
UNIVERSITÀ DEGLI STUDI DI PADOVA
Dipartimento di Fisica e Astronomia “Galileo Galilei”

Master Degree in Physics

Final Dissertation

Probing the atmospheric mass splitting ∆m2
31 with

reactor antineutrino oscillations at JUNO

Thesis supervisor Candidate

Prof. Alberto Garfagnini Vanessa Cerrone

Thesis co-supervisor

Dr. Andrea Serafini

Academic Year 2022/2023





iii

Abstract

Neutrinos, elementary particles that interact only weakly with matter, constitute the first evidence
of physics beyond the Standard Model of particle physics. The study of their properties, both on
experimental and theoretical grounds, is one of the most active directions within particle physics.
In the last few decades, many experiments provided evidence of neutrinos’ existence and revealed
peculiar properties, such as their non-zero but extremely small masses and the possibility of oscil-
lation among different flavors. To date, almost all neutrino data collected with accelerator, solar,
atmospheric, and reactor neutrinos can be explained within the standard three-neutrino oscillation
paradigm, where a total of six parameters are needed to fully describe neutrino oscillations: three
mixing angles (θ12, θ23 and θ13), one Dirac CP phase (δCP), and two independent mass squared
differences (∆m2

21 and ∆m2
31, or equivalently ∆m2

32). Despite significant advancements in neutrino
experiments and their precision in recent years, many properties of neutrinos still remain unknown,
including the nature of neutrinos (Dirac or Majorana), the existence of CP violation in the leptonic
sector, and the scale of the neutrino mass eigenstates, commonly referred to as neutrino Mass Or-
dering (MO).
The Jiangmen Underground Neutrino Observatory (JUNO), situated in South China, is a forthcom-
ing multi-purpose neutrino experiment. With a substantial active mass of 20 kton, it is foreseen to
become the World’s largest liquid scintillator-based neutrino detector in the next decade. JUNO’s
primary goal is to determine the neutrino MO using reactor antineutrinos (νe) emitted from two
adjacent nuclear power plants at a 52.5 km baseline from the experimental site. The oscillation
pattern observed in JUNO exhibits subtle variations depending on the neutrino MO, thus providing
sensitivity to this parameter. In JUNO’s location, the energy spectrum will be distorted by a slow
(low frequency) oscillation driven by ∆m2

21 and modulated by sin2(2θ12), as well as by a fast (high
frequency) oscillation regulated by ∆m2

31 and modulated by sin2(2θ13). Moreover, it will be the
first experiment to simultaneously observe neutrino oscillations from two different frequencies, and
multiple oscillation cycles of the atmospheric mass splitting ∆m2

31. In addition, JUNO’s data-taking
period of less than one year is sufficient to establish its dominance in the global precision of three of
these parameters. Notably, this is particularly evident in the case of the atmospheric mass splitting
∆m2

31, for which sub-percent precision can be attained within just 100 days of data taking.
This thesis focuses on investigating JUNO’s sensitivity to oscillation parameters, with a specific
emphasis on ∆m2

31. The initial part involves generating the expected energy spectrum in JUNO
using Monte Carlo simulations. Subsequently, by fitting a pseudo-dataset, we evaluate the impact
of statistical and systematic uncertainties on the estimation of oscillation parameters.
Chapter 1 is dedicated to introducing the phenomenology of neutrino mixing and oscillations, cov-
ering the three-flavor framework in both vacuum and matter. Among the several open questions
in the field, a brief overview of the current status on mass ordering measurements will be given. A
concise overview of the present state-of-the-art understanding of oscillation parameters will conclude
this chapter.
Chapter 2 provides a comprehensive overview of the JUNO experiment, offering in-depth details
regarding its main detector components. Emphasis is placed on the physics-driven requirements and
how they are effectively addressed through the experiment’s design. Subsequently, the formalism
described earlier is applied to the specific case of reactor antineutrino oscillations, highlighting the
key aspects that are most relevant to this study.
Chapter 3 thoroughly outlines the entire process involving reactor antineutrinos, spanning from their
production at the source to their interaction and detection in the liquid scintillator. This chapter
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begins by presenting information on reactor antineutrino flux models and the necessary corrections
involved in their estimation. It then focuses on describing the Inverse Beta Decay (IBD) reaction,
which serves as the "golden channel" for electron antineutrinos detection at the MeV energy scale,
thus playing a crucial role in JUNO. Furthermore, the chapter inquires the detector response, lead-
ing to the derivation of the expected spectrum in JUNO.
Chapter 4 describes how the main spectral components are obtained through the official simulation
software and how the residual event count after all section cuts is calculated. A part of this work
was devoted to the development of an algorithm to implement time correlation analysis, a process
that involves selecting two events that occur within a defined time and spatial window. In this
section, the distinctive temporal and spatial signature yielded by the IBD reaction is leveraged to
differentiate IBD events from the dominant background. Then, by incorporating all the relevant in-
formation gathered in the preceding chapters, an Asimov pseudo-dataset is constructed to simulate
the nominal energy spectrum at JUNO, thus modeling the antineutrino incoming flux, the oscilla-
tion probability, the detector response, and all spectral components. Finally, Chapter 5 is dedicated
to the investigation of JUNO’s sensitivity to oscillation parameters, placing a particular emphasis
on the atmospheric mass splitting. The latter serves as a crucial input for global fits and analyses
that combine data from various neutrino experiments, including those involving solar, reactor, and
accelerator neutrinos. Furthermore, the chapter presents the results of the analysis, highlighting
JUNO’s remarkable sensitivity in measuring three oscillation parameters with an unprecedented
level of precision.
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Chapter 1

Introduction

Neutrinos, elementary particles that interact only weakly with matter, have played a pivotal role
in unveiling the limitations of the Standard Model (SM) of particle physics [1]. They were first
proposed by Wolfgang Pauli in 1930 to explain the apparent energy and momentum conservation
violation observed in beta decay. In the following decades, many experiments provided evidence of
neutrinos’ existence and revealed peculiar properties, such as their non-zero but extremely small
masses and the possibility of oscillation among different flavors.
The study of neutrinos has become one of the most active directions within particle physics. Neu-
trino experiments, both on the experimental and theoretical fronts, have been devised to investigate
their fundamental properties, such as mass hierarchy, CP violation, and the nature of their masses
(whether they are Dirac or Majorana particles).

1.1 Neutrinos in the Standard Model of Particle Physics

The Standard Model of particle physics [1–3] is a quantum field theory that describes the fundamen-
tal particles and their interactions. It is based on the gauge symmetry group SU(3)C ⊗ SU(2)L ⊗
U(1)Y , where the subscripts C, L, and Y represent the color charge, left-handed chirality, and
hypercharge, respectively.
The gauge symmetry group uniquely determines the types of interactions and the number of vector
gauge bosons associated with the generators of the group. In the SM, there are eight massless gluons,
corresponding to the eight generators of the SU(3)C group, which mediate strong interactions.
Additionally, there are four gauge bosons associated with the electroweak interactions. Among
them, three are massive (W± and Z0 bosons), while one is massless, representing the photon (γ).
These gauge bosons arise from the three generators of the SU(2)L group and one generator of the
U(1)Y group. The electroweak part of the SM Lagrangian is determined by the symmetry group
SU(2)L ⊗ U(1)Y , which governs the interactions of various particles, including neutrinos [1, 3]. In
the original formulation of the SM, which was based on the data available at the time, neutrinos were
treated as massless chiral1 (Weyl) fermions. The model considered only the left-handed component
νL and its corresponding right-handed antineutrino state νR, where L and R represent the left-
handed and right-handed chirality, respectively. The left-handed neutrinos, νL, are arranged into
weak isospin doublets together with their corresponding charged leptons:

LeL =

(
νeL
eL

)
, LµL =

(
νµL
µL

)
, LτL =

(
ντL
τL

)
,

1Chiral fermions are particles whose left-handed and right-handed components have distinct transformation prop-
erties under the gauge symmetries of the SM.
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while the right-handed antineutrinos, νR, are singlets. Active left handed neutrinos interact via
weak charged current (CC) and neutral current (NC) interactions, described by the following La-
grangians [3] in the interaction basis:

−LCC =
g√
2

∑
α

ναLγ
µℓαLW

+
µ + h.c.

−LNC =
g

2 cos θW

∑
α

ναLγ
µναLZ

0
µ,

(1.1)

where g is the coupling constant associated to SU(2)L, θW is the Weinberg angle, and α = e, µ, τ .
Charged current interactions allow us to define a neutrino of a definite flavor α as the one that takes
part in a CC process with the charged lepton ℓα.

In the SM, neutrinos were initially considered to be massless due to the restricted particle content
and gauge symmetry of the model [1, 3]. The SM, as formulated, does not allow for a renormaliz-
able mass term for neutrinos with its fermionic content and gauge symmetry. However, subsequent
experimental evidence, such as the observations from the Super-Kamiokande experiment [4], has
unequivocally demonstrated that neutrinos do possess non-zero masses and can therefore undergo
flavor oscillations [5, 6], transitioning between different flavor states as they propagate. This dis-
covery required an extension of the original SM framework to accommodate neutrino masses and
mixing. Various approaches have been explored, including extending the particle content of the
model, departing from strict gauge invariance, or relaxing the requirement of renormalizability [3].
In the mass basis, the Lagrangian for leptonic CC interactions includes the mixing of neutrino flavor
eigenstates (νe, νµ, ντ ) with the mass eigenstates (ν1, ν2, ν3) and is expressed as:

−LCC =
g√
2

∑
i,α

νiLUiαγ
µℓαLW

+
µ + h.c. ,

where U is the unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [5] mixing matrix, describing
the mixing of neutrino flavors, which will be addressed in the following section.

1.2 Phenomenology of neutrino mixing and oscillations

As outlined in the previous section, neutrinos are known to exist in three distinct flavors, namely
electron neutrinos (νe), muon neutrinos (νµ), and tau neutrinos (ντ ). Each flavor is linked to
a corresponding charged lepton: the electron, muon, and tau, respectively. However, a notable
phenomenon known as neutrino oscillation was observed [4, 7], where neutrinos can alter their
flavor as they travel through space. This suggests that the neutrino flavors produced in a particular
interaction may not match the ones detected in a different location.
The reason behind this phenomenon lies in the fact that the three neutrino flavors are not equivalent
to the three neutrino mass eigenstates (ν1, ν2, ν3). Rather, the flavor eigenstates are a combination
of the mass eigenstates. The standard three-flavor neutrino framework establishes a relationship
between the neutrino flavor eigenstates (νe, νµ, ντ ) and the mass eigenstates (ν1, ν2, ν3) through
the lepton mixing matrix, νe

νµ
ντ

 = UPMNS

ν1
ν2
ν3

 , (1.2)
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where UPMNS is a 3x3 unitary matrix, also called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [5]
matrix. The standard parametrization for UPMNS is given by [3],

UPMNS =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

eiη1 0 0
0 eiη2 0
0 0 1

 , (1.3)

where the notation cij ≡ cos θij and sij ≡ sin θij is used. The Dirac CP phase, δCP, is to denote
the magnitude of charge conjugation parity (CP) symmetry violation. On the other hand, the
Majorana CP phases, represented by ηi (i = 1, 2), are physical only if neutrinos are Majorana
particles. However, since they appear in a diagonal matrix, they do not affect neutrino oscillations
and are not accessible in oscillation experiments [8].
Let νk be a mass eigenstate2 and να a flavor eigenstate. Neutrinos are produced through charged
current interactions in a given flavor eigenstate that is the superposition of different mass eigenstates,
namely:

|να⟩ =
3∑

i=1

Uαi|νi⟩, (1.4)

where Uαk are the elements of the PMNS matrix in Eq. (1.3). Since the massive neutrino states
|νk⟩ are eigenstates of the Hamiltonian, their time evolution |νk(t)⟩ can be written as:

|νk(t)⟩ = e−iEkt|νk(0)⟩. (1.5)

where the energy associated with the k-th mass eigenstate, assuming a monochromatic beam, is

Ek =
√
|p⃗|2 +m2

k = |p⃗|
√
1 +

m2
k

|p⃗|2 ≃ |p⃗|+ m2
k

2|p⃗| ≃ E +
m2

k

2E
, (1.6)

with E ≃ |p⃗|. Using the expression in Eq. (1.4) for the flavor states in terms of the mass eigenstates,
we can write:

|να(t)⟩ =
3∑

i=1

Uαie
−iEit|νi⟩. (1.7)

The probability of a neutrino of flavor α (at t = 0) being detected at the time t as a neutrino of
flavor β is given by the absolute square of the transition amplitude:

P (να → νβ) = |⟨νβ |να(t)⟩|2 =
∑
i,j

U⋆
βiUβjUαiU

⋆
αje

−i(Ei−Ej)·t (1.8)

Given their extremely small masses, neutrinos can be assumed to be ultra-relativistic, thereby
allowing to identify the distance L between source and detector with the time of flight t3. Moreover,
given Eq. (1.6),

∆Eij = Ei − Ej ≃
∆m2

ij

2E
, (1.9)

2The neutrino mass eigenstates are numbered with descending electron neutrino content: ν1 has the highest
electron flavor content and ν3 is the neutrino with the lower electron flavor content.

3We use natural units, i.e., c = 1.
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hence the standard 3-flavor neutrino model (νSM) is further characterized by two distinct mass-
squared differences, which are defined as follows:

∆m2
ij ≡ m2

i −m2
j with i, j = 1, 2, 3 (i > j). (1.10)

An important prediction of the νSM is the so called mass sum rule, establishing that

∆m2
21 −∆m2

31 +∆m2
32 = 0. (1.11)

Therefore, the oscillation probability in vacuum is given by

P (να → νβ) =

∣∣∣∣∣
3∑

i=1

U⋆
βie

−iEitUαi

∣∣∣∣∣
2

=
∑
i,j

U⋆
βiUβjUαiU

⋆
αj exp

{
−i

∆m2
ijL

2E

}

=
∑
i=j

|Uβi|2 |Uαi|2 + 2Re
∑
i>j

U⋆
βiUβjUαiU

⋆
αj exp

{
−i

∆m2
ijL

2E

}
,

(1.12)

where in the last equality we have decomposed the sum with i ̸= j into two sums that are complex
conjugate of each other (one with i > j for which ∆m2

ij > 0 and the other with i < j for which
∆m2

ij < 0) and then we used the property z+z⋆ = 2Re z. By performing the necessary calculations
and exploiting the fact that

∑
i U

⋆
βiUαi = δαβ , we obtain the expression:

P (να → νβ) = δαβ − 2Re

∑
i>j

U⋆
βiUβjUαiU

⋆
αj

(
1− exp

{
−i

∆m2
ijL

2E

})
= δαβ − 2Re

∑
i>j

U⋆
βiUβjUαiU

⋆
αj

(
1− cos

{
∆m2

ijL

2E

})
+ 2 Im

∑
i>j

U⋆
βiUβjUαiU

⋆
αj sin

{
∆m2

ijL

2E

},
(1.13)

where in the last equality we exploited the identity Re(ab) = Re aRe b − Im a Im b, δαβ is the
Kronecker delta and L is the distance traveled by the neutrino. The following expression is also
commonly used:

P (να → νβ) = δαβ − 4Re

∑
i>j

U⋆
βiUβjUαiU

⋆
αj sin

2

{
∆m2

ijL

4E

}
+ 2 Im

∑
i>j

U⋆
βiUβjUαiU

⋆
αj sin

{
∆m2

ijL

2E

}.
(1.14)

Consequently, from Eq. (1.14), it can be inferred that the oscillation phase is driven by the neutrino
energy E, the source-detector distance L and the squared mass splitting ∆m2

ij . The first two
quantities depend on the characteristics of the experiment (hence they can be, in some cases4,
optimized in order to be sensitive to a specific mass splitting), while the latter is a physical constant.

4This applies to artificial sources of neutrinos, such as those generated by reactors and accelerators. For natural
sources, such as solar and atmospheric neutrinos, the baseline and energy are predetermined by the underlying
physical processes.
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On the other hand, the amplitude of the oscillation is driven only by the elements of the mixing
matrix [1], thus by the mixing angles θij , as specified in Eq. (1.3).
The so-called sensitivity to a given mass splitting ∆m2

ij of an experiment is the value of ∆m2
ij for

which

∆m2L

4E
≃ 1.27 ·

(
∆m2

1 eV2

)(
1GeV

E

)(
L

1 km

)
!≃ 1, (1.15)

where without the loss of generality, we use the notation ∆m2 = ∆m2
ij . Different types of neutrino

oscillation experiments are traditionally classified also based on the average value of L/E, which
determines their sensitivity to a given ∆m2 [1]. Typical values of baselines, energy ranges, and
corresponding sensitivity to ∆m2 are reported in Table 1.1.

Type of experiment Baseline L Energy E ∆m2 sensitivity [eV2]

Reactor SBL ∼ 10m ∼ 1MeV ∼ 0.1
Reactor LBL ∼ 1− 100 km ∼ 1MeV ∼ 10−3 − 10−5

Accelerator SBL ∼ 0.1− 1 km ≥ 1GeV ≳ 1
Accelerator LBL ∼ 100− 1000 km ≥ 1GeV ∼ 10−2 − 10−3

Atmospheric ∼ 10− 104 km 0.5− 102 GeV ∼ 10−3 − 10−4

Solar ∼ 1011 km 0.2− 15 MeV ∼ 10−12

Table 1.1: Types of neutrino oscillation experiments with their typical source–detector distance, energy, and
sensitivity to ∆m2. The acronyms SBL and LBL stand for Short Baseline and Long Baseline, respectively.

The oscillation probabilities associated with channels where α ̸= β are commonly referred to as
transition probabilities. Conversely, the oscillation probabilities linked to channels where α = β are
typically known as survival probabilities. Oscillation experiments follow a similar distinction [1],
outlined in the following paragraphs.

Appearance experiments. They measure transitions between distinct neutrino flavors. If the
final flavor to be detected is absent in the initial beam, the background noise can be effectively
minimized. The primary signal sought in such experiments is the observation of a non-zero count
of this different neutrino flavor. This configuration enables experiments to exhibit high sensitivity
even to relatively small values of the mixing angle. Neutrino appearance experiments typically
employ beams predominantly consisting of a single type of neutrino and aim to detect neutrinos
of different flavors. However, their sensitivity is often hindered by uncertainties in the knowledge
of beam contamination at the source. For instance, accelerator-generated muon-neutrino beams
are not completely pure and contain a small fraction of electron neutrinos, typically around 1%,
and particle identification in detectors may not be 100% efficient. On the other hand, the presence
of tau neutrino contamination at the source is negligible [9]. However, the sensitivity of muon-to-
tau neutrino appearance experiments is limited either by statistical constraints or by the ability
to accurately identify tau particles. In practice, appearance experiments using an accelerator-
generated muon-neutrino beam are always disappearance experiments as well: this is due to the
similarity between the squared mass differences ∆m2

32 and ∆m2
31. Consequently, an experiment

designed to observe the appearance of electron or tau neutrinos will also possess sensitivity to the
disappearance of muon neutrinos. For example, the OPERA experiment [9] used a muon-neutrino
beam produced by CERN Neutrinos to Gran Sasso (CNGS) facility. Despite the appearance of
ντ being its primary goal, OPERA was also sensitive to the disappearance of νµ during their
propagation. Accelerator experiments that produced crucial results by studying muon (anti)neutrino
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disappearance and electron (anti)neutrino appearance are, for example, the MINOS (Main Injector
Neutrino Oscillation Search) [10] and the T2K (Tokai to Kamioka) [11] experiments.

Disappearance experiments. They are designed to measure the survival probability of a neu-
trino flavor. The distinctive oscillation signal manifests as a deficit in the observed event count.
However, due to statistical fluctuations inherent in the number of detected events, even in the
absence of oscillations, uncovering a subtle disappearance becomes challenging. Reactor neutrino
experiments are always disappearance experiments, because the energies of the produced electron
antineutrinos, typically of the order of few MeV, are not sufficient to create muons or taus, and
therefore νµ and ντ cannot be seen in charged-current reactions. For low-energy neutrinos, the
only viable approach for conducting appearance experiments is through a direct comparison be-
tween neutral-current and charged-current reactions, as done by the Sudbury Neutrino Observatory
(SNO) experiment [7]. Disappearance experiments have yielded significant results in the study of
neutrino oscillations. SNO provided compelling evidence for neutrino oscillations and confirmed
the existence of the phenomenon. It observed a deficit in the number of solar electron neutrinos
compared to expectations based on solar models. This deficit indicated that electron neutrinos from
the Sun had oscillated into other neutrino flavors during their journey to Earth [7]. The KamLAND
(Kamioka Liquid Scintillator Antineutrino Detector) experiment [12] similarly observed a deficit in
the number of electron antineutrinos emitted by nuclear reactors, providing further confirmation of
neutrino oscillations. The Borexino experiment played a key role in the field by performing direct
measurements of solar electron neutrinos survival probability [13]. The Daya Bay [14] and RENO
(REactor Neutrino Oscillation) [15] experiments provided precise measurements of the mixing angle
θ13, determining its non-zero value.

1.2.1 Neutrino oscillations in matter

The formalism presented thus far applies to neutrino oscillations in vacuum. However, when con-
sidering neutrino propagation through a dense medium, the free-particle approximation used in the
dispersion relation in Eq. (1.6) breaks down [1, 16]. In this scenario, the evolution equation for
active flavor neutrinos is modified due to the presence of effective potentials arising from their in-
teractions with matter. These interactions primarily involve coherent forward elastic weak charged
current (CC) and neutral current (NC) scatterings. In the context of ordinary matter composed of
electrons, the CC channel is accessible exclusively to electron (anti)neutrinos, while the NC chan-
nel is flavor blind, affecting all (anti)neutrino flavors equally. The Feynman diagrams of CC and
NC-induced scatterings are shown in Figure 1.1.
The dispersion relation for neutrinos in the flavor basis in a medium can be expressed as follows:

Eα
m = Eα

0︸︷︷︸
vacuum

+Eint
CC δαe + Eint

NC︸ ︷︷ ︸
matter

. (1.16)

where Eα
0 represents the energy of neutrino α in vacuum, whereas Eint

NC and Eint
CC account for

the effects of NC and CC interactions with matter. It is worth noting that the contributions from
neutral current (NC) scatterings cancel out in the neutrino oscillation probability due to their flavor
universality. Thus, for simplicity, Eint

NC can be neglected. On the other hand, it is demonstrated [1]
that Eint

CC is proportional to the Fermi constant GF and the number density of electrons Ne, yielding:

Eint
CC =

√
2GFNe. (1.17)

The corresponding matter potential term, indicated as VCC, induces a shift in the effective masses of
the neutrino mass eigenstates, leading to the Mikheyev-Smirnov-Wolfenstein (MSW) effect [16, 17];
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W+

e−

νe

νe

e−

Z0

e−, p, n

νe, νµ, ντ

e−, p, n

νe, νµ, ντ

1

Figure 1.1: Feynman diagrams of the coherent forward elastic scattering processes that generate the
charged current potential through W-boson exchange and the NC potential through Z-boson exchange [1].

this phenomenon, occurring under specific conditions, leads to resonant maximal mixing between
different neutrino flavors.

Since Eα
m in Eq. (1.16) are the eigenvalues of the Hamiltonian in the flavor basis, one can express

the total effective Hamiltonian in matter5, neglecting NC contributions, as:

H̃f
eff = Hf

0 +HI , with HI |να⟩ = VCCδ
e
α|να⟩ = Eint

CCδ
e
α|να⟩, (1.18)

where Hf
0 is the vacuum Hamiltonian in the flavor basis.

