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Abstract

Observational evidence for intermediate-mass black holes (IMBHs) has long
been sought. With a mass ∼ 102−5 M�, IMBHs are expected to bridge the
gap between stellar-born black holes (BHs) and super-massive black holes
lying at the center of galaxies. In this work, we present a dynamical study of
IMBHs in which we aim to address the formation scenarios of these objects
and of IMBH binaries (IMBHBs, i.e. binaries that include at least one IMBH)
in young massive star clusters. Speci�cally, we simulated 104 three-body
interactions between a binary black hole (BBH) and a massive ≥ 60M� BH
with ARWV, a direct N-body code that exploits the Mikkola's algorithm
for regularization, post-Newtonian parameters up to the 2.5 order and a
relativistic kick prescription for mergers. After 105 yr of interactions, we
obtain that the ∼ 3.8% of the simulated systems merge within a Hubble time,
while the ∼ 0.6% reach the coalescence during the interaction. Dynamical
encounters increase the number of massive mergers up to ∼ 1.5% for BBHs
with at least one pair-instability BH component, and up to ∼ 0.5% for
IMBHBs after a three-body encounter. Moreover, dynamical interactions
produce in 0.01% of the cases a second-generation BBH born from a merger
remnant BH and a binary of IMBHs, which both merge within a Hubble time.
All the resulting binaries have, on average, higher total and chirp masses and
lower mass ratios than the initial conditions, and have eccentricities close to
one. In view of these results, we can conclude that dynamics plays a major
role in IMBH production and evolution in young massive star clusters.
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Introduction

The �rst gravitational wave detection GW150914 marked the beginning of
a new era for multi-messenger astronomy. So far, ten binary black holes
(BBHs) and two double neutron stars (DNSs) have been observed by the
LIGO and Virgo interferometers (The LIGO�Virgo Collaboration 2019 [84] &
2020 [87]). Although our data sample is still limited, these twelve detections
have already led to break-through results in several branches of physics.
One of the most important implications of this discovery is not just the
direct proof of the existence of stellar-mass black holes (BHs), but also the
con�rmation that these objects can be part of binary systems and merge
within a Hubble time producing more massive BHs.

On the one hand, the existence of stellar-mass BHs has been proved by
these recent gravitational wave observations; on the other hand, the �rst
picture of the supermassive black hole (SMBH) M87 produced by the Event
Horizon Telescope (2019 [83]) has con�rmed the existence of these monsters
lying at the centre of galaxies. These data on both stellar-mass BHs and
SMBHs have helped us to better constrain the upper and lower ends of the
poorly-known black hole mass spectrum, but we still miss information for
the intermediate-mass range 102 ≤ mBH/M� ≤ 105 where black holes can
be considered intermediate-mass black holes (IMBHs).

IMBHs are the focus of this work, and we aim to study their dynam-
ical formation, evolution and growth in mass via three-body interactions.
Speci�cally, we performed 104 simulations of dynamical encounters between
a BBH and a massive BH to study all the possible outcomes that can follow
as result from a three-body encounter. With respect to most of the previous
works (e.g. Hamilton & Miller [61], Giersz et al. 2015 [23], Rasskazov et al.
2019 [71]), our simulations are set in young massive star clusters and have
been run with the direct N-body code ARWV. ARWV exploits the Mikkola's
algorithm for regularization and implements a post-Newtonian treatment of
the acceleration equations up to the third order for a better description of
the close encounters between BHs.

We simulated our systems for 105 years and we found 436 binaries with
tcoal ≤ 13.8Gyr, ∼ 12.6% of which merge during the simulation, while ∼
42.0% are formed as a consequence of exchange interaction, ∼ 45.0% are
perturbed by the intruder in a �y-by encounter and ∼ 0.23% are born as
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second-generation BBHs from a merger event. These binaries have more
massive BH components and chirp masses with respect to the initial binary
systems. Furthermore, dynamics drastically changes the binary properties
in favor of low values of mass ratios and eccentricities close to one. Finally,
153 of the simulated merging binaries have one of the two BHs in the pair-
instability mass gap, 54 are IMBH binaries one of which is a binary composed
of two IMBHs.
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Chapter 1

Massive Stellar Black Holes

Observations

All binary black hole (BBH) mergers detected so far are characterized by
masses in the stellar-mass range, while only little is known for black holes
with intermediate mass. In this chapter, we �rst resume the main properties
of the 10 observed black hole (BH) mergers by LIGO and Virgo, and we
then discuss the observational implications of intermediate-mass black holes
(IMBHs).

1.1 Gravitational Wave BBHs Detections

The discovery of gravitational waves provided us a powerful tool for surveying
the population of BHs across the Universe. Observing gravitational waves
is currently possible thanks to the advanced LIGO and Virgo gravitational-
wave observatories, which form the �rst three-detector network of ground-
based interferometers. These detectors are sensitive to gravitational-wave
signals generated by the inspiral, merger and ringdown phases of compact
binary coalescences, covering a frequency range from 15 Hz up to few kHz.
The two LIGO facilities of Hanford and Livingstone, and (since August
2017) the Virgo interferometers in Italy detected a total of ten gravitational
wave signals emitted from the coalescence of BBHs, three of which in the
�rst observative run (O1) carried out from September 12, 2015, to January
19, 2016, and seven in the second run (O2) performed from November 30,
2016, to August 25, 20171. The main properties inferred from the observa-
tions of these 10 detections are reported in table 1.1. The observed BBHs
ranges from a total mass of 18.6+3.2

−0.7M� (for GW170608) up to 84.4+15.8
−11.1M�

(for GW170729), and their BH remnant masses from 17.8+3.4
−0.7M� up to

79.5+14.7
−10.2M� in the source frame. Four of the merger products (GW150914,

1The third observing run (O3) of advanced LIGO and Virgo began on April 1, 2019.
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Event m1 m2 M χeff Erad `peak dL z ∆Ω
[M�] [M�] [M�] [M�c

2] [1056 erg s−1] Mpc [deg2]

GW150914 35.6+4.7
−3.1 30.6+3.0

−4.4 28.6+1.7
−1.5 −0.01+0.12

−0.13 3.1+0.4
−0.4 3.6+0.4

−0.4 440+150
−170 0.09+0.03

−0.03 182

GW151012 23.2+14.9
−5.5 13.6+4.1

−4.8 15.2+2.1
−1.2 0.05+0.31

−0.20 1.6+0.6
−0.5 3.2+0.8

−1.7 1080+550
−490 0.21+0.09

−0.09 1523

GW151226 13.7+8.8
−3.2 7.7+2.2

−2.5 8.9+0.3
−0.3 0.18+0.20

−0.12 1.0+0.1
−0.2 3.4+0.7

−1.7 450+180
−190 0.09+0.04

−0.04 1033

GW170104 30.8+7.3
−5.6 20.0+4.9

−4.6 21.4+2.2
−1.8 −0.04+0.17

−0.21 2.2+0.5
−0.5 3.3+0.6

−1.0 990+440
−430 0.20+0.08

−0.08 921

GW170608 11.0+5.5
−1.7 7.6+1.4

−2.2 7.9+0.2
−0.2 0.03+0.19

−0.07 0.9+0.0
−0.1 3.5+0.4

−1.3 320+120
−110 0.07+0.02

−0.02 392

GW170729 50.2+16.2
−10.2 34.0+9.1

−10.1 35.4+6.5
−4.8 0.37+0.21

−0.25 4.8+1.7
−1.7 4.2+0.9

−1.5 2840+1400
−1360 0.49+0.19

−0.21 1041

GW170809 35.0+8.3
−5.9 23.8+5.1

−5.2 24.9+2.1
−1.7 0.08+0.17

−0.17 2.7+0.6
−0.6 3.5+0.6

−0.9 1030+320
−390 0.20+0.05

−0.07 308

GW170814 30.6+5.6
−3.0 25.2+2.8

−4.0 24.1+1.4
−1.1 0.07+0.12

−0.12 2.7+0.4
−0.3 3.7+0.4

−0.5 600+150
−220 0.12+0.03

−0.04 87

GW170818 35.4+7.5
−4.7 26.7+4.3

−5.2 26.5+2.1
−1.7 −0.09+0.18

−0.21 2.7+0.5
−0.5 3.4+0.5

−0.7 1060+420
−380 0.21+0.07

−0.07 39

GW170823 39.5+11.2
−6.7 29.0+6.7

−7.8 29.2+4.6
−3.6 0.09+0.22

−0.26 3.3+1.0
−0.9 3.6+0.7

−1.1 1940+970
−900 0.35+0.15

−0.15 1666

Table 1.1: Properties of the observed BH mergers by LIGO/Virgo reported in
the GWTC-1 catalog (The LIGO/Virgo Scienti�c Collaboration 2019 [84]).
Columns in order from left: Event name, primary BH mass, secondary BH
mass, Chirp mass, dimensionless e�ective aligned spin, radiated energy, peak
luminosity, luminosity distance, redshift and sky localization, which is the
sky area of the 90% credible region.

GW170729, GW170818 and GW170823) are BHs with mass ≥ 60M� above
the lower end of the pair-instability mass gap. The distances range between
320+120
−110 Mpc (for GW170608) and 2840+1400

−1360 Mpc (for GW170729), while all
the systems present only weakly constrained spins (we will return to these
spin measurements in the next chapters). From these properties, Abbott et
al. (2019 [84]) were able to infer a merger rate of 9.7− 101 Gpc3 yr−1 within
90% credible interval for BBHs with stellar-mass BH components.

1.2 IMBH observations

Intermediate-mass black holes (IMBHs) are a class of BHs characterized by
a mass in the range 102 ≤ mBH/M� ≤ 105, too large to be considered
stellar-mass BHs and too small to be classi�ed as supermassive black holes
(SMBHs). Proving their existence is pivotal to understand the link between
these two distinct families of BHs and to explain the seeds of SMBH forma-
tion. IMBHs are also considered as the cause of several accretion and tidal
disruption events, and their discovery would help to elucidate not only these
phenomena but also their role in the dynamical evolution of dense stellar
systems such as clusters of galaxies. Nevertheless, besides being supported
by strong theoretical implications (that we will explore in the next chapters),
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the existence of IMBHs is still controversial and is supported only by poor
electromagnetical observational constraints. In appendix A we report a list
of the best up to date IMBH candidates in the range 102 ≤ mBH/M� . 105

presented by Greene et al. (2019 [24]). The main electromagnetic obser-
vational techniques that are currently exploited to detect IMBHs are the
following (Mezcua 2017 [55], Koliopanos 2018 [39]):

• Dynamical measurements of stars or direct monitoring of gas motion
orbiting near a central BH are the most used techniques to detect
the presence of an IMBH and reduce its mass. However, this method
requires a spatial resolution high enough to completely solve the stellar
and gas motion in the region close to the BH, which can currently be
achieved only for systems as far as few Mpc.

• For systems that present a broad lines spectrum, it is possible to exploit
the reverberation mapping method to reduce the velocity v of the gas
in the broad-line region and consequently the central BH mass with the
virial product mBH ' cτv2/G. The mass can be derived by measuring
the delay τ between the continuum emitted by the BH accretion disk
and the spectral lines emitted by the broad-line region. The main
issue of this technique is that it works only for BHs surrounded by
a large accretion disk energetic enough to drive broad line emission
in the nearby region. Furthermore, reverberation mapping requires
multi-epoch observations in order to measure the spectral time lag.

• BH accretion invariably generates X-ray emission. Observationally,
the X-ray luminosity and the radio continuum luminosity closely scale
with mBH , such that these three quantities can be combined in the
so-called fundamental plane. The BH mass can be thus reduced with
this technique if the source emits a �ux in both of these wavelengths.

• The mass of a massive BH harbored in the bulge of a galaxy is related to
the velocity dispersion of the bulge stellar population with the mBH −
σbulge scaling, or directly to the bulge luminosity with the Magorrian
relation mBH−Lbulge. These relations can be applied just to the lower
end of the IMBHs mass range, i.e. on BHs with mBH & 105M�.

For what concerns gravitational wave observations, the LIGO and Virgo
Scienti�c Collaborations (Abbott et al. 2019 [2]) have recently reviewed
the observational data of the �rst and second observative runs in search of
binaries with at least one IMBH among the components. They found no
such systems and they thus placed an upper limit of 0.20 Gpc−3 yr−1 in co-
moving units at the 90% con�dence level for binaries with mass components
m1 = m2 = 100M� and dimensionless spins χ1 = χ2 = 0.8 aligned with the
orbital angular momentum of the binary.
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This lack of IMBH observations comes also from the fact that mergers
of medium (103 ≤ mBH/M� ≤ 104) and upper-range (104 ≤ mBH/M� ≤
105) IMBHs are outside the sensitivity band of the current generation of
detectors. The next generation of gravitational wave observatories will be
able not only to extend the observational mass window, but also to compute
multiband gravitational wave astronomy as shown in �gure 1.1. With space-
based observatories such as the Laser Interferometer Space Antenna (LISA),
we will be able to observe merging couples of BHs from the spiraling phase
in the mHz regime down to the merger phase in the hHz, where the new
ground-based interferometers such as LIGO A+ and Voyager, the Einstein
Telescope and the Cosmic Explorer will operate with improved sensitivity.
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Figure 1.1: Multiband gravitational wave spectrum from Jani et al. (2019
[34]). The plot shows the sensitivity bandwidths of the next generation of
gravitational wave detectors, and the characteristic signals of three di�erent
populations of binaries containing at least one IMBH. Pop-A is composed
of BBHs with two mid-range IMBHs as components, Pop-B is composed of
BBHs with an IMBH and a stellar-mass BH, while Pop-C includes BBHs
with both components in the stellar-born mass range.
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Chapter 2

Dynamical Formation Channel:

the Three-Body Interaction

In the last chapter, we have seen that stellar-mass black hole binaries (BBHs)
can merge within a Hubble time and give birth to massive black holes. We
want now to present where and how these binary systems form and evolve.
In particular, in this chapter we present the dynamical formation channel for
BBHs which can consequently evolve to intermediate-mass black hole bina-
ries (IMBHBs). We start from the description of active dynamical environ-
ments such as star clusters and move on to the explanation of the three-body
encounters with the relative outcomes.

2.1 Star Clusters

2.1.1 Properties and Evolution

In this work, we aim to study the e�ect of dynamics on three-body encounters
of black holes. Thus, we need to set up our simulations in an environment
whose properties allow three-body encounters to occur, such as star clusters.
Star clusters (SCs) are de�ned as collisional particle systems, which means
that dynamical interactions among particles are e�cient and the two-body
relaxation can occur within the cluster lifetime. SCs are divided mainly in
function of their properties such as age, mass, and size. The age of a SC
is strictly related to the age of its stars and can be observationally derived
computing the turn-o� point in the Hertzsprung-Russel diagram. Assuming
that the virial theorem holds, the mass of a SC is determined with the
following expression

Mvir = η

(
σ21D reff

G

)
(2.1)

where η is a constant related to the density pro�le of the SC, while σ1D and
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reff are two observable quantities de�ned respectively as the one dimen-
sional line-of-sight velocity dispersion and the e�ective radius, which is the
projected radius containing half of the cluster luminosity. Massive SCs are
nearly spherical systems, therefore it is possible to de�ne a variable that de-
scribes theoretically or observationally their radius. One possibility is given
if a system with mass M satis�es the virial theorem, in which case it is
possible to de�ne the virial radius as

rvir =
GM2

2|U |
(2.2)

where U is the total potential energy. Finally, the spatial size of the SC
can be expressed also with the half-mass radius rhm, de�ned as the spatial
distance from the center containing half of the cluster total mass.

