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Abstract

[English] In this thesis, we are interested in finding equilibrium strategies for customers
arriving at overtaking free queueing networks, only knowing partial information about
the state of the system. The overtaking free condition does not allow customers to
be overtaken by those behind them. We suppose that customers arrive at the system
according to a Poisson process and that their service times at any queue are independent
and exponentially distributed. Upon her arrival, the tagged customer is informed
about the total number of customers in the system and chooses whether to join or
not. Assuming that all customers follow the same strategy, the aim of the thesis is to
find the equilibrium strategy that gives the maximum profit for any arriving customer.
We show that such a strategy exists and is a pure or mixed threshold strategy. After
analyzing the two-node tandem network and the multi-node tandem network, we focus
on queueing networks with a branching structure, the so called tree networks. The
work is extended with some numerical calculations, simulations and examples of non-
overtaking free networks.

[Italiano] In questa tesi, siamo interessati a trovare strategie di equilibrio per clienti che
arrivano a reti di code overtaking free, conoscendo solo informazioni parziali riguardanti
lo stato del sistema. La condizione di overtaking free non permette ai clienti di essere
superati da quelli dietro di loro. Supponiamo che i clienti arrivino al sistema secondo
un processo di Poisson e che i loro tempi di servizio ad ogni coda siano indipendenti
e distribuiti esponenzialmente. Al suo arrivo, il cliente in questione viene informato
del numero totale di clienti nel sistema e sceglie se unirsi o meno. Assumendo che
tutti i clienti seguano la stessa strategia, l’obiettivo della tesi è trovare la strategia di
equilibrio che dia il massimo profitto per ogni cliente in arrivo. Mostriamo che una tale
strategia esiste ed è una strategia di tipo soglia pura o mista. Dopo aver analizzato la
rete tandem a due nodi e la rete tandem a più nodi, ci concentriamo sulle reti di code
con una struttura ramificata, le cosiddette reti ad albero. Il lavoro viene ampliato con
alcuni calcoli numerici, simulazioni ed esempi di reti non overtaking free.
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Introduction

Queueing theory is a field of mathematics widely studied to understand how the flow of
people or objects occurs in a queueing network. In general we do not like to wait and,
before standing in line, each of us would like to know whether the time spent waiting
is worth the service we will receive. So, in this thesis, we are interested in finding
equilibrium strategies for customers arriving at overtaking free queueing networks and
receiving partial information. Such a strategy says whether it is convenient for a
customer to join or not the system based on her expected sojourn time at any queue.
The overtaking free condition does not allow customers to be overtaken by those behind
them, which means that the sojourn time of a customer is not affected by arrivals after
her.

Agner Krarup Erlang and Tore Olaus Engset are the real founders of the queueing
theory. In particular, in 1909, Erlang started to work on the waiting times in a tele-
phone exchange and he identified that the number of telephone conversations satisfied
a Poisson distribution as well as the telephone waiting time was exponential distributed
[8]. Indeed, we also assume that customers arrive at the system according to a Pois-
son process and that their service times are identically and exponentially distributed.
Within these assumptions, we study different overtaking free models in order to find
the optimal strategy to be adopted by arriving customers, who are informed only about
the total number of customers in the system.

Chapter 1 is a collection of preliminary results. It contains definitions, models and
examples, which will be useful throughout the thesis. We analyze the Jackson networks,
which are the general structures of a queueing system, and look at the stationary
distribution of customers. Some results about stochastic orders, Poisson processes and
equilibrium strategies are discussed. Then, we focus on the Naor’s model [15], which
consists of one single server queue, at which customers arrive, observe its length and
decide whether to join or not. We also describe the Little’s law, that relates the average
sojourn time and the average number of customers to the arrival rate at the system.
Finally, we recall some notions about graphs and trees.

Chapter 2 studies the two-node tandem network, which consists of two queues
in series [7]. It means that customers joins the system at the first queue and, after
completing the service, they enter the second queue. When a customer arrives, she is
informed about the total number of customers in the system and has to choose whether
to join or not. For this reason the aim of this chapter is to find the equilibrium strategy

ix



x CHAPTER 0. INTRODUCTION

to be adopted by all customers in order to maximize their profit function, which depends
on the sojourn time in each queue. Some numerical computations allow us to see how
the equilibrium strategy changes when some parameters vary. Finally, we simulate the
flow of customers in the two-node tandem network.

Chapter 3 is a generalization of the previous one. We consider a multi-node tandem
network, that is a system with M queues arranged in tandem [12]. We analyze the
expected sojourn time at each queue in order to find the equilibrium strategy that
says whether joining the system is convenient or not for an arriving customer. The
assumption is that all customers use the same strategy. In this way, following the
equilibrium strategy is the best choice for any customer arriving at the system. Then,
we compute the values of the equilibrium threshold as the service rates change.

Chapter 4 deals with tree networks. Tree networks are particular queueing systems
where customers, after receiving the service at a certain queue, can move on to different
queues, but at a certain queue customers arrive from only one queue. It means that
the queues are arranged as an out-tree. As in the previous chapters, in this one we
compute the equilibrium strategy that gives the better payoff for any arriving customer.
Then, we compare this model with a tandem network and analyze an example of tree
network.

Chapter 5 concerns the overtaking-free condition, which is satisfied by previously
mentioned models. First, we characterize the overtaking queueing networks with ex-
ponential service times, under a first-in-first-out discipline. Then we analyze a model
which is not overtaking free under the FIFO discipline, but it becomes so if the service
discipline is changed. However, we also study an example of non overtaking free net-
work. Finally, we change the distribution of the service times. We consider a model
with one only queue and Erlang service times, and look for an equilibrium strategy.



Chapter 1

Preliminaries

Abstract

In this chapter we give some preliminary results, that will be useful later, about: Jackson
networks [5], stochastic orderings [5], Poisson processes [3, 21, 14], equilibrium and threshold
strategies [9], the Naor’s model [9, 15], the Little’s law [18, 4, 13], and something about
graphs and trees [2, 6].

1.1 Jackson networks

In this section we give an overview of Jackson networks, which are very useful structures
to describe queueing networks. The main reference is [5].

A Jackson network consists of J nodes, each with one or several servers. The service
rate at each node i can be both node-dependent and state-dependent. Specifically,
whenever there are xi jobs at node i, the service rate is µi(xi), where µi(·) is a function
Z+ 7−→ R+ with µi(0) = 0 and µi(xi) > 0 ∀xi > 0. Jobs travel among the nodes
following a routing matrix P := (pij)

J
i,j=1, where pij is the probability that a job

leaving node i will go to node j. At each node all jobs are served on a first-in-first-out
basis, that is there is no priority in serving the jobs.

According to different specifications of the routing matrix, there are three different
variations: the open, closed and semiopen network.

Open network

In an open network jobs arrive from outside following a Poisson process with rate
λ > 0. Each arrival is independently routed to node j with probability p0j ≥ 0, with∑J

j=1 p0j = 1. It means that each node j has an independent external Poisson stream
of arrivals with rate λp0j. Upon service completion at node i, a job may go to another

node j with probability pij or leave the network with probability 1−
∑J

j=1 pij.

1



2 CHAPTER 1. PRELIMINARIES

Let λi be the overall arrival rate to node i, then we have the following traffic equation

λi = λp0i +
J∑

j=1

λjpji, i = 1, . . . , J, (1.1)

which can be written in matrix notation in the following way

a = b+ P Ta,

where a := (λi)
J
i=1, b := (λp0i)

J
i=1 and P := (pji)

J
i,j=1. So, assuming that I − P T is

invertible, we have that
a = (I − P T )−1b.

Let Qi(t) denote the number of jobs at node i at time t. Then {(Qi(t))
J
i=1, t ≥ 0}

is a continuous-time Markov chain. Set Q = (Qi)
J
i=1 and x = (xi)

J
i=1. The Markov

chain is governed by the following transition rates, denoted by q(·, ·): for x ∈ ZJ
+

q(x, x+ ei) = λp0i,

q(x, x− ei) = µi(xi)pi0,

q(x, x− ei + ej) = µi(xi)pij

−q(x, x) =
J∑

i=1

[λp0i + µi(xi)(1− pii)]

and 0 otherwise, where ei is the i-th J-dimensional unit vector.
Let π(x) denote the equilibrium (steady-state) distribution, that is

π(x) = P(Q = x). Then it satisfies the relation

πtA = 0, (1.2)

where A is the rate matrix, whose entries q(x, y) correspond to the transition rates
between each pair of states x and y specified above. Generally, relation (1.2) is known
as global balance equations, which equates the “probability flow” out of each state x
with the flow into the same state:

π(x)
∑
y ̸=x

q(x, y) =
∑
y ̸=x

π(y)q(y, x), ∀x ∈ ZJ
+.

In this case the relation to be satisfied is

π(x)
J∑

i=1

[λp0i + µi(xi)(1− pii)] =

=
J∑

i=1

[π(x− ei)λp0i + π(x+ ei)µi(xi + 1)pi0]+

+
J∑

i=1

∑
j ̸=i

π(x+ ei − ej)µi(xi + 1)pij, ∀x ∈ ZJ
+.

(1.3)
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The main result below, Theorem 1.1, relates the stationary distribution of Q to a
vector of independent random variables Y = (Y1, . . . , YJ), where each Yi has a proba-
bility mass function as follows:

P(Yi = n) = P(Yi = 0) · λn
i

µi(1) · · ·µi(n)
. (1.4)

We assume that
∞∑
n=1

λn
i

µi(1) · · ·µi(n)
< ∞, (1.5)

so that P(Yi = 0) is well-defined, namely,

P(Yi = 0) =

[
1 +

∞∑
n=1

λn
i

µi(1) · · ·µi(n)

]−1

.

The following theorem says how to compute the stationary distribution and it can
be proved substituting the expression of π(x) in the system of balance equations (1.3).
For the proof, see [5].

Theorem 1.1 (Stationary distribution for open networks). Provided that condition
(1.5) holds for all i = 1, . . . , J , the stationary distribution of the number of jobs in an
open Jackson network is

π(x) =
J∏

i=1

P(Yi = xi),

for x ∈ ZJ
+, where Yi follows the distribution in (1.4).

Closed network

In a closed network the total number of jobs in the network is maintained at a constant
level, say N . Once a job completes all of its processing requirements and leaves the
network, a new job is immediately released into the network. Conceptually, this type
of operation can also be viewed as having a fixed number of jobs circulating in the
network, with no job ever leaving the network and no external job entering the network,
and in this sense the network is “closed”. So, in a closed model, the routing matrix
P := (pij)

J
i,j=1 is stochastic, that is the row sums are all equal to one. In other words

pi0 = p0j = 0 ∀i, j = 1, . . . , J,

using the notation of the open model, because no job enters into the system and no
job leaves.

Let vi be the arrival rate to node i, i.e. the counter part of λi in the open model.
It follows that (vi)

J
i=1 is the solution to the following traffic equation

vi =
J∑

j=1

vjpji, i = 1, . . . , J.
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The solution of the above system is unique only up to a multiplier constant and we
need another equation, for example imposing

∑J
j=1 vj = 1 or vi = 1 for some node i.

The equilibrium balance equations are similar to those of the open network, except
that here λ = 0 and pi0 = p0i = 0 for all i = 1, . . . , J . Hence, we have

π(x)
J∑

i=1

µi(xi)(1− pii) =
J∑

i=1

∑
j ̸=i

π(x+ ei − ej)µi(xi + 1)pij,

for all x ∈ ZJ
+ such that |x| = N , where |x| = x1 + · · ·+ xJ .

The following theorem gives an expression to compute the stationary distribution.
For the proof, we refer to [5].

Theorem 1.2 (Stationary distribution for closed networks). The closed Jackson net-
work, with a total of N jobs, has the following stationary distribution

π(x) =
J∏

i=1

P(Yi = xi)

P(|Y | = N)
,

for x ∈ ZJ
+ such that |x| = N , where Yi follows the distribution in (1.4) with xi ≤ N

and λi replaced by vi.

Following the scheme of the open model, we don’t have to require the condition
(1.5) and the denominator in π(x) comes from the normalizing condition, since

P(|Y | = N) =
∑
|x|=N

J∏
i=1

P(Yi = xi),

while in the open network the normalizing condition is

∑
x∈ZJ

+

J∏
i=1

P(Yi = xi) = 1.

Semiopen network

A semiopen network follows the description of the open model with the exception that
the total number of jobs in the network is limited to a maximum of K jobs at any
time. When this limit is reached, external arrivals are blocked and lost. The arrival
process will be resumed when a job leaves the network, bringing the total number of
jobs in the network down to K − 1.

It turns out that the semiopen model can be reduced to a closed network with
a constant of K jobs and J + 1 nodes. The additional node, indexed as node 0,
again represents the external world, with routing from and to node 0 following the
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probabilities p0j and pi0, just as in the open network. Hence, in this case, the routing
matrix of this closed network with J +1 nodes is P := (pij)

J
i,j=0. In addition, node 0 is

given a service function, with “service” rate µ0(n) = λ for all n ≥ 1 and µ0(0) = 0. In
this way, node 0 effectively generates the arrival process of the original open network,
blocking the external arrivals when the network is full.

Let λi be the arrival rate to node i, then it satisfies the following traffic equation

λi = λp0i +
J∑

j=1

λjpij, i = 1, . . . , J,

and, dividing both sides by λ and letting v0 = 1, vi = λi/λ for i = 1, ..., J , we obtain
that (vi)

J
i=0 satisfies

vi =
J∑

j=0

vjpji, i = 0, 1, . . . , J,

which is the traffic equation of the closed model for a network with J + 1 nodes, with
the additional equation v0 = 1.

Using this observation, we can state the following theorem, that gives an expression
to compute the stationary distribution for a semiopen network [5].

Theorem 1.3 (Stationary distribution for semiopen networks). The semiopen Jackson
network, with an overall buffer capacity of K, has the following stationary distribution

π(x) =
J∏

i=1

P(Yi = xi)

P(|Y | ≤ K)
,

for x ∈ ZJ
+ such that |x| ≤ K, where Yi follows the distribution in (1.4) with xi ≤ K.

1.2 Stochastic orderings

In this section we give some definitions about stochastic orderings and their relation.

Definition 1.4 (Usual stochastic ordering). Let X and Y be two discrete random
variables with the same support set N . We say that X dominates Y in usual stochastic
ordering, denoted by X ≥st Y , if and only if

P(X ≥ n) ≥ P(Y ≥ n), ∀n ∈ N .

Remark 1.5 (Characterization of usual stochastic ordering). It can be verified that
X ≥st Y if and only if, for all non decreasing function h(·), E[h(X)] ≥ E[h(Y )].

Definition 1.6 (Likelihood ratio ordering). Let X and Y be two discrete random
variables with the same support set N . We say that X dominates Y in likelihood ratio
ordering, denoted by X ≥ℓr Y , if and only if

P(X = n)P(Y = n− 1) ≥ P(X = n− 1)P(Y = n), ∀n ∈ N .
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The following lemma says that the usual stochastic ordering is, actually, weaker
than the likelihood ratio ordering.

Lemma 1.7 (Usual and likelihood ratio orderings). Let X and Y be two discrete
random variables with the same support set N . Then

X ≥ℓr Y ⇒ X ≥st Y.

For the proof, see [5].

1.3 Poisson processes

An homogeneous Poisson process is a countable random set of points of the real line
with some properties. In many applications, a point of an homogeneous Poisson process
is the time of occurrence of some events, for example the arrival times of customers to
a queue. In the sequel, we simply use “Poisson process” to refer to an homogeneous
Poisson process. So, in these chapters, a Poisson process represents the customer arrival
process at a queueing system. The main reference of this section is [3].

Definition 1.8 (Random point process). A random point process is a sequence (τn)n≥0

of nonnegative random variables such that, almost surely, 0 = τ0 < τ1 < τ2 < . . . and
limn→∞ τn = +∞.

The sequence (δn)n≥1 defined by

δn = τn − τn−1, n ≥ 1,

is called the interarrival sequence and it represents the time that passes between the
arrival of a customer and another.

The family of random variables N = (N(t))t≥0, with

N(t) =
+∞∑
n=1

1{τn∈(0,t]}, t ≥ 0,

is call the counting process of the point process (τn)n≥0 and it counts the number of
customers arriving at a queueing system in the time interval (0, t]. Since the sequence
of arrival customers can be recovered from N , the latter is also called “point process”.

Definition 1.9 (Poisson process). A counting process N is called a Poisson process
with intensity λ > 0 if

(i) for all times 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, the random variables N(ti+1) − N(ti),
for i = 1, . . . , k − 1, are independent;

(ii) for any a < b, with a, b ∈ R+, N(b) − N(a) is a Poisson random variable with
mean λ(b− a).
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Since N(t) ∼ Poi(λt), then E[N(t)] = λt, that is λt is the average number of
customers arrived at a queueing system in a time period equal to t.

Theorem 1.10 (Interarrivals are i.i.d. and exponential). The interarrival sequence
(δn)n≥1 of a Poisson process with intensity λ > 0 is i.i.d. and exponentially distributed
with parameter λ.

So, δn ∼ Exp(λ) and E[δn] = λ−1, that is λ−1 is the average time that passes
between an arrival of a customer and another.

Sometimes customers arrive at a queueing system following different independent
Poisson processes. The following theorem explains what happens in this situation.

Theorem 1.11 (Sum of independent Poisson processes). Let {Ni}i≥1 be a family of in-
dependent Poisson processes with respective positive intensities {ξi}i≥1. Then, two dis-
tinct Poisson processes of this family have no points in common and, if
λ :=

∑+∞
i=1 ξi < +∞,

N(t) :=
+∞∑
i=1

Ni(t)

defines the point process of a Poisson process with intensity λ.

For the proofs of Theorem 1.10 and Theorem 1.11, see [3]. The following theorem
is concerned with the PASTA property, which stands for Poisson Arrivals See Time
Averages. The PASTA property refers to the expected state of a queueing system as
seen by an arrival from a Poisson process. A proof of a simplified version of Theorem
1.12 is in [14]. For more details, see [21].

Theorem 1.12 (PASTA property). An arrival from a Poisson process observes the
system as if it was arriving at a random moment in time.

Therefore, the expected value of any parameter of the queue at the instant of
a Poisson arrival is simply the long-run average value of that parameter, since the
average state of the system is the steady state.

Remark 1.13 (Why should we use a Poisson process for arriving customers?). There is a
theoretical justification for the reason why the Poisson process is a good approximation
of the customer arrival process in many real-world systems.

We consider a huge universe of people that arrive at a queueing network and suppose
that each person flips a coin, which decides whether that person becomes a customer,
that might join the system, or not. It means that each person behaves as a Bernoulli
trial. So, in this model, the number of people that become potential customers depends
on how many of these independent Bernoulli trials result in success.

The probability of getting k successes out of N independent Bernoulli trials with
success parameter p is given by the binomial distribution. If N is large and p is small
– as they are in our model – the binomial distribution can be approximated by the
Poisson distribution. Therefore, the probability of getting k arrivals in a period is
approximately Poisson distributed, which implies that the arrival process is also nearly
Poisson.
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1.4 Equilibrium and threshold strategies

In this section, we give some notions about strategies in non-cooperative games, looking
at the definition of equilibrium strategy. Then, we focus on a class of strategies, the
so-called threshold strategies. The main reference is [9].

Definition 1.14 (Pure and mixed strategy). Let N = {1, . . . , n} be a finite set of
players and let Ai denote a set of actions available to player i ∈ N . A pure strategy for
player i is an action from Ai. A mixed strategy for player i corresponds to a probability
function which prescribes a randomized rule for selecting an action from Ai.

Denote by Si the set of strategies available to player i. A strategy profile
s = (s1, . . . , sn) assigns a strategy si ∈ Si to each player i ∈ N .

