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Introduction

The energy market liberalization

Over the past two decades, several countries have decided to take the path

of the power sector liberalization. The liberalization has been possible by

disrupting the traditional vertically integrated monopoly, which involved the

whole power dispatch system, from the generation to the sell side, through the

energy transportation and distribution.

Chile was the first country in the world to make the power market lib-

eralization, in the year 1982. After that, in the 1990s, the Chilean leading

example was followed by a lot of nations, especially in Europe. The number

of liberalized electricity markets is still steadily growing.

As liberalizations of other sectors, the motivation behind electricity liber-

alization is, in the long run, promoting efficiency gains, stimulating technical

innovation and leading to efficient investments (Weron, 2006). Nevertheless,

in contrast to the described benefits, it is not clear whether the power lib-

eralization can generate losses in the short time yet. Furthermore, we can

easily observe that there might not be sufficient incentives for investing in the

new generation energy sources within a totally liberalized power marketplace.

These are two of the most important issues, which are nowadays influencing

the speed of the power liberalization process in the world and conducting dif-

ferent countries to have new ways to approach the liberalization. This is also

one of the reasons why the electricity liberalized markets are different from

one to another.

Since the energy market (EM) liberalization is a recently evolved and still

ongoing process, it has inspired plenty of researchers to study it. Concerning

the statistics science field, a lot of research articles have been written and many

models have been developed, mostly focusing on prices and loads forecasting.

Since the EMs scientific literature is quickly growing, being of great interest

for a lot of governments, we will focus on a special feature of the EMs: the

price spikes. Also known as price jumps.
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Purpose of the document

The purpose of this essay is to develop a model for electricity price spikes oc-

currences forecasting. In order to do that, at first we provide a short overview

of the EMs in general and the stylized facts of electricity loads and prices (e.g.

how the liberalized EM works, what price spikes are). A specific method for

detecting spike occurrences is then proposed. In the second part, inspired by

the research of Christensen et al. (2011), we implement a model for spikes

forecasting. At last, we apply the previously developed model on the data

coming from real EMs.
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Chapter 1

Energy Markets and Spot

Prices

Although there is not just one single market model which can be used as a

benchmark (also due to the economic and technical characteristics of a given

power system), we can explain how the EM generally works. In the first

part of this chapter, we briefly introduce the elements upon which an energy

liberalized market is based on, while in the second part we focus on the price

spike concept.

1.1 Energy Markets: a Short Overview

According to Edwards (2009), the EM is a collection of interrelated busi-

nesses focused on delivering electricity and heating fuel to consumer, gener-

ating power and actually distributing it. In this section we explore the EM

features more precisely and analyze how the market exactly works.

1.1.1 Liberalization and regulation

With the advent of EM liberalization, it was necessary to create an author-

ity which has both the capability and the commitment for regulating them, in

order to protect consumer rights and avoid oligopolies. While competitive mar-

kets face challenges, it should be acknowledged that competition in wholesale

power markets is a national policy. Therefore, each government has to choose

the regulator, which seeks to challenge against the prices’ extreme volatility,

reform markets if needed and search for evidence of anti-competitive behaviour

of the market players. In a nutshell, a regulator must identify and assess solu-

tions for making existing wholesale markets more competitive (Hogan, 2009).

Examples of regulators are the European Energy Community (EEC) in Eu-
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rope, the Australian Energy Market Commission (AEMC) in Australia and

the Federal Energy Regulatory Commission (FERC) for the United States of

America.

Since the transition from regulation to competition has to guarantee an

economic and secure system operation, the EM regulation has been often a

rather complicated process, which is still being modified in the largest part of

the existing EMs.

1.1.2 The marketplace

Two main kinds of EM have emerged for organizing markets at the wholesaler

level: power pools and power exchanges. Since both of them are sharing many

aspects, it is often complicated to distinguish one from another. Nevertheless,

they can be explained by using two criteria of initiative and participation

(Weron, 2006).

- Power pool (PP) is the natural ever existing market. It can be split into

two types: technical (or generation) pools and economic pools. The first

type was used by the vertically-integrated utilities to optimize generation

with respect to cost minimization and optimal technical dispatch. In

such a system the power plants were ranked on merit order, based on

production costs. Hence, generation costs and network constraints were

the determining factor for dispatch. Trading activities were limited to

transactions between utilities from different areas. International trade

was limited, due to a low level of interconnection capacity.

Economic pools have been established during the liberalization process

in order to facilitate competition between generators. The bid is based

on the price at which they are willing to run their power plants. The

market clearing price (MCP) is established through a one-sided auction

as the intersection of the supply curve (constructed from aggregated

supply bids) and the estimated demand, defining also the market clearing

volume (MCV). Once the technical constraints have to be satisfied, the

PP bids can be very complex, leading to a low level of transparency.

Participation in an economic pool is mandatory (i.e., no trade is allowed

outside the pool) and the participants can only be generators.
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- Power exchanges (PX) are commonly launched on a private initiative,

usually by a combination of generators, distribution companies, traders

and large consumer. Unlike the power pools, participation in the ex-

change is not mandatory. The genuine role of a PX is to match the

supply (bid) and demand (ask) of electricity to determine a transparent

publicly announced market clearing price (MCP).

The most of the recently developed markets are based on the PX model,

including IPEX market for Italy, ASX for Australia and UKPX market for

United Kingdom (nowadays part of the APX Group).

The spot market

The electric power spot market usually includes three different spot markets:

the day-ahead market, the intraday market and the dispatch services market.

- The day-ahead market is a 24 hours open market. It exists because

a classical spot market would not be possible, since the transmission

system operator (TSO) needs advanced notice to verify that the sched-

ule is feasible and lies within transmission constraints (Weron, 2006).

The day-ahead market concerns the day after power transactions and its

trading activity is based on a unique day after auction session.

- The intraday market (also known as balancing market) allows the TSO

to operate in the very short horizons before delivery. Thus, it is possible

to slightly modify the power amount traded in the day-ahead market.

- The tasks of the dispatch services market (also called ancllary services

market) are network flow administration and control, congestion solving

and the network real time balance guaranteeing, minimizing the reaction

time in case of deviation in supply and demand.

Matching supply and demand in day-ahead market

In order to understand how the MCP is established in the day-ahead mar-

ket, according to the Keynesian economic rule, we will define the supply and

demand sides.
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On the supply side a supplier assures to sell an amount of energy, which

has to be not higher than the amount specified in the selling offer, for a unit

price not lower than the one specified. On the other side, a customer assures

to buy an amount of energy which has not to be higher than the amount

specified, for a unit price not higher than the indicated one.

The bid implicitly contains both fixed operation costs and start-up costs

of all generation units. The MCP is then calculated by means of the market

clearing algorithm, differently implemented by the authority and the TSO, for

each PX.

The day-ahead auction mechanism

As previously introduced, competition in day-ahead PX market has been es-

tablished through auctions where mainly generators, rather than operators,

bid energy prices and quantities.

The MCP is generally not established on a continuous basis but rather

in the form of a conducted once per day two-sided auction. For instance,

assuming the hour as the market time unit, buyers and suppliers submit bids

and offers for each hour of the next day and each hourly MCP is set so that

it balances supply and demand (Weron, 2006).

The simple bid format consists of a pair of values: quantity, expressed in

MWh, and price (e.g., e/MWh). Each selling or buying partecipant is able

to propose several pairs of values for the same generation or demand unit

(Contreras et al., 2001). The intersection of the supply and demand curve,

constructed from aggregated supply and demand bids, allows to calculate the

MCP. Figure 1.1 shows graphically how the two curves can be traced and how

the intersection point, which fixes the MCP and the MCV, can be obtained.

Since the actual EMs may have several further extra conditions which can

be differently defined for each market1, in addition to the simple bids, we have

complex bids. In such a case, the market clearing algorithm is a modification

of the simple matching algorithm respecting the extra conditions and the tech-

1Examples of extra conditions are: the cheapest bid quantity has to be designated as

non-divisible and a minimum daily income amount, respecting the nature of the generating

unit, has to be considered.
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Figure 1.1: The Power Exchange two-sides auction mechanism. MCP indi-

cates the Market Clearing Price, while MCV indicates the Market Clearing

Volume.

nical constraints, involving the advanced methods concerning network flowing

optimization.

1.1.3 Other relevant energy aspects

Before proceeding with our research, we have to remark some further relevant

aspects which have to be considered in order to get a more complete view of

the energy prices.

Marginal production cost

For a better understanding of how the EM spot prices are determined, the

concept of marginal production cost becomes essential. Let the supply stack

be the ranking of all generation units of a given utility or of a set of utilities

in a given region (Weron, 2006). The supply stack intuitively influences the

supply side of the market and is based on the marginal cost of production.

Basically, the utility dispatches firstly the energy from nuclear and renewable

plants (e.g., hydro, solar, wind, etc.), followed by fossil-fuel power stations.

Some EMs, especially where nuclear energy sources are available, exhibit low

flexibility within the supply stack, due to the fact that their plants can provide

a lot of energy with low or moderate marginal costs. A schematic example of

the supply stack is shown in Fig. 1.2.
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Figure 1.2: A schematic supply stack (source Weron (2006)).

Normal commodities vs energy: the non-storability

Energy is clearly a commodity, since it is supplied without qualitative differen-

tiation across the EM. However, it differs from other commodities; electricity

can not be stored (unless hydro) and it is very expensive to transmit over long

distances. Thus, there can be neither a benefit from holding electricity nor a

storage cost. For this reason, the energy price is usually not determined by

the level of inventories. This property influences the extreme volatility marked

by the electricity spot prices, which is higher than any other commodity price

volatility.

Technical constraints and traded products

Trading has to account for numerous technical limitations. The bids are ac-

cepted solving an optimization problem which maximizes the transactions

value and guarantees both the aggregated supply and demand balance and the

transit limits between each pair of transmission nodes respect (i.e., according

to the minimum and maximum transportation capacity of every single route

of the electricity network). When there is no congestion, MCP is the only

price for the entire system. On the contrary, there might be a different local

price for each region, known as locational marginal price (LMP).

Another technical constraint is due to the fact that plenty of electrical

plants require a minimum power to run. Such a necessity influences the whole

8



network balance. Furthermore, to guarantee a lower black-out risk, the entire

network has to constantly provide a high voltage and face the several bottle

necks which might be present in the power transmission grid. These limitations

lead to the problem that in presence of a low aggregate demand (often noticed

during the off-peak hours), power is sold by the supplier for a lower level

required to stimulate new entry. This issue is known as scarcity value of

energy, which deals in the PX two-sides auction mechanism to a scarcity of

stimulating suitable new investments.

Concerning the trading products, the commodification of electricity has led

to the development of novel types of contracts for electricity trading. These

contracts can be sold either over-the-counter or on organized market. They

can be physical or financial contracts (Weron, 2006). Both of the types are

strongly necessary to keep supply and demand in balance. The first type has

been established to cover the utilities future consumption, while the second

allows operators to hedge and speculate on the energy prices.

An interesting class of long-term contracts present in electricity markets are

the CO2 emissions allowances, also known as green allowances. A generator

polluting more is obliged to buy extra allowances to covering the pollution

produced in a whole given year. On the other side, a cleaner generator can

sell the excess allowances and therefore gain an extra profit. This kind of

contracts have been established to change the marginal production costs and

consequently press operators to promote the renewable energies by investing

in the ‘green economy’, respecting to the Kyoto Protocol.

Inelasticity of demand

Within the largest part of the liberalized EMs the demand side response con-

tribution to establish electricity prices is rather poor. Electricity transmission,

unlike other transportation networks, requires coordinated behavior to ensure

that injections and withdrawals of electricity are continuously balanced. Con-

sequently, an efficient competitiveness in the generation sector was limited by

the government regulation. One of the inefficiencies generated by the regula-

tion is the gap between regulated retail prices and wholesale market prices.

In general, EMs do not handle a demand elastic response as a consequence

9



of the vertically-integrated era, when the monopoly regime were used to set

fixed basic service tariffs. Still, nowadays few measures exist to promote a

mature price-responsive demand side (Siddiqui, 2003).

1.2 Features of energy spot prices

One of the important consequences of liberalization is that prices are now de-

termined according to the fundamental economic rule of supply and demand.

As we have previously described in §1.1.3, in contrast to stock and bonds,

electricity prices are equally spaced high frequency data which are affected by

transmission constraints, nature of the generation stack and non-storability

constraint. Furthermore, they are characterized by seasonality and weather

conditions, as power demand correlates with temperature (Geman and Ron-

coroni, 2006).

A brief description of the main energy prices stylized facts follows.

Stationarity and mean-reversion

Mean-reversion is widely used in the field of finance as a property of com-

modities and it can be applied to assets as energy prices. Exley et al. (2004)

give the following mean-reversion definition: an asset model is mean revert-

ing if interest rates (and volatilities), yields or growth rates are stationary.

Essentially, when the price is high, supply tends to increase thus putting a

downward pressure on the price, and vice versa (Deng, 2000).

Therefore, the mean reverting incorporates the tendency of energy prices

to gravitate towards a ‘normal’ equilibrium price level that is usually governed

by the cost of production and level of demand (Blanco and Soronow, 2001).

Mean-reversion in energy prices is well supported by the empirical studies

of energy price behavior, as well as by the basic microeconomic theory.

High volatility

The previously described characterizing factors add to the energy spot prices

an extreme high volatility component. Yet, because of the properties of elec-

tricity transmission, an imbalance of supply and demand at any one location
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on an electricity grid can threaten the stability of the entire grid. The sup-

ply and demand matching between any customer and supplier is just part of

the overall grid balancing and any mismatch could disrupt the delivery of the

product for all suppliers and consumers on the grid (Borenstein, 2001). In con-

crete terms, applying the standard notion of volatility –namely the standard

deviation of returns2–, daily prices usually exhibit volatility up to 50%.

Seasonality and calendar effects

In addition to the intuitively desirable yearly seasonality, due to the conse-

quent high demand during the warmer seasons, weekly and daily periodicity

is observed from the ACF. During the week the prices show a business days-

weekend structure, with a higher level registered during business days. The

intra-day variability is due to the lower demand during the night hours, called

off-peak hours. Clearly, the energy demand and price increase during the

working hours, namely on-peak hours.

Furthermore, a calendar event, such as the National Day or a public hol-

iday, may usually move the demand side, causing an energy price shift. As

the natural effect of a holiday is to reduce the active businesses, the electricity

demand is subjected to a flexion.

Distribution of electricity prices

Since the electricity returns diverge significantly from the log normal distribu-

tion, as well as the financial asset returns, they are not normally distributed.

The empirical observed distributions exhibit excess kurtosis. We can say that

the electricity prices are heavy-tailed or leptokurtic. Electricity prices also

show positive asymmetry.

Jumps presence

One of the most pronounced features of electricity markets is the abrupt and

generally unanticipated extreme change in the spot prices, known as jump or

price spike. A jump occurs as, within a very short period of time, the system

price significantly increases and then drops back to the previous level.

2rt = lnPt+1 − lnPt
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Chapter 2

The Price Spikes

2.1 Introduction

Although the widest part of the statistical studies concerns energy spot prices

modelling, the research has recently evolved focusing also towards the price

spikes estimation issue. Such issue doubtlessly leads researchers to face the

most critical and characterizing feature of energy prices.

In the beginning of this chapter we provide a general definition of the term

price spike. After that, by means of a brief literature review, starting from

the spot price existing models, we outline the different emerged approaches

to detect the spikes within an energy spot prices time series. The several

issues that may emerge during the spike detecting process are outlined. At

the end, we propose a specific framework for detecting spikes and we apply

such framework on a real electricity spot prices time series.

2.2 What is a price spike?

Many definitions of a price spike have been given since the electricity markets

have been quantitatively analyzed. Although there is no commonly accepted

definition, we may in general define a spike as a temporary very high (or low)

shift compared to the normal fluctuation regime, noticed within the electricity

prices TS.

More precisely, according to Weron (2006), who considers only high shifts,

price spikes are “prices that surpass a specified threshold for a brief period

of time”. At the same time, Geman and Roncoroni (2006) define a spike as

“a cluster of upward shocks of relatively large size with respect to normal

fluctuations”. Later, the starting points of our analysis towards the spike

detection are both of the previous definitions. These definitions clearly need
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to be extended before analyzing the spot prices time series, since they do not

provide enough knowledge for coming out with a specific price spike definition.

2.2.1 Spikes causing factors

Firstly, we must specify that there are markets where no spikes are present. For

instance, the Polish organized electricity exchanges (i.e. PoIPX and POEE)

do not register any extreme event for an incredibly long period of time. Spikes

are mainly observed in the largest and most deregulated markets, such as

American, Australian and Western European electricity markets.

Electricity spikes are caused by several factors, also depending upon fea-

tures described in Chapter 1, which can be classified as follows:

- inelasticity of demand curve, mostly attributable to the non storability

electricity property (which leads to an absence of cash-and-carry arbi-

trage);

- severe weather conditions, often in combination with generation outages

or transmission failures;

- network features, such as supply grid composition with its constraints

and marginal production costs, related to the demand amount;

- composition of electricity sources influencing variables (e.g., cost of fuel,

gas, etc.);

- energy policy followed by the authority, such as market incentives (e.g.,

green allowances), investing plans and amortization schedules;

- trading activities of the market players.

Generally, the ‘spiky’ behavior is attributable to the fact that a typical regional

aggregate supply function of electricity almost always has a kink at a certain

capacity level and the supply curve has a steep upward slope beyond that

capacity level (Deng, 2000).

However, there are some disagreements. For instance, Weron (2006) argues

that the primary spike causing reason is explained by the market players’

bidding strategies. Indeed, some players are willing to pay almost any price to

be safe by securing a sufficient and continuous supply of power. From an EM

point of view, it means that some power amount bids would have been set at
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the maximum allowed price level. On a large scale, such agent behavior can

cause price spikes.

2.2.2 Why should we study price spikes?

Since a price spike is usually followed by a sharp return to normal price level,

there is apparently no matter to think that spikes have a huge effect for the

system stability. However, the violent spike behavior of electricity prices con-

stitutes a significant risk for EM players (Klüppelberg et al., 2010). Besides, a

spike is frequently followed by several further spikes, forming a sort of cluster,

with the possibility –as in the Western U.S. Energy Crisis of 2000 and 2001– of

a structural temporary system break (i.e., black out). We can therefore affirm

that the price spikes influence any EM and even any network risk measure.