SCs are complex systems whose evolution strictly depends on the evolu-
tion of their stellar population. We can thus identify three main phases in
the lifetime of a SC:

I. The �rst phase of a SC is characterized by violent star formation
episodes while the gas is still abundant in the cluster. This stage ends
∼ 3Myr after the formation, when the �rst supernova events start to
take place and sweep the gas from the cluster with the help of stellar
winds and radiation of OB stars.

II. In the second stage, the cluster is largely gas-free, while stellar mass
loss plays an important role in the overall dynamics. The end of this
stage strictly depends on the initial mass, radius, density pro�le and
initial mass function of the cluster and it could range from 100Myr to
1Gyr.

III. In the last phase the gas is totally expelled from the cluster, and the
evolution is purely dominated by dynamical interactions.

The main driver of SCs dynamical evolution is the two-body relaxation.
In a particle system dominated by gravity, the mutual long range interactions
between particles cause the redistribution of the energy and, as a result, the
system moves toward the energy equipartition. This process is characterized
by the two-body relaxation timescale trlx, de�ned as the time in which the
stars of a cluster lose memory of their initial velocities because of their mutual
gravitational interactions. The expression for this timescale is (Spitzer 1971
[80])

trlx =
N

8 lnN

r

v
(2.3)
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where N is the number particle of the system, while r and v are the radius
and the typical velocity of the cluster. This timescale will be resumed in the
next chapter (section 3.2), because it has great importance in the formation
of IMBHs by runaway collisions.

Another important timescale is the dynamical timescale, de�ned as the
time in which a particle crosses the system from part to part. This can be
expressed as (Portegies Zwart & McMillan 2010 [68])

tdyn =
GM5/2

(−4E)3/2
∼ 2× 105 yr

(
Mcl

104M�

)−1/2( rvir
1 pc

)3/2

. (2.4)

In the left expression, E = T + U is the total energy. The right expression
has been derived assuming the virial theorem, i.e. that 2T + U = 0 with T
and U kinetic and potential energy of the cluster. The dynamical timescale
determines also the time that the system takes to reach the dynamical equi-
librium.

Another fundamental dynamical process that takes place in a SC is the
core-collapse phenomenon. For a star cluster with a realistic mass function,
this is directly related to the two-body relaxation timescale, and it can be
written as ( Portegies Zwart & McMillan 2002 [66])

tcc ∼ 0.2 trlx (2.5)

Thus core-collapse happens even before the two-body relaxation. The two-
body relaxation acts as a machinery to transfer kinetic energy from the inner
to the outer regions of the cluster. Furthermore, in the inner regions, high-
velocity stars are expelled (evaporation process) from the cluster. Their
ejection reduces the potential energy and even more the kinetic energy of
the central regions since they are the fastest particles in the velocity distri-
bution tail. A star cluster is in equilibrium as long as 2T + U = 0. The
two-body relaxation and the evaporation process lead, therefore, the inner
regions to break the equilibrium since they cause a net decrease of kinetic
energy, leading to 2T + U < 0. As result, the core starts to contract in a
runaway scenario known as gravothermal instability. Since SCs are systems
with negative heat capacity, the contraction leads the core to heat up while
the outer regions of the cluster expand. The result of this process is that
the dispersion velocity of the stars in the core is drastically increased. This
causes more escapers to subtract even more kinetic energy from the core,
which accelerates toward in�nite density. However in�nite density is not a
physical quantity and, moreover, we observe SCs in post core-collapse stages.
There must exist a source of energy able to contrast the core collapse and to
restore the virial equilibrium. This energy is the one provided by three-body
interactions between stars. What happens in fact, is that as the density in-
creases while the core collapses, the probability of encounters between stars
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becomes higher and higher. As we will see in section 2.2.1, hard binaries are
tight binaries that, as a consequence of interactions with other bodies, tend
to reduce their internal energy even more increasing the kinetic energy of
the three-body center-of-mass. They, therefore, represent a source of heat-
ing for the system, which can �nally stop the core collapse and restore the
equilibrium.

The core-collapse is a phenomenon that occurs even if the system is
composed of particles with equal mass. In the real world, SC particles are
characterized by a spread mass spectrum. This variety in mass has the e�ect
to accelerate even more the dynamical evolution and the core-collapse phase
of the cluster. In fact, the more massive objects of a cluster experience a
drag force exerted by lighter objects in their surroundings. This drag force
makes massive objects to decelerate, and as a consequence they then start
sinking toward the cluster core attracted by the center of the potential well.
This process is known as mass segregation, and occurs in a timescale

tmass segregation =
〈m〉
M

trlx (2.6)

where 〈m〉 is the average mass of the cluster and M is the mass of the mas-
sive object. We will return to the mass segregation e�ect in the next chapter
with the explanation of runaway collisions.

2.1.2 Star Clusters Types

SCs can mainly be divided into four categories: globular clusters, open clus-

ters, nuclear clusters and young massive clusters. Globular clusters (GCs)
are old metal-poor clusters that host Population II stars, and were born
∼ 12Gyr years ago. They are characterized by large masses that span from
∼ 103M� (for AM4, member of the Sgr dwarf spheroidal galaxy) up to
2.2 × 106M� (for NGC5139 Omega Centauri). Nearly 150 GCs are known
in the Milky Way and they are found orbiting in galaxy halos. Another fam-
ily of clusters is the open clusters (OCs), which can count more than 1100
elements only in the Milky Way. These are young clusters with an age that
can vary from few hundreds ofMyr up to few Gyr, and are composed of few
thousands of Population I stars loosely bound together. Open clusters are im-
portant because they are the end products of recent star formation episodes,
thus their stars have nearly the same age, chemical composition, and Earth
distance. Furthermore, OCs are the main nurseries for massive stars. An-
other type of SCs are the nuclear star clusters (NCs). These are luminous
and massive clusters with mcl ∼ 106 − 108M� and e�ective radii 2 − 5 pc,
and they are characterized by extremely high densities ∼ 106M� pc

−3 such
that their escape velocities reach values up to 40 kms−1. NCs experience
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cluster age M rvir ρc Z location tdyn trlx
[Gyr] [M�] [pc] [M�/pc] [Z�] [Myr] [Myr]

OC . 0.3 . 103 1 . 103 ∼ 1 disk ∼ 1 . 100
GC & 10 & 105 10 & 103 < 1 halo & 1 & 1000
NC & 10 & 106 5-10 & 105 ≤ 1 bulge & 1 . 10000
YMC . 0.1 & 104 1 & 103 . 1 galaxy . 1 . 100

Table 2.1: Indicative properties of open clusters (OC), globular clusters
(GC), nuclear clusters (NC) and young dense massive star clusters (YMC).
The �rst column is the cluster type, the second is the age of the cluster,
followed by the total cluster mass, the virial radius, the core density, the
metallicity, the typical location where they can be found in a galaxy, and
the dynamical and relaxation timescales as last two. The table comes from
Portegies Zwart & McMillan, 2010, [68].

multiple epochs of star formation and are found in almost all types of galax-
ies (∼ 50−75 % of all galaxies), usually settled in the galaxy core orbiting in
the neighborhood of a supermassive black hole. Besides these categories of
star clusters, there is a fourth type that shares some characteristics of GCs
and OCs: these are the young dense massive star clusters (YMCs). Fol-
lowing the de�nition of Portegies Zwart & McMillan (2010 [68]), we de�ne
these clusters as young since they are still in the mass-loss phase in the �st
100Myr. They are considered dense because their half-mass relaxation time
(i.e. trlx de�ned with rhm) is less than ∼ 108 yr. YMCs mass is high enough
to ensure the cluster to survive up to ∼ 10Gyr, i.e. in the old globular clus-
ter regime. Twelve clusters in the Milky Way satisfy these conditions and
are considered YMCs, while many others are observed in the local group and
beyond (e.g. for a catalog see Portegies Zwart & McMillan 2010 [68]). Their
spatial distribution is compared to that of GCs and OCs in �gure 2.1, while
the main properties are summarised in table 2.1.

We decided to focus on YMCs because they are characterized by the
following features:

• With respect to GCs, YMCs are still young and star formation is still at
work (Lada & Lada 2003 [42]). Star formation is extremely important
since it gives birth to massive stars that will die in few Myr, supplying
the cluster with massive stellar BHs which will likely participate to the
cluster dynamics via three-body encounters. Furthermore, YMCs are
characterised by smaller relaxation times than GCs (see Table 2.1), and
this implies that core-collapse (Eq. 2.5) and mass segregation (Eq. 2.6)
happen earlier. Both these phenomena have the e�ect of increasing the
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core density of the cluster and, since the interaction rate scales as the
density, this implies that three-body encounters between black holes
will occur more frequently after these processes. Therefore dynamical
interactions are favored at earlier times in YMCs than in GCs.

• With respect to OCs, YMCs are more massive. More massive clusters
have higher chances of surviving the early gas-ejection phase (avoiding
the so-called infant mortality) Therefore YMC lifetime is predicted to
be longer than the one of OCs, ensuring more time in which dynamical
interactions between black holes can take place. Furthermore, YMCs
are much denser than OCs, and this increases again the encounter
probability between cluster objects.

• NCs are other possible birthplace candidates for IMBHs since their high
masses allow frequent interactions between BHs, while on the other
hand, the high escape velocities retain more escaping BHs. Despite
these considerations, the huge computational resources required for
NCs simulations make these objects only poorly studied.

2.2 BBH Formation via three-body encounters

There are two main theoretical scenarios that can lead to the formation of a
binary of black holes. One is the binary evolution scenario, in which two stars
in an isolated original1 binary system evolve and give birth to a black hole
each, creating a BBH if the system is able to survive through the di�erent
phases of the evolution. This formation channel has been largely studied
with population-synthesis codes (Tauris et al. 2015 [82], Mapelli & Giacobbo
2018 [53], Spera et al. 2018 [79]), but still includes several theoretical issues
mainly related to the common envelope phase, the kick imparted to the
new-born black holes and the various mass transfer cases. The second BBH
formation channel is the dynamical scenario, in which the dynamics of a star
cluster can drive the formation and evolution of compact-object binaries via
dynamical encounters. The main issue of this formation channel is that
we have to deal with the N-body problem, which is extremely expensive
to be treated computationally since it requires the usage of N-body codes.
On the other hand, the main advantage of the dynamical scenario is that
BBHs, after their birth, can still grow in mass and reduce their semi-major
axis as e�ect of dynamical interactions. Therefore, in a dynamical active
environment BBHs can become more and more massive due to exchanges
until they evolve to IMBHBs. For these reasons, we will focus the next
section on the formation of BBHs and IMBHs by three-body encounters. In

1By original binary we mean a binary which components are stars bound since their
birth.
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Figure 2.1: Spatial distribution of SCs in the Milky Way seen respectively
edge-on (top) and face-on (below) from Portegies Zwart & McMillan, 2010,
[68]. Left: the distribution for young (blue dots) OCs, old (red dots) OCs,
and YMCs (purple boxes). Right: same but for GCs. The black dashed
line represents the sun orbit around the galactic center while the small black
circle shows the sun's position. In the left panel, OCs and YMCs seem
distributed mainly in the solar neighborhood, but this is an observational
selective e�ect caused by galactic extinction. Lastly, from the top pannels,
it is clearly visible that GCs are distributed in the galactic halo while younger
clusters are concentred in the galactic disk.
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principle, energy dissipation caused by gravitational waves can form a binary
from a two-body encounter of two black holes. Therefore an IMBH could
hypothetically bind with another black hole to form an IMBHB, but this
case is very unlikely. Lastly, interactions with more than three bodies can
occur, but we decided to limit our simulations to the three-body interaction
case since it is the most probable encounter scenario (Heggie 1975 [28]).

2.2.1 Three-Body encounters

We de�ne three-body encounters as dynamical interactions between a single
object and a binary system. The main di�erence with the two-body en-
counter scenario is given by the fact that in this case the interaction involves
a binary, and energy exchanges between the internal energy of the binary
and the kinetic energy of the single object2 are allowed. The total energy of
a binary system is de�ned as

Etot =
1

2
µv2 − Gm1m2

r
. (2.7)

The �rst term is the kinetic energy of the system center-of-mass Ek as a
function of the reduced mass of the system µ = (m1m2)/(m1 + m2), where
m1 and m2 are respectively the primary and secondary star. The second
term represents instead the internal energy of the system Ei, which is the
energy reservoir of the binary. This energy can be exchanged in a dynamical
encounter and is de�ned as the inverse of the binary binding energy Eb =
−Ei. If the system is bound the total energy is negative Etot<0, and the
binary system has an elliptical orbit with semi-major axis a and eccentricity
e. The binding energy can be therefore rewritten as

Eb =
Gm1m2

2a
. (2.8)

As a result of energy exchanges between a binary and a single star in a
three-body interaction, several outcomes are possible: hardening, dynamical
ejection, exchange and ionization. Finally, three-body interactions can also
be resonant and set in hierarchical-triple systems in which the Kozai-Lidov
oscillations can take place. Before moving on with the explanation of each
of these processes, it is important to de�ne the concepts of hard and soft
binaries for a SC characterized by velocity dispersion σ and average star
mass 〈m〉:

• Hard binaries are de�ned as binaries whose binding energy is higher
with respect to the average star 〈m〉 kinetic energy, i.e.

Gm1m2

2a
>

1

2
〈m〉σ2

2in next sections, we will refer to the third body also as the "intruder" object.
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• Soft binaries are de�ned as binaries whose binding energy is lower with
respect to the average star 〈m〉 kinetic energy, i.e.

Gm1m2

2a
<

1

2
〈m〉σ2

The outcomes of a three-body interaction strictly depend on the energy
exchanges of the process, and wether a binary will gain or lose binding energy
can be predicted only in a statistical sense. Heggie (1975 [28]) developed the
analytical formalism with the �rst numerical simulations to �nd the following
important result known as Heggie's law

Heggie's law - Hard binaries statistically tend to harden, which means
that in a dynamical encounter they will likely increase their binding energy
(e.g. the intruder can extract internal energy from the binary which causes
a decrease of the semi-major axis of the system, or an exchange event can
introduce a more massive body in the binary increasing Eb). Soft binaries
statistically tend to soften, or in other words they will likely decrease their
binding energy as a result of a dynamical interaction (this happens if the
binary gains internal energy at the expense of the kinetic energy of the in-
truder).

2.2.2 Hardening

We de�ne a hardening process as a three-body interaction in which an in-
truder object extracts energy from the internal energy Ei of the binary. As
a result of energy conservation, the extracted energy is used to increase the
initial center-of-mass kinetic energy Ek,i of the binary and the single object,
leading to Ek,i < Ek,f . In this process, the internal energy of the binary
becomes more negative while its initial binding energy Eb,i grows. We have
therefore that

Eb,i =
Gm1m2

2ai
<
Gm1m2

2af
= Eb,f (2.9)

which, in absence of mass transfer, implies that af < ai, or namely that
the orbital separation between the two components of the binary has shrunk
due to the energy exchanges with the third object in the �y by process. Since
after the encounter the kinetic energy of the center-of-mass has increased,
both the binary and the intruder are subjected to a recoil. Sigurdsson &
Phinney (1993 [76]) computed the recoil velocity of the binary system which
can be expressed as
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vrec =
m′3

(m1 +m2 +m3)

√
m3(m1 +m2)

m′3(m
′
1 +m′2)

v2∞ +
2(m1 +m2 +m3)

m′3(m
′
1 +m′2)

∆Eb

(2.10)
where m′1, m

′
2 and m

′
3 are respectively the masses of the primary, secondary

and intruder (they may change in the process, e.g. for an exchange), v∞ ∼ σ
and ∆Eb is the energy exchanged in the encounter. This recoil velocity may
vary from few kms−1 up to several hundreds of kms−1, and it can cause the
ejection of the binary if it exceeds the escape velocity of the cluster. When
a binary is ejected into the �eld, it can no longer participate to the dynamic
of the cluster, and it cannot evolve anymore to a BBH or IMBHB by other
dynamical interactions. This e�ect is known as dynamical ejection, and as
we will see in the next chapter it can also be caused by the relativistic kick
produced in a merger event or by the recoil imparted to the remnant in a
core-collapse supernova. Dynamical interactions are quite e�cient in young
star clusters because of their low escape velocities and can lead ∼ 40% of the
cluster black holes in being ejected (Mapelli et al. 2011 [49], Mapelli et al.
2013 [50]). Lastly, Monte Carlo simulations of GCs (Rodriguez et al. 2016
[72]) have shown that hardening processes are also important because bina-
ries can acquire a signi�cant eccentricity in the three-body process, which
contributes to decrease their coalescence times and can lead them to merge
within a Hubble time even if they are ejected from the cluster.
The following calculations of this sections are taken from Mapelli 2003 [47].