Detailed calculations can be found in [1] and lead to the following expression:

H̃f
eff =

1

2E

U
 m2

1 0 0
0 m2

2 0
0 0 m2

3

U † −

 A 0 0
0 0 0
0 0 0


=

1

2E

Ũ
 m̃2

1 0 0
0 m̃2

2 0
0 0 m̃2

3

 Ũ †

 ,

where Ũ and m̃i stand for the effective neutrino mixing matrix and the i-th neutrino mass in matter,
respectively. The matter parameter A can be expressed as

A = ± 2
√
2GFNeE, (1.19)

where the +(−) sign refers to the neutrino (antineutrino) channel.
By accounting for matter-induced potentials and their influence on neutrino propagation, the for-
malism can be extended to describe neutrino oscillations in dense media, enabling the study of
oscillation phenomena in astrophysical environments, terrestrial experiments, and even within the
Earth itself. In Section 2.3, the role of matter effects in the JUNO experiment is further explained.

5The oscillation in vacuum is described by Schroedinger’s equation in the mass basis, with Hamiltonian in the
mass basis Hm

0 . To describe the evolution of flavor eigenstates in vacuum, one needs to pass to the flavor basis by
applying a rotation, namely Hf

0 = UHm
0 U†, with U the PMNS mixing matrix.
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1.2.2 Neutrino Mass Ordering

Despite significant advancements in neutrino experiments and their precision in recent years, many
properties of neutrinos still remain unknown, including the nature of neutrinos (Dirac or Majorana),
the existence of CP violation in the leptonic sector, and the scale of the neutrino mass eigenstates,
commonly referred to as neutrino Mass Ordering (MO) [18]. This section will address the last of
the aforementioned unknowns.
Neutrino oscillation experiments are only sensitive to the squared mass differences ∆m2

ij in Eq. (1.10),
but not to the absolute mass scale. Thanks to matter effects in the Sun [19], we know that ∆m2

21 > 0.
Contrariwise, the sign of ∆m2

31, or equivalently ∆m2
32, still remains undetermined. As a conse-

quence, there are two possible scenarios: normal ordering (NO, ∆m2
31 > 0) or inverted ordering

(IO, ∆m2
31 < 0). The two mentioned hierarchical neutrino mass spectra are shown in Figure 1.2,

providing a graphical representation of the neutrino flavor content of each mass eigenstate6.

Normal Ordering Inverted Ordering

 

Solar:

 

Solar:

 

Atmospheric:

 

Atmospheric:

Figure 1.2: The two possible neutrino mass ordering
schemes.

Its determination thus relies on the precise
measurement of ∆m2

31 and ∆m2
32 and can

be experimentally addressed via different tech-
niques [20]: (1) long baseline (LBL) accelerator
experiments, (2) atmospheric neutrino experi-
ments, and (3) medium baseline reactor exper-
iments (i.e., JUNO [21]). Matter effects intro-
duce discrepancies in the oscillation probabili-
ties for neutrinos and antineutrinos: in the case
of NO, the electron neutrino appearance is en-
hanced and the electron anti-neutrino appear-
ance is suppressed (while for IO the configura-
tion is opposite), thus manifesting as an effec-
tive pseudo CP-violating effect. In LBL beam
experiments, the sensitivity to the matter effect relies on the appearance channel, specifically the
transitions νµ → νe and νµ → νe. However, it is important to note that LBL experiments are
also sensitive to the genuine CP-violating phase, making it nontrivial to distinguish the asymme-
try caused by CP violation and the different mass orderings. Among the accelerator experiments,
NOνA [22] currently holds the most relevance in terms of intrinsic MO sensitivity due to its rela-
tively large matter effects compared to T2K [11], and they will be followed by the next generation
DUNE [23]. A similar approach, based on the MSW effect [19], is pursued by atmospheric neutrino
experiments (e.g., the planned PINGU [24]), which exploit (anti)neutrinos with a wide range of
baselines (∼ 10− 104 km) and energies. In contrast, JUNO stands out as the only experiment cur-
rently capable of resolving the mass ordering through dominant vacuum oscillations7. This unique
characteristic grants JUNO unparalleled insight and capability in the study of mass ordering within
the neutrino oscillation framework [20]. JUNO’s MO sensitivity relies on high-precision spectral
analysis of reactor antineutrinos.

1.2.3 Current knowledge on oscillation parameters

The current knowledge on three-flavor oscillation parameters is summarized in Table 1.2: the results
are obtained from a global fit (NuFIT 5.2 [27]) as of November 2022, without the inclusion of Super-
Kamiokande tabulated ∆χ2 data [28]. The numbers on the first (second) column are obtained

6It is worth noting that the probability of finding a neutrino of flavor α in the i-th mass eigenstate also depends
on the value of the CP violating phase [1, 18]. This feature is not shown in Figure 1.2, where all mixing parameters
are fixed, and δCP = 0.

7Matter effects play a minor role in JUNO [25, 26], as explained in Section 2.3.2.
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assuming NO (IO). The following convention is adopted:

∆m2
3ℓ with

{
ℓ = 1 for ∆m2

3ℓ > 0 Normal Ordering (NO)

ℓ = 2 for ∆m2
3ℓ < 0 Inverted Ordering (IO)

(1.20)

Following Eq. (1.20), ∆m2
3ℓ stands for the mass splitting with the largest absolute value, thus ∆m2

31

for NO, ∆m2
32 for IO.

The significant difference in magnitude between ∆m2
3ℓ and ∆m2

21 is evident in Table 1.2. This feature
allows many experiments to employ a simplified two-flavor neutrino oscillation framework as a
reasonable approximation to the full three-flavor framework [1]. Within this scheme, the parameters
∆m2

21 and θ12 are commonly referred to as the solar parameters as they govern the disappearance of
solar neutrinos. Similarly, the parameters ∆m2

3ℓ and θ23 are known as the atmospheric parameters
since they were first measured by the Super-Kamiokande (SK) collaboration through the detection
of atmospheric neutrinos [4]. The smallest mixing angle, θ13, was experimentally determined to
be non-zero mainly through reactor experiments, such as Daya Bay [14], RENO [15], and Double
Chooz [29].

Normal Ordering (best fit) Inverted ordering (∆χ2 = 2.3)

Best fit ± 1σ 3σ range Best fit ± 1σ 3σ range

∆m2
21

10−5eV2 7.41+0.21
−0.20 6.82 → 8.03 7.41+0.21

−0.20 6.82 → 8.03

∆m2
3ℓ

10−3eV2 +2.511+0.028
−0.027 +2.428 → +2.597 −2.498+0.032

−0.025 −2.581 → −2.408

sin2 θ12 0.303+0.012
−0.011 0.270 → 0.341 0.303+0.012

−0.011 0.270 → 0.341

sin2 θ13 0.02203+0.00056
−0.00059 0.02029 → 0.02391 0.02219+0.00060

−0.00057 0.02047 → 0.02396

sin2 θ23 0.572+0.018
−0.023 0.406 → 0.620 0.572+0.018

−0.023 0.412 → 0.623

δCP / ◦ 197+42
−25 108 → 404 286+27

−32 192 → 360

Table 1.2: Current best fit values on oscillation parameters from NuFIT 2022 global analysis [27], without
Super-Kamiokande atmospheric data. Note that ∆m2

3ℓ = ∆m2
31 > 0 for Normal Ordering and ∆m2

3ℓ =
∆m2

32 < 0 for Inverted Ordering.
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Chapter 2

The JUNO experiment

The Jiangmen Underground Neutrino Observatory (JUNO) [21, 30], is a multi-purpose liquid scin-
tillator (LS) experiment currently under construction in South China. JUNO is designed primarily
for the determination of the neutrino mass ordering with reactor antineutrinos (νe), emitted from
the Taishan and Yangjiang nuclear power plants (NPPs), both located at a baseline of about 52.5 km
from the experimental site. In order to achieve accurate results, JUNO relies on precise knowledge
of the unoscillated reactor antineutrino spectrum shape. To accomplish this, a dedicated small satel-
lite detector called Taishan Antineutrino Observatory [31] (TAO or JUNO-TAO) will be installed
at a distance of around 30m from one of the Taishan reactors. TAO will measure the spectrum
with sub-percent energy resolution, serving as a data-driven reference to constrain the spectra of
the other reactor cores. A schematic illustrating the location of both JUNO and TAO is shown in
Figure 2.1.

JUNO

Yangjiang
Taishan

6x
2x

JUNO-TAO

Daya Bay

~ 52.5 km
~ 52.5 km

Figure 2.1: Location of the JUNO experiment in South China [21]. The main 20 kton LS detector is
indicated in blue, at a baseline of ∼ 52.5 km from six 2.9 GWth reactor cores in the Yangjiang NPP and
two 4.6 GWth cores in the Taishan NPP. The 2.8 ton JUNO-TAO detector [31], indicated in red, is located
about 30 meters away from one of the Taishan reactor cores.
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In JUNO’s location, the energy spectrum will be distorted by a slow (low frequency) oscillation
driven by ∆m2

21 and modulated by sin2(2θ12), as well as by a fast (high frequency) oscillation reg-
ulated by ∆m2

31 and modulated by sin2(2θ13), as shown in Figure 2.2. The oscillated spectrum in
JUNO changes subtly depending on the neutrino mass ordering, thus providing sensitivity to this
parameter.
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Figure 2.2: Top: Expected antineutrino spectrum at JUNO in the ideal configuration (without detector-
related effects) with and without oscillations (using global parameters in Table 1.2). Bottom: νe survival
probability with a 52.5 km baseline. To enhance visual clarity, the oscillation induced by the solar term is
depicted using sin2 θ12 = 0.28 instead of sin2 θ12 = 0.303. The mass splittings and mixing angles modulating
the spectrum are indicated as well.

2.1 JUNO detector design

The JUNO detector is located in an underground laboratory with approximately 690m of rock
overburden, i.e., 1800 meters-water-equivalent (m.w.e.), at an average baseline of 52.5 km from
two nuclear power plants (NPPs). The detector consists of a 20 kton liquid scintillator (LS) tar-
get, contained inside a 35.4-meter-diameter spherical acrylic vessel. It will be the largest liquid
scintillator-based detector in the World for the next decade [21], exceeding comparable existing de-
tectors, e.g. KamLAND [12], SNO+ [7], or Borexino [13], by a factor of approximately twenty. Both
the determination of the neutrino MO and the precision measurement of oscillation parameters are
challenging and imply strict requirements, including:
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Figure 2.3: Schematic representation of the main JUNO detector [21]. The 20 kton acrylic sphere is
submerged in a 44-meters-deep water pool and instrumented with 17612 20-inch and 25600 3-inch photo-
multiplier tubes. The upper part of the detector consists of a Top Tracker system with three layers of plastic
scintillator and a calibration house.

• high light yield to efficiently detect and measure neutrino interactions, and achieve high energy
resolution;

• control of the energy scale to accurately resolve the high-frequency oscillations in the antineu-
trino spectrum;

• a large number of detected antineutrino events to achieve robust statistical significance;

• minimization of background contamination to enhance the signal-to-background ratio;

• thorough control of systematic uncertainties to mitigate potential biases.

These constraints are addressed by careful detector design, as outlined in the subsequent sections.

2.1.1 JUNO main detector

The main detector of JUNO can be divided into several sub-detector systems: these are the Central
Detector (CD), the Water Pool (WP), and the Top Tracker (TT). A schematic view of the main
detector is shown in Figure 2.3.

The CD is the key component of the JUNO detector, serving the purpose of detecting physics events
covering the experiment’s comprehensive physics program [21, 30], including reactor, solar, atmo-
spheric and supernovae neutrinos and antineutrinos. The driving requirements for its design are the
energy resolution within 3% at 1MeV, a precise control of the energy scale (overall non-linearity
effects below 1%), and a substantial antineutrino statistics [21, 30]. The statistics constraint is
secured by the sizeable fiducial volume, with a 20 kton LS target, contained in an acrylic sphere
of 35.4m. On the other hand, to achieve the unprecedented energy resolution (for a LS-based
experiment), the detector incorporates a sophisticated photo-detection system consisting of 17612
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20-inch (or Large) photomultiplier tubes (PMTs) and 25600 3-inch (or Small) PMTs; these PMTs
point inward and are attached to the surrounding Stainless Steel (SS) structure. This configuration
provides an extensive total photo-coverage of ∼ 78%, granting high photoelectron (PE) statistics.
Moreover, to mitigate the impact of the Earth’s magnetic field on the PMTs photoelectron collection
efficiency, compensation coils are mounted on the SS structure. These coils generate magnetic fields
that counteract the Earth’s magnetic field within the detector, minimizing any potential detrimental
effects on the PMTs performance.

Due to the extremely small cross sections of neutrino weak interactions, neutrino events are in-
herently rare. As a result, reducing background noise, mainly due to cosmic rays and natural
radioactivity, becomes of utmost importance in JUNO.
The radiogenic contamination is efficiently contained thanks to proper detector design, meticulous
environmental control, and careful selection and screening of the employed materials [32]. Further
details on the contribution of radioactive backgrounds will be discussed in Section 4.3.1.
To decrease muon-induced backgrounds, the CD is located in an experimental hall with approxi-
mately 690m of rock overburden (1800 m.w.e.), which provides natural shielding from cosmic rays.
Nevertheless, due to the large size of the detector, the residual muon rate is still high, amounting to
approximately 0.004Hz/m2 [21, 33]. For this reason, the experiment will be equipped with two veto
systems acting as efficient taggers for cosmic muons8. The CD is housed within a cylindrical water
pool (WP), with a height of 44m and a diameter of 43.5m, filled with 35 kton of ultra-pure water.
The WP is instrumented with 2400 20-inch PMTs attached to the outer part of the SS shell and
pointing outwards, thereby acting as a Cherenkov veto detector for cosmic muons. Furthermore,
a water buffer connected to the outer Cherenkov detector acts as a shielding layer for the natural
radioactivity of the surrounding rock. On top of the water pool, a muon tracker, called TT [34],
will be installed. The system comprises scintillator strips decommissioned from the Target Tracker
of the OPERA experiment [35]. As the TT is foreseen to have a very high rate of background
events from the radioactivity of the rock and detector material, it will be built in a 3-layer design,
requiring the coincident detection of traversing muons. The TT is centrally placed on top of the
WP, covering only about 60% of the top surface of the JUNO CD [21, 34].
A chimney connects the CD to the outside and will be used to deploy calibration sources into the
detector. The calibration operations, which are presented in Section 2.1.3 are carried out in the
Calibration House.

2.1.2 JUNO liquid scintillator

The preparation of the liquid scintillator (LS) formula requires high quality of all the chemicals to
satisfy JUNO’s strict requirements:

• One crucial aspect is achieving a high light yield, which directly impacts the energy resolu-
tion of the detector. State-of-the-art simulations indicate that thanks to the high LS light
yield and the large photo-coverage (see Section 2.1.1), JUNO aims for a light level exceeding
1350 photoelectrons per MeV [36], more than double the values reached in previous LS-based
detectors like Daya Bay (∼ 160 PEs/MeV [37]) and Borexino (∼ 500 PEs/MeV [38]).

• Transparency of the LS to its emitted light is another essential criterion. The LS must have
an attenuation length greater than 20m [21, 30] at a wavelength of 430 nm. This ensures that
photons emitted in the inner regions of the CD can effectively reach the PMTs for detection.

8Given the rather long lifetime of the cosmogenic isotopes and the muon rate of approximately 3-4 Hz, a veto of
the full detector volume is not viable. Instead, a dedicated veto strategy aims at reconstructing muons tracks inside
the CD [33].
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• The LS must also comply with strict cleanliness and radiopurity standards.

Extensive studies, including dedicated investigations with a Daya Bay detector [39], were aimed
at optimizing the LS composition. The chosen recipe contains linear alkylbenzene (LAB) as a sol-
vent, due to its excellent transparency, high flash point, low chemical reactivity, and good light
yield [21]. To attain transparency to the emitted light, an organic flour is usually added to the
mixture. In JUNO, a concentration of 2.5 g/L of 2,5-diphenyloxazole (PPO) is used as the first
wavelength shifter. The flour absorbs the photons emitted by the solvent and re-emits them at a
higher wavelength (∼ 390 nm), enabling their propagation through the LS. Additionally, p-bis-(o-
methylstyryl)-benzene (bis-MSB) is incorporated (at a concentration of 3 mg/L) as an additional
wavelength shifter. This choice ensures compatibility with the region of highest detection efficiency
of the PMTs, which is approximately at 430 nm [40].

On the other hand, the targeted LS radiopurity is set at 10−15 g/g of 238U and 232Th for reactor
antineutrinos analysis, while for the solar neutrino analysis concentrations below 10−17 g/g are
required [32]. To ensure proper cleanliness of the LS, a combined system of purification plants,
employing different techniques [21], is planned: the raw solvent will pass through alumina columns
and distillation plants in the experimental surface area, before being mixed with the wavelength
shifters. Then, the LS will be sent underground to undergo water extraction and stripping. A final
quality check is performed by the Online Scintillator Internal Radioactivity Investigation System
(OSIRIS) [41] stand-alone detector, to monitor the radiopurity of the LS while the CD is filled
and to confirm the proper operation of the purification plants. More details on the aforementioned
process can be found in [21].

2.1.3 JUNO calibration system

To achieve a precise determination of the MO, it is crucial to control the uncertainty in the positron
kinetic energy scale within 1% [21]. To meet this requirement, a comprehensive calibration program
is envisaged, which focuses on measuring and understanding the intrinsic non-linear behavior of
the scintillation and Cherenkov light emitting mechanisms [42]. In addition to addressing energy
non-linearity (NL), the calibration program also accounts for the position-dependence of the total
number of PEs collected by the Large and Small PMT systems. This position non-uniformity,
which is primarily independent of energy, needs to be corrected through a multi-positional calibra-
tion approach to optimize the energy resolution. The details of the NL model will be discussed in
Section 3.3. However, in this section, the primary focus is on describing the calibration systems and
the program established to ensure accurate energy scale calibration.
A comprehensive calibration will be carried out at the beginning of the experiment to gain a fun-
damental understanding of the CD performance, and then periodically throughout the lifespan of
JUNO. Multiple sources will be deployed at the CD center: in particular, a UV laser diffuser ball,
two neutron sources, and several gamma sources. The radioactive sources selected for calibration
in JUNO, along with the types of emitted radiation, are listed in Table 2.1. To monitor and track
significant changes in the detector properties, such as variations in the light yield of the LS, PMT
gains, and electronics, weekly and monthly calibrations will be performed using the laser and the
241Am-13C source. These calibrations will be conducted at a limited number of positions within the
detector. For a detailed overview of the calibration program, refer to [42].
The hardware design of the calibration system consists of several independent subsystems, shown
in Figure 2.4.

• Automatic Calibration Unit (ACU). The ACU is developed to perform calibrations along
the central vertical axis of the CD. Three sources can be regularly deployed, including a
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Source/process Type Emitted radiation
137Cs γ 0.662MeV
54Mn γ 0.835MeV
60Co γ 1.173MeV + 1.333MeV
40K γ 1.461MeV
68Ge e+ 2 × 0.511MeV

241Am-Be n, γ neutron + 4.43MeV (12C∗)
241Am-13C n, γ neutron + 6.13MeV (16O∗)
(n, γ)p γ 2.22MeV

(n, γ)12C γ 4.94MeV or 3.68MeV + 1.26MeV

Table 2.1: List of calibration sources and corresponding radioactive processes considered by the JUNO
collaboration [42].

neutron source (241Am-13C ), a gamma source (40K ), and a pulsed UV laser source carried
by an optical fiber with a diffuser ball attached to the end. The ACU is expected to be used
frequently during data-taking to monitor the stability of the energy scale and, to some extent,
the position non-uniformity.

• Guide Tube system (GT). The GT consists of a tube that runs outside the acrylic sphere
of the CD, forming a loop along a longitudinal circle. This tube serves as a pathway for a
radioactive source, which is connected to cables attached to both ends of the tube. The GT
subsystem’s ability to position the sources with a 3 cm precision the and its position make it
an effective tool for characterizing the non-uniformity at the boundary of the CD.

• Cable Loop System (CLS). Two CLSs will be installed in the two opposite half-planes of
the detector to ensure comprehensive coverage. The central cable of the CLS extends upwards
toward the north pole of the CD, while the side cable winds through an anchor on the inner
surface of the acrylic sphere. Both cables ultimately lead towards the north pole.

• Remotely Operated Vehicle (ROV). A ROV is foreseen to deploy radioactive sources in
almost the entire LS volume, spanning areas outside the CLS plane.

Moreover, the response of each individual channel of the Large PMTs (LPMTs) might a priori be
different, and also influenced by its position within the detector, resulting in a position-dependent
channel-level non-linearity. This non-linearity introduces a discrepancy between the actual number
of photons detected and the measured charge. To address this issue and ensure accurate measure-
ments, the LPMT system undergoes a process specifically designed to account for channel-level
non-linearity. This is performed thanks to the dual calorimetry technique [43], which involves com-
paring the response of the LPMT system to that of the Small PMT (SPMT) system. A tunable laser
light source covering the entire energy range of interest is employed [42, 44]. Using this approach,
the residual event-level non-linearity can be potentially reduced to less than 0.3%.

2.2 JUNO simulation and event reconstruction framework

The JUNO experiment relies on a software package based on the Software for Non-collider Physics
Experiments (SNiPER) framework [45] for its Monte Carlo (MC) simulations of events. SNiPER
is a modular software framework designed to meet the requirements of both reactor electron anti-
neutrino experiments and cosmic ray experiments. It is implemented using a combination of C++
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Figure 2.4: Schematic representation of the calibration system (not to scale), taken from [42]. The different
subsystems are shown: the Automatic Calibration Unit (ACU), two Cable Loop Systems (CLSs), the Guide
Tube (GT), and the Remotely Operated Vehicle (ROV). The red points represent a source assembly. The
AURORA is an auxiliary laser diode system to monitor the attenuation and scattering length of the LS.

and Python, with C++ providing the main body for efficient execution and Python serving as the
user interface. In addition to SNiPER, JUNO also uses the Geant4 [46] software for detector simu-
lations and the ROOT data analysis framework [47]. Geant4 is a widely used toolkit for simulating
the behavior of particles as they pass through matter, including their interactions with materials
and the resulting energy loss, scattering, and production of secondary particles. It also models
the response of the detector materials and electronics, such as scintillation light production and
propagation, photoelectric effect, Compton scattering, and pair production. The simulation process
consists of several steps, which are briefly described in Section 2.2.1 and Section 2.2.2.
The integration of SNiPER and Geant4 creates a comprehensive simulation and reconstruction
pipeline for JUNO, a crucial component in optimizing detector design and developing necessary
techniques for future real-data analysis. In the scope of this thesis, the SNiPER software has been
extensively utilized to simulate the JUNO detector’s response to various types of events, such as
reactor antineutrinos interactions, geo-neutrinos, and cosmogenic backgrounds. A detailed descrip-
tion of this step is provided in Chapter 4.
Additionally, SNiPER provides a framework for developing and testing new algorithms for event
reconstruction and analysis, making it an important tool for JUNO’s ongoing development and op-
timization efforts. Within this work, an algorithm to perform event correlation analysis is developed
to efficiently distinguish signals from backgrounds (see Section 4.1).
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2.2.1 Event and detector simulation

The JUNO simulation software implements three stages: the physics generator, the detector sim-
ulation (DetSim), and the electronics simulation (ElecSim). The physics generator produces a list
of particles to be simulated, including a simple particle gun and various generators for different
studies, such as positron-neutron pairs from an Inverse Beta Decay reaction following the expected
JUNO spectrum, as well as generators for atmospheric and solar neutrinos.
The Geant4-based DetSim stage is dedicated to simulating the detector’s geometry and the particles’
interactions inside the target material. It comprises physics processes such as the quenching effect
in liquid scintillators, light production and propagation, and the PMT response. The output of
this stage is a set of PMT hits representing the number of PEs released at the photocathode before
amplification. This includes effects due to the PMTs’ Quantum Efficiency (QE) and Collection
Efficiency (CE), which determine their overall Photon Detection Efficiency (PDE)9. A sketch of the
detector simulation process is depicted in Figure 2.5.
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Figure 2.5: Detector simulation scheme in SNiPER [49], from the generator of the physics process to the
number of photoelectrons released at the photocatode.