From a market point of view, spikes may bring to agents both benefits

and losses. On one hand, they may provide profitable opportunities to sell

electricity at higher prices in the spot market. On the other hand, they can be

a burden if a player has contracts to supply electricity at low, predetermined

price (Kanamura and Ohashi, 2007). For instance, an option market player

and a supply bilateral contract keeper may easily take the advantages of price

spikes.

2.3 Price spikes detection: a literature review

At the beginning of this chapter (see §2.2), two electricity price spike defi-

nitions have been given and spikes causing factors have been outlined. Our

target now shifts to detecting spikes within an electricity spot prices time se-

ries. Consequently, we must firstly define what we quantitatively mean by

‘threshold’.

A good strategy to do that is by focusing on the existing electricity price

modelling literature and pull out what we believe is relevant for detecting price

spikes.

Despite their rarity, price spikes are the very motive for designing insur-

ance protection against electricity price fluctuations. Therefore, any actually

developed model must be taking into account the discontinuous component.
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Following a widespread practice in literature, we ideologically work on a

panel dataset, where the statistical units are the intraday different load periods

(also called time slots in the remaining part of this document) and time repre-

sents the days. The main reasons why we handle each load period separately

is that it permits us both to avoid the problem of modelling the intra-daily

periodicity and not to care about clusterization issue, that is whether we clas-

sify closed spikes as one single spike or not. In fact, since the ‘spiky’ regime

does not usually last for more than one day (Klüppelberg et al., 2010), we are

indeed able to ignore the clusterization issue introduced by the Geman and

Roncoroni (2006) price spike definition (see §2.2).

Let {Pj,t}, j ∈ {1, . . . , J}, t ∈ {1, . . . , T} be an electricity prices time series

(TS), where J is the number of daily load periods, fixed by the EM, and T

is the number of days, meaning that Pj,t is the electricity spot price at day t

and load period j.

According to Lisi and Nan (2012), the starting point of our literature study is

the assumption that the dynamics of electricity log prices can be represeted by

the following model, which is itself a subset of the ‘industry standard’ model

defined by Janczura and Weron (2010):

logPj,t = Dj,t + υj,t, (2.1)

where Dj,t is a nonstationary deterministic component and υj,t is a residual

stationary stochastic component. The choice of the logarithmic transformation

for electricity prices is largely justified by the EM literature – Klüppelberg

et al. (2010), Schindlmayr (2005). In short, logarithmic function guarantees a

progressive smoothing treatment for extreme values, directly proportional to

the price value without loss of TS generality.

2.3.1 Models for price forecasting

Aggarwal et al. (2009) classify the price-forecasting models into three classes:

1. Parsimonious stochastic models, such as ARMA models (e.g., SARI-

MAX model, which tries to capture both the non-stationarity of the

prices and the exogenous variables effect), heteroskedastic class models
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(e.g., GARCH, which models the conditional variance as time-changed),

Markov regime switching models (e.g., 2-regime MRS model for normal

and spike regime – Janczura and Weron (2010), Bierbrauer et al. (2005)).

2. Regression or causal models, based on the relationship between electricity

prices and a number of independent variables. Such variables, known as

explanatory variables, are identified by means of correlation analysis.

3. Artificial intelligence models, which adopt the modern data-mining tech-

niques, such as neural networks and closest k-neighborhood categoriza-

tion.

Hybrid models, which involve more than one of the previous classes, have been

largely tested by different authors – Lora et al. (2002), Zhou et al. (2006). For

instance, Zhou et al. (2006) extend the ARIMA approach by using a robust

procedure to include error correction for improving accuracy of California

EM spot price forecasting, supporting that such forecasting approach is very

effective with satisfactory accuracy.

Almost every single approach for electricity price modelling agrees that it

is possible to detect the spikes only once the predictable component is taken

away from the TS. Indeed, we wonder how we can identify Dt and how we can

detect spikes in υj,t.

Although a lot of authors include some additional factor for electricity spot

prices modelling (e.g., TS of loads – Kanamura and Ohashi (2007)), we assume

for rest of this chapter that every information we are looking for stands within

the TS. Such assumption means also that our perspective for detecting spikes

does not comply with the market specifications, implying a strong limitation

for the subsequently proposed framework.

2.3.2 Depuration of electricity prices time series

In a nutshell, depuration is the challenge of finding the deterministic compo-

nent Dt, by using the adoption of various techniques.

Electricity spot prices exhibit the well known seasonality (at the annual,

weekly and daily horizons) and mean-reverting behavior. Thus, the estima-

tion of a component to deal with trend and seasonality is a first important

issue. Unfortunately, electricity spot prices additionally show both extreme
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volatility and spikes. Hence, classical regression analysis estimation routines

(e.g. OLS and GLS) should be carefully used, since they are very sensitive

to extreme observations and outliers (Trueck et al., 2007). An additional

note about seasonality is that some deregulated markets show a more marked

seasonality than others because of the seasonal electricity consumption fluc-

tuation patterns, which strictly depend upon the climatic characteristics of a

certain area.

One of the most used parametric model for detrending and deseasonalizing

electricity prices comes from ACF analysis evidences, leading to the use of a

linear ‘sinusoidal’ model, which may also include a trend component (Klüppel-

berg et al., 2010, Weron, 2006, Schindlmayr, 2005). Since the least squares

modelling lack of gaining efficient estimates due to the presence of extreme

values is evidet, a data preprocessing procedure is largely adopted to grad-

ually drop extreme price values. On one hand, such procedure permits to

use the least squares estimators for better calibrating the parameters values,

but on the other hand it must be handled carefully since it introduces further

problems. Some connected relevant questions are following listed.

- How to drop the extreme values? Some authors adopt a fixed price

threshold. However, Trueck et al. (2007) observes that “the choice of

the levels themselves is non-trivial and rather arbitrary”.

- How to replace the outlayers? A lot of authors replace the observed out-

layers with the value of the threshold chosen for detecting them (Weron,

2006). Others replace them by one of the neighboring prices instead

(Geman and Roncoroni, 2006). However, such procedure may lead to

complications when the presence of consecutive outlayers is observed.

- When the chosen preprocessing procedure must stop? Several itera-

tive procedures have been implemented to identify price spikes, such

as recursive filters. Still, since a straightforward application of iterative

techniques may bring to an overestimation of the number of price spikes,

it is not clear whether better results in finding Dj,t can be reached by

stopping such procedures before the last iterations are performed.
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One may use the Least Trimmed Squares (LTS) estimator or another robust

procedure such as Huber methods instead, but it usually brings to unsatisfying

results with EM time series, if compared to the combination of preprocessing

and traditional least squares procedures.

In other cases, the different seasonalities are modeled with other techniques,

such as dummy variables regression analysis (Schindlmayr, 2005) and combi-

nations of robust estimators with non-parametric procedures (Trueck et al.,

2007).

Other variants for estimating the nonstationary deterministic component

Dj,t are largely adopted, depending on the specific EM data set, the purpose of

research and the forecast horizon of the developed model. For instance, some

authors avoid the problem of intra-daily periodicity by focusing on the daily

average prices, without considering each daily load period separately (Bier-

brauer et al., 2005). Others do not take into account electricity prices which

are observed during the non-business days, as they are not used to exhibit

special futures like spikes and high volatility and they may consequently not

be assumed as object of study.

The last issue concerns the estimated residual component υ̂j,t. Its ACF and

PACF may still show the presence of strong patterns. Although some authors

include an additional stochastical trend component (Geman and Roncoroni,

2006), assuming a brownian motion presence in υj,t (which can influence the

second-order component of υ̂j,t), it is mostly assumed to be a first moment

stationary process. As υj,t may show high time varying volatility, an intu-

itive possibility is to take the advantages of either regime switching models or

non-parametric variance estimators. Another possibility consists in a further

separation of υj,t in some components, assuming a specific stochastic nature

for each of them. For instance, Klüppelberg et al. (2010) adopt an additive

model for υj,t, identifying a ‘spiky’ component X1(t) and a stationary sum of

Ornstein-Uhlenbeck processes component X2(t).
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2.3.3 Detection of spikes

Knowing that spikes are outliers within the electricity spot price TS, after the

TS is ‘depurated’, a threshold has to be defined.

Basically, from our literature review (see §2.3), three different standpoints

for detecting electricity price spikes time of occurrence have emerged:

1. Empirical standpoint : it is the simplest technique, which allows to not

estimate the component Dj,t for detecting price spikes. A threshold is

being fixed on a certain either technical or empirical basis. Thus, every

time the energy spot price oversteps such a treshold it is interpreted

as a price spike. Christensen et al. (2011) use this procedure on the

Australian EM data, fixing the threshold to 100 AUD/MWh.

2. Financial standpoint : derived from the classical financial perspective

which considers asset returns, once electricity spot price variations ex-

ceed a fixed threshold (e.g., 30% – Bierbrauer et al. (2005)), they are

classified as spikes.

3. Quantile-based standpoint : a threshold is calculated by means of a quantile-

based approach. Basically, a specific quantile defines whether a price

value is classified as spike or not. Therefore, if we let τ be an arbitrarily

small percentage, the largest (1− τ)% price observations can be identi-

fied as outliers (i.e. spikes). Two methods of quantile-based approach

have emerged.

(a) The first method is the simplest: price spikes are directly detected

from the empirical cumulative distribution functions of spot prices

{Pj,t}t=1,...,T , ∀j = 1, . . . , J .

(b) Once the nonstationary deterministic component Dj,t is identified

by adopting a specific procedure (see §2.3.2), the second method

aims to detect spikes from the residual stationary stochastic com-

ponent υj,t either considering the time-varying volatility or not.

In the first case, the previously described ‘first method’ is adopted

on the empirical cumulative distribution functions of {υj,t}t=1,...,T ,

∀j = 1, . . . , J .. In the second case, the time varying volatility of υj,t

needs to be modeled by using either parametric procedures such as
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GARCH modelling, or non-parametric techniques such as rolling

volatility – Weron (2006).

2.4 A price spikes identification method

Finally, after the previous literature study (see §2.3), we have enough tools

develop a method to identify Dt and consequently price spikes occurrences.

Since each method has some advantages, but also drawbacks, we decide to

propose a procedure for spike detection, which (empirically) produces the most

satisfying trade-off between flexibility and results.

Our objective is to detect spikes, by firstly removing the whole predictable

component from the electricity prices TS.

2.4.1 Model for electricity prices

Coherently with the literature review, we assume the following additive struc-

ture of Eq. 2.1:

pj,t =LTj,t +Wj,t + υj,t, υj,t ∼ (0,σ2
j,t), (2.2)

where logPj,t = pj,t andDj,t = LTj,t+Wj,t, referring to the notation of Eq. 2.1.

LTj,t is the long term component and Wj,t is the weekly periodic component.

Specifically, LTj,t includes the long run trend and the yearly periodic compo-

nent; {υj,t}t=1,...,T is assumed to be a mean-stationary process of uncorrelated

variables υj,1, . . . , υj,T with time-varying variances, ∀j = 1, . . . , J . Such pro-

cess assumption is stronger than that for υj,t in Eq. 2.1, but rather necessary

for the spike identification method that we are going to propose.

Definition 2.1. For each j ∈ {1 . . . , J}, a spike occurrence is defined as

every load period at which υj,t exceeds the threshold, that is fixed at the 95th

percentile value of the υj,t distribution for off-peak hours and 90th for on-peak

hours (see Def. 2.2).

Consequently, Def. 2.1 leads us to take into account the time-varying vari-

ance problem.
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2.4.2 Method for cleaning the time series

The method adopted for cleaning the TS and consequently for isolating υj,t

is based on a two-steps batch processing. By means of different techniques,

we sequentially remove each component of Eq. 2.2 present within the time

series. Once a substantial difference between off-peak hours and on-peak hours

detection process is noticed, the process differs for each load period typology.

Definition 2.2. The on-peak hours are the load periods, where spikes are

particularly extreme and occur with the highest rate. Spiky behavior is less

marked in the off-peak hours.

Despite the literature usually labels on-peak hours and off-peak hours with

two fixed daily intervals sets (e.g. from 7:00 AM to 8:00 PM as on-peak

hours – Weron (2006)), we prefer to identify a load period as an on-peak hour

whenever the off-peak hour procedure produces a particularly unsatisfactory

estimation of the component Dj,t.Therefore, we need to carefully analyze the

results of each single load period considered, instead of running the spike

detection procedure in one single step.

First step The first step of our procedure aims mainly to remove the long

term component LTj,t. Many of the previously described techniques, such

as the sinusoidal model proposed by Klüppelberg et al. (2010), have been

tested on a real EM time series but the best results are produced by the

non-parametric approaches.

Basically, local regression (LOESS), moving average and smoothing splines

techniques show a good effectiveness in removing the long term components.

As they lead to the nearly same results, for operational aspects1, smoothing

splines are chosen for off-peak hours.

Smoothing spline is a well known non-parametric procedure, based on the

minimization (over the class of the twice differentiable functions) of the pe-

1both local regression and moving average techniques do not allow the estimation of LTj,t

for the first and the last part of a time series.
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nalized least squares criterion

Dj(Fj ,λj) =
T∑

t=1

[pj,t − Fj(t)]
2+λj

ˆ +∞

−∞

{
∂2Fj(x)

∂x2

}2

dx; λj ≥ 0, j = 1 . . . J,

(2.3)

where λj is the penalization parameter, which influences the irregularity of the

function Fj . The minimizer is a natural cubic spline (Azzalini and Scarpa,

2004). To define λj , for each load period j ∈ {1, . . . , J}, we computationally

calculate the equivalent degrees of freedom dfj , minimizing the GCV (Gener-

alized Cross Validation) criterion

GCVj =
s2j (df)

(1− df
T
)2
; s2j (df) =

1

n

T∑

t=1

(pj,t − F̂j(t; df))
2.

In short, our algorithm chooses the equivalent degrees of freedom as follows:

d̂f j = ⌊kw · argmin
df

{GCVj}⌋, (2.4)

where kw is a constant term, set to 2−1, which guarantee the right long term

smoothing, keeping the weekly seasonality component.

Concerning the on-peak hours, following the monthly smoothing proposed

by Trueck et al. (2007), a 31 days rolling median procedure is chosen in order

to remove the long term components, where the 2× 15 prices on the tails are

modeled with a progressive window-decreasing rolling median.

Second step The second step focuses on the remaining time series

pj,t − L̂T j,t, (2.5)

which still exhibits weekly seasonality, serial correlation and time-varying vari-

ance.

Differently than the first step, after many modelling attempts, two methods

have emerged for their effectiveness. Although they bring to different results

in spike detection, once they differ approaching philosophies, we decide to

keep one for the off-peak hours and the other for the on-peak hours. The

first one is based on a traditional parametric approach, while the second is

supported by robust estimation procedures, following the modern data mining

philosophy. Before describing the two methods, we point out that applying

the Dickey–Fuller test for unit root presence on the residuals pj,t − L̂T j,t, the

null hypothesis is largely rejected.
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1. By the parametric approach, we study the application of the seasonal

autoregressive moving average (S–ARMA) model with generalized au-

toregressive conditional heteroscedasticity (GARCH) errors (see §A.2.1

and §A.2.2). The appropriate S–ARMA model is identified both by

using the modern Tsay–Tiao procedure (Tsay, 2010) and by always con-

sidering the Akaike information criterion (AIC). A GARCH(1,1) model

is chosen in any case. Reasonable variants of GARCH modelling, such

as seasonal (S–GARCH) and threshold (T–GARCH), are not taken into

account. In this approach, we model seasonality without considering any

national holiday effect.

2. By the robust approach, we model the seasonal effects by means of

dummy variables, including each day of the week and also national hol-

idays.

As in practice the dummy-based estimation does not directly produce

the expected results, leading to a strong patterns presence in the ACF

and PACF functions of υ̂j,t, we must firstly smooth pj,t − L̂T j,t in order

to remove the time-varying volatility effect. In order to do that, the 31-

days rolling variance is estimated and pj,t− L̂T j,t is rescaled by dividing

it by the smoothed standard deviation. The 31-days rolling variance is

arbitrary chosen because it is a good compromise, since a spiky regime

lasts for at most two days (Klüppelberg et al., 2010).

The weekly seasonality is then estimated and removed as follows.

(a) The daily effect is calculated with a robust procedure, which ex-

cludes the national holidays. For each daily time series

{pj,i − L̂T j,i}i; i = ⌊ t
7⌋+ (t%D), t = 1, . . . , T, D = 1, . . . , 7,

the arithmetic mean of is computed without the lowest value and

the values that surpass the 95th percentile threshold, representing

the Dth day effect 2.

(b) When the weekly seasonality is subtracted from pj,t−L̂T j,t, a linear

regression on the holiday dummy variable is computed to calculate

2For each day of the week D = 1, . . . , 7, we have a time series as follows: {pj,i− L̂T j,i}i =

{pj,D − L̂T j,D, pj,D+7 − L̂T j,D+7, pj,D+14 − L̂T j,D+14, . . . }
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the holidays effect. Such effect is then also subtracted, leading to

the estimation of υj,t.

2.4.3 Testing model accuracy

Firstly, we should check whether or not the time series pj,t − L̂T j,t exhibits

weekly seasonality, autocorrelation and time-varying variance. Furthermore,

according to Eq. 2.2 the time series pj,t − L̂T j,t should be a mean-stationary

process. Time-varying variance may be checked with the Engle’s Lagrange

Multiplier (LM) test for ARCH effects. Generally, by analyzing the ACF and

PACF functions, we could have a good indicator of the long-term smoothing

effect. Eventually, we could repeat the first step, changing the parameter kw

value in Eq. 2.4.

There are several methods to validate an ARMA model, such as examining

the autocorrelation function of the estimated residuals and calculating the

Ljung–Box portmenteau statistic for the estimated residuals. After the S–

ARMA model estimation, the existence of a GARCH effect can be checked

with the MCLeod–Li statistic for the squared estimated residuals.

The same tests may be used for validating the results of the robust ap-

proach for on-peak hours. However, since the robust procedure usually leads

to reject the null hypothesis in almost every of the previous tests, we keep its

result as a good compromise, without validating it through the tests but only

looking at the ACF and PACF functions.