Each player i ∈ N is associated with a real payoff function Fi(s), which is as-
sumed to be linear in si. This function specifies the payoff received by player i
given that the strategy profile s is adopted by the players. We denote by s−i =
(s1, . . . , si−1, si+1, . . . , sn) a profile for the set of players N \ {i}.

Definition 1.15 (Best response). A strategy s∗i is said to be the best response for
player i against the profile s−i if

s∗i ∈ argmax
si∈Si

Fi(si, s−i),

that is
Fi(s

∗
i , s−i) ≥ Fi(si, s−i), ∀si ∈ Si.

Definition 1.16 (Equilibrium profile). A strategy profile se is an equilibrium profile
if, for every i ∈ N , sei is a best response for player i against se−i, i.e.

sei ∈ argmax
si∈Si

Fi(si, s
e
−i), ∀i ∈ N.

We will deal mostly with games with indistinguishable infinitely many players (usu-
ally customers). In this case, denote the common set of strategies and the payoff func-
tion by S and F , respectively. Let F (a, b) be the payoff for a player who selects strategy
a, when everyone else selects strategy b.

Definition 1.17 (Equilibrium strategy). An equilibrium strategy is a strategy se ∈ S
such that

se ∈ argmax
s∈S

F (s, se),

that is
F (se, se) ≥ F (s, se) ∀s ∈ S.

In other words, se is a equilibrium strategy if it is a best response against itself.
We can also give a definition of dominant strategy, which is a condition stronger than
being an equilibrium strategy.
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Definition 1.18 (Dominant strategy). A strategy s∗ ∈ S is a dominant strategy if it
holds that

F (s∗, s̄) ≥ F (s, s̄), ∀s ∈ S, ∀s̄ ∈ S.

Remark 1.19 (Steady-state). When evaluating an individual’s expected payoff which is
associated to a strategy s̄ as a response against all others using strategy s, we assume
that steady-state conditions (based on all using strategy s) have been reached, and the
tagged individual assumes that the stationary distribution is the distribution over the
states. Indeed, in most of the models, there is an underlying Markov process, whose
transition probabilities are induced by the common strategy s selected by all.

We describe a class of strategies, known as threshold strategies, which is common
in queueing systems. Suppose that upon arrival the customer has to choose between
two actions, A1 and A2, after observing a non negative integer-valued variable which
characterizes the state of the system. For example, the state may be the length of the
queue and the actions may be to join or to balk.

Definition 1.20 (Pure threshold strategy). A pure threshold strategy with threshold
K ∈ N prescribes one of the actions, say A1, for every state in {0, 1, . . . , K − 1} and
the other action, A2, otherwise.

Since it is not always possible to find a pure threshold strategy, we introduce also
the following extended concept.

Definition 1.21 (Threshold strategy). A threshold strategy with threshold x = n+ p,
n ∈ N, p ∈ [0, 1), prescribes mixing between the two pure threshold strategies n and
n + 1, so that strategy n receives the probability weight of 1 − p and strategy n + 1
receives the weight of p. The resulting behaviour is that any individual selects a given
action, say A1, when the state is 0 ≤ i ≤ n− 1; she selects randomly between A1 and
A2 when i = n, assigning probability p to A1 and probability 1 − p to A2; and she
selects A2 when i > n. If x is an integer (p=0), the strategy is pure, otherwise it is
mixed.

1.5 M/M/1 model

We give some basic concepts about queueing theory which will be used frequently.
The following definitions and results are described in [9]. The decisions made by the
customers of a queueing system are to join or to balk, based on whether a customer
enters the system or not. A joining customer can also decide to renege, when she
removes herself from the queue while waiting, but such an action is not considered in
our analysis. The arrival process corresponds to the process by which customers arrive
to the system, while the joining process consists only of those customers who decide
to join.
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The service discipline used most in these chapters is first-in-first-out (FIFO), that
is there are no priorities and customers are served based on the order of arrival at each
queue. Another service discipline is last-in-first-out (LIFO). We distinguish a LIFO
discipline without preemption, in which a new customer is positioned at the head of the
queue, but the customer in service is allowed to complete it, from a LIFO discipline
with preemption, in which a new arrival preempts a customer who might be in service.
It is usually assumed that service, when resumed, is continued from the point it was
interrupted and such discipline is also known as preemption-resume LIFO discipline.
Where not specified, the discipline used is the FIFO one. In Chapter 5, we analyze
some queueing networks with service disciplines different from the FIFO one.

In addition, we say that a queueing network is overtaking free if any customer,
while waiting, is not overtaken by those who have arrived at the system after her. The
definition of overtaking free networks is given in Section 5.1.

We give below some results for a network with one single server node with infinite
buffer and service times independent and identically exponentially distributed. Let the
service time distribution be exponential with rate µ, which means that the expected
service time is µ−1. The arrival process is a Poisson process with rate λ. The model is
known as M/M/1 model, where M stands for Markovian and 1 for a single server.

We analyze the observable model and the unobservable model. In the observable
model, the arriving customer is informed about the number of customers in front of
her, while, in the unobservable one, the customer has no information about the state
of the system. In both cases, we compute the expected sojourn time and show which is
the equilibrium strategy to be adopted by the arriving customers in order to maximize
their expected profit. Such a strategy says whether to join or balk.

Observable model

In the observable model, to find the equilibrium strategy, the tagged customer makes
her decision by optimizing the expected profit function

P (k) = R− CT (k)

where R is the reward she gets for joining the network, C the cost she pays for each
unit of sojourn time and T (k) the expected sojourn time, knowing that the system
contains k customers. We suppose that R ≥ C/µ, because otherwise, even when the
system is empty, no customers would enter the system. The tagged customer decides
to join if P (k) ≥ 0 and to balk otherwise. The model with these assumptions was
firstly studied by Naor and it is called Naor’s model ([15]).

So, we suppose that all customers, when arrive at the system, are informed about
the total number k of users in the network. Then the expected sojourn time is T (k) =
(k + 1)/µ and the expected profit function becomes

P (k) = R− C(k + 1)

µ
,
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Hence, we define

K = inf{k ∈ Z+ : P (k) < 0} =

⌊
Rµ

C

⌋
. (1.6)

Then, the equilibrium strategy is given by the threshold strategy with threshold equal
toK, that is an arriving customer joins if and only if she observes a number of customers
less than K. Such a strategy is also a dominant strategy in the class of threshold
strategies. This result is due to [15].

Indeed, let FK1,K2(k) be the payoff function of the tagged customer that chooses
to follow the K1-strategy, when all the others follow the K2-strategy. In this case the
payoff function is

FK1,K2(k) = P (k)1{0≤k<K1}, k = 0, 1, . . . , K2

From Definition 1.18, aK∗-strategy is a dominant strategy if FK∗,K2(k) ≥ FK1,K2(k)
for all K1, K2. By the definition of the payoff function, such a strategy is implemented
by the threshold K, defined in (1.6).

If P (K − 1) > 0 (that is when Rµ/C is not an integer), the K-strategy is a pure
threshold strategy for this model, while, if P (K − 1) = 0 (that is when Rµ/C is an
integer), the K-strategy and the (K−1)-strategy are pure threshold strategies and any
strictly convex combination between these two strategies is a mixed threshold strategy
for this model.

Remark 1.22 (Non-threshold strategies). There are no other threshold strategies for
this model, but there are other non-threshold strategies. For example, we can take a
strategy such that a customer joins the system if k ̸= K and balk if k = K. Indeed,
since there are never more than K customers in the system, what customers decide to
do when k > K is irrelevant to establishing whether a strategy defines an equilibrium
or not.

Unobservable model

In the unobservable model, the expected profit no longer depends on the number of
customers in the queue, because the customer has no information about the state of
the queue at her arrival. So the expected profit is

P = R− CT,

where T is the expected sojourn time without any information. In this case, assuming
that R > CT , all customers enter the system and, so, the model behaves like an open
Jackson network. Let Q∗ be the stationary number of customers in the queue. For
stability, we assume that µ > λ. Then, by Theorem 1.1, the stationary distribution
π = (π(k))k∈Z+ is

π(k) = P(Q∗ = k) = (1− ρ)ρk, k ∈ Z+,

where ρ = λ/µ.
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We compute the expected sojourn time

T =
+∞∑
k=0

T (k)π(k) =
+∞∑
k=0

k + 1

µ
(1− ρ)ρk =

1

µ(1− ρ)
=

1

µ− λ
, (1.7)

hence, the expected profit is

P = R− C

µ− λ
.

So, assuming that R > C
µ−λ

, the expected sojourn time under no information is

T = 1/(µ − λ), and, as a consequence of this, the equilibrium strategy says to join
the queue for any arriving customer.

Remark 1.23 (Multiple arrival processes). Let us suppose that customers arrive at the
system according to N independent Poisson process with intensity ξi, i = 1, . . . , N . So,
we assume that there is no longer just one arrival process, but more than one, precisely
N arrival processes, N ≥ 2. We set λ :=

∑
i ξi and ci = ξi/λ, where ci represents

the probability that an arriving customer comes from the i-th arrival process. By
Theorem 1.11, we have that the superposition of the N independent Poisson processes
is a Poisson process with intensity λ. So the effect of arrival customers from N arrival
processes is the same of one single arrival process of rate λ. As a consequence of this,
all the results previously obtained also hold for this situation.

1.6 Little’s law

In a queueing network, the average sojourn time of the customers in the system can
often be obtained by applying the Little’s law. We introduce the Little’s law with its
meaning and application, then we show a short proof and an example in the unobserv-
able M/M/1 model. The main references are [18, 4, 13].

Specifically, the Little’s law for a service system says that the average sojourn time
T of a customer and the average number of customers L in the system are related by

L = λ̄T, (1.8)

where λ̄ is the arrival rate of customers to the system.
This fundamental relation is a “law of averages” or “law of large numbers” when

the quantities L, λ̄, T are limits of averages. It is also a “law of expectations” when the
quantities are expected values. In studying a system, one may want to use L = λ̄T to
obtain one of these values from the other two. We are mainly interested in computing
the quantity T , knowing λ̄ and L.

We consider a general service system that processes customers. Suppose users arrive
at the system at times 0 < τ1 < τ2 < . . . , where τn → +∞ a.s. We refer to the arrivals
by the point process

N(t) =
+∞∑
n=1

1{τn∈(0,t]}, t ≥ 0,
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which denotes the number of arrivals in the time interval (0, t].
Let Sn denote the entire time the n-th customer is in the system, including the

service time. We call Sn the sojourn time of the n-th customer.
The n-th customer departs from the system at time τn+Sn and never returns. The

number of customers that arrive in the time interval (0, t] and are still in the system
at time t is

Q(t) =
+∞∑
n=1

1{τn≤t<τn+Sn}, t ≥ 0.

According to the definitions of the processes τn, Sn, Q(t), we set

L
a.s.
= lim

t→+∞
t−1

∫ t

0

Q(s)ds −→ average number of customers

λ̄
a.s.
= lim

t→+∞
t−1N(t) −→ average arrival rate

T
a.s.
= lim

n→+∞
n−1

n∑
k=1

Sk −→ average sojourn time

The key idea behind the Little’s law L = λ̄T is that the integral of Q(t) is simply
another way of recording sojourn times. Specifically, if the system is empty at times 0
and t (Q(0) = Q(t) = 0), then the sojourn time of the customers up to time t is∫ t

0

Q(s)ds =

N(t)∑
k=1

Sk. (1.9)

To better understand Eq. (1.9), we can look at Figure 1.1 (a), which describes a
potential situation of customers that arrive at the system at times τ1, τ2, . . . and exit the
system after a sojourn time equal to S1, S2, . . . In the figure, the grey area corresponding
to customer i is the sojourn time Si, so it is easy to verify that Eq. (1.9) holds.

Even at nonempty times t, that is when Q(0) = 0 and Q(t) > 0, a system satisfies

t−1

∫ t

0

Q(s)ds = t−1

N(t)∑
k=1

Sk + o(1) (1.10)

where o(1) → 0 as t → +∞. For example, let us see in Figure 1.1 (b) the same situation
of Figure 1.1 (a), where the time t is fixed in such a way that Q(t) > 0. In this case,
letting t → +∞ in (1.10) yields L = λ̄T .

Let us now consider the unobservable M/M/1 model, as described in Section 1.5,
and see how the Little’s law can be applied. First, we observe that all customers use
the same strategy, that is to enter the system. Then, we compute the expected number
of customers in the system

E[Q∗] =
+∞∑
k=0

kπ(k) =
+∞∑
k=0

k(1− ρ)ρk =
ρ

1− ρ
=

λ

µ− λ
,
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(a) With empty time t

(b) With nonempty time t

Figure 1.1: Scheme of customers arriving in a system. The i-th customer arrives at
time Ti and leaves the system after a sojourn time Si.

and, using the Little’s law, the expected sojourn time turns out to be equal to

T =
E[Q∗]

λ
=

1

µ− λ
,

which is the same expression obtained in (1.7).

Remark 1.24 (When can we use the Little’s law?). As observed in the previous example,
we can apply the Little’s law only if the arriving customers all use the same strategy.
This assumption is due to the fact that the Little’s law is a “law of averages” and, as a
consequence of this, it requires all users to behave in the same way. For example, if we
suppose that any arriving customer enters the system, then the Little’s law is trivially
applicable, but when the strategy is threshold type, we cannot compute the expected
sojourn time T (k), conditioned on being k customers in the system, because not all
joining customers observe k customers at their arrival. So, for example, what we can
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compute is the expected sojourn time of customers that join if and only if they observe
less than k + 1 customers in the system at their arrival.

1.7 Graphs and trees

In queueing systems it can be often useful to work with structures such as graphs or
trees to describe the flow of customers during their route. So, we give some basic
concepts about graph theory ([2, 6]).

Definition 1.25 (Undirected graph). An undirected graph G is an ordered pair
G = (V,E) of finite sets V and E, where E is a set of unordered pairs of elements of
V .

Definition 1.26 (Directed graph). A directed graph G is an ordered pair G = (V,E)
of finite sets V and E, where E is a set of ordered pairs of elements of V .

In a directed graph G = (V,E), V is the set of vertices and E is the set of edges.
An edge e ∈ E is denoted with e = (v1, v2), where v1, v2 ∈ V correspond to the pair of
vertices associated to e. By definition (v1, v2) ̸= (v2, v1). We denote with ν the number
of vertices of G, ν = |V |, and with ε the number of edges of G, ε = |E|.

For a directed graph G = (V,E), we define the indegree d+(v) and the outde-
gree d−(v) of a vertex v ∈ V as the number of edges entering v and the num-
ber of edges outgoing from v, that is d+(v) = |S+(v)| and d−(v) = |S−(v)|, where
S+(v) = {w ∈ V : (w, v) ∈ E} and S−(v) = {w ∈ V : (v, w) ∈ E}.

In a directed graph G = (V,E), we say that two vertices v, w ∈ V are connected
with a path if there exists a sequence of vertices {v = v0, v1, . . . , vn−1, vn = w}, where
v0, . . . , vn ∈ V and (vi, vi+1) ∈ E for all i = 0, . . . , n − 1. A path {v0, v1, . . . , vn−1, vn}
is a cycle if v0 = vn. A graph is acyclic if it contains no cycles.

Definition 1.27 (Tree). An undirected graph G = (V,E) is a tree if it is connected
and acyclic.

Definition 1.28 (Out-tree). Let G = (V,E) be a directed graph and r ∈ V a vertex
of it. Then G is an out-tree if |E| = |V | − 1 and, for any v ∈ V \ {r}, there exists a
directed path from r to v.

The vertex r is called root of the out-tree. The following lemma gives a characteri-
zation of out-trees.

Lemma 1.29 (Characterization of out-trees). Let G = (V,E) be a directed graph and
r ∈ V a vertex of it. Then G is an out-tree with root r if and only if its underlying
undirected graph is a tree and it holds that d+(r) = 0 and d+(v) = 1 for any v ∈ V \{r}.

Lemma 1.29 implies that there is a unique path that connects the root r to any
vertex of the out-tree. A vertex v is called a leaf of the tree if d−(v) = 0. We denote
with V2 ⊂ V the set of leafs of a tree, and with V1 = V \ V2 the set of vertices with at
least one outgoing edge.





Chapter 2

Two-node tandem network

Abstract

In this chapter, we show that in a two-node tandem network the arriving customers, knowing
only partial information, can adopt a pure threshold strategy, which is the optimal one.
This strategy requires that a customer chooses whether to join or not the queue, without
knowing the complete state of the system, but only the total number of people in the system.
The threshold strategy is obtained by maximizing a given profit function, whose costs are
proportional to the sojourn time in each queue. Some numerical computations allow us to see
the behaviour of the equilibrium threshold when some parameters vary. The main reference
is [7].

2.1 The model

The model consists of a tandem network with two single server nodes with infinite
buffers and service times independent and exponentially distributed, where customers
are served according to a FIFO discipline. We index the nodes by l, l = 1, 2.

We denote by µl, the service rate at node l. By denoting with gl the generic service
time at node l, we have that

gl ∼ Exp(µl) with g1 ⊥ g2,

and it follows that E[gl] = 1/µl, that is on average µl customers are served per unit of
time.

We suppose that customers arrive to the system according to a Poisson process
with rate λ. As seen in Section 1.3, it means that, on average, a customer will arrive
in λ−1 units of time and, after a time period t, λt customers will have arrived. The
model is graphically represented in the queueing network of Figure 2.1.

The arriving customers receive partial information about the state of the system,
being informed only about the total number of customers in the network. After receiv-
ing this information, they decide whether to join or balk the system.

17
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Figure 2.1: Two-node tandem network with arrival process given by a Poisson process
with rate λ and service times with rates µ1 and µ2 at each corresponding node.

We suppose that a tagged customer gets a reward R for joining the network and
receiving the service, and pays for each unit of sojourn time at node l a cost Cl with a
resulting random profit given by

P = R− C1S1 − C2S2,

where Sl denotes the sojourn time she would spend at node l.
The tagged user makes her decision by optimizing the expected profit given the

information she receives at her arrival. That is, assuming that she is informed that
the total number of customers in the network before her arrival is k, she computes her
expected profit as

P (k) = R− C1T1(k)− C2T2(k),

where Tl(k) is her expected sojourn time at node l given the information she received.
We assume that

R ≥ C1

µ1

+
C2

µ2

,

since, otherwise, even a customer finding an empty system would trivially decide to
balk.

The aim of this chapter is to find an equilibrium threshold strategy for this model,
under the partial information, such that the expected profit of any customer is maxi-
mized. We assume that all customers are using the same pure threshold strategy and
we denote by K the equilibrium threshold. Hence, all users join the network if and only
if it contains less than K customers. We will see that in a two-node tandem network
the pure threshold K exists and is defined such that

P (k) ≥ 0 as k < K,

P (k) < 0 as k ≥ K.

2.2 Expected sojourn times under total informa-

tion

We consider the state space N2, which is the set of all possible pairs (q1, q2) with ql
being the length of the queue at node l, l = 1, 2. In this section, we analyze the
expected sojourn time under total information, that is knowing the complete state of
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the system, say (q1, q2) = (n − 1,m), before deciding whether to enter the system or
not.

Let Sl(n,m) be the sojourn time spent at queue l by a customer that joins a
system being in state (n − 1,m), that is she is going to occupy position n in the first
queue, and Tl(n,m) = E[Sl(n,m)] be the corresponding expected sojourn time with
T (n,m) = T1(n,m) + T2(n,m) the total expected sojourn time.

The following results characterize the expected sojourn times.

Lemma 2.1 (Mean sojourn time at the first queue). The expected sojourn time spent
at the first queue, T1(n,m), is

T1(n,m) =
n

µ1

, n ≥ 0. (2.1)

Proof: Since the first queue has a service rate µ1, then S1(n,m) is sum of n independent
exponential random variable with mean µ−1

1 , that is S1(n,m) ∼ Erlang(n, µ1). So we
have that

T1(n,m) = E[S1(n,m)] =
n

µ1

.