Now that we have de�ned the hardening process, we can explore in more
detail its consequences and how these can a�ect the orbital evolution of the
binary. First, we have to de�ne the cross-section for a three-body encounter

Σ = πb2max. (2.11)

This is de�ned as the area of a circle centered in the center-of-mass of
the binary with radius bmax equal to the maximum impact parameter for
which the energetic exchange with the intruder is not zero (Sigurdsson &
Phinney 1993 [76]). In particular, the impact parameter is the minimum
perpendicular distance between the orbit of the intruder and the center-of-
mass of the binary. We can rewrite the cross-section under the assumptions
that the binary is a hard binary which undergoes to a very energetic three-
body encounter (i.e. the orbital pericenter of the intruder is very close to
the semi-major axis of the binary p ∼ a)

Σ =
2πG(m1 +m2 +m3)a

σ2
. (2.12)

It is important to notice that this cross section is much bigger with respect
to the geometrical cross-sections of a binary system Σ = πa2 or a single star
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Σ = πR2
star, therefore three-body interactions will dominate the encounters

in a star cluster even if the binary fraction is low. We can now compute the
hardening rate, i.e. the number of hardening processes per unit time that
locally take place in a cluster with velocity dispersion σ and number density
n:

dN

dt
= nΣσ =

2πG(m1 +m2 +m3)na

σ
. (2.13)

The rate of three-body encounters is, therefore, higher for massive objects,
and this means that BHs dominate these interactions. Furthermore, it in-
creases both with a because a binary has a larger cross-section, and with n
because the interaction probability scales with the numerical density. Lastly,
low dispersion velocities σ enhance the encounter rate. Combining the last
equation with the average binding energy variation per encounter derived by
numerical simulations (Hills 1983 [30]), we can rewrite equation 2.13 as a
function of binding energy to �nd the rate of binding energy exchange for a
hard binary. The average binding energy variation per encounter is

〈∆Eb〉 = ξ
m3

m1 +m2
Eb. (2.14)

The constant ξ ∼ 0.2− 1 is the post-encounter energy parameter which can
be reduced from numerical simulations of three-body encounters (Quinlan
1996 [69]). The equation is another con�rmation of Heggie's law since it
states that three-body encounters between massive intruders and binaries
with high binding energy will experience big energy exchanges, or in other
words, hard binaries tend to harden. This expression has been derived by
Hills making three assumptions: the binary must be hard, its pericenter
needs to satisfy p . 2a and the total mass of the binary must be greater
than the mass of the single object, i.e. m1 + m2 � m3. Finally, we can
compute the rate of binding energy exchange for a hard binary

dEb
dt

= 〈∆Eb〉
dN

dt
=
πξG2m1m2ρ

σ
(2.15)

with ρ = n〈m〉 the average density of the cluster. The result is an equation
that depends only on the masses of the binary components and on the cluster
environments. If these properties do not change with time, the rate of binding
energy exchanged for hard binaries is constant and this con�rms that hard
binaries harden at a constant rate. We can thus re-write equation 2.15 as
a function of a plugging in the de�nition of binding energy (Eq. 2.8), this
gives us a relation for the average time evolution of the semi-major axis of a
hard binary (

da

dt

)
hard

= −2πGξ
ρ

σ
a2. (2.16)
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This is negative as expected since hardening must decrease the binary or-
bital separation. Since black holes are the most massive objects in the cluster,
they belong to hard binaries which, due to Heggie's law, tends to harden even
more as a consequence of three-body interactions. Hardening is therefore ex-
tremely important for BBHs since it is a dynamical process that reduces the
orbital separation and consequently the time left for the merger. Neverthe-
less, equation 2.16 states that the lower is the semi-major axis, the lower is
the cross-section of the binary and the less e�cient the hardening processes
become. Therefore, below a particular value of a, another process becomes
e�cient and this is the gravitational wave emission. Gravitational waves ex-
tract energy and momentum from the orbit of the two black holes, which as
a consequence keep reducing their mutual distance, spiraling in to eventually
merge. The description of the orbital evolution has been derived by Peters
(1964 [64]), in particular, the semi-major axis and the eccentricity evolve
with the time as

(
da

dt

)
gw

= −64

5

G3m1m2Mtot

5a3c5
(1 + 73e2/24 + 37e4/96)

(1− e2)7/2
(2.17)

(
de

dt

)
gw

= −304

15

G3m1m2Mtot

15a4c5
e(1 + 121e2/304)

(1− e2)5/2
(2.18)

where Mtot = m1 +m2 and c is the speed of light. From the �rst expression,
assuming that e does not change in time, it is possible to derive the coales-
cence time tcoal, de�ned as the time that a binary takes to reduce its initial
semi-major axis a0 to zero because of gravitational wave emission

tcoal =
5

256

a40c
5

G3m1m2M

(1− e2)7/2

(1 + 73e2/24 + 37e4/96)
. (2.19)

When two black holes merge, they produce a more massive black hole that
can dynamically interact with other black holes to form a second generation
BBH. We can �nally write a more general expression that takes into account
for the two main drivers of the orbital evolution of an hard binary. Combining
equation 2.16 and equation 2.17 we �nd (Mapelli 2018 [52])

da

dt
' −2πGξ

ρ

σ
a2 − 64

5

G3m1m2Mtot

5(1− e2)7/2c5
a−3 (2.20)

In this equation, we can separate two di�erent regimes in which hardening
and GW emissions work to reduce a. Hardening processes dominate the evo-
lution in the �rst phases of the binary evolution. When a is large, the �rst
term in the equation is predominant and we have da/dt ∝ −a2. The second
term takes over when a is small and hardening has already reduced enough
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the semi-major axis. In this regime gravitational wave emission becomes ef-
�cient and da/dt ∝ −a−3. It is also important to notice that the hardening
term, in contrast with GW emission, does not depend on eccentricity. A
third regime actually exists between these two, when hardening processes
become less e�cient and GW emission is still ine�ective. This is the regime
in which a BBH spends most of its evolutive time. Figure 2.2 shows the
evolution of a and the three regimes described by equation 2.17.

Finally, we can compute at which value of a, at which time and after
which number of three-body interactions gravitational waves become the
principal mechanism to tight the orbit. First, from equation 2.16, we can
compute the hardening timescale as

thard =

∣∣∣∣aȧ
∣∣∣∣ =

σ

(2πGξ)

1

afin
. (2.21)

This is the time that a binary takes to reduce its semi-major axis to afin
only via hardening processes. In the equation we neglected the initial value
ai resulting from the integration since for our purposes ai >> af . Equating
this timescale to tcoal, gives us the maximum semi-major axis value at which
gravitational waves starts to dominate the evolution of a binary respect to
hardening processes

agw =

(
256

5

G2m1m2Mσ

2πξ(1− e2)7/2c5ρ

)1/5

. (2.22)

Therefore, for binaries with a ≤ agw the main orbital-shrinking process is
GW emission while for a > agw the driver e�ect is hardening. Plugging agw
in equation 2.21 as afin, it is possible to compute the time needed for a
binary to enter in the GW regime as the e�ect of hardening semi-major axis
reduction. Lastly, integrating equation 2.13, we can �nd the average total
number of hardening encounters that a binary has experienced in a time t
before entering in the GW regime

Nhard =

∫ t

0

dN

dt
dt =

∫ t

0

2πG(m1 +m2 +m3)na

σ
dt. (2.23)

we can now make a change of variable exploiting equation 2.16 and, inte-
grating from ai to agw, we �nd

Nhard =
1

ξ

(m1 +m2 +m3)

〈m〉

(
ai
agw

)
. (2.24)

2.2.3 Exchanges

There is another mechanism that contributes to the production of binaries
with higher binding energy. These are the exchanges, which are three-body
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Figure 2.2: Semi-major axis time evolution caused by hardening and GW
emission from Mapelli 2018 [52]. The plot shows the numerical results of
equation 2.20 considering three di�erent binaries and ξ = 1, ρ = 105M�, σ =
10 kms−1, e = 0, a0 = 10AU (σ, ρ, e are assumed constant in time). When
a is large hardening processes predominate and we are in the fast hardening
regime. The more the sami-major axis gets smaller, the less e�cient (eq.
2.16) and numerous (eq. 2.13) are the hardening processes. The binary
enters therefore in the slow hardening regime in which a is still too wide for
considerable GW emissions. Finally, when a ≤ agw (eq. 2.22), the binary
can enter in the last regime in which the emissions of GW will lead it toward
the merger.
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Figure 2.3: Exchange probability (P.E.) in function fo the mass ratio between
the intruder object and the secondary component of the binary system (Fig.4
from Hills & Fullerton 1980 [29]). The higher is the intruder mass m3, the
more likely an exchange will happen.

encounters in which the single object replaces the less massive member of the
binary system. Hills & Fullerton (1980 [29]), exploiting the analytical ap-
proach of Heggie (1975 [28]), demonstrated with numerical simulations that
the probability for an exchange event in a three-body interaction between a
single object and the secondary component of the binary (i.e the less massive
component) is higher (∼ 1) if the intruder is more massive than one of the
binary members. The probability is instead lower (∼ 0) if the intruder is less
massive than both the components of the binary. The results of their sim-
ulations are reported in �gure 2.3. Therefore, since in general the replaced
component of the system is less massive (m2) respect to the intruder m3, we
have that exchanges create binaries with higher binding energy as follow:

Eb,i =
Gm1m2

2ai
<
Gm1m3

2af
= Eb,f . (2.25)

Where the subscripts i and f refer respectively to the initial and �nal values
of the BBH, before and after the three-body interaction took place.

Black holes are among the most massive objects of a star cluster, there-
fore they will likely undergo several exchanges to form binary systems. A
star binary system can thus �rst experience an exchange event in which one
of the two stars is replaced by a BH, and later a second exchange in which
another BH takes over for the second star in the binary, giving birth to a
BBH. This scenario, which is represented in �gure 2.4, has been tested with
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direct N-body simulations by Ziosi et al. (2014 [90]), and they reported that
more than 90% of BBHs in young star clusters are formed via dynamical
exchanges. As long as the new-born BBH is harbored in a dynamical active
environment, its growth in mass does not stop. In fact, exchange processes
can still go on even after the formation of a BBH, such that heavier black
holes can still be introduced in the BBH while the lighter one is ejected.
This has the result of increasing the average mass of BBHs produced by
the dynamical channel with respect to the ones formed via stellar evolutions
of isolated original binaries. Furthermore, several exchanges that involve a
BBH with more massive black holes can lead to the formation of an IMBHB.
In the next chapter (section 3.3) we will explain the key role of exchanges in
the formation of IMBH via the repeated merger scenario.

Another �ngerprint of dynamical formation of BBHs via exchange pro-
cesses is provided by high eccentricity: dynamical captured objects tend to
bind in highly eccentric orbits, favoring the production of eccentric binaries.
None of the ten detections observed by LIGO/Virgo in the �rst two observa-
tive runs has identi�ed an eccentric BBH merger (The LIGO/Virgo Scienti�c
Collaboration 2020 [85]). We need therefore more observations to use e as a
tool to uncover the possible dynamical origin of a BBH.

Lastly, the members of BBHs born via exchanges will likely have mis-
aligned or nearly isotropic spins since dynamical processes tend to completely
reset the values of the original spins. The opposite is true for original isolated
binaries whose members may evolve in BHs via direct collapse giving birth to
a BBH with nearly aligned spins. Tidal interactions and mass transfers tend,
in fact, to synchronize the spins during binary evolution (Hurley et al. 2002
[32]), and even if a clear relation between the magnitudes of the progenitor-
BH spins still does not exist, it is, however, reasonable to assume that the
spin orientation is conserved (Mapelli 2018 [52]). The situation is trickier
for original binaries that evolve in a dense environment such as star clusters
because they tend to participate in the cluster dynamics, and consequently,
the spins of the binary components result in moderately misalignement (one
more cause of misaligned spins is provided by the natal kick if one binary
component undergoes a core-collapse supernova). Unfortunately, the sample
of BBH mergers observed so far (The LIGO/Virgo Scienti�c Collaboration
2019 [84]) have put only poor constraints in the e�ective spin measurements
χeff (i.e. the sum of the spin components of the two BHs along the direction
of the binary angular momentum vector), and there is not enough statistic
to clearly constrain the BBHs formation scenario between the dynamical and
the stellar evolution channels (Bou�anais et al. 2019 [7]). The only infor-
mation derived by the observations made so far seems to point that there
is a small preference for low-spin magnitudes respect to a high-spin magni-
tude population of BHs (The Ligo/Virgo Scienti�c Collaboration 2019 [86])
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Lastly, the only event with a partial spin constraint is GW151226, which
χeff measurements seems to favour aligned spins (Abbott et al. 2016 [1]).

2.2.4 Ionization

If the third star loses a fraction of its kinetic energy while the internal energy
of the binary becomes more positive, the kinetic energy of the three-body
center-of-mass is decreases Ek,i > Ek,f and so do the binding energy of the
binary Eb,i > Eb,f . As a consequence of the dynamical interaction with the
single star, the binary semi-major axis increases ai < af and becomes less
bound or soften. This can also cause the ionization of the binary, i.e. the
binary components have Etot > 0 and can be considered as single stars. For
this to happen, the kinetic energy of the reduced particle in the three-body
system must be equal to the binding energy of the binary

1

2

m3(m1 +m2)

(m1 +m2 +m3)
v2crit =

Gm1m2

2a
. (2.26)

From this expression, it is possible to derive (Hut & Bahcall 1983 )

vcrit =

√
Gm1m2(m1 +m2 +m3)

m3(m1 +m2)a
(2.27)

which is the critical velocity. A single star with mass m3 can ionize a binary
system if its velocity at in�nity exceeds this critical value.

