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Abstract

Air pollution is a crucial environmental parameter related to an alteration in the chemical composition
of air. High levels of air pollutants can be dangerous for health and damage the environment, biological
resources and ecosystems. Measuring such concentration is an important task, especially in regions
where, for morphological reasons, pollutants tend to persist for more time. The Po Valley is a highly
industrialized and densely populated region surrounded by mountains that do not favour enough ven-
tilation. Here the air pollutants concentrations can reach the legal limits set by the European Union.
In Veneto, ARPAV (Regional Environmental Protection Agency Veneto) is the agency responsible for
air quality control. They monitor it using a network of stations distributed over the Regional territory
which measure the concentration of the principal pollutants (PM10, PM2.5, NOx, O3). A determin-
istic eulerian Chemical Transport Model (CTM) is also used to have better estimations of the whole
territory (even far from stations) and predictions of the concentrations for the upcoming days. The
goal of this work is to apply and evaluate some “data fusion” methods, statistical-based, commonly
used to merge model estimations and station measurements; these techniques allow to improve the
estimate of pollutants concentration in the model domain and are thus of paramount importance for
ARPAV.

After an introduction to the context where the problem arises, the work will focus on the data and
statistics used for the analysis. Firstly, an overview of the air pollutant concentrations data (PM10,
NOx and O3) for the Veneto region is presented, describing how the data are gathered and orga-
nized. Afterwards, the deterministic model is also briefly described, with a particular interest in the
verification with respect to the measurements. The main part of the work is an in-depth analysis of
the interpolation methods used for spatial prediction to correct the model predictions using station
measurements. Finally, the results of the analysis are discussed.
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Chapter 1

Introduction

This work started following my training period with Dr. Alberto Dalla Fontana of ARPAV-UQA
(Agenzia Regionale per la Protezione e Prevenzione Ambientale del Veneto - Unità Operativa Qualità
dell’Aria) in the spring of 2022. The tasks of the unit relevant to this work are ( [1]):

� the implementation and maintenance of air quality diagnostic and prognostic modelling tools;

� usage of dispersion models at different spatial scales;

� management the regional inventory of atmospheric emissions;

� management of the air quality stations network.

Air quality is a crucial environmental theme for the European Union; It is highly regulated from the
legal point of view with specific fixed limits, assessment methods and goals. Multiple techniques were
developed to measure the concentration of air pollutants and deterministic models are also exploited
to forecast air quality for upcoming days.

Air pollution is the contamination of air due to an alteration in the composition. Some substances
can modify the quality of the air, resulting in a potential threat to humans and ecosystems. The
legal directive for what concerns air quality in Italy is the Decreto Legislativo n. 155/2010 [2] that
implements the European Directive 2008/50/CE [3]. The Ambient Air Quality Directives by the Eu-
ropean Union set air quality standards for the most important pollutants and gives also a series of
indications for the assessment of air quality. They define common methods to monitor the concen-
tration of such pollutants and rules to inform the public. They also require each Country to prepare
an air quality plan to address the action to ensure compliance with AQ (air quality) Limits. Air
quality is an important issue in the Po Valley. The presence of the Alps and the Appennini causes
the pollutants to be trapped inside the region instead of dispersing. This phenomenon periodically
leads to the exceedances of AQ limits (in particular PM10) and can force local authorities to take
measures to reduce emissions. The restrictions target traffic, forbidding the circulation of the most
polluting vehicles, domestic heating and agricultural practices. Therefore, reliable measurements and
predictions of pollutant concentration are of paramount importance.

ARPAV (Agenzia Regionale Protezione e Prevenzione Ambientale del Veneto) is the Veneto regional
agency, established in 1997, whose competencies are the protection of the environment and prevention
of environmental pollution. Like the other ARPAs, it operates through controlling and monitoring
activities aimed to ensure compliance with environmental limits. Objects of surveillance are :

� Water quality

� Physical agents (radiation, noise pollution)

� Air quality

� Soil
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1.1. A BRIEF INTRODUCTION TO AIR POLLUTANTS CHAPTER 1. INTRODUCTION

� Weather (weather forecasts and ideological risk)

� Waste

� Sky (light pollution)

Air is routinely monitored by a network of air quality stations distributed in the Regional territory that
measure the concentration of the main pollutants. Aside from the stationary stations, measurement
campaigns with mobile labs are conducted. Furthermore, many ARPAs have implemented a chemical
transport model to improve pollutant estimations in the whole territory (even far from stations) and
predict the concentration for the upcoming days. Another task, that ARPAs are in charge of is
the emissions inventory: from direct measurements of emissions and through emissions estimation
techniques a detailed inventory is created and periodically updated. In winter an air pollution bulletin
(“Bollettino PM10”), based on model predictions and measurements, is also regularly issued to the
public and local authorities [4].

1.1 A brief introduction to air pollutants

Many pollutants can be present in the air and only a few of them are regulated by law. They can
be divided into two categories: particulate matter and gaseous pollutants. Here we will present an
introduction to the major pollutants that are considered in this work.

Particulate Matter

Particulate matter (PM) is composed of heterogeneous substances, a mixture of solid particles and
droplets. There exist two origins of particulate matter: some particles are emitted directly from pol-
luting sources such as biomass combustion for home heating, traffic and agricultural activities, and
others are produced in the atmosphere as a result of chemical reactions. Given these sources of emis-
sions and the frequent stagnant meteorological conditions, winter is the period when the concentration
of PM is higher.

Particles with a diameter smaller than 10 µm are classified as PM10 and can be transported by winds
and remain in the atmosphere for some days and move for hundreds of kilometres. Particles with a
diameter smaller than 2.5 µm are classified as PM2.5.

For what concerns the health risk of particulate matter, the problem is due to the inhalable particles
that settle inside the respiratory organs causing inflammations and neoplasms. ( [1])

The legal limits for PM10 are set for both annual and daily averages. The yearly average cannot
exceed 40 µg/m3 and the daily concentration must not exceed 50 µg/m3 for more than 35 days in a
year. For PM2.5, a target value of 25 µg/m3 is set for the yearly mean. ( [2], [5], [6]) In this work, we
will concentrate only on PM10 measurements.

Nitric Dioxide

Nitric oxides are common gaseous pollutants in the atmosphere and can be found in two major
components: the monoxide (NO) and the dioxide (NO2). Emissions of nitric oxides are composed
mainly of monoxide but, in the atmosphere, most of NO is oxidized into dioxide. For this reason in
this work, only the dioxide will be taken into consideration. This pollutant is concentrated mainly near
streets and other areas of traffic. But it is produced also as a result of home heating, thermoelectric
power stations and other combustion processes.

Like PM10, nitric dioxide reaches high levels during winter as well, but it has an important role also
during summer when, due to intense UV radiation, NO2 takes part in the formation of ozone. Nitric
dioxide is a toxic gas that can produce inflammation and lung issues. It is particularly dangerous for
children and people with respiratory problems.

8
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The legal limits to the concentration of NO2 are established for annual and hourly averages. The
yearly average should not overcome 40 µg/m3 while the hourly average must not exceed 200 µg/m3

for more than 18 times in a year. ( [2], [7], [6])

Ozone

Ozone is a gaseous pollutant that is not directly emitted by human activities. Its concentration
is correlated to the presence of heat and sun radiation, with peaks during the summer days. It
forms in the atmosphere through chemical reactions that involve other pollutants such as NOx and
hydrocarbons. The ozone can, as well, damage the respiratory organs causing inflammations.

Also for Ozone, the law sets specific thresholds to be respected for hourly averages. There exists an
information threshold set to 180µg/m3 and an alarm threshold of 240µg/m3

Pollutant Limits Source Critic Period

PM10

Yearly average: 40 µg/m3

Daily concentration: 50 µg/m3

for more than 35 days in a year

Biomass combustion
Domestic heating

Traffic
Agriculture

Winter

NO2

Yearly average: 40µg/m3

Hourly concentration: 200µg/m3

for more than 18 times in a year

Combustion
Domestic heating

Traffic
Thermoelectric centrals

Winter

O3 Hourly average: 240µg/m3 Photochemical reactions
in atmosphere

Summer

Table 1.1: Summarising table of pollutants

1.2 Motivation

The goal of this work is to improve the estimations of pollutant concentration in the sites where
measurements are not available. Air quality measurements rely on the network of stations that will be
described more in detail in Sec. 2.1. Those stations provide accurate results for their specific location,
but unfortunately, they are limited in number and, although they are located in strategic locations,
near cities and well distributed, they cannot cover the entire territory. The deterministic Eulerian
Chemical Transport Model (CTM) (Sec. 2.2) used by ARPAV can provide reliable estimations even
far from stations, however, due to intrinsic limitations in the model formulation and inaccuracies in its
inputs, the computed concentrations are inevitably different from the measurements. Implementing
and testing a method that improves model output using measurements is a valuable procedure to
get more reliable estimations in the whole territory. As mentioned before, the Po Valley is a critical
area concerning air pollution, therefore any improvement in pollutant concentration estimation is very
important not only from the scientific point of view but also because it has a large impact on people’s
quality of life and health.
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Chapter 2

Data Collection

The analysis that will be presented in this work uses data collected by ARPAV. More specifically, we
will consider data retrieved during the most polluted period, depending on the specific pollutant. For
what concerns particulate matter (PM10) and nitric dioxide, the time interval goes from December
2021 to February 2022, during the winter months. On the contrary, for the ozone, the summer months
are considered, from June 2021 to August 2021. As mentioned above two kinds of data are used for
the analysis: measurements and model predictions.

2.1 Stations

The network of stations in the territory of Veneto has been built and adapted accordingly to the
directives of the Italian Decreto Legislativo 155/2010 ( [2]). At present, it counts 43 stations. In
this work, we are going to consider only the background stations, which are defined in the Decreto
as “stations located in such a way that the level of pollution is not influenced by a specific source
(such as traffic, industries or home heating), but by an integrated combination of all sources near the
station”. There are 22 background stations and their features and locations are shown in Tab. 2.1
and Fig. 2.1. Note that the stations in Bassano (VI), Asiago (VI) and S.Giustina (PD) do not have
an automatic instrument for PM10; on the other hand, from the station in Monselice (PD) only data
relative to particulate matter are retrieved.

ISTAT x [km] y [km] Stazione Cod EOI h [msl]
025006 748.507 5114.854 BL belluno IT1594A 378
025021 724.939 5101.629 BL feltre IT1619A 356
025038 759.503 5117.598 BL pieve IT1790A 690
028031 707.222 5018.483 PD p colli IT1870A 12
028080 726.438 5053.879 PD sgiust IT2071A 24
028037 709.304 5011.618 PD este IT1871A 10
029004 700.881 4997.683 RO badia IT2072A 0
029001 741.051 4992.600 RO adria IT1213A 0
029041 719.758 4991.044 RO borsea IT1214A 0
026021 756.582 5087.116 TV conegliano IT1328A 61
026037 772.611 5081.918 TV mansue IT1596A 8
026086 752.186 5062.675 TV lancieri IT1590A 15
027033 779.883 5059.112 VE san dona IT1222A 0
027042 754.790 5043.629 VE bissuola IT0963A 0
024009 699.424 5080.452 VI asiago IT1791A 1366
024012 712.758 5070.942 VI bassano IT1065A 114
024100 684.276 5064.949 VI schio IT0663A 190
024116 698.127 5048.248 VI qitalia IT1177A 36
023011 658.958 5050.610 VR bcnuova IT1848A 814
023044 681.524 5005.835 VR legnago IT1535A 15
023091 658.792 5033.059 VR giarol IT1343A 48
028060 722.451 5028.089 PD mandria IT1453A 9
028055 715.810 5013.200 PD Monselice 99910 10

Table 2.1: Stations data: for each station, we report the unique ISTAT code and unique European EOI code, coordinates
and altitude. Note that coordinates are given following the UTM system (zone 32N, EPSG:32632)
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2.1. STATIONS CHAPTER 2. DATA COLLECTION

Figure 2.1: Background stations in the Veneto region territory

Measurement methods

For each pollutant, there are rules describing the methods to measure the concentration in the atmo-
sphere ( [8], [9], [10]). The measurement instruments that are located inside the stations are certified
following these rules. In the analysis, only measurements from automatic instruments will be con-
sidered. These instruments perform autonomously the measures without the necessity of chemical
analysis in a laboratory.

At the station, each pollutant is measured using a different instrument whose working principle makes
use of the chemical and physical properties of the target substance. A simple overview of the operating
principles of the instruments for each relevant pollutant is reported below ( [8], [9], [10], [1]). Note
each instrument measures on an hourly basis.

Particulate Matter

The principle behind the measurement of particulate matter concentration is the absorption of β-
rays by samples of particulate (Beta Rays Attenuation). The instruments are provided by an air
pump whose geometry allows the filtering of specific particulate matter by size(such as PM10). The
measurement process is carried on in two steps:

� At first, a known volume of air is sampled by the pump. Particulate contained in the air settles
upon a tape that is used as a filter.

12
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� After the sampling process the tape is moved and the sample of particulate matter deposited
on it is exposed to a radioactive source of β-rays. A Geiger counter set on the other side of
the tape measures the intensity of radiation coming from the source with the presence of PM
collected on the tape along the path. This measure is compared to the baseline beta count. The
difference is proportional to the mass of the particulate matter on the sample.

Nitric Dioxide

Measurement of the nitric dioxide concentration is based on a chemiluminescence reaction between
O3 and NO:

O3 +NO → NO∗
2 +O2

NO∗
2 → NO2 + hν (≈ 700nm)

A known volume of air is sampled and, in the measurement chamber, is mixed with a separate ozone
flux. The ozone and the NO react producing an excited state of NO2 that quickly returns to the
fundamental state emitting UV radiation. From the intensity of the radiation, the mass of NO is
retrieved. To obtain the mass of NO2, after the first measure, the same air is passed over a NOx-
coverter that reduces all the NOx to NO. Finally, the reduced air reacts again with ozone to find the
total concentration of NOx after reduction. NO2 concentration is retrieved by a simple subtraction
between the total NOx get in the second measurement and the value of NO found in the first one.

Ozone

This measure uses specific absorption of UV radiation at λ = 254 nm by the ozone. Inside the
measurement chamber, a known volume of sampled air is exposed to a UV lamp that emits at the
appropriate frequency. Ozone in the air causes part of the radiation to be absorbed, resulting in an
intensity reduction. The result of the measurement is compared to a similar one where the air sampled
is previously filtered removing ozone. Using the Lambert-Beer law [11] and the difference between the
two measures, the concentration of ozone in the air is retrieved.

2.2 Deterministic model

Figure 2.2: Scheme of the deterministic model used by
ARPAV

The deterministic model implemented by ARPAV
for Veneto can provide an estimate of pollutant
concentrations far from the stations and, coupled
with a meteorological prognostic model produces
forecasts for the upcoming days. Specifically, the
system provides forecasts of up to three days. The
forecast system is based on the CAMx eulerian
photochemical model (Comprehensive Air Quality
Model with Extensions) 1 [12]. The domain of the
model is a grid of 64×59 cells and 11 vertical levels,
from 20 to 6000 meters above ground level (Note
that the cells are terrain-following, meaning that
the first vertical layer is at the altitude of the ter-
rain. For example, the first cell above the Adriatic
Sea is at 20msl while cells above dolomites can be
even at 2000msl). The cell size is 4 km, a trade-
off between the need to have a good resolution and
to avoid computation complexity that arises with
high resolution. Geographically speaking the area

1ARPAV uses CAMx version 6.5
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covered is the North-East of Italy (Fig. 2.3) including the whole Veneto and part of the nearby regions:
Lombardy, Emilia-Romagna, Trentino-Alto Adige and Friuli Venezia Giulia ( [13]).

Figure 2.3: CAMx model domain

CAMx requires input information about meteorological conditions, emissions, and boundary condi-
tions. A peculiarity of CAMx is the fact that its computation takes into consideration not only the
diffusive processes of pollutants but also the chemical reactions that happen in the atmosphere. As
mentioned in Sec. 1.1, some pollutants are produced partially or entirely through reactions and cannot
be accounted for in the emission inventory. In Fig. 2.2 the specific structure of the modelling system
used by ARPAV is illustrated.

Model Inputs

Emissions are retrieved from the regional inventory INEMAR (Air EMission INventory, [14]). This
is an inventory used by all the regions of Northern Italy. It computes the emission of different air
pollutants on a municipal basis. In order to match the discrete structure of CAMx domain emission
data are also gridded and then assigned to the model levels.

Meteorological data are given by the COSMO-ITA model [15]. It is a non-hydrostatic, limited-area
atmospheric model. COSMO outputs, up to three days, are recovered by the national meteorological
service.

Boundary conditions data are retrieved by PREV’AIR [16], the French national platform for air quality.
A conversion table allows casting PREV’AIR species to CAMx species.

14
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2.3 Datasets

Data from stations and the deterministic model are collected in datasets. For each station, the dataset
reports, for each day, the value of concentration measured and also the value of the model in the specific
cell where the station lies (see Tab. 2.2 for an example). Note that, as seen above (Sec. 2.1) the raw
data gathered in the stations contain hourly measurements, however for this work, we are interested
in daily values. In particular, we are interested in the daily average for PM10 and NO2 and in the
daily maximum value for the O3.

day month year measurement [µg/m3] model [µg/m3]
01 12 2021 39 60.0785
02 12 2021 31 43.2696
03 12 2021 16 38.4391
04 12 2021 26 42.2938
05 12 2021 26 37.3036
06 12 2021 26 36.6818
07 12 2021 43 48.8833
08 12 2021 24 23.3208
09 12 2021 16 24.7045
10 12 2021 29 40.2529
11 12 2021 38 40.4639
12 12 2021 63 36.0657
13 12 2021 61 63.2390
14 12 2021 77 73.4263
15 12 2021 60 62.0124

Table 2.2: Example of daily averages of PM10 relative to the station in Mandria(PD), for each row the date, concentration
measurements and model estimations are reported

Concerning model estimations, hourly data from CAMx are post-processed, averaging on a daily basis
for PM10 and NO2 or taking the maximum value for O3. The final results are collections of data, one
for each cell of the model. For this analysis, only the lowest altitude layer, 10 m above the ground, is
taken into consideration.