The ElecSim stage in JUNO software is responsible for modeling the response of the PMTs to hits
from the DetSim package and for simulating the behavior of the readout electronics of the CD, WP,
and TT, with their corresponding trigger logic. The hits are first merged, and then the detected
waveforms, or PMT signals, are simulated with a digitization sampling time of 1 ns. The multiplicity
trigger in JUNO [50] has a default trigger condition of 200 fired large PMTs within a 80 ns window.
If the trigger condition is met, a positive trigger decision is made, and all waveforms in a window
of 1 µs, starting from −100 ns before the trigger time, are bundled into an event.
Furthermore, this package [49] incorporates an event mixing procedure that combines events from
different DetSim sources, and arranges the corresponding hits according to predefined event rates.
This feature allows for the accounting and handling of pileup events, where multiple events occur
within the same time window, thus creating MC samples that simulate data-like features.

2.2.2 Event reconstruction

The reconstruction part of the JUNO software consists of two additional stages, comprising calibra-
tion and event reconstruction. The calibration stage is aimed at reconstructing the PMT waveforms
that are provided as output by either the ElecSim simulation or, in the future, by the data acquisi-
tion system. In particular, when particles deposit energy in the LS, they generate optical photons
that result in PMT signals. The LPMT readout electronics [51] employs Flash Analog-to-Digital

9PDE = QE · CE, and it is of the order of 28-30% for JUNO 20-inch PMTs [48].
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converters (FADCs) to convert these PMT signals into 1 µs Data Acquisition (DAQ) windows with
a sampling frequency of 1GHz. These raw PMT waveforms may contain overshoots and systematic
electronics noise, which have to be carefully addressed in order to achieve accurate reconstruction.
To that end, different algorithms are implemented in the JUNO software and have been tested to
perform waveform reconstruction [52]. The default approach is based upon a Fast-Fourier Transform
(FFT): waveforms undergo a filtering procedure to eliminate high-frequency white noise, then they
are deconvoluted with the single PE PMT response. This process disentangles the high-frequency
electronics noise from the low-frequency signal, thereby yielding charge and time information for
each photon hit. Subsequently, these reconstructed charge and time values serve as inputs for
reconstructing the event vertex and energy, employing various algorithms [53, 54]. One of the sim-
plest methods involves estimating the vertex position by summing the charge-weighted positions
of the PMTs [53]. This approach provides a rough estimation of the vertex location based on the
distribution of light detected by the PMTs. A more complex data-driven method [54] develops
a simultaneous vertex and energy reconstruction: the algorithm combines the charge and time
information of PMTs to enhance the reconstruction accuracy of positron events in JUNO.

2.3 High precision neutrino oscillation physics in JUNO

One of the main goals of JUNO [21, 30] is to determine the neutrino MO at high statistical sig-
nificance (≃ 3σ in approximately 6 years of data taking). The MO information is encoded in the
high-frequency oscillation peaks driven by ∆m2

3ℓ in the oscillated antineutrino spectrum, as illus-
trated in Figure 2.2. Therefore, a precise measurement of the oscillated antineutrino spectrum is
essential for JUNO to determine the neutrino MO and requires a detector with an unprecedented
effective energy resolution. JUNO can obtain valuable insights into the neutrino MO, independently
of the unknown CP-violating phase and the octant of θ23. This distinctive feature provides unique
and complementary information when combined with other neutrino experiments.

JUNO’s remarkable capability to measure the oscillated reactor antineutrino spectrum opens up the
opportunity for an independent determination of the oscillation parameters ∆m2

31, ∆m2
21, sin

2 θ12,
and sin2 θ13, which constitute the main focus of this thesis work. Among these parameters, JUNO
will attain a level of precision significantly better than 1% for the determination of the first three [55].
According to the latest global results in Table 1.2, the relative uncertainties on the parameters
∆m2

21, ∆m2
31, and sin2 θ12 are estimated to be ≈ 2.7%, ≈ 1.1%, and ≈ 4%, respectively. The latest

published study on JUNO’s sensitivity to oscillation parameters [55] shows that the experiment will
be able to estimate these parameters to a precision of 0.2%, 0.3%, and 0.5%, with 6 years exposure,
and reaching sub-percent precision within the first year of data taking. This groundbreaking result
heralds a new era of unparalleled precision in neutrino oscillation measurements. The foreseen pre-
cision will have far-reaching implications across various research fields, including particle physics,
astrophysics, and cosmology. It will enable rigorous tests of the νSM, such as investigating the
unitarity of the PMNS matrix [56], thereby offering the potential to uncover physics beyond the
Standard Model. Moreover, this enhanced precision will significantly impact other experimental
endeavors, reducing the parameter space in the search for leptonic CP violation [21, 30] and neu-
trinoless double beta decay [57], for example. This cutting-edge precision will serve as a powerful
discriminator of neutrino masses and mixing models, provide constraints to other experiments, and
strong handles to probe the three-flavor neutrino paradigm well beyond current limits.
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2.3.1 Antineutrino survival probability

JUNO will detect electron antineutrinos from nuclear reactors at energies of the order of few MeV.
Since the energy is not sufficiently high to allow the production of muons and taus in the LS target,
only the νe disappearance channel is accessible. In particular, the case where α = β in Eq. (1.14)
yields the να survival probability, namely

P(να → να) = 1− 4
∑
i>j

|Uαi|2 |Uαj |2 sin2
(
∆m2

ijL

4E

)
. (2.1)

Moreover, CPT (Charge-Parity-Time reversal) is a symmetry of the oscillation probabilities [1],
hence P(να → να) = P(να → να). Consequently, the νe survival probability reads:

P(νe → νe) = 1− sin2 2θ12 c
4
13 sin2∆21 − sin2 2θ13

(
c212 sin

2∆31 + s212 sin
2∆32

)
, (2.2)

where the notation cij ≡ cos θij , sij ≡ sin θij , and ∆ij = ∆m2
ijL/4E is used. There is no dependence

on sin2 θ23 nor on δCP.

2.3.2 Matter effects in JUNO

Despite the relatively minor nature of matter effects in JUNO compared to long-baseline oscillation
experiments, their inclusion remains crucial for accurately determining the mixing parameters.
Overlooking these effects would primarily impact the solar-induced oscillation, resulting in notable
biases in ∆m2

21 and sin2 θ12, estimated to be approximately 1% and 0.2% respectively [25, 26].
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Figure 2.6: Absolute and relative (in the inset) dif-
ference between P(νe → νe) in matter and vacuum,
for a fixed baseline L = 52.5 km.

Figure 2.6 shows the absolute and relative (in
the inset) difference between P(νe → νe) in
matter and vacuum. The absolute difference
reaches a maximum of approximately 0.0065 in
the proximity of the first low-frequency oscilla-
tion peak, consequently yielding a relative cor-
rection of roughly 3.7%. As a consequence, the
matter-induced effect would hinder the foreseen
accuracy in the estimation of solar parameters
driving the slow oscillation pattern. This clearly
highlights the significance of accounting for sub-
percent effects arising from matter propagation,
which are not negligible compared with the fore-
seen accuracy on the parameters of interest [58].
In order to include matter effects, one needs to
consider the effective Hamiltonian in Eq. (1.19).
For medium baseline experiments like JUNO, reactor νe mostly propagate within the upper part of
the crust and the sediment of the Earth. Thus, for JUNO case, the parameter A in Eq. (1.19) can
be expressed as:

A = ± 2
√
2GFNeE ≃ ± 1.52× 10−4eV2 · Ye ·

ρ

g/cm3
· E

GeV
, (2.3)

where GF is the Fermi constant, Ne is the number density of electrons, Ye ≃ 0.5 is the electron
fraction, and ρ = (2.45 ± 0.15) g/cm3 is the estimated average matter density [59] with its as-
sociated uncertainty. For a constant matter profile, it is sufficient to replace the mixing angles
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and mass splittings in Eq. (2.2) by the corresponding matter parameters (indicated with a tilde).
Consequently, the reactor antineutrino survival probability can be expressed as

P(νe → νe) = 1− sin2 2θ̃12 c̃
4
13 sin2 ∆̃21 − sin2 2θ̃13

(
c̃212 sin

2 ∆̃31 + s̃212 sin
2 ∆̃32

)
= 1− sin2 2θ̃12c̃

4
13 sin

2 ∆̃21 −
1

2
sin2 2θ̃13

(
sin2 ∆̃31 + sin2 ∆̃32

)
− 1

2
cos 2θ̃12 sin

2 2θ̃13 sin ∆̃21 sin(∆̃31 + ∆̃32). (2.4)

The effective matter-induced mixing angles in Ũ are denoted by θ̃ij , (i, j = 1, 2, 3, , i < j), and are
parameterized as c̃ij ≡ cos θ̃ij and s̃ij ≡ sin θ̃ij , keeping the same structure as Eq. (1.3). Here, ∆m̃2

ij

represents the effective matter-induced mass squared difference, and ∆̃ij = ∆m̃2
ijL/4E, where L

stands for the baseline, and E is the neutrino energy. The full expression of the oscillation parameters
appearing in Eq. (2.4) can be found in Appendix A.
In the second and third lines of Eq. (2.4), the survival probability is reformulated to factor out the
solar-dominated, atmospheric-dominated, and MO-sensitive terms, respectively.
A graphical representation of the electron antineutrino survival probability is shown in Figure 2.7,
with a fixed energy Eν̄e = 3MeV and variable baseline.
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Figure 2.7: Antineutrino survival probability according to Eq. (2.4) at fixed energy Eν̄e
= 3MeV and

variable baseline. To enhance visual clarity, the oscillation induced by the solar term is illustrated using
sin2 θ12 = 0.28 instead of sin2 θ12 = 0.303. Two region of interest for reactor antineutrino experiments
are highlighted, corresponding to short baseline and medium baseline facilities, e.g., Daya Baya [14] and
JUNO [30], respectively.
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Chapter 3

Reactor antineutrino production and
detection

To accurately predict the observed energy spectrum, several factors must be taken into consideration,
including the source, propagation, interaction, and subsequent detection of the involved particles.
The source of interest in this context is the reactor antineutrino flux, which is discussed in detail
in Section 3.1. The propagation aspect relates to the survival probability of electron antineutrinos
(νe), as described by Eq. (2.4). Then, a comprehensive overview of the kinematics and cross section
of the Inverse Beta Decay (IBD) is provided in Section 3.2. This reaction serves as the primary
interaction mechanism between antineutrinos and the LS target. Finally, the detection of the
antineutrinos requires understanding the response of the detector, which is described in Section 3.3,
considering the latest knowledge and advancements specific to the JUNO experiment.

3.1 Reactor antineutrino flux

Reactor antineutrinos detected by JUNO originate from the nearby Taishan and Yangjiang NPPs,
which consist of two and six reactor cores, respectively. The average distance from the experiment
to all reactor cores is 52.5 km. The next closest reactor complex is Daya Bay, at a distance of
215 km. Due to its longer baseline, its antineutrino flux produces a reduced sensitivity to oscilla-
tion parameters [55]. These NPPs operate commercial pressurized water reactors (PWRs), where
electron antineutrinos are produced by the β decay of fission products of four major isotopes: 235U,
238U, 239Pu, and 241Pu. These isotopes contribute over 99% of the thermal power and total neutrino
flux [30] above the 1.8MeV reaction threshold in JUNO (see Section 3.2).
Table 3.1 provides a summary of the average reactor power, baselines, and expected IBD rates,
taking into account oscillation effects, for each core of the Taishan, Yangjiang, and Daya Bay NPPs.
In Figure 3.1a, the breakdown of each reactor core’s contribution to the expected reconstructed
energy spectrum at JUNO is illustrated; the Daya Bay-induced oscillation pattern notably stands
out in the figure.
The oscillated antineutrino flux at time t is predicted as

Φ(Eν̄e , t) =
∑
r

Pνe→νe(Eν̄e , Lr)

4πL2
r

Wr(t)∑
i fir(t)ei

∑
i

fir(t)si(Eν̄e), (3.1)

where r is the reactor index, Pνe→νe(Eν̄e , Lr) is the νe survival probability in Eq. (2.4) at a distance
Lr from the reactor r, Wr(t) is the reactor thermal power, fir(t) is the fission fraction of one
isotope i among the four, ei is the mean energy released per fission for isotope i, and si(Eν̄e) is the
antineutrino energy spectrum per fission for each isotope. The reactor thermal power and fission
fractions are time-dependent and will be provided by the NPPs during the data-taking period; for
this reason, in current studies [55] the reactor thermal power and fission fraction are assumed to
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Reactor Power [GWth] Baseline [km] IBD rate [events/day]

Taishan 9.2 52.71 Total: 18.4
Core 1 4.6 52.77 9.2
Core 2 4.6 52.64 9.3

Yangjiang 17.4 52.46 Total: 35.3
Core 1 2.9 52.74 5.8
Core 2 2.9 52.82 5.7
Core 3 2.9 52.41 5.9
Core 4 2.9 52.49 5.9
Core 5 2.9 52.11 6.0
Core 6 2.9 52.19 6.0

Daya Bay 17.4 215 3.7

Total flux 57.4

Table 3.1: Characteristics of NPPs and their reactor cores considered in this analysis: the two closest ones
to JUNO, Taishan and Yangjiang, at an approximate distance of 52.5 km, and the next closest, Daya Bay.
The average distance and the total average thermal power of each NPP are indicated in the corresponding
row. The expected daily IBD rates are estimated considering the baselines, full thermal power of the reactors,
and neutrino oscillation parameters in Table 1.2.

be stable at averaged values. To account for the refueling period during which the reactors are
temporarily shut down, typically lasting for one month each year, a duty cycle factor of 11/12
is applied. This factor is used to scale down the thermal power, resulting in a reduction of the
antineutrino flux.
In this work, the energy spectrum of νe per fission for 235U, 239Pu, and 241Pu is obtained from the
Huber model [61], and for 238U from Mueller’s [62]. The reactor antineutrinos yield per fission is
shown in Figure 3.3a.
Furthermore, additional corrections can be applied to these models to account for experimental
observations by other reactor experiments, as well as effects related to the working principle of the
NPPs.

Spent nuclear fuel and non-equilibrium effect In the Huber-Mueller model, the beta decay
rates of some long-lived fission fragments do not reach equilibrium with their production rates,
while in the reactor core these fission fragments will accumulate and reach equilibrium. As a result,
this so-called non-equilibrium effect produces a 0.6% increased antineutrino flux with respect to the
evaluation in [62]. Moreover, the Spent (burned) Nuclear Fuel (SNF) is removed to cooling pools
near the reactor core but still emits antineutrinos, contributing to an additional 0.3% in the flux
(based on calculations in [60]). Thus, the antineutrino energy spectrum has to be modified to cover
the contributions of SNF and non-equilibrium: the resulting contributions to the reconstructed
visible energy spectrum are reported in Figure 3.1b.

Reactor antineutrino anomaly from Daya Bay The observed antineutrino yield per fission
shows a ∼ 5% deficit compared to the model predictions, which is referred to as the reactor an-
tineutrino anomaly [63]. Furthermore, recent reactor antineutrino experiments, e.g., Daya Bay [64],
RENO [15], etc., also observed an additional discrepancy in the antineutrino energy spectrum.
Specifically, an excess of neutrino events around 5MeV, the so-called reactor bump, is observed [64].
In this analysis, the νe antineutrino flux is obtained considering the Huber-Mueller model with
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Figure 3.1: (a) Contribution from the single reactor cores to the expected reconstructed energy spectrum,
for 6 years exposure and 11/12 duty cycle power. Yangjiang is indicated with "YJ", Taishan with "TS" and
Daya Bay with "DYB". The inset plot shows the cumulative contribution and the resulting total one (black
line). (b) Additional contributions to the reconstructed energy spectrum due to non-equilibrium effect and
Spent Nuclear Fuel (SNF) [60].

a correction on both the rate and spectral shape based on the measurements in the Daya Bay
experiment [64].

3.2 IBD reaction and detection

Reactor antineutrinos are detected in JUNO through the IBD reaction

νe + p → e+ + n :

u
u
d

d
u
d

W

p{

νe

} n

e+

1

specifically by measuring the produced positron energy spectrum, since it retains almost all of the
incoming antineutrino kinetic energy. The electron antineutrino interacts with a proton (p) in the
LS, creating a positron (e+) and a neutron (n). The positron quickly deposits its energy and
annihilates into two 0.511MeV photons, producing a prompt signal containing both the positron
kinetic energy Te+ and the 1.022MeV annihilation energy. While the emission of positrons is
approximately isotropic, with a slight predilection for the backward direction [65], the neutron
absorbs most of the momentum of the antineutrino and its initial direction is largely parallel to that
of the incoming antineutrino. The neutron then makes a random walk and is thermalized in the
detector medium by successive scattering events, causing a deflection from its original path, after an
average time of 220 µs10. It is finally captured either by a free proton in the LS (∼ 99% probability)

10The duration of this process depends on the average neutron capture cross section, hence on the target material.
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or by carbon (∼ 1%), subsequently emitting a 2.22MeV or 4.95MeV γ-ray, respectively, and giving
rise to a delayed signal. A sketch, depicting the IBD kinematics from the emission of both particles
to their annihilation or capture, is shown in Figure 3.2.

Eγ = 511 keV

Eγ = 511 keV

Eγ = 2.22 MeV

Charge

Time

Prompt

Delayed

∼ 200 µs

Figure 3.2: Schematic illustration of an IBD reaction in the LS. The electron antineutrino interacts with
a proton (p) in the LS, creating a positron (e+) and a neutron (n). The positron deposits its energy and
annihilates into two 0.511MeV photons (γ), producing a prompt signal. After a random walk, the neutron
is captured mainly by a free proton in the LS, emitting a 2.22MeV γ-ray, and giving rise to a delayed signal.
The time-charge diagram is not in scale.

In the IBD reaction the incident antineutrino energy Eν̄e is given by [66]

Eν̄e ≃ Te+ + Tn +∆np +me+ , (3.2)

where Te+ and Tn are the positron and neutron kinetic energies, ∆np = mn−mp = 1.293MeV is the
mass difference between neutron and proton, and me+ is the positron mass. Tn ranges from 0 to tens
of keV, thus the neutron recoil energy is often considered to be fairly negligible with respect to the
O(1MeV) energy scales of the experiment. Under this recoilless approximation, the positron energy
is directly related to the antineutrino energy, i.e., Eν̄e ≃ Ee+ + ∆np [58], with Ee+ = Te+ + me+ .
The IBD kinematical threshold is roughly 1.8MeV (as explained in Appendix B).
The deposited energy (Edep) for the IBD prompt signal is thus defined as the sum of the positron
kinetic energy Te+ and the annihilation energy generating two 0.511MeV photons, as expressed in
Eq. (3.3).

Edep = Te+ + 2× 0.511MeV = Ee+ +me+ . (3.3)

As a result, Ee+ +me+ ∼ Eν̄e − 0.782MeV, or equivalently

Edep ≃ Eν̄e − 0.782MeV. (3.4)

Edep is assumed to be fully deposited in the detector since energy losses due to escaping secondary
particles generated by Compton scattering and pair production only affect less than 1% of the
IBD events. Therefore, the measured positron spectrum corresponds to the antineutrino spectrum,
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shifted in energy and weighted by the IBD differential cross section dσ
d cos θ (Eν̄e , cos θ), which is a

function of the neutrino energy and the scattering angle [67], and accounts for the interaction prob-
ability. There are two widely used formulas for evaluating the IBD cross-section: one by Vogel
and Beacom [65], and the other by Strumia and Vissani [67]. For this analysis, the Strumia-Vissani
model shown in Figure 3.3a (dashed line) was used, as it includes radiative corrections and is valid in
most of the sub-GeV energy range. Further details on the cross section are provided in Appendix B.
The expected νe energy spectrum, based on the Huber-Muller model and without anomaly correc-
tions, obtained as a product of the IBD cross section and the νe flux, is shown in Figure 3.3b.

(a) Reactor antineutrinos flux per fission and total IBD
cross section calculated by Strumia and Vissani [67].

(b) νe energy spectrum obtained as a product of the
IBD cross section and the νe flux.

Figure 3.3: (a) Reactor antineutrinos yield per fission and total IBD cross section. (b) Expected νe energy
spectrum, normalized to one, obtained using the Huber-Mueller model without any additional corrections.

3.2.1 Neutron recoil effects

Recoil effects, although often neglected in calculations for the sake of simplicity, have been shown
to have a non-negligible impact in high-precision experiments like JUNO [58]. When a neutrino
scatters off a nucleus, a small fraction of energy on the order of O(Eν̄e/mp) is transferred to the
recoiling nucleon. Consequently, the estimation provided in Eq. (3.4) only serves as an approximate
upper bound. Indeed, the recoil of the neutron induces an angle-dependent deficit in Ee+ , which
falls inside a defined kinematical range, namely

Ee+ ∈ [E1, E2], (3.5)

where the explicit expressions of E1,2 are taken from [67] and reported in Appendix B. In this
analysis, we employ a less accurate approximation, denoted as "mid-recoil" [58, 68], where the
mid-point of Eq. (3.5) is considered as a proxy for Ee+ :

Ee+ ≃ Emid
e+ ≡ E1 + E2

2
→ Edep = Emid

e+ +me+ . (3.6)

Figure 3.4a shows the recoil correction as a function of the antineutrino energy, in terms of deviation
from the relation in Eq. (3.4): the solid line marks the mid-point average effect, while the filled area
corresponds to the full recoil-induced energy deficit. It is worth noting that at high antineutrino
energy, the deposited prompt energy results to be both shifted and smeared. Hence, while the mid-
recoil recipe provides a reasonable estimate of the average shift, it does not account for the energy
spread induced by recoil effects. To further investigate this aspect, Figure 3.4b reports the fractional
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energy spread ∆Edep/Edep due to recoil effects and intrinsic detector resolution (see Section 3.3 for
the details). Specifically, by defining δ = E2−E1

2 , the fractional energy spread can be expressed as:

∆Edep =

{
Edep ± δ for recoil effects
Edep ± σEdep for intrinsic resolution

(3.7)

where σEdep is set at an effective 3% energy resolution. Figure 3.4b shows that in JUNO, the
intrinsic energy smearing of the IBD reaction caused by the neutron recoil is up to some extent
relatively small compared to the limited energy resolution of the detector; this observation holds
true at least for Edep ≤ 4MeV, i.e., the region of highest sensitivity to the neutrino MO. The two
effects can be simultaneously taken into account in the calculation of reactor antineutrino spectra
by incorporating suitable modifications to the energy resolution function. This correction has been
explored in the literature, as demonstrated in [58], but it is not investigated in the present work.

(a) Fractional recoil as a function of antineutrino en-
ergy [68].
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Figure 3.4: (a) Fractional recoil effects in terms of antineutrino energy, in three different cases: no recoil,
mid recoil approximation, and full recoil. (b) Energy spread due to nucleon recoil compared with energy
resolution expected in JUNO. The definition of ∆Edep can be found in Eq. (3.7).