Lemma 2.2 (Mean sojourn time). The total expected sojourn time, T (n,m), is defined
by the following recursive formula

T (n,m) =
1

µ1 + µ2

+
µ1

µ1 + µ2

T (n− 1,m+1)+
µ2

µ1 + µ2

T (n,m− 1), n,m > 0, (2.2)

and the boundary conditions

T (0,m) =
m

µ2

, m ≥ 0, (2.3)

T (n+ 1, 0) =
1

µ1

+ T (n, 1), n ≥ 0. (2.4)

Proof: To compute the total expected sojourn time, we consider the possible states of
the system, that are described in the graphs of Figure 2.2.

Now, we suppose to follow the tagged customer in position (n,m) until she reaches
the position (0, 0) and compute how long she takes on average, that is T (n,m). So we
don’t consider the possibility of going from state (n,m) to state (n+1,m), because the
customer cannnot be overtaken by those after her. It means that only those in front
of her can affect her sojourn time.

So the position of the tagged customer in the system can be represented by a
uniform Markov chain

(Q(t))t≥0 = {(Q1(t), Q2(t)) : t ≥ 0},
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(a)

(b)

Figure 2.2: Transition rate diagrams for the uniform Markov chain describing the
dynamics of the system, where µl denotes the service rate at node l = 1, 2 and λ
denotes the arrival rate.

with state space N2, where Ql(t) represents the number of customers at node l at time
t. The uniform Markov chain (Q(t))t≥0 is defined as follows

Q(t) = Q̂N(t),

where (Q̂n)n≥0 is a discrete-time homogeneous Markov chain with values in N2,

Q̂0 = (n,m) and the transition probabilities are those described in Figure 2.3; N(t) is
the counting process associated to a Poisson process with intensity

µ1 + µ2 if n,m > 0

µ2 if n = 0,m > 0

µ1 if n ≥ 0,m = 0

.

Therefore, applying a first step analysis to this uniform Markov chain for n,m > 0,
the total expected sojourn time can be computed recursively with the following formula

T (n,m) =
1

µ1 + µ2

+
µ1

µ1 + µ2

T (n− 1,m+ 1) +
µ2

µ1 + µ2

T (n,m− 1), n,m > 0,
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(a) for n,m > 0

(b) for n = 0,m > 0

(c) for n ≥ 0,m = 0

Figure 2.3: Transition diagram for the embedded discrete-time Markov chain. Case
(a) is for n,m > 0, cases (b) and (c) refer to the boundary conditions.

and, similarly, we obtain the boundary conditions

T (0,m) =
m

µ2

, m ≥ 0;

T (n+ 1, 0) =
1

µ1

+ T (n, 1), n ≥ 0.

Lemma 2.3 (Mean sojourn time at the second queue). The expected sojourn time
spent at the second queue, T2(n,m), can be computed with the following recursive
formula

T2(n,m) =

(
µ2

µ1 + µ2

)m

T2(n− 1, 1)

+
µ1

µ1 + µ2

m−1∑
k=0

(
µ2

µ1 + µ2

)k

T2(n− 1,m+ 1− k), n > 0,m ≥ 0,

(2.5)

and the boundary condition

T2(0,m) =
m

µ2

, m ≥ 0.

Proof: Knowing that T (n,m) = T1(n,m)+T2(n,m), using Eq. (2.2) and Eq. (2.1), we
get the following recursive formula for T2(n,m)

T2(n,m) =
µ1

µ1 + µ2

T2(n− 1,m+ 1) +
µ2

µ1 + µ2

T2(n,m− 1), n,m > 0. (2.6)
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The boundary condition is immediately recovered from Eq. (2.3) because

T (0,m) =
m

µ2

⇔ T1(0,m) + T2(0,m) =
m

µ2

⇔ T2(0,m) =
m

µ2

.

By an induction argument, we can prove Eq. (2.5): for m = 0, we want to prove
T2(n, 0) = T2(n− 1, 0) and, from (2.4), we have that

T (n, 0) =
m

µ1

+ T (n− 1, 1)

⇔ T1(n, 0) + T2(n, 0) =
m

µ1

+ T1(n− 1, 1) + T2(n− 1, 1)

⇔ T2(n, 0) = T2(n− 1, 1).

Now, by inductive hypothesis, let (2.5) be true for m ≥ 0 and we prove it for m + 1:
from (2.6) we have that

T2(n,m+ 1) =
µ1

µ
T2(n− 1,m+ 2) +

µ2

µ
T2(n,m)

=
µ1

µ
T2(n− 1,m+ 2) +

µ2

µ

[(
µ2

µ

)m

T2(n− 1, 1) +
µ1

µ

m−1∑
k=0

(
µ2

µ

)k

T2(n− 1,m+ 1− k)

]

=

(
µ2

µ

)m+1

T2(n− 1, 1) +

[
T2(n− 1,m+ 2) +

m−1∑
k=0

(
µ2

µ

)k+1

T2(n− 1,m+ 1− k)

]

=

(
µ2

µ

)m+1

T2(n− 1, 1) +
µ1

µ1 + µ2

m∑
k=0

(
µ2

µ

)k

T2(n− 1,m+ 2− k),

where µ = µ1 + µ2.

The following lemma shows the conditions under which the functions T (n,m) and
Tl(n,m) are monotone in the variable n.

Lemma 2.4 (Monotonicity of the mean sojourn times). The functions T1(n,m) and
T (n, k − n) are increasing in n. The function T2(n,m) is non decreasing in n if and
only if µ1 ≥ µ2.

Proof: By Lemma 2.1, we have that

T1(n,m) =
n

µ1

,

so T1(n,m) is increasing in n, and the same holds for T1(n, k − n), where k = n+m.
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To prove that T (n, k−n) is increasing in n, with k = n+m, we prove by induction
that

T (n+ 1,m) > T (n,m+ 1), ∀n,m > 0.

For m = 0, we want to prove that T (n+ 1, 0) > T (n, 1) and we have that from (2.4)

T (n+ 1, 0) =
1

µ1

+ T (n, 1) > T (n, 1).

For n = 0, we want to prove that T (1,m) > T (0,m+ 1) and we do it by an inductive
argument: for m = 0 from (2.4)

T (1, 0) =
1

µ1

+ T (0, 1) > T (0, 1).

Let T (1,m− 1) > T (0,m) be true, then from (2.2)

T (1,m) =
1

µ
+

µ1

µ
T (0,m+ 1) +

µ2

µ
T (1,m− 1)

>
1

µ
+

µ1

µ
T (0,m+ 1) +

µ2

µ
T (0,m)

=
µ2

µ

(
1

µ2

+ T (1,m)

)
+

µ1

µ
T (0,m+ 1)

=
µ2

µ
T (0,m+ 1) +

µ1

µ
T (0,m+ 1) = T (0,m+ 1).

To use the induction procedure, we firstly define a partial order: we say that
(n1,m1) ≺ (n2,m2), if (n1 < n2) or (n1 = n2 & m1 < m2). Now, we prove that
T (n+ 1,m) > T (n,m+ 1), knowing that the same hold for any (n̄, m̄) ≺ (n,m): from
(2.2)

T (n+ 1,m) =
1

µ
+

µ1

µ
T (n,m+ 1) +

µ2

µ
T (n+ 1,m− 1)

>
1

µ
+

µ1

µ
T (n− 1,m+ 2) +

µ2

µ
T (n,m)

= T (n,m+ 1),

where we use the inequalities T (n+1,m−1) > T (n,m) and T (n,m+1) > T (n−1,m+2)
(because (n,m− 1) ≺ (n,m) and (n− 1,m+ 1) ≺ (n,m)).

Finally, to show that T2(n,m) is non decreasing in n if µ1 ≥ µ2, we consider
∆1T2(n,m) = T2(n+ 1,m)− T2(n,m) and we prove that ∆1T2(n,m) ≥ 0. From (2.5)
we obtain that for n > 0,m ≥ 0

∆1T2(n,m) =

(
µ2

µ1 + µ2

)m

∆1T2(n− 1, 1)

+
µ1

µ1 + µ2

m−1∑
k=0

(
µ2

µ1 + µ2

)k

∆1T2(n− 1,m+ 1− k).
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Using an induction argument on n, it is sufficient to prove the base case ∆1T2(0,m) ≥ 0,
because the induction step then follows as all the coefficients in (2.2) are positive. After
some computations, we obtain that

∆1T2(0,m) = T2(1,m)− T2(0,m)

=

(
µ2

µ

)m

T2(0, 1) +
µ1

µ

m−1∑
k=0

(
µ2

µ

)k

T2(0,m+ 1− k)− T2(0,m)

=
1

µ2

(
α− 1 + (α + 1)−m

α

)
,

where α = µ1/µ2. It holds that ∆1T2(0,m) is decreasing in m and

lim
m→∞

∆1T2(0,m) =
1

µ2

(
α− 1

α

)
≥ 0 ⇔ α ≥ 1,

So, µ1 ≥ µ2 if and only if ∆1T2(0,m) ≥ 0 for all m ≥ 0, and this concludes the
proof.

2.3 Expected sojourn times under partial informa-

tion

In this section, we analyze the expected sojourn time under partial information, that
is only knowing the total number of customers in the system, say k.

So, we assume that all arriving customers receive a partial information about the
state of the network and decide to join if and only if the number of customers k in
the system is less than a given threshold K ≥ 0. Under the K-strategy the tandem
network behaves as a semiopen Jackson network (Section 1.1), with an overall buffer
capacity of K, where we have two nodes and routing probabilities p01 = 1, p12 = 1,
p20 = 1. From the traffic equation

λi = λp0i +
2∑

j=1

λjpji, i = 1, 2,

we obtain that λi = λ for i = 1, 2.

Let Q∗
l be the stationary number of customers at node l and Q∗ = Q∗

1 +Q∗
2 be the

stationary total number of customers in the system.

Let πK(n,m) = PK(Q
∗
1 = n,Q∗

2 = m) be the stationary distribution of the state
of the system, conditioned on Q∗ ≤ K, and pl(n | k) = PK(Q

∗
l = n | Q∗ = k) the

distribution of queue lengths, knowing the partial information Q∗ = k. The following
lemma gives an expression for these two distributions.
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Lemma 2.5 (Stationary distribution). The stationary distribution is given by

πK(n,m) = cKρ
n
1ρ

m
2 , n+m ≤ K,

where ρl = λ/µl and c−1
K =

∑
n+m≤K ρn1ρ

m
2 is the normalization constant. Furthermore,

it holds that

pl(n | k) =

{
µk−n
l µn

3−l(µ1 − µ2)/(µ
k+1
1 − µk+1

2 ), µ1 ̸= µ2

1/(1 + k), µ1 = µ2

. (2.7)

Proof: Since the tandem network is supposed to be a semiopen Jackson model, using
Theorem 1.3, the stationary distribution is:

πK(n,m) =
P(Y1 = n)P(Y2 = m)

P(Y1 + Y2 ≤ K)

=
P(Y1 = 0)(λn

1/µ
n
1 ) P(Y2 = 0)(λn

2/µ
n
2 )∑

n+m≤K P(Y1 = n)P(Y2 = m)

=
P(Y1 = 0)ρn1 P(Y2 = 0)ρn2

P(Y1 = 0)P(Y2 = 0)
∑

n+m≤K ρn1ρ
m
2

=
ρn1ρ

m
2∑

n+m≤K ρn1ρ
m
2

,

where Y = (Y1, Y2) is defined in Eq. (1.4).
Assuming n ≤ K, the conditional probability is

PK(Q
∗
l = n | Q∗ = k) =

PK(Q
∗
l = n,Q∗ = k)

PK(Q∗ = k)

=
PK(Q

∗
l = n,Q∗

3−l = k − n)∑k
h=0 PK(Q∗

l = h,Q∗
3−l = k − h)

=
cKρ

n
l ρ

k−n
3−l∑k

h=0 cKρ
h
l ρ

k−h
3−l

=
ρnl ρ

k−n
3−l∑k

h=0 ρ
h
l ρ

k−h
3−l

.

After some algebraic manipulation, we obtain Eq. (2.7): if µ1 = µ2, then ρ1 = ρ2 and

pl(n | k) =
ρnl ρ

k−n
3−l∑k

h=0 ρ
h
l ρ

k−h
3−l

=
ρkl∑k
h=0 ρ

k
l

=
1

1 + k
,

while, if µ1 ̸= µ2

pl(n | k) =
ρnl ρ

k−n
3−l∑k

h=0 ρ
h
l ρ

k−h
3−l

=
(µn

l µ
k−n
3−l )

−1∑k
h=0(µ

h
l µ

k−h
3−l )

−1
=

(µ3−l/µl)
n∑k

h=0(µ3−l/µl)h

=
(µ3−l/µl)

n(1− µ3−l/µl)

1− (µ3−l/µl)k+1
=

µk−n
l µn

3−l(µl − µ3−l)

µk+1
l − µk+1

3−l

=
µk−n
l µn

3−l(µ1 − µ2)

µk+1
1 − µk+1

2

,

where in the last step we substitute l and 3 − l, with 1 and 2, respectively, where
possible.
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We observe that the conditional probability pl(n|k) doesn’t depend on K and nor
on the arrival rate λ. So, it means that it is sufficient to know that the arrival process
is a Poisson process, but we are not interested in knowing its intensity.

Let us define by Tl(k) = E[Sl|Q∗ = k] the expected sojourn time at queue l of a
tagged customer that enters the system containing k customers. In the next lemma,
we show an explicit formula for Tl(k) and T (k).

Lemma 2.6 (Expected sojourn times under partial information). For µ1 ̸= µ2, it holds
that

Tl(k) =
1

µl − µ3−l

− k + 1

µl

µk+1
3−l

µk+1
l − µk+1

3−l

, l = 1, 2, (2.8)

T (k) =
k + 1

µ1µ2

µk+2
1 − µk+2

2

µk+1
1 − µk+1

2

. (2.9)

For µ1 = µ2, it holds that

Tl(k) =
1

µ1

(
1 +

k

2

)
, l = 1, 2, (2.10)

T (k) =
2

µ1

(
1 +

k

2

)
.

Proof: By definition and using Eq. (2.1), we have that

T1(k) =
k∑

n=0

T1(n+ 1, k − n)p1(n|k) =
1

µ1

k∑
n=0

(n+ 1)p1(n|k).

So, using (2.7), we get that, for µ1 ̸= µ2

T1(k) =
1

µ1

µ1 − µ2

µk+1
1 − µk+1

2

k∑
n=0

(n+ 1)µk−n
1 µn

2

=
1

µ1

µ1 − µ2

µk+1
1 − µk+1

2

µ2+k
1 − (2 + k)µ1µ

k+1
2 + (k + 1)µ2+k

2

(µ1 − µ2)2

=
µ1(µ

k+1
1 − µk+1

2 )− (k + 1)µk+1
2 (µ1 − µ2)

µ1(µ
k+1
1 − µk+1

2 )(µ1 − µ2)

=
1

µ1 − µ2

− k + 1

µ1

µk+1
2

µk+1
1 − µk+1

2

.

Regarding T (k), by definition it holds that

T (k) =
k∑

n=0

T (n+ 1, k − n)p1(n|k),
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and using (2.7), we get that, for µ1 ̸= µ2

T (k) =
µ1 − µ2

µk+1
1 − µk+1

2

k∑
n=0

T (n+ 1, k − n)µk−n
1 µn

2

=

(
1− µ2

µ1

)
µk+1
1

µk+1
1 − µk+1

2

k∑
n=0

T (n+ 1, k − n)

(
µ2

µ1

)n

.

So we have that proving (2.9) is equivalent to proving

k∑
n=0

T (n+ 1, k − n)

(
µ2

µ1

)n

=
(k + 1)(µk+2

1 − µk+2
2 )

µ2(µ1 − µ2)µ
k+1
1

. (2.11)

We prove (2.11) by induction on k. The base case is for k = 0:

T (1, 0) =
µ1 + µ2

µ2µ1

=
1

µ1

+
1

µ2

,

and this is true because T (1, 0) = 1/µ1 + T (0, 1) = 1/µ1 + 1/µ2.

Let Eq. (2.11) be true for k − 1, that is

k−1∑
n=0

T (n+ 1, k − 1− n)

(
µ2

µ1

)n

=
k(µk+1

1 − µk+1
2 )

µ2(µ1 − µ2)µk
1

,

then

k∑
n=0

T (n+ 1, k − n)

(
µ2

µ1

)n

=
k−1∑
n=0

T (n+ 1, k − n)

(
µ2

µ1

)n

+ T (k + 1, 0)

(
µ2

µ1

)k

=
k−1∑
n=0

1

µ1 + µ2

(
µ2

µ1

)n

+
k−1∑
n=0

µ1

µ1 + µ2

T (n, k − n+ 1)

(
µ2

µ1

)n

+
k−1∑
n=0

µ2

µ1 + µ2

T (n+ 1, k − n− 1)

(
µ2

µ1

)n

+ T (k + 1, 0)

(
µ2

µ1

)k

=
k−1∑
n=0

1

µ1 + µ2

(
µ2

µ1

)n

+
µ2

µ1 + µ2

k(µk+1
1 − µk+1

2 )

µ2(µ1 − µ2)µk
1

+
µ1

µ1 + µ2

T (0, k + 1)

+
1

µ1 + µ2

(
µ2

µ1

)k

+
µ1

µ1 + µ2

k∑
n=0

T (n+ 1, k − n)

(
µ2

µ1

)n

=
µ1

µ1 + µ2

(
(k + 1)(µk+2

1 − µk+2
2 )

µ2(µ1 − µ2)µ
k+1
1

)
+

µ1

µ1 + µ2

k∑
n=0

T (n+ 1, k − n)

(
µ2

µ1

)n

,
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where we used in the second step the recursive formula (2.2) for T (n + 1, k − n), in
the third step the inductive hypothesis and the boundary conditions (2.4) and in the
fourth step the boundary conditions (2.3). Finally, rearranging terms, we get (2.11).

To compute T2(k), we observe that

T (k) =
k∑

n=0

T (n+ 1, k − n)p1(n|k)

=
k∑

n=0

T1(n+ 1, k − n)p1(n|k) +
k∑

n=0

T2(n+ 1, k − n)p1(n|k)

= T1(k) + T2(k),

therefore, we get that, for µ1 ̸= µ2,

T2(k) = T (k)− T1(k) =
1

µ2 − µ1

− k + 1

µ2

µk+1
1

µk+1
2 − µk+1

1

.

For µ1 = µ2, we compute the expression of Tl(k) as the limit for the expression
(2.8) as µ1 → µ2,

Tl(k) = lim
µ1→µ2

(
1

µl − µ3−l

− k + 1

µl

µk+1
3−l

µk+1
l − µk+1

3−l

)
= lim

x→1

1

µ1

(
1

x− 1
− k + 1

x(xk+1 − 1)

)
=

1

µ1

(
1 +

k

2

)
and T (k) results to be T1(k) + T2(k).

2.4 Equilibrium strategies

By Lemma 2.6, the expected profit of the tagged customer

P (k) = R− C1T1(k)− C2T2(k)

does not depend on the threshold K, which characterizes the strategy employed by all
customers.

The tagged customer decides to enter only if P (k) ≥ 0. In the sequel we show
that the expected profit function is decreasing in k and we obtain that the equilibrium
strategy is a dominant strategy in the class of threshold strategies, using the fact that
P (k) does not depend on K.