2.2.5 Hierarchical Triple Systems

We de�ne a hierarchical triple as a resonant three-body system composed of
a tight binary system, often called inner binary, bound with a third body
in a wider eccentric orbit, called outer binary. These kind of systems are
the products of three-body encounters in which part of the intruder kinetic
energy is transferred to the internal energy of the binary. This can reduce
the intruder velocity enough to avoid the escape at in�nity, leading the third
object to bind gravitationally with the binary. Since in dynamical encounters
the intruder incoming direction is isotropic respect to the binary orientation,
in a hierarchical triple system the third object orbital plane is generally
inclined respect to the orbital plane of the binary. Therefore, each passage
of the wider object at the pericenter will induce a perturbation to the inner
binary which as result will experience oscillations in the eccentricity and
in the relative inclination angle of the orbital plane with the outer binary.
This e�ect is known as the Kozai-Lidov oscillations (Kozai 1962 [38], Lidov
1962 [44]) and can have a huge impact in the coalescence time of the inner
binary. This highly depends on the eccentricity of the inner system (Eq.
2.19), which can be rapidly increased by a Kozai-Lidov perturbation leading
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Figure 2.4: Example of BBHs dynamical formation channel. Blue dots are
stars while black dots are black holes. 1 - star binary system. 2 - Three-body
encounter between the binary and a black hole. If the black hole is more
massive than one of the two components, it can replace the secondary star
via the exchange mechanism. 3 - A second exchange replaces the other star
with another black hole. 4 - A BBH formed via three-body interactions is
born. 5 - Hardening processes cause a to shrink and induce a recoil. 6 - If
hardening processes have been e�cient enough, the BBH can enter in the
gravitational wave regime and its semi-major axis keeps decreasing due to
the GW emission while the orbit becomes circularized. The same scheme
work if the binary system in box 1 is a BBH: in this case, the exchange
processes can introduce more massive black holes in the system. If one of the
two components of the BBH is replaced with an IMBH, the binary becomes
an IMBHB. Lastly, if the merger product in box 6 does not experience a
dynamical ejection from the cluster, it can create a second generation BBH
via three-body encounters (e.g. in box 2) establishing a loop process in which
a BH keeps growing in mass (repeated mergers scenario, see next chapter).
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the inner binary to merge. It has been measured that in globular clusters
the Kozai-Lidov mechanism could be the merger driver for ∼ 10% of all the
dynamically-formed BBHs (Antonini et al. [4]) while, in young star clusters
and open clusters, the Kozai-Lidov resonance could increase the merger rate
by ∼ 40% (Kimpson et al. 2016 [37]). The mergers caused by Kozai-Lidov
oscillations are produced by binaries characterized by high values of e up to
the last few seconds before the merger. This feature might be measurable
with the future laser interferometer space antenna LISA (Nishizawa et al.
2017 [62]) and may already be observable in the aLIGO/aVirgo frequency
range (Antonini et al. 2016 [4]). If such detection with high eccentricity were
measured, it would better constrain the role of dynamics in the evolution of
BBHs and the production of massive black holes.
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Chapter 3

IMBHs Formation

Several studies (Heager et al. 2003 [27], Portegies Zwart & McMillan, 2002
[66] and 2010 [68], Mapelli et al. 2013 [50], Mapelli 2016 [51], Spera &Mapelli
2017 [78], Di Carlo et al. 2019 [16]) show that the formation of intermediate-
mass black holes (IMBHs) requires two main ingredients: low metallicity and
dynamics. Low metallicity is intrinsically linked with the mass loss caused
by wind emission in the main sequence phase of the progenitor stars, and
is therefore directly related to the �nal mass in the pre-supernova phase.
Dynamics enhances the probability of close encounters and thus provides a
machinery that increases the chances for collisions, which can possibly give
birth to massive compact objects. In this chapter, we are going to summarize
in detail the most important processes that can lead to the formation of an
IMBH in a young dense star cluster.

3.1 Direct Collapse

The total mass of a stellar-origin black hole is strictly related to two main
processes that its stellar progenitor experiences during its lifetime. On the
one hand stellar winds drive are the main driver of mass loss and reduce the
�nal mass of the star, on the other hand, the �nal supernova explosion (or
direct collapse) determins the mass of the compact object. In this section,
we are going to resume these two mechanisms, in order to �nally present the
possible progenitors for IMBHs and their main characteristics.

3.1.1 Stellar winds

Throughout their life, stars experience mass loss episodes under the form of
stellar winds, which are out�ows of gas ejected from the upper atmosphere of
a star. Stellar winds drastically decrease the initial mass of the star along its
evolutionary path, and their nature depends on the star type. For evolved
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cold stars (e.g. red giants, asymptotic giant branch stars) winds are produced
by the interaction between radiation pressure and dust particles in the colder
outer layers of the atmosphere, while in massive hot stars (e.g. O, B, Wolf-
Rayet, Luminous Blue Variables), winds are driven by radiation pressure on
the resonance absorption lines of atmospherical metal ions. Massive stars
winds, and the relative mass loss rate ṁ, are therefore strictly related to the
star metallicity Z. For O-B stars, this dependence can be expressed with
the relation found by Vink et al. (2001 [89]):

ṁ ∝ Z0.85vp∞

{
p = −1.23 if Teff & 25000K

p = −1.60 if 12000K . Teff . 250000K
(3.1)

where Teff is the e�ective temperature of the star and v∞ is the terminal
velocity of the wind which corresponds to its maximum velocity. For Wolf-
Rayet stars, exists a similar expression (Tang et al. 2014 [81], Chen et al.
2015 [14]) that keeps account also of the Eddington factor ΓEdd:

ṁ ∝ Zα
{
α = 0.85 if ΓEdd < 2/3

α = 2.45− 2.4ΓEdd if 2/3 ≤ ΓEdd ≤ 1
(3.2)

The Eddington factor is de�ned as the ratio between the star luminosity and
the Eddington luminosity LEdd = 4πcGM/k, i.e. the maximum luminosity
for a star in hydrostatical equilibrium given its mass M and the electron-
scattering cross section k.
Therefore for massive stars we have that the higher the metallicity, the higher
is the mass lost by wind emissions while the star evolves, and the lower the
remnant mass left after the star has died.

3.1.2 Supernova Mechanisms

A second and even more important constraint on the mass, or even the ex-
istence, of a compact remnant is the supernova mechanism that concludes
the star life.

Stars with zero-age main sequence mass (mZAMS) in the range 8 .
mZAMS/M� . 30 experience a core-collapse supernova. In the last stages
of these stars, energy can no longer be produced by fusion, electrons are
captured by inverse beta-decay to produce neutrons and neutrinos while
the degenerate Iron-Nickel core collapses when it reaches the Chandrasekhar
mass limit (∼ 1.4M�). This causes an outgoing bounce shock that reverses
the supersonic infalling material of the outer envelopes. Neutrino Energy
possibly contributes to the reverse blastwave, which leads the outer layers of
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the star to explode. Since part of the total mass is ejected in the explosion,
core-collapse SNe produce low-mass compact objects such as neutron stars or
stellar-mass black holes in the range ∼ 3− 15M� (Fryer 1999 [19]). In some
cases, neutrinos energy contribution is not su�cient to re-ignite the outgoing
blastwave, and the shock stalls leading a great part of the star layers to fall
and accrete the proto-neutron star. If degeneracy neutron pressure is not
su�cient to overcome the infalling material pressure, the proto-neutron star
can become a black hole by fallback with slightly higher masses in the range
∼ 15− 30M�

1.

More massive stars mZAMS & 30M� can build up a Carbon-Oxygen
core of mCO > 7.6M� ending their life via the direct collapse mechanism to
form a BH with mBH ≥ 20M� (Fryer et al. 2012 [20]). Direct collapse SNe
are failed supernovae and di�er from the core-collapse mechanism because
the outgoing shock wave generated by the core contraction fails to unbind
mass, therefore all the star envelopes keep falling and no ejecta are produced.
All the mass is accreted by the central compact object, and if the pre-SN
star is massive enough an IMBH can be left. Furthermore, due to the nearly
spherical symmetry of the process, kick velocities are highly reduced with
respect to the core-collapse case. However, for stars with mass & 30M�,
winds start to become the main mass loss process that a�ects the mass of
the remnant (Mapelli 2018 [52]). Therefore, a massive CO-core can be devel-
oped only by massive stars for which winds losses are relatively low-e�cient,
or in other words, by stars with low metallicity Z < 0.1Z� and Eddington
factor ΓEdd < 0.6. When Z ∼ Z� or ΓEdd > 0.6, stars are instead subjected
to massive stellar winds, and the CO-core cannot grow above the threshold
leading the star to explode as core-collapse SN with the production of a lower
mass BH.

One more outcome is given for stars with Helium core grown up to
mHe,f ∼ 30M�. In this case, pair production becomes extremely e�cient
in the core, and the electron-positron pairs make Oxygen/Silicon to ignite
in a thermal runaway reaction which exerts a pulse outwards. This pro-
cess can repeat several times and, if the star is able to restore the equilib-
rium after these instabilities, the phenomenon is de�ned as a pulsational
pair-instability SN (PPISN). This induces severe mass losses to the star,
which will eventually end its life by core-collapse leaving a lighter black hole
mBH ∼ 30 − 55M� respect to the expected values of mBH ∼ 50 − 100M�
without pulsations. On the other hand, if the star cannot survive to this

1The mass ranges in which a supernova gives birth to a neutron star by core-collapse or
a black hole by fallback are still matter of discussion. O'Connor & Ott [63], for example,
proposed an "island of explodability" scenario derived from their 1D hydrodynamical
simulations in which SN explosion mechanisms do not behave monotonically with the
mass of the progenitor star.
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explosive burning phase, it explodes in a pair-instability supernova (PISN)
leaving no remnant. PISNe and PPISNe cause the pair-instability mass gap
in the range 60 . mBH/M� . 120, in which no black holes are expected to
be formed by a single star.
Recent numerical simulations performed by Woosley (2017 [93]) explored
the evolution of metal-poor (Z ' 0.1Z�) and Helium-only stars, to better
constrain the mass ranges of the progenitor stars that produce the pair-
instability mass gap. He found that if 70 . mZAMS/M� . 150 (i.e.
32 . mHe,f/M� . 64) a star may undergo a PPISNe while if 150 .
mZAMS/M� . 260 (i.e. 64 . mHe,f/M� . 135) a star can explode by
PISN.
Moreover, Spera & Mapelli (2017 [78]) studied the e�ects of PISNe and
PPISNe on the black holes mass spectrum at di�erent metallicities. They
found that at metallicities of Z . 0.1Z�, stars in the 60 − 125M� ZAMS
mass range can experience PPISNe, while PISNe become e�ective when stars
with metallicities 0.05 . Z/Z� . 0.4 have 150 ≤ mZAMS/M� ≤ 350
(the lower limit is slightly depends on Z). They report that PISNe and
PPISNe, besides preventing the formation of BHs in the 60− 120M� range,
tend also to enhance the formation of BHs with 30 − 50M� for low metal-
licity values. Even if at lower values of Z the pair production e�ects in
the star evolution are less signi�cant, they conclude that metal-rich stars
(Z ≥ 10−3) cannot produce IMBHs due to the line-driven winds experienced
along the stars lifetime. On the other hand, massive stars and metal-poor
stars withmZAMS & 200M� and Z . 0.07Z� can avoid PISNe and produce
intermediate-mass black holes by direct collapse. These results are reported
in Fig.3.1, which compares supernova models with and without the e�ects
of PISNe and PPISe at di�erent values of Z. From the plot, it is visible that
not only pair-instability highly a�ects the remnant mass spectrum, but it
also strongly depends on the metallicity of the progenitor star.

From the above theoretical results we can infer that ideal progenitors
for IMBHs are massive mZAMS & 260M� metal-poor Z . 0.07Z� stars
for which wind-driven mass loss has been negligible along the star lifetime.
These characteristics allow the star to avoid a PISN-fate, which instead ex-
periences a direct collapse forming an IMBH. Following this logic, two main
candidates as progenitors have been proposed:

• Population III stars are the hypothetical �rst generation of stars that
formed in the early ages of the universe. Characterised by zero-metallicity
and thus nearly zero mass loss (Wise 2012 [92]), these objects represent
a good candidate as progenitors of massive black holes (Madau & Rees
2001 [46], Whalen & Fryer 2012 [91]). The plot in �gure 3.3 shows
the mass spectrum of the remnant against the mass of the progenitor
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(Heger et al. 2003 [27]), and summarizes all the possible SN outcomes
reviewed above for a zero-metallicity star. By comparison, in Fig.3.2
it is reported the same plot but for Z = Z�, which highlights the
di�erences given by metallicity between a population III and a solar-
metallicity star. The problem of Population III stars is that they can
be possibly form just at high redshift values (z ∼ 6), and this limits
the production of IMBHs from pop III stars in the �rst few Myr of the
Universe.

• The solution to this last problem is provided by another family of
potential candidates as IMBHs progenitors. These are the very massive
stars (VMS), i.e. stars with mZAMS & 100M� (Zwart & McMillan
2002 [66], Zwart et al. 2004 [67], Freitag et al. 2006 [18]). In contrast
to population III stars, VMSs are possibly2 still formed in the core of
dense star clusters by runaway collisions (see next section 3.2). VMSs
can be massive enough to avoid PISNe (mZAMS & 200M�) and direct
collapse to form a black hole with mBH ≥ 100M�.

3.2 Runaway Collisions

Firstly proposed more than �fty years ago by Colgate (1967 [15]) and Sanders
(1970 [74]), this theory explores the consequences of clusters dynamics and
mass segregation which can possibly lead to the formation of an intermediate-
mass black hole. Star clusters are self-gravitating particle systems whose
evolution is dominated by two-body relaxation. Since gravity is a long-range
force, all the stars in a cluster are mutually subjected to the gravitational
force exerted by any other star. This cumulative e�ect, known as two-body
relaxation, induce all the star velocities to change in direction and magni-
tude. We can thus de�ne the two-body relaxation timescale as the time
needed for a star with mass m to completely lose memory of its initial ve-
locity as an e�ect of several two-body interactions. We can now resume
equation 2.3, and rewrite it in a more accurate form that keeps account of
the di�usion coe�cients (Spitzer 1971 [80]) to de�ne the relaxation timescale
as

trlx = 0.34
σ3

G2〈m〉ρ ln Λ
(3.3)

2The most massive stars observed in the local universe are located in the ionizing
star cluster 30 Doradus in the Large Magellanic Cloud, and have masses of m > 150M�
(Crowther et al. 2016 [13]) derived with evolutionary models. It is important to notice
that 30 Doradus present a metallicity of ∼ 1

3
Z� (Geha et al. 1998 [22]), which can still

cause severe wind emissions and therefore heavily impact the evolution of these massive
stars.