3.3 Detector response

The detector energy response model is encoded in a function mapping the antineutrino energy Eν̄e to
the reconstructed energy of the prompt IBD signal Erec, namely R(Eν̄e , Erec). The development of
R(Eν̄e , Erec) takes into account three effects: the energy transfer in the IBD reaction (as discussed in
Section 3.2), energy non-linearity brought on by scintillation and Cherenkov processes, and energy
resolution. The energy conversion scheme depicted in Figure 3.5 elucidates the conventions employed
for denoting the different forms of energy that are involved.
Figure 3.6 shows the energy spectrum in terms of deposited, visible, and reconstructed energy, for
normal mass ordering and with oscillation parameters fixed to the global best fit values reported in
Table 1.2.

3.3.1 Energy non-linearity

When positrons interact with a scintillator detector, they generate photons through scintillation and
sub-dominant Cherenkov radiation mechanisms. However, the correlation between the deposited
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Antineutrino energy

Cross section

Deposited energy Visible energy 

LSNL Energy resolution

Reconstructed energy

Eν̄e
Edep Evis Erec

Figure 3.5: Energy conversion scheme. The energy of antineutrinos, denoted as Eν̄e
, undergoes a conversion

to positron deposited energy, represented as Edep, through the IBD reaction. Subsequently, the energy
spectrum experiences distortion due to the non-linearity of the liquid scintillator (LSNL), leading to the
measurement of visible energy Evis in terms of detected photoelectrons. Finally, the finite energy resolution
introduces additional smearing, resulting in the reconstructed energy Erec.

energy and the number of scintillation photons detected by the photomultiplier tubes (PMTs) is
not strictly linear, primarily due to the quenching effect. This effect is conventionally characterized
by Birks’ formula [69], an empirical parameterization that establishes the relationship between the
measured light yield and the energy deposited in the scintillator. Birks’ formula is expressed as
follows:

dL

dx
=

S dE
dx

1 + kB
dE
dx

, (3.8)

where L is the scintillation light yield, E is the energy deposited per unit path length, S is the
scintillation efficiency, kB is the Birks’ constant, and dE

dx is the energy loss per path length. Moreover,
to address the non-linear behavior of the quenching factor at high energy depositions, a modified
version of Birks’ formula was introduced. This extended model, known as the Birks-Chou model [70],
provides a more accurate representation and is given by:

dL

dx
=

S dE
dx

1 + kB
dE
dx + kC

(
dE
dx

)2 , (3.9)

where kC is a new constant introduced to account for the nonlinear behavior of the quenching factor
at high energies.
Furthermore, Cherenkov light is typically emitted at shorter photon wavelengths and is predom-
inantly absorbed and re-emitted within the scintillator material. Consequently, distinguishing
Cherenkov light from scintillation light becomes challenging, requiring the consideration of both
components in the non-linear response of the detector.
In contrast, the instrumental non-linearity stemming from the charge response of JUNO PMTs and
electronics can be considered quite negligible, with an estimated magnitude of less than 0.3%. This
can be achieved thanks to the implementation of the dual-calorimetry calibration technique [42].

To describe deviations from linearity, the liquid scintillator non-linearity (LSNL) is defined as

Evis = fLSNL(Edep) · Edep, (3.10)

where Edep is the deposited energy, Evis is the visible energy assuming perfect energy resolution and
fLSNL(Edep) is the LSNL function. Since a gamma deposits its energy into the LS via secondary
electrons, it will be possible to achieve a rigorous determination of the LSNL function fLSNL(Edep)
using gamma calibration data. According to the JUNO calibration strategy [42], the visible energy
Evis is estimated from the total number of detected photoelectrons with a scale constant set by
2.22MeV gammas, which are radiated by neutron capture on hydrogen (n-H) in the detector. In
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other words, the visible energy Evis is defined as the energy in terms of detected photoelectrons,
i.e.,

Evis = PE/Y0, (3.11)

where Y0 is a constant light yield obtained by considering neutron captures on hydrogen at the detec-
tor center and dividing the mean number of detected PEs by the 2.22MeV expected capture energy.

In this analysis, fLSNL(Edep) is modeled as a four-parameter function, as used in the first Daya Bay
analysis [14], namely

fLSNL(Edep) =
p0 +

p3
Edep

1 + p1e−p2Edep
. (3.12)

Since the composition of the LS in Daya Bay and JUNO is similar, it is reasonable to adopt the
Daya Bay non-linearity curves [71], rescaled with a constant obtained from the gamma LSNL curve
at 2.22MeV [42] in JUNO. The inset of Figure 3.6 displays the energy non-linearity response as a
function of the deposited IBD prompt energy. It is worth noting that the curve intersects
Evis
Edep

= 1 at approximately 3.5MeV, deviating from the 2.2MeV anchoring point, owing to the
differing non-linearity between positrons and gammas.

2 4 6 8 10 12
Prompt energy [MeV]

0

50

100

150

200

250

Ev
en

ts
 / 

10
 k

eV

2 4 6 8 10 12
Deposited energy [MeV]

0.900

0.925

0.950

0.975

1.000

1.025

1.050

E v
is/

E d
ep

fLSNL(Edep)

2 4 6 8 10 12
Visible energy [MeV]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

En
er

gy
 re

so
lu

tio
n 

[%
]  Erec/ Evis

Edep: w/o NL & Res
Evis: w/ NL 
Erec: w/ NL & Res

Figure 3.6: The expected prompt energy spectra of JUNO with and without the different detector response
effects, i.e., liquid scintillator non-linearity (NL) and energy resolution (Res). The detector response curves
used in this analysis, i.e., LSNL and resolution, are shown in the insets as a function of deposited and visible
energy, respectively.
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3.3.2 Energy resolution

The visible energy Evis is further smeared because of the finite energy resolution of the detector;
neglecting detector leakage effects11, the smeared reconstructed energy Erec is assumed to follow a
Gaussian distribution with mean Evis and standard deviation σErec . A standard parameterization
for the fractional energy resolution is considered in Eq. (3.13), in order to include systematic effects.

σErec

Evis
=

√(
a√
Evis

)2

+ b2 +

(
c

Evis

)2

, (3.13)

where a is the term driven by the Poisson statistics of the number of detected photoelectrons, b
is independent of energy and is dominated by the detector’s spatial and temporal non-uniformity,
and c accounts for the PMT dark noise and for the two annihilation gammas. The updated energy
resolution curve is shown in the inset of Figure 3.6 as a function of reconstructed IBD prompt
energy for events uniformly distributed inside the fiducial volume. The obtained parameters [72]
are: a = (2.614± 0.005)× 10−2

√
MeV, b = (0.640± 0.003)× 10−2, c = (1.20± 0.01)× 10−2 MeV.

Thus, considering both LSNL and resolution, the final formula of the response function R(Eν̄e , Erec)
can be expressed with Eq. (3.14).

R (Eν̄e , Erec) ≡
dσ

d cos θ
(Eν̄e , cos θ) ·Np · ε ·

1

σErec

√
2π

· exp
(
−1

2

(
Erec − Evis

σErec

)2
)
. (3.14)

Edep is calculated with Eq. (3.6), Evis is evaluated accounting for LS non-linearity with Eq. (3.10),
and Erec refers to the smeared visible (i.e., reconstructed) energy of the prompt signal.
Np = 1.44 × 1033 is the number of free protons in the 20-kton liquid scintillator target [21], and it
is calculated as follows:

Np =
MtargetfHα1H

m1H
, (3.15)

where Mtarget is the mass of the LS in the target, fH is the hydrogen mass fraction in JUNO LS,
α1H is the isotope abundance (in terms of mass fraction) of 1H in natural hydrogen, and m1H is
the atomic mass. ε = 82.1% is the IBD event selection efficiency calculated later in Section 4.2.1.
These parameters and the corresponding values are reported in Table 3.2.

Parameter Value

Mtarget 20 kton
fH 0.1201
α1H 0.999885
m1H 1.008 Da [73]
ε 82.1%
Np 1.43512× 1033

Table 3.2: Parameters related to the normalization of the number of detected IBDs.

11This approximation is highly accurate, considering the substantial size of the detector and the implementation
of a fiducial volume cut. The impact of energy losses caused by escaping secondary particles is minimal, affecting
less than 1% of the IBD events.
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Additionally, it can be advantageous to isolate the cross-section contribution from Eq. (3.14) by
introducing a separate definition,

R′ (Evis, Erec) ≡ Np · ε ·
1

σErec

√
2π

· exp
(
−1

2

(
Erec − Evis

σErec

)2
)
, (3.16)

therefore
R (Eν̄e , Erec) =

dσ

d cos θ
(Eν̄e , cos θ) ·R′ (Evis, Erec) . (3.17)

Putting together the expected reactor antineutrino flux in Eq. (3.1), the detector response function
in Eq. (3.17) and integrating over the scattering angle, the expected IBD signal reconstructed energy
spectrum is obtained:

S(Erec) =

∫
TDAQ

dt

15MeV∫
1.8MeV

dEν̄e · Φ(Eν̄e , t) · σ(Eν̄e) ·R′ (Evis, Erec) , (3.18)

TDAQ is the data taking period, Φ(Eν̄e , t) the oscillated reactor antineutrino flux in at time t (from
Eq. (3.1)) and σ(Eν̄e) the total IBD cross section,

σ(Eν̄e) =

+1∫
−1

d cos θ
dσ

d cos θ
(Eν̄e , cos θ) . (3.19)

The integration interval of the antineutrino energy starts from the IBD reaction threshold at 1.8MeV
and ends at 15MeV, where the reactor antineutrino flux becomes negligible. The time evolution
of the reactors and consequently of the antineutrino spectrum will be crucial in real data analysis,
whereas it is currently unrealistic to precisely predict it. Hence, the neutrino flux is assumed to be
time-independent in this analysis, and the time dependence in Eq. (3.18) is dropped.
Considering the expression of the expected IBD reconstructed prompt signal, it is possible to calcu-
late the expected number of events sIBD

i for the i-th energy bin, which in this analysis are obtained
with the formula in Eq. (3.20).

sIBD
i =

Ei+1
rec∫

Ei
rec

dErec

12MeV∫
0.8MeV

dEvis · Φ(Eν̄e) · σ(Eν̄e) ·R′ (Evis, Erec) ·
dEν̄e

dEdep
· dEdep

dEvis
. (3.20)

To compute a binned PDF we need to convolve the antineutrino spectrum Φ(Eν̄e) with the energy
smearing function R′ (Evis, Erec). In order to do that, both functions have to be expressed in terms of
the same coordinates. Firstly the deposited spectrum Sdep(Edep) is calculated from the antineutrino
flux:

Sdep(Edep) = Φ(Eν̄e(Edep)) · σ(Eν̄e) ·
dEν̄e

dEdep
, (3.21)
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where Eν̄e (Edep) represents the antineutrino energy at given deposited energy, and dEν̄e
dEdep

= 1
Jdep

,
with Jdep energy conversion Jacobian12, defined as follows:

Jdep =
Edep(E

upper
ν̄e )− Edep(E

lower
ν̄e )

Eupper
ν̄e − Elower

ν̄e

. (3.22)

Eupper
ν̄e and Elower

ν̄e are the antineutrino energy bins lower and upper edges, while Edep(E
upper
ν̄e ) and

Edep(E
lower
ν̄e ) the corresponding deposited energies. Edep is obtained from Eq. (3.6), considering

neutron recoil.
Then, the visible energy spectrum Svis(Evis) is calculated from Sdep(Edep):

Svis(Evis) = Sdep(Edep(Evis)) ·
dEdep

dEvis
. (3.23)

The corresponding conversion Jacobian is used, namely dEdep
dEvis

= 1
Jvis

, with

Jvis =
Evis(E

upper
dep )− Evis(E

lower
dep )

Eupper
dep − Elower

dep
, (3.24)

where a similar notation is used to indicate the upper and lower energy bins edges, and
Evis(Edep) = fLSNL(Edep) · Edep from Eq. (3.10). Therefore, Eq. (3.20) reduces to

sIBD
i =

Ei+1
rec∫

Ei
rec

dErec

12MeV∫
0.8MeV

dEvis · Svis(Evis) ·R′ (Evis, Erec) (3.25)

Therefore, the number of reactor IBD events in the i-th bin is obtained by eventually performing a
convolution between the visible spectrum and the gaussian energy resolution model in Eq. (3.13).
The resulting smeared spectrum is a histogram binned with 10 keV bins between 0.8MeV and
12MeV.

12Since the bin width is kept fixed for all the different energy spectra, the Jacobian is a scale factor that modifies
the height of each bin. This ensures event number conservation.
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Chapter 4

Reactor antineutrino selection: signal
and backgrounds

As described in Section 3.2, reactor antineutrinos interact with protons inside the LS, producing a
pair of prompt-delayed events. The detection of neutron capture in a delayed coincidence with the
positron is the distinguishing hallmark of the antineutrino interaction with protons, allowing signal
identification and background suppression. This temporal and spatial signature can be mimicked
by other events depositing energy inside the detector, giving rise to non-negligible backgrounds. For
this reason, several selection criteria are designed to distinguish signal from background.
In this study, the JUNO offline software framework [49] is used for Monte Carlo simulations of
the spectral components and to perform signal selection, through the analysis of time and space
correlations.

4.1 Time correlation analysis

In contrast to collider experiments, where the signal of interest is often provided by a single event,
the identification of a neutrino interaction in JUNO relies on the detection of a time-correlated
pair of events. For this reason, a time correlation analysis is to be performed: the process typically
involves selecting two events that occur within a certain time and spatial window. The time window
is based on the known lifetime of the neutron, which is on the order of hundreds of microseconds:
it has to be long enough to allow for neutron capture by the nucleus, but short enough to avoid
contamination from other types of events that may occur later in time. The spatial window is
instead determined by the expected radial distribution of the emitted neutrons. Figure 4.1 shows
three possible configurations for an IBD event. In the ideal scenario (1), a prompt-delayed pair gives
rise to two positive triggers without any other events occurring between them. In the most likely
scenario (2), one or more background events occur between the pair of interest. In rare cases, an
IBD event may be interposed by another IBD pair (3), but this is highly unlikely given the reactor
antineutrino rate of approximately 60 events per day and the time selection window of the order of
milliseconds.
A time correlation analysis is therefore critical for isolating IBD events and achieving high precision

in the measurement of the reactor antineutrino flux. To fulfill this goal, the JUNO software [49] will
offer various tools, some of which are still in the developmental phase, designed to effectively per-
form offline data analysis. To date, no existing tool is already available to conduct data-like analysis
of SNiPER-based simulations. Consequently, a part of this work was devoted to the development
of an algorithm to implement a time correlation analysis. The main body of the code is written in
C++ and uses methods from the ROOT framework [47] while the configuration script is in Python13.

13More information about the implementation and execution of SNiPER algorithms can be found at https:
//sniper-framework.github.io/Algorithms/1.CppCode.html

https://sniper-framework.github.io/Algorithms/1.CppCode.html
https://sniper-framework.github.io/Algorithms/1.CppCode.html
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Figure 4.1: (1) Pure IBD event in two trigger windows. (2) IBD pair interposed by a background event.
(3) IBD event interposed by another IBD pair.

The algorithm rationale is based on a sliding time window acting on a buffer of readout events,
which maintains a chronological arrangement. Initially, an object is instantiated to store different
properties associated with each event, including timestamp, reconstructed vertex, and energy. As
the algorithm progresses through the loop, pairs of events located at the beginning and end of
the buffer are analyzed to determine whether they satisfy the prescribed time and vertex IBD
selection criteria. If these criteria are met, the pair is recognized as a prompt-delayed candidate
and subsequently removed from the buffer. Following this, the sliding time window is updated, and
the next event in the sequence is added to the buffer to undergo further processing. If two events
in the buffer satisfy the time cut but fail to meet the vertex cut, the first event is not immediately
discarded. This allows for the possibility of combining the next event added to the buffer with the
first event, creating an IBD candidate that fulfills both the time and vertex cuts. In contrast, if a
pair of events in the buffer does not satisfy the time cut, it is guaranteed that no IBD candidate can
be formed from those events due to their chronological arrangement. In this case, the first event in
the buffer is removed, and the process continues with the next event in the sequence.
The algorithm continues adding events to the buffer until a valid IBD candidate is identified or until
the time window reaches its maximum capacity, at which point the oldest event is removed from
the buffer. Once all events in the data stream have been processed, the loop is exited, and specific
information regarding the IBD candidates, such as event ID, timestamp, reconstructed energy, and
vertex, is stored for further offline analysis. The main steps of the process are summarized hereafter:

1. Initialize an empty buffer.

2. Retrieve the next event from the data stream and add it to the buffer.

3. Check the buffer for the following conditions:

(a) If the buffer is empty, go to step 2.

(b) If the buffer contains only one event, go to step 2.

(c) If the time difference between the first and last events in the buffer exceeds the specified
time cut threshold, remove the first event from the buffer and return to step 3.

(d) If only the distance between the vertices of the first and last events in the buffer exceeds
the specified vertex cut threshold (while satisfying the time cut), return to step 2.

4. If both the time and vertex cuts are satisfied, consider the events to be a candidate IBD
prompt-delayed pair and remove them from the buffer.

5. If the time cut is satisfied but the vertex cut is not, continue adding events to the buffer until
either a valid IBD candidate is found or the buffer reaches the maximum size allowed by the
time window. If the buffer reaches the maximum size allowed by the time window, remove
the oldest event from the buffer and go back to step 3.
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6. If there are no more events in the data stream, end the process.

Due to limited computational resources, it was not feasible to analyze a data-like mixed dataset,
comprising the IBD signal and the major background sources in realistic proportions. Consequently,
the study focused solely on the ideal configuration (1) depicted in Figure 4.1 (for reactor antineutrino
signal, geo-neutrinos and cosmogenic 9Li/8He). However, some tests were conducted using a smaller-
scale mixed sample containing reactor IBD events and radiogenic events. These tests confirmed two
important findings: (1) the algorithm effectively identified and tagged IBD prompt-delayed pairs,
and (2) no spurious correlations were observed between a prompt/delayed pair and an event induced
by radioactivity. It should be noted that while these tests were performed on a limited scale, they
provided valuable insights into the algorithm’s performance and its capability to distinguish genuine
IBD events from background sources.
In addition to its effectiveness in the main time-correlation analysis, the algorithm also demonstrated
its versatility for off-window analyses. One specific application involved the study of the radiogenic
background, as discussed in Section 4.3.1. Most radioactive events contribute to the uncorrelated
background. However, there are cases where certain decays are correlated, specifically the fast
coincidence of 214Bi-214Po and 212Bi-212Po present in the decay chains of Uranium and Thorium,
respectively. The algorithm proved to be valuable in identifying and mitigating these correlated
decays within the radiogenic background. By leveraging the double signature characteristic of the
Bismuth-Polonium decays, the algorithm successfully differentiated them from the uncorrelated
background events. By implementing this approach, a significant reduction in the overall radiogenic
background was achieved, specifically narrowing it down to only accidental coincidences.

4.2 IBD selection

The study of reactor antineutrino oscillations is primarily hindered by the dominant background
signal, which far exceeds the actual IBD signal. With an expected event rate of O(100Hz), only a
small fraction corresponds to IBD-induced processes. However, the distinctive signature yielded by
the IBD reaction can be leveraged to differentiate it from the background.
The accidental background, cosmogenic 8He/9Li, geo-neutrinos, fast neutrons, and (α, n) are the
major backgrounds for the oscillation analysis. IBD selection criteria are designed to suppress the
background contribution while keeping a high efficiency for true reactor antineutrino IBD events. For
example, the fiducial volume cut can significantly reduce the accidental and the (α, n) backgrounds.
To further mitigate the impact of accidental coincidences, the selection is based upon temporal
coincidence, vertex correlation of the prompt and delayed signals, and energy selection. To reject
the cosmogenic backgrounds such as 8He/9Li and fast neutrons, muon veto cuts are employed. A
detailed discussion of the calculation of the residual rates will be presented in Section 4.3.
The IBD standard selection cuts are the following [21, 55]:

• Fiducial volume (FV) cut: prompt or delayed candidates are discarded if their vertices
are more than 17.2m away from the detector center, since the external background rate is
exponentially increasing at the edges of the acrylic sphere. However, it is worth noting that
this fiducial volume cut is subject to modification and optimization during the data-taking
phase.

• Energy cut: prompt and delayed candidate events are restricted to the energy windows
Ep ∈ (0.7, 12.0) MeV and Ed ∈ (1.9, 2.5) ∪ (4.4, 5.5) MeV, respectively. The prompt energy
range is the dominant one for IBD prompt events, as it can be observed in Figure 3.6. On the
other hand, the delayed signal selection windows are defined to be centered around 2.2MeV
and 4.9MeV, which correspond to neutron capture on hydrogen and carbon, respectively.
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• Time cut: the surviving pairs are required to fall in a time coincidence window of 1ms,
corresponding to approximately 5× the neutron capture time; hence, the time interval between
delayed and prompt signals ∆t < 1ms.

• Vertex cut: the distance between prompt and delayed events vertices has to be smaller than
1.5m, hence ∆r < 1.5m.

• Muon veto criteria: cosmic muon veto cuts are crucial to suppress the cosmogenic back-
grounds, most of which meet the aforementioned IBD coincidence selection criteria and can
easily mimic the signal signature. Indeed, time and space correlations are not enough to fully
eliminate longer-lived isotopes, such as 8He/9Li produced along muon tracks by cosmic ray
spallation. The current state-of-the-art muon veto strategy [33, 55] involves the following
steps:

– for muons tagged by either the external water pool Cherenkov detector or by the Central
Detector, a veto of 1ms after each muon is applied over the whole FV. This strategy is
aimed at suppressing spallation neutrons and short-lived radio-isotopes;

– for well-reconstructed tracks inside the CD, produced by single or two far-apart muons, a
veto of 0.6 s, 0.4 s, and 0.1 s is applied when candidate events have reconstructed vertices
smaller than 1m, 2m, and 4m, respectively;

– for events containing two close and parallel muons (within 3m, constituting ∼ 0.6% of
muon-related events), a single track is often reconstructed. The veto is then applied
around this track as described by the previous point, but the cylinder radii are increased
according to their separation;

– for events whose track cannot be properly reconstructed (about 2% of all muon-related
events, and mostly dominated by more than two muons going through the detector
simultaneously), a 0.5 s veto is applied over the whole fiducial volume.

– a 1.2 s veto is applied on any candidate event detected inside a 3m-radius sphere around
spallation neutron capture events.

4.2.1 IBD signal selection efficiency

To estimate the selection efficiency of the IBD signal, 1.5 million unoscillated reactor antineutrino
events are generated with the JUNO offline software [49], using the full chain detector and electronics
simulation and reconstruction. For each cut, the selection efficiency ε is obtained as the ratio of the
number of selected events, i.e., meeting that specific criterion, to the total number of reconstructed
events before applying that cut, namely

ε =
Nselected

Ntot
. (4.1)

The subsequent paragraphs provide a comprehensive breakdown of the calculations performed to
determine the individual efficiencies for the reactor antineutrino sample.

Fiducial volume cut: after the application of the fiducial volume (FV) cut, 91.3% of the initial
events are retained. A crucial aspect of IBD prompt-delayed pairs is that they exhibit a uniform
distribution within the entire detector volume. This feature can be clearly seen in both Figure 4.2a
and Figure 4.2b, which illustrate the prompt and delayed event energies as a function of the radial
distance between their vertices (in terms of r3) and the detector center.
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(a) Bi-dimensional distribution of prompt events energy
and associated vertex.

(b) Bi-dimensional distribution of delayed events energy
and associated vertex.

Figure 4.2: Bi-dimensional distribution of prompt (left) and delayed (right) events energy and associated
distance from the center of the detector (r3). The radius corresponding to the fiducial volume cut is indicated
by the dashed line.