Note on uncertainties

Concerning precision, the instruments used by ARPAV follow the rules specified in the legal directive
( [3]) that set the error target for each pollutant. For PM10 the relative uncertainty (expressed at a
95% confidence level) must not be greater than 25%, while for NO2 and O3, it cannot exceed 15%.
These are relative uncertainties computed at the limit values, which means that values near the legal
threshold are affected by this error, while for small values of concentrations, the error is not well
quantified (but, of course, it is less important since we are well under the threshold).

On the other hand, for the deterministic model output, the error value is not estimated. When CAMx
outputs are reported (2.2) we are going to report all the digits.
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Chapter 3

Methods

3.1 Introduction to geostatistics and spatial data

Geostatistics is the branch of statistics that deals with spatiotemporal data structures. The “geo”
prefix refers to the fact that geostatistics originally meant studying models and data relative to the
earth, with the first application in the geological context. However, the methods and approaches used
are universal and designed to tackle any statistical problem relative to processes with continuous spatial
index [17]. In many scientific fields, collected data are spatial or time-dependent; geostatistical datasets
are collections of samples of some variables (z1, z2, ..., zN ) and for each sample, the spatiotemporal
information is also given (x1, x2, t). Note that in this only the spatial structure of datasets is directly
exploited for spatial prediction.

The next definitions and approaches are taken from [18]. Let us now consider only one variable z.
This variable is sampled at n locations inside a region (D):

z(sα), with α = 1, ..., n (3.1)

Note that s encodes the coordinates information.

Spatial data are collections of values at specific locations of a variable z(s), which is a function over
the whole spatial continuum domain and is called regionalized variable.

z(s) for all s ∈ D (3.2)

To take into account randomness and statistical uncertainties sampled values z(sα) can be considered
random draws from random variables Z(sα), which can differ depending on the specific location Sα.
To the same extent the regionalized variable {z(s), s ∈ D} can be viewed as one draw from an infinite
set of random variables, called random function:

{Z(s), s ∈ D} (3.3)

To apply the methods in this section to the random function, some assumptions have to be made( [17]).
Firstly, concerning the first moment:

E(Z(s)) = µ for all s ∈ D (3.4)

Another important assumption to use the more advanced methods of spatial interpolation is:

Cov(Z(s1)− Z(s2)) = C(s1 − s2) (3.5)

17
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where the function C is called covariogram. A random function that satisfies these two assumptions
is called second-order stationary.

This approach results to be very useful for solving a wide variety of problems with geostatistical
methods as the object of study and modelling is the random function itself [17].

3.2 Interpolation methods

Spatial prediction is one of the most common problems in geostatistics, related originally to the predic-
tion of ores concentration for mining. Many different methods were developed and used. Concerning
Air Quality, the European Union gives some guidelines for how to make spatial predictions using both
data and models distinguishing eight degrees which vary from spatial prediction using raw data to the
simple usage of the unvalidated model ( [19], [20]).

Figure 3.1: Degrees of spatial prediction methods from [20]

For this work, we are going to exploit the so-called interpolation methods using both data and model
as explained in the previous chapters ( [21]). The approach we are going to use is the interpolation of
residual fields. Since at station locations, both the measurements and model estimations are known,
one can compute the residuals and interpolate this difference field in the whole domain of the model.

R(si) = M(si)− S(si) (3.6)

where we refer with R to the residuals, with S to station measurements, with M to model values while
si is a specific station location (xi, yi).

A useful trick that is used ( [19,20],) is to calibrate the model values before interpolation. The simplest
way to do so is to use linear regression between measures and model estimations:

S(s) = a+ b ·M(s) (3.7)

where a and b are the regression parameters. Fitting the linear regression model and finding the best
parameters (â, b̂), the calibrated model is computed

M ′(s) = â+ b̂ ·M(s)

The calibrated model is then used to compute the residuals like in Eq.3.6.

18
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Note that the calibration procedure can be applied using other variables are predictors. For the specific
case of this work, since we are dealing with a territory with a complex orography, also the altitude
(h(s)) is used ( [22]).

S(s) = a+ b ·M(s) + c · h(s) (3.8)

One of the assumptions of the linear regression model is the fact that the variance of the target
variable is constant and residuals are normally distributed. Measurement data do not always satisfy
this condition. The usage of Box-Cox transformation [23] on the data before the linear regression is,
then tested. This method is a power transformation that is commonly used to tackle problems such
as nonnormality and nonconstant variance of data. It consists of a non-linear transformation applied
to the data, intending to make the data normal distribution-like:

y(λ) =

{︄
yλ−1
λ λ ̸= 0

log(y) λ = 0
(3.9)

In this case, where the linear model used is y = βX we want the conditional probability p(y(λ)|βX)
to be a Gaussian distribution. BoxCox parameter λ to use depends on the data and is usually chosen
through a Maximum Likelihood approach [23]. For the linear model y(λ) = βX, the normal likelihood
is:

1

(2π)
n
2 σn

exp

{︃
−(y(λ) − βX)T (y(λ) − βX)

2σ2

}︃ n∏︂
i=1

⃓⃓⃓⃓
dy(λ)

dy

⃓⃓⃓⃓
(3.10)

Taking the log-likelihood the function to be maximized is:

L(λ) = (λ− 1)
∑︂
i

log(yi)−
n

2
log

(︃
y(λ)T (I−X(XTX)−1XT )y(λ)

n

)︃
(3.11)

After applying linear regression and spatial interpolation methods, the predicted target variable is
transformed back, using the inverse transformation.

Although the Box-Cox transformation is used in literature for air quality data [22,24], its application
is somewhat controversial. In fact, after the transformation variables are less interpretable and while
the λ parameters found is the one that maximizes the Likelihood, there is no guarantee that the final
distribution is Normal. For this work, Box-Cox transformation on measurement data before regression
is tested and its results are compared to the basic linear model outputs.

3.2.1 Geometric Methods

These are interpolation methods that take into consideration only the distance among points to com-
pute the value on the unknown locations. In this work, we are going to neglect the simplest possible
approaches such as Thiessen Polygon (also called Nearest Neighbour) or Bilinear interpolation (also
called Triangulation) [20].

Inverse distance weighting

The simplest method tackled is Inverse Distance Weighting (IDW)( [19, 20]), which is the method
currently implemented by ARPAV to correct model data with station measurements. The value of the
residual field at the location needed s0 is computed as a linear combination of values measured from
all points. Each value is weighted using considering the distance between the unknown point location
and the others, see Eq. 3.12.
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R(s0) =

∑︁n
i=1

R(si)

dβ0i∑︁n
i=1

1

dβ0i

(3.12)

Usually, the β exponent is equal to 2, as we are in a 2D framework.

Radial Basis Function

Radial basis functions were historically introduced for exact function interpolation ( [25]). The target
smooth function to find is expressed as a linear combination of radial basis functions centred in the
data points (Eq. 3.13)( [20, 25, 26]). As the IDW method seen above is an exact method: the target
value at the data points is the one measured. Radial basis functions do not depend on the specific
points but only on the distances among them so no specific information about the spatial structure of
data is required.

R(s0) =
n∑︂

i=1

wiϕ(d0i) (3.13)

where d0i is the euclidean distance between the test point s0 and the point si.

Given the values of R(si), it is easy to compute the unknown weight wi. Weights are such that the
next equation holds:

⎡⎢⎢⎢⎣
ϕ11 ϕ12 · · · ϕ1n

ϕ21 ϕ22 · · · ϕ2n
...

...
. . .

...
ϕn1 ϕn2 · · · ϕnn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
w1

w2
...
wn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
R(s1)
R(s2)

...
R(sn)

⎤⎥⎥⎥⎦
where ϕi,j = ϕ(di,j). So, they can be computed simply by inverting the matrix:

w = Φ−1R

Learned weights can now be used to compute the interpolated values at a new location s0.

Common Radial Basis Functions used are:

� Gaussian: ϕ(r) = e−(εr)2

� Inverse multiquadric: ϕ(r) = 1√
1+(εr)2

� Inverse quadratic: ϕ(r) = 1
1+(εr)2

Where the ε parameter is a shape parameter that scales the input of RBF. For the case of spatial
interpolation, a good guess for ε is the order of magnitude of the mean distance among all the points.

Depending on the RBF used Eq, 3.13 can be modified including a polynomial term ( [27]):

R(s0) =

n∑︂
i=1

wiϕ(d0i) +

m∑︂
i=1

γipi(s0) (3.14)

where γi are parameters and pi are monomials that span the polynomial (which is computed in s0).
The value m is the order of the polynomial. This can be done to ensure the system is uniquely solvable
and improve accuracy.
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This variation is the method implemented in SciPy ( [28]), which is the Python library used for RBF
interpolation.

3.2.2 Kriging

These interpolation methods do use the correlation structure of data to make predictions. Kriging is
the most important and diffuse geostatistical method for interpolation ( [17,18,29]). It was formalized
by the French statistician Matheron and named after Danie G. Krige who applies the method to ore
mining in South Africa.

There exist many variants of kriging; here, Ordinary Kriging (OK) is explained as it is the simplest
variant and the one used in this work.

Ordinary Kriging is a spatial prediction model that lives under two assumptions:

� The regionalized random function studied has an unknown mean and only the noise term depends
on the spatial location.

Z(s) = µ+ δ(s) (3.15)

� The random variable at an unknown location depends linearly on the random variables at points
si.

Z(s0) =
∑︂
i

λi(s0)Z(si)
∑︂
i

λi = 1 (3.16)

So, the model idea is similar to the IDW model seen previously: the predicted value of the target
function at a given point is given by a linear combination of the known values of the function. However,
in this case, the coefficients λi(s0) are computed using the covariance structure of data.

To solve the problem and find the λi the goal is to minimize Eq. 3.17 with respect to λ1, λ2, ..., λn,m,
where m is a Lagrange multiplier for the condition of the sum of λi seen in Eq. 3.16

E
(︃
Z(s0)−

∑︂
i

λiZ(si)

)︃2

− 2m

(︃∑︂
i

λi − 1

)︃
(3.17)

For the first term, using the fact that
∑︁

i λi = 1:

(︃
Z(s0)−

∑︂
i

λiZ(si)

)︃2

= −
∑︂
i

∑︂
j

λiλj(Z(si)− Z(sj))
2/2

+ 2
∑︂
i

λi(Z(s0)− Z(si))
2/2

(3.18)

At this point, one can introduce the definition of variogram 2γ as:

2γ(d) = V ar(Z(s+ d)− Z(s)) (3.19)

The variogram is a function that evaluates the degree of spatial dependence and is computed using
the variance of the random field at two different points.

Thus, using Eq. 3.18 and Eq. 3.19, Eq. 3.17 can be written as:

−
∑︂
i

∑︂
j

λiλjγ(si − sj) + 2
∑︂
i

λiγ(s0 − si)− 2m

(︃∑︂
i

λi − 1

)︃
(3.20)
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The solution to the minimization can be found by differentiating Eq. 3.20 with respect to the param-
eters λi and m and equating to 0. The final result [17] obtained is:

λ = Γ−1γ (3.21)

where

λ = (λ1, λ2, ..., λn,m)T (3.22)

γ = (γ(s0 − s1), ..., γ(s0 − sn), 1)
T (3.23)

Γ =

⎛⎜⎜⎜⎝
γ(s1, s1) · · · γ(s1, sn) 1

...
. . .

...
...

γ(sn, s1) · · · γ(sn, sn) 1
1 · · · 1 0

⎞⎟⎟⎟⎠ (3.24)

In this work, we use kriging as implemented in the Python package pykrige ( [30])

Regression Kriging

Ordinary Kriging (OK) assume that the random function has constant mean µ, this is a suitable
guess for the residuals. Nevertheless, in the previous chapter, we mentioned the possibility of using
linear regression before the residual interpolation. In the context of Kriging this procedure is called
Regression Kriging (RK) ( [29]). Regression Kriging extends the capability of Ordinary Kriging
interpolation taking into account the fact that the random function can have a mean that depends on
the specific coordinates s:

Z(s) = m(s) + δ(s) (3.25)

The two components of Eq. 3.25 are modelled separately and combined, obtaining the final formula
for prediction (Eq. 3.26):

Z(s0) =
∑︂
k

βkqk(s0) +
∑︂
i

λiR(si) (3.26)

where the first part is the fitted deterministic part, while the second is the interpolated residual. The
qk are some independent values used to fit the model and find the βk parameters. On the other hand,
the λi are computed using Ordinary Kriging as in Eq 3.21.

Practically, Regression Kriging is a generalization of Ordinary Kriging, where the kriging step is
preceded by a linear regression step of the random function as predicted by the independent variables
q. Using a linear model before doing the residual interpolation is what was already described in [19,20],
as mentioned at the beginning of the section, for geometric methods. In this sense, Regression Kriging
is the generalization of this concept for the Kriging approach.

It is worth mentioning that the geostatistical literature uses different terms to refer to this variant
of Kriging where the mean value of the random function is not constant. Regression Kriging(RK),
Universal Kriging(UK) and Kriging with external drift (KED) refer basically to the same technique
and are mathematically equivalent [29].
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Figure 3.2: Example of Regression Kriging from [29]

(a) Variogram cloud (b) Fitted variogram

Figure 3.3: Example of cloud variogram plot and fitted variogram with 20 bins

Note on Variongrams

In the Kriging method, the choice of the variogram is fundamental. The theoretical definition of the
variogram is given in the Eq. 3.19 but in the algorithm the variogram used is the so-called “Empirical
variogram” because it is obtained directly from the data.

The empirical variogram is computed from the empirical covariance among each of the couples of
points.

ˆ︁C(si, sj) = (z(si)− z(sj))
2 (3.27)

One can plot all the empirical semicovariances
ˆ︁Cij

2 versus the distance si− sj to produce a “variogram
cloud” (Fig. 3.3a) that can be interpolated. Usually [17] the points of the “cloud” are grouped into
bins N(d± δ) containing points whose distance is d+ δ, where N(d± δ) = (i, j) : si − sj = d± δ and
for each bin the mean is computed:
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γ̂(d± δ) =
1

|N(d± δ)|
∑︂

(i,j)∈N(d±δ)

(z(si)− z(sj))
2 (3.28)

The experimental variogram is smaller for short distances and tends to reach a constant value for large
distances. This happens because the target values are similar (read correlated) for points near each
other, while they are more and more independent on each other for long distances.

The fit function is chosen among different families. The choice of the shape of the variogram is a
kind of hyperparameter and potentially leads to very different results. The most important kind of
variograms used are [17,31]:

� Exponential

γ(d) = (S−N)

[︃
1− exp

(︃
− d

R/3

)︃]︃
+N (3.29)

� Gaussian

γ(d) = (S−N)

[︃
1− exp

(︃
− d2

(47R)
2

)︃]︃
+N (3.30)

� Spherical

γ(d) =

{︄
(S−N)

(︁
3d
2R − d3

2R3

)︁
+N d ≤ R

S h > R
(3.31)

where S is called sill and represents the asymptotic maximum spatial variance at the longest distances.
The range, R is the distance at which the spatial variance has reached ∼ 95% of the sill value. The
N is the nugget and represents the random deviations from the smooth data trend.

3.2.3 Gaussian Process

Gaussian Process [25, 32, 33] is an important tool widely used in statistics, information theory and
machine learning. It is a non-parametric model that has a straightforward Bayesian interpretation.
The idea behind this method is to define prior probability distributions over functions and not over
parameters (like it is usually done in parametric Bayesian models). Gaussian Process application is
usually divided, following the machine learning fashion, into Gaussian Process Regression (GPR) and
Gaussian Process Classification, depending on the target value domain.

For obvious reasons, for the specific problem of spatial interpolation, GPR is the method used. Note
that in many textbooks ( [25, 32]) Kriging method is described as a specific variation of GPR, used
for geostatistics context. However, despite Kriging and GPR being essentially the same method, the
theory behind them is quite different and also the fitting procedure of the Kernel/Variogram is carried
on in distinct ways.

The general definition of a Gaussian Process is [32]:

Definition. A Gaussian Process is a collection of random variables, any finite number of which have
a joint Gaussian distribution.

Gaussian processes inherit some of their properties from Gaussian distributions, in particular, a Gaus-
sian Process f(z) is completely specified by a mean function m(s) and a covariance function also called
kernel k(s, s′):

f(s) ∼ GP(m(s), k(s, s′)) (3.32)

where:
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m(s) = E
[︁
f(s)

]︁
(3.33)

k(s, s′) = E
[︁
(f(s)−m(s))(f(s′)−m(s′))

]︁
(3.34)

The Gaussian Process Regression framework is a typical supervised learning problem. The goal is
to find f(s) knowing the value of the function at some training points. In the most general case the
training points are noisy:

yi = f(si) + εi (3.35)

In this case, ε is a noise term that does not allow us to know precisely the function values at target
points. Behind the assumption of additive independent identically distributed Gaussian noise with a
variance σ2

ε , the covariance (kernel) for the observations is:

Cov(yi, yj) = k(si, sj) + σ2
εδij (3.36)

The Bayesian approach to the problem consists in selecting a GP prior to the f(s) specifying mean
and kernel function. The knowledge of the training data 3.35 will modify the prior into a posterior
distribution for f(s). Specifically, we are interested in the value of the function f0 at location s0. The
prior selected is the Gaussian Process at Eq. 3.32. We can write the joint distribution of the observed
target values and function values at test locations under GP prior as:

[︃
y
f0

]︃
∼ GP

(︃
0,

[︃
k(S, S + σ2

εI) k(S, s0)
k(s0, S) k(s0, s0)

]︃)︃
(3.37)

where S = (s1, s2, . . . , sn).

The probability distribution for f0 can be obtained by conditioning the joint Gaussian prior distribu-
tion on the observations:

f0|S, y, s0 ∼ GP
(︁
f0̄, Cov(f0)

)︁
(3.38)

f0̄ = E[f0|S, y, s0] = k(s0, S)[k(S, S) + σ2
εI]−1y (3.39)

Cov(f0) = k(s0, s0)− k(S, s0)[k(S, S) + σ2
εI]−1k(s0, S) (3.40)

Note that Eq. 3.39 states that the mean prediction value for the function f at point s0 is a linear
combination of observation y. These are the same results of the Kriging method, but in this framework,
it was derived and not a starting assumption.

