervoxels are the 3D analog of superpixels. Us-
ing voxels is possible since modern RGB-D sensors provide the object’s 3D
geometry as output.

The main algorithm’s phases are presented in the Figure 10.
The VCCS algorithm gives a surface patch adjacency graph as output,

this supervoxel adjacency graph is segmented by classifying the connection
between two supervoxels is convex (valid) or concave (invalid). Two criteria
are used to classify this connection:

• Extended Convexity Criterion (CC) - uses the centroids of two
adjacent supervoxels, the connection between them (covex or concave)
can be calculated by seeing the relation of the surface normals to the
vector joining their centroids.

• Sanity criterion (SC) - takes the adjacent supervoxels that are
potentially convex and search for surface’s geometric discontinuities. If
discontinuities are found, connections between these two supervoxels
are invalidated.

The PCL algorithm’s implementation is very good, so the segmentation
phase is very fast (using a lowend 2 core duo Thinkpad with 4GB of RAM).

The algorithm also works very well when must segment cluttered scenes.
The only problem is that there’s a minimum dimension threshold that the
input point cloud must have. If the point cloud is too small the algorithm
can’t see anything. So the algorithm presents problems for segmenting
small objects.

For a detailed description of the algorithm’s parameters and installation
dependencies see [19].

2.6 The sense module package implementation

The sense module was implemented as a ROS package (Figure 11). The
package has the following structure:

• sense metapackage: container of the sense module’s packages.

• sense segmentation package: contains the service that calls seg-
mentation algorithm’s implementation.
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Figure 11: The sense module package’s structure.

• gazebo kinect stage package: contains a simulated scene using the
gazebo simulator and a virtual kinect model that produces point clouds.

The main module’s node is the sense segmentation package, it pro-
vides two launch files that can be used to call the segmentation algorithm:

• sense segmentation.launch: starts a ROS node that receives the
point clouds as inputs and publish another topics that contains the
single object’s point cloud.

• sense segmentation server.launch: is a ROS service that calls the
segmentation algorithm and return a list containing the segmented ob-
ject’s point cloud.

The sense segmentation package internally calls another segmentation algo-
rithm that uses the state-of-art LCCP algorithm of previous section. This is
the tos supervoxels showed in Figure 11. This implementation was made
by [19] as a standalone C++ program (it must be placed outside the ROS’s
workspace).

Figure 12 shows a segmentation done using as input the virtual point
clouds of the gazebo kinect stage package.

28



In order to use the segmentation module inside this Thesis’s pipeline, the
following ROS nodes must be started. First a real RGB-D sensor must con-
nected, the module listens by default the topic named /camera/depth registered/points
but can be changed in the sense segmentation server.launch file. If not RGB-
D sensor is available, the simulated Tabletop object stage can started by
launching the following console’s command:

$ ros launch g a z e b o k i n e c t s t a g e k inec t gazebo . launch

Once an RGB-D sensor starts publishing point clouds the ROS segmentation
service can be started by using this console’s command

$ ros launch sense segmentat ion s e n s e s e g m e n t a t i o n s e r v e r . launch

(a) table’s virtual point cloud
from the gazebo kinect stage
package.

(b) Calculated hull.

Figure 12: These figures show the segmentation phase (images taken using
Rviz).

2.7 The image’s descriptors

In this section an important argument is covered and is a set of techniques
that will help to identify images, compare with others and eventually under-
stand if these images are similar or not. These descriptors are not used in
the segmentation phase but will be critical in the matching object’s phase
that will be presented in the next chapter.
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Image content characteristics are often described by visual features.
These features are a compact description of the image itself. They are called
visual because these descriptors visually shows some specials characteristic.
Visual descriptors are divided into two big families:

• Global features - these features encode the visual content into a single
description global these features compromise the entire image. On this
family we have features such overall appearance, color, intensity, etc.
The main vantage of this family of features is that they are fast to
compute due to the single description.

• Local features - this family of features describes an image region (named
patch) around a point of the image. This point is called interest
point and is a point that helps to distinguish the image. Local features
algorithms usually contain two steps. The first is the interest point
detection, where a set of point of interest are identified on the image.
The second step is the extraction of a local feature descriptor around
every point.

2.7.1 HOG

Histogram of Oriented Gradients (HOG) [8] is a local feature descriptor used
with success for human detection and object recognition. HOG descriptors
are similar to SIFT because they describe image gradients by a histogram
of gradients orientations. The key concept behind HOG is that local object
appearance and shape within an image can be described by the distribution
of intensity gradients or edge directions. The image is divided into small
connected regions called cells, and for the pixels within each cell, a histogram
of gradient directions is compiled. The descriptor is the concatenation of
these histograms. The HOG descriptor has a few key advantages over other
descriptors. Since it operates on local cells, it is invariant to geometric and
photo-metric transformations, except for object orientation.

2.7.2 SIFT

SIFT is an algorithm proposed by [17] in 2004 since it’s publication has
become the most widely used local feature algorithm in the domain of feature
retrieval. The proposed SIFT features contain the two methods to find local
features: an scale and rotation-invariant detection of interest point and a
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Figure 13: shows how a SIFT point is described using a histogram of gradient
magnitude and direction around the feature point.

robust description of local neighborhoods around these points. Figure 13
shows a SIFT’s descriptor example.
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Figure 14: Model package’s structure.

3 The model module

This is the main Thesis’s chapter. First a general description of the model
ROS package is given, in order to understand how the different module’s
parts are connected. Follows an introduction about the state of the art in
Cloud Robotics and a presentation of a past work that gives inspiration to
the cloud part of the Thesis. Then we have a description of the server side’s
ROS nodes. At this point a general introduction to ontologies is given and
to the CORA standard [24]. Follows a description of the ontology engine
package that retrieves the information of an ontology RDF database.

Finally the last introduction of this chapter is dedicated to Reinforcement
learning, after a generic introduction, some state-of-art grasping algorithms
are presented. The last section that closes this chapter describes the imple-
mented Reinforcement learning node.