Energy cut: all prompt events (99.999%) lie in the energy selection region while the efficiency is
99.9% for delayed events. The energy cut is applied only over the fiducial volume. The resulting
energy spectra after selection cuts are reported in Figure 4.3a and Figure 4.3b.

(a) Reactor νe IBD prompt events energy distribution. (b) Reactor νe IBD delayed events energy distribution.

Figure 4.3: Prompt (left) and delayed (right) events energy distributions, with selection areas indicated
by dashed lines.

Vertex and time cut: it is important to note that vertex and time cuts can be applied over the
entire fiducial volume, independently of the energy selection. When it comes to temporal selection,
it is reasonable to assume that the time interval between two candidate events does not depend on
the energy deposited by the two particles. As for the relative position cut, it can be argued that
positrons are uniformly distributed in energy inside the detector, as one can observe in Figure 4.2a.
Similarly, the same assumption can be made for the photons emitted as a result of neutron capture,
but only after applying the FV cut. Any slight deviation from uniformity is only due to photons
being produced at the edge of the detector where energy is not fully deposited, resulting in the
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shoulder in the delayed spectrum shown in Figure 4.2b. To apply this criterion, a semi-analytical
approach is employed. Firstly, the differences ∆t and ∆r between prompt and delayed events are
calculated and presented in Figure 4.4a and Figure 4.4b, respectively. Based on the data, we can
derive the Probability Distribution Functions (PDFs) Ft(∆t) and Fr(∆r). Ft(∆t) is modeled by
an exponential distribution, and by fitting the data, we determine a decay time of approximately
220 µs, which is aligned with the expected neutron decay time in the LS. Fr(∆r) depends on the
spatial distribution of the emitted neutrons; the latter can be modeled as a random walk process,
where the neutrons undergo multiple elastic and inelastic collisions with the target medium, losing
energy and changing direction each time.

(a) ∆t distribution between prompt and delayed events. (b) ∆r distribution between prompt and delayed events.

Figure 4.4: ∆t (left) and ∆r (right) distribution between prompt and delayed events. The corresponding
PDFs are indicated by the red lines.

Two different methods are used to evaluate the efficiency of the time and vertex cuts. In the first
method, the area under the two PDFs inside the selection region is calculated and divided by the to-
tal area. This yields an efficiency of 99.0% and 99.3% for the time and vertex selections, respectively.

Figure 4.5: ∆t and ∆r distribution between prompt
and delayed events.

In the second method, the joint probability dis-
tribution is constructed by multiplying Ft(∆t)
and Fr(∆r), which is shown in Figure 4.5 along
with the marginal densities. This approach en-
ables the calculation of the probability that the
two variables simultaneously belong to a given
2d interval of values, by integrating the joint
density over the specified ranges. Using this
approach, a combined efficiency of 98.3% is ob-
tained, which is equivalent to the product of the
individual efficiencies. This confirms the inde-
pendence of the ∆t and ∆r cuts.

Muon veto cut: the muon veto strategy is
taken from [55] and yields a selection efficiency
of 91.6% for IBD events.
The combined antineutrino detection efficiency after all selection cuts is found to be 82.1%, with
a resulting IBD rate of 47.1 events/day with nominal reactor power (hence ∼ 43.2 events per day
with 11/12 duty cycle). The breakdown of the selection efficiencies is summarised in Table 4.1.
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Selection criterion Efficiency [%] IBD rate [events/day]

All IBDs 100 57.4 [55]
Fiducial Volume 91.3 52.4
Energy Range 99.9 52.35
Time cut ∆t 99.0 51.8

Vertex cut ∆r 99.3 51.5
Muon veto 91.6 47.1

Combined selection 82.1 47.1

Table 4.1: Summary of cumulative IBD selection efficiencies. The reported IBD rates refer to the expected
events per day after the selection criteria are progressively applied. These rates are calculated for nominal
reactor power rate.

4.3 Background estimation

This section investigates the contribution of the main background sources, which can be categorized
as correlated or uncorrelated. The rates of these backgrounds are determined using either the official
simulation framework [49], which accurately models the detector response and background sources,
or by using updated information from the JUNO common analysis framework [74].

4.3.1 Accidental background

Correlated backgrounds are by definition produced by a single physics process and yield both a
prompt and a delayed signal. The coincidence of two otherwise uncorrelated events, typically of
radiogenic origin, gives rise to the so-called accidental background. Natural radioactivity is a signif-
icant source of accidental background that cannot be entirely discriminated through software-based
cuts because it satisfies the IBD selection criteria in the same energy range. Therefore, it is of
paramount importance (1) to maintain the natural radioactivity background at extremely low lev-
els [32], by implementing strict reduction strategies during detector design and construction; (2) to
precisely characterize the shape and rate of the residual components. The accidental background
consists of mainly three types of random coincidences: (radioactivity, radioactivity), (radioactiv-
ity, cosmogenic isotope), and (radioactivity, spallation neutrons). Studies [32] have shown that
radioactivity-radioactivity coincidences are the primary contribution, while the other two potential
random coincidences are negligible. This background dominates the low energy part of the spec-
trum, providing a deposited energy up to 5MeV, thus overlapping with the IBD selection region.
The radioactivity of the materials employed in the construction of the JUNO detector is one of
the main sources of accidental background. The main contaminants, depositing energy after their
radioactive decays are [32]:

• natural long-lived radionuclides, 238U, 232Th, and 40K;

• natural medium-lived radionuclides 226Ra, 210Pb-210Bi, and 210Po when secular equilibrium is
broken in the 238U chain;

• the gaseous radionuclide 222Rn and the anthropogenic radionuclide 60Co.

In addition, the background can be classified as either internal or external, depending on whether
the source of the background is located within the LS or in other detector components, respectively.
The internal background is caused by radionuclides, such as those from the Uranium and Thorium
chains, that directly release energy inside the target volume regardless of the type of emitted particles
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(e.g., α, β, γ). These events are uniformly distributed within the detector. On the other hand, only
a portion of the α and β particles will contribute to the external background due to their relatively
short ranges in solid media. In contrast, high-energy photons can traverse the solid materials
and reach the LS, depositing energy and making a more substantial contribution to the external
background.
A full detector simulation is conducted to assess the background count rate, or the so-called singles
rate, resulting from natural radioactive contamination. Figure 4.6a presents the singles energy spec-
trum, distinguishing between events inside and outside the fiducial volume. Meanwhile, Figure 4.6b
shows the singles event rate as a function of r3 and reconstructed energy. Both plots reveal two
major peaks below 1MeV corresponding to events that are uniformly distributed within the LS.
The first peak is caused by 14C with a β-decay end-point energy of approximately 156 keV, while
the second peak is produced by quenched α particles stemming from decays of single particles, re-
sulting in a well-defined structure at around 530 keV. Additionally, higher energy events dominate
the outer region of the detector, as expected.

(a) Reconstructed energy spectrum of radiogenic events.
Contributions from inside and outside the FV are sepa-
rately indicated.

(b) Singles event rate as a function of volume (r3) and
reconstructed energy. The standard FV cut is indicated
by the dashed line.

Figure 4.6: Radiogenic singles energy spectrum (left) and distribution of events as a function of volume
and energy (right).

Furthermore, it is important to note that a strong correlation exists between energy and radial
distributions, which renders the IBD-like approach inapplicable to this scenario. Indeed, selection
efficiency terms cannot be computed independently for the radiogenic background, i.e., vertex and
energy selection efficiencies cannot be calculated individually and then combined.
Hereinafter, a preliminary energy cut at 0.7MeV is applied, by discarding all events with an energy
lower than this threshold.

4.3.1.1 Accidental coincidences rate

The accidental coincidences rate is estimated using the full detector simulation and reconstruction.
Specifically, a 1-hour radioactivity simulation dataset is used. Since the accidental coincidences rate
is expected to be of the order of 1 count per day (cpd) [21, 32, 55], a long exposure dataset would be
needed to directly retrieve it from data. For this reason, a toy Monte Carlo is exploited to estimate
it, using the default IBD selection cuts presented in Section 4.2. The accidental coincidences rate
can be evaluated as
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(a) 3-dimensional distribution of singles without any en-
ergy threshold inside the detector.

(b) 3-dimensional distribution of singles above the
0.7MeV threshold inside the detector.

Figure 4.7: 3-dimensional distribution of radioactive events inside the full detector volume, without (left)
and with (right) energy cut at 0.7MeV. The color scale indicates the distance from the detector center.

Racc = Rd ·Rp ·∆t · εacc, (4.2)

where Rp and Rd represent the prompt-like and delayed-like event rates, respectively, ∆t is the
applied time cut, and εacc is an efficiency scale factor, evaluated from the MC sample. The following
procedure is carried out:

1. As mentioned in Section 4.1, the correlated contribution present in the radioactivity sample
is preemptively eliminated, thereby isolating the uncorrelated component responsible for the
accidental background.

2. An energy cut E > 0.7MeV is implemented, resulting in a sample of N events over threshold.
The distribution of events within the detector is displayed in Figure 4.7a and Figure 4.7b,
before and after applying this energy threshold, respectively.

3. All possible prompt-delayed pairs are then constructed, giving rise to a number of combinations
Ncomb = N(N−1). IBD selection cuts are applied simultaneously to each pair of events (i, j),
where the indices (i, j) are referred to potential prompt and delayed candidates, respectively,
with i ̸= j. Subsequently:

• The spatial distance between the two events vertices, ∆r⃗ = r⃗j − r⃗i, is evaluated.

• Fiducial volume, energy, and ∆r selection criteria are then implemented, thereby obtain-
ing a certain number of events Nsel meeting all the requirements.

• The efficiency factor is computed using Eq. (4.1), providing

εacc =
Nsel

Ncomb
= (1.41± 0.01)× 10−6 with σεacc =

√
εacc(1− εacc)

Ncomb
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where the uncertainty is obtained assuming a binomial distribution for the number of
events.

4. The singles event rate above 0.7MeV is then
inferred from the MC sample by construct-
ing the distribution of time intervals ∆t be-
tween two consecutive events; the latter is
shown in Figure 4.8 and fitted with an ex-
ponential function. The selection efficiency
related to the FV and the energy ranges
is already accounted for in the MC scaling
factor in the previous point. Since events
are assumed to be uncorrelated by defini-
tion, the rate of prompt-like and delayed-like
candidates is the same, namely from the fit,
Rd = Rp = (39.4± 0.1) Hz.

Figure 4.8: Distribution of time intervals ∆t
between two consecutive radiogenic events above
the 0.7MeV threshold.

Finally, using Eq. (4.2) and considering the additional muon veto efficiency (91.6% from Table 4.1)
the accidental coincidence rate is found to be:

Racc = (0.172± 0.002) events/day,

with a relative uncertainty of the order of 1%. This rate is highly sensitive to the choice of the
FV radius with more than a factor 2 variation when shifting the FV cut by 0.1 m around 17.2 m;
indeed an exponential increase is observed. This sensitivity is evident in Figure 4.9a, which displays
the daily rate of accidental coincidences after applying all selection criteria for different FV radii
ranging from 17 to 17.4 meters. Notably, a clear exponential increase can be observed. Similarly,
the study is extended to the case of IBD events, and a linear increase is observed as the FV radius
is varied. It is important to mention that IBD events are uniformly distributed within the detector.
Consequently, one would expect the rate to increase with the volume following a cubic dependence
(i.e., r3) rather than a linear one (i.e., r). However, due to the relatively small range of FV radii
considered in Figure 4.9a, the cubic dependence is well approximated by a linear function within
this limited interval. To further investigate the relationship between the IBD daily rate and the FV
radius, Figure 4.9b presents the IBD daily rate calculated across the full range of possible FV radii.
As expected, a clear cubic trend emerges, confirming the uniform distribution of events throughout
the entire CD.
It is assumed that the accidental background, benefiting from a significant statistics, carries negli-
gible uncertainty on the spectral shape PDF14. Additionally, the rate uncertainty can be controlled
within 1%.

4.3.2 Cosmogenic isotopes

For underground neutrino observatories, a sufficient amount of overburden above the detector is
the most effective approach to suppress the cosmogenic backgrounds. The JUNO experimental site
is located under a 240-meters high hill, and the detector will be at 450m depth, resulting in a
rock overburden of about 690m [21, 30]. The estimated muon flux in the JUNO detector is about
0.004Hz/m2 with a mean energy of 207GeV [33]. In the liquid scintillator, energetic cosmic muons

14The definition of the uncertainties on the spectral shape (i.e., bin-to-bin uncorrelated uncertainties, here denoted
as "shape" uncertainties) is given in Section 5.4, when dealing with the systematics.
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Figure 4.9: (a) Accidental coincidences and reactor IBD daily rates after all selection criteria, as a function
of different values of FV radii. (b) IBD daily rate as a function of FV volume radii; both the simulated data
(dashed line) and the cubic interpolation curve (solid line) are shown.

and the subsequent showers can interact with 12C and produce radioactive isotopes with Z ≤ 6
by electromagnetic or hadronic processes. Among them, 9Li and 8He, with half-lives of 0.178 s
and 0.119 s, respectively, are the major correlated background source, because they can decay by
emitting both a β− and a neutron, thereby mimicking a reactor IBD signal. 9Li and 8He isotopes
rates are extrapolated using KamLAND and Borexino measured yields [75, 76]: specifically, the
expected yield is 127.1 events/day and 40.4 events/day, respectively. Other isotopes are also β-
neutron emitters but are negligible with respect to 9Li/8He, whereas some long-lived cosmogenic
isotopes undergo beta decay without an accompanying neutron. These cannot give rise to correlated
backgrounds by themselves but can contribute to the accidental neutron-like signal (if the energy
is in the proper range). The β−-decay of 8He populates a neutron-unstable excited state in 8Li,
with a 16% branching ratio. For 9Li, the branching ratio to a neutron unstable state in 9Be is 51%.
The subsequently emitted neutron is captured mainly on hydrogen with a mean capture time of
220 µs. The triple coincidence of a muon, a β-emission, and a delayed neutron capture provides
a precise signature, that allows to efficiently decrease this background. To that end, the recently
updated muon veto strategy [33] reduces the residual 9Li/8He background to 0.81 events/day and
0.09 events/day, respectively. Consequently, the total background level amounts to 0.9 events/day
in the full LS volume. Subsequently, the IBD standard selection cuts are applied to this remaining
component, with the same procedure employed for reactor antineutrinos.
We assume the rate relative uncertainty to be 20% and assign 10% bin-to-bin uncorrelated spectrum
shape uncertainty for 36 keV bins, which is the estimation reported in Ref. [30].

Cosmogenic 8He To estimate the number of 8He-induced correlated pairs passing the IBD selec-
tion criteria, 50k events were generated using the offline software and the full detector simulation.
Then, as previously described in Section 4.2, selection efficiencies are calculated and combined. The
results of these calculations are summarized hereafter:

• Fiducial volume cut: 91.4% of the events are retained by applying the FV cut.

• Energy cut: 99.8% of prompt events lie in the energy selection region while the efficiency
is 99.9% for delayed events. The energy cut is applied only over the fiducial volume. The
resulting energy spectra are reported in Figure 4.10b.
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• Vertex and time cut: From the joint probability distribution, shown in Figure 4.10a,
together with the marginal densities, a combined time-vertex efficiency of 98.3% is found.

The resulting 8He residual contribution after IBD selection is therefore 0.08 events/day.

(a) 8He: ∆t and ∆r distribution between prompt and
delayed events. The selection cut range is indicated by
the red dashed line.

(b) 8He: prompt and delayed energy distributions, both
the bi-dimensional and uni-dimensional distributions are
reported.

Figure 4.10: ∆t, ∆r (a) and energy distributions (b) for 8He-induced prompt-delayed correlated pairs.

Cosmogenic 9Li The same procedure is carried out for the 9Li sample, obtaining:

• Fiducial volume cut: 91.2% of the events is retained by applying the FV cut.

• Energy cut: The energy selection region contains 99.6% of prompt events, while the efficiency
for delayed events is 99.9%. The energy cut is applied only over the fiducial volume. The
resulting energy spectra can be seen in Figure 4.11b.

• Vertex and time cut:. The combined time-vertex efficiency of 98.4% is obtained from the
joint probability distribution, as illustrated in Figure 4.11a, along with the 1-d probability
densities.

The resulting 9Li residual contribution after IBD selection is 0.72 events/day.

4.3.3 Geo-neutrinos

Geo-neutrinos (geo-ν) are electron antineutrinos produced by the radioactive decay chains of Ura-
nium and Thorium inside the Earth’s mantle and crust. They are produced via beta decay and
have similar energy spectra and detection signatures as reactor antineutrinos. The total rate of
geo-neutrinos at the JUNO site is estimated to be 1.5 events per day [21], with the 238U decay chain
contributing approximately 77% and the 232Th decay chain contributing approximately 23% [21].
The residual geo-ν rate after applying all selection cuts is calculated in the following paragraphs.
The rate and shape relative uncertainties are set to 30% and 5%, respectively [30].

Geo-neutrinos from Uranium chain A 500k events MC sample is used to calculate selection
efficiencies, following the same procedure as in earlier examples.
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(a) 9Li: ∆t and ∆r distribution between prompt and
delayed events. The selection cut range is indicated by
the red dashed line.

(b) 9Li: prompt and delayed energy distributions, both
the bi-dimensional and uni-dimensional distributions are
reported.

Figure 4.11: ∆t, ∆r (a) and energy distributions (b) for 9Li-induced prompt-delayed correlated pairs.

• Fiducial volume cut: 91.0% of the events is retained by applying the FV cut.

• Energy cut: All prompt events lie in the energy selection region while the efficiency is 99.9%
for delayed events. The energy cut is applied exclusively within the fiducial volume, and the
resulting energy spectra are depicted in Figure 4.12b.

• Vertex and time cut: The joint probability distribution in Figure 4.12a, along with the 1-d
probability densities, was used to determine a combined time-vertex efficiency of 98.2%.

The combined antineutrino detection efficiency for geo-ν from the 238U chain after all selection cuts
is 81.7%, with a resulting rate of 0.94 events/day.

(a) Geo-ν from 238U chain: ∆t and ∆r distribution be-
tween prompt and delayed events. The selection cut
range is indicated by the red dashed line.

(b) Geo-ν from 238U chain: prompt and delayed en-
ergy distributions, both the bi-dimensional and uni-
dimensional distributions are reported.

Figure 4.12: ∆t, ∆r (a) and energy distributions (b) for 238U geo-neutrinos prompt-delayed correlated
pairs.
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Geo-neutrinos from Thorium chain Similarly, a 500k events MC sample is used to calculate
selection efficiencies.

• Fiducial volume cut: After applying the FV cut to the reconstructed events, 91.2% of the
events are retained.

• Energy cut: The energy selection criteria retains 99.99% of prompt events and 99.89% of
delayed events, applied exclusively within the fiducial volume. The resulting energy spectra
are presented in Figure 4.13b.

• Vertex and time cut: The joint probability distribution displayed in Figure 4.13a leads to
a combined time-vertex efficiency of 98.3%.

The total detection efficiency for geo-neutrinos from the 232Th chain after all selection cuts is found
to be approximately 82%. Consequently, the expected rate of events is 0.28 events/day.

(a) Geo-ν from 232Th chain: ∆t and ∆r distribution
between prompt and delayed events. The selection cut
range is indicated by the red dashed line.

(b) Geo-ν from 232Th chain: prompt and delayed en-
ergy distributions, both the bi-dimensional and uni-
dimensional distributions are reported.

Figure 4.13: ∆t, ∆r (a) and energy distributions (b) for 232Th geo-neutrinos prompt-delayed correlated
pairs.

4.3.4 Other background sources

Other sources of correlated background contribute significantly to the expected number of events
detected in JUNO. To estimate their rates and spectral shape, we rely on previous studies and
experiments.

Fast neutrons Cosmic muons produced in the rock surrounding the water pool or those that
corner-clip, i.e., pass through the CD but leave only a short track, are not effectively tagged. This
results in fast neutrons produced by these muons scattering off a proton and being subsequently
captured in the LS, creating an irreducible background that mimics the signal signature. The rate
of fast neutrons is estimated to be approximately 0.1 events per day (with 100% rate uncertainty),
based on a full simulation that does not consider optical processes [55]. The prompt energy spectrum
of the fast neutrons is found to be consistent with a flat distribution, with 20% shape uncertainty
for 36 keV bins.
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13C(α, n)16O The 13C(α, n)16O background [77] is primarily caused by alpha particles that are
produced by the decay of naturally occurring radioactive isotopes along the chains of 238U, 235U,
and 232Th [78]. These alpha particles can interact with the surrounding materials, leading to the
production of neutrons via the 13C(α, n)16O reaction. The total rate of this background is estimated
to be 0.05/day with a 50% uncertainty in both the rate and shape of the spectrum. In JUNO, this
background is effectively mitigated by using materials that contain low levels of 13C.

Atmospheric neutrinos Atmospheric neutrinos can interact with nuclei in the JUNO detector
through charged current (CC) or neutral current (NC) interactions. According to simulations and
estimates in [79], the number of events from CC interactions is negligible after the IBD selection,
with a rate of ∼ 3.2 × 10−6 per day per kiloton. However, the final states of NC interactions can
induce correlated events, and the total event rate after applying the IBD selection criteria mentioned
above is about 0.1-0.2 per day. The dominant contribution to this background is from atmospheric
neutrinos interacting via NC interactions with 12C nuclei. In these interactions, the neutrino only
transfers a fraction of its energy to the final products and can eject a neutron from the carbon
nucleus, leaving it in an excited state with multiple decay modes [80]. The rate is fixed at 0.16
events/day, with 50% uncertainty in both rate and shape.

Global reactor neutrinos The JUNO analysis considers electron antineutrinos produced by
reactors beyond 300 km-distance as background. The energy spectrum and event rate were estimated
by taking into account the global reactor distribution and load factor in 2019 [81]. The estimated
rate amounts to 1 event/day, with 2% rate and 5% shape uncertainties.

4.4 Expected energy spectrum

The residual background rates, following the application of all physics selection criteria, are pre-
sented in Table 4.2, along with their corresponding relative input uncertainties. These combined
rates amount to a total of 3.5 events per day, which can be compared to the expected 47.1 reactor
antineutrinos per day (at full reactor power).

Background Rate [events/day] Rate unc. δB,R [%] Shape unc. δB,S [%]

Geo-neutrinos 1.22 30% 5%
Accidentals 0.172 1% negligible

Fast-n 0.1 100% 20%
13C(α, n)16O 0.05 50% 50%

9Li/8He 0.8 20% 10%
Atmospheric neutrinos 0.16 50% 50%

World reactors 1.0 2% 5%

Total 3.5 - -

Table 4.2: Summary of background rates after all selection cuts. Rate and shape (bin-to-bin uncorrelated)
uncertainties are reported. All shape uncertainties are given for 36 keV bins, with the exception of global
reactors (20 keV bins).

Compared to other underground liquid scintillator experiments, the impact of backgrounds on the
precision of oscillation parameter measurements is relatively limited, as discussed in Ref. [55]. This
favorable outcome is achieved by exploiting the significant spectral shape distortion observed in the
prompt spectrum as the primary means for extracting oscillation parameters. This aspect will be
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further analyzed in Chapter 5.
Finally, Figure 4.14 depicts the total reconstructed energy spectra at JUNO, both with and without
the background contribution.
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Figure 4.14: Reconstructed energy spectra at JUNO for normal ordering, 6 years exposure at 11/12 duty
cycle reactor power. The background spectra are stacked in the filled histogram and shown separately in the
inset. The background rates were calculated after applying the selection criteria, as described in Table 4.2.
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Chapter 5

JUNO’s sensitivity to oscillation
parameters

This chapter is dedicated to the investigation of JUNO’s sensitivity to oscillation parameters, placing
a particular emphasis on the atmospheric mass splitting ∆m2

31. The analysis workflow is presented
in Section 5.1. The employed cost function and the details on the spectral fit are outlined in
Section 5.2. In Section 5.3, a preliminary evaluation of the most influencing parameters on the
estimation of ∆m2

31 is performed, and the results are then integrated in the sensitivities studies in
Section 5.4, where results are reported for all oscillation parameters JUNO is sensitive to.