First, we prove that Tl(k) is increasing in k. To do this, we could use some analysis
results or computational methods, but we prefer using some probability arguments.
The following lemma is about the stochastic monotonicity of the random variables
Q∗

l (k), which represent the stationary random number of customers at queue l under
the partial information.
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Lemma 2.7 (Stochastic monotonicity of Q∗
l (k)). The random variables Q∗

l (k) are
increasing stochastically ordered in k ≥ 0, that is

Q∗
l (k + 1) ≥st Q

∗
l (k).

Proof: In order to show that Q∗
l (k + 1) ≥st Q

∗
l (k), i.e.

P(Q∗
l (k + 1) ≥ n) ≥ P(Q∗

l (k) ≥ n),

it is enough to prove, by Theorem 1.7, the stronger condition given by the likelihood
ratio ordering Q∗

l (k + 1) ≥ℓr Q
∗
l (k), i.e.

P(Q∗
l (k + 1) = n+ 1)P(Q∗

l (k) = n) ≥ P(Q∗
l (k + 1) = n)P(Q∗

l (k) = n+ 1).

To prove this, we have that for n < k

P(Q∗
l (k + 1) = n+ 1)P(Q∗

l (k) = n) =
pn+1
l p

k+1−(n+1)
3−l∑k+1

h=0 p
h
l p

k+1−h
3−l

pnl p
k−n
3−l∑k

h=0 p
h
l p

k−h
3−l

=
pnl p

k+1−n
3−l∑k+1

h=0 p
h
l p

k+1−h
3−l

pn+1
l p

k−(n+1)
3−l∑k

h=0 p
h
l p

k−h
3−l

= P(Q∗
l (k + 1) = n)P(Q∗

l (k) = n+ 1),

and for n = k

P(Q∗
l (k + 1) = k + 1)P(Q∗

l (k) = k) ≥ 0 = P(Q∗
l (k + 1) = k)P(Q∗

l (k) = k + 1).

Lemma 2.7 implies the following monotonicity result for the mean sojourn functions.

Lemma 2.8 (Monotonicity of the expected sojourn times). The functions Tl(k) and
T (k) are increasing in k.

Proof: We recall the following result (Remark 1.5): for two random variables X and Y

X ≥st Y ⇔ ∀u non decreasing function E[u(X)] ≥ E[u(Y )].

Using this result, Lemma 2.4 and Lemma 2.7, we get that

T1(k + 1) = E[T1(Q
∗
1(k + 1), k + 1−Q∗

1(k + 1))]

= E[T1(Q
∗
1(k + 1), k −Q∗

1(k + 1))]

≥ E[T1(Q
∗
1(k), k −Q∗

1(k))] = T1(k),

where in the inequality we use the fact that Q∗
1(k+1) ≥st Q

∗
1(k) and T1(n, k−n) is non

decreasing in n. Then, since T (k + 1) ̸= T (k), we have that T (k + 1) > T (k). By the
symmetry of the formulas of T1(k) and T2(k) (Eq. (2.8)), we obtain directly that also
T2(k) is increasing in k. The same holds for T (k), because T (k) = T1(k) + T2(k).
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From the previous Lemma 2.8, we have that the expected profit function P (k) is
decreasing for all values of µ1 and µ2, since P (k) is defined as in Eq. (2.4).

Finally, we state the main result that gives the threshold strategy to be adopted in
order to have an equilibrium.

Theorem 2.9 (Equilibrium threshold strategy). When the information known by the
arriving customers is the total number of customers in the network only, then the
equilibrium threshold strategy is given by the threshold K such that

K = inf{k ∈ Z+ : P (k) < 0}. (2.12)

According to this strategy, the tagged customer enters only if she finds less than K
customers in the system. TheK-strategy is a dominant strategy in the class of threshold
strategies.

Proof: The system is ergodic, which means there is a positive probability such that the
system eventually is in any state. So, without losing of generality, we can assume it
starts empty. In particular, we note that the system is empty with probability

PK(Q
∗ = 0) = PK(Q

∗
1 = 0, Q∗

2 = 0) = cK > 0,

and, for k = 0, the expected profit function is

P (0) = R− C1

µ1

− C2

µ2

,

which is supposed to be positive.
Let K be the index obtained by Eq. (2.12), including K = ∞. We show that the

strategy K is a dominant strategy by proving that it is the best response to any other
possible threshold strategy.

Indeed, we consider FK1,K2(k) as the payoff of a customer that chooses to follow
the K1-strategy, when everyone else chooses to follow the K2-strategy. In this case, if
K1 ≤ K2, the payoff function is

FK1,K2(k) =

{
P (k), if 0 ≤ k < K1

0, if K1 ≤ k ≤ K2

,

because the customer receives a payoff P (k) if she enters the system, 0 otherwise. Let
us note that, since all customers employ the K2-strategy, the tagged user will never
find more than K2 customers in the system. If, instead, K1 > K2, then the payoff
function is

FK1,K2(k) = P (k), for any 0 ≤ k ≤ K2

From Definition 1.18, the K-strategy is a dominant strategy, if

FK,K2(k) ≥ FK1,K2(k) ∀K1 ∈ N, ∀K2 ∈ N,

and this holds because of the definition of F .
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We observed that Theorem 2.9 is saying that, if all other customers are using the
same K2-strategy for any K2, then for a tagged customer, that is deciding whether to
join or not the system, the best strategy to follow is the K-strategy.

The K-strategy of Theorem 2.9 is a pure threshold strategy, and, it is the only
equilibrium strategy for this model, if P (K − 1) > 0. If, instead, P (K − 1) = 0,
then the equilibrium strategies are the K-strategy and the (K − 1)-strategy, which
are pure threshold strategies, and all the strictly convex combinations between these
two strategies, which turn out to be mixed threshold strategy. There are no other
threshold strategies for this model, but there are other non-threshold strategies. The
same reasoning of Remark 1.22 holds also for this model.

We observe that for µ1 = µ2, by Eq. (2.10), the expected profit function is

P (k) = R− C1 + C2

µ1

(
1 +

k

2

)
and the equilibrium threshold strategy is

K =

⌊
2Rµ1

C1 + C2

⌋
− 1. (2.13)

Assuming also that C1 = C2, we have that

K =

⌊
Rµ1

C1

⌋
− 1, (2.14)

which is equal to (1.6) a part from a −1.
Now, we analyze the situation for µl goes to infinity, for l = 1, 2. We expect that

the model becomes equal to a model with one single queue with service rate µ3−l and
cost to pay for staying in the system C3−l. Indeed, as soon as a customer reaches queue
l, she immediately moves to queue 3 − l, if l = 1, or she leaves the system, if l = 2.
The result is that queue l does not affect the sojourn of a customer in the system. We
can prove this result also by making the limit of Tl(k), T3−l(k) and P (k). We obtain
that

lim
µl→∞

Tl(k) = 0,

lim
µl→∞

T3−l(k) =
k + 1

µ3−l

,

lim
µl→∞

P (k) = R− C3−l
k + 1

µ3−l

,

and these quantities are the same as for the observable M/M/1 model (Section 1.5).

2.5 Numerical computations

For some numerical computations of the equilibrium threshold K, we look at the two-
node tandem network for different values of C1 and C2, as the service rates µ1 and
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µ2 vary in {1, 2, . . . , 70}, while the reward R is fixed, R = 6. With this setting, we
study different situations: in the first case we suppose C1 < C2, for example C1 = 1
and C2 = 2, in the second case C1 > C2, for example C1 = 2 and C2 = 1, and in
the third case C1 = C2, for example C1 = C2 = 1.5. The values of the equilibrium
threshold in these three situations are represented in 3-dimensional plots (Figure 2.4).
This numerical analysis was done with MATLAB (see [19]).

(a) For C1 = 1, C2 = 2. (b) For C1 = 2, C2 = 1.

(c) For C1 = 1.5, C2 = 1.5.

Figure 2.4: Numerical computations of the equilibrium threshold K as µ1 and µ2 vary
in {1, 2, . . . , 70}, with R = 6. Three different cases are analyzed and they are shown
in (a), (b) and (c).

In all three cases, we observe that the behaviour for µ1 = µ2 is linear and it is
determined by the equation K = 4µ1−1, which is coherent with Eq. (2.13). If instead,
for l = 1, 2, we fix µl large and look at values of K as µ3−l varies, we have that the
behaviour still remains linear for µ3−l small enough. Indeed, we expect it to be linear,
because as µl goes to infinity, the model becomes an M/M/1 model with one queue
with service rate µ3−l, and in this model the behaviour of K is linear.
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For example, in the first case we have that for µ1 large, K = 3µ2, and for µ2 large,
K = 6µ1−1. In the second case, the behaviour is the opposite one, that is for µ1 large,
K = 6µ2 − 1, and for µ2 large, K = 3µ1. Finally, in the third case the behaviour is
similar in doing limits: for µ1 large, K = 4µ2, and for µ2 large, K = 4µ1 − 1.

But we observe that, when µ1 and µ2 reach some values, K tends to stabilize at a
certain level, and then slowly decreases. In our examples, except for µ1 = µ2, where
the values of K continue to have a linear dependence, the equilibrium threshold K
reaches a pick and then slowly decreases. In the first case and in the second one the
pick is K = 194, while in the third one is K = 183.

Due to the symmetry of the expected sojourn times T1(k) and T2(k) with respect
to µ1 and µ2, we have that the surfaces for the first two cases (Figure 2.4 (a) and
Figure 2.4 (b)) are symmetric to each other with respect to the plane µ1 = µ2.

2.6 Numerical simulations

In this section, we compare theoretical results with results obtained from simulations.
Indeed, we simulate the evolution of a two-node tandem network, which is initially
empty and immediately filled by customers that arrive according to a Poisson process of
rate λ = 1. The service rates are fixed and equal to µ1 = 1 and µ2 = 2. Assuming that
customers are not using any strategy, that is they always join the system, Figure 2.5 (a)
represents an example of the flow of customers in the network during a finite time period
T = 10. With the same parameters, we simulate the route of a joining customer being
in position (6, 12) at her arrival until she leaves the system (Figure 2.5 (b)).

At this point, we compute also the time spent in the first queue and in the second
queue by a joining customer, who observes the state (6, 12) at her arrival. Indeed, in a
simulation like the one in Figure 2.5 (b), the sojourn time in the first queue is given by
the time taken for the blue line to became zero and, from that time until the red line
becomes zero, the sojourn time in the second queue is computed. By doing multiple
iterations, Figure 2.5 (c) and Figure 2.5 (d) represent the values of sojourn time in
the first and second queue, respectively. Then we compare the average sojourn time
coming from these iterations with the corresponding theoretical results (Lemma 2.1 and
Lemma 2.3). We obtain that the simulations confirm the theoretical results. These
plots are produced with MATLAB codes, which are available in GitHub [19].
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(a) (b)

(c) (d)

Figure 2.5: Considering a two-node tandem network with arrival rate λ = 1 and service
rates µ1 = 1 and µ2 = 2, plot (a) simulates the evolution of the model which is initially
empty and plot (b) the number of customer in front of the tagged one that joins the
system in position (6, 12). By repeating simulations like the one in plot (b), plot (c)
and plot (d) show the sojourn times at queue 1 and at queue 2 and compare them with
the corresponding theoretical results.



Chapter 3

Multi-node tandem network

Abstract

This chapter is a generalization of the previous one. We consider a multi-node tandem
network, at which customers arrive according to a Poisson process. We prove that there
exists an equilibrium strategy such that all customers can obtain an optimal profit based on
a partial information, they receive upon arrival, about the system. The strategy indicates
whether to join or not the system and we investigate if such strategy is a pure or mixed
threshold one. The main reference is [12].

3.1 The model

After showing that in a two-node tandem network an equilibrium strategy exists under
partial information about the state of the system, in this chapter we generalize this
result to a multi-node tandem network.

A multi-node tandem network consists of M nodes, each corresponding to a queue
with one server and an infinite capacity waiting line. We index the nodes by l,
l = 1, . . . ,M . The queues are arranged in tandem, that is, after a customer receives
service at node l, she proceeds and joins queue l+1, if l ≤ M −1; otherwise, she leaves
the system. In each queue customers are served based on a FIFO discipline.

The service times of customers at each queue are assumed to be independent and
exponentially distributed with mean µ−1

l , that is the service rates are µl, l = 1, . . . ,M .
Customers arrive at the system according to a Poisson process with rate λ and, upon
arrival, they receive partial information about the system, that is the total number of
customers. Using this information, they decide whether to join the system or balk.

The customers’ strategy for joining the system is represented by a sequence

s = (s0, s1, . . . ), (3.1)

where sk ∈ [0, 1] is the probability that an arriving customer joins the system, when
the number of customers in the system is k.

35
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The cost to a customer for staying at node l is Cl per unit of time. All customers
have the same reward R from service completion. The profit of the tagged customer is
given by

P = R−
M∑
l=1

ClSl,

where the random variable Sl denotes the sojourn time of the tagged customer at node
l. The model is graphically represented in Figure 3.1.

Figure 3.1: M -node tandem network with Poisson process of arrivals with rate λ and
service times with rate µl, l = 1, . . . ,M .

We look for a pure or mixed threshold strategy by maximizing the expected profit
function of an arriving customer that observes k users in the system. The expected
profit function under the strategy s is given by

Ps(k) = R−
M∑
l=1

ClTl(k),

where Tl(k) is the expected sojourn time at queue l under the partial information. We
assume that

R ≥
M∑
l=1

Cl

µl

,

since, otherwise, even a customer that finds the system empty would get a negative
profit by joining the system.

Remark 3.1 (K-threshold strategy). Using the notation in (3.1), we say that a strategy
s is a pure K-threshold strategy if si = 1 for i = 0, . . . , K − 1 and si = 0 otherwise,
which means that all customers enter the system if and only if it contains less than K
customers. Such a strategy is denoted by σK . Similarly, we say that a strategy s is
a mixed x-threshold strategy, where x = n + p with n ∈ N and p ∈ (0, 1), if si = 1
for i = 0, . . . , n − 1, sn = p, and si = 0 otherwise, which means that an arriving
customer joins if there are less than n customers in the system, joins with probability
p if there are exactly n customers, otherwise balks. Such a strategy is denoted by
σx = (1− p)σn+ pσn+1. So, a mixed threshold strategy is a convex combination of two
pure threshold strategies.
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3.2 Stationary distribution

Before making the decision to join the system or balk, customers receive the partial
information about the state of the network, that is the total number of customers in
the system. So, in this section, we are interested in studying the stationary distribution
of customers in the system.

The state of the system at any time t can be described by a random vector
(Q1(t), . . . , QM(t)), where Ql(t) represents the number of customers at node l at any
time t. Under the strategy s, {(Q1(t), . . . , QM(t)) : t ≥ 0} is a continuous time
Markov process, which is described by the following transition rates qs(n, n

′), with
n = (n1, . . . , nM) ∈ ZM

+ and n′ = (n′
1, . . . , n

′
M) ∈ ZM

+

qs(n, n
′) =



λs|n|, if n′ = n+ e1, |n| < K,

µi, if n′ = n− ei + ei+1, i = 1, . . . ,M − 1,

µM , if n′ = n− eM ,

−λs|n| −
∑M

i=1 µi1{ni>0}, if n′ = n,

0, otherwise,

where |n| = n1+ · · ·+nM and ei is the M -dimensional unit vector with the i-th element
equal to 1.

Suppose that the Markov process {(Q1(t), . . . , QM(t)) : t ≥ 0} has a stationary
distribution. Let πs(n) = P((Q∗

1, . . . , Q
∗
M) = n) be the stationary distribution, where

Q∗
l is the number of customers at node l in the steady state. We set Q∗ = (Q∗

1, . . . , Q
∗
M)

and |Q∗| = Q∗
1 + · · ·+Q∗

M .
To give an explicit expression for the stationary distribution πs, which depend on

the strategy s, we first look at the stationary distribution πσK
in case all customers

decide to follow a pure K-threshold strategy. In this situation, the network behaves
like a semiopen Jackson network (Section 1.1), with an overall buffer capacity of K
and routing probabilities pii+1 = 1 for all i = 0, . . . ,M − 1 and pM0 = 1. From the
traffic equation

λi = λp0i +
M∑
j=1

λjpji, i = 1, . . . ,M (3.2)

we obtain that λi = λ for i = 1, . . . ,M , and, applying Theorem 1.3, we get that

πσK
(n) =

M∏
l=1

(
λ
µl

)nl

∑
|n′|≤K

M∏
l=1

(
λ
µl

)n′
l

, |n| ≤ K.

Therefore, knowing this result, we state the following lemma, which gives an explicit
formula for the stationary distribution, depending on the strategy s, adopted by all
customers.
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Lemma 3.2 (Stationary distribution). If the tandem network has a stationary distri-
bution under the strategy s, then the stationary distribution is given as follows: for
n ∈ ZM

+

πs(n) =

|n|∏
k=0

sk−1

M∏
l=1

(
λ
µl

)nl

∑
n′∈ZM

+

|n′|∏
k=0

sk−1

M∏
l=1

(
λ
µl

)n′
l

, (3.3)

where s−1 = 1 is fixed.

Proof: We prove formula (3.3) by using the definition: the stationary distribution
(πs(n))n∈ZM

+
satisfies the full balance equations, which equates the “probability flow”

out of each state n with the flow into the same state:

πs(n)
∑
n′ ̸=n

qs(n, n
′) =

∑
n′ ̸=n

πs(n
′)qs(n

′, n).

On the left hand side, we have

πs(n)

[
λs|n| +

M−1∑
i=1

µi1{ni>0} + µM1{nM>0}

]
,

while, on the right hand side, we have

πs(n−e1)qs(n− e1, n)1{n1>0} +
M−1∑
i=1

πs(n+ ei − ei+1)qs(n+ ei − ei+1, n)1{ni+1>0}

+ πs(n+ eM)qs(n+ eM , n)

= cs

[ |n|−1∏
k=0

sk−1

M∏
l=1

(
λ

µl

)(n−e1)l

λs|n|−11{n1>0} +
M−1∑
i=1

|n|∏
k=0

sk−1

M∏
l=1

(
λ

µl

)(n+ei−ei+1)l

µi1{ni+1>0}

+

|n|+1∏
k=0

sk−1

M∏
l=1

(
λ

µl

)(n+eM )l

µM

]

= πs(n)

[
λs|n| +

M∑
i=2

µi1{ni>0} + µ11{n1>0}

]
,

where c−1
s is the normalization constant of Eq. (3.3)

c−1
s =

∑
n′∈ZM

+

|n′|∏
k=0

sk−1

M∏
l=1

(
λ

µl

)n′
l

. (3.4)

Since the two expressions are equal, πs(n) is the stationary distribution.
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Lemma 3.2 implies the following Corollary, where we add the partial information.

Corollary 3.3 (Stationary distribution under partial information). If the tandem net-
work has a stationary distribution under the strategy s, then the conditional joint
distribution of Q∗, given |Q∗| = k, is

π(n | k) =

M∏
l=1

(
1
µl

)nl

∑
|n′|=k

M∏
l=1

(
1
µl

)n′
l

, |n| = k,

and, if moreover si = 1 for all i = 0, 1, . . . , k − 1, the conditional joint distribution of
Q∗, given |Q∗| ≤ k, is

π≤(n | k) = πσk
(n).