3.1 The model package

The entire model package’s structure is showed in figure 14. There’s a ROS
metapackage containing the other packages, the main package (representing
the core of the model part of the framework) is showed in red color. This
is the model rl core package. This node controls the others, senses the
ambient using the sense module, reasons using the cloud engine and the
reinforcement learning engine, and finally acts using the act module.

In order to launch the model rl core package we must pass one param-
eter: the cloud’s server IP (witch must have the form ip:port), so from the
console we can use the following command

# ros launch m o d e l r l c o r e m o d e l r l c o r e c l i e n t . launch
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s e r v e r i p a d d r :=CLOUD SERVER IP:9090

At the initialization phase, the node waits for a point cloud of the scene that
arrives from the RGB-D sensors, the topic’s name where the node waits for
the point cloud is /camera/depth registered/points but can be changed
inside the file model rl core model rl core client.launch. When the new point
cloud arrives the node calls the sense segmentation service that returns a list
with the segmented object’s point clouds. At this point the object can be
grasped by the robot but first this reasoning engine must understand how to
grasp the object itself. The node finds the grasping by calling:

1. The cloud engine - searches the best object’s grasping.

2. The reinforcement learning engine - if not grasping if found by the cloud
part.

The following sections will explain these two engines. Before the engine’s
description some arguments are introduced in order to facilitate the under-
standing of the engines.

3.2 Cloud Robotics

The relationship between network and robots begins more than 30 years ago.
Industrial robots began using primitive networks to be controlled from remote
locations. Since then and after the incredible development of Internet, robots
began using the same protocols, like the HTTP protocol, to communicate
between them. Until a few years ago, communication between robots was not
standardized and/or engineered. There was not an standard that all robots
could use but only adHoc communications.

In 2010 James Kuffner coined the term Cloud Robotics to define the
branch of robotics related to robot’s communication using the modern cloud
technologies. This new branch is also related to another popular branch of
computing, the Internet of things that describes how devices communicate
and share information.

The Cloud can help robotics development in many ways, not only with
communication between robots but also by extending hardware, software
and cognitive possibilities of every single robot. Efforts are now focused on
developing the standard protocols and tools in order give an easy and fast
access to remote resources to robots.

33



This survey [9] gives a complete introduction (also as a historic point of
view) to Cloud Robotics.

3.2.1 Related work and state-of-art developments

In the last years many works focused on standardizing robot’s cloud access.
An popular work is RoboEarth [20]. A big project that provides standards to
share information between robots using the Internet infrastructure as chan-
nel. The way that robots share information is very important because knowl-
edge must be managed in a certain way in order to optimize sharing and using
with robots. On the RoboEarth platform knowledge is represented by using
an Ontology (see the next section for further details about ontologies) but
the problem is that it’s not an standard ontology. Anyway the main problem
with RoboEarth is that the system has not an scalable recognition pipeline.

Another interesting state-of-art work is CORE [27]. It proposes a com-
plete object’s recognition pipeline but using a distributed and scalable ar-
chitecture. The best part of this work is the distributed architecture that
introduces modern web application standards like JSON and websockets on
a Cloud Robotics Architecture. The creators payed particular attention to
optimize transmission of large amounts of data. In particular the gener-
ated point clouds are compressed (using the method described in [14]) before
transmission and the compressed point clouds are only send to server only
if the scene’s variation is over a fixed threshold. This techniche is known
as point cloud culling . Using this method [5] point clouds are selectively
culled prior to transmission to the cloud. Culling is performed by measuring
the scene entropy of sequential point cloud frames.

On the other side this work has some characteristics that are not well
suited for this Thesis’s objectives: the recognition engine needs a separated
training phase to work correctly since learning it’s based on a Support
Vector Machine (SVM). Finally as authors points out the work could be
extended to develop a complete service oriented architecture.

3.2.2 Introduction to ontologies

On the machine learning domain there are many definitions of an ontology;
some of these contradict one another. A common definition follows: an
ontology is a formal explicit description of concepts in a domain of discourse
(classes (also called concepts)), properties of each concept describing various
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Figure 15: The RTASK extension to the IEEE Ontology for Robotics and
Automation.

features and attributes of the concept (slots (also called roles or properties)),
and restrictions on slots (facets (also called role restrictions)). An ontology
together with a set of individual instances of classes constitutes a knowledge
base.

With respect to the existing Knowledge Bases, the one proposed, that will
be called RTASK [10], is scalable because of the adoption of an Ontology
that defines data. It guarantees an intelligent data storage and access because
of the type of data saved. Every object is characterized by multiple visual
features (2D Images, B-Splines, and Point Clouds). No onerous manual work
is required to store objects from different view points: an object is stored even
if there exists only a single registration of one its views. A human teacher
helps robots in recognizing objects when viewed from other orientations. The
teacher exploits the connection between the new view point and other object
properties, e.g., name and function. These new features will be stored in the
Ontology gradually incrementing robots knowledge about the object itself.
Moreover, the proposed Ontology observes the IEEE standards proposed by
the IEEE Robotics and Automation Society (RAS)’s Ontology for Robotics
and Automation (ORA) Working Group (WG) by extending the Knowledge
Base it proposed (see Figure 15).

3.2.3 The proposed RTASK ontology

Figure 16 depicts the Ontology design: a Task is assigned to an Agent, e.g.,
a Robot. It should be executed within a certain time interval and requires
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the fulfillment of a certain Motion in order to be performed. Manipulation
is a sub-class of Task. Several types of manipulations exist, e.g., grasps and
pushes.

They involve the handling of an Object located at a certain Pose (Position
and Orientation) through the execution of a Manipulating action. If the
Task is assigned to a Robot, then the Motion will be represented by a Robot
Action. In detail, the Robot Manipulation Action involves the activation of
the robot End Effector.

In order to retrieve the manipulation data of an object in the scene, the
object should be recognized as an instance previously stored in the Ontology.
For this purpose, every Object is characterized by an id, name, function, and
the visual features obtained by the Sensors. For every Object, RTASK stores
multiple types of visual features: 2D Images, B-Splines, and (compressed)
Point Clouds.