40



Figure 3.1: Mass of the remnant vs zero age main sequence mass (mZAMS)
of the progenitor star from Spera & Mapelli (2017 [78]) with (below) and
without (top) considering the PISNe and PPISNe. The y-axis of the bottom
plot is broken in the range 60 . mrem/M� . 120 due to the lack of black
holes caused by PISNe and PPSNe (pair-intability mass gap). The plot
shows that only stars with low value of Z can experience pair instability,
while, on the other hand, are the only ones to cause IMBH formation by
direct collapse.
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Figure 3.2: Adaptation of Fig.3 from Heger et al. 2003 [27]. Zero Age
Main Sequence (ZAMS) mass of a non-rotating, zero-metallicity star (x-
axis) vs �nal (pre-SN) mass of the same star after stellar evolution (y-axis,
blue curve) and remnant mass (y-axis, red curve). The pink horizontal line
shows the limit above which a BH can be considered IMBH, and it highlights
that only massive stars (& 260M�) that avoid pair-instability can produce
a mBH ≥ 100M� through the direct collapse mechanism. Notice in green
the pair-instability mass gap 140 . mZAMS/M� . 260, in which stars are
disrupted by a single pulse generated by explosive thermonuclear reactions.
The PPISN range is instead 100 . mZAMS/M� . 140. The rest of the plot
shows prescriptions for other SNe mechanisms in the low mass and massive
star range.
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Figure 3.3: Same plot as of Fig.3.3 but for Z = Z� taken from Heger et al.
2003 [27]. At these levels of metallicity stars can avoid PISNe and PPISNe,
and no pair-instability gap is formed. Even so, mass losses caused by stellar
winds become extremely high at solar metallicity, therefore the mass of the
compact object is heavily reduced and no IMBH can be formed (this is clearly
visible comparing the y-axis of this plot with the y-axis of Fig.3.3).
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where σ is the velocity dispersion of the system, 〈m〉 the average particle
mass, Λ ∼ N number particles of the system and ρ ∝ N m/R3 with R
radius of the system. The expression can be rewritten in a more practical
form (Zwart & McMillan, 2010 [68]) in function of measurable quantities as
follow

trlx ' 20 Myr

(
Rcl
1pc

)3/2( Mcl

104M�

)1/2( 〈m〉
1M�

)−1
(3.4)

where Mcl, Rcl and 〈m〉 are respectively the total mass, the viral radius and
the average star mass of the cluster.
Two-body interactions are extremely important also to de�ne another e�ect.
The most massive stars of a cluster are in fact decelerated due to the gravi-
tational drag force exerted by the lighter objects in their surroundings. This
e�ect is called dynamical friction, and lead all the massive objects to sink
toward the center of the cluster potential well in a process known as mass
segregation. It is possible to de�ne (Chandrasekhar 1943 [9]) the typical
timescale that a star with mass m takes to drift to the center of the cluster
because of dynamical friction (dynamical friction timescale) as

tdf =
3

4(2π)1/2G2 ln Λ

σ3(r)

mρ(r)
. (3.5)

Finally, since two-body relaxation and dynamical friction are two sides of
the same coin, it is possible to combine this last equation with 3.3 to �nd an
expression that relates the two quantities

tdf (m) =
〈m〉
m

trlx. (3.6)

The question is now if these massive stars can reach the cluster core
within their lifetime, i.e. if tdf < tlifetime. A stars with m ≥ 25M� can
live approximately for tlifetime ∼ 2.5 Myr. If we assume a cluster with
Mcl = 104M�, Rcl = 1 pc and 〈m〉 = 1M�, we have that tdf ≤ 1 Myr
(Mapelli 2018 [52]), and the star can drift to the center of the luster within
its lifetime. As a rule of thumb, runaway growth can be experienced by a
cluster only if the lifetimes for the most massive stars exceed the dynam-
ical friction timescale in which they segregate. Therefore, the core can be
populated by the most massive stars of the cluster, and the density of this
region is extremely increased, while the probability of collisions is highly
boosted up. If this happens, the most massive star in the cluster core dom-
inates the collision rate. It increases its mass through mergers with other
stars, making more likely other interactions and mergers, and less likely to
escape from the cluster (Portegies Zwart and McMillan, 2002 [66]). Hence,
the majority of collisions involve one particular object, most likely a star
in a binary system (due to the higher cross-section), which is the product
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of the �rst dynamical collision process and it is denoted as the principal
collision product (Mapelli 2016, [51]). It is probable, therefore, that the
principal collision product will participate in subsequent collisions, mostly
with other binary stars. This leads to a runaway process that, according to
several numerical studies (Portegies Zwart et al. 1999 [65], Portegies Zwart
& McMillan 2002 [66], Portegies Zwart et al. 2004 [67], Mapelli 2016 [51]),
results in a formation of a � 100M� very massive star that can grow up to
0.1% of the total mass of the cluster in about 0.2 trlx but no longer than
5 Myr, after a number of collisions that is dependent on stellar winds and
cluster's core density. These very massive stars are indeed good candidates
to become IMBHs by direct collapse, but their fate strongly depends on their
�nal mass. The latter is highly a�ected by the mass lost in each collisional
process and it su�ers the e�ects of the stellar winds experienced by the mas-
sive star. Furthermore, it does not depend on the collision number and the
time of the �rst collision (Mapelli 2016 [51]).
In particular, hydrodynamical simulations have shown that up to ∼ 25% of
the merger product mass can be ejected in the collision processes between
massive stars (Gaburov et al. 2010 [21]), while if the merging systems is a
star-black hole system, only ∼ 50% of the star mass can be directly accreted
by the BH3 (Ramirez-Ruiz & Rosswog 2009 [70]).
On the other hand, metallicity plays a key role in the evolution of these
massive runaway object, because it is strictly related to stellar wind. Since
massive stars are radiation pressure dominated, stellar winds at high values
of Z can have a huge impact on the formation of a massive compact object.
In a recent work, Mapelli (2016 [51]) found in her simulations that at so-
lar metallicity (Z� ' 0, 02) no IMBHs can form from runaway collision in
young dense star clusters. Contrarily, at Z ≤ 0.1Z�, 10 − 20% circa of the
principal collision products form IMBHs with masses up to 250M�, three
of which are bounded in black hole binary systems which can be considered
IMBH Binaries4. Runaway collision is, therefore, an e�cient process for the
production of IMBHs in young dense star clusters (Portegies Zwart et al.
2004 [67], Mapelli 2016 [51]).

3This value is still debated in literature. Nevertheless, Giersz et al. (2015 [23]) found
that for accretion of only ∼ 25%, IMBHs can still be created. Because of the smaller
mass accretion rate, the timescales are larger and the maximum mass lower respect to the
∼ 50% case: check image 19 of the paper for further details.

4It is important to notice that these results come from simulations that do not include
prescriptions for PPISNe and PISNe. Spera & Mapelli (2017, [78]) have revisited the
evolution of the same PCPs including PPISNe and PISNe, and they found that the percent
of runaway product that forms IMBHs in metal-poor star cluster is enhanced to 20−30%.
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3.3 Repeated Mergers

In the last paragraph we have seen that if the dynamical timescale is shorter
than the lifetime of the most massive stars of the cluster, these can migrate
toward the cluster's core and trigger a runaway process that can yield to an
IMBH birth. But what if these stars die before reaching the center of the
cluster (i.e. if tlifetime < tdf )? They would likely end their life leaving a
compact object more massive than the average star mass 〈m〉 of the cluster.
This remnant would keep sinking in the cluster core where the density is
higher, proceeding even faster if bounded in a binary system. If the remnant
is a black hole, it has high chances to �nd a massive companion and form a
BBH system, which can subsequently interact repetitively with other black
holes and cause repeated mergers. This possibility has been �rst proposed by
Miller & Hamilton (2002 [61]) to explain an alternative scenario for IMBH
formation. The idea can be summarized as follow:

I. Dynamical formation of a black hole binary, which is most probably a
hard binary (Mapelli 2018 [52]).

II. The BBH is hardened by three-body interactions and its semi-major
axis gets shrunk.

III. Due to the hardening process (check section 2.2), the binary can enter
the gravitational wave regime which further reduces the orbital separa-
tion because of gravitational wave emission. This will eventually lead
to the merger of the two black holes.

IV. The merger product is a massive black hole, therefore, if relativistic
kick has not expelled it from the cluster, it will probably �nd a new
massive companion. If the secondary object of the new-born binary
system is a black hole, we are again in the situation of the point I.

This loop can go on several times until the main black hole becomes an
IMBH, but this process presents di�erent complications that need to be
discussed.

First, the hardening process induces a recoil on the BBH when this inter-
acts with a third object. This recoil can be strong enough to eject the binary
from the cluster before further hardening interactions tighten its orbit in the
gravitational radiation regime (Sigurdsson & Hernquist 1993 [75]). It has
been proved (Miller & Hamilton 2002, [61]) that exists a maximum binding
energy Eb,min (i.e. a minimum semi-major axis acrit) above (below) which
the binary is expelled from the cluster after a three-body interaction. From
the same calculations, assuming a cluster with vesc ' 50 kms−1, it follows
that a black hole withM ≥ 50M� has enough inertia to remain bound to the
cluster after the recoil, while all the lighter ones may be ejected. This result
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puts an important constraint in the probable minimum mass for black holes
that participate to the repeated merger mechanism for the formation of an
IMBH. Actually, Quinlan (1996 [69]) has shown that if in a three-body inter-
action the binary mass ratio m1/m2 is high, the hardening process increases
the eccentricity while the orbit shrink, and this translates in a reduction of
acrit which can allow lower-mass black holes to grow by mergers avoiding a
cluster ejection (Miller & Hamilton 2002 [61]). Therefore, small mass black
holes may be still in the game for IMBH formation via repeated merger,
since they can avoid strong hardening recoil as long as they belong to highly
eccentric systems.

Second, one may wonder why black holes would more likely interact with
other black holes to form a BBH system, and less likely with other core
objects. Naturally, the rate of encounters in the core is strictly related to the
density of �eld black holes. In particular, under thermal equilibrium, binary
encounters with single stars are dominated by the most massive objects of the
cluster, which in general are black holes (Sigurdsson & Phinney 1995 [77]).
Therefore, BH-star binary systems will likely interact with other black holes,
which will probably take over for the star via dynamical ejection forming a
BBH. This explanation holds if interactions involve binary systems, because
of their high cross-section. But what about single black holes? Miller &
Hamilton [61] have shown that if thermal equilibrium holds, the slowest
moving population dominates the encounter rate, and this means black holes.
Therefore black holes have high chances in a dynamically active and dense
environment to �nd a similar partner.

Third, the most important issue is related to the relativistic kick received
by the product of a gravitational wave merger due to the anisotropic gravi-
tational wave emission. This post-merger kick can lead the new-born black
hole to recoil with velocities up to thousand of kms−1 (Lousto & Zlochower
2009 [45]). Holley-Bockelmann et al. (2009 [31]) estimated in their models
that a globular cluster can retain an IMBH 33% of the times if it is assumed
a Kroupa initial mass function for BHs (Kroupa 2001 [40]). Furthermore,
they also show that only 16% of the Milky Way globular clusters can keep
an IMBH with massM ≥ 1000M�. For a denser stellar environment such as
nuclear star cluster, the escape velocity could be much higher and retention
may instead be more possible. Therefore, if our loop breaks at point III
because of this recoil, repeated mergers won't give birth to an IMBH.

Lastly, Giersz et al. (2015 [23] found with Monte Carlo simulations
that repeated merger scenario is working in globular clusters, but it is less
timescale e�cient respect to other formation paths. They report in fact that
both runaway collisions and repeated mergers are actively working in IMBH
production, but while the �rst mechanism can produce massive black holes
in the early ages of the clusters (few Myr, see section 3.2), the latter sets
on after & 5Gyr. This implies that repeated mergers can still be working
in older star clusters such as globular clusters. However, these simulations
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do not consider gravitational wave recoils, and as we have already discussed,
this can have severe consequences in IMBH formation.

Despite the aspects discussed above, the repeated mergers mechanism is
still a prominent formation path for IMBH. Moreover, respect to runaway
merger and direct collapse scenarios, it can be described just exploiting the
dynamics of the cluster, without considering stellar evolution. So far, this is
the only IMBH formation mechanism potentially observable with the current
gravitational wave detectors despite, by now, no IMBH has been detected
by aLIGO/aVirgo observatories (The LIGO Scienti�c Collaboration & the
Virgo Collaboration 2019 [84, 2]). On the other hand, among the ten BBH
mergers con�rmed events, GW170729 represents the most massive system
detected with a �nal mass of 79.5+14.7

−10.5M�. Notwithstanding the low evi-
dence that this event is a second-generation merger (Chatziioannou et al.
2019 [11], Kimball, et al. 2020 [36] ), GW170729 has con�rmed that the
pair-instability mass gap can be �lled by BHs mergers. Future observations
of BBHs mergers with a mass ratio much di�erent from one will represent
an important �ngerprint of BBHs dynamical formation and repeated merger
scenario.
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Chapter 4

Three-Body Simulations

We have seen that three-body interactions drive the dynamical encounters
in dense star clusters and that they are a fundamental tool for the formation
of IMBHs and IMBHBs. For these reasons, we aim to recreate a statisti-
cal sample of the three-body interactions between BBHs and massive black
holes, with the goal of exploring all the possible outcomes. This chapter is
thus divided into two sections: the �rst describes the N-body codes, their
main characteristics and the code we used to recreate our mock three-body
encounters, while the second section is focused on all the initial conditions
assumed for these simulations

4.1 N-body codes

The N-body problem is modernly explored with the usage of the N-body
codes, whose application can range from the study of few body interactions
(e.g. solar system simulations) up to a huge number of particles per simula-
tion for star clusters or even cosmology. The work of an N-body code is to
solve the equations of motion of all the N particle that compose a system.
If the system is a star cluster, the equation of motion for a particle i sub-
jcted to the gravitational force of all the other particles with mass mj is the
Newton's equation of motion and can be written as

~ai = −G
N∑
i 6=j

mj
~ri − ~rj
|~ri − ~rj |3

(4.1)

With ~ri,j the positions of the two particles. Despite being an extraordinary
tool to study dynamics, N-body codes su�er several limitations that increase
the computational cost of N-body simulations. In function of the solution
to this problem, we can divide the N-body codes in two di�erent categories:
direct N-body codes and Tree N-body codes.

In direct gravitational N-body simulations the equations of motion of
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a system with N particles under the in�uence of their mutual gravitational
forces are integrated numerically without any simplication or approximation.
The codes that perform this kind of simulations are called direct N-body
codes, and achieve high accuracy at the price of a large computational time.
The integrations are in general performed by a fourth order Hermite integra-
tor, and are recursively repeated after an adaptive timestep that depends on
the type of dynamical interaction that the program is simulating. Since ac-
celerations are determined by summing all the pairwise interactions for the N
particles, the computational time per timestep must increase as N2, leading
numerous particle systems in being extremely time-consuming to simulate.

Another family of N-body codes that solve this problem consists of those
that instead of the direct integration exploit the faster tree-algorithm (Barnes-
Hut algorithm, 1986 [6]). These codes reduce the total computational timescale,
such as it scales as N logN , but reduce the precision since strong interactions
are typically softened and long-range interaction are approximated. Thus,
direct codes are in general used in small-scale encounters in which few bodies
are involved (collisional systems), while codes based on the tree-algorithm
are exploited for large-scale systems (collisionless systems) in which N is high.

One more problem of the N-body codes is connected with the geometrical
nature of the gravitational acceleration to scale as the inverse square of
the distance. In a strong gravitational encounter between two objects, the
mutual distance tends to zero leading the code to a singularity. Since the
adaptive timestep for an N-body code scales as ∆t ∝ rαij with α > 0 and
r the mutual distance between two particles, we have that for rij → 0 the
number of steps becomes in�nitely high and this causes a large numerical
error on the integration. To avoid this problem there are two solutions. One
is the softening, which consists into adding a constant to the spatial term at
the denominator of the acceleration, such as

~ai = −
N∑
i 6=j

Gmj~rij

(r2ji + ε2)3/2
(4.2)

with ε the softening constant, in general de�ned as the radius of the star. The
softening method allows to avoid rounding errors from the integration when
the mutual distance between particles drastically decreases. A second and
more precise method to avoid the singularity is instead the regularization.
The regularization method consists in a change of coordinates dt = r ds
that removes the singularity, where dt is the physical time, r is the relative
distance and ds is the time in the new "regularized" frame. It was �rst
introduced by Levi Civita in 1920 ([43]) in two-dimesions to describe the
Keplerian motion of two orbiting bodies as an harmonic oscillator, and it has
been later generalized by Kustaanheimo and Stiefel in 1965 ([41]) in three-
dimensions. Finally, it has been extended to N-body encounters by Mikkola
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and Aarseth in 1990 ([56]) and implemented in N-body codes in 1993 ([57])
via the chained variables method, in which the coordinate change is

dt =
ds

U(rij)
U(rij) =

N∑
i<j

mjmi

rij
(4.3)

with U(rij) the N-body gravitational potential.