2.4.4 Some final observations

Before applying the framework to a real sampled electricity spot prices time

series, some observations are pointed out:

- from our point of view, the estimation of υj,t is a crucial factor for spikes

detecting;

- the effectiveness of a model upon estimating υj,t may strongly depend

upon the market features;

- since some markets exhibit a more accentuated seasonal component, the

best model to identify υj,t may be different, depending on the market;
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- off-peak and on-peak hours are discriminating the detection procedure.

At the same time, they are arbitrarily defined by using two procedures.

Such method for defining on-peak and off-peak hours could have more

effectiveness variants;

- concerning the spike identification procedure for the off-peak hours, the

choice of estimating a SARMA–GARCH model for p1,t − L̂T 1,t is rather

arguable, as it could be an overparameterization;

- some markets are affected by a high frequency of extreme weather events,

which can indirectly cause extreme spikes within the EM. In such cases

we believe that the only use of robust procedures should be considered

more reliable;

- the best fitting model for prices is not necessarily the best spike detecting

one;

- the threshold chosen (both for on-peak and off-peak hors) for detecting

price spikes is a justified but rather arbitrary choice. Clearly, alternative

options are available in the literature, as written in §2.3.3.

2.5 Application: spike identification

The last part of this chapter concerns the application of the previously defined

framework (see §2.4) to a real electricity prices time series.

The data come from the British EM (APX-PUK), which is a half hourly

day-ahead market (implying a value of 48 for the parameter J). The time series

includes prices from the 1st of April 2005 to 31st of December 2010 and shows

all the remarked features of electricity prices time series (e.g. seasonality,

jumps presence, etc.). Specifically, a first inspection based on graphs and

ACFs indicates that the spot prices TS show neither a well-defined long-run

behavior nor a clear annual dynamics, while a marked common characterisic

is a weekly periodic component and a very persistent autocorrelation function

(see Fig. 2.1 and Fig. 2.2). Concerning spot price values, in spite of a median

of £35.83/MWh, the maximum registered price is £553.30/MWh, which is

more than 15 times higher.
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Figure 2.1: The British EM spot prices time series, from the 1st of April

2005 to the 31st of December 2010. Prices are expressed in £/MWh.
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Figure 2.2: The APX-PUK spot prices ACF and PACF (load periods 12,

24, 36).
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2.5.1 Applying the framework to the daily time series of the

1st half-hour

Our analysis now concentrates on the time series of the first load period,

which has midnight and half past midnight as endpoints. Such TS has 2101

observations.

First step

The function of GCV1 indicates 77 as the value of df1, which satisfies Eq. 2.4.

The smoothing splines technique produced results are shown in the bottom

panel of the Fig. 2.3. As we can see, the estimation of the long term component

L̂T 1,t seems to fit well to the p1,t time series. If we look at the remaining time

series p1,t−L̂T 1,t, as defined in Eq. 2.5, we can see that it is a mean-stationary

process and it shows a strong correlation and time-varying volatility (Fig. 2.4).

Specifically, both the Ljung–Box and the Box–Pierce tests for the pres-

ence of autocorrelation strongly reject the null hypothesis (p-value < 10−15).

Concerning the heteroskedasticity presence, the null hypothesis of absence

of ARCH effects is strongly rejected by the Engle’s LM test at any lag (p-

value < 10−15). Furthermore, we can notice how the ACF diagram remarks

the weekly seasonality, as the values at lags 7, 14, . . . are constantly and sig-

nificantly far from zero. Before proceeding with the second step we test the

presence of a stochastic trend component by means of the Augmented Dickey–

Fuller (ADF) test. The test without constant and trend components gives the

approximated value of −25.28, which falls outside the 99% region. The null

hypothesis is therefore rejected.

Second step and spike detection

As written in §2.4.2, the seasonal ARMA order identification follows the

Tsay–Tiao procedure that uses the extended autocorrelation function (EACF).

EACF is based on the simple idea that if we can obtain a consistent estimate

of the AR component, we can derive the MA component, which can be used

to identify MA order by means of its ACF (Tsay, 2010).

Table 2.1 suggests the estimation of a S–ARIMA((2, 0, 1)× (1, 0, 1)7). The

Ljung–Box test at lag 1 (p–value = 0.99) and 7 (p–value = 0.92) indicates that
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1
is

set to 77). The top panel shows the GCV function for the spot prices TS of

the 1st load period, which sets the minimum as 153.5. The grey line in the

bottom panel indicates the smoothing splines.
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Figure 2.4: The remaining time series p′ = p1,t − L̂T 1,t (top panel, ), with

its ACF (middle panel) and PACF (bottom panel) functions.

Table 2.1: EACF table for p1,t − L̂T 1,t, where ‘x’ denotes nonzero, ‘o’

denotes zero, and bold font remarks the upper left vertices of the o–triangles

identified. AR indicates the AR order, MA indicates the MA order.

MA
AR 0 1 2 3 4 5 6 7 8 9 10 11 12
0 x x x o o o x o x x x x x
1 x o x o o o o o x x o x x
2 x o o x o o o x o x o x x
3 x x o o o o o x o x o o o
4 x x o o o o o x o x o o o
5 x x o x o o o o x x o o x
6 x x x x o o x x o x o o x
7 x x o x x x x x o x x x x
8 x x o x x x x x o o o o o
9 x x o x x x x x x o o o o
10 x x x x o x x o x o x o o
11 x x x x o o x o x x x o o
12 x x x x x o x x x o x x o
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Figure 2.5: Spike detection with S–ARMA model with GARCH errors (1st

load period, threshold = 95%). The circles indicates a price value recognized

as spike.

the model works perfectly and removes the weekly seasonality. However, the

null hypothesis is still largely rejected by the Engle’s LM test, as expected.

The model is completed with the GARCH(1, 1) part, necessary to estimate

the features of υ1,t. The estimated parameter values are ω = 1.9 · 10−4 (p =

0.0037), α1 = 7.7 · 10−2 (p = 3.5 · 10−8) and β1 = 9.1 · 10−1 (p < 10−15). The

stationarity condition is satisfied by the parameter values.

The residuals time series

ǫ1,t =
υ̂1,t

σ̂1,t

shows no correlation and the absence of ARCH effects (the McLeod–Li and

LM tests accept the null hypothesis at any lag). Therefore, we can detect

spikes from ǫ1,t, following Def. 2.1. The results are shown in Fig. 2.5.

The time interval we have considered is technically always associated to

the non-peak hours set. It means that the spikes have a relative low amplitude,

as we can see in Fig 2.5.

2.5.2 Applying the framework to the daily time series of the

24th half-hour

Once the procedure for detecting spikes differs for on-peak hours, we believe

that it is interesting also to show an application of our framework upon a load

period which is typically subjected to a marked spiky behavior.
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Figure 2.6: Spike detection with S–ARMA model with GARCH errors

(24th load period, threshold = 90%). The circles indicates a price value

recognized as spike.

As expected, the results of applying the off-peak hours version of our frame-

work are unsatisfactory. As we can see in Fig. 2.6, even if we set the threshold

to 90%, there are some evident spikes to the naked eyes which are not com-

putationally detected.

Applying the second procedure for deseasonalizing (i.e. the on-peak hours

one), we achieve a different and more reliable result, as we can see in Fig. 2.7.

2.5.3 Results

The framework explained in 2.4 is applied for each daily time series. 48 dif-

ferent TS are analyzed. Table 2.2 summarizes the reached results.

During our analysis, we find an exception within the 13th load period. Ap-

parently, there is no matter to classify such load period as an on-peak hour.

However, the first procedure is heavily influenced by the presence of a cluster

of downward shocks. Therefore, we decided to apply the robust procedure,

keeping the threshold set to 95%.
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‘spike’ from the procedure.

33



Table 2.2: British EM spike detection summary, where J indicates the

load period, peak whether a load period is on-peak or not, ADF, L–B test

and LM test the augmented Dickey–Fuller, Ljung–Box and Engle’s LM test

p-values, S–ARMA and GARCH the model orders, and Thr. the threshold

j peak ADF S–ARMA GARCH L–B test L–B7 test LM test Thr.

(p-value) (order) (order) (p-value) (p-value) (p-value)

1 no < 0.01∗∗∗ (2, 1)× (1, 1)
7

(1, 1) 0.071∗ 0.275 0.763 95%

2 no < 0.01∗∗∗ (1, 3)× (1, 1)
7

(1, 1) 0.195 0.479 0.708 95%

3 no < 0.01∗∗∗ (1, 3)× (2, 2)
7

(1, 1) 0.308 0.697 0.902 95%

4 no < 0.01∗∗∗ (1, 3)× (2, 2)
7

(1, 1) 0.790 0.566 0.589 95%

5 no < 0.01∗∗∗ (1, 1)× (1, 2)
7

(1, 1) 0.877 0.477 0.528 95%

6 no < 0.01∗∗∗ (2, 1)× (1, 3)
7

(1, 1) 0.874 0.338 0.304 95%

7 no < 0.01∗∗∗ (1, 3)× (0, 1)
7

(1, 1) 0.894 0.261 0.149 95%

8 no < 0.01∗∗∗ (1, 3)× (1, 1)
7

(1, 1) 0.598 0.122 0.417 95%

9 no < 0.01∗∗∗ (1, 1)× (1, 1)
7

(1, 1) 0.486 0.047∗∗ 0.265 95%

10 no < 0.01∗∗∗ (1, 1)× (1, 1)
7

(1, 1) 0.353 0.040∗∗ 0.261 95%

11 no < 0.01∗∗∗ (2, 4)× (2, 1)
7

(1, 1) 0.661 0.065∗ 0.188 95%

12 no < 0.01∗∗∗ (2, 3)× (1, 4)
7

(1, 1) 0.796 0.352 0.059∗ 95%

13 yes < 0.01∗∗∗ – – – – – 95%

14 yes < 0.01∗∗∗ – – – – – 90%

15 yes < 0.01∗∗∗ – – – – – 90%

16 yes < 0.01∗∗∗ – – – – – 90%

17 yes < 0.01∗∗∗ – – – – – 90%

18 yes < 0.01∗∗∗ – – – – – 90%

19 yes < 0.01∗∗∗ – – – – – 90%

20 yes < 0.01∗∗∗ – – – – – 90%

21 yes < 0.01∗∗∗ – – – – – 90%

22 yes < 0.01∗∗∗ – – – – – 90%

23 yes < 0.01∗∗∗ – – – – – 90%

24 yes < 0.01∗∗∗ – – – – – 90%

25 yes < 0.01∗∗∗ – – – – – 90%

26 yes < 0.01∗∗∗ – – – – – 90%

27 yes < 0.01∗∗∗ – – – – – 90%

28 yes < 0.01∗∗∗ – – – – – 90%

29 yes < 0.01∗∗∗ – – – – – 90%

30 yes < 0.01∗∗∗ – – – – – 90%

31 yes < 0.01∗∗∗ – – – – – 90%

34



32 yes < 0.01∗∗∗ – – – – – 90%

33 yes < 0.01∗∗∗ – – – – – 90%

34 yes < 0.01∗∗∗ – – – – – 90%

35 yes < 0.01∗∗∗ – – – – – 90%

36 yes < 0.01∗∗∗ – – – – – 90%

37 yes < 0.01∗∗∗ – – – – – 90%

38 yes < 0.01∗∗∗ – – – – – 90%

39 yes < 0.01∗∗∗ – – – – – 90%

40 no < 0.01∗∗∗ (1, 1)× (1, 0)
7

(1, 1) 0.373 0.678 0.985 95%

41 no < 0.01∗∗∗ (1, 1)× (0, 1)
7

(1, 1) 0.273 0.241 0.992 95%

42 no < 0.01∗∗∗ (2, 1)× (1, 2)
7

(1, 1) 0.392 0.783 0.994 95%

43 no < 0.01∗∗∗ (2, 1)× (1, 2)
7

(1, 1) 0.535 0.818 0.999 95%

44 no < 0.01∗∗∗ (2, 1)× (1, 2)
7

(1, 1) 0.276 0.016∗∗ 0.991 95%

45 no < 0.01∗∗∗ (1, 0)× (1, 2)
7

(1, 1) 0.898 0.320 0.946 95%

46 no < 0.01∗∗∗ (2, 1)× (1, 0)
7

(1, 1) 0.703 0.274 0.874 95%

47 no < 0.01∗∗∗ (1, 2)× (1, 1)
7

(1, 1) 0.181 0.712 0.783 95%

48 no < 0.01∗∗∗ (1, 2)× (1, 2)
7

(1, 1) 0.822 0.318 0.982 95%

As we can see in Table 2.2, the off-peak hours procedure exhibits surprising

results on deseasonalizing the TS. In fact, the largest part of the statistical

tests made marks how the SARMA–GARCH modelling is appropriate for off-

peak hours, with a high p-value.
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Chapter 3

The Model

3.1 Introduction

Electricity spot prices, loads, production figures, etc., are sampled 24 hours a

day, 365 days a year. This gives us a unique opportunity to apply statistical

methods for time series in the way they were meant to be used.

In this chapter we introduce the duration modelling starting with the ACD

model, which has necessarily to be known in order to understand the ACH

model. The cases study in Chapter 4 adopt the latter model.

Duration Models

The duration models are born to model and forecast time intervals, which

occur between two particular market events. For instance, events may be

financial transactions, price fluctuations and shifts, trading volumes, etc. (Lisi,

2010)

Let us consider an orderly marked point process (see §A.2), where events

occur at random times t0 < t1 < · · · < tn < . . . , where ti represents the time

at which the (i+ 1)th event occurred.

Definition 3.1 (Duration). Given two events Ei and Ei−1, which occur at

times ti and ti−1, the time interval xi ∈ R
+ between Ei and Ei−1 is called ith

duration, such that xi = ti − ti−1.

The main pillar, on which the duration models stand, is the concept that

the time intervals {xi}i=1,... can be handled as random variables. One of the

most popular duration model is the ACD model, which is explained in the

following section.
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3.2 The standard ACD Model

Suppose we have an event counter N(t), which is a function of time and counts

the events that have occurred in the interval (t0, t]. Let Ft represent the whole

information available in the history of the process over [t0, t], which comprises

past durations up to and including xt, but also some pre-determined variables

suggested by the process microstructure. The conditional intensity function

is defined as

λ(t | Ft) ≡ lim
∆t→0+

P[N(t+∆t) > N(t) | Ft]

∆t
. (3.1)

The point process econometric analysis typically deals with an appropriate

parametrization of λ(·), with the aim of determining which exogenous variables

(if any) drive the intensity of the process, and the extent to which this intensity

is influenced by its history (Christensen et al., 2011).

In absence of memory, we may assume that the TS is modeled by an inho-

mogeneous Poisson process, which implicates that the durations are assumed

to be determined uniquely by the exogenous variables.

3.2.1 The model and its assumption

The Autoregressive Conditional Duration model (ACD) uses the idea of Boller-

slev’s GARCH model to study the dynamic structure of the (adjusted1) dura-

tions. The process is therefore assumed not to be memoryless.

Defining {z0, z1, . . . , zn, . . . } as the sequence of marks associated with the

random times {t0, t1, . . . , tn, . . . }, let the conditional expected duration be

ψN(t) ≡ E
[
xN(t) | Ft−1

]
= ψt({x0, x1, . . . , xN(t)−1}, {z0, z1, . . . , zN(t)−1}).

(3.2)

All the temporal dependence of the duration process is thus captured by the

conditional expected duration (Pacurar, 2006).

Then, Engle and Russell (1998) define ACD model as

xN(t) = ψN(t)ǫN(t), ǫi ∼ i.i.d. s.t. E [ǫi] = 1. (3.3)

1The original framework of Engle and Russell (1998) was born to model high-frequency

financial durations, which need to be adjusted.
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The multiplicative error structure and the non-negativity of the duration se-

quence require that the density function of ǫ (with parameters θǫ) has a non-

negative support.

Given p0(t) = pǫ(t; θǫ), let S0 be the associated survival function (see A.3).

The Eq. 3.1 of the conditional intensity function can be expressed as

λ(t | Ft) = λ0

(
t− tN(t)

ψN(t)+1

)
1

ψN(t)+1
; λ0(t) =

p0(t)

S0(t)
, (3.4)

where λ0 is called the baseline hazard. Therefore, the past history influences

the conditional intensity by both a multiplicative effect and a shift in the

baseline hazard (Engle and Russell, 1998). For instance, taking ǫ as exponen-

tially distributed means that λ0 = 1 everywhere, so that the expression for

conditional intensity simply becomes

λ(t | Ft) =
t− tN(t)

ψ2
N(t)+1

= ψ−1
N(t)+1. (3.5)

The parametrization proposed by Engle and Russell (1998) for standardized

duration, known as ACD(m, q), relies on a linear parametrization on Eq. 3.2:

ψN(t) = ω +
m∑

j=1

αjxN(t)−j +

q∑

k=1

βkψN(t)−k, (3.6)

which depends on m past durations and q past expected durations.

Note that some authors introduce pre-determinated variables in the ACD

Eq. 3.6. This change in specification is primarily made in order to test for

some hypotheses on the market’s microstructure (Weisang, 2008).

The model parameters are subject to the following constraints: ω > 0,

α ≥ 0 and β ≥ 0. Once the autoregressive nature of the ACD process allows

us to formulate it as an ARMA process (see §A.3), we have the sufficient

condition for xi to be covariance-stationary:

m∑

j=1

αj +

q∑

k=1

βj < 1. (3.7)

Furthermore, ARMA representation allows durations forecasting. It also per-

mits to find both the unconditional mean of xi and its conditional variance:

E [xi] =
ω

1−
∑m

j=1 αj +
∑q

k=1 βj
, Var[xi | Fi−1] = ψ2

iVar[ǫi]. (3.8)
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3.3 The ACH Framework

Let the energy prices time series to be given and spikes be the event of interests.

The econometric model outlined in this section specifies, for our case study, the

probability of observing a spike as a function of the process history and a set of

exogenous variables (e.g. loads and weather variables, such as temperatures,

etc.).

Engle and Russel’s ACD specification posed the question, How much time

is expected to pass before the next event occurs? Hamilton and Jordá’s ACH

specification reframed differently the question as, How likely is it that the

target will change tomorrow, given all that is known today?

3.3.1 Why ACH?

As already mentioned, the ACD model and its variants assume that events

can occur at any instant in time, binding the modelling only to continuous

underlying processes. In the context of the incidence of electricity price spikes,

the interval of interests is fixed, and all transactions within this fixed interval

are settled at the pool price for that interval (Christensen et al., 2011). At

most one event can occur within an interval. Therefore, slightly modifying

the reframed question of Hamilton and Jordá (2002), we would like to know

whether or not an event occurs at a certain time interval tomorrow, given all

that is known up today.