3.2.4 The implemented Cloud-based Engine

The local robot that’s performing the grasping task has an internal ROS
node that receives the segmented point clouds of the scene’s objects and
sends them to a cloud server that is running another ROS node capable of
reading the message’s content. The communication between nodes uses the
rosbridge interface, providing a websocket channel between nodes, the actual
implementation takes as starting point [27] but extends it by implementing
a complete ROS service architecture. Figure 17 shows a working example of
this service oriented architecture.

There are 3 types of messages: Request recognition object grasp-
ing This message asks the cloud server to retrieve a grasping for an object.
It sends the robot’s gripper type and the compressed point cloud of the
single object. The compressed point cloud representation saves space and
connection time. The compressed point cloud is also encoded in order to
be transmitted over the websocket’s channel. After the encoding the whole
message is converted in JSON format. The ROS message encoded on the
websocket’s request is

# Task ’ s name ( pick , p lace f o r example )
s t r i n g task

# Gripper ’ s name
s t r i n g g r i p p e r i d
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Figure 17: The cloud engine architecture.

# Compressed po int c loud ( ob j e c t ’ s r e p r e s e n t a t i o n )
s t r i n g data

The server receives the client’s request and performs a superfast search
that compromises the following steps (Figure 18 shows the pipeline’s phases)

• Decode the message and decompress the point cloud.

• Convert the point cloud to color image using the OPENCV’s functions.

• Extract the new image’s SIFT features (using [25]), and store them on
a binary file of a server’s folder.

• Match the image’s features against the stored features that reside on
the server. The matching uses a novel and superfast algorithm, Cas-
cade hashing [13]. This algorithm is not only very fast but allows
constructing a dataset without a learning phase, there’s not need to
train the hashing functions as in other Approximate Nearest Neighbor
(ANN) methods. The function return the names of the features of the
most similar images (according to the SIFT parameters) to the input
image. These file names are also the object’s classes we defined on the
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Figure 18: The pipeline for fast image retrieval.

ontology database. So using only one sparql query with the classes as
filters we reduce the seek time inside the ontology, filtering only the
classes of the most similar objects.

• finally the sparql query returns the grasping information.

The similar object’s searching is very fast not only because we use the cascade
hashing algorithm but also because the features of the stored objects are
already precalculated and stored on a server folder (they aren’t download
every time from the database). Along with this, using the feature’s name
(an integer, like 1,2,3) as object class we avoid to perform many queries on
the ontology, performing only one query at the end of the matching process.

The server (using the websocket interface) encodes the following ROS
message that contains the matched grasping information:

s t r i n g t a s k r e s p o n s e

s t r i n g t a s k i d

# The i n t e r n a l posture o f the hand for the pre−grasp
# only p o s i t i o n s are used
t r a j e c t o r y m s g s / Jo in tTra j e c to ry p r e g r a s p p o s t u r e
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# The i n t e r n a l posture o f the hand for the grasp
# p o s i t i o n s and e f f o r t s are used
t r a j e c t o r y m s g s / Jo in tTra j e c to ry g ra sp pos tu r e

# The p o s i t i o n o f the end−e f f e c t o r for the grasp .
# This i s the pose o f
# the ” p a r e n t l i n k ” o f the end−e f f e c t o r , not a c t u a l l y the
# pose o f any l i n k ∗ in ∗ the end−e f f e c t o r .
# Typica l l y this would be the pose o f the
# most d i s t a l wr i s t l i n k be f o r e
# the hand ( end−e f f e c t o r ) l i n k s began .

geometry msgs /PoseStamped grasp pose

# The approach d i r e c t i o n to take
# be f o r e p i ck ing an ob j e c t
moveit msgs / Gr ipperTrans lat ion pre grasp approach

# The r e t r e a t d i r e c t i o n to take a f t e r
# a grasp has been completed ( ob j e c t i s attached )
moveit msgs / Gr ipperTrans lat ion p o s t g r a s p r e t r e a t

On the client’s side the grasping information is used by the act module
to perform the grasping action, if the robot success grasping the object,
finish the action. In other case, it comes to play the Reinforcement learning
algorithm. First given the point cloud some grasping positions are generated
using the geometry’s gripper. These positions are then validated by the
trial/error process that resides insides the Reinforcement learning algorithm.
If a grasping action is successfully executed, an human operator validates the
result. With this information the client creates another message:

{ ”op” : ” send new object ” ,
” s e r v i c e ” : ” i n s e r t ” ,
” new object ” :

[
{” new point c loud ” : ”zc5p81H1cO8P+Ksmfdf . . . ” ,
”X” : ” 0 .5 ” , ”Y” : ” 2 .5 ” , ”Z” : ” 1 .5 ” , ” rad” : ” 0 .314 ” } ,
]
}

Finally the server receives the message, calculates the object’s SIFT features
and inserts them on the feature’s folder and on the ontology.

The last type of message is used for human robot interaction.
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# Operation type
s t r i n g operat i on

# Object class ’ s name
s t r i n g c l a s s d e s c r i p t i o n

# Compressed po int c loud ( ob j e c t ’ s r e p r e s e n t a t i o n )
s t r i n g data

In this case the human operator shows an object to the robot and gives an
object’s description (like coke can, pen), then the server non only seeks for
a similar object but filters the ontology using the object’s description.