Similarly to what was mentioned for the Kriging method, in Gaussian Process regression the choice
of kernel k(x, x′) is crucial. In this work two different kernels are used:

� RBF kernel: k(si, sj) = A · exp
(︃
−d(si,sj)

2

2l2

)︃
+B · δ(si, sj)

� Matern kernel: k(si, sj) = A · 1
Γ(ν)2ν−1

(︄
√
2ν
l d(si, sj)

)︄ν

Kν

(︄
√
2ν
l d(si, sj)

)︄
+B · δ(si, sj)

where is d(., .) is the Euclidean distance, Kν is a modified Bessel function and is Γ(.) is the gamma
function. For both kernels the parameters to be optimized are the amplitude A, the length scale l and
B. Note that a WhiteNoise term with amplitude parameter B was added to both kernels to take into
account the presence of independently and identically normal-distributed noise for target variable.
The ν parameter in Mater kernel is set to 2.5 which is a standard choice GPR ( [32]).
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Gaussian Process Regression is tested using the package Scikit-Learn [34], in particular, the class
GaussianProcessRegressor.

GPR and Kriging

GPR and Kriging are, basically, the same method. They were, historically, introduced to solve different
problems but it is possible to assume that kriging is, practically, Gaussian Process Regression applied
to geostatistics. There is, nonetheless, one little difference in how the Kernel/Variogram is optimized
in the two methods implemented for this work. The semivariogram in Ordinary Kriging is fitted, using
the empirical variogram extracted from the data and then used for the interpolation process. On the
other hand, the hyperparameters of the kernel in GPR are not fitted using the data, instead, they are
optimized through multiple runs for finding the values that maximize the log-marginal likelihood.

Since the two methods are linked, we can formulate a connection between Kriging variogram and
Gaussian process Kernel, based on the definition of these two fundamental objects.

k(s, s′) = Cov(z(s), z(s′)) = E[(z(s)− µ(s))(z(s′)− µ(s′))]

= E[z(s)z(s′)] + (µ(s)− µ(s′))2
(3.41)

Where we used the fact that µ(s) = E[z(s)]. Now, given the definition of variogram:

2γ(s, s′) = V ar(z(s)− z(s′)) = E{[(z(s)− µ(s))(z(s′)− µ(s′))]2}
= k(s, s) + k(s′, s′)− 2k(s, s′)

= 2(S− k(s, s′))

(3.42)

In Eq.3.42 taking the limit for |x− x′| → ∞, we can recognize the definition of sill (S) (Sec. 3.2.2).

lim
|x−x′|→∞

γ(x, x′) = S (3.43)

3.3 Method comparison

3.3.1 Cross-Validation

The difficulty of a proper comparison among the previously seen methods arise from the fact that
there are no other points apart from stations that can be used as test points. Moreover, as seen
in section 2.1, the number of stations is quite limited and devoting a part of them to validate the
model can reduce the capability of our interpolation. The strategy we decided to adopt to perform the
comparison is a Cross-Validation strategy. Every time a method is tested, the interpolation procedure
is repeated a number of times equal to the number of stations and every time a different station is left
out and used for validation (Left-One-Out strategy)(Fig. 3.4).

Figure 3.4: Diagram of cross-validation, from [35]

This procedure is then repeated for each day of the analyzed period. Note that this procedure can
become computationally demanding when using more complex algorithms (e.g. GPR). The final result
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is a predicted value of the concentration of air pollutants for each station, for each day. This final
estimation depends on the measured values retrieved from all the other stations. Those values are
then analyzed using the statistical estimator described in the next section.

3.3.2 Statistical Indicators

The statistical indicators used to evaluate the previously seen methods are listed in this section. Note
that these indicators contemplate the knowledge of both station measurements and model values (or
post-processed model values, after the application of spatial interpolation). Given a certain interval
of time, which corresponds to a certain amount of data, they are computed for each different station,
measuring how well model estimations are close to the observations.

� Correlation Coefficient:

r =

∑︁
i(Si − S̄)(Mi − M̄)√︂∑︁
i(Si − S̄)2(Mi − M̄)2

� Normalized Mean Bias:

NMB =

∑︁
i(Mi − Si)∑︁

i Si
· 100

� Normalized Mean Error:

NME =

∑︁
i |Mi − Si|∑︁

i Si
· 100

While the NME is the more suitable estimator for the overall performance of methods we want to
check also NMB that can spot the presence of positive or negative biases. Correlation is also important
to detect if some time patterns in air pollutant concentrations are well reproduced by the model.

Following [13] and [36], one can establish some benchmarks for method evaluation. In this work, the
goals adopted can be seen in Tab. 3.1. Note that there is a minimum threshold and a goal.

Estimator PM10 NO2 O3

Criteria Goal Criteria Goal Criteria Goal
NME < 50% < 35% < 50% < 35% < 25% < 15%
NMB < ±30% < ±10% < ±30% < ±10% < ±15% < ±5%
r > 0.4 > 0.7 > 0.4 > 0.7 > 0.5 > 0.75

Table 3.1: Benchmarks for method evaluation
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Chapter 4

Results

4.1 Particulate matter

Raw model performance

Before evaluating the methods seen in the previous chapter, an analysis of the model introduced at
Sec. 2.2 is performed. A complete verification of the model performance can be found at [13]. Here
we report the analysis for the period from December 2021 to February 2022. For each station, the
statistical indicators described in detail in Sec.3.3.2 are computed (see Tab. A.1, A.2,A.3, first column)
and visualized in Fig. 4.1. The evaluation is done using the station measurements Si and the model
estimations Mi. The goal is to highlight which are the locations where the estimations differ more
from the measured values. In this chapter, each postprocessing method applied to the model output
is going to be tested using the same indicators used for the raw model. For each station, Si are the
observations, while Mi are the results of Cross-Validation where the testing station was left out.

Figure 4.1: PM10: NME, NMB and correlation (r) at each station location for model estimations

The model has good performance for stations that are located in the plains. Note that this is where
the exceeding of the legal threshold is more expected to happen. On the other hand, the NME plot,
and correlation plot underline some errors for stations on hills and mountains.

Moreover, from the NMB plot, it is clear that the model overestimates the pollutant concentration for
many station locations. This can be seen also in Fig. 4.2 where the points lie asymmetrically with
respect to the bisector. The effect is particularly accentuated in the station of Pieve d’Alpago and
Conegliano (Fig. 4.3), where the model struggles to give good estimations. The overestimation is the
main reason to apply a linear regression before any spatial interpolation of residuals. The fact that
the biggest errors are located in stations with higher altitude suggest the possibility of using hmsl as
a predictor
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Figure 4.2: PM10: Scatterplots of measurements and estimations and measurement and altitudes at station locations

Figure 4.3: PM10: Scatterplot of measurements and estimations at the station in Pieve d’Alpago and Conegliano

Regression

Four different linear regression methods are compared (see Sec. 3.2):

� Model estimations M(s) as predictor;

� Model estimations as a predictor and Box-Cox on measurement data S(s);

� Model estimations and altitude as predictors;

� Model estimations and altitude as predictors and Box-Cox on measurement data.

For Box-Cox transformation the parameter λ needs to be found by studying the log-Likelihood. In
Fig. 4.4 we report the results of maximization.

� For the linear model S(s) = a+ b ·M(s), λ = 0.53± 0.02.

� For the linear model S(s) = a+ b ·M(s) + c · h(s), λ = 0.43± 0.02

The results of the comparison of regression models are shown in Tab. A.1, A.2, A.3 and Fig. 4.5. Note
that linear regression solves the overestimation shown in the previous paragraph with the exception
of the two critical stations mentioned above. Nevertheless, the results are better than the raw model
for every station. The best regression model is the one that uses two predictors. Box-Cox does
not improve the model performances so it will not be used for PM10 data. Because of the success
of the linear regression model, in the next analysis regression is applied to data before the spatial
interpolation of residuals.
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Figure 4.4: PM10: Box-Cox likelihood function and best λ estimation for the two different linear regression models

Figure 4.5: PM10: NME, NMB and correlation (r) at each station location for linear regression results

Inverse Distance Weighting

The simplest interpolation method, which is the one already in use by ARPAV, is to apply inverse
distance weighting as seen in Sec. 3.2.1. Results are visualized in Fig. 4.6. Comparing these plots
with the one in Fig. 4.1 one can see that overall the NME is better using IDW but still the corrected
model seems to overestimate the concentration at some station locations. In order to solve this issue,
linear regression can be performed before spatial interpolation (Fig. 4.7).

Using linear regression (Regression IDW) improves the final results of IDW. In particular, it lowers
NME and correlations in mountain stations like Bosco Chiesanuova(VR) and Schio(VI). It also reduces
the overall positive bias.

Figure 4.6: PM10: NME, NMB and correlation (r) at each station location for IDW results
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Figure 4.7: PM10: NME, NMB and correlation (r) at each station location for Regression IDW results

Radial Basis Function interpolation

For the RBF interpolation, we will use a procedure similar to the previous method: at first, a linear
model is fitted and the residual field is computed using RBF interpolation on top of it. Different
Radial Basis Functions were tried and here (Fig. 4.8) we report the results for inverse multiquadric
radial basis function: ϕ(r) = 1√

1+(εr)2
which performs better than the others (Tab. A.7). The best ε

for PM10 data is equal to 10−4 m−1, the same order of magnitude that the inverse of mean distance
among points which is 6.2 · 104 m.

Figure 4.8: PM10: NME, NMB and correlation (r) at each station location for Regression and RBF interpolation results

Regression Kriging and Gaussian Process Regression

Figure 4.9: PM10: Distribution of length scale parameter
in Cross-Validation

For the Regression Kriging different variogram
models were studied (see Sec. 3.2.2), obtaining
similar results. In Fig. 4.10 we report the plots
for the Exponential variogram. Regression Krig-
ing performs well, improving the raw model esti-
mation by reducing NME, NMB and correlation.

Also in the case of Gaussian Process Regression,
the spatial interpolation of residual is preceded
by a linear regression. The actual GPR is per-
formed using the GaussianProcessRegression

algorithm of Scikit-learn ( [34]). For the fit-
ting procedure, target data (measurements) are
standardized and the hyperparameters of the ker-
nels are optimized through, multiple runs of the
model. After the comparison (see Tab A.14),
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Matern kernel is the best of the two tested. The results are shown in Fig. 4.11 and are very similar
to the Regression Kriging ones. Among the Gaussian Process Regression results, it is worth analyzing
the distribution of the kernel parameter l, called length scale, fitted during Cross-Validation. In the
case of PM10 the length scale distribution is peaked at 104 4.9. This gives an idea of the scale which
regulates the speed of decay of correlation between points and confirms the result obtained in RBF
interpolation of a characteristic length of the system in the order of magnitude of 10 km.

Figure 4.10: PM10: NME, NMB and correlation (r) at each station location for RK results

Figure 4.11: PM10:NME, NMB and correlation (r) at each station location for Regression and GPR results

Method comparison

The results of the best variant for each method are collected in Tab. 4.1, 4.2, 4.3.

From the NME data, it is easy to see that most of the time the spatial interpolation methods improve
the performance of the model. Linear regression is an important tool to use before interpolating
the residuals to improve the estimation and, more importantly, remove the positive bias of the raw
model. The final computed indicators meet the benchmarks set in Tab. 3.1 with the only exceptions
of the stations in Pieve d’Alpago(BL) and Conegliano(TV) whose indicators respect the “Criteria”
threshold but not the “Goal” one, and Bosco Chiesanuova(VR). These are all mountain stations where
the raw model has poor performances that are difficult to correct. Note that results for the station in
Feltre(BL) have some issues: the corrected model underestimates concentrations (also the correlation
is not good). This is due to the morphological shape of the territory near the city where pollutants
tend to reach high concentrations even if at 300 msl. In general spatial interpolation models work well
for stations on plains, especially for stations that are geographically close to other measurement sites
(for example in the area of Padua there is a cluster of stations). This is because they share similar
altitudes and similar errors in model estimations. The complex landscape of mountain territory and
the minor number of mountain stations are limitations to the performance of spatial interpolation.
An example to mention regards the station of Belluno and Pieve di Alpago. These two stations are
∼ 10 km apart but they sample very different areas in terms of pollutants concentration: while Belluno
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is a city, Pieve d’Alpago is a small town with less anthropic activities and emissions. Despite the levels
of PM10 being much smaller in Pieve D’Alpago(BL), the raw model estimates similar concentrations
at the two locations and geospatial interpolation does not manage to correct it because the station in
Pieve d’Alpago highly depends on the value of Belluno, since they are close. The problem is probably
due to the difficulty of the meteorological prediction (input of CAMx) to model sufficiently well this
mountain area, operating at a coarse resolution of 5 km.

The overall performance of the geospatial interpolation methods is similar. Despite being much more
complex methods, Kriging and Gaussian Process regression do not outperform simpler geometric
methods such as IDW and RBF. This is probably due to the limited number of stations used. Only 20
stations do not seem to be sufficient to train complex models, too few points are used to retrieve the
covariance structure of the data to fit the variogram in Kriging and kernel in GPR. All be considered,
a safe choice to be implemented in ARPAV is the combination of linear regression and inverse distance
weighting. It is a very simple method and the IDW part is already used by ARPAV. The introduction
of the regression can avoid bias in model output and boost the performance.

The results are visualized in Fig. 4.13, where we show the time series of different methods vs mea-
surements for ten stations. The series of data reported are the raw model, the classic inverse distance
weighting and the best method among those compared in this paragraph (in this case Regression
IDW).

Finally, Fig 4.12 shows the steps to correct the raw model for a specific day, using all the stations. In
particular, the four images show the initial model estimation over the whole domain, the results after
the application of linear regression with two predictors, the residual “field” computed by IDW and
finally the sum of the regression and the residuals. The fourth panel contains the final corrected esti-
mations of the concentrations of PM10. The residual plot in the third panel presents the characteristic
shape of IDW residuals, with high absolute values near station locations. It is worthwhile to mention
that the final results are not reliable for the whole model domain. In fact, far from stations, the
effectiveness of data fusion techniques is doubtful. Strictly speaking, geospatial interpolation methods
can be successfully applied only in the areas near stations.

Station model idw reg+idw RBF RK GPR

BL belluno 45.27 26.40 21.71 20.29 21.26 22.42

BL feltre 38.79 28.49 29.42 28.56 28.04 27.74

BL pieve 100.26 47.07 46.35 45.38 45.18 46.88

PD p colli 39.60 19.21 16.17 16.80 17.25 17.13

PD este 34.01 12.55 9.98 11.00 10.43 11.56

RO badia 29.51 18.92 15.40 10.31 13.61 15.39

RO adria 31.42 26.20 28.49 31.04 28.53 27.34

RO borsea 28.50 18.91 16.99 15.84 16.94 17.17

TV conegliano 67.83 44.85 41.71 41.55 42.53 42.93

TV mansue 24.72 17.02 13.23 13.44 13.52 14.80

TV lancieri 29.55 14.90 12.19 11.39 11.84 11.72

VE san dona 23.65 16.74 13.90 12.98 13.70 13.57

VE bissuola 25.16 14.97 11.93 10.99 11.66 12.00

VI schio 57.28 26.52 26.44 26.97 25.97 25.66

VI qitalia 33.17 15.57 14.87 14.43 13.53 14.32

VR bcnuova 51.80 60.90 59.30 59.59 61.56 61.63

VR legnago 30.88 14.60 11.43 11.98 12.85 12.79

VR giarol 25.11 14.03 13.99 13.93 14.23 14.82

PD mandria 30.43 13.53 14.28 15.15 13.25 14.05

PD Monselice 38.65 14.47 11.15 12.45 11.26 11.92

Table 4.1: PM10: NME results for raw model data, IDW, Regression IDW, RBF, Regression Kriging and GPR
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Station model idw reg+idw RBF RK GPR

BL belluno 21.93 -21.34 3.13 4.47 7.63 6.13

BL feltre 9.48 -14.19 -22.91 -22.26 -21.68 -21.53

BL pieve 93.40 45.98 18.56 19.08 22.69 24.03

PD p colli 27.94 7.51 10.41 10.31 12.97 12.14

PD este 20.21 -0.96 -1.23 -3.07 2.46 -0.99

RO badia -9.54 -20.93 -12.62 -8.11 -10.88 -12.44

RO adria 14.89 6.03 28.00 31.04 28.14 26.90

RO borsea -12.52 -23.74 -15.74 -15.05 -15.71 -16.53

TV conegliano 63.95 47.42 37.84 38.04 39.18 39.81

TV mansue 4.40 -20.00 -6.10 -6.99 -4.20 -4.46

TV lancieri 19.41 5.93 -8.09 -7.49 -7.42 -7.34

VE san dona -2.77 -17.41 -7.20 -5.09 -6.21 -5.59

VE bissuola 3.95 -9.78 -4.99 -2.77 -4.78 -5.08

VI schio 47.21 25.77 15.47 17.70 16.19 15.39

VI qitalia 22.96 7.41 -10.81 -10.82 -9.66 -9.94

VR bcnuova 14.26 -9.48 -33.92 -33.19 -34.53 -33.67

VR legnago 1.55 -7.58 0.86 2.84 1.11 0.09

VR giarol -3.29 -14.86 -0.83 -0.23 -1.30 -2.02

PD mandria 19.54 3.40 -9.31 -9.97 -8.04 -9.16

PD Monselice 27.51 10.21 5.16 6.02 7.30 6.54

Table 4.2: PM10: NMB results for raw model data, IDW, Regression IDW, RBF, Regression Kriging and GPR

Station model idw reg+idw RBF RK GPR

BL belluno 0.35 0.73 0.76 0.78 0.78 0.75

BL feltre 0.21 0.36 0.50 0.53 0.53 0.52

BL pieve 0.49 0.75 0.60 0.62 0.61 0.60

PD p colli 0.65 0.92 0.92 0.91 0.93 0.92

PD este 0.62 0.96 0.96 0.95 0.96 0.95

RO badia 0.53 0.93 0.95 0.97 0.96 0.94

RO adria 0.59 0.91 0.94 0.94 0.94 0.94

RO borsea 0.56 0.94 0.95 0.97 0.95 0.96

TV conegliano 0.62 0.74 0.80 0.81 0.80 0.81

TV mansue 0.74 0.86 0.91 0.91 0.91 0.89

TV lancieri 0.76 0.94 0.95 0.96 0.95 0.96

VE san dona 0.71 0.89 0.92 0.92 0.92 0.91

VE bissuola 0.73 0.92 0.95 0.95 0.94 0.94

VI schio 0.61 0.68 0.80 0.80 0.80 0.80

VI qitalia 0.68 0.87 0.91 0.92 0.92 0.91

VR bcnuova 0.46 0.32 0.42 0.42 0.38 0.38

VR legnago 0.51 0.91 0.94 0.93 0.92 0.92

VR giarol 0.69 0.85 0.90 0.90 0.90 0.89

PD mandria 0.66 0.91 0.92 0.91 0.93 0.92

PD Monselice 0.61 0.95 0.96 0.95 0.96 0.95

Table 4.3: PM10: Correlation results for raw model data, IDW, Regression IDW, RBF, Regression Kriging and GPR
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Figure 4.12: PM10: model correction steps for 03/01/2022. The first panel shows raw model data, the second the
results of linear regression, the third shows the residuals after IDW application and the last shows the final concentration
estimations after correction.
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Figure 4.13: PM10: Time series of station measures, model estimations and model estimations corrected by IDW and
Regression IDW.
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4.2 Nitric Dioxide

Raw model performance

Also in the NO2 case, let us first analyze the raw model (Fig. 4.14). We can easily see that NO2

estimations are not optimal, especially near the mountains. From the NMB plot, it is clear that the
model strongly overestimates the concentrations. The worse performances of CAMx for Nitric Dioxide
are probably caused by the fact that anthropogenic diffusive emissions, which are used as inputs to
the model, are all allocated to the first vertical layer ( [37]) and not distributed in the higher ones.
This affects specifically nitric dioxide more than particulate matter and ozone because NO2 forms
very quickly in the atmosphere through oxidation of NO emitted from the sources.