Proof: Let c−1
s be the normalization constant of (3.3), as in (3.4). Then, for |n| = k,

we have that

π(n | k) = P(Q∗ = n | |Q∗| = k) =
P(Q∗ = n, |n| = k)

P(|Q∗| = k)

=

cs
k∏

j=0

sj−1

M∏
l=1

(
λ
µl

)nl

∑
|n′|=k

cs
k∏

j=0

sj−1

M∏
l=1

(
λ
µl

)n′
l

=

M∏
l=1

(
1
µl

)nl

∑
|n′|=k

M∏
l=1

(
1
µl

)n′
l

,

(3.5)

and π(n | k) = 0, otherwise. While, for |n| ≤ k, provided that si = 1 for all
i = 0, 1, . . . , k − 1, we have that

π≤(n | k) = P(Q∗ = n | |Q∗| ≤ k) =
P(Q∗ = n, |n| ≤ k)

P(|Q∗| ≤ k)

=

cs
|n|∏
j=0

sj−1

M∏
l=1

(
λ
µl

)nl

∑
|n′|≤k

cs
|n′|∏
j=0

sj−1

M∏
l=1

(
λ
µl

)n′
l

=

M∏
l=1

(
λ
µl

)nl

∑
|n′|≤k

M∏
l=1

(
λ
µl

)n′
l

= πσk
(n),

(3.6)

and π≤(n | k) = 0, otherwise.

It follows that the distribution of π(n | k) and π≤(n | k) are independent of the
strategy s and also of the arrival rate λ. This Corollary gives an important property
which depend on the assumption of the model. For example, if the service times are
Erlang, instead of exponential, we have that Corollary 3.3 doesn’t hold (see Section
5.4).
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3.3 Equilibrium strategies

We recall that Q∗ denotes the stationary state of the system, which corresponds to
the average state of the system at any instant. Not only, Q∗ denotes also the average
state of the system, observed by an arriving customer, since the arrival process is
Poisson. This property is the so called PASTA property (Theorem 1.12). For this
reason, we assume that, for an arriving user, the customer distribution in the system
is the stationary one.

We suppose that all customers, besides the tagged one, follow a given strategy s.
The tagged customer makes her decision based on the expected profit given the partial
information she receives on the total number of customers in the network. The expected
profit function Ps(k), which may depend on the strategy s, is

Ps(k) = R−
M∑
l=1

ClTl(k) = R− C(k), (3.7)

where Tl(k) = Es[Sl | |Q∗| = k] is the expected sojourn time at queue l and
C(k) = Es[

∑M
l=1 ClSl | |Q∗| = k] is the expected cost for sojourn time in the sys-

tem. Since we will see in Lemma 3.4 that C(k) does not depend on the strategy s, the
same holds for Ps(k), thus, we will use P (k) instead of Ps(k). Of course, the strategy s
must be compatible with the number of customers k. So, the strategy s must be such
that si > 0 for all i = 0, 1, . . . , k − 1.

Let us suppose that all arriving customers use the strategy σk+1. Then
C≤(k) = Eσk+1

[
∑M

l=1 ClSl | |Q∗| ≤ k] denotes the expected cost for sojourn time of
a joining customer, that is of a customer that observes less than k + 1 customers at
her arrival. Let us first state and prove Lemma 3.4, and then, in Theorem 3.5, we give
an explicit formula for computing C(k).

Lemma 3.4 (Properties of C(k) and C≤(k)). The expected cost for sojourn time
C(k) is independent of the strategy s adopted by all customers. The expected cost for
sojourn time for a customer that observes less than k customers at her arrival under
the strategy σk+1 is equal to the same one computed under the strategy σk, namely

Eσk+1

[ M∑
l=1

ClSl | |Q∗| ≤ k − 1

]
= Eσk

[ M∑
l=1

ClSl | |Q∗| ≤ k − 1

]
=: C≤(k − 1).

Proof: We have that C(k) does not depend on the strategy s adopted by all arriving
customers, since

C(k) =
M∑
l=1

ClTl(k) =
M∑
l=1

Cl

∑
|n|=k

T̄l(n+ e1)π(n | k),

where T̄l(n+ e1) is the expected sojourn time of a joining customer observing the state
n ∈ ZM

+ at her arrival and π(n | k) is the conditional joint distribution defined in
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Eq. (3.5), which does not depend on the strategy s, as proved in Corollary 3.3. So, by
removing the subindex s, we can also write

C(k) = E
[ M∑

l=1

ClSl | |Q∗| = k

]
.

For the second part of the statement, we have that the following expected value

Es

[ M∑
l=1

ClSl | |Q∗| ≤ k − 1

]
=

k−1∑
j=0

C(j)
∑
|n|=j

π≤(n | k − 1)

does not depend on the strategy s, provided that si = 1 for all i = 0, 1, . . . , k− 1, since
both C(j) and π≤(n | k) doesn’t depend on s, as proved in Corollary 3.3. So

Eσk+1

[ M∑
l=1

ClSl | |Q∗| ≤ k − 1

]
= Eσk

[ M∑
l=1

ClSl | |Q∗| ≤ k − 1

]
=: C≤(k − 1).

Theorem 3.5 (Expected cost for sojourn time). The expected cost for sojourn time
of an arriving customer observing k customers in the system is

C(k) =

∑
|n|=k+1

M∑
i=1

niCi

M∏
l=1

(
1
µl

)nl

∑
|n|=k

M∏
l=1

(
1
µl

)nl

, k = 0, 1, 2, . . .

Proof: We recall that, when all customers use the strategy s, from Lemma 3.4, C(k)
does not depend on s and, for k = 0, 1, 2, . . . ,

C(k) =
M∑
l=1

ClTl(k) = E
[ M∑

l=1

ClSl | |Q∗| = k

]
.

We will derive an explicit formula for C(k). Let

xj =
∑
|n|=j

M∏
l=1

(
λ

µl

)nl

,

yj =
∑
|n|=j

M∑
i=1

niCi

M∏
l=1

(
λ

µl

)nl

.

As defined in Remark 3.1, let σk+1 denote the threshold strategy under which
customers join the network if and only if the total number of customers in the network
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is less than k + 1, which means that σk+1 = (s0, s1, . . . ) with si = 1 for i = 0, 1, . . . , k
and si = 0 otherwise. Let C≤(k) be the expected cost for sojourn time incurred by a
joining customer under the threshold strategy σk+1.

Under the threshold strategy σk+1, the probability of the total number of customers
in the network being i, for i = 0, . . . , k + 1, is

Pσk+1
(|Q∗| = i) =

∑
|n|=i

πσk+1
(n) =

∑
|n|=i

M∏
l=1

(
λ
µl

)nl

k+1∑
j=0

∑
|n|=j

M∏
l=1

(
λ
µl

)nl

=
xi

k+1∑
j=0

xj

,

and 0 if i > k+1, where we have used formula (3.3) with s = σk+1. Hence, the joining
probability of an arbitrary arriving customer, under the threshold strategy σk+1, is

Pσk+1
(|Q∗| ≤ k) =

k∑
j=0

Pσk+1
(|Q∗| = j) =

k∑
j=0

xj

k+1∑
j=0

xj

.

and so the joining rate of customers λ̄ is

λ̄ = λ

∑k
j=0 xj∑k+1
j=0 xj

= λ

(
1− xk+1∑k+1

j=0 xj

)
.

The expectation of
∑M

i=1 CiQ
∗
i , under the threshold strategy σk+1, is

Eσk+1

[ M∑
i=1

CiQ
∗
i

]
=

∑
n∈ZM

+

M∑
i=1

Ci ni πσk
(n) =

k+1∑
j=0

∑
|n|=j

M∑
i=1

niCi

M∏
l=1

(
λ
µl

)nl

k+1∑
j=0

∑
|n|=j

M∏
l=1

(
λ
µl

)nl

=

k+1∑
j=0

yj

k+1∑
j=0

xj

.

From Little’s law, as defined in Eq. (1.8), with L = Eσk+1
[
∑M

i=1CiQ
∗
i ], T = C≤(k)

and average arrival rate λ̄, we have that

C≤(k) =
Eσk+1

[∑M
i=1 CiQ

∗
i

]
λ̄

=

∑k+1
j=0 yj

λ
∑k

j=0 xj

. (3.8)

Under the threshold strategy σk+1, k ≥ 1, the probability that a joining customer
has the information that there are less than k customers in the network is

Pσk+1
(|Q∗| < k | |Q∗| ≤ k) =

P(|Q∗| < k)

P(|Q∗| ≤ k)
=

∑k−1
j=0 xj∑k+1
j=0 xj

·
∑k+1

j=0 xj∑k
j=0 xj

=

∑k−1
j=0 xj∑k
j=0 xj

.
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and the probability that a joining customer has the information that there are exactly
k customers in the network is

Pσk+1
(|Q∗| = k | |Q∗| ≤ k) =

P(|Q∗| = k)

P(|Q∗| ≤ k)
=

xk∑k+1
j=0 xj

·
∑k+1

j=0 xj∑k
j=0 xj

=
xk∑k
j=0 xj

.

Therefore, we have that, for k = 1, 2, . . .

C≤(k) =

∑k−1
j=0 xj∑k
j=0 xj

Eσk+1

[ M∑
l=1

ClSl | |Q∗| ≤ k−1

]
+

xk∑k
j=0 xj

Eσk+1

[ M∑
l=1

ClSl | |Q∗| = k

]
,

which, from Lemma 3.4, is equivalent to

C≤(k) =

∑k−1
j=0 xj∑k
j=0 xj

C≤(k − 1) +
xk∑k
j=0 xj

C(k). (3.9)

Substituting the expression (3.8) into Eq. (3.9), we obtain that

C(k) =
yk+1

λxk

=

∑
|n|=k+1

M∑
i=1

niCi

M∏
l=1

(
1
µl

)nl

∑
|n|=k

M∏
l=1

(
1
µl

)nl

, k = 1, 2, . . . ,

and it also holds for k = 0, because for k = 0 we have that

C(0) =
M∑
i=1

Ci

µi

,

and the proof is complete.

From Theorem 3.5 and Eq. (3.7), we obtain that P (k) can be written as

P (k) = R−

∑
|n|=k+1

M∑
i=1

niCi

M∏
l=1

(
1
µl

)nl

∑
|n|=k

M∏
l=1

(
1
µl

)nl

, k = 0, 1, 2, . . . (3.10)

We observe that P (k) is strictly decreasing and goes to −∞ as k → +∞. A formal
proof of these properties is given in Theorem 4.5. Finally, we state the main result
that says which are the equilibrium strategies.

Theorem 3.6 (Equilibrium strategies). Let K be the threshold given by

K = inf{k ∈ Z+ : P (k) < 0}. (3.11)

If P (K − 1) > 0, then the threshold strategy σK is the only equilibrium strategy.
If P (K − 1) = 0, then all the threshold strategies σ(K−1)+p = (1− p)σK−1 + pσK , with
p ∈ [0, 1], are the only equilibrium strategies.
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Proof: Let Fs1,s2(k) be the payoff for a customer that chooses to follow the strategy s1,
when everyone else chooses to follow the strategy s2. In this case, the payoff function
corresponds to P (k) if the strategy s1 says to enter the system, 0 otherwise, that is

Fs1,s2(k) = P (k)X(k),

where X(k) is a Bernoulli random variable of parameter s1k.
So, from Definition 1.17, we have that a strategy s is an equilibrium strategy if and

only if
sk = 1 for k with P (k) > 0 and

sk = 0 for k with P (k) < 0,
(3.12)

and the proof is completed.

So, when P (K − 1) > 0, there is a unique equilibrium strategy, which is a pure
threshold strategy, while in the second case, that is when P (K − 1) = 0, there are two
pure threshold strategies and also mixed threshold strategies, which are given by any
strictly convex combination of the two pure threshold strategies.

Furthermore, these strategies are also dominant strategies.
We analyze a particular example of multi-node tandem network. We assume that all

service rates and all costs for sojourn time are equal to each other, that is µi = µj =: µ
and Ci = Cj =: C for all i, j = 1, . . . ,M . Then, from Eq. (3.10), the expected profit
function P (k) becomes

P (k) = R− (k + 1)C

µ
·

∑
|n|=k+1

1∑
|n|=k

1
= R− C

µ
(k +M),

where we use Remark 3.7. In this case the equilibrium threshold defined in (3.11) is

K =

⌊
Rµ

C

⌋
−M + 1.

We can compare this result with the one found in the observable M/M/1 model,
where the equilibrium threshold is (1.6), and with the two-node tandem network, where
the equilibrium threshold is (2.14). We can therefore observe that, if we consider
tandem networks where queues have the same service rates and the same costs for
sojourn time, then, as the number of tandem nodes grows, the optimal threshold for
entering the system decreases linearly.

Remark 3.7 (How manyM -dimensional vectors sum to k?). The number ofM -dimensional
vectors with integer entries greater than or equal to 0, whose sum is equal to k, is∑

|n|=k

1 =

(
k +M − 1

k

)
. (3.13)

Formula (3.13) can be proved by an induction argument.
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Now, we analyze the situation for µj goes to infinity, for j = 1, . . . ,M . We expect
that the model behaves as a model with M − 1 queues, that is as a multi-node tandem
network without the j-th queue. Indeed, as soon as a customer reaches queue j, she
immediately moves to queue j + 1, if j < M , or leaves the system, if j = M , so queue
j does not affect the sojourn of a customer in the system. To prove this result, we
compute the limit of C(k) as µj → +∞. We obtain that

lim
µj→+∞

C(k) =

∑
|n|=k+1

M∑
i=1,i ̸=j

niCi

M∏
l=1

(
1
µl

)nl

∑
|n|=k

M∏
l=1

(
1
µl

)nl

, k = 0, 1, 2, . . . , (3.14)

where the sum over |n| = k+1 and |n| = k is made for n ∈ ZM−1
+ . That is the limit in

Eq. (3.14) corresponds exactly to the expected cost for sojourn time in a multi-node
tandem network with M − 1 queues obtained by removing queue j.

Multi-node tandem with exits

We give the same results for a multi-node tandem network with exits. For the proof,
see Chapter 4, where a more extended model is analyzed.

We consider a multi-node tandem network, with the same structure and the same
notations used in Section 3.1, but we suppose that, after the completion of the service
at queue l, a customer joins the next queue l + 1 with probability pl and leaves the
system with probability p̄l = 1 − pl, if l ≤ M − 1; while for l = M , the customer can
only leaves the system.

The model is represented in the Figure 3.2, where customers at each queue can
leave the system after the completion of the service.

Figure 3.2: M -node tandem network with exits. The arrival process is a Poisson process
with rate λ and the service times are exponential variables with rate µl.

Then, the expected profit P (k) of a joining customer who observes k customers in
the system at her arrival is

P (k) = R−

∑
|n|=k+1

M∑
i=1

niCi

M∏
l=1

l−1∏
j=0

(pj
µl

)nl

∑
|n|=k

M∏
l=1

l−1∏
j=0

(pj
µl

)nl

. (3.15)
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where p0 = 1, since an arriving customer is definitely routed to node 1 if she decides
to join the system. Also for this model, Theorem 3.6 holds with the expected profit
function defined in Eq. (3.15).

3.4 Numerical computations

In this section, we analyze some particular situations. First, we fix all the parameters,
except the number of nodes M , and, then, we look at how the equilibrium threshold
changes as M increases. Secondly, we consider a tandem network with three nodes, fix
the parameters of reward and costs for sojourn time and look at the behaviour of the
equilibrium threshold, as the service rates changes.

For the first situation, we take R = 3M , and, for l = 1, . . . ,M , µl = l and Cl = 1.
The following Table 3.1 lists the equilibrium thresholds K for different values of M .
We observe that the equilibrium threshold K grows almost linearly, as M varies from
1 to 10.

M 1 2 3 4 5 6 7 8 9 10
K 3 5 8 11 14 17 20 23 26 29

Table 3.1: The values of equilibrium thresholds K for different values of M .

For the second situation, we fix M = 3, R = 9 and Cl = 1 for l = 1, 2, 3. Figure 3.3
represents the thresholds of the equilibrium strategy for different values of µ1 and µ2,
as µ3 vary. We observe that for every choice of µ1 and µ2 the behaviour of K as a
function of µ3 is linear for some values and, then, at a certain level it stabilizes, but as
µ1 and µ2 increase, the level, in which the equilibrium threshold stabilizes, grows. In
particular, if µ1 and µ2 are fixed, we have that the values of the equilibrium threshold
start to stabilize when µ3 = min{µ1, µ2}. All the MATLAB codes that produce these
plots are available in GitHub [19].
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Figure 3.3: Numerical computations of the equilibrium threshold K as µ1 and µ2 vary
in {4, 8, 12, 16}, and µ3 in {1, 2, . . . , 16} with R = 9.





Chapter 4

Tree network

Abstract

We consider a tree network and compute the equilibrium strategies for customers who all
use the same strategy, by maximizing the expected profit function. We show that a pure
or mixed threshold strategy exists when customers only have partial information about the
number of users in the system upon their arrival. We also compare this model with a tandem
network.

4.1 The model

In Chapters 2 and 3, the equilibrium strategies are studied for tandem network [7, 12].
In this chapter we analyze more general overtaking free queueing networks, which are
characterized by a branching structure, the so called tree networks. Tree networks
are particular queueing networks, where different paths are possible for a customer to
complete services and exit the system. In particular, in a tree network we assume that
the structure of the queueing network is an out-tree, as defined in Section 1.7.

It means that, differently from a tandem network where all joining customers follow
the same path in the system, in a tree network joining customers can move along the
nodes with different paths. This model can be viewed as an extension of the multi-
node tandem network with exits. As a matter of fact, a customer that is routed along
a specific path, looks at others that follow different paths as if they exit the system.
This extension is possible because customers in front of the tagged one will remain
always in front of her, if they follow the same path of the tagged one, otherwise, when
they come out from the path of the tagged customer, they will never appear in front of
her again. Regarding those customers behind the tagged one, they are not of interest
in order to compute the expected sojourn time at any queue.

Indeed, the aim of this chapter is to compute the equilibrium threshold strategy
according to which a customer can decide whether to join or balk the system only
knowing the total number of customers in the system. It means that an arriving
customer is informed about the number of customers in the system and she immediately

49
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decides whether to join or not, only knowing this partial information. If she enters the
system, she can not renege to her decision, if she doesn’t, she can’t get back to the
system ever again. The optimal strategy is computed assuming that all customers
follow the same strategy. So, we build an expected profit function P , which depends
only on the number of users in the system upon a customer’s arrival, and find the
threshold strategy that gives the equilibrium.

Let us consider a tree network and denote with G = (V,E) the associated out-tree,
whose vertices correspond to the nodes where customers can queue up and receive
the service, and whose edges correspond to all possible movements from one queue
to another. We denote with ν and ε the cardinality of V and E, respectively. All
customers, if they enter the system, join the queue at the first node, that we call
node 1, and then they will be routed to other nodes, following a particular path. We
recall that Lemma 1.29 implies that there is only one path that connects node 1 to any
other node.

We use S−(i) = {j ∈ V : (i, j) ∈ E} to denote the set of vertices reachable from a
vertex i ∈ V , that is, after completing the service at queue i, a customer either joins
a queue among nodes in S−(i) or leaves the system; and d−(i) = |S−(i)| denotes the
outdegree of vertex i, that is the number of reachable vertices from vertex i. We also
denote with V2 ⊂ V the set of leafs, that is V2 = {i ∈ V : d−(i) = 0}; and with
V1 = V \ V2 the rest of the vertices.

In this model, customers arrive to the system according to a Poisson process with
intensity λ and are served based on a FIFO discipline. If they join the system, they
immediately log into the queue of node 1 and, after the completion of the service at
each node i ∈ V , they are routed to another queue at node j ∈ S−(i) with probability
pij, otherwise they leave the system with probability pi0 = 1 −

∑
j∈S−(i) pij. We also

put p01 = 1 and pi0 = 1 for all i ∈ V2. Node 0 represents the outside environment, from
which customers arrive at the system and into which customers go out. Probabilities
(pij)i∈V1,j∈S−(i) are the routing probabilities and they describes the flow of customers
in the system. The service times of customers are independent and exponentially
distributed with mean µ−1

i , for i ∈ V .