The local node sends the following information to the server using the
json standard as in [27] :

{ ”op” : ” s e a r c h o b j e c t ” ,
” s e r v i c e ” : ” s end po in t c l oud ”
” args ” : ”zc5p81H1cO8P+Ksmfdf . . . ” }

The args part in the above message is the compressed point cloud. The server
takes the point cloud, gets the SIFT features and search a similar object
using the cascade hashing algorithm that uses a server’s directory containing
all the object’s features in text format. If a match is found, the algorithm
takes the unique ID’s of the matched objects and performs an RDF query in
order to retrieve the object’s grasping information inside the ontology. Then
the server returns the following message to the client:

{” s i m i l a r o b j e c t s ” :
[
{ ” c l a s s ” : ”1” , ”X” : ” 0 .5 ” , ”Y” : ” 2 .5 ” , ”Z” : ” 1 .5 ” , ” rad” : ” 0 .314 ” } ,
{ ” c l a s s ” : ”2” , ”X” : ” 0 .1 ” , ”Y” : ” 24 .5 ” , ”Z” : ” 1 .3 ” , ” rad” : ” 0 .24 ” } ,
{ ” c l a s s ” : ”3” , ”X” : ” 0 .2 ” , ”Y” : ” 3 .5 ” , ”Z” : ” 0 .5 ” , ” rad” : ” 2 .14 ” }

]
}

If no similar objects are found, the response will be

{ ”op” : ” s e a r c h o b j e c t r e s p o n s e ” ,
” s e r v i c e ” : ” query ” ,
” s i m i l a r o b j e c t s ” :

[

]
}

And on the client’s side comes to play the Reinforcement learning algorithm.
First given the point cloud some grasping positions are generated using the
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Figure 19: This scheme shows the main elements of a Reinforcement Learning
algorithm.

geometry’s gripper. These positions are then validated by the trial/error pro-
cess that resides insides the Rl algorithm. If a grasping action is successfully
executed, an human operator validates the result. With this information the
client creates another message:

{ ”op” : ” send new object ” ,
” s e r v i c e ” : ” i n s e r t ” ,
” new object ” :

[
{” new point c loud ” : ”zc5p81H1cO8P+Ksmfdf . . . ” ,
”X” : ” 0 .5 ” , ”Y” : ” 2 .5 ” , ”Z” : ” 1 .5 ” , ” rad” : ” 0 .314 ” } ,
]
}

Finally the server receives the message, calculates the object’s SIFT features
and inserts them on the feature’s folder and on the ontology.

3.3 Reinforcement learning

3.3.1 Introduction

Learning from the interaction with the environment this is the main concept.
Reinforcement Learning (RL) is a branch of Machine Learning where algo-
rithms learns from the interaction with the external ambient, without having
(a priori) an specific theoretical model. In it’s simplest form, Reinforcement
Learning uses a Trial and error approach, meaning that the algorithm
tries an action e receives the result, if this result is not enough, it tries again
and again, until it reaches the objective.

Being a so simple approach Reinforcement learning was among the first
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branch of Machine learning to be studied in the sixties and in the seventies,
but since the results were not so brilliant, scientists decided to move to
another Machine learning’s branch.

A must read introduction to Reinforcement Learning is the Sutton and
Barto’s book ([23]), the online version of the last edition can be downloaded
for free.

The main elements that are always present on a RL algorithm are

• Agent: This element learns from the interaction with the environment.
Uses actions to interact with the environment and has at least one
objective to reach.

• Environment: this element is sometimes seen as the external world to
the robot. Has internal states that changes in function to the agent’s
actions.

There are another important elements conforming an RL algorithm:

• Action: the activity that performs the agent in order to interact with
the environment. It can change the environment’s state.

• State: The set of internal states that the environment can adopt.

• Sensation: the ability that has the agent to sense in witch state the
environment is and taking account of this to select the best action.

• Goal: the objective that the agent has to reach when it interacts with
the environment.

The last 3 elements that are common in a RL algorithms are:

• Policy: the way in witch the agent must act in an specific time. It’s a
map that connects the environment’s states with the agent’s actions.

• Reward signal: the objective that agent has to reach is measured by
this signal, typically a real value. This signal is produced by the inter-
action with the environment. The agent must maximize or minimize
(depending on the problem) this signal over the time.

• Value function: The previous Reward signal offers an evaluation on the
short term, on the long term the Value function tries to optimize the
reward at a global level.
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Figure 19 shows the main elements that conforms a Reinforcement learn-
ing algorithm.

There’s another element that compares only in some families of RL algo-
rithms, the model . This element emulates in some way the environment’s
behavior, it allows to infer the environment’s future behavior and to un-
derstand, for example, the next environment’s state or the next reward if
a certain action is taken. For this reason the model is used to insert some
kind of planning inside the Reinforcement Learning algorithm. Using this
predictions the algorithm can predict which actions to take.

The Reinforcement Learning algorithms can be classified using this cri-
teria. So we have some RL algorithms that uses a model and can perform
some kind of planning are called model-based . Instead we have another
family of Reinforcement learning algorithms that are pure trial and error
and don’t use models or planning, this algorithms are called model-free .

Another classification that can be done is if the Reinforcement learning
algorithm is Evolutive or not. A Reinforcement learning algorithm is evo-
lutive if it doesn’t use a Value function but tries some agents and selects
only the best according to a reward function, this is the Evolution’s concept.
This algorithms are normally use when is difficult, according to the problem’s
nature, identify (for the agent) the Environment’s state or alternately there’s
only one state.

Some Reinforcement learning algorithms are not classified like evolutives
although they use a Value Function. The policy on this algorithms has the
form of numerical parameters so the algorithm search on the policy’s space
the gradient direction in order to maximize or minimize the policy. They
differ from the evolution algorithms because they produce an estimation of
the policy using the single actions results. In this way every single action
counts instead of evaluating only the final result.

This type of Reinforcement learning algorithm is know as policy gradi-
ent.

Figure 20 shows how the different families of reinforcement learning algo-
rithms are correlated. The simplest algorithm (policy gradient) needs more
supervision for example.

It’s important to remark that all Reinforcement Learning algorithms must
perform exploration of the action’s space in order to discover the best ac-
tions to take. The best action are chosen repeatedly, a concept that is know
as exploitation. This is because these actions warrant a good reward. Re-
inforcement Learning algorithms differ of other learning algorithms because
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Figure 20: Different families of Reinforcement Learning algorithms.

they have the so called exploration/exploitation trade/off : if a very
little exploration is performed the algorithm can’t optimize the task at a
global level, but doing a lot of exploration can leave some important actions
that generates a good reward.

Finally, to complete this introduction, we can say that the agent and
environment definitions depends on the problem’s nature that have to be
solved. It’s not true, for example, that the agent is physically the robot and
that the environment is the outside world. Some times the environment is
inside the robot or the agent is an external entity that evaluates the actions
of other robots.