5.1 Analysis strategy

As outlined in previous sections, the information about neutrino oscillation parameters is conveyed
through the oscillated reactor antineutrino spectrum. Notwithstanding, as discussed in Section 4.3,
there exist several sources of background that are indistinguishable from the signal. Nevertheless,
with the help of MC simulations and a thorough comprehension of the detector response, it is
possible to predict the relative contributions of the signal and background based on their differing
energy distributions. The main steps of the analysis workflow are detailed hereafter:

Monte Carlo production. Both the IBD signal produced by reactor antineutrinos and back-
ground components are simulated using the JUNO offline software [49], as mentioned in Chapter 4.

Spectral components PDF production. A Probability Density Function (PDF) for the energy
variable of interest can be retrieved directly from the corresponding Monte Carlo sample. To model
each component, a specific MC simulation is employed, and the PDF is obtained taking into account
the accessible energy scale in a real data acquisition. IBD-like signals, induced from reactor and
terrestrial antineutrinos, can be modeled knowing the expected flux, hence as a function of the
antineutrino kinetic energy. However, while the energy scale of interest for expressing neutrino
oscillations is the antineutrino kinetic energy, this scale is not experimentally measurable. The
experimental observable is the total charge collected for a given event, which is the reconstructed
energy accounting for factors such as the interaction cross section, LSNL, and finite energy resolution
(refer to Figure 3.5). For IBD and geo-neutrino events, the PDFs are generated by starting from
the MC truth prompt deposited energy and retrieving the corresponding antineutrino energy. This
process is accomplished by considering four-momentum conservation [58]. The obtained antineutrino
energy distributions are reported in Figure 5.1.
For 9Li/8He cosmogenic decays, a different approach is taken. The muon veto strategy allows for
the isolation of this background component and the measurement of its effective spectral shape
using real data. Consequently, the 9Li/8He energy spectra are expressed in terms of reconstructed
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(a) Reactor antineutrino energy spectrum (main plot),
with entries normalized to unity. The smoothed proba-
bility distribution function is reported in the inset.

(b) Geo-ν energy spectra before and after the smoothing
process. Entries are normalized to unity, taking into
account the Uranium-Thorium relative contribution.

Figure 5.1: Reactor and terrestrial antineutrino MC-driven energy spectra. The corresponding smoothed
PDFs are reported in the insets.

energy (see Figure 5.2a). Moreover, uncorrelated backgrounds (i.e., accidental coincidences) can
be directly inferred from data by employing off-windows techniques15: hence, this component is
expressed in reconstructed energy as well and reported in Figure 5.2b.
The other backgrounds (fast-n, atmospheric ν, 13C(α, n)16O and global reactors) constitute irre-
ducible contributions that cannot be experimentally distinguished. Their spectral shape is taken
from JUNO common inputs [74], and they are obtained either through other experiments’ data or
from dedicated simulations of involved physical processes: they all are reported in terms of recon-
structed energy, and are shown in the inset of Figure 4.14. The single spectral components are
finally normalized according to the residual rates after all selection cuts (see Table 4.2).

Pseudo-dataset production. Asimov datasets [82] are produced by sampling the aforemen-
tioned MC PDFs, based on the expected number of events for a given exposure. Prior to this, a
smoothing procedure is applied to the PDFs to reduce statistical fluctuations between adjacent bins
while preserving the spectral features. This is achieved using a Savitzky Golay filter [83], which fits
low-degree polynomials to subsets of adjacent data points and uses the best-fit parameters to esti-
mate the signal value at the center of the window. The filter is applied recursively to the entire data
range, effectively removing high-frequency noise and maintaining the original PDF shape [84]. Fi-
nally, the datasets are constructed by summing up the contributions from each spectral component,
in terms of reconstructed energy.

Spectral fit. To extract the parameters of interest, a binned likelihood function is maximized as
part of the fitting strategy. The produced PDFs serve both as a model for the fit and to create
several pseudo-datasets. Further details on the likelihood function and spectral fit are provided in
Section 5.2.

15The contribution of the accidental background spectrum can be determined by searching for coincidences (with
the same energy and vertex cuts) in an off-time window, typically much larger than the IBD time cut.
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(a) Cosmogenic 9Li/8He energy spectrum (main plot),
with entries normalized to unity and taking into ac-
count the Lithium-Helium relative contribution. The
smoothed probability distribution function is reported
in the inset.

(b) Accidental coincidences energy spectrum after fidu-
cial volume and 0.7MeV energy threshold cuts (see
Section 4.3.1), with entries normalized to unity. The
smoothed probability distribution function is reported
in the inset.

Figure 5.2: Cosmogenic 9Li/8He (a) and accidental coincidences (b) MC-driven energy spectra. The
corresponding smoothed PDFs are reported in the insets.

5.2 Likelihood function and spectral fit

A multivariate binned likelihood is used as a cost function for the analysis. Each dataset is repre-
sented as a histogram with N energy bins, where the i-th bin contains Mi measured events. The
likelihood reads

L(θ | M) =

N∏
i=1

(si(θ) + bi(θ))
Mi

Mi!
e−(si(θ)+bi(θ)), (5.1)

where si and bi represent the expected number of signal and background events in the i-th bin,
respectively, and M = (M0,M1, ...,Mi, ...,MN ). Hereinafter, the notation µi = si + bi is employed
to indicate the total predicted number of events per bin. The likelihood function is the product of
Poisson probability density functions corresponding to each bin with the number of entries given
by Mi. The expected number of entries in each bin depends on a set of unknown parameters
θ = (θ0, ..., θm). For the JUNO oscillated spectrum use case, we consider 33 parameters, i.e.,
m = 32, which are listed in Table 5.1. An in-depth description of all parameters will be provided
in Section 5.4, when addressing the source of systematic uncertainties.
The best-fit parameters θ̂ = (θ̂0, ..., θ̂m) can be determined by performing a maximum likelihood
(ML) estimation. To accomplish this, it is common to take the natural logarithm of the likelihood
function, which is known as log-likelihood. Typically, the optimization problem involves minimizing
the negative log-likelihood function, which can be expressed as:

−2 lnL(θ | M) = −2 ln
N∏
i=1

µi(θ)
Mie−µi(θ)

Mi!

= −2
N∑
i=1

ln
µi(θ)

Mie−µi(θ)

Mi!

= 2

N∑
i=1

(µi(θ)−Mi lnµi(θ) + lnMi!) (5.2)
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Index 0 1 2 3 4 5 6 7 8 9 10

Parameter E a b c α1 α2 α3 α4 ρ ∆m2
21 ∆m2

31

Index 11 12 13 14 15 16 17 18 19 20 21

Parameter sin2 θ12 sin2 θ13 Nrea NU NTh Nacc Nfn NLiHe Nα Nglob Natm

Index 22 23 24 25 26 27 28 29 30 31 32

Parameter NSNF Nnoneq wc1
YJ wc2

YJ wc3
YJ wc4

YJ wc5
YJ wc6

YJ wc1
TS wc2

TS wDYB

Table 5.1: Oscillated spectrum fit parameters. The cyan highlighted entries are associated with detector-
related parameters, therefore efficiency, energy resolution, and non-linearity. The αi parameters are used
to model the non-linearity response, and their meaning will be explained in Section 5.4. The oscillation
parameters and the matter density ρ are indicated in orange. In green, we denote the quantities associated
with the reactor antineutrino flux: Nrea is the total predicted number of reactor antineutrinos, with entries
from 24 to 32 representing the weight of each core; NSNF and Nnoneq indicate the corrections due to spent
nuclear fuel and non-equilibrium. The background components are hued in purple.

The expression in Eq. (5.2) is rarely used, while a different construction based on the ratio of two
Poisson functions is preferred

λ(θ) =
L(θ | M)

L(M | M)
, (5.3)

where the denominator is a model-independent constant that maximizes the likelihood of the data
without any restriction on the model. Maximizing this likelihood ratio is equivalent to minimizing
the Poisson-likelihood chi-square function [85]

χ2
Poisson = −2 lnλ(θ) = 2

N∑
i=1

(
µi(θ)−Mi +Mi ln

Mi

µi(θ)

)
. (5.4)

The χ2
Poisson function is equal to zero when data is perfectly in agreement with data and is close to

the regular χ2 around the minimum.

It is also possible to relate this formalism to Bayesian parameter estimation (see Appendix C),
where the posterior distribution P (θ | M) is proportional to the product of the likelihood function
L(θ | M) and the prior distribution P (θ):

P (θ | M) ∝ L(θ | M)P (θ). (5.5)

Here, the likelihood function L(θ | M) is the probability of observing the data M given the model
parameters θ, and the prior distribution P (θ) expresses our knowledge or beliefs about the model
parameters before observing the data. The mode of the posterior distribution corresponds to the
maximum a posteriori (MAP) estimate of the parameters, which can be obtained by maximizing
the logarithm of the posterior distribution, i.e., finding the values of θ that maximize

lnP (θ | M) = lnL(θ | M) + lnP (θ) + const. (5.6)

5.2.1 Relationship between chi-squared and log-likelihood

At large statistics, the Poisson distribution can be approximated by a normal distribution with mean
µi and variance σ2

i = µi [85]. Therefore, under certain regularity conditions, and for a sufficiently
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large sample size, the log-likelihood function can be approximated by a quadratic form, leading to
a chi-square distribution. Specifically, for Gaussian distributed variables

lnλ(θ) ≃ −1

2
χ2 + k,

hence,
χ2 ≃ −2 lnλ(θ) + k. (5.7)

Assuming the statistical variance to be represented by the expected number of events in each bin,
i.e., µi we are considering the so-called Pearson’s chi-square; on the other hand, if the variance
is approximated by the number of observed events, thus σ2

i = Mi, we obtain the Neyman chi-
square [85].

χ2
Pearson =

∑
i

(µi(θ)−Mi)
2

µi(θ)
, χ2

Neyman =
∑
i

(µi(θ)−Mi)
2

Mi
. (5.8)

The advantage of χ2-like functions is related to their close connection to the covariance matrix
formalism, given by

χ2
cov = (M− µ(θ,η))T · V −1 · (M− µ(θ,η)) . (5.9)

Hereinafter, we adopt the following notation: θ is a set of free parameters of interest, while η are
referred to as nuisance parameters, i.e. the additional parameters incorporated into the model to
account for uncertainties or external effects that are not the primary focus but are essential for
accurately analyzing the data. Within this context, all parameters, except for the oscillation pa-
rameters, are classified as nuisances. In Eq. (5.9), V is the covariance matrix of the prediction.
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While the ML estimate from the Poisson-likelihood
is proven to be an asymptotically unbiased estima-
tor [3], it is known that the estimator of model pa-
rameters constructed from Pearson’s or Neyman’s
chi-square leads to biases16 especially when the large-
statistics condition is not met [85]. One way to over-
come the possible bias is to consider a combined
Neyman-Pearson χ2 [85], defined as follows

χ2
CNP =

1

3
χ2
Neyman +

2

3
χ2
Pearson

=
∑
i

(µi(θ,η)−Mi)
2

3
(

1
Mi

+ 2
µi(θ,η)

)−1 (5.10)

It can be demonstrated [85] that the combined chi-
square is closer to the Poisson-likelihood in Eq. (5.4).
To investigate this behavior, a study was conducted
using 400 pseudo-experiments to construct the ∆χ2 profiles shown in Figure 5.3, where
∆χ2 ≡ χ2 − χ2

min. The results clearly illustrate that the Pearson and Neyman chi-square statistics
exhibit biases in opposite directions. However, the combined version χ2

CNP effectively compensates
for this shift, resulting in a much closer alignment with the log-likelihood estimation.

16The χ2 best fit estimate is unbiased on Asimov datasets, while it introduces a bias for real data or pseudo-
experiments, i.e., in presence of statistical fluctuations.
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Furthermore, from the definition in Eq. (5.3), one can see that 0 ≤ λ ≤ 1, with λ near 1 implying
good agreement between the data and the hypothesized value of the model parameters. Equivalently,
it is convenient to use the test statistic [82] in Eq. (5.11).

tθ = −2 lnλ(θ) ≃ ∆χ2. (5.11)

In the context of maximum likelihood estimation, the likelihood ratio can also be related to the
chi-square statistic. If the sample size is large and under certain assumptions, the logarithm of the
likelihood ratio is approximately equal to half of the chi-square statistic. Therefore, the test statistic
t follows a chi-square distribution, as suggested by Eq. (5.7). ∆χ2 is defined as the difference in
the chi-square statistic between the best-fit model and a reference point, typically the minimum
chi-square value.

5.2.2 Correlation among parameters

In order to examine the correlation among various parameters, we carry out an initial fitting process
where the parameters are allowed to vary without any prior assumptions. During this stage, for the
sake of simplicity, we do not take into account the individual contributions from the reactor cores.
Instead, we calculate the reactor antineutrino flux using average power and baselines.
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Figure 5.4: Correlation matrix obtained keeping all parameters free.



5.3. Impact of nuisance parameters on ∆m2
31 57

In this work, unless otherwise specified, the minimization is performed using the Minuit2 [86] library
via the Python interface iminuit [87]. The correlation matrix, depicted in Figure 5.4, is derived by
calculating the covariance matrix provided by the Minuit algorithm. This is achieved by inverting
the matrix of second derivatives (Hessian matrix) at the minimum point [87]. Specifically, each
element (i, j) of the correlation matrix is determined using the following equation:

cij =
cov(θi, θj)√

σ2
i σ

2
j

,

where cov(θi, θj) denotes the covariance between parameters θi and θj , and σ2
i and σ2

j represent the
variances17 of parameters θi and θj respectively.

Upon examining the correlation matrix in Figure 5.4, the nuisance parameters that significantly
influence the estimation of the two mass splittings and mixing angles can be deduced. Notably,
∆m2

21 exhibits a pronounced correlation with the geo-neutrino background component,i.e., NU and
NTh. This correlation arises due to the dominance of the geo-neutrino background in the low energy
region, potentially causing a bias in the position of the first minimum in the oscillated spectrum. As
discussed in Section 2.3.2, matter effects also impact the solar oscillation pattern [25, 26], leading
to a correlation with the matter density parameter, ρ. Generally speaking, two parameters are
expected to be correlated if they produce a similar effect on the energy spectrum. This is the case,
e.g., of the atmospheric and fast neutrons backgrounds, since they are both uniform in the prompt
signal energy range. Regarding the atmospheric mass splitting, the resolution and non-linearity play
the most significant role, suggesting that the precision of its estimation primarily relies on spectral
shape distortions rather than the absolute number of events. This foreshadows the importance of
accurately characterizing the shape of the spectrum for precise determination of the atmospheric
mass splitting.

5.3 Impact of nuisance parameters on ∆m2
31

In this section, a preliminary analysis is conducted to qualitatively identify the nuisance parameters
that have the greatest impact on the estimation of the atmospheric mass splitting. The objective
of our analysis is to find the best-fit values for both the parameters of interest and the nuisance
parameters, aiming to minimize the discrepancy between the model predictions and the observed
(simulated) data. To accomplish this, we employ an Asimov dataset [82], which is constructed to
perfectly align with the expected outcomes predicted by a given model. In other words, the model’s
parameters are set to their true values, and no random variation is introduced in the generated data.
The Asimov dataset represents a "best-case scenario" for the model, serving as a benchmark for
evaluating its performance considering the median effect of statistical fluctuations. When employed
to estimate all parameters, the Asimov dataset yields the true parameter values without introducing
biases. Figure 5.5a illustrates an example of an Asimov dataset, while Figure 5.5b showcases a
pseudo-experiment where each bin is subject to fluctuations following a Poisson distribution.
In this section, several alternative techniques are investigated to handle nuisance parameters. They
all involve evaluating the likelihood as a function of only the parameter (or parameters) of interest:
the main approaches are the profile and conditional likelihoods.

Profile likelihood. The profile likelihood is obtained by maximizing the likelihood function with
respect to the nuisance parameters, effectively "profiling out" their influence. It is constructed by

17The variance is given by the diagonal entries of the covariance matrix.
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Figure 5.5: Examples of Asimov (a) and pseudo-experiment (b) datasets for 6 years exposure. The best-fit
line is also reported.

maximizing the likelihood function for each value of the parameter of interest θ, while allowing the
nuisance parameters η to vary freely.
To test a hypothesized value of a parameter of interest θ we consider the so called profile likelihood
ratio [82] as test statistic:

λ(θ) =
L(θ, ˆ̂η)
L(θ̂, η̂)

, (5.12)

where θ indicates the parameter of interest and η one nuisance parameter. The numerator represents
the maximized likelihood function for the parameter of interest θ with a given nuisance parameter
maximized at its conditional maximum likelihood estimate, denoted as ˆ̂η. The denominator is the
maximized (unconditional) likelihood, i.e., both θ̂ and η̂ are ML estimates.
Therefore, the profile likelihood function represents the variation of the likelihood with respect to
the parameter of interest, taking into account the best-fitting values of the nuisance parameters for
each value of the parameter of interest. By maximizing over the nuisance parameters, the profile
likelihood implicitly takes into account their correlations with the parameter of interest.

Conditional likelihood. The conditional likelihood is obtained by conditioning the likelihood
function on specific values or ranges of the nuisance parameters. The conditional likelihood is
expressed as a function of the parameter of interest, with the nuisance parameters fixed to given
values. This approach is commonly used to study the effect of fixing a nuisance parameter on the
estimation of the parameter of interest. Mathematically, the conditional likelihood ratio with a
fixed nuisance parameter can be written as

λ(θ | η0) =
L(θ, η = η0)

L(θ̂, η = η0)
. (5.13)

By fixing the nuisance parameters, the conditional likelihood focuses solely on the parameter of
interest, disregarding their correlations.
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A comparison between the two aforementioned methods is reported in Figure 5.6, where we re-
port the 2-dimensional 68.27%, 95.45%, and 99.73% confidence level contours for one parameter of
interest (∆m2

21) and one nuisance (NU), with the corresponding 1-d ∆χ2 profiles.
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Figure 5.6: Two-dimensional 68.27%, 95.45%, and 99.73% confidence level contours for one parameter of
interest (θ = ∆m2

21) and one nuisance (η = NU). In the secondary axis, the conditional and profile likelihoods
are compared: the former (in orange) corresponds to the narrower profile, while the latter is significantly
wider due to the known correlation between the solar mass splitting and the number of Uranium geoneutrinos
NU.

5.3.1 Nuisances affecting the precision

The initial set of preliminary tests focuses on the conditional likelihood given in Eq. (5.13). The
objective is to evaluate the impact of individual nuisance parameters on the estimation of ∆m2

31.
In this analysis, we assume that each nuisance parameter deviates from its initial expected value
within a well-defined range, while still being accurately measurable. This deviation is denoted as δ,
and we assess the likelihood ratio as follows:

λ(θ | η0 + δ) =
L(µ(θ, η0(1 + δ)),M(θ, η0(1 + δ)))

L(µ(θ̂, η0(1 + δ)),M(θ, η0(1 + δ)))
, (5.14)

where δ is a bias introduced on each nuisance, such that δ ∈ [−0.5, 0.5], and η0 is the input value,
i.e. the expected one from the current knowledge of the experiment. Here, we explicitly express the
dependence on the model, represented by the expected number of events µ, and on the data sample
M to emphasize that the parameters are accurately estimated through likelihood maximization. It
should be noted that we are working with Asimov datasets; as a result, the ML estimate obtained
from these datasets will not exhibit a bias in its central value. However, the width of the profile,
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which is a proxy of its uncertainty, may be affected by variations in the nuisance parameters. For
a Gaussian distribution and one degree of freedom (e.g., when considering a single parameter), a
change of ∆χ2 = 1 corresponds to a one-sigma deviation from the minimum chi-square value, rep-
resenting approximately a 68% confidence interval18. It has to be underlined that the 1σ interval
obtained from the conditional likelihood provides an underestimated result, since it may not fully
capture the true uncertainty due to the neglect of correlations between parameters.
The main sources of uncertainty in the measurement of ∆m2

31 are the statistics of reactor antineu-
trinos and all parameters that can distort the spectral shape. Indeed the statistical precision is by
definition improved with a higher number of events, while the energy resolution has to be sufficiently
high to be able to resolve the fast oscillation pattern. On the other hand, factors related to rate
normalization have little impact on the determination of ∆m2

31. Therefore, while the results for
all nuisance parameters are reported in Appendix D, we hereafter concentrate on a limited number
of nuisance parameters that are known to influence the spectral shape and analyze their effects in
detail.

Resolution parameters. Figure 5.7 shows the conditional likelihood curves for the parameters
a, b, c describing the energy resolution, as in Eq. (3.13).
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Figure 5.7: Conditional likelihood profile considering θ = ∆m2
31 as parameter of interest and fixing the

nuisance parameters related to the energy resolution, i.e., η = (a, b, c).
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Figure 5.8: Relative precision on ∆m2
31 as a function of

the bias introduced on resolution parameters, obtained from
the conditional likelihood profiles.

The color scale indicates the magnitude of
the bias δ, such that for each curve the nui-
sance parameter is fixed at η = η0(1 + δ).
Firstly, it can be observed that, as ex-
pected for an Asimov sample, the ML esti-
mate is not affected, whereas the width of
the profiles turns out to be either enlarged
or narrowed. Looking at the parameteri-
zation in Eq. (3.13), it is straightforward
to infer that higher (lower) values of a, b, c
correspond to worse (better) energy resolu-
tion. For instance, this is exactly what can
be seen in Figure 5.7, where the width of
the profiles varies with ηi. For each value
of η, we calculate the 1σ uncertainty on

18These approximations are valid in certain asymptotic limits and may not hold exactly for small sample sizes or
in the presence of non-Gaussian distributions.
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∆m2
13 by determining the range where ∆χ2 = 1, relative to the minimum chi-squared value. It is

important to note that the conditional likelihood approach tends to underestimate the uncertainty
because it does not take into account correlations with the nuisance parameters being considered.
A careful evaluation of uncertainties comprehensive of correlations will be performed in Section 5.4.
The results for the resolution parameters are presented in Figure 5.8, which illustrates the relative
precision on ∆m2

31 as a function of δ. As expected, the term influenced by the Poisson statistics of
the detected photoelectrons (i.e., a) has the most significant impact since it contributes the most
to the energy resolution.

Reactor antineutrino statistics. It is evident that the statistical contribution to the overall
uncertainty will primarily be influenced by the reactor antineutrino statistics. This observation
becomes apparent when examining Figure 5.9a, which illustrates that a higher number of events
(referred to as Nrea) leads to narrower profiles, resulting in smaller errors. This trend is further sup-
ported by Figure 5.9b, where the relative precision is depicted as a function of Nrea. These findings
underscore the importance of maximizing the number of signal events through the optimization of
selection cuts, among other strategies.
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number of reactor antineutrino events. (b) Relative precision on ∆m2
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function of the bias introduced on Nrea.

Looking at the results with all parameters in Appendix D, it can be seen that the efficiency factor
has a comparable effect with what is shown in Figure 5.9. This similarity arises from the fact that
the efficiency factor influences the antineutrino statistics in a comparable manner.

5.3.2 Nuisances affecting the accuracy

The other nuisance parameters are not expected to significantly affect the uncertainty on ∆m2
31.