Fig. 3.1 outlined the different stylized timelines of both ACD and ACH

models.

3.3.2 The model and its assumption

Since we are going to analyze fixed time intervals in the timeline, instead of

adopting the conditional intensity function defined in Eq. 3.1, in the ACH

model it is necessary to think in terms of conditional hazard.

Definition 3.2 (Conditional Hazard). Christensen et al. (2011) define the

conditional hazard as

ht+1 = h(t+ 1 | Ft) = P[N(t+ 1) > N(t) | Ft],
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Figure 3.1: The ACD (top panel) and ACH (bottom panel) timelines.

which represents the probability of an event occurring in a given interval (e.g.

a given load period of a given day), conditional on Ft. The past history of

events is now interpreted in terms of the discrete process.

Definition 3.3. Let yt be a random variable defined as

yt =




1, there is a spike occurring at the tth time

0, otherwise

.

Using {yt}t=1,... we can rewrite the conditional hazard of Eq. 3.2 as

ht+1 = P[yt+1 = 1 | Ft]. (3.9)

Rewriting the ACD conditional expected duration

We aim now to rewrite Eq. 3.6, so that it is indexed by calendar time t rather

than by a count of the cumulative number of target changes i (Hamilton and

Jordá, 2002). For motives of simplification we will use Hamilton and Jordá’s

notation.
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Definition 3.4. Let wj,t be the time of the jth most recent spike time starting

from time t. Then we have:

w1,t = tyt + (1− yt)w1,t−1

w2,t = ytw1,t−1 + (1− yt)w2,t−1

...

wj,t = ytwj−1,t−1 + (1− yt)wj,t−1.

Therefore, w1,t−1−w2,t−1 would correspond to the length of the most recent

duration that has been completed prior to time t (i.e. xN(t)).

In discrete time, Eq. 3.6 can then be written as follows:

ψt = ω̃ +
m∑

j=1

αj(wj,t−1 − wj+1,t−1) +

q∑

k=1

βkψwk,t−1
. (3.10)

Eq. 3.10 makes the value of ψt change only when a new spike has been observed

within the previous load period (i.e., if yt−1 = 1).

Assumption 3.3.1. The standardized durations ǫi =
xi

ψi
are i.i.d. (indepen-

dent and identically distributed), with ǫi
iid
∼ Exp(1).

Defining hazard function If the times of the previous spikes were the only

informations available in Ft, the hazard rate would not change until the next

price spike. In that case, under the Assumption 3.3.1, the expected length of

time until the next price spike occurrence would be

ψt =
∞∑

j=1

j(1− ht)
j−1ht =

1

ht
.

The hazard rate that is directly implied by the ACD model (Eq. 3.5) would

then be

ht =
1

ψt

. (3.11)

However, we have seen in Eq. 3.2 that there could be a sequence of further

marks associated with the spikes times. So, let zt denote the vector of (exoge-

nous) variables that are known at time t; the hazard rate in Eq. 3.11 can be

generalized as follows:

ht =
1

Λ(ψN(t−1) + γ ′zt−1)
, (3.12)
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where Λ(·) is chosen to ensure that ht is a probability.

We assume that the first element of zt−1 is a constant term and normalize

the first element of the vector γ, namely γ1, relative to unity and likewise

normalize ω̃ in Eq. 3.10 to zero. Therefore, we work with a specific version of

Eq. 3.10, without the constant term ω:

ψt =
m∑

j=1

αj(wj,t−1 − wj+1,t−1) +

q∑

k=1

βkψwk,t−1
. (3.13)

Since ht is a probability, it is important to ensure that a numerical search

procedure does not select a value of ht outside of the interval [0, 1] (Hamilton

and Jordá, 2002). Therefore, taking into account Eq. 3.13, the Hamilton and

Jordá’s form of the function Λ(·) is chosen, such that

Λ(vt) =





1.0001, vt ≤ 1

1.0001 + 2∆0(vt−1)2

∆2
0+(vt−1)2

, 1 < vt ≤ 1 +∆0

0.0001 + vt, vt ≥ 1 +∆0

, (3.14)

which ensures that ht ∈ [0, 1) and that the resulting expression is always

differentiable indeed.

Assumption 3.3.2. The order chosen for the ACH specification is (1, 1),

meaning that m = 1 and q = 1 in Eq. 3.13.

Final parametrization of durations

Since there might be a phenomenon of persistence of the effect of an observa-

tion long after it (which is characteristic of processes with unit roots), when

the ACF of the spike durations is statistically significant for a long term, we

can occur in estimation and specification problems (Weisang, 2008). To extend

the use of the ACH model, Christensen et al. (2011) propose to use the Box-

Cox transformation (see §A.4), defined by Fernandes and Grammig (2006) as

follows:

ψv
N(t)+1 = α1

[
|ǫN(t) − b|+ c(ǫN(t) − b)

]λ
ψv
N(t) + β1ψ

v
N(t); v > 0, (3.15)

where b is the shift parameter, c is the rotation parameter, λ is the shape pa-

rameter and v is the Box-Cox transformation parameter. Such representation

is also known in literature as augmented ACH (AACH) representation.
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The main advantage of augmented representation is that Eq. 3.15 nests

the original ACH specification in Eq. 3.10 as a special case, providing a more

flexible model for the conditional expected duration.

The Box-Cox transformation parameter v determines the shape of the trans-

formation, with v ≥ 1 representing a convex transformation and v ≤ 1 repre-

senting a concave transformation. Asymmetric responses in duration shocks

are permitted through the shift parameter b and the rotation parameter c. The

shape parameter λ assumes a similar role as v, with λ ≥ 1 iducing convexity

and λ ≤ 1 inducing concavity (Tse and Tao, 2010).

The generalized AACH representation of Eq. 3.15 allows us to use the

same specification of ψN(t)+1 originally adopted by Christensen et al. (2011).

In fact, since Eq. 3.3 implies that ψN(t) =
xN(t)

ǫN(t)
, if λ = −v, b = 0 and c = 0,

Eq. 3.15 becomes

ψv
N(t)+1 = α1x

v
N(t) + β1ψ

v
N(t). (3.16)

Relation to continuous time model

Hamilton and Jordá (2002) demonstrate that the ACH model is the discrete

time equivalent of the ACD model. In fact, once the time interval used to

discretize, calendar time becomes arbitrary small, the ACH model includes

the ACD model as a special case.

3.3.3 ACH(1,1) framework summary

The ACH model, which fits the probability of a price spike occurrence, com-

prises Eqs. 3.12, 3.14 and 3.15, with parameters vector θ = [α1,β1,γ, v, b, c,λ],

where α1,β1 ≥ 0, v > 0 and α1 + β1 < 1.

3.4 Parameters estimation

The parameters vector θ is estimated by the maximum likelihood, based on

the log-likelihood function, with standard errors computed using the typical

sandwich procedure.

The conditional probability density function of the variable yt (see Def. 3.3)
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can be written as

P[yt = i | Ft−1;θ] = hit(1− ht)
1−i.

Therefore, in a sample of T → ∞ time intervals, the log-likelihood function is

lnL(θ) =
T∑

t=1

ℓt(θ) = ln ℓ(y1 = i1, . . . , yk = ik | Fk−1;θ) +

T∑

t=k

ℓt(θ) ≃

≃
T∑

t=k

(it lnht(θ) + (1− it) ln (1− ht(θ))),

(3.17)

where the term k ∈ N is the smallest value of time between 1 and T , at which

a spike is observed (i.e. N(k) = 1).

The result obtained in Eq. 3.17 is due to the fact that the component

ln ℓ(y1, . . . , yk | Fk−1;θ) does not influence the log-likelihood for N(T ) → ∞.

Robustness of numerical maximization routines likely requires α1 ≥ 0, v > 0

and β1 ∈ [0, 1], while the mean stationarity condition is α1 + β1 < 1. The

quasi-maximum likelihood estimator is then

θ̃ = [α̃1, β̃1, γ̃, ṽ, b̃, c̃, λ̃] = argmax
θ

{∑

t

ℓt(θ)
}
. (3.18)

3.4.1 Numerical aspects

R is well-suited for programming maximum likelihood routines. Indeed, there

are several procedures for the numerical optimization of the likelihood func-

tions. The core of our estimation procedure relies on the maxLik command

from the maxLik package. Such command computes a numerical optimization

and does not need the derivatives declaration. Linear constraints are embed-

ded in the log-likelihood function, returning NA value as the constraints are

not satisfied (see §B.1). The Hessian is automatically computed and used to

obtain the observed Fisher information matrix and the standard errors of θ̃

(Steenbergen, 2006).

Following Hamilton and Jordá (2002) original ACH specification, the re-

cursion in Eq. 3.15 starts by setting the initial values x−1 = x̄ and ψ−1 = ψ̄,

where

ψ̄ =
α1x̄

1− β1
. (3.19)

Furthermore, the value of ∆0 in Eq. 3.14 is set to 0.1.
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3.5 Forecasting

Given a load period, predicting the presence of a spike for any given day re-

quires answering the question: Is the MCP going to show a spike this day or

leave within a normal regime?

One advantage of the ACH framework is that it generates a closed-form ex-

pression for the one-period-ahead forecasting of the target yt+1 (Hamilton and

Jordá, 2002). Specifically

ŷt+1 =




1, 0.5 ≤ ĥt+1 ≤ 1

0, 0 ≤ ĥt+1 < 0.5

,

ĥt+1 =
1

Λ(ψN(t) + γ̃ ′zt)
.

(3.20)

We use the same procedure of Christensen et al. (2011) for spike forecasting.

Once the ACH model parameters are estimated using the market data, without

including the last part of the TS for the estimation procedure, the model is used

to provide one-step-ahead forecasts. For a number of reasons, however, the

model parameters are not re-estimated step by step, mostly because the sheer

size of the estimation sample makes the model estimation a rather complex

task which requires a long runtime.

Still, since the barrier value for hazard function ht (set to 0.5 in Eq. 3.20)

is an arbitrary choice. A brief analysis on the barrier value is outlined in

Chapter 5.
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Chapter 4

Application

In this chapter we present some empirical results upon which this document

is centered, namely the electricity price spikes occurrences modelling and fore-

casting. Three EMs are basically considered: the Australian National Elec-

tricity Market (NEM), the Italian electricity market and the British electricity

market (APX-PUK).

Before applying the ACH modelling by using the load period approach (i.e.

by differently modelling each load period time series of spot prices) in §4.2,

§4.3 and §4.5, an ACH estimation on the whole spot prices TS of NEM is

proposed in §4.1, following the approach adopted by Christensen et al. (2011).

Concerning Italian EM and NEM modelling, a further comparison between

the ACH and a benchmark Logit model is proposed in §4.4.

4.1 Introduction: Christensen et al. (2011)

The application part of this document is introduced by trying to replicate the

research of Christensen et al. (2011). Since ACH model has been specified in

Chapter 3, before applying it to other EMs by using a different load period

based approach, it is important to verify whether we can achieve the same

results by considering the same data that were used by the authors who have

inspired our essay. Therefore, we study the same EM (i.e. Australian NEM)

by using the same method for spike detection, the same set of exogenous

variables1 and the same time period for forecasting (i.e. third quarter of 2007),

withour separating every load period (i.e., by estimating the parameters with

the whole spot prices TS). However, the time period for estimating ACH(1,1)

parameters is slightly different: it starts from 1st January 2003 instead of 1st

1Since Christensen et al. (2011) do not allow the exact construction of the exogenous

variables (i.e. some informations are missing within the paper), we construct such variables

as accurate as we can by using the available information.
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March 2001.

Since the AACH specification of conditional expected duration (Eq. 3.15)

includes a wider class of models that the one used by the authors (Eq. 3.16),

Table 4.1 reports the results of different estimations, considering both speci-

fications. Still, since the hazard rate specification in Eq. 3.12, originally pro-

posed by Hamilton and Jordá (2002), has been modified by Christensen et al.

(2011) to

ht =
1

Λ(ψN(t−1) + exp (γ ′zt−1))
, (4.1)

the estimation results shown in Table 4.1 consider both of such hazard rate

specifications.

Specifically, our attempts are following listed and descripted.

1. Attempt 1 : the ACH and hazard rate specifications proposed by Chris-

tensen et al. (2011) are adopted for the numerical estimation of θ.

2. Attempt 2 : the ACH, the hazard rate specifications and the estimates of

θ, which have been proposed and reported by Christensen et al. (2011),

are adopted.

3. Attempt 3 : the ACH, the hazard rate specifications and the estimates

of α1 and β1 proposed by Christensen et al. (2011) are adopted, while

the other parameters (i.e. γ and v) are numerically estimated.

4. Attempt 4 : the ACH and hazard rate specifications proposed in Chap-

ter 3 are adopted for the numerical estimation of θ (see §4.4.4 for further

analyses).

As we can see in Table 4.1, although Christensen et al. (2011) reports

that the ACH model forecasts about 48% of the spikes with a relatively low

number of false alarms (approx. 19%), in our analyses, since the achieved

forecasting results differ from the considered research, the lack of forecasting

is clear. Possibly, it may be caused both by the different time period chosen for

estimating the ACH(1,1) parameters and by the different exogenous variables

adopted (the exact method we used to construct such variables is described in

§4.2.1). Therefore, our analyses induce us to believe that the method chosen by

the Australian authors in order to forecast spike occurrences strongly depends

on the time period analyzed.
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Table 4.1: ACH(1,1) estimation results. Estimation indicates the esti-

mation period, Forecast indicates the forecast horizon, Model indicates the

stardardized duration ψ and hazard rate h models. Spike detected indicates

the number of spikes detected by the ACH(1,1) model and the number of

spikes observed within the TS, while False alarm indicates the number of

spikes detected which are not observed for real over the total number of

estimated spikes. Christensen row shows the original results obtained by

Christensen et al. (2011).

Description Data Model Forecast

Estimation Forecast ψ h Spike detected False alarm

Christensen 2001-2007 3 months Eq. 3.16 Eq. 4.1 144/299 34/178

Attempt 1 2003-2007 3 months Eq. 3.16 Eq. 4.1 131/299 549/680

Attempt 2 2003-2007 3 months Eq. 3.16 Eq. 4.1 66/299 83/149

Attempt 3 2003-2007 3 months Eq. 3.16 Eq. 4.1 89/299 103/192

Attempt 4 2003-2007 3 months Eq. 3.15 Eq. 3.12 15/299 22/37

Even though Table 4.1 shows that the model specifications of Eqs. 3.16

and 4.1 adopted by Christensen et al. (2011) work better in forecasting than

the original specifications of Eqs. 3.15 and 3.12 proposed by and Hamilton and

Jordá (2002) and Fernandes and Grammig (2006), in the next part we adopt

the latter specifications. Basically, our choice is justified by four facts:

1. the conditional expected duration specification of Eq. 3.16 is included in

Eq. 3.15 as a special subcase (see §3.3 for further details);

2. the original hazard rate specification of Eq. 3.12 permits to evaluate the

real effect of the chosen exogenous variables upon the probability of a

spike occurring at a given time t;

3. the spiky regime in year 2007, with 1,495 observed spikes from 1st Jan-

uary to 30th September, is a totally anomalous year (an average of about

200 spikes per year is normally observed). We believe that the extraordi-

nary fitting of the ACH specification chosen by Christensen et al. (2011)

is partially due to the anomalous spiky activity of the year 2007.

Thus, although the number of parameters is higher, by using the general-

ized specifications for ψt and ht we should theoretically reach better fits and

forecasts.
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4.2 The Australian National Electricity Market

The reason why we start with the Australian EM analysis, is that it is the

same market studied by Christensen et al. (2011). Although the specified ACH

framework is not exactly the same adopted by the authors, since an approach

which models every single load period is applied and the original ACH and

hazard specifications are adopted (see §3.3 and §4.1), we are going to study

how the ACH model works with a different dataset. Moreover, in the following

part we gather that the Australian EM spot prices TS is particularly suitable

for spike occurrences analysis, as it exhibits a singular spiky behavior than

other EMs such as Italian EM end APX-PUK.

Since 1998, the Australian National Electricity Market (NEM) operates as

a wholesale market for the supply of electricity to retailers and end-users in

Queensland, New South Wales, the Australian Capital Territory, Victoria and

South Australia (Weron, 2006). In 2005 the NEM grew further with the en-

trance of Tasmania. The regions are connected in the electricity network, so

that if the local demand exceeds the local supply or the electricity in a neigh-

boring region is sufficiently inexpensive to warrant transmission, electricity

is imported or exported between regions, subject to the physical constraints

(Christensen et al., 2011).

The NEM spot market is a day-ahead market, which operates with half-hourly

load periods (i.e., J = 48). Precisely, prior to 12:30 pm on the day before pro-

duction, the spot prices are established matching supply and demand sides,

subject to a cap of 10,000 AUD/MWh.

In terms of the supply stack, coal-fired generators and hydroelectric plants

have the lowest marginal cost of production, covering about 90% of the whole

NEM capacity.

Supply-side influencing variables According to Christensen et al. (2011),

as the temperature shifts may lead to a higher consumption of energy, due to

air conditioning demand, temperature is a possible spikes influencing variable.

Furthermore, as load represents the contemporaneous demand directly, be-

cause of the inelasticity of demand in the EMs (see §1.1.3), it may be regarded
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Figure 4.1: The NEM New South Wales spot prices time series from the

1st January 2003 to the 31st December 2010 (140,256 total observations).

as spikes influencing exogenous variable as well.

4.2.1 Data

Focusing on the region of New South Wales (NSW), the data for the estimation

process consist of a series of 122,736 half hourly observations of the spot prices

and loads, starting from 1st January 2003 up to and including 31st December

2009, while year 2010 is kept for evaluating the forecasts. Although such a

time interval is not the same originally considered by Christensen et al. (2011)

(i.e. from 1st March 2001 to 30th June 2007 for estimation, with a forecasting

horizon of three months), we investigate a more recent time series in order

to test the ACH model reliability. In fact, since year 2007 shows a singular

spiky behavior, with an extremely high number of observed spikes, we need to

know if the ACH model has the capability to fit and forecast spikes within a

different time period.

The data exhibit the typical liberalized EM stylized properties (see §1.2). The

spot price median is 25.14 AUD/MWh, while the maximum value observed is

10,000 AUD/MWh. The whole TS of the NSW spot prices available can be

seen in Fig. 4.1.