3.3.2 Main Reinforcement Learning algorithms

Reinforcement Learning algorithms can be defined using the Markov Decision
Process (MDP) framework. An MDP is defined as a tuple < S,A, T,R >
where:

• S Is the set of all possible states.

• A Is the set of all possible actions.

• T Is the state’s transition function.
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Figure 21: Comparition table of different Reinforcement Learning algorithms.

• R Is the reward function for every action-state couple.

An MDP satisfies the Markov’s property : the previous state and the last
action are the only values needed in order to describe the present state and the
cumulative reward. This means that the next action to be executed depends
only of the last state. All the main Reinforcement learning algorithms are
based on this property. The most popular algorithms (and also implemented
in the library used in the next section) are:

• Q-Learning this algorithm tries to maximize the reward (the mean
value of it, for all iterations). Uses a Q table where the rows represent
the states and the columns represent the actions. Every value Q(s, a)
of this table has a measure of how good is the action a for the state s.
This measure is calculated using the following equation:

Q(s, a)⇐ (1− α)Q(s, a) + α[r + Υ.maxa′Q(a′, s′)]

Where Q(a′, s′) is the state/action’s value of the next state.

• SARSA is a variant of the Q-Learning algorithm. The law that uses
to calculate the state-action table is

Q(s, a)⇐ (1− α)Q(s, a) + α[r + Υ.Q(a′, s′)]
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the difference with Q-learning is that the right member of the equation
doesn’t uses the max function and is used only the next state-action.
This changes gives the algorithm a fast conversion to the optimal policy
on certain conditions.

• RMAX this a model-based algorithm. It’s very simple as implementa-
tion and allows to find an optimal reward’s value (at least as mean) in
polynomial time. The agent builds an environment’s complete model
(not always accurate) and works on the calculated model’s policy in
order to handle (with an internal mechanism) the exploration vs ex-
ploitation’s dilemma.

• Dyna as other algorithms it builds a similar table to that of the Q-
learning algorithm for the state-action pairs. The difference is that
this algorithm introduces planing. Planing means that Reinforcement
learning is applied to simulated model’s experiences and this experi-
ences are combined with that obtained from the real environment.

• TEXPLORE ([26]) this is another model-based algorithm that learns
an specific environment’s model called Random Forest. The agent ex-
plores all the states that seems promising in order to build the final
policy, ignoring the non promising states. Internally, this algorithm
uses a parallel architecture that allows real time action selection. For
this the algorithm is particularly useful to solve real-time problems like
autonomous vehicle driving.

Figure 21 shows a comparison between the different types of RL algo-
rithms. As we can see the most complete algorithm in that table is the
TEXPLORE algorithm and this is the Reinforcement learning algorithm
that will be used in the next section.

For a proper Reinforcement learning introduction the best source is the
Sutton’s book [23].

3.3.3 Related works - learning and grasping

The grasping pose generation problem of unknown objects is still an open
problem on Robotics. In the last two years were published interesting works
that deal with the grasping problem using learning algorithms.
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The first work is Supersizing Self-supervision: Learning to Grasp from
50K Tries and 700 Robot Hours [21], where deep learning and neural net-
works are used to solve the grasping problem of household objects. The
interesting part of this work is how the grasping action itself is modeled. It
models a grasping action as a planar grasp. A planar grasp is one where the
grasp configuration is along and perpendicular to the workspace. Hence the
grasp configuration lies in 3 dimensions, (X, Y ): position of grasp point on
the surface of table and (θ) angle of grasp.

The second work is [3]. In this work a Reinforcement learning frame-
work is proposed to solve the grasping of objects in a clutter problem. The
interesting part of this work is that the grasping problem is modeled as a
Reinforcement learning problem. It also uses the planar grasp definition.

The last work reviewed is the Antipodal Grasping Identification and LEarn-
ing (AGILE) [6]. This algorithm detects grasps directly from point clouds.
Grasping detection is performed using geometrical features of the point cloud.
The algorithm search for antipodal points inside the point cloud so the calcu-
lated grasping pose is referred to that antipodal point. The only assumption
is that the gripper is a simple two fingers gripper. The algorithm outputs a
lots of antipodal points, so to reduce the candidate’s list a second phase with
a machine learning algorithm (SVM) was implemented. Another interesting
characteristic of this work is that it works with 1 or 2 RGB-D sensors as
input in order to improve the object’s point cloud quality.

The Agile algorithm has been selected to generate the grasping points of
this Thesis’s work. An example of the Agile’s output from a virtual kinect
is showed in Figure 22.

3.3.4 The Reinforcement learning package

The actual reinforcement learning implementation used on this work, starts
with the problem’s modeling analysis. Since the actual robot has not a
simulation (virtual) environment for the grasping task, the number of trials
must be minimized .

Learning is a time consuming task. It’s very important to model the
problem SEEKING to reduce the learning time. Model the problem, in
the Reinforcement Learning’s domain means define state and actions.

To reduce the learning time, it’s better to learn simple relations because
the richest knowledge derives from the cloud-based ontology database where
a crowed of robots load the experiences.
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Figure 22: AGILE ’s algorithm output on RVIZ.

Using the fact that we already have the scene divided into objects. We
use a single object as input to the RL algorithm to create the state.

Figure 23 shows the phases of state’s creation. The single object’s point
cloud arrives from the segmentation algorithm, then using the SIFT algo-
rithm, features are extracted. Since SIFT features vector is very large a
method known as Principal Component Analysis (PCA) is applied
to reduce vector’s dimensions. The resulting method is a 5 component real
vector. This vector will define the state of the single object inside the Rein-
forcement learning algorithm.

The second element that needs the Reinforcement learning algorithm is
the action’s definition. Figure 24 shows how the actions are defined. The
main idea is that the relationship between actions and states must be simple.
The Reinforcement learning engine calls the AGILE grasp algorithm giving
the single object’s point cloud as input. The algorithm returns the list of
possible planar grasps (X, Y, θ) for that object. Instead of assigning a single
action to every (X, Y, θ) of the grasp’s list, the algorithm works a follows:

• Only 4 actions are defined, every action takes a grasping parameter if
only if it’s (θ) value lies in the angle’s range.