Figure 4.14: NO2: NME, NMB and correlation (r) at each station location for model estimations

Figure 4.15: NO2: Scatterplots of measures and estimations at station locations and measures and altitudes

Figure 4.16: NO2: Time series of measurements
and estimations at Bosco Chiesanuova (VR)

Note that Bosco Chiesanuova(VR) has very poor perfor-
mance. The scatterplot of the dataset (Fig. 4.15) and
the time series plot (Fig. 4.16) reveal something strange
about that station. There is, in fact, a big discrepancy
between measurement and model, with the model that
strongly overestimates the measurements. This kind of
problem cannot be solved by any kind of data fusion
method, and since this difference can affect the interpo-
lation procedures, we are going to ignore the station for
the next analysis.
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Regression

The same linear regression methods applied for PM10 are used also in this case and, similarly, the
linear regression with altitude as the second predictor has overall the best performance. The Box-Cox
transformation is also implemented with λ parameters shown below:

� For the linear model S(s) = a+ b ·M(s), λ = 0.79± 0.02.

� For the linear model S(s) = a+ b ·M(s) + c · h(s), λ = 0.45± 0.02

Figure 4.17: NO2: Box-Cox likelihood function and λ best estimation for the two different linear regression models

In this case, using the Box-Cox transformation slightly improves the performance of the linear regres-
sion with two predictors. Note that from Tab. A.17, all the regression models perform very similarly.
Our choice of linear regression method to be used for future analysis is based on the fact that the
Box-Cox, two-predictor regression improves results for a larger number of stations. The results are
plotted in Fig. 4.18.

Figure 4.18: NO2:NME, NMB and correlation (r) at each station location for Linear Regression results

Linear regression partially removes the overestimation, reducing NME and NMB for most stations.

Inverse Distance Weighting

In Fig. 4.19 the result of simple IDW interpolation is shown. This method works for almost every
station, increasing the performance of stations at low altitudes. For Regression IDW, the same method
applied to the PM10 data is followed. Regression with two predictors improves the simple IDW
performances for many stations but there are some (Pieve d’Alpago, Asiago, Padova colli (PD)) where
pollutant concentration is still highly overestimated (see Tab. A.20,A.21,A.22).
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Figure 4.19: NO2:NME, NMB and correlation (r) at each station location for IDW results

Figure 4.20: NO2:NME, NMB and correlation (r) at each station location for Regression IDW

Radial Basis Function interpolation

RBF method is also applied to NO2 data. Among the radial basis function tested, the best performing
one is Gaussian RBF with a scale parameter ε = 10−3. The usage of a smaller scale parameter is
probably due to the fact that nitric dioxide tends to be highly concentrated near the sources of emission
like streets and cities and the scale of variation of its concentration is smaller. RBF interpolation has
slightly better performance than the previous method.

Figure 4.21: NO2:NME, NMB and correlation (r) at each station location for Regression and RBF interpolation results

Regression Kriging and Gaussian Process Regression

For nitric dioxide, regression Kriging (Fig. 4.23) and Gaussian Process regression results (Fig. 4.24)
are very similar between each other and similar with RBF interpolation. However, they are slightly
better than the IDW methods. The best regression kriging variogram among those tested is the
Gaussian variogram.

40



CHAPTER 4. RESULTS 4.2. NITRIC DIOXIDE

Figure 4.22: NO2: Distribution of length scale parameter
in Cross-Validation

Concerning GPR, the Matern kernel is the final
choice, slightly outperforming the RBF kernel.
Also in this case one can plot the distribution
of the length scale parameter fitted in Cross-
Validation; but for NO2, the distribution (4.22)
is not clearly peaked at some value. This is an
index that the correlation structure of the data
is very weak and the l parameter is going to zero
for many sets of points in Cross-Validation. This
is not a surprise, for example, stations like Asi-
ago(VI), or Colli Euganei are not correlated with
the station nearby and are difficult to be incor-
porated into spatial interpolation methods.

Figure 4.23: NO2: NME, NMB and correlation (r) at each station location for Regression Kriging results

Figure 4.24: NME, NMB and correlation (r) at each station location for Regression and GPR results

Method comparison

Nitric Dioxide results, reported in Tab 4.4, 4.5, 4.6, are not as good as particulate matter ones. Never-
theless, the geostatistical interpolation methods meet the estimator criteria for stations in the plains,
which are the most important because it is where the value of the concentration can reach legal limits.
On the other hand, there are some stations where the error is very big and very difficult to correct.
For some stations (e.g. Asiago) the spatial interpolation methods degrade the model performances.
The station on Colli Euganei (PD) has bad indicators, with the raw model that overestimates the con-
centration of nitric dioxide. On the contrary, the model has good performance for nearby stations in
Este(PD) and Padova. This discrepancy among close stations affects negatively the spatial interpola-
tion. Concerning the comparison among applied methods, in the NO2 case, RBF, Regression Kriging
and GPR are slightly better than IDW method. Nevertheless, considering the small differences in
results may not justify the implementation of a new method bt ARPAV.

41



4.2. NITRIC DIOXIDE CHAPTER 4. RESULTS

Also in this case in Fig. 4.26 we report the time series of different methods vs measurements. Note that
in the plots, the corrected model via Regression Kriging (the most performant spatial interpolation
model) is usually the most similar to the Station series. Finally, we report the plot showing the final
correction result on a single day in Fig.4.25. It is important to mention that, in the second and
third panels, quantities are transformed using Box-Cox, so they are not directly comparable with the
concentrations. From this plot, we can see that Regression Kriging returns small corrections, positive
for the mountain area and negative for the southern area of the region. Nevertheless, for the final
results, the major contribution is given by the regression.

Station model idw reg+idw RBF RK GPR

BL belluno 31.64 45.97 44.39 33.98 36.84 35.80

BL feltre 32.31 26.92 23.29 24.21 23.62 24.20

BL pieve 67.06 76.14 96.12 62.63 63.37 64.64

PD p colli 79.05 68.89 82.89 71.44 78.26 74.90

PD sgiust 30.61 13.47 10.78 10.56 10.35 10.36

PD este 17.07 25.76 31.62 14.64 24.40 14.77

RO badia 22.96 10.62 15.33 14.84 15.10 14.78

RO adria 22.90 29.32 10.81 11.92 11.71 11.92

RO borsea 22.26 13.30 10.25 12.63 12.15 12.42

TV conegliano 67.83 49.74 34.07 38.74 38.16 38.73

TV mansue 61.03 29.32 50.90 56.77 57.26 57.01

TV lancieri 21.66 13.67 14.86 12.30 13.02 12.62

VE san dona 16.62 28.61 23.58 18.00 20.71 18.29

VE bissuola 35.98 20.19 10.34 11.01 10.26 10.86

VI asiago 69.49 88.64 98.34 91.84 97.66 91.95

VI bassano 33.52 21.74 16.64 16.48 16.28 16.46

VI schio 30.62 37.00 31.51 32.58 32.12 32.55

VI qitalia 39.86 30.56 19.25 19.59 19.70 19.69

VR legnago 25.37 38.87 34.85 32.22 32.21 32.43

VR giarol 53.66 45.93 18.70 15.20 18.38 15.50

PD mandria 18.46 10.28 23.09 18.92 18.86 19.17

Table 4.4: NO2: NME results for raw model data, IDW, Regression IDW, RBF, Regression Kriging and GPR

Station model idw reg+idw RBF RK GPR

BL belluno -23.74 -45.81 -44.39 -33.91 -36.80 -35.74

BL feltre 10.04 -12.22 3.47 1.76 1.68 1.77

BL pieve 59.25 70.97 96.12 61.40 62.61 63.40

PD p colli 78.95 68.89 82.89 71.44 78.26 74.90

PD sgiust 25.98 6.10 7.49 6.16 6.16 6.38

PD este 2.14 -25.70 -31.62 -11.55 -22.82 -12.66

RO badia 9.26 -0.39 14.30 12.12 14.16 12.37

RO adria -12.91 -29.05 -3.68 -1.82 -1.66 -1.79

RO borsea 11.22 2.62 3.67 5.40 6.21 5.42

TV conegliano 63.95 42.80 9.94 18.41 17.15 18.20

TV mansue 60.92 19.67 50.90 56.77 57.26 57.01

TV lancieri 14.14 -7.65 -14.20 -9.90 -11.31 -10.30

VE san dona -5.44 -28.31 -23.35 -16.51 -20.00 -16.97

VE bissuola 35.51 19.44 7.88 6.28 5.50 6.35

VI asiago 59.87 16.08 36.84 24.42 31.26 25.23

VI bassano 14.33 -3.90 2.61 0.62 1.06 0.76

VI schio -16.96 -35.12 -30.89 -32.13 -31.64 -32.11

VI qitalia 37.34 28.23 -2.01 -5.50 -4.46 -5.22

VR legnago -24.85 -38.87 -34.85 -32.22 -32.21 -32.43

VR giarol 52.91 45.88 16.32 9.34 14.55 9.82

PD mandria 13.13 -2.66 -22.42 -17.41 -17.48 -17.69

Table 4.5: NO2: NMB results for raw model data, IDW, Regression IDW, RBF, Regression Kriging and GPR
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Station model idw reg+idw RBF RK GPR

BL belluno 0.23 0.57 0.73 0.60 0.65 0.64

BL feltre 0.24 0.47 0.60 0.54 0.57 0.54

BL pieve 0.50 0.45 0.68 0.62 0.66 0.62

PD p colli 0.64 0.82 0.83 0.83 0.80 0.82

PD sgiust 0.60 0.78 0.89 0.87 0.87 0.88

PD este 0.68 0.89 0.89 0.89 0.73 0.90

RO badia 0.64 0.87 0.92 0.88 0.91 0.89

RO adria 0.68 0.85 0.89 0.85 0.86 0.85

RO borsea 0.64 0.82 0.89 0.84 0.87 0.85

TV conegliano 0.62 0.63 0.47 0.44 0.44 0.44

TV mansue 0.73 0.70 0.84 0.83 0.84 0.83

TV lancieri 0.61 0.77 0.84 0.83 0.83 0.83

VE san dona 0.69 0.82 0.89 0.85 0.86 0.86

VE bissuola 0.71 0.86 0.91 0.87 0.89 0.88

VI asiago 0.51 -0.21 -0.20 -0.21 -0.22 -0.21

VI bassano 0.48 0.55 0.71 0.71 0.72 0.71

VI schio 0.35 0.37 0.47 0.47 0.46 0.47

VI qitalia 0.22 0.37 0.32 0.33 0.31 0.32

VR legnago 0.66 0.83 0.88 0.86 0.87 0.87

VR giarol 0.61 0.80 0.76 0.73 0.71 0.71

PD mandria 0.69 0.85 0.83 0.83 0.83 0.83

Table 4.6: NO2: Correlation results for raw model data, IDW, Regression IDW, RBF, Regression Kriging and GPR

Figure 4.25: NO2: model correction steps for 03/01/2022. The first panel shows raw model data, the second the
results of linear regression, the third shows the residuals after RK application and the last shows the final concentration
estimations after correction.
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Figure 4.26: NO2: Time series of station measures, model estimations and model estimations corrected by IDW and
Regression Kriging.
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4.3 Ozone

Raw model performance

Differently from the other two pollutants, the model estimation of Ozone is quite satisfactory without
any interpolation method. Nevertheless, also in this case the model seems to overestimate the values
(NMB plot in Fig. 4.27).

Figure 4.27: O3: NME, NMB and correlation at each station location for model estimations

Figure 4.28: O3: Scatterplots of measures and estimations at station locations and measurements and altitudes

Regression

In this case, the Box-Cox transformation has no impact on the data. In fact, estimating the λ via
maximum likelihood the results are:

� For the linear model S(s) = a+ b ·M(s), λ = 1.04± 0.05.

� For the linear model S(s) = a+ b ·M(s) + c · h(s), λ = 1.08± 0.05

When λ parameters are close to one the Box-Cox transformation becomes an identity. For this reason,
for O3 data, no power transformation is used. Among the two linear models, in this case, the one with
better performance is a regression with only the model as a single predictor (Tab. A.32). The results
are plotted in Fig. 4.30

Inverse Distance Weighting

IDW method and IDW with regression perform similarly (Tab. A.35, A.36, A.37). Note that in this
case, the overestimation of the model seems to be corrected by the IDW method, even without the
regression. Nonetheless, linear regression has an impact on the correlations that are generally better.
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Figure 4.29: O3: Box-Cox likelihood function and λ best estimation for the two different linear regression models

Figure 4.30: O3: NME, NMB and correlation at each station location for Linear Regression results

Figure 4.31: O3: NME, NMB and correlation at each station location for IDW results

Figure 4.32: O3:NME, NMB and correlation at each station location for Regression IDW results
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Radial Basis Function interpolation

RBF method, with inverse multiquadric radial basis function, is used in Fig. 4.33. Other RBF
functions (the inverse quadratic and Gaussian) perform similarly and the results are compatible with
IDW model ones. Like the PM10 case the best scale parameter ε that maximize the results is 10−4

which has the same order of magnitude of the mean distance among stations. This guess of the
characteristic length scale of the problem is confirmed, in the next paragraph, by the distribution of
fitted length scale parameters in Gaussian Process Regression.

Figure 4.33: O3: NME, NMB and correlation at each station location for Regression and RBF interpolation results

Regression Kriging and Gaussian Process Regression

Figure 4.34: O3: Distribution of length scale parameter in
Cross-Validation

Regression Kriging has good results indepen-
dently on the variogram shape chosen. Here (Fig.
4.35) we report the results for a spherical vari-
ogram which is slightly better (Tab.A.41) for a
large number of stations.

Gaussian Process Regression performances re-
semble the Kriging ones, also in this case the
Mater kernel is the better choice over the RBF
kernel. NME, NMB and correlation plot are
shown in Fig. 4.36 and results are reported in
Tab. A.44 A.45, A.46. Similarly to the Particu-
late matter analysis, the length scale parameter
distribution, shown in Fig. 4.34, which quan-
tifies the characteristic correlation length of the
system, is peaked for l = 104.

Figure 4.35: O3: NME, NMB and correlation at each station location for Regression Kriging results
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Figure 4.36: O3:NME, NMB and correlation at each station location for regression and GPR results

Method comparison

Looking at Tab. 4.7, 4.8, 4.9, we can see the impact of geostatistical interpolation methods on pre-
dictions. The usage of simple IDW increases model performances and decreases the overestimation.
However, results can be improved again, by applying the linear regression. Different spatial inter-
polation method results are similar, as happens for the other two pollutants. RBF seems to be the
worst with two values of NME over 15 for the station of Adria(RO) and San Donà(Ve). Also in this
case complex methods do not perform better than simpler methods, probably due to the low number
of stations. Similarly to the PM10 case, the method suggested for the implementation is regression
IDW. Despite the simplicity, its results are satisfying. In Fig. 4.26 the time series of Regression IDW
is compared to raw model estimations and simple IDW.

We show also the effect of Regression IDW method correction to the model domain for a single day in
Fig. 4.37. The residuals show the characteristic structure of IDW results, with high absolute values
near the stations.