4.1.1 The ARWV Code

To compute our three-body simulations we exploited ARWV, a Fortran
direct few-body code that exploits Mikkola's algorithm for regularization
(Chassonnery et al. 2019 [10]). This code integrates the few-body prob-
lem (N ≤ 500) with high precision, making usage of the chained variables
method for the coordinates and velocities of the stellar bodies. In partic-
ular, since we are interested in three-body interactions between BBHs and
single massive black holes, we exploited the possibility of ARWV to com-
pute the accelerations with a post-Newtonian approximation up to 2.5 or-
der. The post-Newtonian approximation is extremely important since it
keeps account of the dissipative term in the equations of motion caused
by the gravitational wave radiation; for further informations see appendix
B. The regularization in our simulations has been performed by ARWV in
order to optimize the close encounters with a combination of the logarithmic-
Hamiltonian (or the logH method, Mikkola & Tanikawa 1999 [58]) and the
Time-Transformed-Leapfrog methods (Mikkola & Aarseth 2002 [59]). With
an adaptive timestep, ARWV is capable of keeping track of the orbital evolu-
tion of all the binary systems that form, evolve and potentially merge during
the simulations. The code detects a merger between an object and a black
hole when the mutual distance d is equal to the innermost stable circular
orbit of the black hole, i.e. rISCO = 6Gmbh/c

2.

For each simulation, ARWV accepts as input data the masses of each
particle plus the positions and velocities rescaled in the three-body center-
of-mass frame. In our simulations, space, time and masses are physically
measured in pc, days and M� with G = 3.372743 × 10−20 pc3M−1� days−2.
N-body codes run more smoothly if the physical quantities are rescaled in a
reference frame in which the universal gravitational constant is one. There-
fore, we �rst �xed the spatial and mass scale parameters to rescale the co-
ordinates with

xcode = xphys · xscale =
xphys
1 pc

mcode = mphys ·mscale =
mphys

1M�
.

(4.4)
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We then derived the time and velocity scaling factors, with which we rescaled
also the time and velocities as follow

tcode = tphys · tscale =
tphys[(

1
xscale

)3
/
(

G
mscale

)]1/2
vcode = vphys · vscale = vphys ·

xscale
tscale

.

(4.5)

Once performed this rescaling procedure, all the input conditions are set in
a frame where calculations can be carried on with G = 1.

Lastly, ARWV implements a merging routine that computes the relativis-
tic recoil velocity of the merger remnant, whose position is located in the
center-of-mass of the previous pair. This relativistic kick is a consequence of
the fact that BBHs radiate anistropic gravitational radiation. This causes a
net emission of linear momentum that induces an acceleration on the merger
remnant, which eventually can reach a recoil velocity up to several thou-
sands of kms−1. The �nal recoil velocity imparted to the remnant due to
the relativistic kick is computed by ARWV with the following equation

vrecoil = vme1 + v⊥(cos ξe1 + sin ξe2) (4.6)

where e1 is the unit vector pointing from the primary to the seconday bi-
nary component, while e2 is an orthogonal unit vector in the two-body or-
bital plane, such that the basis formed by e1, e2 and the orbital angular
momentum is direct. The other terms are de�ned as

ξ =a+ bS‖ + cδm∆‖

vm =η2δm(A+Bδ2m + Cδ4m)

v⊥ =Hη2(∆‖ +H2aS‖δm +H2b∆‖S‖

+H3a∆
2
‖δm +H3bS

2
‖δm +H3c∆‖S

2
‖

+H3d∆
3
‖ +H3e∆‖δ

2
m +H4a∆

2
‖S‖δm

+H4bS
3
‖δm +H4cS‖δ

3
m +H4d∆‖S‖δ

2
m

+H4e∆‖S
3
‖ +H4f∆3

‖S‖)

(4.7)

where a, b and c are dimensionless constants while A,B,C and H are con-
stants given in kms−1. The subscript ‖ denotes the vector projections along
the direction of the binary angular momentum vector. The constants are
all reduced by numerical simulations carried in the original paper by Healy
& Lousto (2018 [25]) that introduced this recoil prescription. For each BH
in the simulation, ARWV accepts as input values the Cartasian projections
of the BH dimensionless spin αi with |αi| ≤ 1. The recoil velocity depends
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on the masses and the dimensionless spins of the progenitor BHs, which are
implemented in equations 4.7 with the following factors

S =
α1m

2
1 + α2m

2
2

m2
=
α2 + q2α1

(1 + q)2

∆ =
α2m2 − α1m1

m
=
α2 − qα1

1 + q

η =
m1m2

m2

δm =
m1 −m2

m
≤ 0

(4.8)

in which m = m1 + m2 is the total mass of the binary, q = m1/m2 ≤ 1 is
the mass ratio and α1,2 are the dimensionless spins of the BBH components.

4.2 Mock BBHs systems

We performed a total of 104 simulations, each of which recreates a three-
body encounter between a BBH and a massive ≥ 60M� black hole. The
initial conditions have been generated exploiting a similar prescription to
the one introduced by Hut & Bahcall (1983 [33]). Speci�cally, the binary is
characterized by a primary and a secondary BH with masses m1 and m2,
semi-major axis a and eccentricity e. The massive BH intruder has mass m3,
it approaches the binary starting from an in�nity-distance D with an initial
velocity relative to the center-of-mass of the binary v. The encounter strictly
depends on the impact parameter b, the orbital phase of the binary f and
the impact directions φ, θ and orientation ψ. The angle φ is de�ned as the
angle between the pericenter of the binary orbit and the intersection of the
vertical plane in which lies the initial velocity vector of the intruder. The
angle θ de�nes the aperture included between the perpendicular versor of
the binary orbital plane and the intruder initial velocity direction at in�nity.
The aperture ψ is instead the angle that de�nes the orientation of the impact
parameter respect to the orbital plane direction in a surface perpendicular
to the initial velocity of the intruder. Finally, each BH is characterized by a
dimensionless spin αi = |Ji|c/Gm2

i , where J is the BH spin, c is the speed of
light, G is the universal gravitational constant, mi is the mass of the BH and
i = 1, 2, 3 is the index that refers respectively to the primary, secondary and
intruder BH of the simulation. These initial parameters are schematically
pictured in �gure 4.1.

In principle, one could argue why we did not consider three-body en-
counters that include also stars. Since our main goal is to purely study
dynamical interactions between black holes, we decided to focus only on en-
counters with already-formed BHs, avoiding in this way the stellar evolution
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Figure 4.1: Initial parameters of the three-body encounters, from Hut &
Bahcall 1983 [33].

part. The advantage of this choice is that we were able to run our simulations
with ARWV without pairing it with a stellar evolution synthesis code. Stel-
lar evolution complicates even more the problem, since it introduces other
phenomena that can destroy the binary even before the BBH creation (e.g.
supernova kicks). Therefore, in this preliminary study we decided to neglet
stellar evolution to keep our analysis as simple as possible, but we will in-
clude it in the future development of this work.

Our simulations are set in young massive dense star clusters (YMCs)
with a metallicity of Z = 0.1Z� ' 0.002. In particular, we generated the
initial conditions of the masses and semi-major axis from the data of the
BHs population produced in the simulations of Di Carlo et al. (2019 [16]).
They performed 104 simulations of YMCs at Z = 0.002 with masses in the
range 103 ≤ mcl/M� ≤ 3 × 104 using the N-body code NBODY6++GPU
coupled with the population synthesis code MOBSE. Their clusters, which
evolved for a total time of 100Myr, are characterized by an initial binary
fraction of 0.4, a fractality prescription for the cluster's clumpiness and a
Kroupa initial star mass function (Kroupa 2001 [40]) with minimum mass
0.1M� and maximum mass 150M�. In their results they found 24 IMBHs,
all of them formed from runaway collisions, in agreement with other studies
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Parameter Distribution Range

m1 KDE [3.2, 438.0]M�
m2 KDE [3.0, 312.9]M�
m3 KDE [3.0, 378.3]M�
a Gaussian [0.059, 104]AU
v Maxwellian ...
e e2 [0, 1]
b b2 [0, 100]AU
D Constant ...
φ φ [0, 2π)
θ cos θ [0, 1]
ψ ψ [0, 2π)
f ε− e cos ε [0, 2π)
αi Maxwellian ...

Table 4.1: From left column to follow: the 13 initial parameters generated for
each simulation, the distribution used to create the samples, the range of the
distributions. For further details on each parameter see the next sections.

(e.g. Mapelli 2016 [51]). This con�rms that runaway collisions and dynamics
are both at work in YMSs, which are therefore a promising environment for
the production of IMBHBs, as we argued in section 2.1.2.

Finally, we run each simulation for 105 yr. This amount of time is suf-
�ciently long to ensure the energy exchange between the BBHs and the
intruder while being also relatively short in computational time to allow the
production of a statistical sample of simulations. The simulations have been
run in parallel on 40 cores of DEMOBLACK, which is a cluster composed
by 8 Intel Xeon Platinum 8168 at 2.70 GHz each of which with 24 cores, and
a total of 14.7 TB of RAM memory plus 15.6 GB of Swap Memory.

In the next sections, we discuss the distributions and the methods that
we used to sample each of the 13 initial parameters, which are resumed in
table 4.1.

4.2.1 Masses m1, m2 and m3

We extracted the masses of our black holes from the BH population produced
in simulated YMSs after 100Myr by Di Carlo et al. (2019 [16]). The BHs
produced by their simulations are formed via di�erent channels along the
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evolution of the cluster, therefore their masses span from few solar masses
up to several hundreds. We �rst separated their mass values into single
black holes and black holes bounded in binary systems, dividing these lat-
ter into primary and secondary cases. These three populations respectively
range from 3.0M� up to 378M� for the 37049 single cases, and 3.0M� up
to 438M� for the 2620 primaries, while the upper value is slightly lower
313M� for the secondaries. Since we had to sample 104 values from each
of these less-numerous groups, we exploited the kernel density estimation
(KDE) method to compute the probability density function (PDF) for all
the three populations. We then sampled the extracted PDF with the re-
ject sampling technique to obtain the masses of all our synthetic BHs. In
particular, the values for m1 have been sampled from the PDF of the pri-
maries, m2 from the PDF of the secondaries and m3 from the single BHs
distribution extracted with the KDE. For m3 we restricted the sampling to
values with m3 ≥ 60M�, otherwise our three-body encounters would have
been dominated by low-mass < 60M� intruders. The resulting distribution
of the masses sampled with this method are shown in �gure 4.2.

4.2.2 Semi-Major Axis a

To use a self-consistent distribution for the semi-major axis of already formed
BBHs, we made usage of the semi-major axis values of the BBHs produced
by the simulations of Di Carlo et al. after 20Myr from the generation of
their YMS clusters. In particular, we considered just SCs with masses in
the range 8 × 103 ≤ mcl/M� ≤ 3 × 104 since these have higher escapes
velocities and can retain more BHs and BBHs that would be dynamically
ejected. Furthermore, more massive clusters host a larger number of dy-
namical interactions and therefore, more hardening encounters that produce
tight BBHs. The di�erences in the distribution of a between the full mass-
range SCs of Di Carlo et al. and the restricted sample we used is shown
in the upper plot of �gure 4.3. We also checked that the distribution does
not change signi�cantly between 20 an 100 Myr. We thus performed a �t
of the semi-major axis data with a gaussian distribution parameterized with
mean value µa = 32.2AU and standard deviation σa = 8.2AU . We set the
lower end of the distribution equal to the smaller semi-major axis of the
data from Di Carlo et al., i.e. amin = 5.9 × 10−2AU . As upper bound, we
imposed instead the value amax = 104AU since larger values are typically
of soft binaries that break very soon into an N-body simulation. Our �nal
semi-major axis sample for the 104 simulations is shown in the bottom plot
of �gure 4.3.

A frequently used distribution in numerical simulations for the orbital
periods and, therefore, for the semi-major axis, is the one extracted by Sana
et al. (2012 [73]). They recovered a distribution P(T ) ∝ Tα with α = −0.55
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Figure 4.2: Mass distributions sampled from the BHs population of Di Carlo
et al. (2019 [16]) using the kernel density estimation method. The upper
plot refers to the primary component of the BBHs, the middle plot to the
secondary and the bottom plot to the intruder. The last distribution is
signi�cantly shifted toward higher masses since we set a lower limit of m3 ≥
60M�.
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from the observations of 40 nearby O type stars in spectroscopic binaries.
We did not use this distribution since it is valid just for binaries of massive
stars, while it is not a realistic choice for binaries of BHs. As comparison,
we reported this distribution in the upper plot of �gure 4.3.

4.2.3 Velocity v and Eccentricity e

The velocities of the BHs in a three-body encounter depend on the cluster
dispersion velocity, and therefore on the cluster properties. In section 2.1.1
we have seen that the dynamical evolution of a star cluster is dominated by
the two-body relaxation, which induces the cluster toward the thermaliza-
tion. Since YMSs have a relaxation timescale ≤ 100Myr (see table 4.1), we
can assume that the BHs in our simulations are in thermal equilibrium in the
cluster and, therefore, that they follow the Maxwell-Boltzman distribution.
We thus sampled the module of the relative initial velocity of the intruder
from a thermal distribution with σ = 5 kms−1, which is a typical dispersion
velocity value for such star clusters.

If stars are thermalized, binary eccentricities follow the thermal eccen-
tricity distribution (Jeans 1919 [35], Ambartsumian 1937 [3], Heggie 1975
[28]), therefore we sampled the eccentricity values homogeneously on e2 in
the [0, 1] range. The resulting samples are shown in the top right plot of
�gure 4.4.

4.2.4 Impact Parameter b and Initial Distance D

The impact parameter has been drawn according to an equal probability
distribution ∝ b2 since it is proportional to the area of a surface element
transverse to the direction of the intruder. The probability distribution has
been taken between zero and the maximum value for which energy exchanges
between the binary and the intruder are possible. This upper limit is thus
extremely important for the outcome of the simulations since, too high values
of bmax, would cause no or few interactions between the binary and the
intruder. On the other hand, too small values would introduce a bias leading
all the bodies to interact in each simulation. To estimate the most realistic
upper bound of the distribution, we exploited the de�nition of bmax for a
three-body encounter that we have introduced in section 2.2.2

bmax =

√
2G(m1 +m2 +m3)a

σ
. (4.9)

For typical values such as m1 + m2 + m3 = 100M�, a = 10AU and
σ = v = 10 kms−1, we have that bmax ' 100AU . We thus set this value as
upper end for the impact parameter distribution. The samples drawn from
the distributions for all the simulations are shown in the bottom right plot
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Figure 4.3: Upper plot: comparison between di�erent semi-major axis sam-
ples. In blue, semi-major axis values of BBHs harbored in the simulated
clusters of Di Carlo et al. (2019 [16]), where the mass of the clusters span
from 103M� up to 3 × 104M�. In orange, a values from the simulations
of Di Carlo et al. restricted only to massive YMSs with minimum mass
8 × 103M�. Black dashed line, gaussian �t (µa = 32.3AU , σa = 8.2AU)
of the orange histogram. The orange distribution is shifted toward lower
values of a respect to the blue one since more massive clusters have more
dynamical encounters to harden the BBHs and higher escape velocities to re-
tain them. Finally, in green we report also a population of binaries sampled
from the distribution derived by Sana et al. (2012 [73]). This distribution
favors low value of a respect to the gaussian choice. This follows from the
fact that it has been reduced from the observation of binaries of stars that
still have to experience events that lead to a growth of a (e.g. supernova
explosions). Bottom plot: the distribution of the semi-major axis sampled
from the gaussian �t for the 104 BBH in our simulations.
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of �gure 4.4.