• The ranges are from 0 to 90 degrees, from 90 to 180 degrees, from 180
to 270 degrees and from 270 to 0/360 degrees.
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Figure 23: State definition for the grasping task.

Figure 24: Action definition for the grasping task.
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The expected result is that the algorithm will choose the action (the
planar grasp) that has a high probability to be successful.

Once the (X, Y, θ) parameters are selected, the RL engine calls the Act
module that executes the action on the robot.

The feedback if the grasp was done correctly is given by a human operator.
The RL engine waits for the feedback in order to understand if continuing to
grasp the object selecting another action or finishing if the grasping action
ends successfully.

Inside the implemented ROS node, the class that manage Reinforcement
learning’s states and actions is the ModelRlGrasping.cpp that calls the
Reinforcement learning’s environment for the grasping task (another class
inside the ROS’s rl-texplore-ros-pkg package). For the agent element, the
TEXPLORE algorithm is used (the implementation is inside the rl-texplore-
ros-pkg package) .
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Figure 25: The humanoid Nao, detailing the different robot’s parts.

4 The act module

4.1 Hardware - The Aldebaran Nao

The Aldebaran Nao, is a humanoid robot produced by Aldebaran Robotics.
Figure 25 shows the robot along with the different parts that composes it
(images are courtesy of Aldebaran’s site11).

The robot has a very articulated body. Each arm has four degrees of
freedom giving a workspace similar to the human’s arm. Figure 26 shows the
degrees of freedom of the robot’s arm. The joints use modern servo motors
that are controlled by dedicated microcontrollers (DSPic microcontrollers).

11http://doc.aldebaran.com
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Figure 26: Zoom on the right arm joints, detailing the arm’s DOF
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Table 1 describes the main hardware characteristics:

Nao humanoid robot (V5 version)
Height 58 cm
Weight 4.3 kg
Power supply lithium battery providing

48.6 Wh
Autonomy 90 minutes (active use)
Degrees of freedom 25
CPU Intel Atom @ 1.6 GHz
Built-in OS NAOqi 2.0 (Linux-based)
Compatible OS Windows, Mac OS, Linux
Programming languages C++, Python, Java, MAT-

LAB, Urbi, C, .Net
Sensors Two HD cameras, four

microphones, sonar
rangefinder, two infrared
emitters and receivers,
inertial board, nine tactile
sensors, eight pressure
sensors

Connectivity Ethernet, Wi-Fi

Table 1: Nao’s hardware characteristics.

A good Nao hardware’s description for the grasping task is given at [12].

4.2 Software - The Moveit! library

The Act package’s implementation is based on a popular motion planing
library: MoveIt! .

MoveIt! [1] is an opensource (BSD license) library for motion planning li-
brary (fully integrated into ROS) originally developed by the Willow Garage
team and now maintained by the Open Source Robotics Foundation (OSRF).
This library delivers a complete pipeline for motion planning, such pipeline

54



Figure 27: MoveIt! pipeline for motion planning.

55



is showed in Figure 27 (image taken from MoveIt’s site). As we can see from
the pipeline’s image a central part of the library is the move group node.
This node serves as an integrator between the components of the library
in order to provide a set of services and actions. These actions can be ac-
cessed using C++ (move group interface) or python (moveit commander)
programs. The move group node is configured using the parameter server
(upper part of the image).

In this pipeline the ROS param server search for three elements in the
system:

• URDF - the robot description parameter on the ROS param server
returns the URDF for the robot.

• SRDF - the robot description semantic parameter on the ROS param
server returns the SRDF for the robot. The SRDF can be created using
the MoveIt! Setup Assistant.

• MoveIt! configuration - other configuration information specific to
MoveIt! including joint limits, kinematics, motion planning, percep-
tion, etc. The configuration files for these components are automati-
cally generated by the MoveIt! setup assistant and stored in the config
directory of the corresponding MoveIt! config package for the robot.

The library communicates with the robot (real or simulated) using topics
and actions. The topics used by the move group node are:

• joint states topic - using this topic the node retrieves information about
the robot’s joint like position, state, velocity, etc.

• Transform Information topic - needed to retrieve the robot’s pose in
relation with the real world.

• Controller Interface - the node talks to the robot’s controller using the
FollowJointTrajectoryAction ROS action, so this kind of service must
be implemented on robot’s side in order to allow MoveIt! control.

• Planning Scene this monitor serves to maintain an internal world’s rep-
resentation and the robot’s current state like objects attached to robot’s
grippers in order to take account of them when planning the robot’s
movements. The topics that uses the planing scene are CollisionObject,

56



PlanningSceneDiff and AllowedCollisionMatrix. Other topics used by
this planning module are the ones produced by RGB-D sensors like the
kinect cameras.

Another interesting MoveIt!’s characteristic is that it provides a planning
plugin for the Rviz visualization tool which can be used to create planing
requests with the help of a Graphical User Interface.

Using all this information MoveIt! generates a time parametrized trajec-
tory consisting of a set of way points. A waypoint is a joint configuration
defined by a tuple (p, v, a, t). The four tuple’s elements (for n joints) are:

1. p - the joint’s positions, p ∈ <n.

2. v - the joint’s velocities, v ∈ <n.

3. a - the joint’s accelerations, a ∈ <n.

4. t - the above vector must be considered at time t, which is a real
number.

These way points define the trajectory that every joint must follow along
the time.

In order to solve many trajectory generation’s problems, MoveIt! uses
some plugins components. The most important plugins inside the MoveIt!
library are:

• The kinematics plugin used to solve the inverse kinematics problem,
uses the Kinematics and Dynamics Library (KDL)12.

• The planning plugin uses the Open Motion Planning Library13, that
contains many implementations of motion planning algorithms.

4.3 The Act ROS package

This node was implemented from scratch using the MoveIt! library. Figure
28 presents the package’s structure. As for the other implemented modules
there’s a ROS metapackage that contains the other packages.