Station model idw reg+idw RBF RK GPR

BL belluno 23.02 11.78 6.36 5.68 5.45 6.94

BL feltre 25.55 11.36 10.41 10.88 9.20 10.02

BL pieve 19.26 8.75 4.74 6.08 5.36 5.66

PD p colli 20.90 4.95 3.87 4.55 3.67 3.71

PD sgiust 22.75 4.42 4.48 9.66 5.26 5.03

PD este 23.40 6.39 5.10 4.39 4.65 4.64

RO badia 20.23 5.99 4.28 5.49 4.87 4.85

RO adria 28.82 17.29 15.32 17.95 14.67 14.67

RO borsea 27.07 12.56 10.57 12.30 9.73 10.05

TV conegliano 29.29 9.74 9.07 11.01 8.91 9.24

TV mansue 15.00 5.67 6.41 9.07 7.49 7.19

TV lancieri 16.38 9.51 8.54 11.32 8.60 8.54

VE san dona 16.73 9.38 9.75 18.76 10.53 10.76

VE bissuola 12.03 11.02 9.93 9.25 9.67 9.40

VI asiago 12.07 11.41 9.96 11.56 10.67 10.77

VI bassano 21.92 4.82 5.22 9.00 5.70 6.19

VI schio 19.46 7.53 5.27 13.04 6.37 7.23

VI qitalia 19.65 11.62 10.57 13.04 10.30 10.22

VR bcnuova 15.93 7.90 7.18 13.51 8.46 8.17

VR legnago 17.22 6.04 5.25 9.33 5.36 5.39

VR giarol 29.87 8.35 9.81 14.85 9.80 9.53

PD mandria 15.08 9.02 8.17 8.62 7.96 8.21

Table 4.7: O3: NME results for raw model data, IDW, Regression IDW, RBF, Regression Kriging and GPR
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Station model idw reg+idw RBF RK GPR

BL belluno 22.21 10.42 5.52 -3.56 3.78 5.31

BL feltre 24.73 10.77 9.88 8.89 8.32 9.20

BL pieve 16.78 5.60 -1.06 2.97 -0.38 0.82

PD p colli 20.10 -1.61 -1.94 0.02 -0.27 -0.29

PD sgiust 21.64 0.04 2.31 7.59 3.16 3.31

PD este 22.48 2.62 3.80 1.05 3.18 2.92

RO badia 19.29 0.24 -0.31 -0.71 -0.94 -1.42

RO adria 28.36 16.78 15.13 8.06 14.37 14.26

RO borsea 24.01 7.38 5.21 -2.84 2.36 2.70

TV conegliano 29.04 9.20 8.77 8.57 8.21 8.91

TV mansue 13.16 -2.92 -5.93 -8.48 -7.18 -6.60

TV lancieri 12.30 -4.02 -3.43 -7.75 -3.72 -3.45

VE san dona 14.81 6.17 7.26 18.17 9.01 9.07

VE bissuola -1.36 -8.89 -7.90 -0.22 -7.89 -7.62

VI asiago 5.77 -10.84 -9.30 -7.93 -10.17 -10.41

VI bassano 20.83 -0.35 3.43 2.15 3.77 4.08

VI schio 17.60 -5.28 -1.12 9.87 1.67 1.53

VI qitalia 14.32 -8.53 -6.09 -6.01 -5.64 -5.80

VR bcnuova 13.26 -6.50 -5.85 -12.84 -7.54 -7.22

VR legnago 16.36 -3.96 -3.58 -5.08 -4.09 -3.69

VR giarol 29.66 5.41 9.09 14.34 9.02 8.58

PD mandria 8.04 -8.68 -7.85 -7.17 -7.65 -7.68

Table 4.8: O3: NMB results for raw model data, IDW, Regression IDW, RBF, Regression Kriging and GPR

Station model idw reg+idw RBF RK GPR

BL belluno 0.77 0.91 0.96 0.96 0.96 0.94

BL feltre 0.78 0.93 0.94 0.88 0.94 0.93

BL pieve 0.69 0.89 0.95 0.94 0.94 0.94

PD p colli 0.68 0.92 0.95 0.92 0.95 0.95

PD sgiust 0.61 0.93 0.94 0.88 0.93 0.94

PD este 0.67 0.88 0.95 0.94 0.94 0.94

RO badia 0.68 0.87 0.92 0.89 0.91 0.91

RO adria 0.54 0.82 0.86 0.71 0.84 0.85

RO borsea 0.48 0.72 0.77 0.66 0.79 0.79

TV conegliano 0.76 0.93 0.95 0.89 0.94 0.95

TV mansue 0.79 0.91 0.94 0.87 0.94 0.93

TV lancieri 0.68 0.80 0.82 0.81 0.82 0.83

VE san dona 0.71 0.80 0.84 0.81 0.85 0.84

VE bissuola 0.64 0.80 0.82 0.79 0.82 0.84

VI asiago 0.62 0.88 0.89 0.86 0.90 0.90

VI bassano 0.74 0.94 0.95 0.77 0.94 0.94

VI schio 0.75 0.92 0.94 0.75 0.91 0.88

VI qitalia 0.57 0.68 0.70 0.72 0.72 0.74

VR bcnuova 0.69 0.88 0.89 0.83 0.88 0.89

VR legnago 0.75 0.91 0.93 0.79 0.93 0.92

VR giarol 0.67 0.85 0.87 0.74 0.88 0.87

PD mandria 0.69 0.91 0.93 0.89 0.93 0.92

Table 4.9: O3: Correlation results for raw model data, IDW, Regression IDW, RBF, Regression Kriging and GPR
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Figure 4.37: O3: model correction steps for 12/07/2021. The first panel shows raw model data, the second the results
of linear regression, the third shows the residuals after IDW application and the last shows the final concentration
estimations after correction.
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Figure 4.38: O3: Time series of station measures, model estimations and model estimations corrected by IDW and
Regression IDW.
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Chapter 5

Conclusion

In this work different methods of “data fusion”, to combine model predictions and measurements,
were implemented, tested and compared. The analysis has been done for the specific case of air
pollutants concentration data in the Veneto region, to increase the reliability of ARPAV estimations.
The tested techniques vary from simple geometrical methods, (the simplest among them, IDW, is
already implemented at ARPAV,) to more complex Geostatistic methods.

For each pollutant, the different interpolation models are compared using a Cross-Validation technique,
with a Left-One-Out strategy. A common feature of all datasets is the fact that the model data tend
to overestimate the concentrations. To solve this problem, the usage of linear regression before the
residual interpolation was exploited with success. A summary of the findings for each pollutant follows:

� PM10. Using “data fusion” methods increase significantly the performance of the model. Linear
regression was applied to the raw data with good results, especially when using both the model
estimation and the altitude as predictors. Different spatial interpolation methods perform simi-
larly, despite the increasing complexity of the techniques. For this reason, the best method that
we suggest is the simplest one, which is Linear Regression with two predictors and IDW on top
of it.

� NO2. The performance of the raw model is not optimal, especially for some stations in com-
plex terrain so it is hard to improve the results with any postprocessing. However, a partial
improvement was obtained using Regression Kriging and Gaussian Process.

� O3. The raw estimations of Ozone concentration are already performing well, still, there is a
systematic positive bias for most of the stations. As for PM10, the application of linear regression
and a simple interpolation of the residual as IDW improve the results. Also in this case there
is no need for a more complex method since all spatial interpolation methods give very similar
results.

We want to point out the fact that the more complex interpolation techniques (Kriging and GPR) do
not always improve the results and their performances are very similar to the simpler ones, such as
IDW method (or RBF). This result is probably a consequence of the small number of stations that
are used. Further analysis can be done in order to explore different hyperparameters and different
techniques, but the small amount of data limits the effectiveness of these methods.

Concerning possible future research work, there are two main ways to continue this project:

� The first one consists in increasing the model domain. The logical step is to apply the same
methodologies to the whole Po Valley [38]. Of course, in order to do so, one has to have access
to a model that runs over a much bigger domain and to the measurements of all the stations
scattered in the region, which are of competence of the different regional ARPAs. Nevertheless,
increasing the model domain should improves the performance of data fusion methods because
the number of stations (data used for the interpolation) considered would be much higher (more
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than 150 stations). Another advantage is the fact that the whole Po Valley is a closed and
homogeneous area surrounded by mountains, on which the boundary conditions have less effect
on the model estimation, in comparison with what happens in the case of the actual domain.
Finally, CMT models such as CAMx work better for larger domains.

� On the other hand, some data assimilation (DA) [39] techniques could be successfully applied
to the problem. In this work, all the proposed methods, are postprocessing tools applied to
the raw model output and cannot, by any means affect how the model computation. Data
Assimilation takes the interpolation of measurements with model estimations to the next logical
level. The observational data are used to affect the model output in a way that accounts for the
uncertainties in both, in order to estimate the possible state of the system. Data Assimilation
is commonly used in Meteorological models but can be applied also to Air Quality models. The
most important Data Assimilation techniques are Optimal Interpolation, Variational methods
and Kalman filter methods ( [20]). The application of data assimilation can, in principle, improve
the results but the algorithms and models needed are much more complex to be implemented
and to be studied.

Finally, the methodologies explored in this work can be the starting point to devise a technique to
correct the forecast of the model for the upcoming days on the basis of Model Output Statistics (MOS)
( [40]), widely used in weather forecasts.
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Appendix A

Tables

In this Appendix, we report the tables of the statistical estimators in Sec. 3.3.2 computed for each im-
plemented method. Tables are organized depending on the used technique. There are some acronyms
used in this section for table readability that are not used in the rest of the thesis:

� reg1: Linear Regression with only model estimations as a predictor

� reg2: Linear Regression with model estimations and altitudes as predictors

� BC: Box-Cox transformation

� gau: gaussian, it can be a variogram or a radial basis function

� invm: inverse multiquadric radial basis function

� invq: inverse quadratic radial basis function

� exp: exponential variogram

� sph: spherical variogram

Remember that, even if it is not written RBF and GPR methods are always preceded by some kind
of linear regression.

Station model reg1 reg1+BC reg2 reg2+BC
BL belluno 45.27 32.37 29.98 26.40 23.70
BL feltre 38.79 27.83 27.87 28.49 31.27
BL pieve 100.26 122.50 113.09 47.07 41.69
PD p colli 39.60 18.36 18.08 19.21 18.69
PD este 34.01 14.57 15.62 12.55 12.59
RO badia 29.51 24.79 26.45 18.92 19.06
RO adria 31.42 18.26 18.64 26.20 26.00
RO borsea 28.50 25.77 27.62 18.91 19.17

TV conegliano 67.83 46.03 45.82 44.85 43.20
TV mansue 24.72 19.35 20.97 17.02 16.77
TV lancieri 29.55 14.57 15.36 14.90 15.31
VE san dona 23.65 21.17 22.56 16.74 16.87
VE bissuola 25.16 17.59 18.60 14.97 15.11
VI schio 57.28 30.71 30.73 26.52 24.72
VI qitalia 33.17 15.45 16.67 15.57 16.18

VR bcnuova 51.80 79.71 75.21 60.90 45.44
VR legnago 30.88 18.19 19.88 14.60 14.82
VR giarol 25.11 18.32 20.64 14.03 14.81

PD mandria 30.43 13.62 14.57 13.53 14.12
PD Monselice 38.65 16.30 17.24 14.47 14.19

Table A.1: PM10: NME values for different linear regression models
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Station model reg1 reg1+BC reg2 reg2+BC
BL belluno 21.93 21.88 15.54 14.21 4.86
BL feltre 9.48 -3.99 -7.30 -18.36 -24.72
BL pieve 93.40 122.50 113.09 40.25 36.17
PD p colli 27.94 9.30 7.31 14.05 12.87
PD este 20.21 1.99 0.63 5.11 3.97
RO badia -9.54 -21.06 -23.29 -12.59 -13.08
RO adria 14.89 6.75 2.84 24.56 23.79
RO borsea -12.52 -23.20 -25.50 -14.55 -15.13

TV conegliano 63.95 38.44 37.41 39.05 37.05
TV mansue 4.40 -9.03 -11.27 1.08 0.61
TV lancieri 19.41 -4.44 -3.51 -7.26 -7.99
VE san dona -2.77 -16.01 -18.12 -6.83 -7.21
VE bissuola 3.95 -11.30 -12.61 -6.75 -7.40
VI schio 47.21 19.23 17.07 10.80 6.11
VI qitalia 22.96 -5.25 -4.12 -10.28 -10.81

VR bcnuova 14.26 72.28 67.82 -39.04 -22.98
VR legnago 1.55 -10.49 -13.23 -1.36 -2.36
VR giarol -3.29 -14.78 -18.24 -4.54 -6.14

PD mandria 19.54 -4.30 -3.53 -6.99 -7.58
PD Monselice 27.51 7.78 7.17 8.89 7.85

Table A.2: PM10:NMB values for different linear regression models

Station model reg1 reg1+BC reg2 reg2+BC
BL belluno 0.35 0.69 0.69 0.73 0.74
BL feltre 0.21 0.41 0.40 0.46 0.46
BL pieve 0.49 0.81 0.83 0.71 0.77
PD p colli 0.65 0.90 0.90 0.92 0.92
PD este 0.62 0.92 0.90 0.95 0.95
RO badia 0.53 0.85 0.84 0.88 0.88
RO adria 0.59 0.89 0.87 0.91 0.91
RO borsea 0.56 0.87 0.86 0.89 0.89

TV conegliano 0.62 0.66 0.63 0.73 0.74
TV mansue 0.74 0.80 0.77 0.84 0.84
TV lancieri 0.76 0.90 0.89 0.91 0.90
VE san dona 0.71 0.86 0.85 0.87 0.87
VE bissuola 0.73 0.90 0.89 0.91 0.91
VI schio 0.61 0.77 0.76 0.76 0.78
VI qitalia 0.68 0.86 0.84 0.89 0.89

VR bcnuova 0.46 0.65 0.68 0.38 0.57
VR legnago 0.51 0.85 0.84 0.88 0.88
VR giarol 0.69 0.90 0.89 0.90 0.90

PD mandria 0.66 0.91 0.89 0.92 0.92
PD Monselice 0.61 0.90 0.88 0.94 0.93

Table A.3: PM10: Correlation values for different linear regression models

Station model reg2 idw reg2+idw
BL belluno 45.27 26.40 27.21 21.71
BL feltre 38.79 28.49 31.10 29.42
BL pieve 100.26 47.07 51.24 46.35
PD p colli 39.60 19.21 15.80 16.17
PD este 34.01 12.55 10.71 9.98
RO badia 29.51 18.92 21.89 15.40
RO adria 31.42 26.20 17.55 28.49
RO borsea 28.50 18.91 24.40 16.99

TV conegliano 67.83 44.85 51.21 41.71
TV mansue 24.72 17.02 22.90 13.23
TV lancieri 29.55 14.90 12.92 12.19
VE san dona 23.65 16.74 20.94 13.90
VE bissuola 25.16 14.97 15.48 11.93
VI schio 57.28 26.52 42.11 26.44
VI qitalia 33.17 15.57 16.37 14.87

VR bcnuova 51.80 60.90 63.30 59.30
VR legnago 30.88 14.60 13.91 11.43
VR giarol 25.11 14.03 21.12 13.99

PD mandria 30.43 13.53 13.31 14.28
PD Monselice 38.65 14.47 13.93 11.15

Table A.4: PM10: NME values for IDW and Regression IDW
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Station model reg2 idw reg+idw
BL belluno 21.93 14.21 -21.34 3.13
BL feltre 9.48 -18.36 -14.19 -22.91
BL pieve 93.40 40.25 45.98 18.56
PD p colli 27.94 14.05 7.51 10.41
PD este 20.21 5.11 -0.96 -1.23
RO badia -9.54 -12.59 -20.93 -12.62
RO adria 14.89 24.56 6.03 28.00
RO borsea -12.52 -14.55 -23.74 -15.74

TV conegliano 63.95 39.05 47.42 37.84
TV mansue 4.40 1.08 -20.00 -6.10
TV lancieri 19.41 -7.26 5.93 -8.09
VE san dona -2.77 -6.83 -17.41 -7.20
VE bissuola 3.95 -6.75 -9.78 -4.99
VI schio 47.21 10.80 25.77 15.47
VI qitalia 22.96 -10.28 7.41 -10.81

VR bcnuova 14.26 -39.04 -9.48 -33.92
VR legnago 1.55 -1.36 -7.58 0.86
VR giarol -3.29 -4.54 -14.86 -0.83

PD mandria 19.54 -6.99 3.40 -9.31
PD Monselice 27.51 8.89 10.21 5.16

Table A.5: PM10: NMB values for IDW and Regression IDW

Station model reg2 idw reg+idw
BL belluno 0.35 0.73 0.76 0.76
BL feltre 0.21 0.46 0.50 0.50
BL pieve 0.49 0.71 0.60 0.60
PD p colli 0.65 0.92 0.92 0.92
PD este 0.62 0.95 0.96 0.96
RO badia 0.53 0.88 0.95 0.95
RO adria 0.59 0.91 0.94 0.94
RO borsea 0.56 0.89 0.95 0.95

TV conegliano 0.62 0.73 0.80 0.80
TV mansue 0.74 0.84 0.91 0.91
TV lancieri 0.76 0.91 0.95 0.95
VE san dona 0.71 0.87 0.92 0.92
VE bissuola 0.73 0.91 0.95 0.95
VI schio 0.61 0.76 0.80 0.80
VI qitalia 0.68 0.89 0.91 0.91

VR bcnuova 0.46 0.38 0.42 0.42
VR legnago 0.51 0.88 0.94 0.94
VR giarol 0.69 0.90 0.90 0.90

PD mandria 0.66 0.92 0.92 0.92
PD Monselice 0.61 0.94 0.96 0.96

Table A.6: PM10: Correlation values for IDW and Regression IDW

Station model reg2 RBF gau RBF invq RBF invm
BL belluno 45.27 24.01 24.91 21.98 20.29
BL feltre 38.79 30.60 28.13 28.12 28.56
BL pieve 100.26 42.37 44.86 44.39 45.38
PD p colli 39.60 18.78 16.92 16.81 16.80
PD este 34.01 12.58 11.18 10.73 11.00
RO badia 29.51 19.05 17.57 13.47 10.31
RO adria 31.42 25.97 27.38 28.75 31.04
RO borsea 28.50 19.13 18.41 16.40 15.84

TV conegliano 67.83 43.52 45.22 42.92 41.55
TV mansue 24.72 16.81 16.21 13.74 13.44
TV lancieri 29.55 15.21 14.31 12.40 11.39
VE san dona 23.65 16.86 16.21 14.27 12.98
VE bissuola 25.16 15.09 14.32 12.36 10.99
VI schio 57.28 25.09 26.76 26.71 26.97
VI qitalia 33.17 16.02 15.26 14.76 14.43

VR bcnuova 51.80 47.76 59.98 59.34 59.59
VR legnago 30.88 14.78 14.77 12.84 11.98
VR giarol 25.11 14.63 13.82 13.65 13.93

PD mandria 30.43 13.98 13.73 14.03 15.15
PD Monselice 38.65 14.23 12.79 12.19 12.45

Table A.7: PM10: NME values for RBF interpolation with different radial basis functions (gaussian, inverse quadratic
and inverse multiquadric)
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Station model reg2 RBF gau RBF invq RBF invm
BL belluno 21.93 6.75 10.48 7.24 4.47
BL feltre 9.48 -23.42 -17.55 -19.70 -22.26
BL pieve 93.40 37.12 33.58 26.25 19.08
PD p colli 27.94 13.08 10.57 10.74 10.31
PD este 20.21 4.18 -3.66 -2.67 -3.07
RO badia -9.54 -13.01 -11.17 -9.93 -8.11
RO adria 14.89 23.91 25.92 28.39 31.04
RO borsea -12.52 -15.04 -13.86 -14.53 -15.05