Before proceeding, a first inspection on graphs and related ACFs points

out that each load period time series does not show a well defined long run
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Figure 4.2: The NEM New South Wales spot prices ACF and PACF (load

periods 12, 24, 36).

behavior, while Fig. 4.2 remarks a strong weekly periodic component and a

persistent autocorrelation function. Furthermore, the ADF test for stochastic

trend presence rejects the null hypothesis at 5% significance level for all the

load periods.

Spikes issue Although we developed a specific model for spike detection

by means of a quantile-based approach (see §2.4), the NSW spikes can be

easily identified without any complicated procedure. Therefore, in this case we

adopt the same threshold-based method chosen by Christensen et al. (2011).

Specifically, the threshold which defines an extreme price event (i.e. a spike)

is fixed and set to 100 AUD/MWh, which corresponds approximately to the

98th spot prices percentile.

Exogenous variables The exogenous variables are obtained as follow:

- Tmax,t represents the daily absolute deviation of the maximum temper-

ature above its average over the preceding year. Specifically, let TM,t be
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the maximum temperature observed on the tth day, Tmax,t is defined as

Tmax,t =




0, TM,t − T̄M,t ≤ 0

TM,t − T̄M,t, otherwise

, (4.2)

where T̄M,t =
1

365

∑365
i=1 TM,t−i.

- Tmin,t represents the daily absolute deviation of the minimum tempera-

ture below its average over the preceding year. Therefore, similarly to

the constructed variable Tmax,t (see Eq. 4.2), letting Tm,t be the minimum

temperature observed on the tth day, Tmin,t is defined as

Tmin,t =




0, Tm,t − T̄m,t ≥ 0

Tm,t − T̄m,t, otherwise

, (4.3)

where T̄m,t =
1

365

∑365
i=1 Tm,t−i.

- Loadt is constructed by detrending the load at time t, using the mean

and the standard deviation of the previous year’s worth of data, since

the TS of loads exhibits non-stationarity in mean and in variance.

Finally, referring to Eq. 3.12, zt = [1,Loadt, Tmax,t, Tmin,t] constitutes the set

of exogenous variables for the ACH model.

Sources Spot prices and loads were provided by the Australian Energy Mar-

ket Operator (AEMO), while the daily temperature data were provided by the

Australian Government Bureau of Meteorology (BOM). Specifically, the cli-

mate statistics historical dataset comes from the Sydney Observatory Hill,

which is located in the biggest city in NSW.

4.2.2 Estimating ACH(1,1) parameters

Since both the exogenous variables set and the spike detecting method have

been chosen, we should directly proceed with computing the estimates θ̃.

However, we need to face two more issues before starting the procedure.

1. The first one is about facing the NAs presence within the climate dataset.

Within the temperatures time series, NA probably indicates a tempera-

ture value that was not recorded in the dataset available on the BOM
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website. Since they are not so many (11 missing values over about 2,900

observations) and they do not form any cluster, we replace every single

NA temperature value of the tth day with the most recent value available

up to the tth day.

2. The second one concerns the load periods, upon which we want to fit

the ACH model. As we can see in Fig. 4.3, some load periods do not

show a particularly marked spiky behavior. Our choice is to study the

more ‘interesting’ load periods, from the 25th (12:30-13:00) to the 38th

(19:00-19:30), which exhibit more than 85 spikes between the year 2003

and 2010 (an average of about 10 spikes per year). Since the whole spot

prices TS should be considered for spike forecasting, this is a disputable

choice. However, such choice is justified by the need to have a large

number of spikes observed to obtain a better calibration of the ACH

model. More precisely, the estimation of parameters α1,β1, v, b, c,λ is

more reliable as the value of N(T ) is particularly high (see §3.4).

Anyway, the results of the ACH models applied to the whole set of load

periods are summarized in Table A.3.

Finally, we are able to estimate θ̃j , ∀j = 25, . . . , 38, where j represents the

jth load period.

Estimation results

Table 4.2 shows the ACH(1,1) estimates θ̃j for each of the 14 load periods

considered. The presence of NAs is due to the optimization process partial

failures of maxLik routine in calculating the Hessian matrix. Such presence

indicates that the procedure is particularly stressed for calculating the Hessian

matrix for such a high number of parameters. Perhaps, the use of other

routines permits the numerical calculations of the entire Hessian matrices,

without any presence of NA values.
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Figure 4.3: The NSW spot prices boxplots and spike counts, ∀j = 1, . . . , J .

The top panel shows the log (Pj,·) boxplots. The bottom panel shows the

number of spikes observed within the TS.
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Table 4.2: Estimates for the ACH(1,1) model, with the NSW data. The ta-

ble shows, for each j, the values of the parameter vector θ̃j and the standard

errors; significant codes are ‘∗ ∗ ∗’ (0.001), ‘∗∗’ (0.01), ‘∗’ (0.1). NAs are due

to the optimization process partial failures of maxLik routine in calculating

the Hessian matrix.

j ACH(1,1) Parameter (Variable)

α1 β1 γ0 γ1 γ2 γ3 v b c λ

(const.) (Load) (Tmax) (Tmin)

25 0.394 0.594∗ 0.542 −1.010 −1.547∗∗∗ 1.627 3.395 1.816 −0.257 0.013

(0.317) (0.310) (2.221) (0.688) (0.201) (1.447) (2.677) (1.447) (0.601) (0.010)

26 0.0831 0.914∗∗∗ 0.803 −0.947 −1.444∗∗∗ 1.883 2.311 0.814 1.264 0.0879

(0.056) (0.051) (4.437) (1.277) (0.322) (1.412) (1.673) (0.633) (1.795) (0.074)

27 0.305∗∗ 0.689∗∗∗ 1.447 0.114 −1.341 0.461 2.713∗∗∗ 0.750∗∗∗ 0.448∗∗∗ 0.167∗

(0.103) (0.099) NA NA NA (0.689) (0.345) (0.088) (0.171) (0.067)

28 0.122 0.868 3.138 −1.506∗ −1.092∗∗∗ 3.280∗ 4.167 −2.441 0.225 0.078

NA NA (2.214) (0.746) (0.182) (1.47) NA NA NA NA

29 0.330 0.639 2.390 −1.295 −1.135∗∗∗ 2.823∗ 1.645∗∗∗ −2.070 0.438 0.421

NA NA (2.176) (1.056) (0.095) (1.250) (0.087) NA NA NA

30 0.560 0.427 −1.486 −0.774 −0.984∗∗ 2.073∗ 3.529∗∗ −0.404 −1.897 0.131

NA NA (3.356) (0.853) (0.310) (0.847) (1.212) NA NA NA

31 0.674 0.299 1.350 −1.989∗∗∗ −0.979∗∗∗ 2.353∗ 1.984∗∗∗ −1.344 0.149 0.231

NA NA (2.275) (0.351) (0.140) (1.115) (0.187) NA NA NA

32 0.228∗∗∗ 0.756∗∗∗ 1.401∗ −1.570∗∗∗ −0.947∗∗∗ 2.870∗ 1.965 −2.326∗∗∗ 0.431∗∗∗ 0.197∗∗∗

(0.014) (0.012) (0.791) (0.157) (0.079) (1.193) NA (0.084) (0.021) (0.012)

33 0.935 0.057 −0.170 −1.656∗∗∗ −1.158∗∗∗ 1.767 1.369∗∗∗ −0.195 −2.481 0.051

NA NA (2.898) (0.434) (0.052) (1.280) (0.124) NA NA NA

34 0.451 0.542 0.288 −1.603 −1.474 1.825 2.314 −0.811∗∗∗ −0.219 0.260

(0.549) (0.546) (2.127) NA NA (1.735) NA (0.104) (0.157) (0.414)

35 0.900 0.076 0.183 −1.192 1.883 −0.356 2.015 −0.314∗∗∗ −1.863∗∗∗ 3.051

NA NA NA (0.934) (1.241) (0.303) NA (0.024) (0.224) NA

36 0.384∗∗∗ 0.217 −0.536 −0.867 2.738∗ −0.120 1.708 −0.284∗∗∗ −2.562∗∗∗ 1.883∗∗∗

(0.063) NA NA NA (1.403) NA NA (0.018) (0.284) (0.244)

37 0.826∗∗∗ 0.162 0.102 −0.188 2.744∗∗ −0.331 1.544∗∗∗ −0.092∗∗∗ −3.436 0.729
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(0.126) (0.149) NA (1.079) (0.864) (0.291) (0.044) (0.004) (0.133) NA

38 0.644∗∗∗ 0.338∗ 0.871 −0.572 5, 000∗∗∗ −0.299 1.716∗∗∗ −0.234 −1.879 0.668∗∗∗

(0.135) (0.165) (1.623) NA (1.287) NA (0.202) NA NA (0.177)

The significance (where standard errors are available) of the ACH model pa-

rameters α1 and β1 shows that the memory is rather important to model spike

occurrences. As we could expect, the coefficients of Load and Tmax are both

tendentially strongly significant for each of the 14 model developed, while the

Tmin coefficient is not.

Specifically, the coefficient of Load assumes negative values, telling us that

an upward shift of the demand at time t induces the probability of a spike

occurrence in t+ 1 to be higher.

On the other hand, the interpretation of the coefficients of the climate variables

(i.e., Tmin and Tmax) is more difficult: the effect of a higher value of maximum

temperature (i.e. above the average) is to increase the spike probability, while

a lower value of minimum temperature (i.e. below the average) has the effect to

decrease such probability. The described situation is observed unless we look

at the load periods from 17:30-18:00 to 19:00-19:30, where the influence of the

variables is the opposite. It is hard to explain such a behavior, which could

be hidden in the office working schedule. In fact, when offices and businesses

in general are running, there should be an overuse of air conditioning, which

should not be so marked outside the working schedule. Besides, since the

constructed variable Tmin is related to the minimum temperature observed

within the tth day, it is expected that its role becomes more critical during

the evening hours, when the temperature usually falls down towards the lowest

daily temperature value, as well as the role of Tmax getting insignificant.

At last, we remark that the NSW temperatures rarely fall below 10◦C. As a

consequence, a further interpretation of the mostly non-significance of Tmin

coefficient is that the energy demand induced by the minimum temperature

changes does not suffer from sharp growth since the minimum temperatures

are never particularly harsh.
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Still, the significance of the calculated coefficients v and λ, for many of the

estimated models, suggests that the augmented form specified in Eq. 3.15 is

fairly necessary to model the time intervals between spike occurrences.

The remaining parameters estimated b and c can not be really interpreted,

as they are ACH structural shift and rotation parameters which can also not

be omitted from the model specification.

Forecast results

Table 4.3 shows the results of spike detection within estimation and forecast

by the ACH models, obtained by computing the hazard rate ht for each of the

estimated parameters θ̃j , j = 25, . . . , 38 (see §3.20). Fig. 4.4 shows an example

of the spike analysis upon the 33rd load period, which compares the observed

spikes with the estimated spikes obtained with the value of h33,t.

Concerning the forecast results (year 2010), the ACH model predicts 18

spikes over the 76 observed, with a number of 131 false alarms. It means

that about 12% of the model predicted spikes are actually real spikes. These

results are rather not exciting, and lead us to suppose that both the exogenous

variables chosen and the history of the process based on the past and expected

durations are not enough to completely explain why a spike occurs. However,

we should compare the obtained results with a memoryless model for having

a wider view of the ACH power (see §4.4.1).

At the end, we may wonder whether or not an appropriate transformation

of the exogenous variables, which can lead the model to produce a better spikes

occurrences estimation, exists.

For instance, the combinations of the exponential transformation of Load,

Tmax and Tmax have been tested2. However, such attempts was unsatisfying

compared to the previous results.

4.3 The Italian electricity market

The second EM we consider for testing the ACH model based on the load pe-

riod approach is the Italian electricity market. Since the Italian EM actually

2We could believe that the effect of the considered exogenous variables fluctuations on

the spike occurrence was exponential, rather than linear.
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Table 4.3: ACH(1,1) spike occurrences analysis for NSW data. The esti-

mated spikes are split between estimation (2003-2009) and forecast (2010).

Spike detected indicates the number of spikes detected by the ACH(1,1)

model and the number of spikes observed within the TS, while False alarm

indicates the number of spikes detected which are not observed for real over

the total number of estimated spikes.

Estimation Forecast

j Spike detected False alarm Spike detected False alarm

25 14/85 33/47 3/6 4/7

26 4/101 21/25 0/5 0/0

27 3/116 8/11 0/5 0/0

28 18/124 34/52 2/6 1/3

29 8/131 13/21 0/5 0/0

30 72/135 293/365 6/6 57/63

31 18/135 48/126 1/5 2/3

32 14/132 46/60 2/5 1/3

33 26/107 100/126 4/5 66 /70

34 1/87 7/8 0/2 0/0

35 0/89 0/0 0/4 0/0

36 87/222 69/156 0/11 0/0

37 91/234 70/161 0/9 0/0

38 0/160 0/0 0/2 0/0

Tot. 356/1858 742/1098 18/76 131/149

(19.2%) (67.6%) (23.7%) (87.9%)
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Figure 4.4: The NSW ACH(1,1) spike analysis of the 33rd load period.

The observed extreme price events are indicated by the grey bar in the top

panel. The bottom panel shows the ACH estimated probabilities, with the

horizontal grey bar indicating the threshold of 0.5.
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differs from the NEM, previously studied in §4.2, in the beginning of this sec-

tion we explain the main characterizing features of the Italian market, before

proceeding by testing our framework.

Before liberalization, the Italian electricity market was under the monopoly

of a single vertically integrated and state-owned company (Enel), which basi-

cally had full control of the generation, transmission and distribution networks.

In March 1999, with the Bersani legislative decree n.79, the Enel privatiza-

tion process started, the Italian wholesale electricity market was born and the

Italian Electricity Market Operator (GME) was instituted.

The Bersani decree implemented a new structure of electricity system,

organized as follows:

- The activities related to distribution were subject to license.

- The activities related to transmission and dispatching were subject to

the natural monopoly of the Transmission System Operator (TERNA)

and the GME.

- The generation, import, export and supply activities were liberalized.

In addition, the liberalization of the demand was gradually introduced from

1999 to the 1st July 2007, when all the electricity consumers became eligible,

meaning that they were all able to choose their own supplier (Cariello, 2008).

The Italian wholesale market started to operate as a Pool in April 2004

and became an Exchange in 2005 with the liberalization of the demand-side

bidding (Gianfreda and Grossi, 2009).

The Italian Power Exchange (IPEX) spot market is an auction market, where

transactions take place the day ahead of the day in which electricity is physi-

cally produced and consumed. The IPEX spot market (MGP) operates with

hourly load periods (i.e., J = 24). The Unique National Price (PUN) rep-

resents the price for end customers, namely the MCP. It is computed as the

average of the zonal prices3 weighted by zonal consumption (GME, 2009).

3There are virtual zones with foreign markets which are connected with the Italian elec-

tricity network, such as Austria, Corsica, France, Greece, Slovenia and Switzerland, and

physical national macro-regions as Northern-Italy, Central-Northern Italy, Central-Southern

Italy, Southern Italy and the islands (Sicily and Sardinia).
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The main production source of the Italian EM (year 2011 update) is the

fossil-fuel, which covers more than 50% of the total demand, followed by the

renewable energies (approx. 20%), such as hydro power, geo-thermal power

and photovoltaic power plants. A singular feature of Italian EM is that a wide

part of the national energy demand is imported from abroad (approx. 13%).

Since the green allowances have an important role in the Italian market and the

legislation which regulates them is still an evolving process, in terms of supply

stack, it is rather complicated to establish the real marginal production cost

for each production utility. Tendentially, the energy imported from abroad is

the most expensive, while hydro power is the cheapest.

Influencing variables Although the Italian EM shows a different struc-

ture and a relatively low degree of liberalization, there is no reason to think

that the Australian spot prices supply-side influencing variables do not in-

fluence spike occurrences within the PUN time series at all. Therefore, load

and temperature may constitute two factors influencing the spike occurrences.

Additionally, we consider the unsold load, which represents the quantity of

unsold energy present in the market4, as another supply-side influencing fac-

tor.

At the end, as the majority of the Italian energy production comes from the

fossil-fuel sources, extreme values of the spot prices could be influenced by the

fluctuations of the BRENT Crude Oil Index for Europe (Calento et al., 2006),

which can be classified as a demand-side influencing variable.

4.3.1 Data

The data for the estimation process consist of a series of 52,584 hourly obser-

vations of the PUN and load values, starting from the 1st January 2006 to and

including 31st December 2010. Similarly to what we did for the NSW market

data in §4.2, the whole year 2011 is kept for evaluating the forecasts.

Fig. 4.5 shows the Italian spot prices TS available for our analysis. Al-

though the PUN time series exhibits the typical liberalized EM stylized prop-

4In a given load period of a given day, the unsold energy is the quantity of energy which

is bought by the GME, but not sold to the customers.
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Figure 4.5: The Unique National Price (PUN) time series, from the 1st

January 2006 to 31st December 2011.

erties, described in §1.2, it looks rather different than the NSW series shown

in Fig. 4.1. Mainly, the PUN time series does not have any peak, in which

PUN value is as extreme as the spikes values observed in the Australian mar-

ket, even if it shows extreme and time-varying volatility. Besides, the time

series shows a marked trend presence, which changes the mean-value of the

spot prices across the time.

We can say that the Italian spot prices TS is in some ways more similar

to the British TS analyzed in §2.5 than the Australian one, since the ‘normal-

regime’ fluctuations of the spot price are more nervous, as well as the spot

prices mean clearly exhibits a trend component.

A first inspection on graphs and related ACFs shows that the PUN time

series for each load period does not exhibit a well defined long run behavior.

Still, the ACF and PACF functions remark a strong weekly periodic compo-

nent and a persistent autocorrelation function (see Fig. 4.6). A clear annual

dynamic is also shown by the ACFs of the time series associated to the load

periods from 9:00 to 21:00. The ADF test rejects the null hypothesis at 5%

significance level, except for PUN time series of the 23rd and 24th load periods.

Exogenous variables The exogenous variables Tmax, Tmin and Load are

constructed by using the same method adopted for the Australian EM (see

§4.2.1), while the additional variables chosen are obtained as follows:
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Figure 4.6: The Italian EM spot prices ACF and PACF (load periods 6,

12, 18).