An example of this situation is in Figure 4.1 (a), where we choose the graph
G = (V,E), with V = {1, 2, 3, 4, 5, 6} and E = {(1, 2), (1, 3), (1, 4), (2, 5), (2, 6)} as
the out-tree describing the tree network. Considering the same example, in Figure 4.1
(b), the corresponding routing network is graphically represented.

4.2 Stationary distribution

Let s = (s0, s1, . . . ) be a strategy, where sk corresponds to the probability of a customer
to join the system, knowing that the total number of customers in the system is k. We
recall that σK denotes the K-threshold strategy, as defined in Remark 3.1.

Let Ps(k) be the expected profit function for a joining customer, that upon her
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(a) The queueing network.

(b) The routing network.

Figure 4.1: An example of tree network, where the underlying out-tree is the graph
G = (V,E), with V = {1, 2, 3, 4, 5, 6} and E = {(1, 2), (1, 3), (1, 4), (2, 5), (2, 6)}.
Figure (a) represents the structure of the queueing network, while figure (b) represents
the routing network, where customers move from node i to node j with probability pij.
Node 0 represents the outside environment.

arrival observes k users in the network, namely

Ps(k) = R− C(k) = R−
∑
i∈V

CiTi(k), (4.1)

where R is the reward a customer gets if she enters the system, Ci is the unitary cost
for sojourn time at queue i, Ti(k) is the expected sojourn time at queue i, knowing the
partial information, and C(k) =

∑
i∈V CiTi(k) is the expected cost for sojourn time.

We will see that Ps(k) does not depend on the strategy s, so we denote it with P (k).
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We compute an explicit expression for P (k) and the equilibrium strategy is found
by maximizing the expected profit function, assuming that all customers use the same
strategy. We also suppose that a customer, that doesn’t enter the system, gets a profit
equal to 0.

The state of the system at any time t can be described by a random vector
(Qi(t))i∈V , where Qi(t) is the number of customers at node i, at time t. Under the
strategy s, {(Qi(t))i∈V : t ≥ 0} is a continuous time Markov process, which is described
by the transition rates qs(n, n

′), with n, n′ ∈ Zν
+. The transition rates are

qs(n, n
′) =



λs|n|, if n′ = n+ e1

pijµi, if n′ = n− ei + ej, i ∈ V1, j ∈ S−(i)

pi0µi, if n′ = n− ei, i ∈ V

−λs|n| −
∑

i∈V µi1{ni>0}, if n′ = n

0, otherwise,

where |n| =
∑

i∈V ni and ei is the ν-dimensional unit vector with the i-th element equal
to 1. We observe that the first transition rate refers to the arrival rate at the system,
the second one refers to the transition rate for moving from a queue to another and
the third one corresponds to the transition rate for exiting the system. Regarding the
fourth equation, we observe that∑

i∈V

µi1{ni>0} =
∑
i∈V1

∑
j∈S−(i)

pijµi1{ni>0} +
∑
i∈V

pi0µi1{ni>0}.

Indeed ∑
i∈V1

∑
j∈S−(i)

pijµi1{ni>0} +
∑
i∈V

pi0µi1{ni>0}

=
∑
i∈V1

∑
j∈S−(i)

pijµi1{ni>0} +
∑
i∈V1

pi0µi1{ni>0} +
∑
i∈V2

pi0µi1{ni>0}

=
∑
i∈V1

( ∑
j∈S−(i)

pij + pi0

)
µi1{ni>0} +

∑
i∈V2

µi1{ni>0}

=
∑
i∈V1

µi1{ni>0} +
∑
i∈V2

µi1{ni>0} =
∑
i∈V

µi1{ni>0},

where we use the fact that
∑

j∈S−(i) pij + pi0 = 1, if i ∈ V1, and pi0 = 1, otherwise.

Suppose that the Markov process {(Qi(t))i∈V : t ≥ 0} has a stationary distri-
bution. Let πs = (πs(n))n∈Zν

+
be the stationary distribution, that is, for n ∈ Zν

+,
πs(n) = P(Q∗ = n) is the stationary probability of observing the state n in the system,
where Q∗ = (Q∗

i )i∈V is the vector with Q∗
i being the number of customers at node i in

the steady state. We also set |Q∗| =
∑

i∈V Q∗
i .
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To compute the stationary distribution, we first calculate the arrival rate to node
i ∈ V , called λi, which is obtained by solving the traffic equation (see Eq. 1.1)

λi = λp0i +
∑
j∈V

λjpji,

which is equivalent to {
λ1 = λ

λj = λipij, for all i ∈ V1, j ∈ S−(i)
(4.2)

which means that, if (i, j) ∈ E is an edge of the underlying out-tree of the tree network,
then λj = λipij, that is from node i to node j the arrival rate is rescaled by a factor of
pij.

Now, we denote with W (i) the sequence of vertices of V that form the path from
node 1 to node i, that is

W (i) = {1 = v0(i), v1(i), . . . , vn(i) = i : (vj−1(i), vj(i)) ∈ E∀j = 1, . . . , n}.

Then, for all i ∈ V \ {1},

λi =

|W (i)|−1∏
k=1

pvk−1(i)vk(i)λ, and λ1 = λ.

Let us call q1 := 1 and qi :=
∏|W (i)|−1

k=1 pvk−1(i)vk(i) for i ∈ V \ {1}. We have that, for
i ∈ V , qi corresponds to the probability of reaching node i from node 0. In particular,
for i ∈ V \ {1}, qi is the probability that a joining customer follows the path from
node 1 to node i. As a consequence of this setting, it turns out that for all i ∈ V

λi = qiλ.

By the definition of (qi)i∈V , we have that∑
i∈V

qipi0 = 1, (4.3)

because qipi0 is the probability of exiting the system at node i and, so, since any
customer leaves the system in a finite time period, the sum is equal to 1.

If we consider the tree network as a semiopen Jackson network (Section 1.1), with
an overall buffer capacity ofK, which means that the adopted strategy by all customers
is the strategy σK , then we get that, from Theorem 1.3, the stationary distribution is

πσK
(n) =

∏
i∈V

(
λi

µi

)ni

∑
|n′|≤K

∏
i∈V

(
λi

µi

)n′
i
, |n| ≤ K. (4.4)

But in general, the stationary distribution depends on the strategy s and it is given
by the following theorem.
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Lemma 4.1 (Stationary distribution). If the tree network has a stationary distribution
under the strategy s, then the stationary distribution is

πs(n) =

|n|∏
k=0

sk−1

∏
i∈V

(
λi

µi

)ni

∑
n′∈ZM

+

|n′|∏
k=0

sk−1

∏
i∈V

(
λi

µi

)n′
i

, n ∈ Zν
+, (4.5)

where s−1 = 1 is fixed.

Proof: To prove formula (4.5), we use the definition: the stationary distribution πs

satisfies the full balance equations, which equates the “probability flow” out of each
state n with the flow into the same state:

πs(n)
∑
n′ ̸=n

qs(n, n
′) =

∑
n′ ̸=n

πs(n
′)qs(n

′, n). (4.6)

So we put (4.5) into Eq. (4.6) and verify that the equality holds. On the left hand side
we have

πs(n)

[
λs|n| +

∑
i∈V

µi1{ni>0}

]
,

while on the right hand side, we have

πs(n− e1)qs(n− e1, n)1{n1>0} +
∑
i∈V1

∑
j∈S−(i)

πs(n+ ei − ej)qs(n+ ei − ej, n)1{nj>0}

+
∑
i∈V

πs(n+ ei)qs(n+ ei, n)

=cs

[ |n|−1∏
k=0

sk−1

∏
ℓ∈V

(
λℓ

µℓ

)(n−e1)ℓ

λs|n|−11{n1>0} +
∑
i∈V1

∑
j∈S−(i)

|n|∏
k=0

sk−1

∏
ℓ∈V

(
λℓ

µℓ

)(n+ei−ej)ℓ

pijµi1{nj>0}

+
∑
i∈V

|n|+1∏
k=0

sk−1

∏
ℓ∈V

(
λℓ

µℓ

)(n+ei)ℓ

pi0µi

]
=πs(n)

[
s−1
|n|−1

µ1

λ1

λs|n|−11{n1>0} +
∑
i∈V1

∑
j∈S−(i)

λi

µi

µj

λj

pijµi1{nj>0} +
∑
i∈V

s|n|
λi

µi

pi0µi

]

=πs(n)

[
λs|n| +

∑
i∈V

µi1{ni>0}

]
,

where, in the third step, we use the relations (4.2) and (4.3), while c−1
s is the denomina-

tor of Eq. (4.5). Since the two expressions are equal, πs(n) is the stationary distribution
we were looking for.
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We observe that the distribution (4.5) with the strategy s = σK gives the formula
in (4.4). If, instead, we compute the stationary distribution conditioned on the total
number of customers in the system, say k, then the stationary distribution does not
depend on the strategy s and its expression is given by the following theorem.

Corollary 4.2 (Stationary distribution under partial information). If the tree net-
work has a stationary distribution under the strategy s, then the conditional joint
distribution of Q∗, given |Q∗| = k, is

π(n | k) =

M∏
i=1

(
qi
µi

)ni

∑
|n′|=k

M∏
i=1

(
qi
µi

)n′
i

, |n| = k, n ∈ Zν
+,

which does not depend on the strategy s. If moreover si = 1 for all i = 0, 1, . . . , k − 1,
the conditional joint distribution of Q∗, given |Q∗| ≤ k, is

π≤(n | k) = πσk
(n).

Proof: The proof is immediate, because we have that for |n| = k

π(n | k) = P(Q∗ = n, |n| = k)

P(|Q∗| = k)
=

cs
k∏

j=0

sj−1

∏
i∈V

(
λi

µi

)ni

∑
|n′|=k

cs
k∏

j=0

sj−1

∏
i∈V

(
λi

µi

)n′
i

=

∏
i∈V

(
qi
µi

)ni

∑
|n′|=k

∏
i∈V

(
qi
µi

)n′
i
,

and, for |n| ≤ k, provided that si = 1 for all i = 0, 1, . . . , k − 1, we have that

π≤(n | k) = P(Q∗ = n, |n| ≤ k)

P(|Q∗| ≤ k)
=

cs
|n|∏
j=0

sj−1

∏
i∈V

(
λi

µi

)ni

∑
|n′|≤k

cs
|n′|∏
j=0

sj−1

∏
i∈V

(
λi

µi

)n′
i

=

∏
i∈V

(
λi

µi

)ni

∑
|n′|≤k

∏
i∈V

(
λi

µi

)n′
l

= πσk
(n).

4.3 Equilibrium strategies

As already mentioned, we want to compute the expected profit function P (k) (see
Eq. (4.1)) of a joining customer that at her arrival observes k customers in the sys-
tem. Thus, knowing the partial information, the tagged customer joins the system if
P (k) > 0 and balks if P (k) < 0, while for P (k) = 0, the two actions are immaterial.
We prove that such a strategy is an equilibrium threshold strategy.
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We recall that, from the PASTA property (Theorem 1.12), a customer observes the
state Q∗ upon her arrival. We also recall that Ti(k) is the expected sojourn time at
queue i ∈ V , knowing the partial information |Q∗| = k.

We define T≤
i (k) = Eσk+1

[Si | |Q∗| ≤ k] as the expected sojourn time at queue i of a
joining customer under the strategy σk+1, where Si is the random variable representing
the sojourn time at queue i. The following lemma gives some properties about Ti(k)
and T≤

i (k).

Lemma 4.3 (Properties of Ti(k) and T≤
i (k)). For any i ∈ V , the expected sojourn

time Ti(k) is independent of the strategy s adopted by all customers and it holds that

Eσk+1
[Si | |Q∗| ≤ k − 1] = Eσk

[Si | |Q∗| ≤ k − 1] =: T≤
i (k − 1).

Proof: For any queue i ∈ V , we have that

Ti(k) =
∑
|n|=k

T̄i(n+ e1)π(n | k),

where T̄i(n+e1) is the expected sojourn time at queue i of a joining customer observing
the state n ∈ Zν

+ at her arrival and π(n | k) is the conditional joint distribution, which
does not depend on the strategy s, as proved in Corollary 4.2. So, also the expected
sojourn time Ti(k) does not depend on the strategy s.

For the second part of the statement, we have that, under a strategy s, with si = 1
for all i = 0, 1, . . . , k − 1,

Es[Si | |Q∗| ≤ k − 1] =
k−1∑
j=0

Ti(j)
∑
|n|=j

π≤(n | k − 1),

since both Ti(j) and π≤(n | k) don’t depend on s, as proved in Corollary 4.2. So

Eσk+1
[Si | |Q∗| ≤ k − 1] = Eσk

[Si | |Q∗| ≤ k − 1] =: T≤
i (k − 1).

At this point, we compute Ti(k) and then the expected profit function, which easily
comes from Eq. (4.1). The proof of Theorem 4.4 use the Little’s law to compute T≤

i (k)
and then, thanks to Lemma 4.3, the expression of Ti(k) is recovered (see Remark 1.24).

Theorem 4.4 (Expected sojourn time). For i ∈ V , the expected sojourn time at queue
i is

Ti(k) =

∑
|n|=k+1

ni

∏
ℓ∈V

(
qℓ
µℓ

)nℓ

∑
|n|=k

∏
ℓ∈V

(
qℓ
µℓ

)nℓ
, k = 0, 1, 2, . . .
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Proof: Let

xj =
∑
|n|=j

∏
ℓ∈V

(
λℓ

µℓ

)nl

,

yj(i) =
∑
|n|=j

ni

∏
ℓ∈V

(
λℓ

µℓ

)nℓ

.

As defined in Remark 3.1, let σk+1 denote the threshold strategy under which
customers join the network if and only if the total number of customers in the network
is less than k+1. Let T≤

i (k) be the expected sojourn time at queue i ∈ V incurred by
a joining customer under the threshold strategy σk+1.

Under the threshold strategy σk+1, the joining probability of an arbitrary arriving
customer is

P(|Q∗| ≤ k) =
∑
|n|≤k

πσk+1
(n) =

k∑
j=0

∑
|n|=j

∏
ℓ∈V

(
λℓ

µℓ

)nℓ

k+1∑
j=0

∑
|n|=j

∏
ℓ∈V

(
λℓ

µℓ

)nℓ

=

k∑
j=0

xj

k+1∑
j=0

xj

,

where we have used Eq. (4.5) with s = σk+1. Thus, under the threshold strategy σk+1,
the arrival rate of joining customers in the system, denoted by λ̄, is

λ̄ = λ

∑k
j=0 xj∑k+1
j=0 xj

.

For i ∈ V , the expectation of Q∗
i , under the threshold strategy σk+1, is

E[Q∗
i ] =

+∞∑
m=0

m
∑
n∈ZM

+
ni=m

πσk+1
(n) =

∑
n∈ZM

+

ni πσk+1
(n) =

k+1∑
j=0

∑
|n|=j

ni

∏
ℓ∈V

(
λℓ

µℓ

)nℓ

k+1∑
j=0

∑
|n|=j

∏
ℓ∈V

(
λℓ

µℓ

)nℓ

=

k+1∑
j=0

yj(i)

k+1∑
j=0

xj

.

From Little’s law, as defined in (1.8), with L = E[Q∗
i ], T = T≤

i (k) and average
arrival rate λ̄, we have that

T≤
i (k) =

E
[
Q∗

i

]
λ̄

=

∑k+1
j=0 yj(i)

λ
∑k

j=0 xj

. (4.7)

Let us note that we use the arrival rate λ̄ for all node i ∈ V because the tagged
customer observes the system at her arrival, without knowing which path she will take.
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Under the threshold strategy σk+1, k ≥ 1, the probability that a joining customer
has the information that there are less than k customers in the network is

P(|Q∗| < k | |Q∗| ≤ k) =
P(|Q∗| < k)

P(|Q∗| ≤ k)
=

∑k−1
j=0 xj∑k+1
j=0 xj

·
∑k+1

j=0 xj∑k
j=0 xj

=

∑k−1
j=0 xj∑k
j=0 xj

and the probability that a joining customer has the information that there are exactly
k customers in the network is

P(|Q∗| = k | |Q∗| ≤ k) =
P(|Q∗| = k)

P(|Q∗| ≤ k)
=

xk∑k+1
j=0 xj

·
∑k+1

j=0 xj∑k
j=0 xj

=
xk∑k
j=0 xj

.

Therefore, we have that, for k = 1, 2, . . . ,

T≤
i (k) =

∑k−1
j=0 xj∑k
j=0 xj

Eσk+1
[Si | |Q∗| ≤ k − 1] +

xk∑k
j=0 xj

Eσk+1
[Si | |Q∗| = k],

which, from Lemma 4.3, turns out to be equal to

T≤
i (k) =

∑k−1
j=0 xj∑k
j=0 xj

T≤
i (k − 1) +

xk∑k
j=0 xj

Ti(k). (4.8)

Substituting (4.7) into (4.8), we obtain that

Ti(k) =
yk+1(i)

λxk

=

∑
|n|=k+1

ni

∏
ℓ∈V

(
qℓ
µℓ

)nℓ

∑
|n|=k

∏
ℓ∈V

(
qℓ
µℓ

)nℓ
, k = 1, 2, . . .

This also holds for k = 0, because we have that

Ti(0) =
qi
µi

,

that is, knowing that no customers are in front of the tagged one, the expected sojourn
time at queue i is given by the probability of arriving at queue i multiplied by the
average service time at queue i.

We observe that, for all i ∈ V , Ti(k) is strictly increasing and goes to +∞ as
k → +∞. It means that the expected sojourn time at queue i ∈ V of a tagged
customer grows, as the number of customers k grows, and it goes to +∞, if the number
of customers in the system goes to +∞. This result is stated in the following theorem.

Theorem 4.5 (Monotonicity of the expected sojourn time). For i ∈ V , the expected
sojourn time at queue i, Ti(k), is strictly increasing and

lim
k→+∞

Ti(k) = +∞.
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Proof: To prove the first part of the statement, we want to show that, for i ∈ V ,

Ti(k)

Ti(k − 1)
> 1, ∀k ∈ Z, k ≥ 1.

We denote aℓ := qℓ/µℓ for ℓ ∈ V . We observe that∑
|n|=k+1

∏
ℓ∈V

anℓ
ℓ =

∑
j∈V

aj
∑
|n|=k

∏
ℓ∈V

anℓ
ℓ∑

|n|=k+1

ni

∏
ℓ∈V

anℓ
ℓ =

∑
j∈V

aj
∑
|n|=k

ni

∏
ℓ∈V

anℓ
ℓ + ai

∑
|n|=k

∏
ℓ∈V

anℓ
ℓ .

(4.9)

Then, using the previous observation in (4.9) and Theorem 4.4, we have that

Ti(k)

Ti(k − 1)
=

∑
|n|=k+1

ni

∏
ℓ∈V

anℓ
ℓ∑

|n|=k

∏
ℓ∈V

anℓ
ℓ

·

∑
|n|=k−1

∏
ℓ∈V

anℓ
ℓ∑

|n|=k

ni

∏
ℓ∈V

anℓ
ℓ

=

∑
j∈V

aj
∑

|n|=k

ni

∏
ℓ∈V

anℓ
ℓ + ai

∑
|n|=k

∏
ℓ∈V

anℓ
ℓ∑

j∈V
aj

∑
|n|=k−1

∏
ℓ∈V

anℓ
ℓ

·

∑
|n|=k−1

∏
ℓ∈V

anℓ
ℓ∑

|n|=k

ni

∏
ℓ∈V

anℓ
ℓ

=1 +

ai
∑

|n|=k

∏
ℓ∈V

anℓ
ℓ∑

j∈V
aj

∑
|n|=k

ni

∏
ℓ∈V

anℓ
ℓ

> 1.