TV conegliano 63.95 37.44 39.96 38.81 38.04
TV mansue 4.40 0.66 0.32 -3.59 -6.99
TV lancieri 19.41 -7.87 -6.47 -7.12 -7.49
VE san dona -2.77 -7.18 -6.11 -5.79 -5.09
VE bissuola 3.95 -7.30 -5.87 -4.38 -2.77
VI schio 47.21 7.11 12.01 14.65 17.70
VI qitalia 22.96 -10.75 -9.71 -10.29 -10.82

VR bcnuova 14.26 -25.55 -36.68 -34.83 -33.19
VR legnago 1.55 -2.18 -0.43 1.27 2.84
VR giarol -3.29 -5.83 -3.39 -1.77 -0.23

PD mandria 19.54 -7.49 -7.19 -8.57 -9.97
PD Monselice 27.51 8.04 6.16 6.22 6.02

Table A.8: PM10: NMB values for RBF interpolation with different radial basis functions (gaussian, inverse quadratic
and inverse multiquadric)

Station model reg2 RBF gau RBF invq RBF invm
BL belluno 0.35 0.74 0.73 0.76 0.78
BL feltre 0.21 0.46 0.46 0.49 0.53
BL pieve 0.49 0.76 0.68 0.65 0.62
PD p colli 0.65 0.92 0.92 0.92 0.91
PD este 0.62 0.95 0.95 0.95 0.95
RO badia 0.53 0.88 0.89 0.95 0.97
RO adria 0.59 0.91 0.91 0.93 0.94
RO borsea 0.56 0.89 0.90 0.94 0.97

TV conegliano 0.62 0.74 0.75 0.79 0.81
TV mansue 0.74 0.84 0.85 0.89 0.91
TV lancieri 0.76 0.90 0.91 0.95 0.96
VE san dona 0.71 0.87 0.87 0.90 0.92
VE bissuola 0.73 0.91 0.92 0.94 0.95
VI schio 0.61 0.78 0.76 0.78 0.80
VI qitalia 0.68 0.89 0.89 0.91 0.92

VR bcnuova 0.46 0.53 0.38 0.40 0.42
VR legnago 0.51 0.88 0.88 0.91 0.93
VR giarol 0.69 0.90 0.90 0.91 0.90

PD mandria 0.66 0.92 0.92 0.92 0.91
PD Monselice 0.61 0.93 0.95 0.95 0.95

Table A.9: PM10: Correlation values for RBF interpolation with different radial basis functions (gaussian, inverse
quadratic and inverse multiquadric)

Station model reg2 RK gau RK exp RK sph
BL belluno 45.27 26.40 23.68 21.26 20.95
BL feltre 38.79 28.49 29.33 28.04 28.56
BL pieve 100.26 47.07 48.45 45.18 45.55
PD p colli 39.60 19.21 18.15 17.25 17.44
PD este 34.01 12.55 11.81 10.43 9.89
RO badia 29.51 18.92 13.73 13.61 13.37
RO adria 31.42 26.20 28.57 28.53 29.08
RO borsea 28.50 18.91 17.18 16.94 16.87

TV conegliano 67.83 44.85 42.63 42.53 42.48
TV mansue 24.72 17.02 14.21 13.52 13.93
TV lancieri 29.55 14.90 11.83 11.84 12.12
VE san dona 23.65 16.74 13.64 13.70 13.53
VE bissuola 25.16 14.97 11.53 11.66 11.35
VI schio 57.28 26.52 28.10 25.97 25.91
VI qitalia 33.17 15.57 14.61 13.53 13.67

VR bcnuova 51.80 60.90 61.66 61.56 61.26
VR legnago 30.88 14.60 13.18 12.85 13.23
VR giarol 25.11 14.03 14.72 14.23 14.48

PD mandria 30.43 13.53 14.93 13.25 13.59
PD Monselice 38.65 14.47 12.64 11.26 11.79

Table A.10: heading

Table A.11: PM10: NME values for Regression Kriging with different types of variogram (gaussian, exponential,
spherical)
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Station model reg2 RK gau RK exp RK sph
BL belluno 21.93 14.21 9.35 7.63 7.13
BL feltre 9.48 -18.36 -23.00 -21.68 -22.94
BL pieve 93.40 40.25 20.54 22.69 21.20
PD p colli 27.94 14.05 14.12 12.97 13.17
PD este 20.21 5.11 0.81 2.46 2.62
RO badia -9.54 -12.59 -9.22 -10.88 -10.82
RO adria 14.89 24.56 28.15 28.14 28.68
RO borsea -12.52 -14.55 -16.17 -15.71 -15.78

TV conegliano 63.95 39.05 39.23 39.18 39.14
TV mansue 4.40 1.08 -4.92 -4.20 -5.03
TV lancieri 19.41 -7.26 -7.74 -7.42 -7.67
VE san dona -2.77 -6.83 -6.32 -6.21 -5.94
VE bissuola 3.95 -6.75 -5.07 -4.78 -4.80
VI schio 47.21 10.80 18.22 16.19 16.48
VI qitalia 22.96 -10.28 -10.16 -9.66 -9.71

VR bcnuova 14.26 -39.04 -34.33 -34.53 -33.45
VR legnago 1.55 -1.36 -0.55 1.11 1.45
VR giarol -3.29 -4.54 -0.71 -1.30 -1.04

PD mandria 19.54 -6.99 -8.68 -8.04 -8.18
PD Monselice 27.51 8.89 8.12 7.30 7.54

Table A.12: PM10: NMB values for Regression Kriging with different types of variogram (gaussian, exponential,
spherical)

Station model reg2 RK gau RK exp RK sph
BL belluno 0.35 0.73 0.66 0.78 0.78
BL feltre 0.21 0.46 0.54 0.53 0.55
BL pieve 0.49 0.71 0.55 0.61 0.60
PD p colli 0.65 0.92 0.92 0.93 0.93
PD este 0.62 0.95 0.94 0.96 0.96
RO badia 0.53 0.88 0.94 0.96 0.96
RO adria 0.59 0.91 0.94 0.94 0.94
RO borsea 0.56 0.89 0.96 0.95 0.96

TV conegliano 0.62 0.73 0.81 0.80 0.80
TV mansue 0.74 0.84 0.90 0.91 0.91
TV lancieri 0.76 0.91 0.95 0.95 0.95
VE san dona 0.71 0.87 0.92 0.92 0.91
VE bissuola 0.73 0.91 0.95 0.94 0.95
VI schio 0.61 0.76 0.78 0.80 0.81
VI qitalia 0.68 0.89 0.89 0.92 0.92

VR bcnuova 0.46 0.38 0.39 0.38 0.39
VR legnago 0.51 0.88 0.91 0.92 0.92
VR giarol 0.69 0.90 0.89 0.90 0.89

PD mandria 0.66 0.92 0.90 0.93 0.92
PD Monselice 0.61 0.94 0.95 0.96 0.96

Table A.13: PM10: Correlation values for Regression Kriging with different types of variogram (gaussian, exponential,
spherical)

Station model reg2 GPR gaussian GPR matern
BL belluno 45.27 26.40 22.47 22.04
BL feltre 38.79 28.49 27.86 27.73
BL pieve 100.26 47.07 47.50 46.76
PD p colli 39.60 19.21 17.63 17.02
PD este 34.01 12.55 12.36 11.47
RO badia 29.51 18.92 15.20 15.42
RO adria 31.42 26.20 27.07 27.39
RO borsea 28.50 18.91 17.74 17.16

TV conegliano 67.83 44.85 43.17 42.94
TV mansue 24.72 17.02 15.07 14.60
TV lancieri 29.55 14.90 11.69 11.75
VE san dona 23.65 16.74 13.64 13.59
VE bissuola 25.16 14.97 11.91 11.97
VI schio 57.28 26.52 25.72 25.58
VI qitalia 33.17 15.57 14.29 14.30

VR bcnuova 51.80 60.90 61.81 61.63
VR legnago 30.88 14.60 12.99 12.82
VR giarol 25.11 14.03 14.98 14.83

PD mandria 30.43 13.53 14.62 14.12
PD Monselice 38.65 14.47 11.56 12.01

Table A.14: PM10: NME values for Gaussian Process regression with different types of kernel (Gaussian and Matern)
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Station model reg2 GPR gaussian GPR matern
BL belluno 21.93 14.21 6.94 6.43
BL feltre 9.48 -18.36 -21.72 -21.52
BL pieve 93.40 40.25 25.08 24.31
PD p colli 27.94 14.05 12.44 11.97
PD este 20.21 5.11 -0.34 -0.34
RO badia -9.54 -12.59 -12.35 -12.52
RO adria 14.89 24.56 26.67 26.94
RO borsea -12.52 -14.55 -17.00 -16.53

TV conegliano 63.95 39.05 40.11 39.82
TV mansue 4.40 1.08 -4.82 -4.91
TV lancieri 19.41 -7.26 -7.49 -7.40
VE san dona -2.77 -6.83 -5.40 -5.75
VE bissuola 3.95 -6.75 -4.92 -5.09
VI schio 47.21 10.80 15.57 15.54
VI qitalia 22.96 -10.28 -9.61 -9.92

VR bcnuova 14.26 -39.04 -34.01 -33.67
VR legnago 1.55 -1.36 -0.21 -0.02
VR giarol -3.29 -4.54 -2.23 -2.06

PD mandria 19.54 -6.99 -9.80 -9.16
PD Monselice 27.51 8.89 6.15 6.28

Table A.15: PM10: NMB values for Gaussian Process regression with different types of kernel (Gaussian and Matern)

Station model reg2 GPR gaussian GPR matern
BL belluno 0.35 0.73 0.76 0.76
BL feltre 0.21 0.46 0.52 0.52
BL pieve 0.49 0.71 0.59 0.60
PD p colli 0.65 0.92 0.93 0.92
PD este 0.62 0.95 0.94 0.95
RO badia 0.53 0.88 0.94 0.94
RO adria 0.59 0.91 0.94 0.94
RO borsea 0.56 0.89 0.95 0.96

TV conegliano 0.62 0.73 0.81 0.81
TV mansue 0.74 0.84 0.88 0.89
TV lancieri 0.76 0.91 0.96 0.95
VE san dona 0.71 0.87 0.91 0.91
VE bissuola 0.73 0.91 0.94 0.94
VI schio 0.61 0.76 0.80 0.80
VI qitalia 0.68 0.89 0.91 0.91

VR bcnuova 0.46 0.38 0.39 0.38
VR legnago 0.51 0.88 0.92 0.92
VR giarol 0.69 0.90 0.89 0.89

PD mandria 0.66 0.92 0.91 0.92
PD Monselice 0.61 0.94 0.96 0.95

Table A.16: PM10: Correlation values for Gaussian Process regression with different types of kernel (Gaussian and
Matern)

Station model reg1 reg1+BC reg2 reg2+BC
BL belluno 31.64 26.95 29.22 26.88 33.98
BL feltre 32.31 27.59 26.12 27.88 24.21
BL pieve 67.06 123.95 116.29 91.92 62.63
PD p colli 79.05 58.67 55.72 71.96 71.44
PD sgiust 30.61 10.41 10.27 11.20 10.56
PD este 17.07 17.41 18.29 14.49 14.64
RO badia 22.96 10.87 11.44 14.52 14.84
RO adria 22.90 19.63 21.64 12.09 11.92
RO borsea 22.26 11.96 12.56 12.21 12.63

TV conegliano 67.83 41.90 43.33 39.04 38.74
TV mansue 61.03 42.59 39.64 56.85 56.77
TV lancieri 21.66 12.05 12.42 11.60 12.30
VE san dona 16.62 21.53 22.71 17.68 18.00
VE bissuola 35.98 12.18 12.44 11.35 11.01
VI asiago 69.49 291.17 290.09 109.31 91.84
VI bassano 33.52 18.10 18.21 16.86 16.48
VI schio 30.62 30.41 31.77 29.05 32.58
VI qitalia 39.86 18.46 19.39 18.54 19.59

VR legnago 25.37 36.39 37.63 31.85 32.22
VR giarol 53.66 21.70 23.48 16.26 15.20

PD mandria 18.46 15.47 14.86 18.49 18.92

Table A.17: NO2: NME values for different lienar regression models
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Station model reg1 reg1+BC reg2 reg2+BC
BL belluno -23.74 -25.19 -27.96 -25.88 -33.91
BL feltre 10.04 12.38 8.05 13.94 1.76
BL pieve 59.25 123.95 116.29 91.79 61.40
PD p colli 78.95 58.67 55.72 71.96 71.44
PD sgiust 25.98 4.68 3.39 7.68 6.16
PD este 2.14 -14.67 -15.91 -10.75 -11.55
RO badia 9.26 -0.85 -3.41 12.01 12.12
RO adria -12.91 -17.77 -20.33 -2.80 -1.82
RO borsea 11.22 -2.99 -4.90 5.55 5.40

TV conegliano 63.95 27.77 30.22 19.45 18.41
TV mansue 60.92 42.59 39.63 56.85 56.77
TV lancieri 14.14 -8.83 -9.28 -8.83 -9.90
VE san dona -5.44 -20.83 -22.11 -16.21 -16.51
VE bissuola 35.51 7.95 8.07 6.84 6.28
VI asiago 59.87 291.17 290.09 26.68 24.42
VI bassano 14.33 -0.31 -2.59 4.47 0.62
VI schio -16.96 -28.60 -30.16 -27.89 -32.13
VI qitalia 37.34 4.61 6.81 -4.39 -5.50

VR legnago -24.85 -36.39 -37.63 -31.85 -32.22
VR giarol 52.91 20.08 21.85 12.06 9.34

PD mandria 13.13 -13.54 -12.91 -16.82 -17.41

Table A.18: NO2: NMB values for different linear regression models

Station model reg1 reg1+BC reg2 reg2+BC
BL belluno 0.23 0.53 0.52 0.59 0.60
BL feltre 0.24 0.51 0.49 0.54 0.54
BL pieve 0.50 0.49 0.51 0.59 0.62
PD p colli 0.64 0.80 0.80 0.82 0.83
PD sgiust 0.60 0.85 0.84 0.87 0.87
PD este 0.68 0.84 0.84 0.88 0.89
RO badia 0.64 0.83 0.83 0.88 0.88
RO adria 0.68 0.83 0.82 0.85 0.85
RO borsea 0.64 0.80 0.79 0.85 0.84

TV conegliano 0.62 0.49 0.49 0.45 0.44
TV mansue 0.73 0.81 0.80 0.83 0.83
TV lancieri 0.61 0.82 0.82 0.83 0.83
VE san dona 0.69 0.85 0.84 0.86 0.85
VE bissuola 0.71 0.85 0.84 0.87 0.87
VI asiago 0.51 -0.14 -0.13 -0.26 -0.21
VI bassano 0.48 0.67 0.65 0.71 0.71
VI schio 0.35 0.44 0.43 0.47 0.47
VI qitalia 0.22 0.41 0.40 0.38 0.33

VR legnago 0.66 0.81 0.81 0.86 0.86
VR giarol 0.61 0.80 0.79 0.75 0.73

PD mandria 0.69 0.84 0.84 0.83 0.83

Table A.19: NO2: Correlation values for different linear regression models

Station model reg2+BC idw reg2+idw reg2+BC+idw
BL belluno 31.64 33.98 45.97 39.36 44.39
BL feltre 32.31 24.21 26.92 26.58 23.29
BL pieve 67.06 62.63 76.14 119.83 96.12
PD p colli 79.05 71.44 68.89 83.80 82.89
PD sgiust 30.61 10.56 13.47 11.37 10.78
PD este 17.07 14.64 25.76 29.05 31.62
RO badia 22.96 14.84 10.62 16.56 15.33
RO adria 22.90 11.92 29.32 11.04 10.81
RO borsea 22.26 12.63 13.30 10.53 10.25

TV conegliano 67.83 38.74 49.74 34.59 34.07
TV mansue 61.03 56.77 29.32 50.99 50.90
TV lancieri 21.66 12.30 13.67 13.88 14.86
VE san dona 16.62 18.00 28.61 22.79 23.58
VE bissuola 35.98 11.01 20.19 10.91 10.34
VI asiago 69.49 91.84 88.64 122.75 98.34
VI bassano 33.52 16.48 21.74 17.24 16.64
VI schio 30.62 32.58 37.00 28.12 31.51
VI qitalia 39.86 19.59 30.56 18.18 19.25

VR legnago 25.37 32.22 38.87 33.99 34.85
VR giarol 53.66 15.20 45.93 20.26 18.70

PD mandria 18.46 18.92 10.28 21.47 23.09

Table A.20: NO2 NME values for IDW and regression IDW
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Station model reg2+BC idw reg2+idw reg2+BC+idw
BL belluno -23.74 -33.91 -45.81 -39.36 -44.39
BL feltre 10.04 1.76 -12.22 13.73 3.47
BL pieve 59.25 61.40 70.97 119.83 96.12
PD p colli 78.95 71.44 68.89 83.80 82.89
PD sgiust 25.98 6.16 6.10 8.88 7.49
PD este 2.14 -11.55 -25.70 -29.05 -31.62
RO badia 9.26 12.12 -0.39 15.73 14.30
RO adria -12.91 -1.82 -29.05 -3.98 -3.68
RO borsea 11.22 5.40 2.62 4.86 3.67

TV conegliano 63.95 18.41 42.80 11.64 9.94
TV mansue 60.92 56.77 19.67 50.93 50.90
TV lancieri 14.14 -9.90 -7.65 -12.94 -14.20
VE san dona -5.44 -16.51 -28.31 -22.57 -23.35
VE bissuola 35.51 6.28 19.44 8.61 7.88
VI asiago 59.87 24.42 16.08 41.63 36.84
VI bassano 14.33 0.62 -3.90 6.60 2.61
VI schio -16.96 -32.13 -35.12 -26.36 -30.89
VI qitalia 37.34 -5.50 28.23 -1.40 -2.01

VR legnago -24.85 -32.22 -38.87 -33.99 -34.85
VR giarol 52.91 9.34 45.88 18.83 16.32