The main package is action grasping package. It contains the interface
to control a Nao robot. In order to use this package (along with the Nao
robot), the following ROS packages must be installed:

12http://www.orocos.org/kdl
13http://ompl.kavrakilab.org
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Figure 28: The Act package’s structure.

• nao meshes - contains part of the Nao’s description.

• nao robot - the Nao’s URDF description file.

• nao moveit config - this package contains the MoveIt! configuration
for the Nao robot.

• nao dcm robot - complete package stack containing controllers for
Real Nao robots.

The package contains two main elements that can be used by running the
specific launch file.

By launching action grasping nao test.launch a test interface is started.
With this interface users can execute the following actions using the real or
a virtual robot:

• generating random positions of imaginary objects so the Nao tries to
reach these positions.

• generating random positions for placing the imaginary object.

• test the positions that the gripper can reach, the gripper’s workspace.

Figure 29 shows the test program in action, in this image the virtual robot
tries to pick up a cylinder.
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Figure 29: Grasping’s simulation using the implemented Act package.

By launching action grasping nao service.launch file a ROS service node
is started. The service uses the grasping nao service.srv file witch defines the
service’s input and output parameters:

s t r i n g robot name
s t r i n g ac t i on type
s t r i n g arm name
s t r i n g plan name
s t r i n g end ef f name
int32 attemps max in
f l o a t 3 2 p l a n i n g t i m e i n
f l o a t 3 2 t o l e r a n c e m i n i n
f l o a t 3 2 a n g l e r e s o l u t i o n i n
f l o a t 3 2 g ra sp depth in
f l o a t 3 2 d i s t a n c e e r r o r a l l o w e d
geometry msgs /Pose goa l po s e
−−−
uint32 s u c c e s s

The input parameters include some common information to other services
like the robot’s name, the action’s type, and the gripper’s information. Other
specific parameters include the maximum attempts, the maximum planing
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Figure 30: Detail on the interface of the node Act.

time in order to solve the trajectory, the angle’s resolution (tolerance) and
the distance’s tolerance. Another important parameter is the goal pose that
defines the position of the object’s center of mass (CoM ) to be grasped. This
position is defined as the plane’s surface coordinates and the angle of grasp,
(X, Y, θ).

The service gives as output a single Boolean value. This value is true
if the robot (with the problem’s constrains) reach the goal position. So it
doesn’t give a value about the grasping quality or if the object was actually
grasped.

Figure 30 shows a detail of the hand (from the Rviz viewer) when the
service is running.

Finally, in order to launch the test program the following console’s com-
mands must be used (one line is a different console’s tab):

$ ros launch nao move i t con f i g demo . launch
$ ros launch a c t i o n g r a s p i n g a c t i o n g r a s p i n g n a o t e s t . launch

The service program can be launched using the following console’s com-
mands (one line is a different console’s tab):

$ ros launch nao dcm bringup nao dcm H25 bringup remote . launch
$ ros launch a c t i o n g r a s p i n g a c t i o n g r a s p i n g s e r v i c e . launch

If the real Nao is used, then we must follow some steps otherwise the robot
could perform some actions that can damage the robot’s servo motors:
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1. Connect the Nao to the local LAN, by pressing the chest’s button, the
Nao will say the assigned IP.

2. Open a browser’s window and type the Nao’s IP, the robot’s configu-
ration page will be loaded. Inside set the option Alive by default to
OFF. This will disable the robot’s internal node and is better if the
robot receives commands for an external program.

3. Launch the following command on a console (set the Nao’s IP inside
the nao dcm H25 bringup remote.launch file)

$ nao dcm bringup nao dcm H25 bringup remote . launch

4. Turn on the real Nao’s node inside ROS by using this console command

$ ros launch nao bringup n a o f u l l . launch
nao ip :=192 .168 .202 .102
r o s c o r e i p : = 1 2 7 . 0 . 0 . 1 n e t w o r k i n t e r f a c e :=wlan0

5. Turn ON the robot’s servo motors by using the following ROS service

$ r o s s e r v i c e c a l l / nao robot / pose / b o d y s t i f f n e s s / enable

6. Start the robot’s MoveIT! configuration node by running this console
command

$ ros launch nao move i t con f i g move i t p lanner . launch

7. Finally launch the action grasping service or the action grasping inter-
face test program using the commands described before.
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5 Experiments

Experiments aim to provide timing results on Cloud access and ontological
data retrieval and on grasping execution. The Cloud Engine have been inte-
grated inside the Cloud environment of the CORE project [27], which is avail-
able on the CloudLab platform 14 cluster under the project core-robotics.
It consists of one x86 node running Ubuntu 14.04 with ROS Indigo installed.
To test the recognition pipeline a dataset was used to populate the ontology
and the related folders, the Object Segmentation Database (OSD) [4]: a data
set of 726 MB currently containing 111 different objects, all characterized by
a 2D color image and a point cloud. This chapter differentiates the following
experiment’s types:

• Recognition engine timing retrieval - here we are measuring the time
that the object takes to arrive to the server and different times of the
recognition pipeline as described in Figure 17.

• Grasping generation timing - in this experiments the grasp generation
time is measured when using the proposed act module.

The client-side ROS nodes run on a lowend Thinkpad laptop with an
Intel’s Core2Duo and 4GB of RAM.

5.1 Recognition engine

As explained in the Cloud Engine section the recognition pipeline includes
different phases to retrieve similar objects in the RTASK Ontology. A impor-
tant step inside the pipeline is the time that the Engine employs to extract
the features of the object. The features extracted are the SIFT features and
the OpenCV’s implementation of the SIFT algorithm is used.

Table 2 shows the time that the Cloud engine employs to extract the
feature’s objects. Using the entire dataset ([4]) the server employs only 45
seconds to extract and write on a binary file the features of 111 objects. But
in this case the most interesting time is the second, for one object it employs
only .037 seconds. This is the case we have when a new retrieve query arrives
from a robot.