Once set the impact parameter, we were able to introduce a prescription
also for the initial distance of the intruder from the center of mass of the
binary D (i.e. the spatial in�nity of the simulations). The choice of this
parameter has been carefully considered since the initial separation must be
not too small and neither too high. The intruder must be set in fact at
a spatial distance su�ciently high where the gravitational potential of the
binary is negligible, to allow a "smooth" approach between the binary and
the intruder in the simulations. On the other hand, D must be at a distance
not too wide because realistically it could interact with another object of
the cluster along the trajectory. For each simulation, we thus set D as the
maximum value between 100 · a and b. In this way, we �xed the irrealistic
situation in which b > D and at the same time we chose an initial distance
that ful�lls the considerations we have just discussed.

4.2.5 Direction φ, θ and orientation ψ Angles

The three angles have been generated according to the prescription adopted
by Hut & Bahcall (1983 [33]). Speci�cally, we drafted the angles φ and ψ
from homogeneous distributions in the interval [0, 2π). For the direction
angle θ, we instead sampled from a probability ∝ cos θ in the interval [0, 1).
All the angles sampled for the 104 simulations are shown in �gure 4.5.

4.2.6 Orbital Phase f

The orbital phase f is de�ned as the angle with respect to the periastron
which the secondary binary member would have at the time of the pericenter
passage of the intruder. In other words, it is the projected true anomaly ε of
the binary at the time that the intruder would have reached its hyperbolic
pericenter. This de�nition can be expressed with the Keplerian mathematical
expression

2π

T
tp = ε− e sin ε (4.10)

with T the period of the binary, e its eccentricity and tp the time since the
periastron passage. With this expression we random sampled ε and then ex-
tracted f with the following procedure. We �rst generated a random value
in the range [0, 2π) for the right term and we then exploited the bisection
method to extract the zeros of the equation. Once reduced ε with the bi-
section, we then used it in the following expression to recover the orbital
phase

tan(f/2) =

(
1 + e

1− e

)1/2

tan(ε/2). (4.11)
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The �nal samples of the orbital phase drawn with this method for all the
simulations are shown in the bottom right plot of �gure 4.5.

4.2.7 Black Hole Spin α

We sampled the dimensionless spin magnitudes α for each BH in all the sim-
ulations following the prescription introduced by Bou�anais et al. (2019 [7]).
The magnitude and direction of BH spins are still a matter of debate due to
the large lack of knowledge for a relation between the BH spin magnitudes
and the progenitor star spin. Furthermore, there are only poor spin con-
strains from the observations of aLIGO/aVirgo. Therefore, in general, two
spin prescriptions are adopted: one which favors lower spin magnitudes, the
"low-spin" prescription, and another which instead favors higher spin val-
ues, the "high-spin" prescription. Since the �rst two runs of aLigo/aVirgo
disfavors distributions with large spin components aligned with the orbital
angular momentum (The LIGO/Virgo Scienti�c Collaboration 2019 [86]), we
adopted the low-spin model. In particular, we sampled α from a Maxwellian
distribution with root mean square 0.1, and we then decomposed the di-
mensionless spin in its three Cartesian coordinates for each black hole. The
drown spins used for the 3 × 104 simulated BHs are shown in the top left
plot of �gure 4.4.

4.2.8 Change of Coordinates

Once sampled all these initial conditions for the 104 simulations, it has been
necessary to perform a change of coordinates and transform m1, m2, m3, a,
e, v, b, D, φ, θ, ψ and f in Cartesian coordinates rescaled in the reference
frame of the three-body center-of-mass. The following expressions for the
change of coordinates have been derived by Mapelli (2003 [47]), where the
subscript i = 1, 2, 3 refers to the primary, secondary and intruder BHs.

x1 = − m2

(m1 +m2)

a(1− e2) cos f

(1 + e cos f)

y1 = − m2

(m1 +m2)

a(1− e2) sin f

(1 + e cos f)

z1 = 0

ẋ1 = − m2

(m1 +m2)

(
e cos f

(1 + e cos f)
− 1

)
sin f

√
G(m1 +m2)

a(1− e2)
(1 + e cos f)

ẏ1 = − m2

(m1 +m2)

(
e sin2 f

(1 + e cos f)
+ cos f

)√
G(m1 +m2)

a(1− e2)
(1 + e cos f)

ż1 = 0
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x2 =
m2

(m1 +m2)

a(1− e2) cos f

(1 + e cos f)

y2 =
m2

(m1 +m2)

a(1− e2) sin f

(1 + e cos f)

z2 = 0

ẋ2 =
m1

(m1 +m2)

(
e cos f

(1 + e cos f)
− 1

)
sin f

√
G(m1 +m2)

a(1− e2)
(1 + e cos f)

ẏ2 =
m1

(m1 +m2)

(
e sin2 f

(1 + e cos f)
+ cos f

)√
G(m1 +m2)

a(1− e2)
(1 + e cos f)

ż2 = 0

x3 = D

[
sinφ cosψ

(
b

D

)
− cosφ

(√
1−

(
b

D

)2

sin θ +

(
b

D

)
cos θ sinψ

)]

y3 = −D
[

sinφ

(√
1−

(
b

D

)2

sin θ +

(
b

D

)
cos θ sinψ

)
+

(
b

D

)
cosφ cosψ

]

z3 = D

(
− cos θ

√
1−

(
b

D

)2

+

(
b

D

)
sin θ sinψ

)

ẋ3 = v sin θ cosφ

ẏ3 = v sin θ sinφ

ż3 = v cos θ
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Figure 4.4: Values for some of the sampled initial parameters for the 104

simulatet three-body encounters. Top left: Adimensional spin α drawn from
a Maxwell-Boltzman distribution with σ = 0.1. Top right: Eccentricity
values sampled from a distribution ∝ e2 in the range [0,1]. Bottom left:
initial magnitude velocity of the intruder v drawn from a Maxwell-Boltzman
distribution with σ = 5 kms−1. Bottom right: Impact parameter b sampled
from a distribution ∝ b2 in the range [0,100]AU.
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Figure 4.5: Same of �gure 4.4. Top left and top right: values of the angles
θ and φ homogeneously sampled in the [0,2π] range. Bottom left: θ angle
drawn from a probability distribution ∝ cos θ in the range [0,1]. Bottom
right: values for the orbital phase angle of the binary system in the range
[−π,π] sampled with equation 4.11.
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Chapter 5

Results

In this chapter, we present the results of the 104 three-body simulations
performed with ARWV and generated with the initial conditions discussed
in the previous chapter. In the �rst section we report the outcomes of the
simulated dynamical encounters, while in the second section we focus on the
properties of the BBHs resulting from the simulations.

5.1 Outcomes from three-body interactions

All the simulated three-body encounters between a BBH and a massive BH
have been integrated by ARWV for 105 years. During this time, 55 pairs
of BHs merge and consequently produce a massive BH remnant. Of these
merger products, 8 have masses > 100M� and can be considered IMBHs
while 25 of them lie above the lower end of the pair-instability mass gap
in the range 60 ≤ mBH/M� < 100. The most massive BH produced by a
merger in the simulations has mBH = 197M�, while the less massive one
has mBH = 32M�.

In 18 cases, the merger remnant forms a new binary system with the third
BH of the simulation to give birth to a second-generation BBH. Speci�cally,
17 second-generation BBHs are formed by the coalescence of the original
binary1 m1 − m2 and the massive intruder m3, while in only 1 case the
secondary BH m2 of the original binary merges with m3 and their product
forms a new binary system with m1. All of these 18 second-generation BBHs
have at least one of the two members with mBH ≥ 60M�, two of which have
one IMBH component and can thus be considered IMBHBs, while in 1 case
both the components of the second-generation BBH are IMBHs and the
system can be classi�ed as a binary IMBH. Among the other 37 mergers, no
second generation BBHs are produced. In 34 of these simulations, the merger

1From now on, with original binary we will refer to the BBHs generated at the beginning
of the simulations from the initial conditions. The primary and secondary components of
these systems are called m1 and m2, while the massive intruder is m3.
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is reached by m1 and m2, while in the 3 remaining systems the merger is
caused by the coalescence of m1 and m3.

Among the other 9945 simulations, we found that 1492 systems experi-
ence a �y-by encounter with the intruder BH. We de�ne a �y-by encounter
as a three-body interaction in which the three-body system con�guration
is the same before and after the dynamical encounter, or in other words,
when m1 and m2 are still bound together at the end of the simulation while
m3 remains unbound. In 3979 cases, the original binary experiences an ex-
change where the secondary BH is kicked out from the system and a new
m1 −m3 binary is born, while in other 3565 encounters the primary m1 is
replaced and the exchange produces a BBH with m2 and m3 as components.
Lastly, we found 24 simulations in which all the BHs are bound together in
a triple system and 145 cases where two of the three couples of BHs have a
total energy E < 0 and the dynamical interaction is still going at 105 years.
Speci�cally, 55 of these cases have E13 < 0 and E23 < 0, 14 systems have
E12 < 0 and E23 < 0 while 76 have E12 < 0 and E13 < 0, with Eij the total
energy of the couple ij.

5.2 BBH Properties

At the end of the simulations, we obtained a total of 8984 BBHs, 55 of
which merge during the simulation, while a further set of 381 BBHs merge
after the end of the simulation but still within a Hubble time (tcoal ≤ tH =
13.8× 109 yr). We are particularly interested in this population of merging
BHs since it is the one that can be possibly detected with the gravitational
waves observatories. We can discuss these merging BBHs in function of their
outcomes from the simulations:

• Of the 55 mergers that happen during the simulations, 51 involve the
coalescence between the primary and secondary BHs of the original
binary. Of these, 11 had tcoal ≤ 105 yr already before interacting with
the intruder, and were already intended to merge during the simulation
run. This means that all the other mergers between m1 and m2 have
been triggered by the dynamical perturbations induced by the massive
intruder m3 on the original binary.

• Only 1 out of the 18 second-generation BBHs produced by the rem-
nant of the merger and the third BH can reach coalescence within a
Hubble time. This case provides a remarkable proof of the fact that
the repeated merger scenario is indeed a valid formation path for mas-
sive black holes, and this is particularly important because we included
relativistic kicks in our simulations.

• In 196 cases among the 1422 �y-bys, the original binary has tcoal ≤ tH
at the end of the dynamical interaction. 131 of these systems were
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Figure 5.1: Primary (x-axis) vs secondary (y-axis) BH component masses
of the 436 merging BBHs resulting from the simulations. Blue dots refer to
the original merging BBHs, light blue dots represent merging BBHs com-
posed of the primary of the original binary and the intruder, pink dots are
the BBHs formed by the secondary BH of the original binary plus the in-
truder, while black dots are second-generation BBHs. The green and red
dashed lines show the limits at 60M� and 100M�. Binaries that lie in the
region bounded between the red and green lines have at least one compo-
nent in the pair-instability mass gap. BBHs outside the red-dashed limited
region have at least one IMBH component and can be considered IMBHBs.
Lastly, red crosses represent the 10 detections with relative errorbars of the
mergers detected by aLIGO/aVirgo presented in the GWTC-1 catalog (The
LIGO/Virgo Scienti�c Collaboration 2019 [84]).
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already merging within a Hubble time even before the dynamical en-
counter with m3, therefore at least 65 systems experienced a hardening
process in which the semi-major axis of the original binary shrank as
a consequence of the energy exchange with the intruder. This resulted
in a reduction of the coalescence time for these systems.

• Among the 3979 cases in which the original binary experienced an
exchange followed by the formation of a m1 −m3 BBH, 106 are new-
born BBHs with a coalescence time smaller than the Hubble time.

• In the other 3565 exchanges in which the intruder replaced the primary,
78 binaries composed of m2 and m3 merge within a Hubble time.

All these 436 merging BBHs are reported in �gure 5.1, which shows
the masses of the BBH components. In the plot, we make no distinction
between BBHs that merged during the simulations and BBHs with tcoal ≤ tH
after the three-body interaction. We, instead, classify our binaries based
on the component masses at the end of the simulations. All the merging
BBHs with both BHs less massive than 60M� are original binaries that
experienced a �y-by encounter. These systems are enclosed in the green-
bounded region of the plot and are the result of a hardening interaction
which caused the original binary to decrease its tcoal or even to merge. Only
in few cases the merging BBHs m1 −m2 has the primary component above
60M� or even 100M�. Interestingly, the only merging second-generation
BBH in the simulations lies above the two green threshold boundaries since
its components are both BHs in the pair-instability mass gap. This system
is composed of a secondary BH with mass 80M� generated from the merger
of the original binary, and a primary BH with mass 86M�, which was the
former intruder. Its components will eventually merge in tcoal = 1.15×105 yr
forming an IMBH. The evolution of this BBH is a perfect example of the
repeated merger scenario and proves that sequential mergers can increase the
mass of a BH, �rst up to the pair-instability gap, and then above 100M�,
where it can be considered an IMBH.

In the plot we also reported the 10 merging BBHs detected by aLIGO/aVirgo
with the corresponding error bars (Abbott et al. 2019 [84]), also reported in
table 1.1 of chapter 1. All the observed binaries have BH components below
the pair-instability gap limit, except for the primary of GW170729 which,
with a mass of 50.2+16.2

−10.2 grazes the threshold with the errorbar.
Most of the binaries outside the green-dashed regions are BBHs that

experienced an exchange, as expected since the intruders have all been gen-
erated with m3 ≥ 60M� as initial condition. In particular, the BBHs re-
ported between the two colored-dashed lines in the plot are the 153 merging
binaries out of the 6235 systems with at least one of the two components
in the pair-instability mass gap found at the end of the simulations. For
comparison, the binaries with at least one of the two BHs in the range
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Figure 5.2: Orange histogram: Chirp masses of the 489 BBHs with tcoal ≤ tH
before the three-body interactions. Blue histogram: chirp masses of the 436
merging BBHs at the end of the simulations.

60 ≤ mBH/M� ≤ 100 were 665 before the dynamical encounter, only 38 of
which were merging BBHs. All the BBHs lying beyond the red-dashed line
have at least one IMBH component and can be considered IMBHBs. The
plot shows all the 54 merging IMBHBs we recovered as a result of dynami-
cal encounters, among the 1468 total IMBHBs produced by the three-body
interactions. In contrast, the merging IMBHBs among the original binaries
generated with the initial conditions were only 12 of the 155 BBHs with
at least one IMBH. Finally, we found one case of merging BBH with two
IMBHs as components (upper-right corner of the plot), where the primary
mass has a value of 436M�, the secondary is 122M� and the binary merges
in tcoal ' 1.43Myr.

These last results lead to the conclusion that dynamics is one of the
main drivers for the mass growth of the BBH components, and that it also
contributes to increasing the number of merging BBHs with at least one
of the two BH in the intermediate-mass range or the pair-instability mass
gap. This is con�rmed by �gure 5.2, which reports the chirp mass M =
(m1m2)

3/5(m1 +m1)
−1/5 both for the 436 merging systems at the end of the

simulations and for the 489 merging BBHs before the dynamical encounters.
From this �gure, it is apparent that dynamics enhances the chirp masses of
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Figure 5.3: Upper panel: total mass of all the original binaries generated
from the initial conditions at the beginning of the simulation (orange), vs
total mass of the remaining BBHs at 105 yr (blue), which include second-
generation binaries and systems that experience �y-bys and exchanges. Bot-
tom panel: same as the upper panel, but for binaries with tcoal ≤ tH before
(orange) and after (blue) the three-body encounter took place.

the merging systems up to a maximum value of 194M�, in contrast to the
previous maximum value of 71M�.