PD mandria 13.13 -17.41 -2.66 -20.69 -22.42

Table A.21: NO2: NMB values for IDW and regression IDW

Station model reg2+BC idw reg2+idw reg2+BC+idw
BL belluno 0.23 0.60 0.57 0.69 0.73
BL feltre 0.24 0.54 0.47 0.61 0.60
BL pieve 0.50 0.62 0.45 0.62 0.68
PD p colli 0.64 0.83 0.82 0.82 0.83
PD sgiust 0.60 0.87 0.78 0.89 0.89
PD este 0.68 0.89 0.89 0.90 0.89
RO badia 0.64 0.88 0.87 0.92 0.92
RO adria 0.68 0.85 0.85 0.88 0.89
RO borsea 0.64 0.84 0.82 0.90 0.89

TV conegliano 0.62 0.44 0.63 0.47 0.47
TV mansue 0.73 0.83 0.70 0.84 0.84
TV lancieri 0.61 0.83 0.77 0.84 0.84
VE san dona 0.69 0.85 0.82 0.89 0.89
VE bissuola 0.71 0.87 0.86 0.91 0.91
VI asiago 0.51 -0.21 -0.21 -0.24 -0.20
VI bassano 0.48 0.71 0.55 0.71 0.71
VI schio 0.35 0.47 0.37 0.45 0.47
VI qitalia 0.22 0.33 0.37 0.38 0.32

VR legnago 0.66 0.86 0.83 0.89 0.88
VR giarol 0.61 0.73 0.80 0.79 0.76

PD mandria 0.69 0.83 0.85 0.84 0.83

Table A.22: NO2: Correlation values for IDW and regression IDW

Station model reg2+BoxCox RBF gau RBF invq RBF invm
BL belluno 31.64 26.88 33.98 34.09 35.59
BL feltre 32.31 27.88 24.21 24.22 24.12
BL pieve 67.06 91.92 62.63 63.08 65.79
PD p colli 79.05 71.96 71.44 71.78 74.52
PD sgiust 30.61 11.20 10.56 10.58 10.67
PD este 17.07 14.49 14.64 15.02 16.92
RO badia 22.96 14.52 14.84 14.87 15.13
RO adria 22.90 12.09 11.92 11.90 11.65
RO borsea 22.26 12.21 12.63 12.61 12.22

TV conegliano 67.83 39.04 38.74 38.70 38.03
TV mansue 61.03 56.85 56.77 56.76 56.32
TV lancieri 21.66 11.60 12.30 12.30 12.53
VE san dona 16.62 17.68 18.00 18.01 18.50
VE bissuola 35.98 11.35 11.01 11.01 10.81
VI asiago 69.49 109.31 91.84 91.94 93.23
VI bassano 33.52 16.86 16.48 16.48 16.43
VI schio 30.62 29.05 32.58 32.55 32.25
VI qitalia 39.86 18.54 19.59 19.58 19.38

VR legnago 25.37 31.85 32.22 32.23 32.48
VR giarol 53.66 16.26 15.20 15.23 15.71

PD mandria 18.46 18.49 18.92 18.95 19.34

Table A.23: NO2: NME values for RBF interpolation using different radial basis functions (gaussian, inverse quadratic,
inverse multiquadric)
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Station model reg2+BoxCox RBF gau RBF invq RBF invm
BL belluno -23.74 -25.88 -33.91 -34.04 -35.59
BL feltre 10.04 13.94 1.76 1.82 2.21
BL pieve 59.25 91.79 61.40 61.89 64.98
PD p colli 78.95 71.96 71.44 71.78 74.52
PD sgiust 25.98 7.68 6.16 6.21 6.64
PD este 2.14 -10.75 -11.55 -12.24 -15.45
RO badia 9.26 12.01 12.12 12.19 13.04
RO adria -12.91 -2.80 -1.82 -1.80 -1.78
RO borsea 11.22 5.55 5.40 5.42 5.51

TV conegliano 63.95 19.45 18.41 18.34 17.26
TV mansue 60.92 56.85 56.77 56.76 56.32
TV lancieri 14.14 -8.83 -9.90 -9.93 -10.63
VE san dona -5.44 -16.21 -16.51 -16.54 -17.43
VE bissuola 35.51 6.84 6.28 6.33 6.62
VI asiago 59.87 26.68 24.42 24.62 27.09
VI bassano 14.33 4.47 0.62 0.68 1.31
VI schio -16.96 -27.89 -32.13 -32.10 -31.77
VI qitalia 37.34 -4.39 -5.50 -5.42 -4.59

VR legnago -24.85 -31.85 -32.22 -32.23 -32.48
VR giarol 52.91 12.06 9.34 9.42 10.57

PD mandria 13.13 -16.82 -17.41 -17.46 -18.03

Table A.24: NO2: NMB values for RBF interpolation using different radial basis functions (gaussian, inverse quadratic,
inverse multiquadric)

Station model reg2+BoxCox RBF gau RBF invq RBF invm
BL belluno 0.23 0.59 0.60 0.60 0.63
BL feltre 0.24 0.54 0.54 0.54 0.55
BL pieve 0.50 0.59 0.62 0.62 0.65
PD p colli 0.64 0.82 0.83 0.83 0.83
PD sgiust 0.60 0.87 0.87 0.87 0.87
PD este 0.68 0.88 0.89 0.89 0.90
RO badia 0.64 0.88 0.88 0.88 0.89
RO adria 0.68 0.85 0.85 0.85 0.86
RO borsea 0.64 0.85 0.84 0.84 0.86

TV conegliano 0.62 0.45 0.44 0.44 0.45
TV mansue 0.73 0.83 0.83 0.83 0.84
TV lancieri 0.61 0.83 0.83 0.83 0.83
VE san dona 0.69 0.86 0.85 0.85 0.86
VE bissuola 0.71 0.87 0.87 0.87 0.88
VI asiago 0.51 -0.26 -0.21 -0.21 -0.21
VI bassano 0.48 0.71 0.71 0.71 0.71
VI schio 0.35 0.47 0.47 0.47 0.47
VI qitalia 0.22 0.38 0.33 0.33 0.33

VR legnago 0.66 0.86 0.86 0.86 0.87
VR giarol 0.61 0.75 0.73 0.73 0.73

PD mandria 0.69 0.83 0.83 0.83 0.84

Table A.25: NO2: Correlation values for RBF interpolation using different radial basis functions (gaussian, inverse
quadratic, inverse multiquadric)

Station model reg2+BC RK gau RK exp RK sph
BL belluno 31.64 26.88 36.84 35.80 36.31
BL feltre 32.31 27.88 23.62 23.71 23.65
BL pieve 67.06 91.92 63.37 65.99 64.85
PD p colli 79.05 71.96 78.26 79.51 78.89
PD sgiust 30.61 11.20 10.35 10.50 10.45
PD este 17.07 14.49 24.40 18.24 22.62
RO badia 22.96 14.52 15.10 14.90 15.07
RO adria 22.90 12.09 11.71 11.72 11.75
RO borsea 22.26 12.21 12.15 12.27 12.18

TV conegliano 67.83 39.04 38.16 38.45 38.18
TV mansue 61.03 56.85 57.26 57.05 57.30
TV lancieri 21.66 11.60 13.02 12.84 13.01
VE san dona 16.62 17.68 20.71 19.44 20.18
VE bissuola 35.98 11.35 10.26 10.73 10.47
VI asiago 69.49 109.31 97.66 95.15 96.28
VI bassano 33.52 16.86 16.28 16.43 16.40
VI schio 30.62 29.05 32.12 32.42 32.25
VI qitalia 39.86 18.54 19.70 19.91 19.83

VR legnago 25.37 31.85 32.21 32.18 32.22
VR giarol 53.66 16.26 18.38 16.87 17.69

PD mandria 18.46 18.49 18.86 19.00 19.01

Table A.26: NO2: NME values for Regression Kriging with different types of variogram (gaussian, exponential, spherical)
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Station model reg2+BC RK gau RK exp RK sph
BL belluno -23.74 -25.88 -36.80 -35.74 -36.27
BL feltre 10.04 13.94 1.68 1.81 1.76
BL pieve 59.25 91.79 62.61 64.75 63.89
PD p colli 78.95 71.96 78.26 79.51 78.89
PD sgiust 25.98 7.68 6.16 6.11 6.16
PD este 2.14 -10.75 -22.82 -16.65 -21.07
RO badia 9.26 12.01 14.16 13.71 14.13
RO adria -12.91 -2.80 -1.66 -1.55 -1.60
RO borsea 11.22 5.55 6.21 5.82 6.08

TV conegliano 63.95 19.45 17.15 17.61 17.26
TV mansue 60.92 56.85 57.26 57.05 57.30
TV lancieri 14.14 -8.83 -11.31 -10.93 -11.14
VE san dona -5.44 -16.21 -20.00 -18.42 -19.39
VE bissuola 35.51 6.84 5.50 6.11 5.89
VI asiago 59.87 26.68 31.26 28.23 29.97
VI bassano 14.33 4.47 1.06 0.79 0.81
VI schio -16.96 -27.89 -31.64 -31.98 -31.79
VI qitalia 37.34 -4.39 -4.46 -4.90 -4.63

VR legnago -24.85 -31.85 -32.21 -32.18 -32.22
VR giarol 52.91 12.06 14.55 12.05 13.56

PD mandria 13.13 -16.82 -17.48 -17.61 -17.60

Table A.27: NO2: NMB values for Regression Kriging with different types of variogram (gaussian, exponential, spher-
ical)

Station model reg2+BC RK gau RK exp RK sph
BL belluno 0.23 0.59 0.65 0.64 0.65
BL feltre 0.24 0.54 0.57 0.57 0.57
BL pieve 0.50 0.59 0.66 0.64 0.66
PD p colli 0.64 0.82 0.80 0.80 0.80
PD sgiust 0.60 0.87 0.87 0.87 0.87
PD este 0.68 0.88 0.73 0.86 0.78
RO badia 0.64 0.88 0.91 0.91 0.91
RO adria 0.68 0.85 0.86 0.86 0.86
RO borsea 0.64 0.85 0.87 0.86 0.86

TV conegliano 0.62 0.45 0.44 0.44 0.44
TV mansue 0.73 0.83 0.84 0.83 0.84
TV lancieri 0.61 0.83 0.83 0.83 0.83
VE san dona 0.69 0.86 0.86 0.86 0.86
VE bissuola 0.71 0.87 0.89 0.88 0.89
VI asiago 0.51 -0.26 -0.22 -0.22 -0.22
VI bassano 0.48 0.71 0.72 0.71 0.72
VI schio 0.35 0.47 0.46 0.47 0.46
VI qitalia 0.22 0.38 0.31 0.30 0.30

VR legnago 0.66 0.86 0.87 0.86 0.87
VR giarol 0.61 0.75 0.71 0.71 0.71

PD mandria 0.69 0.83 0.83 0.83 0.83

Table A.28: NO2: Correlation values for Regression Kriging with different types of variogram (gaussian, exponential,
spherical)

Station model reg2 GPR gaussian GPR matern
BL belluno 31.64 26.88 36.08 35.80
BL feltre 32.31 27.88 24.19 24.20
BL pieve 67.06 91.92 65.74 65.07
PD p colli 79.05 71.96 74.84 74.87
PD sgiust 30.61 11.20 10.31 10.36
PD este 17.07 14.49 15.02 14.96
RO badia 22.96 14.52 14.77 14.79
RO adria 22.90 12.09 11.84 11.87
RO borsea 22.26 12.21 12.36 12.42

TV conegliano 67.83 39.04 38.74 38.73
TV mansue 61.03 56.85 57.04 57.00
TV lancieri 21.66 11.60 12.68 12.62
VE san dona 16.62 17.68 18.35 18.29
VE bissuola 35.98 11.35 11.03 10.86
VI asiago 69.49 109.31 92.04 91.95
VI bassano 33.52 16.86 16.39 16.41
VI schio 30.62 29.05 32.54 32.55
VI qitalia 39.86 18.54 19.69 19.69

VR legnago 25.37 31.85 32.48 32.43
VR giarol 53.66 16.26 15.50 15.50

PD mandria 18.46 18.49 19.19 19.12

Table A.29: NO2: NME values for Gaussian Process regression with different types of kernel (Gaussian and Matern)
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Station model reg2 GPR gaussian GPR matern
BL belluno -23.74 -25.88 -36.02 -35.74
BL feltre 10.04 13.94 1.73 1.77
BL pieve 59.25 91.79 64.50 63.84
PD p colli 78.95 71.96 74.84 74.87
PD sgiust 25.98 7.68 6.41 6.38
PD este 2.14 -10.75 -12.24 -12.85
RO badia 9.26 12.01 12.44 12.38
RO adria -12.91 -2.80 -1.84 -1.83
RO borsea 11.22 5.55 5.44 5.42

TV conegliano 63.95 19.45 18.20 18.20
TV mansue 60.92 56.85 57.04 57.00
TV lancieri 14.14 -8.83 -10.36 -10.30
VE san dona -5.44 -16.21 -17.07 -16.97
VE bissuola 35.51 6.84 6.18 6.35
VI asiago 59.87 26.68 25.32 25.23
VI bassano 14.33 4.47 0.82 0.80
VI schio -16.96 -27.89 -32.10 -32.11
VI qitalia 37.34 -4.39 -5.19 -5.22

VR legnago -24.85 -31.85 -32.48 -32.43
VR giarol 52.91 12.06 9.90 9.82

PD mandria 13.13 -16.82 -17.69 -17.63

Table A.30: NO2: NMB values for Gaussian Process regression with different types of kernel (Gaussian and Matern)

Station model reg2+Box-Cox GPR gaussian GPR matern
BL belluno 0.23 0.59 0.64 0.64
BL feltre 0.24 0.54 0.54 0.54
BL pieve 0.50 0.59 0.63 0.63
PD p colli 0.64 0.82 0.82 0.82
PD sgiust 0.60 0.87 0.88 0.88
PD este 0.68 0.88 0.88 0.89
RO badia 0.64 0.88 0.89 0.89
RO adria 0.68 0.85 0.86 0.85
RO borsea 0.64 0.85 0.85 0.85

TV conegliano 0.62 0.45 0.44 0.44
TV mansue 0.73 0.83 0.83 0.83
TV lancieri 0.61 0.83 0.83 0.83
VE san dona 0.69 0.86 0.86 0.86
VE bissuola 0.71 0.87 0.87 0.88
VI asiago 0.51 -0.26 -0.21 -0.21
VI bassano 0.48 0.71 0.72 0.72
VI schio 0.35 0.47 0.47 0.47
VI qitalia 0.22 0.38 0.32 0.32

VR legnago 0.66 0.86 0.87 0.87
VR giarol 0.61 0.75 0.71 0.71

PD mandria 0.69 0.83 0.83 0.83

Table A.31: NO2: Correlation values for Gaussian Process regression with different types of kernel (Gaussian and
Matern)

Station model reg1 reg2
BL belluno 23.02 11.78 11.88
BL feltre 25.55 11.36 11.63
BL pieve 19.26 8.75 10.84
PD p colli 20.90 4.95 5.17
PD sgiust 22.75 4.42 4.54
PD este 23.40 6.39 6.09
RO badia 20.23 5.99 5.54
RO adria 28.82 17.29 16.60
RO borsea 27.07 12.56 12.04

TV conegliano 29.29 9.74 9.31
TV mansue 15.00 5.67 6.04
TV lancieri 16.38 9.51 9.95
VE san dona 16.73 9.38 9.21
VE bissuola 12.03 11.02 11.69
VI asiago 12.07 11.41 13.80
VI bassano 21.92 4.82 5.22
VI schio 19.46 7.53 8.07
VI qitalia 19.65 11.62 11.97

VR bcnuova 15.93 7.90 7.09
VR legnago 17.22 6.04 6.54
VR giarol 29.87 8.35 8.49

PD mandria 15.08 9.02 9.43

Table A.32: O3: NME values for different linear regression models
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Station model reg1 reg2
BL belluno 22.21 10.42 11.01
BL feltre 24.73 10.77 11.16
BL pieve 16.78 5.60 9.00
PD p colli 20.10 -1.61 -2.36
PD sgiust 21.64 0.04 -0.79
PD este 22.48 2.62 1.94
RO badia 19.29 0.24 -0.58
RO adria 28.36 16.78 16.09
RO borsea 24.01 7.38 6.66

TV conegliano 29.04 9.20 8.43
TV mansue 13.16 -2.92 -3.90
TV lancieri 12.30 -4.02 -4.82
VE san dona 14.81 6.17 5.17
VE bissuola -1.36 -8.89 -9.79
VI asiago 5.77 -10.84 -11.70
VI bassano 20.83 -0.35 -1.34
VI schio 17.60 -5.28 -5.86
VI qitalia 14.32 -8.53 -9.37

VR bcnuova 13.26 -6.50 -4.10
VR legnago 16.36 -3.96 -4.87
VR giarol 29.66 5.41 4.64

PD mandria 8.04 -8.68 -9.20

Table A.33: O3: NMB values for different linear regression models

Station model reg1 reg2
BL belluno 0.77 0.91 0.92
BL feltre 0.78 0.93 0.93
BL pieve 0.69 0.89 0.88
PD p colli 0.68 0.92 0.92
PD sgiust 0.61 0.93 0.93
PD este 0.67 0.88 0.89
RO badia 0.68 0.87 0.88
RO adria 0.54 0.82 0.82
RO borsea 0.48 0.72 0.72

TV conegliano 0.76 0.93 0.93
TV mansue 0.79 0.91 0.91
TV lancieri 0.68 0.80 0.79
VE san dona 0.71 0.80 0.78
VE bissuola 0.64 0.80 0.78
VI asiago 0.62 0.88 0.82
VI bassano 0.74 0.94 0.94
VI schio 0.75 0.92 0.92
VI qitalia 0.57 0.68 0.69

VR bcnuova 0.69 0.88 0.89
VR legnago 0.75 0.91 0.91
VR giarol 0.67 0.85 0.84

PD mandria 0.69 0.91 0.91

Table A.34: O3: Correlation values for different linear regression models

Station model reg1 idw reg1+idw reg2+idw
BL belluno 23.02 11.78 6.51 6.36 5.92
BL feltre 25.55 11.36 11.33 10.41 10.30
BL pieve 19.26 8.75 7.97 4.74 5.42
PD p colli 20.90 4.95 5.30 3.87 3.90
PD sgiust 22.75 4.42 9.38 4.48 4.33
PD este 23.40 6.39 6.01 5.10 5.00
RO badia 20.23 5.99 6.58 4.28 4.20
RO adria 28.82 17.29 10.95 15.32 15.19
RO borsea 27.07 12.56 12.57 10.57 10.45