Rather, it is important to understand what happens if, for a fixed data sample, we fail to accurately
estimate a given η. This scenario involves estimating the nuisance parameter with a bias, resulting
in a value of η = η0(1 + δ), while still using the same fixed data sample, dubbed M(θ, η0). Hence,
the following expression is used:

λ(θ | η0 + δ) =
L(µ(θ, η0(1 + δ)),M(θ, η0))

L((µ(θ̂, η0(1 + δ)),M(θ, η0))
, (5.15)
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where the likelihood function is evaluated for fixed data, denoted as M(θ, η0), but with an incorrectly
estimated nuisance parameter ηi given by η0(1+δ). Specifically, this procedure provides a qualitative
assessment of how sensitive the estimation of θ is to inaccuracies in measuring η within the given
fixed data sample.
This aspect holds significant relevance for the LSNL, since it induces a shift in the energy spectrum
that can potentially bias the estimation of the oscillation parameters. Indeed, this shift, in turn,
affects the oscillation pattern and introduces distortions in the observed data. To effectively enhance
the effect, we use the LSNL Daya Bay parameterization provided by Eq. (3.12), which offers a more
realistic representation based on experimental data, with respect to using the pull curves αi in
Figure 5.13b. Therefore the group of nuisance parameters will be given by η = (p0, p1, p2, p3).
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Figure 5.10: Conditional likelihood profiles considering θ = ∆m2
31 as parameter of interest and fixing the

nuisance parameters related to the energy non-linearity, i.e., η = (p0, p1, p2, p3).

Figure 5.10 shows the conditional likelihood curves obtained by varying all non-linearity parameters
of a certain quantity δ, as previously mentioned. It is evident that the ∆m2

31 ML estimate is skewed
in a particular direction. The direction of the systematic bias depends on the specific combination of
NL parameters and their impact on the oscillation pattern. In some cases, the distortions introduced
by the NL parameters may align in a way that pushes the ML estimate of ∆m2

31 towards higher
values, while in other cases, it may adjust it towards lower values.
This simple study serves as a valuable reminder of the importance of properly accounting for the
complex interplay that exists between the non-linearity phenomenon and the underlying oscillation



5.4. Systematic uncertainties 63

pattern, since they might induce subtle changes in the spectrum which are not easily attributed
solely to either of these factors. It indicates that failure to accurately model non-linear effects can
lead to biased estimations of the oscillation parameters, such as ∆m2

31.

5.3.3 Profile likelihood scans

The conditional likelihood method employed so far proved to be an essential tool to grasp the
relationship between θ and individual nuisances. Nonetheless, this approach is known to provide
the narrowest ∆χ2 profiles, as it scans the conditional distribution of one parameter of interest
given fixed values of the other nuisances. Hence, by construction, it does not account for parameter
correlations, leading to underestimated uncertainties. Quantifying these parameters’ correlations is
crucial for effectively prioritizing which nuisances, and their corresponding physics phenomena or
detector-related properties, to focus on during calibration campaigns and data analysis. In order to
do that, the profile likelihood approach introduced in Section 5.3 will be used. Specifically, we need
to perform a fit on Asimov datasets, using nominal parameters, and analyze the profile likelihood
using different constraints on the nuisances.
From Figure 5.4, it is evident that there is nearly no correlation between ∆m2

31 and all nuisance
parameters. The dominant contribution to the correlation arises from non-linearity effects. In
Figure 5.11a, we compare the conditional likelihood profile with the profile likelihood in two different
configurations: one with all free nuisances and the other with NL parameters constrained based on
the input priors. The conditional and "all free" cases represent the two extreme scenarios, yielding
the highest and lowest possible precision, respectively. Placing a prior on the NL parameters makes
the profile notably narrower, due to the known correlation with ∆m2

31. The procedure described
above was also applied to the resolution parameters, and the corresponding results are depicted in
Figure 5.11a: no observable effect is produced by the introduction of a constraint on a, b, c. All other
nuisances affecting the rate normalization are found to have little to no impact on the precision of
∆m2

31, which is driven by uncertainties affecting the shape of the reactor νe spectrum. This aspect
will be further investigated in Section 5.5. This study allowed us to verify that the presence of
the nuisance parameters broadens the profile likelihood as a function of θ compared to a scenario
where their values are fixed. This reflects the loss of information about θ due to correlations and
systematic uncertainties.

5.4 Systematic uncertainties

Systematic effects can be categorized into two distinct groups: bin-to-bin correlated uncertainties
and bin-to-bin uncorrelated uncertainties. The former can be further divided into fully correlated,
relating to factors that influence the overall event count or normalization, often referred to as rate
uncertainties, and partially correlated. The latter is the case of non-linearity, resolution, and matter
effects uncertainties, since they do not act as a rate normalization but modify the spectral shape. On
the other hand, bin-to-bin uncorrelated uncertainties refer to the (statistical and systematic) uncer-
tainties resulting from the estimation of reference spectra PDFs, and they are uncorrelated among
individual energy bins. The systematic uncertainties, summarized in Table 5.2, are implemented
with two different methods:

1. External constraints on bin-to-bin correlated uncertainties are propagated through Gaussian
penalty (or pull) terms on χ2-like functions, which correspond to adding a gaussian prior in a
likelihood-based cost function. The penalty term is defined as:

χ2
penalty(η) = (η − η̂)TV −1

η (η − η̂), (5.16)
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Figure 5.11: ∆χ2 profiles for θ = ∆m2
31, showing the conditional likelihood and the profile likelihood. In

(a) the conditional likelihood is compared with the profile likelihood with constrained non-linearity (NL)
parameters; (b) reports the profiles for constrained resolution parameters.

where Vη is the covariance matrix for the nuisance parameters. For a set of uncorrelated η,
the expression reduces to

χ2
penalty(η) =

∑
i

(ηi − η̂i)
2

σ2(ηi)
. (5.17)

η̂i is the central value, σ(ηi) is the uncertainty of i-th nuisance parameter. The nuisances η
act on the energy spectrum through their dependence on µ = µ(θ,η). In our case all nuisance
parameters are assumed to be uncorrelated, hence the formalism in Eq. (5.17) is used.

2. External constraints on bin-to-bin uncorrelated uncertainties are added via the extension of
the covariance matrix. In this case, using penalty terms would require a significant increase
in the number of minimization parameters, hence it is more convenient to use a χ2 in the
covariance matrix formalism. Specifically, the covariance matrix V in Eq. (5.9) is extended to
include both statistical and systematical bin-to-bin (b2b19) uncertainties, namely

V = V stat + V b2b (5.18)

V b2b is constructed as follows:
V b2b
ij = δ2b2b · µiµjδij , (5.19)

where δb2b is the b2b relative uncertainty, µk represents the expected number of events in
the k-th bin, and δij is the Kronecker delta. Therefore, V b2b is a diagonal matrix such that
V b2b
ii = δ2b2b · µ2

i . These uncertainties are defined for a specific bin width, denoted as a. To
scale the relative uncertainty δa from bin width a to b, a multiplication factor is required, as
shown in Eq. (5.20):

k =
δb
δa

=

√
a

b
. (5.20)

19Hereinafter with the notation b2b we indicate the bin-to-bin uncorrelated uncertainties.
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Since there is no convenient way to introduce b2b uncertainties within a likelihood function, the
following approach is used:

• When dealing with purely statistical uncertainties, the multivariate binned likelihood (Eq. (5.4))
is employed to obtain the best fit parameters.

• Considering the equivalence in Eq. (5.7), it is reasonable to switch to a combined χ2, as in
Eq. (5.10), to quantify the impact of systematical uncertainties. This choice is motivated by
the fact that the method approximates a log-Poisson ratio, ensuring unbiasedness for both
Asimov and pseudo-experiments [85]. Additionally, this approach facilitates the incorporation
of systematic effects through pull terms and extended covariance.

Therefore, using the combined Neyman-Pearson prescription, the final cost function reads

χ2
CNP = (M− µ(θ,η))T ·

(
V stat
CNP + V b2b

)−1
· (M− µ(θ,η)) +

∑
i

(ηi − η̂i)
2

σ2(ηi)
(5.21)

with

V stat
CNP(θ)ij ≡ 3

(
1

Mi
+

2

µi(θ)

)−1

δij and Vb2b
ij = kikj·

(
δ2b2b,rea · sisjδij +

∑
B

δ2b2b,B · bibjδij
)
.

The notation with si and bi is intended: si refers to the reactor antineutrino spectrum and bi to the
expected number of events for the background component B. The different sources of rate and b2b
systematic uncertainties are summarized in the following sections.

5.4.1 Reactor flux-related uncertainties

The uncertainty associated with the reactor flux comprises both rate effects, which are correlated
across all energy bins, and the uncertainty arising from different flux models. The systematic uncer-
tainties related to the predicted reactor antineutrino spectrum can be classified as either correlated
or uncorrelated among different reactor cores. Additionally, the energy-dependent uncertainties can
be further categorized as either correlated or uncorrelated between different energy bins.

Reactor correlated uncertainty. This type of uncertainty accounts for factors that are common
to all reactor cores, including the energy released per fission, the antineutrino yield per fission, and
the spectra of the fuel isotopes. It is correlated across all reactors, thereby producing an overall shift
in the number of reactor antineutrinos (Nrea in Table 5.1), and has been estimated to contribute
a total relative uncertainty of δC = 2%, as calculated in [60]. The corresponding pull term in
Eq. (5.21) is given by

χ2
rea,corr(Nrea) =

(Nrea − N̂rea)
2

σ2
C

. (5.22)

Reactor uncorrelated uncertainty. This uncertainty arises from variations in normalization
that occur independently from one reactor core r to another, due to the reactor power, the burn-up
calculation, and the fission fractions. The total contribution of reactor uncorrelated uncertainty
amounts to a relative uncertainty of δr = 0.8%. This systematic effect is applied by rescaling
the weight of each reactor core wr (with indices from 24 to 32 in Table 5.1) with an independent
Gaussian centered at 1 with a width of 0.008, to account for the 0.8% relative uncertainty, resulting
in a penalty term
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χ2
rea,uncorr(wr) =

cores∑
r

(wr − ŵr)
2

σ2
r

. (5.23)

Non-equilibrium and SNF uncertainties. The normalization rate uncertainty of non-equilibrium
and spent nuclear fuel is assumed to be 30% with negligible b2b uncertainty. The pull term for
both contributions is given by

χ2
SNF,noneq(NSNF, Nnoneq) =

(NSNF − N̂SNF)
2

σ2
SNF

+
(Nnoneq − N̂noneq)

2

σ2
noneq

. (5.24)

Given the differences in the NPPs characteristics, it is likely that single cores will exhibit diverse
contributions from both SNF and non-equilibrium effects. Consequently, the systematic uncertain-
ties associated with these two factors are expected to be uncorrelated among different reactors.
However, the contributions from these corrections will be averaged over time, leading to a high
degree of correlation among reactors. For the purpose of this analysis, we thus consider these un-
certainties to be common to all cores, being a reasonable approximation over an extended period of
data taking.

Signal spectrum bin-to-bin uncertainty. This uncertainty arises from the calculation of the
antineutrino energy spectra, the fission fractions, and the spectra of the fuel isotopes. The spectrum
b2b uncertainty is assumed to be correlated among all reactors while being uncorrelated between
different energy bins. The JUNO collaboration has examined various models, but for this analysis,
we focus on the two most recent ones [21, 55], based on Daya Bay and TAO, which are shown in Fig-
ure 5.12:
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Figure 5.12: Antineutrino spectrum b2b uncertainty
from different models, rescaled for a bin width of
10 keV, according to Eq. (5.20): the satellite detector
TAO-based estimation is taken from [31], while the
Daya Bay (DYB) is based on [88].

• Daya Bay based flux model: The
Daya Bay measurement [88] can be used
as a reference spectrum. The uncertainty
of the Daya Bay antineutrino energy spec-
trum accounts for both statistical and sys-
tematical contributions and is given for a
bin width of 250 keV.

• TAO based flux model: The primary
objective of the Taishan Antineutrino Ob-
servatory (TAO) satellite experiment is to
establish a model-independent and highly
accurate reference antineutrino spectrum
for JUNO. TAO spectrum uncertainties
are calculated based on a thorough de-
tector simulation described in [31]. By
integrating various sources of uncertain-
ties, an energy-dependent uncertainty is
derived, which is reported in Figure 5.12.

The systematic variance induced by the reactor spectrum b2b uncertainty for the i-th energy bin is
embedded in the chi-square via a covariance matrix, namely

V b2b,rea
ij = kikj · δ2b2b,rea · sisj · δij (5.25)
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5.4.2 Observed spectrum and detector response uncertainties

Detector efficiency uncertainty. An overall rate uncertainty of δD = 1% is assigned to the
detection efficiency E . This uncertainty accounts for all effects that impact the νe interaction
probability, including the number of target protons and the H/C ratio (as shown in Eq. (3.15)) and
the selection efficiency. The normalization factor associated with this uncertainty is applied to all
spectral components with PDFs expressed in terms of antineutrino energy, such as geo-neutrinos
and reactor antineutrinos. This effect is assigned with a pull term:

χ2
D(E) =

(E − Ê)2
σ2
D

. (5.26)

Energy resolution. The parameters a, b and c in Eq. (3.13) are pulled considering Gaussian
functions of width described by the corresponding uncertainties, resulting in the following nuisance
term

χ2
res(a, b, c) =

∑
η=a,b,c

(η − η̂)2

σ2
η

, (5.27)

where the relative uncertainties are δa = 0.19%, δb = 0.47% and δc = 0.89% [72].

Non-linearity. The relative energy scale distortion due to LSNL is parameterized as:

Evis

Edep
=

(
fnom (Edep) +

∑
l

αl (fl (Edep)− fnom (Edep))

)
· fSNiPER

nom (Edep)

fDaya Bay
nom (Edep)

. (5.28)

fnom is the nominal LSNL curve from Daya Bay [71] and fl with l = 0, ..., 3 are four pull curves to
capture the corresponding uncertainty, all shown in Figure 5.13a. The variation of the pull curves
with respect to the nominal value is expressed in Figure 5.13b. Moreover, the Daya Bay LSNL curve
is corrected so that the LSNL with nominal parameters curve matches the LSNL curve from the
SNiPER simulation fSNiPER

nom , grasping the most recent knowledge of the JUNO detector [74]. αl are
the nuisance parameters associated with each pull curve, assumed to follow a Gaussian distribution
centered in zero and with a standard deviation of 1; consequently, a 100% relative uncertainty is
assumed for each of the four non-linearity nuisance parameters.

χ2
LSNL(α) =

3∑
l=0

(αl − α̂l)
2

σ2
l

, (5.29)

Backgrounds uncertainties. Both rate and b2b uncertainties related to the main backgrounds
(here indexed with B) are summarized in Table 5.2. The rate uncertainty is added as a regular pull
term, hence

χ2
bkg(NB) =

bkgs∑
B

(NB − N̂B)
2

σ2
B

. (5.30)

The systematic variance induced by the backgrounds b2b uncertainty for the i-th energy bin is
embedded in the chi-square via a covariance matrix, namely
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Figure 5.13: (a) Nominal pull curves for liquid scintillator non-linearity (LSNL). (b) Ratio of the LSNL
curves to the nominal LSNL curve, as a function of deposited energy.

V b2b,bkg
ij = kikj ·

bkgs∑
B

δ2b2b,B · bibjδij . (5.31)

Matter density uncertainty. Oscillation probabilities are calculated with an average matter
density ρ = (2.45± 0.15) g/cm3, hence assuming a 6% relative uncertainty [55, 59]. The pull term
is defined as follows:

χ2
ρ(ρ) =

(ρ− ρ̂)2

σ2
ρ

. (5.32)

Systematic effect Relative uncertainty [%] Bin-to-bin correlation

Reactors
Core to core uncorrelated 0.8 Fully correlated
Core to core correlated 2 Fully correlated
Reference spectrum Daya Bay or TAO based Uncorrelated
Spent Nuclear Fuel rate 30 Fully correlated
Non-equilibrium rate 30 Fully correlated

Detector
Normalization/efficiency 1 Fully correlated
Energy resolution 0.19, 0.47, 0.83 Correlated
LSNL (pull terms) 100 Correlated
Backgrounds rate see Table 4.2 Fully correlated
Backgrounds b2b see Table 4.2 Uncorrelated

Matter density 6 Correlated

Table 5.2: Summary of systematic uncertainties which impact the JUNO detector and their bin-to-bin
correlation considered in this analysis.
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5.5 Sensitivity determination

The sensitivity to oscillation parameters is determined by χ2 minimization, which is performed
using the Minuit2 [86] library via the Python interface iminuit [87].
The measured spectrum is calculated with the nominal setup (Normal Ordering), as an Asimov
data sample. Then the data is fitted by minimizing the combined chi-square in Eq. (5.21). The 1σ
uncertainty for ∆m2

21, ∆m2
31, sin

2 θ12, and sin2 θ13 is calculated with all rate and b2b systematic
uncertainties in four different regimes of data-taking time: 100 days (statistics-dominated regime),
1 year, 6 years (nominal), and 20 years (systematics-dominated regime).

In order to estimate the uncertainties we employ the MINOS method provided by Minuit [86], which
is based on the likelihood profile scan, and estimates the 1σ interval for each parameter, according
to the condition:

lnλ(θ) =
L(θ, ˆ̂η)
L(θ̂, η̂)

!
= −1

2
. (5.33)

Generally speaking, the obtained 1σ interval can be asymmetric. However, in the gaussian regime
−2 lnλ(θ) has a parabolic shape and the uncertainty of the parameter is sufficiently symmetric.
The parabolic approximation given by HESSE [86, 87] was verified to yield the same results20. Since
this assumption is valid in most cases, Eq. (5.33) can be related to the expression in terms of ∆χ2,
namely the Nσ interval is given by

Nσ =
√
∆χ2(θ) = −2 lnλ(θ). (5.34)

Therefore, the Nσ interval provides a measure of the deviation from the expected value in terms of
the number of standard deviations, based on the change in the chi-square statistic or the likelihood
ratio.
To evaluate the impact of statistical contributions, we consider only the statistical covariance matrix
Vstat in Eq. (5.21). In particular, the cost function has the following expression:

χ2
stat = (M− µ(θ, η̂))T ·

(
V stat
CNP

)−1 · (M− µ(θ, η̂)) (5.35)

In this assessment, all nuisance parameters are fixed at their nominal values η̂, while the oscillation
parameters are left free to vary. This allows us to isolate and quantify the effect of statistical
uncertainties, thus driven by the Poisson statistics of the number of events, without the influence of
systematic effects. Then, we consider only one systematic effect at a time: this is done by enabling
the corresponding pull term or additional covariance matrix in the expression Vb2b of Eq. (5.21).
The list of these considered effects, along with the explicit distinction between bin-to-bin correlated
and uncorrelated contributions, is provided in Table 5.2.
The breakdown of statistical and systematic uncertainties on each parameter is shown in Figure 5.14
for a nominal exposure of 6 years and 11/12 duty cycle, corresponding to approximately 2010 days
of data taking with full reactor power. Additional tables for 100 days, 1 year, and 20 years exposure
are reported in Appendix E. The impact of each source of systematic error is assessed by enabling
the corresponding effect together with the statistical uncertainty and removing the latter, namely:

σsyst,i =
√

σ2
tot,i − σ2

stat, (5.36)

20Minor deviations from symmetric uncertainties may be observed for certain parameters when dealing with low
statistics, such as an exposure of less than one year. Nevertheless, they are generally found to be fairly negligible.



70 Chapter 5. JUNO’s sensitivity to oscillation parameters
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Figure 5.14: Relative impact of individual sources of uncertainty on the total precision of ∆m2
21 (a), ∆m2

31

(b), sin2 θ12 (c), and sin2 θ13 (d). The empty boxes represent the statistical uncertainty. The impact of
each source of systematic error, represented by the filled boxes, is assessed by enabling the corresponding
uncertainty together with the statistical uncertainty, and removing the latter. The last row of each table,
displayed in a lighter color, represents the total uncertainty obtained by simultaneously considering all
sources of statistical and systematic error. The presented uncertainties correspond to six years of JUNO
data with 11/12 duty cycle.

where σ2
tot,i indicates the total uncertainty obtained by enabling the i-th systematic contribution.

The removal is done by assuming that the statistical and systematic uncertainties add in quadrature,
which allows to isolate the systematic components and identify the most significant ones21.
The "Reactor uncorrelated" entry refers to the bin-to-bin uncorrelated uncertainty arising from the
reference spectrum. Since TAO might not be ready to provide JUNO with a reference spectrum
in the first months of data-taking, the nominal results in Figure 5.14 are obtained using the Daya
Bay data [88]. The entry labeled "All systematics" is obtained using the same methodology but
by simultaneously considering all sources of systematic uncertainty rather than individually. The
statistics-only sensitivity is also provided in the empty boxes in the first row of the tables in Fig-
ure 5.14. Finally, the last row displayed in a lighter color, represents the total uncertainty.

21The quadratic combination of statistical and systematic uncertainty assumed in Eq. (5.36) can be used to
estimate the impact of single systematics, since the two terms are uncorrelated. Nevertheless, multiple systematic
uncertainties cannot be combined with a simple quadratic sum, because of their non-zero correlation.
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By examining Figure 5.14c and Figure 5.14d, we can deduce that the precision of the two mixing
angles, sin2 θ12 and sin2 θ13, is predominantly influenced by rate systematic uncertainties. These
uncertainties primarily arise from two sources: the reactor flux normalization (referred to as "Re-
actor correlated" in the tables) and the detector efficiency, both impacting the expected spectrum
in a similar way. Furthermore, despite the reactor correlated uncertainty being twice as large as
the efficiency contribution (2% and 1% according to Table 5.2), the relative difference between the
effects is only roughly 15%. This observation suggests that the impact on the precision of the
oscillation parameters does not scale linearly with these systematic uncertainties. Even with a sub-
stantial increase in them, the resulting changes in the precision are not significant. Furthermore,
the backgrounds related uncertainties have a non-negligible effect on the estimation of sin2 θ12 and
sin2 θ13.
On the other hand, when considering the two mass splittings, reported in Figure 5.14a and Fig-
ure 5.14b, the systematic uncertainties that have the greatest impact are those that influence the
spectral shape. Specifically, these uncertainties are associated with the reference reactor antineu-
trino spectrum and detector non-linearity. The former uncertainties can be efficiently mitigated
by comparing near (unoscillated) and far (oscillated) event spectra [68], and this aspect will be
investigated in Section 5.5.1. Moreover, a comprehensive understanding of the detector response is
essential. Calibration campaigns [42] are envisaged to characterize the non-linearity features of the
detector, aiming to minimize biases in the estimation of ∆m2

31 and other oscillation parameters.
The spent nuclear fuel, non-equilibrium, and background systematic effects also distort the spectral
shape, particularly in the low energy region, impacting the precision of ∆m2

21.
Figure 5.15 shows the time evolution of JUNO precision sensitivity for all four oscillation parameters,
with the dotted and solid lines representing the statistical only and total uncertainties, respectively.
The precision of the atmospheric parameters remains statistics-dominated even after 20 years of
data-taking, as indicated by the relatively small contribution of the systematic uncertainties. In
contrast, the precision of the solar parameters is notably influenced by systematic effects.
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Figure 5.15: Relative precision of the oscillation parameters as a function of JUNO exposure. The dotted
and solid lines represent the statistical and total uncertainties, respectively.