Finally, the bottom panel of �gure 5.3 shows the total mass Mtot of
the merging binaries before and after the three-body encounters took place.
Again, the dynamical interactions contribute to increasing the masses of
these binaries mostly via exchange, where the massive BH intruder kicks out
one of the two components to take its place. The overall e�ect is even more
visible in the upper panel of the same �gure, where we compared the total
masses of all the 104 original binaries at the beginning of the simulations with
the total masses of the remaining 8984 binaries after 105 yr (these include
second-generation BBHs and binaries that experienced �y-by and exchange
encounters).

Besides the total mass, the three-body interactions favor the creation of
binaries with unequal masses. This e�ect is evident in the upper panel of
�gure 5.4, which shows the mass ratio q of the original binaries in comparison
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Figure 5.4: Upper panel: distributions of the BBHs mass ratio of the 104

binaries at the beginning of the simulation (orange) vs the 8984 remaining
BBHs after the dynamical encounter (blue). Bottom panel: same as the
upper panel but for the eccentricity values.
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with the mass ratio of all the remaining binaries at the end of the simulations.
All the exchange processes and the creation of second-generation BBHs have
introduced more massive BHs in the binary components, which result in a
decrease of the average mass ratio and in a change of the overall trend of the
distribution toward lower values. Also the eccentricity distribution of the
systems has changed. The bottom plot of �gure 5.4 points out that BBHs
formed as a consequence of dynamical interactions favor eccentricities close
to 1. This trend comes from the fact that captured intruders in exchange
processes can have high velocities respect to the original binary systems.
Thus, the intruders can settle in eccentric orbits where they can replace
one of the two components after several resonant encounters, and lead to the
formation of an eccentric and more massive BBH. Lastly, �gure 5.5 and �gure
5.6 show the semi-major axis and the coalescence times for all the binaries at
the beginning and the end of the simulations. The distribution of the semi-
major axis presents only a small broadening e�ect, probably as a consequence
of Heggie's law. This states that, statistically, tight binaries get tighter
while wide binaries tend to become wider as a consequence of dynamical
interactions (Heggie 1975 [28]). As to the coalescence time distributions, the
di�erence between initial conditions and �nal distributions is more evident
at shorter times. The original binaries include a tail of BBHs with tcoal .
3×104 yr that is instead missing in the �nal BBHs distribution. Most of the
binaries in the tail are among the 55 systems that merged during the 105

years of simulations, 37 of which produced a single black hole that does not
contribute anymore to the distribution. In the other 18 cases in which the
merger gave birth to a second-generation BBH, the new-born binary is still
part of the blue histogram population but it has in general higher values of
tcoal.

74



Figure 5.5: Distributions of the semi-major axis for the original binaries
generated from the initial conditions (orange) and the population of BBHs
formed during the simulations (blue).
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Figure 5.6: Same as �gure 5.5 but for the coalescence times of the binaries.
The vertical red-dashed line marks the limit below which a BBH merges
within a Hubble time.
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Chapter 6

Conclusions

Our knowledge in the �eld of black holes (BHs) has dramatically improved in
the last few years thanks to gravitational-wave observations. However, the
mass distribution of BHs still lacks data in the range 102 ≤ mBH/M� ≤ 105.
BHs lying in this mass range are classi�ed as �intermediate-mass black holes�
(IMBHs), which represent the connection between stellar-mass and super-
massive black holes. In this work, we studied the demography of IMBHs,
in particular, we focused on the dynamical interactions between black hole
binaries (BBHs) and massive ≥ 60M� BHs with the aim to explore the
dynamical formation path of IMBHs and IMBH binaries (IMBHBs). With
respect to previous work, we decided to study three-body encounters in young
massive star clusters, which are good candidates as the IMBH birthplaces
due to their high masses and active star formation, furthermore young mas-
sive star clusters are the most common birthplace of massive stars (Portegies
Zwart et al. 2010 [68]).

We performed 104 simulations of three-body encounters with ARWV, a
direct N-body code that implements a post-Newtonian approximation up to
the 2.5 order to compute the equation of motion with extremely high preci-
sion even for close encounters. ARWV exploits the Mikkola's regularization
algorithm for the integration, and includes a relativistic kick prescription
for the post-merger BH remnant. We generated the initial conditions for
the three-body encounters by exploiting self-consistent distributions, inferred
from the simulations of young massive star clusters performed by Di Carlo
et al. (2019 [16]).

During our simulations, 55 BBHs merged, 51 of which involved the coales-
cence of the original binary. Of these 51, 11 systems had tcoal ≤ 105 yr before
the three-body encounter took place; dynamics thus triggered the collision
of the other 40 original systems. Furthermore, these mergers caused the for-
mation of 8 remnants with mBH ≥ 100M� (which can be thus considered
IMBHs) and 25 BHs above 60M�. In 18 cases, the merger product formed a
binary system with the third BH, giving birth to a second-generation BBH.
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In one case the newly-born BBH has tcoal = 1.15 × 105 yr, less than
a Hubble time, and has both components in the pair-instability mass gap.
When these components merge, they give birth to an IMBH. This system is a
remarkable result for two main reasons: �rstly, it con�rms that stellar-mass
BHs can grow in mass via the repeated mergers scenario up to the formation
of an IMBH. Secondly, it demonstrates that hierarchical growth of BHs to
IMBHs can take place in young star clusters, even if the �rst coalescence
event causes a strong relativistic kick on the BH remnant.

Besides this second-generation BBH, we found 380 binaries with tcoal ≤
tH = 13.8Gyr. Of these, 196 were hardened by the massive intruder (65
of them had coalescence timescale larger than the Hubble timescale before
the encounter). The other 184 mergers are BBHs born from an exchange
interaction, in which the intruder BH replaced one of the two components
of the initial binary. These events a�ected the chirp mass distribution of the
�nal mergers, which highly shifted toward larger values with respect to the
initial distribution.

Dynamics has also increased the number of massive BBHs that merge
within a Hubble time: the systems with at least one component in the range
60 ≤ mBH/M� ≤ 100 passed from 38 before the three-body encounter up to
153 after the dynamical interaction, while the 12 initial IMBHBs increased
to 54 at the end of the simulations. One of these systems is a binary with
both members in the IMBH range and can be thus classi�ed as binary IMBH.
The existence of such merging systems will be probed by the next runs of
LIGO and Virgo, by next-generation ground-based detectors (such as the
Einstein Telescope or the Cosmic explorer), and by the space-born Laser
Interferometer Space Antenna (LISA).

Finally, if we consider all (merging and non-merging) 8984 binary systems
found at the end of the simulations, we �nd that dynamics has drastically
increased the total mass and reduced the average mass ratio, while it favored
the production of eccentric binaries.

From these results we can conclude that dynamics plays a key role in
the production of massive binary systems, increasing the total mass and
raising the number of massive BBH mergers. In the near future, we will
continue the 169 simulations where the encounter was not concluded after
105 yr (24 of which are triple systems), and we will include their outcomes in
the existing sample of this work. As a future perspective, this study requires
the implementation of stellar evolution in the simulations to better reproduce
the physics of dynamical encounters in star clusters. This is indeed possible
by coupling a population synthesis code to an N−body program, and only
few studies have explored this path so far (e.g. Di Carlo et al. 2019 [16]).
Lastly, it would be interesting to study dynamical encounters in even more
dense environments, such as nuclear star clusters.
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Appendix A

IMBHs Electromagnetical

Candidates

Here we present a list of the IMBH candidates in the mass range 102 ≤
mBH/M� . 105. For the origianal detections references see tables 2, 3 and
4 in Green et al. (2019 [24]).

IMBH Candidates Detected in Nuclei

Object Dist [Mpc] Method mBH [M�]

NGC205 0.82 Dynamics (6.8+32
−2.2)× 103

NGC5102 3.2 Dynamics (9.1+0.61
−0.51)× 105

NGC5206 3.5 Dynamics (6.3+0.69
−0.61)× 105

NGC4395 4.4 Dynamics (4.0+8
−3)× 10

RM (3.6± 1.1)× 105

RM (9.1+1.5
−1.6)× 103

UGC 6728 27 RM (5.2± 2.9)× 105

iPTF-16fnl 66.6 mBH − σbulge 3.2× 105

ASASSN-14ae 200 mBH − σbulge 2.6× 105

PTF-09axc 536 mBH − σbulge 4.8× 105

PS1-10jh 822 mBH − σbulge 7.1× 105

PTF-09djl 900 mBH − σbulge 6.6× 105

WINFS J1348 265 mBH − σbulge 5.1− 5.6× 105

Table A.1: Column from left to right: object name, distance in Mpc, method
exploited for the measure and mass of the candidate IMBH. The reverbera-
tion mapping method is de�ned as RM. Empty rows refers to di�erent mass
measurements of the same object.
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IMBH Candidates Outside Nuclei

Object Dist [Mpc] Method mBH [M�]

47 Tuc 0.005 Dynamics 2300
Dynamics < 1650

FP < 1040
ω Cen 0.005 Dynamics (4.7± 1.0)× 104

Dynamics < 1.8× 104

Dynamics < 1000
M64 0.007 Dynamics (2000± 1000)

FP < 1130
NGC6624 0.008 Dynamics > 7500

Dynamics < 650
Dynamics < 1000

FP < 1150
M15 0.010 Dynamics 1700-3200

Dynamics < 2000
FP < 1530

NGC6388 0.011 Dynamics (2.8± 0.4)× 104

Dynamics < 2000
FP < 1770

NGC1904 0.013 Dynamics (3000± 1000)
M54 0.024 Dynamics 9400

Dynamics 1.1× 104

FP < 3000
M31/G1 0.780 Dynamics (1.8± 0.5)× 104

FP < 9700

HLX-1 95 X-ray 104 − 2× 205

FP < 3× 106

M82 3.5 X-ray 430± 100
X-ray < 100

NGC5252-ULX1 100 FP 3000− 2× 106

Table A.2: Same of table A.1 but for candidates observed o�-nuclei. The
foundamental plane method is reported as FP.
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Constraining Upper Limits

Object Dist [Mpc] Method mBH [M�]

Fornax 0.135 Dynamics 1 < ×105

UMi 0.076 Dynamics < 3× 104

IC342 3.9 Dynamics < 3.3× 105

NGC300 2.2 Dynamics < 1× 105

NGC404 3.1 Dynamics < 1.5× 105

NGC428 16.1 Dynamics < 7× 104

NGC1493 11.4 Dynamics < 8.0× 105

NGC2139 23.6 Dynamics < 4.0× 105

NGC3423 14.6 Dynamics < 7.0× 105

NGC4244 4.4 Dynamics < 5.0× 105

NGC7424 10.9 Dynamics < 4.0× 105

NGC7793 3.3 Dynamics < 8.0× 105

Table A.3: Same of table A.1 but for candidates for which it has been reduced
just an upper limit on the mass.
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Appendix B

The Post-Newtonian

Approximation

The Newtonian gravitational acceleration is a good approximation of the
equation of motion for big distances, where BHs can be considered point-
masses. However, our aim to analyze close encounters between black holes
requires a more precise formalism of the equations of motion. In chapter 2
we have seen that dynamical encounters reduce the semi-major axis of the
binaries via hardening interactions until gravitational waves emission be-
comes e�cient. Newtonian dynamics does not have any prescription for this
dissipative process, and we need therefore to include the general relativistic
e�ects in the equations. The main problem is that deriving the equation
of motion directly from Einstein's �eld equations is an overwhelming chal-
lenge due to their non-linear nature, and the problem complicates even more
if we want to include the geometrical spacetime description of a complex
system such as a three-body interaction between rotating BHs. The solu-
tion is to treat the e�ects of General Relativity as small perturbations of
the leading Newtonian order, adding correction terms to the standard non-
relativistic equations of motion. In our case, the prescription implemented
by the code ARWV exploits the post-Newtonian (PN) formalism (Einstein,
Infeld & Ho�mann 1938 [17]), which, on the assumption of weak gravita-
tional �eld and motion of matter v slow compared to the speed of light c,
consists in expanding the dynamics in powers of v/c. The PN expansion up
to an order (v/c)2n is reported in the literature with the expression nPN,
and it has proven to be remarkably e�ective in describing the dynamics of
spiraling compact objects (Cli�ord 2011 [12]). ARWV implements a 2.5PN
prescription (Mikkola & Merritt 2008 [60]), and exploits the formalism pre-
sented by Memmesheimer et al. (2004 [54]). In the paper, they present the
reduced ordinary 3PN Hamiltonian of the system center-of-mass in the ADM
coordinates (Arnowitt, Deser & Misner 1962 [5])

85



H(r, p̂) = H0(r, p̂) +
1

c2
H1(r, p̂) +

1

c4
H2(r, p̂) +

1

c6
H1(r, p̂). (B.1)

The Newtonian (H0) and post-Newtonain (H1, H2 and H3) terms in equa-
tion B.1 are

H0(r, p̂) =
p̂

2
− 1

r
(B.2)

H1(r, p̂) =
1

8
(3η − 1)(p̂2)2 − 1

2
[(3 + η)p̂2 + η(n · p̂)]

1

r
+

1

2r2
(B.3)

H2(r, p̂) =
1

16
(1− 5η + 5η2)(p̂2)3 +

1

8

[
(5− 20η − 3η2)(p̂2)2 (B.4)

− 2η2(n · p̂)2p̂2 − 3η2(n · p̂)4
]

1

r
+

1

2

[
(5 + 8η)p̂2

+ 3η(n · p̂)2
]

1

r2
− 1

4
(1 + 3η)

1

r3

H3(r, p̂) =
1

128
(−5 + 35η − 70η2 + 35η3)(p̂2)4 (B.5)

+
1

16

[
(−7 + 42η − 53η2 − 5η2)(p̂2)3

+ (2− 3η)η2(n · p̂)2(p̂2)2 + 3(1− η)η2(n · p̂)4p̂2

− 5η3(n · p̂)6
]

1

r
+

[
1

16
(−27 + 136η + 109η2)(p̂2)2

+
1

16
(17 + 30η)η(n · p̂)2p̂2 +

1

12
(5 + 43η)η(n · p̂)4

]
1

r2{
1

192
[−600 + (3π2 − 1340)η − 552η2]p̂2

− 1

64
(340 + 3π2 + 112η)η(n · p̂)2

}
1

r3

+
1

96
[12 + (872− 63π2)η]

1

r4

In the above equations, r = R/(GM), r = |r|, n = r/r, p̂ = P/µ,
M = m1 +m2 is the total mass of the two bodies m1 and m2, µ = m1m2/M
is the reduced mass of the couple, η = µ/M is the �nite mass ratio, R is the
relative separation vector and P is its conjugate momentum vector. From
each of these terms is then possible to reduce the equations of motion with
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(ṙia)n =
∂

∂pia
Hn(ra, p̂a)

(ṗia)n = − ∂

∂ria
Hn(pa, p̂a)

(B.6)

where the subscript a = 1, 2 is for m1 and m2, n is the PN order and the
superscript i is the component index.

Finally, the equations of motion can be rewritten as the expansion of the
Newtonian acceleration with all the PN contributions AnPN as

r̈a =
GM

r2

{
− n +

1

c2
A1PN +

1

c4
A2PN +

1

c6
A3PN +O

(
1

c7

)}
. (B.7)

Note that this formalism is a two-body formalism. Since we are running
a three-body simulations, we have to apply it to each pair in the simulation
(bodies 1 & 2, then bodies 1 & 3 and then bodies 2 & 3), separately.
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