Regarding the second part of the statement, we denote ci := ai/
∑
j∈V

aj. Then, we

have that Ti(k)/Ti(k − 1) can be bounded by 1 + cik
−1 from below, since

Ti(k)

Ti(k − 1)
= 1 +

ai
∑

|n|=k

∏
ℓ∈V

anℓ
ℓ∑

j∈V
aj

∑
|n|=k

ni

∏
ℓ∈V

anℓ
ℓ

≥ 1 +

ai
∑

|n|=k

∏
ℓ∈V

anℓ
ℓ

k
∑
j∈V

aj
∑

|n|=k

∏
ℓ∈V

anℓ
ℓ

= 1 + ci
1

k
, (4.10)

where we use the fact that ni ≤ k for any n ∈ Zν
+ such that |n| = k.

Hence, using Eq. (4.10), the limit of Ti(k)/Ti(0) becomes

lim
k→+∞

Ti(k)

Ti(0)
= lim

k→+∞

k∏
j=1

Ti(j)

Ti(j − 1)
≥ lim

k→+∞

k∏
j=1

(
1 + ci

1

j

)
> 1 + ci lim

k→+∞

k∑
j=1

1

j
= +∞,

and this concludes the proof, since Ti(0) is constant and equal to qi/µi.

From Theorem 4.4 and using Eq. (4.1), we can build the expected profit function
P (k), which turns out to be equal to

P (k) = R−
∑
i∈V

CiTi(k) = R−
∑
i∈V

Ci

∑
|n|=k+1

ni

∏
ℓ∈V

(
qℓ
µℓ

)nℓ

∑
|n|=k

∏
ℓ∈V

(
qℓ
µℓ

)nℓ
, k = 0, 1, 2, . . .
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We observe that P (k) is independent of the strategy s and the arrival rate λ.
Furthermore, from Theorem 4.5, we have that P (k) is strictly decreasing in k and
limk→+∞ P (k) = −∞, which means that the more the customers in the system at the
arrival of a customer, the lower her expected profit function.

Thanks to this observation, we have that the lower extreme inf{k ∈ Z+ : P (k) < 0}
exists and is finite. In the following theorem, we show which is the strategy that
all customers have to use to get an optimal payoff. In particular, we have that the
equilibrium strategies are threshold strategies.

Theorem 4.6 (Equilibrium strategies). Let K be the threshold given by

K = inf{k ∈ Z+ : P (k) < 0}.

If P (K − 1) > 0, then the threshold strategy σK is the only equilibrium strategy.
If P (K − 1) = 0, then all the threshold strategies (1 − p)σK−1 + pσK , with p ∈ [0, 1],
are the only equilibrium strategies.

Proof: Let Fs1,s2(k) be the payoff for a customer that chooses to follow the strategy s1,
when everyone else chooses to follow the strategy s2. In this case, the payoff function
is equal to P (k) if the strategy s1 says to enter the system, 0 otherwise, that is

Fs1,s2(k) = P (k)X(k),

where X(k) is a Bernoulli random variable of parameter s1k.
We have that a strategy s̄ is an equilibrium strategy if and only if

Fs̄,s2(k) ≥ Fs1,s2(k), for all k ∈ N and for all strategies s1, s2, and, by the definition of
the payoff function, it is equivalent to

s̄k = 1 for k with Ps(k) > 0 and

s̄k = 0 for k with Ps(k) < 0.
(4.11)

So, the threshold strategies in the statement are the only strategies that satisfy equa-
tions (4.11), and so they are the only equilibrium strategies for the tree network.

Now, we consider queue j ∈ V \ {1} and analyze what happens to the system if
the service time at queue j goes to infinity. We compute the limit of Ti(k) as µj goes
to +∞ for any i ∈ V . Doing the limit means supposing that, as soon as a customer
reaches queue j, she immediately completes the service and moves to one of the next
queues in S−(j) if j ∈ V1, or leaves the system. So, we expect that the model behaves
as a tree network with one less vertex and with edges connecting directly the vertex
S+(j) to any vertex in S−(j). To prove this result, we compute the limit of Ti(k) for
any i ∈ V . We obtain that for k = 0, 1, 2, . . . ,

lim
µj→∞

Tj(k) = 0,

lim
µj→∞

Ti(k) =

∑
|n|=k+1

ni

∏
ℓ∈V \{j}

(
qℓ
µℓ

)nℓ

∑
|n|=k

∏
ℓ∈V \{j}

(
qℓ
µℓ

)nℓ
, for i ̸= j,

(4.12)
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where the sum over |n| = k+1 and |n| = k is made for n ∈ Zν−1
+ , obtained by removing

the j-th entry.
To conclude this section, we consider an example of tree network, where the ex-

pected profit function is greatly simplified. We assume that all service rates and all
costs for sojourn time are equal to each other, that is µi = µj =: µ and Ci = Cj =: C
for all i, j ∈ V . Then the expected profit function P (k) becomes

P (k) = R− (k + 1)C

µ
·

∑
|n|=k+1

∏
ℓ∈V

qnℓ
ℓ∑

|n|=k

∏
ℓ∈V

qnℓ
ℓ

. (4.13)

.

4.4 Numerical computations

The easiest example of a tree network that is not a tandem network has an underlying
out-tree G(V,E) with V = {1, 2, 3} and E = {(1, 2), (1, 3)}. First, we compare this
tree network with a two-node tandem network. Then, we look at the behaviour of
the equilibrium threshold for different values of costs, as the routing probabilities vary.
We refer to the tree network with model A and to the two-node tandem network with
model B.

To compare the two models, for model A we choose the following parameters: the
routing probabilities are p12 = p13 = 1/2, which implies that q1 = 1 and q2 = q3 = 1/2,
and the service rates are all equal to µ. For the two-node tandem network (see Chap-
ter 2), we choose µ1 = µ, µ2 = 2µ.

So, we are comparing the two queueing networks represented in Figure 4.2, where
at queue 1 the service rates are equal to µ and, after completing service at queue 1,
customers are routed, on the one hand, to queue 2 or queue 3 with the same probability
of 1/2, both with service rate µ, and, on the other hand, to queue 2 with a double
service rate 2µ. In both systems, customers pay a cost C per unit of sojourn time at
each queue.

We choose to compare these two models, because we expect the equilibrium strate-
gies to be similar to each other, due to the fact that, after queue 1, inmodel A customers
are split into two different queues, while in model B customers are routed to the same
queue, but with a double service rate.

For model A (see Chapter 2), the expected profit function is

PA(k) = R− (k + 1)C

µ
· 2(k + 1) + 2−(k+1)

2k + 2−k
,

while, for model B (see Eq. (4.13)), it is

PB(k) = R− (k + 1)C

µ
· 2

k+2 − 1

2k+2 − 2
.
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(a) Model A.

(b) Model B.

Figure 4.2: Comparison of model A with model B.

The functions PA(k) and PB(k) are graphically represented in Figure 4.3 (a), where we
fix some parameters in order to see their behaviour. We observe that PA(k) is slightly
lower than PB(k). In Figure 4.3 (b), however, we compare the equilibrium thresholds
for the models, noting again that the thresholds for model A are lower than those for
model B.

(a) Plot of PA(k) and PB(k) as k varies. (b) Equilibrium thresholds as µ grows.

Figure 4.3: In these graphs, we have chosen the following parameters R = 6, C = 1
and, in figure (a), also µ = 1.

Now, we take a closer look at model A, by varying the routing probabilities and
the costs for sojourn time, in order to see how the equilibrium threshold changes. We
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fix the following parameters: service rates are µi = i for i = 1, 2, 3 and the reward is
R = 20. We also fix C1 = 1, C1 + C2 + C3 = 13 and p12 + p13 = 1. On the contrary
the parameters that vary are C2 ∈ [0, 12] (with C3 = 12 − C2) and p12 ∈ [0, 1] (with
p13 = 1 − p12). Within this framework, the values of the equilibrium threshold are
represented in Figure 4.4. We can observe that the thresholds are higher when the cost
C2 is low and the probability p12 is high or when the cost C2 is high and the probability
p12 is low, while thresholds are lower when C2 and p12 are both high or low. A sort of
saddle point is formed in the middle. In Appendix A, we include, as an example, the
MATLAB code for the expected profit function of a customer who joins a tree network.
For a complete collection of MATLAB codes, see [19].

(a) 3D-plot. (b) 2D-plot as p2 varies.

Figure 4.4: Plot (a) and plot (b) show the values of the equilibrium threshold as
the routing probability p12 and the cost C2 vary, where p13 = 1 − p12 and C1 = 1,
C3 = 12− C2.





Chapter 5

Overtaking free condition

Abstract

In this chapter we show that, under the FIFO discipline and with exponential service times,
a queueing network is overtaking free if and only if it is a tree network. Then, we show that
there exist systems that are not overtaking free under the FIFO discipline, but they become
so if the service discipline is changed. After that, we study an example of non overtaking
free network under the FIFO discipline. Finally, we consider the M/Er/1 model, where the
distribution of service times, instead of being exponential, is Erlang.

5.1 Overtaking free networks

So far we have only considered queueing networks, where the place in each queue is
determined by the order of customers’ arrivals. This means that whoever arrives at a
certain queue first, gets served first. Such service discipline is called FIFO, which stands
for first-in-first-out. In this chapter, precisely in Section 5.2, we change the customer
service discipline. We suppose that customers arriving at the system are labeled with
increasing numbers, which means that those who arrive first at the system have lower
numbers than those who arrive later. When the tagged customer arrives at a certain
queue along the system, she is directly ahead of everyone that is tagged with a higher
number than hers, even if someone of these arrived first. Within this service discipline,
we have that the possible customers ahead of the tagged one are only those arrived
at the system before her and, so, it doesn’t need to take into account the presence
of customers arrived at the system after her for the computation of the sojourn time.
Such a service discipline is called preemptive-resume label order discipline.

We explain better the preemptive-resume label order discipline in the following
example, graphically represented in Figure 5.1. We suppose that a Poisson process
settles the arrivals at the system by sending them into two queues, called queue 1
and queue 2, and then they are all routed to the same queue, called queue 3. Let
us suppose that the tagged customer is associated to number N and she is routed to
queue 1. The next arriving customer will be labeled with N + 1 and so on. When

65
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customer N arrives to queue 3, she overtakes immediately all customers with greater
labels, including, in case, also the one receiving the service. On the contrary, while
customer N waits in queue 3, any customer, who is labeled with lower number and
arrives from queue 2, overtakes her and receives the service before her. Thanks to this
service discipline, customers with greater labels than that of the tagged customer don’t
affect the sojourn time of the tagged customer, while those with lower labels do, since
they arrived at the system before her.

Figure 5.1: Example of queueing network, where, under the FIFO discipline, the net-
work is not overtaking free, while, under the preemptive-resume label order discipline,
the network is overtaking free.

In this section, we prove that, under a FIFO discipline and with exponential service
times, a queueing network is overtaking free if and only if it is a tree network. We first
give a formal definition of overtaking free network [20, 11] and tree network [6, 2], and
then prove the statement.

We suppose that all joining customers arrive from a Poisson process and enter the
system at queue 1. That is the transition probability from outside (node 0) to first
node (node 1) is p01 = 1 and node 1 serves as the root of the tree. We also assume that
there exists at least one node, from which customers leave the system, and at least one
path from 1 to any node of the network, since otherwise such a node would be out of
the network. We say that the underlying graph of a queueing network is the directed
graph G(V,E), where V is the set of nodes of the network and E is the set of edges
(i, j) such that pij > 0.

Definition 5.1 (Overtaking free network). A queueing network is overtaking free if
and only if the sojourn time of a tagged customer at any queue doesn’t depend on the
distribution of the customers arrived at the system after her.

Definition 5.2 (Tree network). A queueing network is a tree network if and only if
its underlying graph G(V,E) is an out-tree.

Theorem 5.3 (Characterization of overtaking free networks). Under the FIFO disci-
pline and with exponential service times at each queue, a queueing network is overtak-
ing free if and only if it is a tree network.
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Proof: First, we observe that according to an exponential distribution, there is a posi-
tive probability that a customer takes a time t to complete the service for any t > 0.
We prove one implication at a time.

(⇐) Let G(V,E) be the underlying graph of a tree network, namely G(V,E) is an
out-tree. Then, from Lemma 1.29, we have that there is a unique path that connects
the root node 1 to any vertex of the graph. So, since the service discipline is the FIFO
one, the queuing network is overtaking free.

(⇒) Let G(V,E) be the underlying graph of an overtaking free network. Using
Definition 1.28, we prove that |E| = |V | − 1, because by assumption we already have
that for any node v ∈ V there exists a directed path from node 1 to node v. Let
us suppose by contradiction that there exists two different edges entering a vertex
v ∈ V \ {1}. It means that there are two different paths connecting vertex 1 to vertex
v, say w1 and w2. Then, since the service times are exponential and the discipline is
FIFO, there is a positive probability such that a customer running along path w2 can
reach queue at node v and be in front of a customer, who arrived at the system before
her and ran along path w1. This is a contradiction with the definition of overtaking
free condition. So, since at least one edge enters the vertex v, we have that any vertex
has one only entering edge. As for vertex 1, if there exists an edge entering in 1, then
there is also a cycle, which is a contradiction because in this way there would exist
two different path connecting vertex 1 to any vertex. So, the edges are as many as the
vertices minus 1, that is |E| = |V | − 1.

We observe that the proof holds thanks to the assumption on the service discipline
and the distribution of the service times, but if we consider other distributions of service
times, provided that their support is [0,+∞), as, for example, the Erlang distribution,
the theorem still holds true. However, in general, if we change the service discipline or
the distribution of the service times, Theorem 5.3 may no longer be valid.

So, in conclusion, we have that, under a FIFO discipline and with exponential
service times, in an overtaking free network, node 1 serves as the root of the tree, at
which customers arrive, and all other nodes must have only one entering edge. So, it
means that customers, after the completion of the service, can be divided into several
queues, but each queue can accept customers from only one queue.

An example of non overtaking free queueing network with exponential service times,
under a FIFO discipline, is represented in Figure 5.2. It is easy to see that the over-
taking free condition is not satisfied since a customer, while waiting at queue 1, can be
overtaken by a customer, who is directly routed to queue 2. As analyzed in [20], we
have that in this example the sojourn times of a customer at queue 1 and at queue 2
are not independent. On the contrary, in an overtaking free network, we have that the
sojourn times of a customer in different queues are independent. For the proof about
independence when queues are in tandem, see [16, 17].
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5.2 Preemptive-resume label order discipline

In this section we analyse a two-node tandem network, where customers can enter the
system also at the second queue, as represented in Figure 5.2. This is an example
of queueing network which is not overtaking free under the FIFO discipline, but it
becomes so if the discipline is changed. Specifically, we will use the preemptive-resume
label order discipline.

We consider a tandem network with two single server nodes with infinite buffers.
We index the nodes by l, l = 1, 2. Service times are independent and exponentially
distributed with mean µ−1

l , that is the service rate at node l is µl.
We suppose that customers arrive to the system according to a Poisson process with

rate λ and they are routed with probability p1 > 0 to queue 1 and with probability
p2 to queue 2, where p1 + p2 = 1. That is, from Theorem 1.11, we can suppose
that customers arrive to the system according to two independent Poisson processes of
intensities λ1 := p1λ and λ2 := p2λ. If customers arrive to the system from the first
Poisson process, then they are routed to queue 1, otherwise they are routed directly to
queue 2.

In this queueing network customers are served according to the order of their labels.
That is when a customer arrive at the system, she is associated to a number and the
service discipline is the preemptive-resume label order one, as defined previously in
Section 5.1. The model is graphically represented in the following queueing network
(Figure 5.2).

Figure 5.2: Two-node tandem network where customers arrive at the system following
one of the two independent Poisson processes with intensities λ1 and λ2. In one case
they are routed to queue 1, in the other one to queue 2. Service rates are µ1 and µ2

respectively.

We are interested in finding the strategy to be adopted by all arriving customers
such that it is an equilibrium for customers arriving from the first Poisson process. As
usual, the partial information is the number of customers in the system at the arrival
of the tagged customer, who, therefore, doesn’t know the exact number of customers
in the first queue and in the second one, but only the total number.

From now on, we say arriving customer to mean a customer that arrive at the system
from the Poisson process of intensity λ1. So, the arriving customer, after receiving the
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partial information about the state of the system, decides whether to join or balk the
system according to the strategy.

For our goal, we compute the expected profit P (k) of an arriving customer that
observes k customers in the system and joins. By maximizing the expected profit
function, we can find the equilibrium threshold. The expected profit function has the
following form

P (k) = R− C1T1(k)− C2T2(k), (5.1)

where R ≥ C1/µ1 + C2/µ2 is the reward for joining the system, Cl is the cost for unit
of sojourn time at queue l and Tl(k) is the expected sojourn time at queue l, knowing
the partial information.

We assume that all arriving customers use the same strategy. By definition 3.12, an
equilibrium strategy for this model requires the following actions: to join if P (k) > 0,
to balk if P (k) < 0. We will see that such a strategy is a threshold strategy.

As for Chapter 2, the random vector (Q1, Q2) denotes the state of the system:
(Q1, Q2) = (n,m) means that n customers are in the first queue and m customers
in the second queue. Let Tl(n,m) be the expected sojourn time spent at queue l by
an arriving customer that joins a system being in state (n − 1,m), and T (n,m) =
T1(n,m) + T2(n,m) the total expected sojourn time. Then, we have that

T1(n,m) =
n

µ1

, n,m ≥ 0,

and, applying a first step analysis, we get that

T (n,m) =
1

µ1 + µ2

+
µ1

µ1 + µ2

T (n− 1,m+1)+
µ2

µ1 + µ2

T (n,m− 1), n,m > 0, (5.2)

which implies that

T2(n,m) =
µ1

µ1 + µ2

T2(n− 1,m+ 1) +
µ2

µ1 + µ2

T2(n,m− 1), n,m > 0.

The boundary conditions are

T (0,m) = T2(0,m) =
m

µ2

, m ≥ 0,

T (n+ 1, 0) =
1

µ1

+ T (n, 1) and T2(n+ 1, 0) = T2(n, 1), n ≥ 0.

We observe that the previous equations are the same ones that hold also for the two-
node tandem network described in Chapter 2. In particular we observe that Eq. (5.2)
holds because we don’t consider the possibility of going from state (n,m) to state
(n+ 1,m) or state (n,m+ 1) for the computation of the expected sojourn time, since
they don’t affect the expected sojourn time of a customer in position (n,m). Indeed
the uniform Markov chain that described the position of a customer, from when she
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joins until she leaves the system, is the same as the one used in the two-node tandem
network without entries (see Figure 2.3).

On the contrary, the stationary distribution of the number of customers in the
system is different. Let (Q∗

1, Q
∗
2) be the stationary state of the system and Q∗ = Q∗

1+Q∗
2

the total stationary number of customers in the system. Let πK(n,m) be the stationary
distribution of the state of the system, conditioned onQ∗ ≤ K. It means that the model
is assumed to be a semiopen Jackson network with an overall buffer capacity of K (see
Section 1.1). From the traffic equation (1.1), we obtain that the arrival rate at queue 1
and at queue 2 are p1λ and λ respectively. So, the stationary distribution, given by
Theorem 1.3, is equal to

πK(n,m) = cK

(
p1λ

µ1

)n(
λ

µ2

)m

, n+m ≤ K, (5.3)

where c−1
K =

∑
n+m≤K

(
p1λ
µ1

)n( λ
µ2

)m
is the normalization constant.