Table 3 shows the time that the Cloud engine employs to match the
entire dataset image’s pairs setting the number of inliers. Using 300 inliers

14http://cloudlab.us
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Single object and multiple object’s features extraction
1 Thread 2 Thread 3 Thread 4 Thread

111 images 45.1554 s 21.8381 s 15.331 s 12.7545 s
1 image 0.379014 s 0.408295 s 0.396394 s 0.387422 s

Table 2: Feature extraction time for a single and a group of objects.

Features Matching
Time Matches on 6105

possible image
pairs

15 inliers 4.82 s 1592
300 inliers 4.48500 s 18

Table 3: Feature matching time for a group of objects.

Round response and request time
Object Request and response

time
object 1 5.531 s
object 2 4.995 s
object 3 4.350 s
object 4 6.014 s

Table 4: Round trip time for object retrieval.

the match is very accurate and is only 0.003 seconds lower than using a much
less accurate matching of 15 inliers.

The last table 4 shows the round trip time employed by the entire recog-
nition pipeline to query (for an object) and response to the robot. It includes
the transmissions times, the queries times and the object matching times.
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Grasp generation and execution time
Object Generation and execu-

tion time
object 1 - pen 10.501 s
object 2 - ball 15.285 s
object 3 - bottle 18.235 s
object 4 - cylin-
der

12.101 s

Table 5: Grasp action, execution time for a set of objects.

5.2 Grasping experiments

Table 5 shows the time that the Act module employs to generate the solve and
execute the grasp position having as input a planar grasp position (X, Y, θ).
This trials were executed on the virtual and on the real Nao robot. Figure
31 shows the real Nao preparing trying to grasp a pen.
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Figure 31: Real Nao robot before performing the grasping task.

6 Conclusions and further work

This Thesis presented a Framework able to increase robots knowledge and
capabilities on objects manipulation. The Framework is composed of a
Cloud-based Engine, an OWL Ontology and a Reinforcement Learning en-
gine. From the study of human actions when handling objects, the Ontology
formulates a common vocabulary that encodes the robotics manipulation
domain. The Engine, instead, was developed in order to transfer the com-
putation on the Cloud: it off-loads robot CPUs and speeds up the robots
learning phase. Given an object in the scene, the Engine retrieves its visual
features and accesses the Ontology in order to extract the corresponding
manipulation action. If no information is stored, a Reinforcement Learning
technique is used to generate the gripper manipulation poses that will be
stored in the Ontology.

The Reinforcement learning approach offers an alternative to popular
methods like deep learning. The method has two main vantages:

• there’s no need to construct a huge training set, we are working on the
concept of growing dataset, the robot starts acting from the beginning
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without the need of a training phase.

• learning is always present, every input changes the robot’s internal
world representation. The long-term model of the world is stored on
the ontology database and shared with others robots.

An extension of the Thesis’s work could involve:

• Using a bigger robot for the grasping task like the Universal Robotics’s
UR-10 .

• Using a different segmentation method, capable of working with smaller
point clouds. So the manipulation task can be tested on small objects.

• Using the entire pipeline on a group of robots in order to demonstrate
the scalability of the Cloud-based engine.

• Performing large-scale experiments using the implemented Reinforce-
ment learning algorithm, to understand how fast the robot learns to
grasp unknown objects.

Finally the complete pipeline source’s code will be released inside the
IAS-LAB repository15 under the project’s name cloud based rl .

15https://github.com/iaslab-unipd
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Informàtica Industrial (IRI), May 2016.

[20] R. d’Andrea O. Zweigle, R. van de Molengraft and K. Haussermann.
Roboearth: connecting robots worldwide. Proceedings of the 2nd Inter-
national Conference on Interaction Sciences: Information Technology,
Culture and Human. ACM, pp. 184–191, 2009.

[21] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp
from 50k tries and 700 robot hours. CoRR, abs/1509.06825, 2015.

[22] N. Blodow R. B. Rusu and M. Beetz. Fast point feature histograms
(fpfh) for 3d registration. Robotics and Automation, (ICRA). IEEE
International Conference on,pages 3212 –3217, 2009.

69



[23] A. Barto R. Sutton. Reinforcement learning: An introduction. Free
online version from https://webdocs.cs.ualberta.ca/ sutton/book/the-
book.html, 2015.

[24] Craig I. Schlenoff. An Overview of the IEEE Ontology for Robotics and
Automation (ORA) Standardization Effort. In Standardized Knowledge
Representation and Ontologies for Robotics and Automation, Workshop
on the 18th, pages 1–2, Chicago, Illinois, USA, 2014.

[25] Chris Sweeney. Theia multiview geometry library: Tutorial & reference.
http://theia-sfm.org.

[26] P. Stone T. Hester. The open-source texplore code release for reinforce-
ment learning on robots. RoboCup-2013 Robot Soccer World Cup XVI
Springer Verlag, 2013.

[27] J. Spruth W.J. Beksi and N. Papanikolopoulos. Core: A cloud-based
object recognition engine for robotics. IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2015.

70

http://theia-sfm.org

	Introduction
	Objectives
	Thesis's structure
	Introduction to the sense-model-act framework
	Software - ROS Middleware
	Software - the Gazebo simulator
	Modifying the Nao's URDF model


	The sense module
	Software - The Point Cloud Library
	Software - The OpenCV library
	Hardware - The RGB-D sensor
	Tabletop object detection problem
	Point cloud Segmentation
	The supervoxel concept
	Segmentation algorithm
	LCCP algorithm

	The sense module package implementation
	The image's descriptors
	HOG
	SIFT


	The model module
	The model package
	Cloud Robotics
	Related work and state-of-art developments
	Introduction to ontologies
	The proposed RTASK ontology
	The implemented Cloud-based Engine

	Reinforcement learning
	Introduction
	Main Reinforcement Learning algorithms
	Related works - learning and grasping
	The Reinforcement learning package


	The act module
	Hardware - The Aldebaran Nao
	Software - The Moveit! library
	The Act ROS package

	Experiments
	Recognition engine
	Grasping experiments

	Conclusions and further work
	Ringraziamenti