- Unsoldt is constructed adopting the same procedure used for Loadt.

- Brentt is constructed by detrending the European BRENT Crude Oil

closing-prices, using a 2-week moving median and a monthly rolling

volatility. Such deseasonalizing procedure for Brentt is chosen because

we believe that the MCP needs no more than one week for having a po-

tential (extreme) response to an oil price fluctuation around the normal

regime.

Referring to Eq. 3.12, zt = [1,Loadt, Tmax,t, Tmin,t,Unsoldt,Brentt].

Sources Spot prices and loads time series were provided by ACSM S.p.A.,

a small company involved in the hydro energy production process. The other

EM data were provided by the GME. The daily temperature data were pro-

vided by Ilmeteo S.r.l., while the time series of the Europe BRENT Crude

Oil daily closing prices were obtained with the support of the Bloomberg Ter-

minal computer system. More precisely, based on the method used for NEM

analysis (i.e. choosing the temperatures coming from the biggest city), the

temperature data collection concerns the city of Rome, which is the biggest
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Italian city indeed. Since the Italian weather conditions may radically change

depending on the specific area considered, the choice of Rome could be non-

sense. However, as we focus on the daily absolute deviations of the minimum

and maximum temperatures, which should be almost the same all over the

Country, our choice is still reasonable.

4.3.2 Spike detection

Since a price spike identification method which uses a quantile-based approach

has been traced in §2.4, for the Italian EM we adopt such framework for de-

tecting spikes. However, since it is a common knowledge5 that no extreme

spot price values have been observed within the Italian EM during a public

holiday, nor during the weekends, we exclude such days from our detrending,

deseasonalizing, estimating and forecasting procedures. Specifically, the Ital-

ian public holidays omitted are: 1st and 6th January, 25th April, 1st May,

2nd June, 15th August, 1st November and 8th, 25th and 26th December.

4.3.3 Estimating ACH(1,1) parameters

Similarly to what we did for the Australian EM spot prices of NSW, we chose to

analyze only the load periods which exhibit a more accentuated spiky behavior.

Our choice is fairly justified by the quantile-based approach for spike detection.

In fact, since our method classifies from 5% to 10% of the spot price as ‘spikes’,

if we analyzed the time series which do not show enough extreme values, we

would occur in a high probability to classify as ‘spike’ a price which is only

slightly above the normal-regime.

As we can see in Fig. 4.7, the more interesting load periods are for j =

8, 9, 13, . . . , 23. These time series show more than the others an interesting

number of extreme spot price values, as we can see looking at the boxplots

positive outvalues.

Still, coherently to what we did for the Australian analysis in §4.2, the results

of the ACH models applied to the whole set of load periods are summarized

in Table A.4.

5Such knowledge was empirically confirmed by the company ACSM S.p.A.
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Figure 4.7: The Italian p′j,t (see Eq.2.5) boxplots, from the 1st of January,

2006 to the 31st of December, 2011, ∀j = 1, . . . , J .
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So, we are now able to estimate θ̃j , j = 8, 9, 13, . . . , 23, where j represents

the jth load period.

Estimation results

Table 4.4 shows the estimates for the ACH model, for each of the 13 load

periods considered.

Unfortunately, the maximization process reports a high number of NAs

in estimating the standard errors. It happens because the MaxLik routine

may fail in computing some elements of the Hessian matrix, especially as the

number of parameters is particularly large. This is the reason why they are

omitted from Table 4.4. It follows that any analysis about significance of the

coefficients can not be done.

Even so, at least we are able to qualitatively analyze the direction, in which

the probability of a spike occurrence moves, for each of the exogenous variables

chosen.

Positive fluctuations of the constructed variables Load, Tmax, Tmin and Brent

at time t bring the hazard of the next day ht+1 to be tendentially higher, while

Unsold induces an opposite behavior of the hazard rate. Such directions were

expected, as they are the same reported in the ACH analysis of NSW prices.

Concerning the Brent variable, it is normal that a value above the average

of the European BRENT Crude Oil Index leads to a higher risk of a spike

occurrence, since the fossil-fuel power stations cover the main part of Italian

electricity production.

Forecast results

Table 4.5 reports the results of model estimations and forecasts, obtained by

computing the hazard rate ht for each load period j = 8, 9, 13 . . . , 23 (see

§3.20). Fig. 4.8 shows an example of the the spike analysis adopting the

estimated model for the 9th load period, which compares the observed spikes

with the estimated spikes obtained with the values of h9,t.

Taking into account that spike occurrence probability is set by the spike

detection procedure to around 10% (the on-peak hours method for spikes

identification specified in §2.4 was chosen for the interesting load periods), the
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j ACH(1,1) Parameter (Variable)

α1 β1 γ0 γ1 γ2 γ3 γ4 γ5 v b c λ

(const.) (Load) (Tmax) (Tmin) (Unsold) (Brent)

8 0.036 0.572 1.040 0.811 −0.239 −0.221 2.630 −0.107 2.352 −0.952 −1.436 2.796

9 0.839 0.117 8.094 −0.787 −0.112 −0.186 2.943 0.135 7.658 0.706 0.190 1.631

13 0.114 0.836 2.700 −1.816 −0.354 2.395 −0.453 1.381 2.432 −1.342 −1.784 0.306

14 0.335 0.650 0.772 −1.479 −0.472 0.360 −0.274 −0.684 1.550 −1.701 −0.310 0.058

15 0.033 0.280 3.524 −1.452 −0.016 0.854 0.072 −0.475 2.675 0.560 −0.179 3.235

16 0.053 0.830 0.803 −1.014 −0.574 0.107 0.774 0.759 1.046 0.967 0.829 2.919

17 0.282 0.683 2.766 −1.252 −0.413 1.399 −0.177 −0.401 1.877 1.568 −0.302 3.589

18 0.141 0.625 2.730 −2.036 −0.730 −0.315 −0.125 −0.444 2.592 −1.028 −0.255 3.557

19 0.512 0.455 0.304 −0.841 0.347 0.238 2.307 0.780 4.232 −0.646 −0.991 0.168

20 0.125 0.872 3.225 −1.671 −0.309 −0.004 1.977 −2.344 4.039 −1.593 0.381 0.403

21 0.583 0.416 0.577 1.848 −0.441 −0.650 1.241 −1.335 2.490 −0.906 −0.111 0.920

22 0.312 0.684 1.112 1.042 −0.222 −0.008 2.412 −1.730 1.493 −1.696 −0.850 0.022

23 0.740 0.180 −0.473 −1.990 0.106 0.176 1.570 −1.097 2.555 −1.706 0.301 0.589

Table 4.4: Estimates for the ACH(1,1) model, with the Italian EM data. The table shows, for each j considered, the values of the parameter

vector θ̃j .
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Table 4.5: ACH(1,1) spike occurrence analysis for Italian data. The esti-

mated spikes are split between estimation (2006-2010) and forecast (2011).

Spike detected indicates the number of spikes detected by the ACH(1,1)

model and the number of spikes observed within the TS, while False alarm

indicates the number of spikes detected which are not observed for real over

the total number of estimated spikes.

Estimation Forecast

j Spike detected False alarm Spike detected False alarm

8 1/120 0/1 0/20 0/0

9 33/126 87/120 11/10 13/24

13 67/121 338/405 16/35 53/69

14 67/119 260/327 19/31 30/49

15 91/128 296/387 17/32 85/102

16 85/128 339/424 19/25 131/150

17 29/128 88/117 0/39 0/0

18 49/113 265/314 15/32 55/70

19 30/107 193/223 14/19 45/59

20 41/112 268/309 8/23 51/59

21 0/124 0/0 0/24 0/0

22 3/126 2/5 0/21 0/0

23 52/126 372/424 17/39 61/78

Tot. 548/1578 2508/3056 136/350 524/660

(34.7%) (82.1%) (38.9%) (79.4%)

first thing we can say is that the aggregate results of the ACH modelling show

a high number of false alarms. Basically, the probability of a false alarm in

forecast is about 4 times bigger than the probability that the model captures

a real spike. Having a total number of 3,289 hourly observations considered in

year 2011, the model classifies 20% of them as a spike occurrence. We believe

that it is a rather low-quality result.

4.4 Comparing results: a benchmark Logit model

The results shown in Table 4.2 establish that the rate of spike event occur-

rences partially depends upon factors relating to load and temperature effects
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Figure 4.8: The ACH(1,1) spike analysis of the Italian 9th load period.

The observed extreme price events are indicated by the grey bar in the top

panel. The bottom panel shows the ACH estimated probabilities, with the

horizontal grey bar indicating the threshold of 0.5.

(coefficients of Load, Tmax and Tmin), as well as the history of the process (co-

efficients α1 and β1). It means that the ACH model might produce a better

spike occurrence forecasting than those produced by any memoryless model

which uses the same set of exogenous variables.

Therefore, we need to compare the ACH results with a benchmark model,

which forecasts the probability of a spike event by means of the exogenous

variables alone. The (memoryless) Logit model

pt+1 =
1

1 + exp (−δ′zt)
(4.4)

provides a straightforward basis for comparative forecast evaluations, where

pt+1 is the one-step-ahead forecast probability of a spike occurring at time

t + 1 and zt is a vector of exogenous variables known at time t, similarly to

Eq. 3.20 (Christensen et al., 2011).

Numerical aspects Concerning the Logit model in Eq. 4.4, R glm routine,

which allows us to estimate a Logit model, is used for an efficient evaluation
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Table 4.6: Comparison with Australian data between spike detection ca-

pability of the overall ACH(1,1) and Logit models. The estimated spikes are

split between estimation (2003-2009) and forecast (2010).

Estimation Forecast

Model Spike detected False alarm Spike detected False alarm

ACH 356/1858 742/1098 18/76 131/149

(19.2%) (67.6%) (23.7%) (87.9%)

Logit 249/1858 155/404 5/76 7/12

(13.4%) (38.4%) (6.6%) (58.3%)

of the parameter δ by means of the log-likelihood maximization, namely δ̂,

and the standard errors.

4.4.1 New South Wales EM analysis

Regarding the NEM region of NSW the results from the estimation of the Logit

model (see Eq. 4.4) are roughly consistent with those of the ACH model, with

the strong significance of the coefficients of Load and Tmax for j = 25, . . . , 34,

and Load and Tmin for j = 35, . . . , 38. The interpretation of the parameter

δ̂j leads to the same direction of the ACH estimates interpretation (see §4.2.2

and Table A.1).

Table 4.6 compares the spike occurrences which are detected both in esti-

mation and in forecast by the ACH and Logit models, for the NSW data.

As we can see, the aggregate result of ACH modelling shows a better spike de-

tection capability than the Logit model, especially in forecasting, where ACH

detects 18 spikes instead of 5, over a number of 76 observed. However, the

number of false alarms is higher for the ACH model (873), compared to the

Logit model (162), suggesting a higher precision of the Logit model in isolat-

ing spike events without generating false alarms. Still, we must also take into

account that the ACH false alarms are concentrated in the 30th and 33rd load

periods, as we can see in Table 4.3 and partially in Fig. 4.4. These observa-

tions suggest both benefits and drawbacks of including the process memory as

an hazard rate influencing factor.

Looking at Fig. 4.9, we can see that the Logit model tendentially detects

spikes with a higher price value than the ACH model. Specifically, median
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Figure 4.9: Price values boxplots of the actual spikes detected by both

ACH and Logit models, over the whole TS (i.e., 2003-2010). Values of prices

are shown in logarithmic scale.

and 3rd quartile are respectively 181 AUD/MWh and 445.5 AUD/MWh for

ACH against 276.2 AUD/MWh and 744.9 AUD/MWh for Logit. This is pos-

sibly due to the fact that Logit should catch better than the ACH model

the isolated most extreme demand situations upon the electricity network, at-

tributable only to weather and load fluctuations, which induce electricity price

to be extremely high. Differently, the ACH model seems to be able to capture

also the spikes which do not have an extremely high price value.

At last, comparing the results between the ACH model and the benchmark

model, we can say that the history of the process matters, even if the Logit

model produces a lower number of false alarms. In particular, we believe that

the history of the process allows the Australian ACH model to capture the

network features (such as technical aspects) which can not be explained by

the chosen supply-side influencing exogenous variables.

4.4.2 Italian EM analysis

The results from the estimation of the Logit model highlight that all the exoge-

nous variables chosen have a rather important role to explain the probability

of a spike occurrence. As we can see in Table A.2, it is clear that the exogenous

variables have a certain influence in determining when a spike occurs, since
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Table 4.7: Comparison with Italian data between spike detection capability

of the overall ACH(1,1) and Logit models. The estimated spikes are split

between estimation (2006-2010) and forecast (2011).

Estimation Forecast

Model Spike detected False alarm Spike detected False alarm

ACH 548/1578 2508/3056 136/350 524/660

(34.7%) (82.1%) (38.9%) (79.4%)

Logit 91/1578 74/165 15/350 1/16

(5.7%) (44.8%) (4.3%) (6.3%)

the largest part of the coefficients is significant. Still, we can notice that the

role of the variables is the same observed within the NSW market, with a odd

role of Tmin. Concerning the additional variables considered on the Italian case

study Unsold and Brent, they also have a good influence for the largest part of

the estimated Logit models. Therefore, although the ACH estimation process

did not allow us to analyze the significance of the computed coefficients, the

result of the Logit estimation allows us to confirm that the variable chosen are

significant.

Table 4.7 compares the result in spikes occurrences prediction between the

ACH model and the Logit models. As we can see, similarly to what we found in

the Australian EM analysis, the number of actual spike detected is higher for

the ACH model than the Logit. By the way, Logit exhibits again an incredibly

lower number of false alarms, comparing to the ACH. Basically, ACH forecast

predictions show that the probability of a false alarm is four times bigger than

the probability of a real spike detection, while such probability is less than

10% for the Logit predictions.

Since the method for spike detection outlined in §2.4, which identifies the

relatively extreme price values by adopting a quantile-based approach, was

chosen for the Italian EM case study, a deeper qualitative analysis upon which

kind of spikes are detected by the ACH and the Logit models, as we did in

Fig. 4.9 for the NSW models, is nonsense.

In conclusion, despite the number of effective spikes detected in both mod-

els (about 35% by the ACH and 5% by the Logit), which shows that Logit is

rather poor in forecasting, the main issue concerns the number of false alarms.
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Table 4.8: Comparison between Italian and Australian forecasts (year 2011

for Italy and 2010 for NSW). Obs. indicates the total number of observations

considered for the forecast evaluation, Tot indicates the sum of the real

spikes detected and the false alarms. The results over the total number of

observations are shown in parenthesis.

Source Forecast

EM Model Obs. Spikes Real spikes detected False alarms Tot.

Italy ACH 3,289 350 136 524 660

(10.64%) (4.13%) (15.93%) (20.07%)

Logit 3,289 350 15 1 16

(10.64%) (0.46%) (0.03%) (0.49%)

NSW ACH 5,110 76 18 131 149

(1.49%) (0.35%) (2.56%) (2.92%)

Logit 5,110 76 5 7 12

(1.49%) (0.10%) (0.14%) (0.23%)

Since only one false alarm is observed, the Logit model shows a good effective-

ness in forecasting spikes. On the other hand, 524 false alarms are probably

too many in order to conclude that the ACH framework is better than the

Logit.

4.4.3 Comparison between Italian and Australian forecasts

In order to have a wider view on the results of the developed and estimated

models for the Australian and the Italian EMs, in Table 4.8 we propose a

comparison based on the spike detection accuracy in forecast between the

previously estimated models.

As we can see, the presence of the memory component generally brings to

have a larger number of false alarms, which is more evident for the Italian EM.

For both of the EMs analyzed, the Logit framework shows a higher accuracy

in forecasting real spikes. However, its loss in real spike detection is high

compared to the ACH framework results. We believe that on the Australian

market the ACH gains something, while on the Italian market it shows a too

high propensity to generate false alarms, compared to the total number of

available observations. In conclusion, we believe that the memory component

may be relevant for modelling price spikes occurrences, depending on the EM
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considered.

4.4.4 Applying the Logit to the whole NSW spot prices TS

In §4.2 and §4.3 the ACH model has been applied to every single load period.

The most interesting results have been reached by applying the ACH frame-

work to the Australian NSW data. The comparisons between the results of

ACH and Logit models have been outlined in §4.4.1 and §4.4.2.

Since we introduce this chapter with the ACH results obtained without

individually estimating every single load period parameter θ̃j , we propose a

further comparison between ACH and Logit models by applying them to the

whole NSW spot prices TS.

Following the approach adopted by Christensen et al. (2011), we use the same

set of exogenous variables which was chosen in §4.2.1 for the NSW analysis –

Loadt, Tmax,t and Tmin,t. Two spike detection analyses are proposed, based on

two different estimation and forecast periods.

1. In the first analysis, the dataset is the same of the NEM analysis based

on the load period approach (see §4.2). It means that 122,736 half hourly

price observations are used for the model estimation and 17,520 for the

forecasting evaluation.

2. However, as (Christensen et al., 2011) adopt different estimation and

forecast periods (i.e. from 1st March 2001 to 30th June 2007 for esti-

mation and from 1st July 2007 to 30th September 2007 for forecasting,

using a three-months forecast horizon), the second analysis considers the

estimation period from 1st January 2003 to 30th June 2007 and from

1st July 2007 to 30th September 2007 for evaluating the forecasts (see

§4.1, which also reports the forecast results summary of this analysis in

Table 4.1 – Attempt 4 ).

The choice of analyze two different sets of periods (called for the next part as

‘first dataset’ and ‘second dataset’) allows us to have a wider view on the real

spike detection capability of the ACH model applied to the entire spot prices

time series.
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ACH and Logit Estimates

The ACH(1,1) estimates of both datasets are following listed.

1. Concerning the first dataset, the ACH estimates are θ̃ = [α̃1, β̃1, γ̃0, γ̃1,

γ̃2, γ̃3, ṽ, b̃, c̃, λ̃] ≃ [0.053, 0.947, 4.186, −2.228, −1.367, −0.162, 1.582,

−0.569, −0.295, 1.564].

2. Concerning the second dataset, the ACH estimates are θ̃ = [α̃1, β̃1, γ̃0,

γ̃1, γ̃2, γ̃3, ṽ, b̃, c̃, λ̃] ≃ [0.074, 0.926, 1.646, −1.889, −1.254, −0.068,

1.473, −0.711, −0.069, 1.364].