72 Chapter 5. JUNO’s sensitivity to oscillation parameters

The obtained relative precision on the oscillation parameters is reported in Table 5.3, and compared
with state-of-the-art knowledge, namely the NuFIT 5.2 2022 analysis [27]. Since the uncertainties on
the NuFIT results (in Table 1.2) are asymmetric, the precision in Table 5.3 is calculated considering
the higher absolute value and compared with JUNO predictions for different exposures. Consistently
with previous studies [55], JUNO is projected to surpass global precision on three parameters within
the initial 100 days of data acquisition. Moreover, Figure 5.16 reports the ∆χ2 profiles of JUNO (at
100 days and 6 years exposure), compared to combined results from state-of-the-art measurements.
JUNO is expected to improve the current precision of almost one order of magnitude in 6 years for
∆m2

21, ∆m2
31, and sin2 θ12, while it has a very limited ability to determine sin2 θ13 beyond today’s

global precision.
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Figure 5.16: Comparison of ∆χ2 profiles of oscillation parameters: the dashed curve indicates the current
results provided by NuFIT 2022 [27], while the solid ones represent JUNO projection with 100 days (in blue)
and 6 years (in orange) of data-taking.

Central value NuFIT 5.2 [27] 100 days 1 year 6 years 20 years

∆m2
21 [eV2] 7.410× 10−5 2.7% 1.0% 0.6% 0.3% 0.2%

∆m2
31 [eV2] 2.511× 10−3 1.2% 0.8% 0.4% 0.2% 0.1%

sin2 θ12 0.303 4.0% 2.0% 1.2% 0.6% 0.4%
sin2 θ13 0.02203 2.7% 48.6% 26.2% 11.5% 6.9%

Table 5.3: Current relative precision on oscillation parameters from global analysis (NuFIT 5.2) [27], and
JUNO (different exposures) in this analysis, assuming NO.

Finally, Figure 5.17, depicts the bi-dimensional 1σ, 2σ, and 3σ confidence level (C.L.) regions for all
oscillation parameters and 6 years exposure. It shows how these parameters are nearly uncorrelated,
highlighting the abundant information available in JUNO’s high-resolution measurement of the
reactor antineutrino spectrum. Correlations are indeed mitigated by JUNO’s rich spectral shape
information, since each parameter has a specific effect on the spectral shape, acting with minimal
interference with the others.

5.5.1 Impact of the reference spectrum on ∆m2
31

The reference spectrum uncertainty is of particular importance as it introduces a distortion in the
spectral shape and significantly impacts the precision of the measurement, especially for ∆m2

31.
Current reactor flux models (e.g., based on conversion and summation methods [89]) exhibit dis-
crepancies when compared to experimental data from the Daya Bay experiment [60], making them
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Figure 5.17: Bi-dimensional 68.27%, 95.45%, and 99.73% confidence level (C.L.) contours for all oscillation
parameters, corresponding to 1σ, 2σ, and 3σ C.L. regions, for 6 years exposure. The black star and the
dotted lines represent the best-fit values as well as the input values of the oscillation parameters. The
correlation coefficient ρ between pair of parameters is also indicated.

unreliable as a reference spectrum for JUNO. To address this issue, the Taishan Antineutrino Ob-
servatory (TAO) [21, 31], a satellite experiment, is expected to monitor the unoscillated spectrum
with a sub-percent energy resolution and a 30× gain in event statistics with respect to JUNO oscil-
lated flux [21, 31]. It will play a crucial role in providing JUNO with a model-independent reference
spectrum for reactor antineutrinos; this will be possible by unfolding the isotopic spectra, i.e., the
extracted prompt energy spectra for specific fission isotopes, of 235U and 239Pu, as done in the
Daya Bay experiment [88, 89]. Figure 5.18 illustrates the systematic contribution to the precision
of the atmospheric mass splitting, comparing the bin-to-bin uncorrelated uncertainties based on
both the Daya Bay and TAO models. The results are shown for 100 days and 20 years exposures:
it is evident that in the statistics-dominated regime, the spectrum shape uncertainty has a minor
impact on the precision, suggesting that there is no substantial difference between the two models.
However, as the exposure increases, the discrepancy becomes progressively more significant, thereby
emphasizing the critical role of the future constraint provided by TAO measurements.

5.5.2 Neutrino mass ordering hypothesis impact

The results presented in the previous section were obtained by fitting the Asimov data under the
assumption of the correct MO hypothesis. To explore the impact of this choice, we compare four
different configurations: fitting NO (Normal Ordering) and IO (Inverted Ordering) data with the
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Figure 5.18: Relative precision on ∆m2
31, for 100 days (a) and 20 years (b) exposures, with 11/12 duty

cycle. The bars with different colors correspond to two reference antineutrino spectrum models, Daya Bay
(gray) and TAO (black), and corresponding bin-to-bin (b2b) uncertainties.

"right" hypothesis (NO for NO data and IO for IO data), as well as fitting NO and IO data with
the "wrong" hypothesis (IO for NO data and NO for IO data).
The corresponding relative uncertainties and best-fit values are provided in Table 5.4. Interestingly,
we find that the precision of the solar parameters remains largely unaffected by the mass ordering
hypothesis, suggesting its independence from this choice. On the other hand, the atmospheric
parameters show a minor dependence on the mass ordering hypothesis. Nevertheless, it is worth
noting that the different configurations yield comparable sensitivity.

Data: NO Data: IO

Relative precision [%] Fit: NO Fit: IO Fit: NO Fit: IO
∆m2

21 0.347 0.345 0.347 0.345
∆m2

31 0.185 0.198 0.193 0.179
sin2 θ12 0.607 0.607 0.613 0.608
sin2 θ13 12.340 12.799 12.290 11.520

Best fit value Fit: NO Fit: IO Fit: NO Fit: IO
∆m2

21 [eV2] 7.410× 10−5 7.409× 10−5 7.411× 10−5 7.410× 10−5

∆m2
31 [eV2] 2.511× 10−3 −2.486× 10−3 2.449× 10−3 −2.424× 10−3

sin2 θ12 0.303 0.303 0.303 0.303
sin2 θ13 0.02203 0.02053 0.02140 0.02219

Table 5.4: Relative uncertainty and best fit values of the four oscillation parameters after 6 years of data
taking at 11/12 duty cycle, for different mass ordering hypotheses. The best fit values for the right mass
ordering are given by the input parameters in Table 1.2.
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Chapter 6

Conclusions

This thesis work provides a thorough investigation of multiple aspects pertaining to reactor an-
tineutrino oscillations. Specifically, I conducted a detailed analysis of their production, interaction,
and detection within the JUNO experiment. Furthermore, I examined the event selection process
and assessed JUNO’s capability to probe oscillation parameters, thereby evaluating its sensitivity
in this context. This thesis has provided me with expertise in the entire analysis chain of a neutrino
experiment, from handling raw data to deriving physics results, laying a solid foundation for future
real-data analysis. Specifically, the starting point was the (simulated) data, with the subsequent
event selection process. By combining Monte Carlo simulations and data analysis techniques, I was
able to obtain the final outcome, namely the sensitivity to oscillation parameters.
JUNO’s outstanding capability to measure the oscillated reactor antineutrino spectrum allows the
independent determination of four oscillation parameters: ∆m2

31, ∆m2
21, sin

2 θ12, and sin2 θ13. Par-
ticular attention was given to ∆m2

31, since JUNO measurement is expected to already exceed the
current state-of-the-art precision on this parameter in less than 100 days of data-taking. As it was
shown in the last section, the sensitivity to ∆m2

31 relies on complex experimental challenges based
on the accurate control of the spectral shape-related systematics arising from energy resolution,
energy scale control, and the reactor reference spectrum, to be eventually provided by the TAO
experiment. The obtained results are consistently aligned with previous studies [55], demonstrating
that the experiment is expected to attain a level of precision surpassing 1% for the determination
of the first three parameters. This breakthrough opens up a new era of precise neutrino physics,
marking a significant milestone in the field.
In the current landscape of neutrino experiments, a remarkable synergy exists between reactor and
accelerator long baseline (LBL) experiments. Thanks to their complementarity in the determina-
tion of the MO [20, 90] and their sensitivity to different detection channels (and thus different
parameters), we can expect a bright future of cooperation and interoperability for neutrino physics
in the next decade. To date, JUNO stands out as the only experiment sensitive to MO through
vacuum-dominated oscillations. Several studies have already explored and demonstrated the syn-
ergy between JUNO and LBL and atmospheric experiments, sensitive to MO via matter-dominated
effects. Notable examples include the investigation of combined MO sensitivity between JUNO,
NOνA, and T2K [20], as well as the study on combined MO sensitivity between JUNO and IceCube-
Upgrade/PINGU [24].
The variations observed in the estimation of ∆m2

31 by different experiments could hint at a favored
MO already in the first phase of JUNO data-taking. While JUNO is expected to determine the MO
in 6 years, its sub-percent determination of ∆m2

31 will greatly reduce the allowed parameter space
for this parameter, providing a strong handle to test the MO in combined fits [20]. An example of
this study is illustrated in Figure 6.1, and details can be found in Appendix F.
In conclusion, the exceptional precision achieved for ∆m2

31 enables a substantial enhancement in MO
sensitivity through combined analyses involving JUNO and LBL experiments [20]. This highlights
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Figure 6.1: 1-dimensional ∆χ2 profiles for ∆m2
31: (a) for JUNO (60 days) with NO Asimov data fitted

with the correct MO hypothesis (NO), LBL with NO hypothesis, and combining the two. (b) for JUNO
(60 days) with NO Asimov data fitted with the wrong MO hypothesis (IO), LBL with IO hypothesis, and
combining the two. Details on the procedure employed to include the LBL external information on ∆m2

3ℓ

(with ℓ = 1 for NO and ℓ = 2 for IO hypotheses) in JUNO’s analysis is provided in Appendix F.

the pivotal role of JUNO in the MO quest, not only in its unparalleled standalone sensitivity, but
also in potential joint investigations.
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Appendix A

Electron antineutrino survival
probability in matter

The explicit expression of the effective matter-induced mixing angles θ̃ij , (i, j = 1, 2, 3, , i < j), and
mass squared differences ∆m̃2

ij , (i, j = 1, 2, 3, , i > j), used in the survival probability in Eq. (2.4)
are taken from Ref. [26]. Firstly, we recall the A parameter in Eq. (2.3),i.e.,

A = ± 2
√
2GFNeE ≃ ± 1.52× 10−4eV2 · Ye ·

ρ

g/cm3
· E

GeV
, (A.1)

where the +(−) sign refers to the neutrino (antineutrino) channel. We then introduce an effective
mass difference:

∆m2
ee ≡ cos2 θ12∆m2

31 + sin2 θ12∆m2
32 (A.2)

= cos2 θ12∆m2
31 + sin2 θ12(∆m2

31 −∆m2
21)

= ∆m2
31 − sin2 θ12∆m2

21

From the approximate parameterization derived by Denton, Minakata and Parke in [91], θ̃13 has
the following expression:

cos 2θ̃13 ≃
∆m2

ee cos 2θ13 −A

∆m̃2
ee

, (A.3)

where

∆m̃2
ee ≡ ∆m2

ee

√(
cos 2θ13 −

A

∆m2
ee

)2

+ sin2 2θ13. (A.4)

Then θ̃12 is such that

cos 2θ̃12 ≃
∆m2

21 cos 2θ12 −A′

∆m̃2
21

, (A.5)

where

∆m̃2
21 ≃ ∆m2

21 ·
√(

cos 2θ12 −
A′

∆m2
21

)2

+ cos2
(
θ̃13 − θ13

)
sin2 2θ12. (A.6)

An effective matter potential for solar (1-2) sector, dubbed A′, can be defined as:

A′ ≡ A+∆m2
ee −∆m̃2

ee

2
, (A.7)

as well as

cos2
(
θ̃13 − θ13

)
=

∆m̃2
ee +∆m2

ee −A cos 2θ13
2∆m̃2

ee

(A.8)
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and finally ∆m̃2
31 and ∆m̃2

32;
∆m̃2

31 = ∆m̃2
ee + sin2 θ̃12∆m̃2

21, (A.9)

∆m̃2
32 = ∆m̃2

31 −∆m̃2
21. (A.10)

In [26], they performed a Taylor series expansion in the parameters A/∆m2
ee and A/∆m2

21 on
equations (A.3)–(A.6), (A.9) and (A.10) to calculate all the oscillation parameters up to the required
accuracy level for JUNO. The following expression are obtained and used in the calculation of the
νe survival probability in Eq. (2.4):

sin2 θ̃12 ≃ s212 ·
[
1 + 2c212

(
c213A

∆m2
21

)
+ 3c212 cos 2θ12

(
c213A

∆m2
21

)2
]
, (A.11)

∆m̃2
21 ≃ ∆m2

21 ·
[
1− cos 2θ12

(
c213A

∆m2
21

)
+ 2s212c

2
12

(
c213A

∆m2
21

)2
]
, (A.12)

sin2 θ̃13 ≃ s213 ·
[
1 + 2c213

(
A

∆m2
ee

)]
, (A.13)

∆m̃2
31 ≃ ∆m2

31 ·
[
1−

(
A

∆m2
31

)((
c212c

2
13 − s213

)
− s212c

2
12c

2
13

(
c213A

∆m2
21

))]
, (A.14)

∆m̃2
32 ≃ ∆m2

32 ·
[
1−

(
A

∆m2
32

)((
s212c

2
13 − s213

)
+ s212c

2
12c

2
13

(
c213A

∆m2
21

))]
, (A.15)

∆m̃2
ee ≃ ∆m2

ee ·
[
1− cos 2θ13

(
A

∆m2
ee

)]
. (A.16)

In [26] it is shown using this approximate matter oscillation probability has a fractional precision
better than 10−6 for antineutrino energies below 10MeV.
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Detailed IBD kinematics

The IBD reaction has a threshold depending on the nucleus the target proton is bound to. The
lighter the target nucleus is, the lower the IBD threshold is. Considering an IBD reaction of a νe,
whose mass can be neglected, on a hydrogen nucleus (i.e., a free proton ) in the center of momentum
frame, the threshold is defined by the positron and neutron being produced at rest [65]

Ethr,CM
ν =

(mn +me)
2 −m2

p

2 (mn +me)
= 1.803MeV (B.1)

with mp, mn and me respectively the proton, neutron and electron masses. In the laboratory frame,
where the proton is at rest

Ethr,lab
ν =

(mn +me)
2 −m2

p

2mp
= 1.806MeV (B.2)

Above this threshold, the relation between the neutrino and positron energies at zeroth order is
given by [58]:

E
(0)
e+

= Eν̄e −∆np, (B.3)

with ∆np = mp−mn. However, this rough approximation leads to a non-negligible bias in the cross
section estimation, especially at energies above 10MeV.
The recoil of the neutron induces an angle-dependent deficit in the positron energy Ee+ , which falls
inside a kinematical range, namely

Ee+ ∈ [E1, E2]. (B.4)

Labeling the 4-momenta as
νe(pν) + p(pp) → e+(pe) + n(pn),

we can define the Mandelstam variables in the proton rest frame:

s = (pν + pp)
2 = m2

p + 2mpEν

t = (pν − pe)
2 = m2

n −m2
p − 2mp (Eν − Ee)

u = (pν − pn)
2 = m2

p +m2
e − 2mpEe,

(B.5)

The allowed values of Ee+ in Eq. (B.4), correspond to the possible scattering angles θCM in the
center of mass (CM) frame [67]:

E1,2 = Eν − δ − 1

mp
ECM

ν

(
ECM

e ± pCM
e

)
, with δ ≡

m2
n −m2

p −m2
e

2mp
(B.6)
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where the energy and momenta in the CM have the following expressions:

ECM
ν =

s−m2
p

2
√
s

, ECM
e =

s−m2
n +m2

e

2
√
s

, pCM
e =

√[
s− (mn −me)

2
] [

s− (mn +me)
2
]

2
√
s

(B.7)

As mentioned in Section 3.2, in the "mid-recoil" approximation, the average positron energy is given
by:

⟨Ee⟩ ≡ Emid
e+ =

E1 + E2

2
= Eν − δ − ECM

ν ECM
e

mp
. (B.8)

This yields a much better approximation than Eq. (B.3), incorporating a large part of the effect
due to the recoil of the nucleon.

B.1 Cross section

The differential cross section at tree level in the weak interactions, averaged (summed) over initial
(final) polarizations is given by [67]:

dσ

dt
=

G2
F cos2 θC

2π
(
s−m2

p

)2 |M|2, (B.9)

where GF is the Fermi constant, cos θC is the Cabbibo angle, M is the invariant amplitude for the
IBD reaction. The complete expression of |M|2 can be found in Ref. [67].
The differential cross section in Eq. (B.9), can be expressed as a function of the neutrino and
positron energies:

dσ

dEe
(Eν , Ee) = 2mp

dσ

dt
. (B.10)

The total cross section, shown in Figure 3.3a, can be expressed including the following one-loop
radiative corrections [67]:

dσ (Eν , Ee) → dσ (Eν , Ee)

[
1 +

α

π

(
6 +

3

2
log

mp

2Ee
+ 1.2

(
me

Ee

)1.5
)]

, (B.11)

where α is the fine-structure constant. This correction is valid at Eν ≪ mp. The total cross section
is still given by Eq. (B.11), if all final state leptons are detected.
Moreover, the authors of Ref. [67] computed an approximation of the total cross section, given by:

σ (ν̄e, p) ≃ 10−43peEeE
−0.07056+0.02018 lnEν−0.001953 ln3 Eν
ν cm2, (B.12)

which is proven to be valid for positron energies given by Eq. (B.3), and is in agreement within a
few per-mille for Eν ≤ 300 MeV with the complete expression.
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Bayesian inference

The Bayes’ theorem is a fundamental principle in statistics that relates conditional probabilities.
It provides a framework for updating our beliefs about a set of parameters, denoted as θ, given
observed data and a selected model. The theorem can be stated as:

P (θ | data,model) =
P (data | θ,model) · P (θ | model)

P (data | model)
(C.1)

The probability distribution P (θ | data,model) is commonly referred to as the posterior, which
expresses the probability to obtain a particular set of parameters θ given the observed data and the
selected model. The distribution P (data | θ,model) is known as the likelihood, which quantifies the
degree of agreement between the model and the observed data. The prior, denoted as P (θ | model),
encapsulates any external constraints, prior knowledge, or limitations imposed on the fitting of the
data. Finally, the evidence distribution, denoted as P (data | model), serves as a normalizing factor
and captures the overall probability of observing the data under the chosen model.
The probability P (data | θ) can be interpreted as a probability density function (PDF) when viewed
as a function of data with fixed θ. On the other hand, when viewed as a function of θ with fixed
data, it becomes a likelihood function. To simplify our calculations, we will work with a fixed model
and drop the model dependence. Additionally, we will refer to the observed number of events in
each bin as data, denoted by M as in Eq. (5.1).
Bayesian parameter estimation involves using Bayes’ theorem to update our knowledge of the model
parameters θ given the observed data M. The posterior distribution P (θ | M) is proportional to
the product of the likelihood function L(θ | M) and the prior distribution P (θ):

P (θ | M) ∝ L(θ | M)P(θ). (C.2)

Here, the likelihood function L(θ|M) is the probability of observing the data M given the model
parameters θ, and the prior distribution P (θ) expresses our knowledge or beliefs about the model
parameters before observing the data. The mode of the posterior distribution corresponds to the
maximum a posteriori (MAP) estimate of the parameters, which can be obtained by maximizing
the logarithm of the posterior distribution, i.e., finding the values of θ that maximize

lnP (θ | M) = lnL(θ | M) + lnP(θ) + const. (C.3)

If we assume a flat prior distribution (i.e., P (θ) is constant), then the mode of the posterior dis-
tribution coincides with the ML estimate. This means that maximizing the likelihood function is
equivalent to finding the mode of the posterior distribution under a flat prior.
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Appendix D

Likelihood profile scans results

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in 

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in a

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in b

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in c

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in p0

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in p1

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in p2

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in p3

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in 

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in m2
21

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in sin2 12

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in sin2 13

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in Nrea

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in NU

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in NTh

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in Nacc

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in Nfn

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in NLi/He

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in N

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in Nglob

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in Natm

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in NSNF

0.00252 0.00254
m2

31 [eV2]
0

5

10

15

20

25

2

Bias in Nnoneq Bias -50%
Bias -40%
Bias -30%
Bias -20%
Bias -10%
Bias 0%
Bias 10%
Bias 20%
Bias 30%
Bias 40%
Bias 50%

Figure D.1: Conditional likelihood scans for θ = ∆m2
31 and all nuisance parameters. The

profiles are obtained using Eq. (5.14).
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Figure D.2: Conditional likelihood scans for θ = ∆m2
31 and all nuisance parameters. The

profiles are obtained using Eq. (5.15).
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Sensitivity results
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Figure E.1: Relative impact of individual sources of uncertainty on the total precision of ∆m2
21 (a), ∆m2

31

(b), sin2 θ12 (c), and sin2 θ13 (d). All uncertainties correspond to 100 days of JUNO data with 11/12 duty
cycle.
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Figure E.2: Relative impact of individual sources of uncertainty on the total precision of ∆m2
21 (a), ∆m2

31

(b), sin2 θ12 (c), and sin2 θ13 (d). All uncertainties correspond to 1 year of JUNO data with 11/12 duty
cycle.
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Figure E.3: Relative impact of individual sources of uncertainty on the total precision of ∆m2
21 (a), ∆m2

31

(b), sin2 θ12 (c), and sin2 θ13 (d). All uncertainties correspond to 20 years of JUNO data with 11/12 duty
cycle.
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Appendix F

Neutrino MO synergy between JUNO
and LBL experiments

The synergy for MO determination sensitivity, achieved by combining JUNO and LBL experiments,
arises from the observed differences in the fitted values of ∆m2

3ℓ corresponding to incorrect MO so-
lutions [20]. Indeed, differences in the estimation of ∆m2

3ℓ obtained by various experiments could
potentially indicate a favored MO even during the initial phase of JUNO’s data taking. While JUNO
is anticipated to determine the MO within six years, its highly precise determination of ∆m2

31 at
a sub-percent level will significantly narrow down the parameter space, offering a robust means to
test the MO through combined analyses [20].

Following the procedure presented in [20, 92], we can include in JUNO’s analysis the external
information on ∆m2

3ℓ, provided by the combined fit of LBL experiments (NuFIT 5.2 [27]), with an
additional pull term in the chi-square:

χ2
comb = χ2

JUNO +

(
∆m2

3ℓ −∆m2
3ℓ,LBL

σ(∆m2
3ℓ,LBL)

)2

, (F.1)

where χ2
JUNO is the final objective function in Eq. (5.21), ∆m2

3ℓ,LBL is the measurement obtained
by LBL experiments (with ℓ = 1 for NO and ℓ = 2 for IO hypotheses), and σ(∆m2

3ℓ,LBL) is the
corresponding uncertainty. The results of this procedure are reported in Figure 6.1, where an
exposure of 60 days is considered (such that the precision on ∆m2

3ℓ is of the order of 1%). Under
the assumption of true NO data, the discriminator of the neutrino MO can be defined as

∆χ2
MO = |χ2

min(NO)− χ2
min(IO)|. (F.2)

Note that in our this approach based on Asimov datasets, by construction, χ2
min(NO) = 0 for NO

data. Figure 6.1b shows the 1-dimensional ∆χ2 profiles for ∆m2
31 for the global LBL results (assum-

ing IO hypothesis) and fitting JUNO Asimov NO data with the IO hypothesis, and the combined
profile obtained by introducing the external ∆m2

32 information in JUNO chi-square function. The
combination of JUNO with LBL experiments results in an enhanced intrinsic sensitivity for JUNO,
as illustrated in Figure 6.1b. This enhancement is evident from the increase in ∆χ2

MO, which rises
from approximately 0.2 to around 2.5.
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