We denote with π(n, k − n) = P(Q∗
1 = n|Q∗ = k) the stationary distribution

conditioned on the partial information, where we omit the subindex K because it
doesn’t depend on the threshold K. Then, from formula (5.3), we have that

π(n, k − n) =

{
µk−n
1 (p1µ2)

n(µ1 − p1µ2)/(µ
k+1
1 − (p1µ2)

k+1), µ1 ̸= p1µ2

1/(1 + k), µ1 = p1µ2

. (5.4)

Thanks to the conditional stationary distribution (5.4), we can compute the ex-
pected sojourn time at queue l, Tl(k), for a customer that enters the system containing
k customers. We obtain that, for µ1 ̸= p1µ2,

T1(k) =
1

µ1 − p1µ2

− k + 1

µ1

(p1µ2)
k+1

µk+1
1 − (p1µ2)k+1

,

T2(k) =
1

p1µ2 − µ1

− k + 1

p1µ2

µk+1
1

(p1µ2)k+1 − µk+1
1

,

and, for µ1 = p1µ2,

Tl(k) =
1

µ1

(
1 +

k

2

)
, l = 1, 2.

We note that the formulas of T1(k) and T2(k) are symmetric if we exchange the terms
µ1 and p1µ2. These expressions allow us to write a closed formula also for the expected
profit function P (k), as defined in (5.1).

At this point, since the tagged arriving customer wants to maximize her payoff
function given by the expected profit function, if she enters, and 0, if she balks, the
strategy to adopt says to join if P (k) is strictly positive and to balk if P (k) is strictly
negative. Such a strategy is indeed an equilibrium strategy, consistent with Defini-
tion 1.17. Therefore, since the expected profit function P (k) is strictly decreasing and
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goes to −∞ as k → +∞, the equilibrium strategy is the K-threshold strategy, where
the threshold K is given by

K = argmin{k ∈ Z+ : P (k) < 0}.

So, if all customers use theK-threshold strategy, it means that an arriving customer
observes the number of users in the system and if this number is less than K, she joins,
otherwise she balks.

5.3 Example of non overtaking free network

In this section we show an example of non overtaking free queueing network in order
to see the different approach in the analysis of this type of model. For overtaking
free queueing networks the sojourn time of the tagged customer is affected only by
those ones that join the system before her arrival. But, this property doesn’t hold
when overtaking is admitted. It means that we need to take into account also the
presence of customers arriving after the tagged one. This is the reason why studying
non overtaking queueing network turns out to be more complicated.

The example of non overtaking free system is the following: we consider a queueing
network with a single node, like in the M/M/1 model (see Section 1.5), but we assume
that some arriving customers, the so-called ordinary customers, queue up behind ev-
eryone, while other arriving customers, the so-called priority customers, can overtake
customers in line and queue up in front of the others, preempting the customer, who
might be in service. Ordinary customers follow a FIFO discipline, while priority cus-
tomers follow a LIFO discipline with preemption. We assume that that service, when
resumed, is continued from the point it was interrupted.

So, we suppose that each customer arrives at the system according to a Poisson
process with rate λ and can be an ordinary customer with probability p1 > 0 and a
priority customer with probability p2, where p1 + p2 = 1. That is, from Theorem 1.11,
we can suppose that customers arrive to the system according to two independent Pois-
son processes of intensity λ1 := p1λ and λ2 := p2λ. If customers arrive to the system
from the first Poisson process, they are ordinary customers, otherwise they are priority
customers. We also suppose that the service times are independent and exponentially
distributed with rate µ. The model is graphically represented in Figure 5.3.

We are interested to find the equilibrium strategy to be adopted by all arriving
ordinary customers, assuming that priority customers always join. When an ordinary
customer arrives at the system, she receives the partial information about the total
number of customer in the system and decides whether to join or balk according to her
strategy.

As usual, let P (k) be the expected profit of a joining ordinary customer after
observing k customers in the system. Then

P (k) = R− CT (k), (5.5)
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Figure 5.3: A single queue where customers arrive to the system following one of the
two independent Poisson processes. In one case they are ordinary customers, in the
other one priority customers. Service rate is µ.

where R is the reward for joining the system, C is the cost for unit of sojourn time
and T (k) is the expected sojourn time of a joining ordinary customer under the partial
information.

Let us compute the expected sojourn time T (k). For k = 0, we have that the
arriving ordinary customer observes that the queue is empty and, if she joins, she
immediately begins the service. But, if a priority customer arrives when the tagged
customer is still in service, she preempts that customer and starts to be served. Only
when there are no more priority customers in the queue, the tagged customer can
resume her service from the point it was interrupted. The same happens for any
priority customer arriving at the queue before the ordinary customer ends her service.

Actually, T (0) is also the expected sojourn time of a priority customer that joins the
system, because, by overtaking all customers in the queue, she immediately accesses
the service and she is preempted only by other priority customers. As a consequence
of this, any joining priority customer, knowing or not the partial information, has a
profit function equal to R−CT (0). So we suppose that R > CT (0) to ensure that any
priority customer and an ordinary customer, that observes an empty system, join.

We assume that µ > λ2, then for k = 0, we have that

T (0) =
1

µ− λ2

. (5.6)

Indeed, T (0) coincides with the expected sojourn time of the unobservable M/M/1
model (see Section 1.5) because, using the Little’s law, the expected sojourn time is
computed dividing the average number of customers by the arrival rate, each of which
doesn’t depend on the service discipline.

To compute T (k) for k ≥ 1, we use the following recursive equation, obtained with
a first step analysis strategy

T (k) =
1

µ+ λ2

+
λ2

µ+ λ2

T (k + 1) +
µ

µ+ λ2

T (k − 1), for all k = 1, 2, . . . (5.7)

The solution of the recursive equation (5.7) with the boundary condition (5.6) is

T (k) =
k + 1

µ− λ2

, for all k = 0, 1, 2, . . . , (5.8)
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and, so, the expected profit function becomes

P (k) = R− C(k + 1)

µ− λ2

,

Hence, the equilibrium strategy is a threshold strategy with threshold K given by

K = inf{k ∈ Z+ : P (k) < 0} =

⌊
R(µ− λ2)

C

⌋
. (5.9)

If P (K − 1) > 0, the pure K-threshold strategy is the only equilibrium strategy for
this model, while, if P (K − 1) = 0, any threshold strategy with threshold x = K − p
with p ∈ [0, 1] is an equilibrium strategy and, as a consequence of this, there are both
pure and mixed threshold strategies.

We observe that the equilibrium threshold in the Naor’s model, computed in (1.6),
is greater than the equilibrium threshold (5.9). This observation is consistent with the
fact that the expected sojourn time of an ordinary customer in this model is affected
by the priority overtaking customers and, so, it is larger than the same in the Naor’s
model.

5.4 M/Er/1 model

In this section, we consider a model with one only queue, at which customers ar-
rive according to a Poisson process of intensity λ and are served according to a
FIFO discipline. But, differently from all previous systems, in this case the service
times are independent and Erlang distributed. Let g denotes the service time, then
g ∼ Erlang(r, µ), with r ∈ N. Assuming an Erlang distribution for the service times
allows for the interpretation of one service time as a sequence of r independent phases,
each exponentially distributed with parameter µ. Until a given customer in service
leaves the queue, no other customer can start her service. This system is denoted by
M/Er/1. For the notation, we refer to [1, 10].

A state of this system can be represented by the number of customers in the system
and the remaining number of phases of the customer in service. The state (n,m) means
that in the system there are n customers and the one in service is missing m phases
before leaving the system. The flow diagram in Figure 5.4 (a) describes this system.

An easier way to represent a state of the system is by means of the total number
of remaining phases of work in the system. Indeed, the state (n,m) correspond to
(n − 1) · r + m phases of work to be done by the server. On the other hand, N > 0
phases of work in the system correspond to the state(⌊

N − 1

r

⌋
+ 1, N −

⌊
N − 1

r

⌋
· r
)
.

The Markov chain associated to the number of phases of work in the system has state
space {0, 1, 2, . . . }, where state N corresponds to N phases of work in the system, and
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it is represented in Figure 5.4 (b). The two ways to represent the states are equivalent,
but the second one is easier for computations. So, we will use the second one.

(a)

(b)

Figure 5.4: Transition rate diagrams of the M/Er/1 model with arrival rate λ and
Erlang service times with parameters r and µ.

We note that this system is equal to the M/M/1 model, except for the distribution
of the service times, which are Erlang instead of exponential. We want to find an
equilibrium strategy, if there is one, such that, all customers, using that strategy, get
the maximum expected profit. Customers are informed about the total number of
users in the system, say k, and the expected profit function P (k) depends on this
information, being defined by

P (k) = R− CT (k),

where R is the reward, C the unitary cost for sojourn time and T (k) the expected
sojourn time under the partial information.
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Under total information, an arriving customer observes the number of phases of
work in the system, say N , and her expected sojourn time will be equal to

T̃ (N) =
N + r

µ
,

for any N ∈ 0, 1, 2, . . .
So, under partial information, an arriving customer observes the number of cus-

tomers in the system, say k, and her expected sojourn time will be equal to

T (k) =
r∑

i=1

T̃ (r(k − 1) + i)π(r(k − 1) + i | k),

for any k ∈ 0, 1, 2, . . ., where π(· | k) is the stationary distribution under the partial
information. Therefore, for i = 1, . . . , r, π(r(k−1)+i | k) is the probability of observing
r(k − 1) + i phases of work, knowing that there are k customers in the system.

Actually, we will see that the stationary distribution depends on the strategy
adopted by all customers. So, recalling that σn denotes the pure threshold strategy
with threshold n, as defined in Remark 3.1, we denote with πn(· | k) the stationary
distribution conditioned on the partial information under the strategy σn, that is when
the system has no more than n customers. Similarly we define Tn(k) and Pn(k) as the
expected sojourn time and the expected profit function under the strategy σn.

Let us now focus on the stationary distribution of the number of customers in the
system, whether the strategy adopted is σn, n ≥ 3. The stationary distribution satisfies
the global balance equations, that are

πn(0) · λ = πn(1) · µ,
πn(N) · (λ+ µ) = πn(N + 1) · µ, N = 1, . . . , r − 1

πn(N) · (λ+ µ) = πn(N − r) · λ+ πn(N + 1) · µ, N = r, . . . , rn− r

πn(N) · µ = πn(N − r) · λ+ πn(N + 1) · µ, N = rn− r + 1, . . . , rn− 1

πn(rn) · µ = πn(rn− r) · λ

,

(5.10)
which can be rewritten as

µ · πn(N) = λ ·
∑N−1

j=0 πn(j), N = 1, . . . , r − 1

µ · πn(N) = λ ·
∑r

j=1 πn(N − j), N = r, . . . , rn− r

µ · πn(N) = λ ·
∑rn−N

j=0 πn(N − r + j), N = rn− r + 1, . . . , rn

. (5.11)

Remark 5.4. From the system of equations in (5.11), we observe that, for any
N ∈ {0, 1, . . . , rn}, πn(N) depends only on values of πn(N̄) with N̄ < N .

Lemma 5.5 (Stationary distribution). The stationary distribution of the number of
customers in the system, depending on the threshold strategy σn, n ≥ 2, satisfies the
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following recursive equation

πn(N) =
πn(0)

πn−1(0)
πn−1(N), for N ≤ rn− 2r + 1, (5.12)

and, for N > rn− 2r + 1, πn(N) is defined as in (5.11).

Proof: We prove it by induction. For n = 2, we only have to verify that Eq. (5.12)
holds for N = 0, 1. For N = 0, the equation is trivially satisfied, while for N = 2, it is
satisfied using the first equation of (5.10).

Let πn−1(·) be the stationary distribution under the strategy σn−1, then we prove
that πn(·) satisfies Eq. (5.12). From system of equations (5.11), we have that the first
rn− 2r + 1 equations have the same form both under σn−1 and under σn. So, thanks
to Remark 5.4, it holds that

πn(N)

πn(0)
=

πn−1(N)

πn−1(0)
, for any N ≤ rn− 2r + 1.

Therefore, from Lemma 5.5, we have that knowing the stationary distribution
πn−1(·) allows us to compute the stationary distribution πn(·). Not only that, but
it also implies that the conditional stationary distribution πn(· | k), conditioned on
the partial information of being k customers in the system at an arrival, remains un-
changed under the strategy σk+1, σk+2, . . . , while it changes, if it is computed under
the strategy σk, namely

πk(· | k) ̸= πk+1(· | k) = πk+2(· | k) = . . .

As a consequence of this, the same holds for Tn(k) and Pn(k) = R− CTn(k), that is

Pk(k) ̸= Pk+1(k) = Pk+2(k) = . . . (5.13)

It also holds that, for any k ≥ 1,

Pk−1(k − 1) > Pk(k − 1) > Pk(k). (5.14)

The second inequality of (5.14) is straight forward, since, when all customers are using
the same strategy, entering the system with a larger number of customers in it becomes
more expensive in terms of expected sojourn time, that is the expected profit becomes
lower. As for the first inequality, however, it is verified because one can prove that
Tk−1(k − 1) < Tk(k − 1) by using the equations in (5.11).

Let us define the threshold

K = inf{k > 0 | Pk(k) < 0}, (5.15)

which is well defined since, from (5.14), the function Pk(k) turns out to be decreasing.
The following theorem gives the condition to have an equilibrium strategy.
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Theorem 5.6 (Equilibrium strategy). Let K be the threshold defined in (5.15). Then
σK is an equilibrium pure threshold strategy for the M/Er/1 model if and only if
PK(K − 1) ≥ 0.

Proof: Let FK1,K2(k) be the payoff of an arriving customer using the strategy σK1 ,
when all other customers are using the strategy σK2 , that is

FK1,K2(k) = PK2(k)1{0≤k≤K1}, k = 0, 1, . . . , K2.

By Definition 1.17, σK is an equilibrium strategy if

FK,K(·) ≥ FK1,K(·) for any K1 > 0. (5.16)

If PK(K − 1) ≥ 0, then the threshold K not only satisfies (5.15), but also

K = inf{k > 0 | PK(k) < 0},

so, relation (5.16) is satisfied, and σK turns out to be an equilibrium strategy.
If, instead, PK(K − 1) < 0, then inequality (5.16) is not satisfied because, for

example, PK(K − 1) = FK,K(K − 1) < FK1,K(K − 1) = 0 for K1 < K. So, σK cannot
be an equilibrium strategy. Not only, also σK2 , for K2 < K, and σK3 , for K3 > K
cannot be equilibrium strategies because 0 = FK2,K2(K2) < FK1,K2(K2) = PK2(K2), for
K1 > K2 and PK3(K3 − 1) = FK3,K3(K3 − 1) < FK1,K3(K3 − 1) = 0, for K1 < K3.

So, in this model, we can find an equilibrium pure threshold strategy only under
some conditions. Comparing this model the M/M/1 model, we can see that the dif-
ference is in the fact that in the M/Er/1 model the expected profit function depends
on the strategy adopted by all customers and this affects the possibility of finding
equilibrium strategy.





Conclusion

Let us briefly summarize the results obtained in our discussion. After introducing
some preliminary results, we studied different queueing networks: the two-node tandem
network, the multi-node tandem network and the tree network. In all these models, we
assumed that customers arrived according to a Poisson process and were immediately
informed about the number of customers in the system, say k. At any queue, service
times were independent and exponentially distributed and the service discipline was
the FIFO one.

The goal was to find a strategy which turned out to be an equilibrium strategy
if all customers adopted it. To do this, we built a profit function P (k), which was
proportional to the expected sojourn time Ti(k) at any queue i, and proved that P (k)
did not depend on the strategy adopted by all customers. Not only, but we also
computed an explicit formula for P (k), proving that it was decreasing and went to
−∞ as k → +∞. These facts allowed us to define the threshold

K = inf{k ∈ Z+ | P (k) < 0}

and prove that the pure threshold strategy with threshold K was the only equilibrium
strategy, if P (K − 1) > 0. If, instead, P (K − 1) = 0, also the strategy with threshold
K−1 and any strictly convex combination between these two strategies were equilibria
for arriving customers.

In particular, for a tree network, with set of nodes V , the expected sojourn time at
queue i ∈ V , knowing the information of being k customers in the system, turned out
to be equal to

Ti(k) =

∑
|n|=k+1

ni

∏
ℓ∈V

(
qℓ
µℓ

)nℓ

∑
|n|=k

∏
ℓ∈V

(
qℓ
µℓ

)nℓ
, k = 0, 1, 2, . . . ,

where, for ℓ ∈ V , µℓ was the service rate at queue ℓ and qℓ was the probability for
a customer to reach queue ℓ from node 1. After this, we defined the expected profit
function as

P (k) = R−
∑
i∈V

CiTi(k), k = 0, 1, 2, . . . ,

where R was the reward a customer got for joining the system and Ci was the unitary
cost for sojourn time at queue i, for i ∈ V .

79
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For a multi-node tandem network, with M queues, the same formulas held with
V = {1, 2, . . . ,M} and qi = 1 for any i ∈ V . For a two-node tandem network, however,
we used a different approach and the expressions of the expected sojourn times were
more simplified and equal to, for i = 1, 2,

Ti(k) =

 1
µi−µ3−i

− k+1
µi

µk+1
3−i

µk+1
i −µk+1

3−i

, µ1 ̸= µ2

1
µ1

(
1 + k

2

)
, µ1 = µ2

.

These models are all overtaking free networks, which means that the expected so-
journ time of a customer at any queue does not depend on the distribution of customers
arrived at the system after her. We proved that, under a FIFO discipline and with
exponential service times, a queueing network is overtaking free if and only if it is a tree
network. After this, we studied an example of network under the preemptive-resume
label order discipline and an example of non overtaking free network, proving that
there exists an equilibrium strategy in both cases. In conclusion, we showed that for
the M/Er/1 model an optimal strategy exists only under some conditions.



Appendix A

MATLAB codes

All MATLAB codes, used for the numerical computations and simulations in the thesis,
are loaded in GitHub [19]. We propose, as an example, the function that gives the
expected profit of a customer arriving at a tree network and observing k customers in
the system.

1 function y=P_tree_network(k,R,v,p,mu,C)

3 % The function gives the expected profit of a customer entering in a

% tree network , where:

5 % k is the number of customer in the system that the tagged customer

% observes at her arrival;

7 % R is the reward that a customer gets to join the system;

% v is a vector that describes the tree: the set of vertices is

9 % {1,2,3,..., length(v)} and v(i)=j means that node j is parent of

% node i and v(i)=0 means that node i is a root node;

11 % p is the vector of routing probabilities associated to edges: p(i)

% is the probability associated to edge (v(i),i), if v(i)>0, and

13 % p(i)=1, if v(i)=0;

% mu is the vector of service rates , where mu(i) is the service rate

15 % at queue i;

% C is the vector of costs , where C(i) is the cost for unit of sojourn

17 % time at queue i.

19 nu=length(v); % nu is the number of vertices of the tree

q=zeros(1,nu); % q(i) is the prob. of reaching node i from the root

21

for i=1:nu

23 q(i)=1;

j=i;

25 while v(j) > 0

q(i)=q(i)*p(j);

27 j=v(j);

end

29 end

81



82 APPENDIX A. MATLAB CODES

31 d=0;

m=matrix(k+1,nu);

33 for i=1: size(m,2)

b=C*m(:,i);

35 for j=1:nu

b=b*((q(j)/mu(j))^m(j,i));

37 end

d=d+b;

39 end

41 e=0;

mm=matrix(k,nu);

43 for i=1: size(mm ,2)

a=1;

45 for j=1:nu

a=a*(q(j)/mu(j))^mm(j,i);

47 end

e=e+a;

49 end

51 y=R-d/e;

53 end

55 % The function matrix creates a matrix , whose columns are all possible

% vectors of length M, whose sum is equal to k.

57

function y=matrix(k,M)

59

y=[];

61 if M==1

y=k;

63 else

for j=0:k

65 m=matrix(k-j,M-1);

a=size(m,2);

67 if j == 0

aa=0;

69 else

mm=matrix(k-j+1,M-1);

71 aa=aa+size(mm ,2);

end

73 for i=1:a

y(:,i+aa)=[m(:,i);j];

75 end

end

77 end

79 end
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