Coherently with the previous analysis of the NEM ACH estimation results

(see §4.2.2), the coefficients of the three supply-side influencing variables show

that the effect of a positive value of Loadt, Tmax,t and Tmin,t is to increase

the hazard rate ht+1. Since the load period based approach is not adopted

anymore, t indicates the tth load period present within the whole spot prices

TS.

The Logit estimates are δ̂ = [δ̂0, δ̂1, δ̂2, δ̂3] ≃ [−5.440, 1.028, 0.175, 0.114]

for the first dataset and δ̂ ≃ [−5.024, 1.002, 0.101, 0.172] for the second one.

All the Logit parameters are strongly significant (all the p-values of t-statistic

are lower than 0.001). Again, the values of δ̂1, δ̂2 and δ̂3 confirm that the effect

of a positive value of Loadt, Tmax,t and Tmin,t is to increase the probability of

a spike event occurring at time t+ 1.

Estimation results Table 4.9 shows the comparison between ACH and

Logit modelling results, considering both the first and the second dataset.

The ACH model still exhibits a higher propensity to detect spikes than

the Logit model. Concerning the first analysis, the ACH can detect 368 spikes

over the 2,777 observed within the estimation time series, despite the Logit

which detects only 144 spikes within the same time interval. In the second

dataset, the ACH detects 160 spikes over the 1,989 observed within the esti-

mation period, while the Logit detects only 48 spikes.
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Table 4.9: Spike detection capability of the ACH(1,1) and Logit on the

whole NSW spot prices time series. The estimated spikes are split between

estimation (2003-2009) and forecast (2010). Forecast h. indicates the fore-

cast horizon, Estimation indicates the estimation period and F. alarm indi-

cates the number of false alarms.

Estimation Forecast

Estimation Forecast hor. Model Spike detected F. alarm Spike detected F. alarm

2003-2009 1 year ACH 368/2777 67/429 0/93 0/0

(13.3%) (15.6%) (0.0%) -

2003-2009 1 year Logit 144/2777 70/214 0/93 62/62

(5.2%) (32.7%) (0.0%) (100.0%)

2003-2007 3 months ACH 160/1989 49/209 15/299 22/37

(8.0%) (23.4%) (5.0%) (59.5%)

2003-2007 3 months Logit 48/1989 7/55 0/299 0/0

(2.4%) (12.7%) (0.0%) -

Forecast results (first dataset) Differently than the previous ACH mod-

elling results, the ACH framework exhibits a lower number of false alarms

than the Logit model. However, the forecast performances of both the ACH

and the Logit models are surprisingly poor. In fact, none of the spikes ob-

served in year 2010 – used for the forecast evaluation – is detected by the two

estimated models. It follows that both of the developed models do not have

any capability in forecasting spike occurrences.

If we look at the Fig. 4.10, the ACH model apparently fits the spike occurrences

within a very short time interval. Such hazard values are totally unexpected

comparing to the previously obtained hazard functions. Unless ACH specifi-

cation is toally inappropriate for the dataset considered, one of the possible

reasons why the ACH framework works so badly in modelling spike occur-

rances with the whole time series is that the anomalous high number of spike

events in years 2006 and 2007 (around the 78,000th observation in Fig. 4.10)

force the estimation process to be particularly unstable, leading a low-quality

calibration and forecasting. A relatively high number of false alarms is ob-

served within the ACH model, where about 60% of the spikes predicted are

not observed for real.
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Forecast results (second dataset) The estimated ACH(1,1) forecasts 15

spikes over the 299 observed, with 22 false alarms. Hence, the ACH works

better with the second dataset than with the first one. The Logit model is not

able to forecast any of the spikes observed in the third quarter of year 2007

(see Fig. 4.11). Yet, since the Logit does not predict any spike, it indicates

that the exogenous variables are slightly different from the original adopted by

Christensen et al. (2011) (in the research paper, the Logit was able to predict

23 spikes with any false alarm), coherently with the analysis outlined in §4.1.

Conclusion

Although Christensen et al. (2011) reports that the ACHmodel forecasts about

48% of the spikes with a relatively low number of false alarms (i.e. approx.

19% of the predicted spikes), in our analyses the lack of forecasting is clear

and induces us to believe that the load period based approach works better if

the model described in §3 is considered, as it can be seen in Tables 4.3 and

A.3.

However, since the use of conditional expected duration and hazard rate spec-

ifications specified by Christensen et al. (2011) generally gives better results

(see Table 4.1), our choice of adopting the generalized framework could be

contested.

At the end, in general we cannot consider the ACH as a satisfying frame-

work to fit and forecast the spike occurrences in the EMs, since its forecasting

capability depends too much upon the time period analyzed and it produces

a sizeable number of false alarms.

4.5 Yet another ACH(1,1) estimation

Since a method to detect price spikes was outlined in §2.5 and applied on the

APX-PUK data, we propose a further ACH application on the British spot

prices time series. Differently than the Australian and Italian cases, studied

in §4.2 and §4.3, estimation and analysis are made for each of the 48 available

load periods.

The main reason why we are going to analyze the British EM is that it
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Figure 4.10: The ACH(1,1) and Logit spike analysis of the whole NSW

spot prices time series from 1st January 2003 to 31st December 2010 (forecast

horizon of one year). The top panel shows the spot prices time series of the

New South Wales. The middle panel shows the ACH estimated hazards,

with the horizontal grey bar indicating the threshold of 0.5. The bottom

panel shows the Logit estimated probabilities.
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Figure 4.11: The ACH(1,1) and Logit spike analysis of the whole NSW

spot prices time series, from 1st January 2003 to 30 September 2007 (three-

months forecast horizon). The top panel shows the spot prices time series of

the New South Wales. The middle panel shows the ACH estimated hazards,

with the horizontal grey bar indicating the threshold of 0.5. The bottom

panel shows the Logit estimated probabilities.
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has been particularly relevant for the latter born European EMs. In fatc, the

British electricity privatization, conduced by the goverment under Margaret

Tatcher, has been widely observed as a possible model for EM liberalization

and deregulation reforms in a number of countries, especially in Europe.

The British EM born in 1990, as a consequence of the British Electricity Act

of 1989, which set out dramatic structural changes to the electricity supply

industry that came into effect on 31st March 1990 (Green and Newbery, 1992).

As it was mentioned in §2.5, the British EM is an half hourly market where

prices are determined in advance, for each level of demand expected during

the following day.

The data for estimation process consist of a TS of 83,328 half hourly obser-

vations of the spot prices and margin values, starting from the 1st April 2005

up to and including the 31st December 2009. Year 2010 is kept for the fore-

cast validation. The whole spot prices TS is shown in Fig. 2.1, while Fig. 2.2

shows the ACF and PACF functions of the load periods 12, 24 and 36. A first

analysis on the main dynamic characteristics of the series (such as seasonality,

persistence, spikes, etc.) has been outlined in §2.5.

Differently than Italian and Australian cases, only the exogenous variable

Margin is considered. Margin is a variable constructed from the market ex-

pectation of the day next load fluctuations, detrended and deseasonalized by

means of the smoothing splines and the dummy variables techniques (see §2.4.2

for further details).

The aggregate results of the estimation procedures are shown in Table 4.10.

As we can see, the results are particularly poor. In fact, both in the estima-

tion and forecast parts, the estimated models seem to be able to respectively

capture 4% and 5.6% of the spike occurrences, with a high number of false

alarms.
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Table 4.10: Spike detection capability of the overall ACH(1,1) on the

British EM data. The estimated spikes are split between estimation (2007-

2009) and forecast (2010).

Estimation Forecast

Model Spike detected False alarm Spike detected False alarm

ACH 237/5905 634/871 70/1241 124/194

(4.0%) (72.8%) (5.6%) (63.9%)
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Chapter 5

Concluding Remarks

5.1 Short summary

In Chapter 1 we introduced the energy market: why it was born and how it

works in general. The main common features shared by the world’s energy

spot prices were then listed (§1.2).

In Chapter 2 we defined the term price spike by investigating the electricity

spot prices knowledge. After that, by means of a short literature study, we de-

scribed the world of methods for detecting price spikes (§2.3.2, §2.3.3), starting

from the existing spot price modelling and forecasting awareness (§2.3.1). In

the last part of Chapter 2 we proposed a specific method for spike detection

(§2.4) and we applied it on the British Energy Market spot prices (§2.5).

In Chapter 3 we explained the ACH framework and the parameter estimation

procedure adopted (3.3, §3.4), starting from the description of how the con-

nected standard ACD model works (§3.2). Chapter 4 was introduced with a

comparison between our ACH results and the results obtained by Christensen

et al. (2011) (§4.1). Later, we applied the ACH model to the Australian and

Italian energy markets data (§4.2, §4.3), evaluating the results achieved for

each analyzed market. A further analysis of the ACH results had been pro-

posed by the comparison with a memoryless benchmark model (§4.4). In the

last part of Chapter 4 an additional estimation attempt, concerning the appli-

cation of the ACH model on the British EM data, had been outlined (§4.5).

5.2 Significance of the result

First of all, we have to list some remarkable aspects and limitations of our

research.

- This document is inspired by the research of Christensen et al. (2011).
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However, the ACH modelling procedure developed and adopted was

slightly different than that used by the authors. In fact, our ACH frame-

work adopts a generalized specification of the conditional duration, as we

can see in Eq. 3.15 and the hazard rate specification originally proposed

by Hamilton and Jordá (2002). Additionally, a different perspective was

proposed for the largest part of the developed models (the only excep-

tions are outlined in §4.1 and §4.4.4): Christensen et al. (2011) studied

the entire spot prices TS, while we mainly focused on each (interesting)

load period, individually taken.

- Since any EM need to be studied for a better approach to its own chal-

lenges and characterizing features, the set of exogenous variables, which

helps to explain when a spike occurs, could be different for each market

subject to analysis.

- Sometimes, numerical optimization may produce unsatisfying results,

not necessarily connected to an incorrect specification of the model. As

our ACH specification has a large number of parameters, a better estima-

tion of such parameters could be probably reached with more attempts

for maximizing the log-likelihood function (e.g., by using different rou-

tines for numerical optimization).

- In this document a unique model was proposed for each EM, which was

the same for every load period. Anyway, since some coefficients were

not significant, the approach that we used constitutes a limitation for

spike occurrences modelling. For instance, we could consider a different

model (with a different set of explicative variables), for each load period

analyzed.

- Concerning the British and Italian EMs, the developed method for spikes

identification is an arbitrary method, which apparently brings to having

good results, but suffers from some limitations, as we observed in §2.4.4.

First of all, we can say that the ACH modelling does not generally allow to

predict spike events with a good accuracy and efficiency. Although Christensen

et al. (2011) achieve incredible results in forecasting, our analysis highlights

that ACH estimation and forecasting results strongly depend both on the time

period and on the specific EM considered. Besides, the number of false alarms
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is rather high – if compared to the spike prediction capability of the model –

to believe that the ACH framework could be considered as a benchmark for

the EMs. Therefore, both the EM analyzed (which shows a particular type of

spiky behavior as we can quickly realize looking at Fig. 4.2.1) and the time

period chosen by the Australian authors, with a very unique situation in year

2007, constitute a special case.

The electricity markets modeled with ACH and Logit show that the exoge-

nous variables chosen, both in supply and in demand sides, have a certain

influence in determining spike occurrences. Since the history of the process

actually permits to detect more spike events with a number of false alarms

lower than in the other EMs, the NSW EM highlights the relevance of the

historical component for detecting extreme price events. However, such evi-

dence is not remarkable within the Italian and British EMs, where a rather

high number of false alarms does not allow us to have the same conclusion,

even if the history permits to detect more spike events as well.

For instance, within the Italian EM analysis (see Table 4.8), knowing that the

price occurrence probability is set to 10%, 15.9% of the spot prices within the

TS used for forecasting are predicted as spikes by the model and they are not

real spikes at all. Such results are even worse within the British EM.

The poor results of the Italian EM analysis are probably due to two facts:

1. Italian EM does not have such a high level of liberalization maturity as

the Australian and British EMs. As a consequence, its spike occurrences

are determined by a wider amount of factors than those considered in

our research;

2. since the price values are probably too close to the vertically-integrated

monopoly prices, Italian spot price fluctuations do not exhibit a remark-

able spiky behavior, if compared to the Australian or British prices.

Thus, it is rather complicated both to identify a spike and to model

spike occurrences.

Both of the previously described aspects may lead to a unstable estimation of

the ACH model coefficients.Still, we have to consider that the 2008 World eco-

nomic crisis drastically changed the energy consumption in Italy (as reported
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from the GME), probably bringing the market prices to a new balance. Such

situation leads to face another challenge for any model calibration process.

Since APX-PUK is one of the most liberalized and deregulated EM all over

the World, we do not know the reasons why the results of the ACH modelling

on APX-PUK data are so poor, comparing to the NEM results. intuitively,

comparing the differences between the spot prices time series of NEM and

APX-PUK, the ACH model is not able to fit and forecast spike occurrences

within the British spot prices. However, a larger set of exogenous variables

should be considered before arriving at any conclusion.

Italian and British EMs likely needs a deeper technical study, both for

defining and identifying spike occurrences and for recognizing an appropriate

set of factors influencing spike events, unless the ACH framework is totally

inappropriate for modelling spike occurrences of such EMs.

5.3 Future work

Firstly, a connection between every single load period model and its neigh-

boring models is auspicious, both for numerically determining the maximum

likelihood and for a possible significance of the interrelationships. As a mat-

ter of fact, it is largely expected that an observed spike, within a certain

load period of a given day, may be relevant in causing other spike events in

the neighboring load periods. For instance, a multi-step estimation method

could lead to more interesting forecast results, since sometimes a spike spreads

within more than one single load period of a given day.

Secondly, an alternative approach for detecting spikes can be used. In such

case, a different identification of the spikes occurrences within the time series

could bring to rather variant estimation values and consequent results.

Another observation concerns the ACH log-likelihood. We can use a dif-

ferent maximization criterion, based on a weighted relevance of false alarms

produced by the model. Alternatively, a deeper study on the estimated haz-

ard rate ht could be conducted, possibly addressing either to a barrier (set to

0.5 in our research) change or to a single sudden shift of ht to be taken into

account to identify a spike.
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Figure 5.1: Analysis of the hazard function ht barrier (NSW data,

ACH model estimated using the entire spot price TS, from 01.01.2003 to

30.06.2007). The black line shows the percentage of the real spikes detected

by the model. The grey line shows the percentage of false alarms.

For instance, Fig. 5.1 shows a comparison between the percentage of false

alarms and real spikes detected by the model, varying the barrier value of ht,

referring to the second analysis outlined in §4.4.4. As we can see, the per-

centage of false alarms is constantly higher than the percentage of real spikes

detected, leading us to believe that the ACH lack of false alarms is generally

persistent.

Moreover, a different set of explicative variables which explains the reasons

why a spike occurs in a better way, can be found by a careful analysis of the

considered EM, as well as a different order of the parameters m and q in

Eq. 3.13.

Eventually, since the hardware sources have an important role in the nu-

merical maximization of the log-likelihood, especially when a model has a

wide number of parameters, we believe that the use of the cloud computing

could help to make a higher number of attempts, which could naturally lead

to better results.
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Appendix A

Definitions, Models and

Formulas

A.1 Definitions

Definition A.1 (Point Process). A (univariate) point process (PP) is a se-

quence Φ = (Tn)n≥1 of positive random numbers Tn, which may also take

the value +∞. We may interpret Tn as the time at which a certain (random)

event occurs the nth time and assume that (everywhere on Ω):

Tn < Tn+1, if Tn < ∞,

Tn = Tn+1, if Tn = ∞.

(Last and Brandt, 1995).

Definition A.2 (Marked Point Process). Assume that (X,X ) is a measurable

space, define X∞ := X ∪ {x∞} and let X∞ be the σ-field of subsets of X∞,

which is generated by X and {x∞}. We define a marked point process (MPP)

as a sequence Φ = ((Tn, Xn))n≥1 of pairs of random elements Tn of (0,∞] and

Xn of X∞ that meets the point process conditions mentioned in A.1 (Last and

Brandt, 1995).

Definition A.3 (Survival Function). Let X be a random variable with cu-

mulative distribution function FX(t) on the interval [0,+∞) and probability

function fX(t). Its survival function is defined as

R(t) ≡ P[X > t] =
´∞

t
fX(u) du = 1− FX(t).

Definition A.4 (Box-Cox Transformation). The Box-Cox transformation (with-

out shift parameter) is defined as a continuously varying function, with respect

to the parameter v, in a piece-wise function form that makes it continuous at
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the point of singularity (v = 0). Given a data vectors y = [y1, . . . , yn], with

yi > 0, the transformation is

yi =





yvi −1

v[(GM(y)]v−1 , if v 0= 0

GM(y) ln yi, if v = 0

,

where GM(y) is the geometric mean of the observations y1, . . . , yn.

A.2 Models

A.2.1 Seasonal ARIMA model

A time series {Xt} is a SARMA(p, d, q) × (P,D,Q)s process with period s if

it satisfies a difference equation of the form

φ(B)Φ(Bs)(1−B)d(1−Bs)DXt = θ(B)Θ(Bs)Zt, Zt ∼ N (0,σ2),

where p, d, q, P , D and Q are nonnegative integers; φ(z) = 1 −
∑p

i=1 φiz
i,

Φ(z) = 1−
∑p

i=1Φiz
i, θ(z) = 1 +

∑q
j=1 θjz

j and Θ(z) = 1 +
∑q

j=1Θjz
j ; B is

the backward shift operator (i.e., BjXt = Xt−j) and Zt is the error term. The

parameters φ1, . . . ,φp are the AR coefficients, Φ1, . . . ,Φp are the seasonal AR

coefficients, θ1, . . . , θq are the MA coefficients and Θ1, . . . ,Θq are the seasonal

MA coefficients. d and D are the degrees of differencing required to achieve

stationarity (Lai et al., 2001).