TV conegliano 29.29 9.74 13.87 9.07 8.65
TV mansue 15.00 5.67 8.73 6.41 6.81
TV lancieri 16.38 9.51 9.68 8.54 8.72
VE san dona 16.73 9.38 9.58 9.75 9.74
VE bissuola 12.03 11.02 18.91 9.93 10.20
VI asiago 12.07 11.41 12.50 9.96 13.33
VI bassano 21.92 4.82 8.30 5.22 5.19
VI schio 19.46 7.53 7.40 5.27 6.43
VI qitalia 19.65 11.62 11.59 10.57 10.74

VR bcnuova 15.93 7.90 10.30 7.18 6.59
VR legnago 17.22 6.04 6.56 5.25 5.48
VR giarol 29.87 8.35 14.86 9.81 8.82

PD mandria 15.08 9.02 12.54 8.17 8.23

Table A.35: O3 NME values for IDW and regression IDW
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Station model reg1 idw reg1+idw reg2+idw
BL belluno 22.21 10.42 2.93 5.52 4.62
BL feltre 24.73 10.77 5.52 9.88 9.58
BL pieve 16.78 5.60 -3.93 -1.06 1.86
PD p colli 20.10 -1.61 0.91 -1.94 -2.10
PD sgiust 21.64 0.04 6.35 2.31 1.69
PD este 22.48 2.62 2.90 3.80 3.76
RO badia 19.29 0.24 -0.29 -0.31 -0.55
RO adria 28.36 16.78 6.48 15.13 14.94
RO borsea 24.01 7.38 2.93 5.21 5.08

TV conegliano 29.04 9.20 12.96 8.77 8.16
TV mansue 13.16 -2.92 -5.21 -5.93 -6.52
TV lancieri 12.30 -4.02 -1.85 -3.43 -3.79
VE san dona 14.81 6.17 -1.03 7.26 6.75
VE bissuola -1.36 -8.89 -17.80 -7.90 -8.26
VI asiago 5.77 -10.84 -11.60 -9.30 -10.08
VI bassano 20.83 -0.35 6.45 3.43 1.15
VI schio 17.60 -5.28 3.28 -1.12 -2.67
VI qitalia 14.32 -8.53 -1.46 -6.09 -6.99

VR bcnuova 13.26 -6.50 -6.81 -5.85 -3.36
VR legnago 16.36 -3.96 -1.97 -3.58 -4.05
VR giarol 29.66 5.41 13.51 9.09 7.36

PD mandria 8.04 -8.68 -9.60 -7.85 -7.88

Table A.36: O3: NMB values for IDW and regression IDW

Station model reg1 idw reg1+idw reg2+idw
BL belluno 0.77 0.91 0.93 0.96 0.96
BL feltre 0.78 0.93 0.82 0.94 0.94
BL pieve 0.69 0.89 0.88 0.95 0.94
PD p colli 0.68 0.92 0.90 0.95 0.96
PD sgiust 0.61 0.93 0.81 0.94 0.93
PD este 0.67 0.88 0.90 0.95 0.95
RO badia 0.68 0.87 0.83 0.92 0.92
RO adria 0.54 0.82 0.72 0.86 0.86
RO borsea 0.48 0.72 0.68 0.77 0.77

TV conegliano 0.76 0.93 0.89 0.95 0.94
TV mansue 0.79 0.91 0.86 0.94 0.94
TV lancieri 0.68 0.80 0.78 0.82 0.82
VE san dona 0.71 0.80 0.71 0.84 0.83
VE bissuola 0.64 0.80 0.68 0.82 0.81
VI asiago 0.62 0.88 0.75 0.89 0.83
VI bassano 0.74 0.94 0.90 0.95 0.94
VI schio 0.75 0.92 0.87 0.94 0.92
VI qitalia 0.57 0.68 0.68 0.70 0.70

VR bcnuova 0.69 0.88 0.74 0.89 0.89
VR legnago 0.75 0.91 0.86 0.93 0.93
VR giarol 0.67 0.85 0.81 0.87 0.85

PD mandria 0.69 0.91 0.80 0.93 0.93

Table A.37: O3: Correlation values for IDW and regression IDW

Station model reg2+BoxCox RBF gau RBF invq RBF invm
BL belluno 23.02 11.88 9.59 7.14 5.39
BL feltre 25.55 11.63 11.50 10.48 9.54
BL pieve 19.26 10.84 6.52 5.41 4.83
PD p colli 20.90 5.17 4.02 3.60 3.62
PD sgiust 22.75 4.54 4.36 4.29 4.81
PD este 23.40 6.09 5.08 4.58 4.35
RO badia 20.23 5.54 5.63 4.51 4.34
RO adria 28.82 16.60 17.36 15.84 14.48
RO borsea 27.07 12.04 12.50 10.70 10.14

TV conegliano 29.29 9.31 9.85 9.03 8.71
TV mansue 15.00 6.04 5.60 6.03 7.15
TV lancieri 16.38 9.95 9.30 8.78 8.51
VE san dona 16.73 9.21 9.42 9.52 9.93
VE bissuola 12.03 11.69 10.86 10.22 9.63
VI asiago 12.07 13.80 11.20 10.60 10.38
VI bassano 21.92 5.22 4.63 4.85 5.51
VI schio 19.46 8.07 7.35 5.65 5.26
VI qitalia 19.65 11.97 11.57 10.83 10.25

VR bcnuova 15.93 7.09 7.86 7.68 7.71
VR legnago 17.22 6.54 6.00 5.63 5.38
VR giarol 29.87 8.49 8.42 8.79 9.66

PD mandria 15.08 9.43 8.84 8.37 7.95

Table A.38: O3: NME values for RBF interpolation using different radial basis functions (gaussian, inverse quadratic,
inverse multiquadric)
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Station model reg2+BoxCox RBF gau RBF invq RBF invm
BL belluno 22.21 11.01 8.70 6.28 4.18
BL feltre 24.73 11.16 10.94 9.91 8.88
BL pieve 16.78 9.00 2.96 0.98 -0.85
PD p colli 20.10 -2.36 -2.57 -1.53 -1.01
PD sgiust 21.64 -0.79 0.16 1.72 3.00
PD este 22.48 1.94 3.34 3.02 2.78
RO badia 19.29 -0.58 -0.05 -0.82 -1.37
RO adria 28.36 16.09 16.89 15.56 14.36
RO borsea 24.01 6.66 7.33 4.81 2.61

TV conegliano 29.04 8.43 9.48 8.73 8.26
TV mansue 13.16 -3.90 -3.30 -5.37 -7.00
TV lancieri 12.30 -4.82 -3.74 -3.67 -3.57
VE san dona 14.81 5.17 6.34 6.90 7.82
VE bissuola -1.36 -9.79 -8.69 -8.29 -7.88
VI asiago 5.77 -11.70 -10.64 -10.09 -9.85
VI bassano 20.83 -1.34 0.54 2.67 4.08
VI schio 17.60 -5.86 -5.01 -2.15 0.50
VI qitalia 14.32 -9.37 -8.42 -6.81 -5.49

VR bcnuova 13.26 -4.10 -6.58 -6.69 -6.69
VR legnago 16.36 -4.87 -3.87 -4.01 -4.03
VR giarol 29.66 4.64 5.82 7.29 8.86

PD mandria 8.04 -9.20 -8.47 -8.07 -7.65

Table A.39: O3: NMB values for RBF interpolation using different radial basis functions (gaussian, inverse quadratic,
inverse multi quadratic) for O3

Station model reg2+BoxCox RBF gau RBF invq RBF invm
BL belluno 0.77 0.92 0.94 0.96 0.96
BL feltre 0.78 0.93 0.92 0.94 0.94
BL pieve 0.69 0.88 0.93 0.94 0.95
PD p colli 0.68 0.92 0.96 0.96 0.95
PD sgiust 0.61 0.93 0.93 0.94 0.94
PD este 0.67 0.89 0.94 0.95 0.95
RO badia 0.68 0.88 0.88 0.92 0.92
RO adria 0.54 0.82 0.82 0.85 0.87
RO borsea 0.48 0.72 0.72 0.76 0.78

TV conegliano 0.76 0.93 0.93 0.95 0.95
TV mansue 0.79 0.91 0.92 0.94 0.94
TV lancieri 0.68 0.79 0.80 0.82 0.82
VE san dona 0.71 0.78 0.80 0.83 0.85
VE bissuola 0.64 0.78 0.80 0.82 0.83
VI asiago 0.62 0.82 0.88 0.89 0.90
VI bassano 0.74 0.94 0.95 0.95 0.95
VI schio 0.75 0.92 0.93 0.94 0.93
VI qitalia 0.57 0.69 0.68 0.70 0.72

VR bcnuova 0.69 0.89 0.88 0.89 0.89
VR legnago 0.75 0.91 0.91 0.92 0.93
VR giarol 0.67 0.84 0.85 0.87 0.88

PD mandria 0.69 0.91 0.91 0.92 0.93

Table A.40: O3: Correlation values for RBF interpolation using different radial basis function (gaussian, inverse
quadratic, inverse multiquadric) for O3

Station model reg2+BC RK gau RK exp RK sph
BL belluno 23.02 11.88 5.74 5.69 5.45
BL feltre 25.55 11.63 9.61 9.40 9.20
BL pieve 19.26 10.84 5.23 5.45 5.36
PD p colli 20.90 5.17 3.91 3.48 3.67
PD sgiust 22.75 4.54 4.94 4.79 5.26
PD este 23.40 6.09 4.93 4.69 4.65
RO badia 20.23 5.54 4.75 4.68 4.87
RO adria 28.82 16.60 14.57 15.33 14.67
RO borsea 27.07 12.04 9.92 10.00 9.73

TV conegliano 29.29 9.31 9.21 8.50 8.91
TV mansue 15.00 6.04 7.50 7.06 7.49
TV lancieri 16.38 9.95 8.87 8.61 8.60
VE san dona 16.73 9.21 11.01 9.83 10.53
VE bissuola 12.03 11.69 9.46 9.69 9.67
VI asiago 12.07 13.80 10.70 10.60 10.67
VI bassano 21.92 5.22 6.40 5.46 5.70
VI schio 19.46 8.07 7.40 5.94 6.37
VI qitalia 19.65 11.97 10.75 10.27 10.30

VR bcnuova 15.93 7.09 8.92 7.95 8.46
VR legnago 17.22 6.54 6.00 5.37 5.36
VR giarol 29.87 8.49 10.24 9.71 9.80

PD mandria 15.08 9.43 8.15 8.16 7.96

Table A.41: O3: NME values for Regression Kriging with different types of variogram (gaussian, exponential, spherical)
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Station model reg2+BC RK gau RK exp RK sph
BL belluno 22.21 11.01 3.43 4.46 3.78
BL feltre 24.73 11.16 8.69 8.63 8.32
BL pieve 16.78 9.00 -0.25 -0.32 -0.38
PD p colli 20.10 -2.36 -0.02 -0.57 -0.27
PD sgiust 21.64 -0.79 2.98 2.83 3.16
PD este 22.48 1.94 2.77 3.18 3.18
RO badia 19.29 -0.58 -0.57 -0.77 -0.94
RO adria 28.36 16.09 13.87 15.08 14.37
RO borsea 24.01 6.66 2.33 3.23 2.36

TV conegliano 29.04 8.43 8.67 8.21 8.21
TV mansue 13.16 -3.90 -7.17 -6.70 -7.18
TV lancieri 12.30 -4.82 -4.26 -3.72 -3.72
VE san dona 14.81 5.17 9.42 7.85 9.01
VE bissuola -1.36 -9.79 -7.69 -8.19 -7.89
VI asiago 5.77 -11.70 -10.19 -10.12 -10.17
VI bassano 20.83 -1.34 4.37 3.44 3.77
VI schio 17.60 -5.86 2.75 0.03 1.67
VI qitalia 14.32 -9.37 -6.22 -5.56 -5.64

VR bcnuova 13.26 -4.10 -8.16 -6.86 -7.54
VR legnago 16.36 -4.87 -4.45 -4.01 -4.09
VR giarol 29.66 4.64 9.56 8.88 9.02

PD mandria 8.04 -9.20 -7.70 -7.86 -7.65
PD Monselice

Table A.42: O3: NMB values for Regression Kriging with different types of variogram (gaussian, exponential, spherical)

Station model reg2+BC RK gau RK exp RK sph
BL belluno 0.77 0.92 0.96 0.96 0.96
BL feltre 0.78 0.93 0.93 0.94 0.94
BL pieve 0.69 0.88 0.95 0.94 0.94
PD p colli 0.68 0.92 0.94 0.96 0.95
PD sgiust 0.61 0.93 0.94 0.94 0.93
PD este 0.67 0.89 0.93 0.94 0.94
RO badia 0.68 0.88 0.91 0.92 0.91
RO adria 0.54 0.82 0.81 0.85 0.84
RO borsea 0.48 0.72 0.78 0.78 0.79

TV conegliano 0.76 0.93 0.94 0.95 0.94
TV mansue 0.79 0.91 0.94 0.94 0.94
TV lancieri 0.68 0.79 0.82 0.82 0.82
VE san dona 0.71 0.78 0.84 0.85 0.85
VE bissuola 0.64 0.78 0.82 0.83 0.82
VI asiago 0.62 0.82 0.89 0.90 0.90
VI bassano 0.74 0.94 0.93 0.95 0.94
VI schio 0.75 0.92 0.88 0.92 0.91
VI qitalia 0.57 0.69 0.73 0.72 0.72

VR bcnuova 0.69 0.89 0.87 0.89 0.88
VR legnago 0.75 0.91 0.91 0.93 0.93
VR giarol 0.67 0.84 0.87 0.87 0.88

PD mandria 0.69 0.91 0.92 0.93 0.93

Table A.43: O3: Correlation values for Regression Kriging with different types of variogram (gaussian, exponential,
spherical)

Station model reg1 GPR gaussian GPR matern
BL belluno 23.02 11.88 6.93 6.93
BL feltre 25.55 11.63 9.82 10.02
BL pieve 19.26 10.84 5.84 5.66
PD p colli 20.90 5.17 4.04 3.70
PD sgiust 22.75 4.54 4.97 5.03
PD este 23.40 6.09 4.84 4.64
RO badia 20.23 5.54 4.88 4.85
RO adria 28.82 16.60 14.69 14.67
RO borsea 27.07 12.04 10.07 10.05

TV conegliano 29.29 9.31 9.37 9.23
TV mansue 15.00 6.04 7.32 7.17
TV lancieri 16.38 9.95 8.61 8.54
VE san dona 16.73 9.21 10.84 10.76
VE bissuola 12.03 11.69 9.39 9.40
VI asiago 12.07 13.80 10.76 10.76
VI bassano 21.92 5.22 6.36 6.19
VI schio 19.46 8.07 7.37 7.23
VI qitalia 19.65 11.97 10.16 10.22

VR bcnuova 15.93 7.09 8.49 8.17
VR legnago 17.22 6.54 5.37 5.39
VR giarol 29.87 8.49 9.55 9.53

PD mandria 15.08 9.43 8.30 8.21

Table A.44: O3: NME values for Gaussian Process regression with different types of kernel (Gaussian and Matern)
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Station model reg1 GPR gaussian GPR matern
BL belluno 22.21 11.01 5.23 5.31
BL feltre 24.73 11.16 8.99 9.20
BL pieve 16.78 9.00 0.95 0.82
PD p colli 20.10 -2.36 -0.16 -0.29
PD sgiust 21.64 -0.79 3.25 3.231
PD este 22.48 1.94 3.05 2.92
RO badia 19.29 -0.58 -1.51 -1.43
RO adria 28.36 16.09 14.20 14.26
RO borsea 24.01 6.66 2.51 2.70

TV conegliano 29.04 8.43 9.06 8.91
TV mansue 13.16 -3.90 -6.72 -6.60
TV lancieri 12.30 -4.82 -3.57 -3.45
VE san dona 14.81 5.17 9.08 9.08
VE bissuola -1.36 -9.79 -7.47 -7.62
VI asiago 5.77 -11.70 -10.38 -10.41
VI bassano 20.83 -1.34 4.17 4.08
VI schio 17.60 -5.86 1.74 1.52
VI qitalia 14.32 -9.37 -5.93 -5.80

VR bcnuova 13.26 -4.10 -7.50 -7.22
VR legnago 16.36 -4.87 -3.76 -3.69
VR giarol 29.66 4.64 8.64 8.58

PD mandria 8.04 -9.20 -7.66 -7.68

Table A.45: O3: NMB values for Gaussian Process regression with different types of kernel (Gaussian and Matern)

Station model reg1 GPR gaussian GPR matern
BL belluno 0.77 0.92 0.95 0.94
BL feltre 0.78 0.93 0.94 0.93
BL pieve 0.69 0.88 0.94 0.94
PD p colli 0.68 0.92 0.94 0.95
PD sgiust 0.61 0.93 0.93 0.94
PD este 0.67 0.89 0.94 0.94
RO badia 0.68 0.88 0.91 0.91
RO adria 0.54 0.82 0.85 0.85
RO borsea 0.48 0.72 0.78 0.79

TV conegliano 0.76 0.93 0.94 0.95
TV mansue 0.79 0.91 0.93 0.93
TV lancieri 0.68 0.79 0.83 0.83
VE san dona 0.71 0.78 0.84 0.84
VE bissuola 0.64 0.78 0.84 0.84
VI asiago 0.62 0.82 0.90 0.90
VI bassano 0.74 0.94 0.93 0.94
VI schio 0.75 0.92 0.87 0.88
VI qitalia 0.57 0.69 0.74 0.74

VR bcnuova 0.69 0.89 0.88 0.89
VR legnago 0.75 0.91 0.93 0.92
VR giarol 0.67 0.84 0.87 0.87

PD mandria 0.69 0.91 0.91 0.92

Table A.46: O3: Correlation values for Gaussian Process regression with different types of kernel (Gaussian and Matern)
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