A.2.2 GARCH model

A time series {Yt} is a (strong) generalized autoregressive conditional het-

eroscedasticity GARCH(m, q) process with ARCH order m and GARCH order

q if it satisfies the equation

Yt = σtXt, Xt ∼ IID(0, 1),

where σt is the function

σ2
t = ω0 +

m∑

i=1

αiY
2
t−i +

q∑

i=1

βiσ
2
t−i,

with ω > 0 and αi,βj ≥ 0, ∀i = 1, . . . ,m; j = 1, . . . , q (Lisi, 2010).
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A.3 Formulas

ARMA representation of the standard ACD(m, q) model

Given the ACD(m, q) model §3.2.1, such that

ψN(t) = ω +
m∑

j=1

αjxN(t)−j +

q∑

k=1

βkψN(t)−k,

a very useful feature is that it can be formulated as an ARMA(r, q) model for

durations xi.

xN(t) = ω+
r∑

j=1

(αj+βj)xN(t)−j−

q∑

j=1

βjwN(t)−j+wN(t); xN(t) = ψN(t)+wN(t),

where r = max {m, q} and wi is a martingale difference.

A.4 Logit estimates

Table A.1: Estimates for the Logit model, with the NSW data. The table

shows, for each j, the values of the parameter vector δ̂j and the standard

errors; significant codes are ‘∗ ∗ ∗’ (0.001), ‘∗∗’ (0.01), ‘∗’ (0.1).

j Logit Parameter (Variable)

δ0 δ1 δ2 δ3

(interc.) (Load) (Tmax) (Tmin)

25 −4.930∗∗∗ 0.830∗∗∗ 0.259∗∗∗ 0.142∗∗

(0.259) (0.111) (0.033) (0.055)

26 −4.424∗∗∗ 0.767∗∗∗ 0.235∗∗∗ 0.033

(0.221) (0.101) (0.030) (0.058)

27 −4.344∗∗∗ 0.830∗∗∗ 0.245∗∗∗ 0.007

(0.215) (0.098) (0.060) (0.030)

28 −4.235∗∗∗ 0.746∗∗∗ 0.259∗∗∗ −0.002

(0.206) (0.094) (0.029) (0.060)

29 −4.146∗∗∗ 0.789∗∗∗ 0.246∗∗∗ −0.017

(0.200) (0.093) (0.029) (0.060)

30 −4.284∗∗∗ 0.804∗∗∗ 0.274∗∗∗ 0.012

(0.208) (0.093) (0.030) (0.060)

31 −4.390∗∗∗ 0.893∗∗∗ 0.271∗∗∗ 0.029
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(0.215) (0.095) (0.030) (0.060)

32 −4.478∗∗∗ 0.958∗∗∗ 0.266∗∗∗ 0.048

(0.221) (0.097) (0.031) (0.057)

33 −4.597∗∗∗ 0.880∗∗∗ 0.254∗∗∗ 0.064

(0.231) (0.102) (0.032) (0.055)

34 −4.981∗∗∗ 0.875∗∗∗ 0.277∗∗∗ 0.120∗

(0.263) (0.114) (0.034) (0.054)

35 −4.659∗∗∗ 0.746∗∗∗ 0.191∗∗∗ 0.199∗∗∗

(0.244) (0.125) (0.034) (0.050)

36 −3.156∗∗∗ 0.649∗∗∗ 0.016 0.175∗∗∗

(0.154) (0.038) (0.035) (0.038)

37 −3.276∗∗∗ 0.406∗∗∗ 0.008 0.268∗∗∗

(0.161) (0.106) (0.039) (0.0410)

38 −4.096∗∗∗ 0.523∗∗∗ 0.041 0.315∗∗∗

(0.215) (0.131) (0.047) (0.051)

Table A.2: Estimates for the Logit model, with the Italian EM data. The

table shows, for each j, the values of the parameter vector δ̂j and the stan-

dard errors; significant codes are ‘∗ ∗ ∗’ (0.001), ‘∗∗’ (0.01), ‘∗’ (0.1).

j Logit Parameter (Variable)

δ0 δ1 δ2 δ3 δ4 δ5

(interc.) (Load) (Tmax) (Tmin) (Unsold) (Brent)

8 −2.364∗∗∗ −0.001 0.022 0.014 −0.557∗∗∗ −0.053

(0.185) (0.104) (0.025) (0.032) (0.090) (0.090)

9 −2.410∗∗∗ 0.042 0.040 0.032 −0.754∗∗∗ −0.039

(0.186) (0.115) (0.025) (0.032) (0.100) (0.090)

13 −2.961∗∗∗ 0.629∗∗∗ 0.105∗∗∗ −0.001 −0.185∗ 0.327∗∗∗

(0.225) (0.124) (0.026) (0.039) (0.101) (0.098)

14 −3.198∗∗∗ 0.596∗∗∗ 0.138∗∗∗ 0.026 −0.220∗ 0.248∗

(0.239) (0.123) (0.027) (0.040) (0.105) (0.100)
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15 −3.490∗∗∗ 0.574∗∗∗ 0.202∗∗∗ 0.045 −0.197∗ 0.267∗∗∗

(0.255) (0.119) (0.027) (0.042) (0.107) (0.101)

16 −3.160∗∗∗ 0.518∗∗∗ 0.177∗∗∗ −0.011 −0.192∗ 0.132∗

(0.240) (0.116) (0.026) (0.044) (0.105) (0.098)

17 −3.048∗∗∗ 0.513∗∗∗ 0.143∗∗∗ 0.023 −0.378∗∗∗ 0.224∗

(0.228) (0.120) (0.025) (0.038) (0.102) (0.096)

18 −3.260∗∗∗ 0.412∗∗ 0.144∗∗∗ 0.066∗ −0.422∗∗∗ −0.057

(0.231) (0.126) (0.025) (0.037) (0.104) (0.097)

19 −2.527∗∗∗ 0.182 0.0282 −0.025 −0.761∗∗∗ 0.070

(0.200) (0.138) (0.026) (0.036) (0.108) (0.099)

20 −2.663∗∗∗ 0.231∗ 0.068∗∗ 0.004 −0.415∗∗∗ 0.394∗∗∗

(0.202) (0.126) (0.025) (0.035) (0.101) (0.096)

21 −3.552∗∗∗ −0.305∗∗∗ 0.162∗∗∗ 0.182∗∗∗ −0.341∗∗∗ 0.294∗∗

(0.237) (0.084) (0.025) (0.032) (0.088) (0.091)

22 −2.828∗∗∗ −0.161∗ 0.066∗∗ 0.094∗∗ −0.275∗∗∗ 0.420∗∗∗

(0.205) (0.084) (0.024) (0.031) (0.087) (0.091)

23 −2.913∗∗∗ 0.549∗∗∗ 0.062∗ 0.068∗ −0.425∗∗∗ 0.343∗∗∗

(0.214) (0.112) (0.026) (0.033) (0.087) (0.095)

A.5 Overall results: Australian and Italian cases

Since in §4.2 and §4.3 we focused on the ACH estimation upon the load periods

which exhibit – from our viewpont – a more ‘interesting’ spiky behavior, we

report here the results of ACH estimation on overall the load periods for both

NEM and Italian EM data.
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Table A.3: Summary of the ACH(1,1) spike detection capability for each

of the 48 load periods (Australian data). The estimated spikes are split

between estimation (2003-2009) and forecast (2010).

Estimation Forecast

Load periods Spike detected False alarm Spike detected False alarm

25–38 356/1858 742/1098 18/76 131/149

(19.2%) (67.6%) (23.7%) (87.9%)

1–24, 39–48 185/874 571/756 3/17 121/124

(21.2%) (75.5%) (17.6%) (97.6%)

Tot. 541/2732 1313/1854 21/93 252/273

(19.8%) (70.8%) (22.6%) (92.3%)

Table A.4: Summary of the ACH(1,1) spike detection capability for each

of the 24 load periods (Italian data). The estimated spikes are split between

estimation (2006-2010) and forecast (2011).

Estimation Forecast

Load periods Spike detected False alarm Spike detected False alarm

8, 9, 13–23 548/1578 2508/3056 136/350 524/660

(34.7%) (82.1%) (38.9%) (79.4%)

1–7, 10–12, 24 211/715 1388/1599 40/152 147/187

(29.5%) (86.8%) (26.3%) (78.6%)

Tot. 759/2293 3896/4655 176/502 671/847

(33.1%) (83.7%) (35.1%) (79.2%)
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Appendix B

R code

B.1 ACH likelihood and estimation functions

1 ###################################################################

2 ### LIKELIHOOD FUNCTIONS : LOG LIKELIHOOD FUNCTIONS FOR ACH ###

3 ###################################################################

4

5 ###################################################################

6 # function: u_series - computes historical durations

7 # input: prices (vec num), spikes (vec boolean), add_first (boolean)

8 # output: x (vec num) - historical durations vector u_{N(t)}

9 ###################################################################

10

11 u_series <-function(prices , spikes , add_first=TRUE) {

12 t<-which(spikes ==TRUE)

13 # input check

14 if (length(prices)!=length(spikes)) stop("u_series: input lengths

differ")

15 if (!is.logical(spikes)) stop("u_series: vector ’spikes ’: wrong input

format")

16 if (length(t)==0) stop("u_series (warning): no spikes presence")

17

18 spikes <-as.logical(as.vector(spikes))

19 x<-rep(NA , length(t) -1)

20 for (i in 2: length(t))

21 x[i-1] <-t[i]-t[i-1]

22 if(add_first ==TRUE)

23 return(c(mean(x),x))

24 else

25 return(x)

26 }

27

28

29 ###################################################################

30 # function: psi_model - computes psi function values

31 # input: prices (vec num), spikes (vec boolean), m (int), q (int), Alpha

(vec num), Beta (vec num), v (num), b (num), c (num), lambda (num)

32 # output: psi_v (vec num) - psi function values psi_1, ..., psi_N_t; t=N

_t=1 ,... length(which(spikes ==TRUE))

33 ###################################################################

34

35 psi_model <-function(prices , spikes , m, q, Alpha , Beta , v, b, c, lambda)

{

36 AACD_abs_par <-1e-4

37 psi <-NULL

38 # input check

39 if (v<=0) stop("psi_model: ’v’ must be positive")

40 x<-u_series(prices , spikes , add_first=TRUE)

41 N<-length(x)

42 # initialization

43 init_psi <-function(x) {

44 psi <-rep(sum(Alpha)*x[1]/(1-sum(Beta)),length(x))

45 return(psi)

46 }

47 shock <-function(x, psi , r, index , b, c, lambda , gpsi) {
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48 temp <-x[(index -1):(index -r)]/(gpsi * psi[(index -1):(index -r)]) - b #

b: shift parameter , c: rotation parameter

49 #(abs(temp) - c*temp)^lambda

50 return ((sqrt(AACD_abs_par ^2+ temp ^2) - c*temp)^lambda)

51 }

52 if (is.null(psi))

53 psi <-(init_psi(x))^v

54 else

55 psi <-psi^v

56

57 for(i in (max(m,q)+1):N) {

58 temp <-t(Alpha) %*% (psi[(i-1):(i-q)] * shock(x,psi ,r=q,index=i,b=b,c

=c,lambda=lambda ,gpsi =1)) + t(Beta) %*% psi[(i-1):(i-m)] # gpsi

:=1 <=> EAACD

59 psi[i]<-temp

60 }

61 psi [1] <-mean(psi[-1])

62 return(psi ^(1/v))

63 }

64

65 ###################################################################

66 # function: lambda_function - computes lambda function values

67 # input: x (vec num), delta (num)

68 # output: out (vec num) - lambda function values

69 ###################################################################

70

71 lambda_function <-function(x, delta =0.1) {

72 x<-as.vector(x)

73 lambda <-x

74 # input check

75 if (!is.numeric(x)) stop("lambda_function: ’x’ must be numeric")

76 lambda[which(x<=1)]<-1.0001

77 lambda[which ((x>1)&&(x<(1+ delta)))]<-1.0001+((2*delta*(x[which ((x>1)&&

(x <=(1+ delta)))]-1)^2)/(delta ^2+(x[which ((x>1)&&(x <=(1+ delta)))

]-1)^2))

78 lambda[which(x>=1+ delta)]<-0.0001+x[which(x>=1+ delta)]

79 return(lambda)

80 }

81

82 ###################################################################

83 # function: h_model - autoregressive conditional hazard model

84 # input: prices (vec num), spikes (vec boolean), m (int), q (int), Alpha

(vec num), Beta (vec num), Gamma (vec num), v (num), Z (matr num),

delta (num)

85 # output: h (vec num) - conditional hazard values

86 ###################################################################

87

88 h_model <-function(prices , spikes , m, q, Alpha , Beta , Gamma , v, b, c,

lambda , Z, delta =0.1) {

89 T<-length(prices)

90 psi_out <-rep(NA ,T)

91 Alpha <-as.vector(Alpha)

92 Beta <-as.vector(Beta)

93 Gamma <-as.vector(Gamma)

94 v<-as.numeric(v)

95 Z<-as.matrix(Z)

96 # input check

97 if ( (any(Alpha <0))||( any(Beta <0))||(v<=0) ||( length(Alpha)!=m)||(

length(Beta)!=q) ) stop("h_model: wrong inputs")

98 if ( (any(is.na(Z)))||( length(Z[1,])!=length(Gamma)) ) stop("h_model:

wrong ’Z’ or ’Gamma ’ format")

99 if ( length(Z[,1])!=T ) stop("’h_model (warning): wrong number of

observations in ’Z’")

100 x<-u_series(prices ,spikes)

101 psi <-psi_model(prices , spikes , m, q, Alpha , Beta , v, b, c, lambda)

102 psi <-rev(psi)

103 s_time <-rev(which(spikes ==TRUE))[1: length(psi)]

104 s_time <-c(length(prices)+1,s_time)

105 for (i in 1: length(psi))

106 psi_out[(s_time[i+1]+1):s_time[i]]<-psi[i]
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107 start <-s_time[length(s_time)]+1

108 h<-1/lambda_function( psi_out[start:T] + (as.vector(Z%*%(Gamma))[start

:T]) )

109 return(list(h=h, start=start))

110 }

111

112 ###################################################################

113 # function: ln_likelihood_EXP_ACH - ln likelihood of ACH model with EXP

errors

114 # input: prices (vec num), spikes (vec boolean), garch.order (int), arch

.order (int), Alpha (vec num), Beta (vec num), Gamma (vec num), v (

num), Z (matr num)

115 # output: LnLik (num) - ln likelihood value

116 ###################################################################

117

118 ln_likelihood_EXP_ACH <-function(prices , spikes , garch.order , arch.order ,

Alpha , Beta , Gamma , v, b, c, lambda , Z) {

119 # defining U and c st U %*% theta - c <= 0, theta :=[Alpha , Beta , Gamma

, v, b, c, lambda]

120 U<-diag(arch.order+garch.order+length(Z[1,])+1)

121 c<-rep(0,arch.order+garch.order+length(Z[1,])+1)

122 U<-U[-((arch.order+garch.order +1):(arch.order+garch.order+length(Z

[1,]))) ,]

123 c<-c[-((arch.order+garch.order +1):(arch.order+garch.order+length(Z

[1,])))]

124 if(garch.order >0) {

125 U<-rbind( U,c(rep(0,arch.order),rep(1,garch.order),rep(0,length(Z

[1,])) ,0),c(rep(0,arch.order),rep(-1,garch.order),rep(0,length(Z

[1,])) ,0) )

126 c<-c(c,0,-1)

127 }

128 U<-rbind( U,c(rep(-1,arch.order),rep(-1,garch.order),rep(0,length(Z

[1,])) ,0) ) # stationarity constr

129 c<-c(c,-1) # stationarity constr

130 T<-length(prices)

131 y<-rep(NA , T)

132 LnLik <-0

133 y[which(spikes ==TRUE)]<-1

134 y[which(spikes == FALSE)]<-0

135 # input and constraints check

136 if (any(is.na(y))) stop("ln_likelihood_EXP_ACH: ’y’ not computed")

137

138 if ( (any((U%*%as.vector(c(Alpha , Beta , Gamma , v))-c) <=0)) ) {

139 LnLik <-rep(NA ,length(h_model(prices , spikes , arch.order , garch.order

, rep(0,length(Alpha)), rep(0,length(Beta)), rep(0,length(Z[1,])

), v=1, b=0, c=0, lambda=1, Z)$h))

140 }

141 else {

142 h_lik <-h_model(prices , spikes , m=arch.order , q=garch.order , Alpha ,

Beta , Gamma , v, b, c, lambda , Z)

143 y_lik <-y[h_lik$start:T]

144 if (length(h_lik$h)!=length(y_lik)) stop("ln_likelihood_EXP_ACH: ’h’

and ’y’ lengths differ")

145 LnLik <-(y_lik*log(h_lik$h))+((1-y_lik)*log(1-h_lik$h))

146 }

147 return(list(value=sum(LnLik), lnl=LnLik))

148 }

149

150 ###################################################################

151 # function: Optim_LnL_EXP_ACH - numerical optimization

152 # input: prices (vec num), spikes (vec boolean), garch.order (int), arch

.order (int), Alpha (vec num), Beta (vec num), Gamma (vec num), v (

num), Z (matr num), init (vec num), stationary.constr (boolean),

maxit (num)

153 # output: opt (obj) - optim function output

154 ###################################################################

155

156 Optim_LnL_EXP_ACH <-function(prices , spikes , arch.order , garch.order , Z,

init=NA , grad=FALSE , maxit =100000 , method=c("BFGS","BFGSR","SANN","

NM")) {
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157 require(maxLik)

158 require(sandwich)

159 if (is.na(init))

160 init <-c(rep(0.4, arch.order+garch.order),rep(0,length(Z[1,]))

,1,0,0,1)

161 if ( (grad==TRUE)&&(arch.order ==1)&&(garch.order ==1) ) {

162 res <-NA

163 }

164 else {

165 logLik_function <-function(theta) {

166 if (arch.order >0)

167 Alpha <-theta [1: arch.order]

168 if (garch.order >0)

169 Beta <-theta [(arch.order +1):( garch.order+arch.order)]

170 if (length(Z[1,]>0))

171 Gamma <-theta [(arch.order+garch.order +1):( garch.order+arch.order+

length(Z[1,]))]

172 v<-theta[length(theta) -3]

173 b<-theta[length(theta) -2]

174 c<-theta[length(theta) -1]

175 lambda <-theta[length(theta)]

176 out <-ln_likelihood_EXP_ACH(prices , spikes , garch.order , arch.order

, Alpha , Beta , Gamma , v, b, c, lambda , Z)

177 return(out$lnl)

178 }

179 res <-maxLik(logLik=logLik_function , grad=NULL , hess=NULL , start=init

, method=method , print.level=0, iterlim=maxit)

180 }

181 return(res)

182 }

R code
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