
roberto sartori

Design, analysis and optimization of a dynamically

reconfigurable regenerative comparator for ultra-low power

6-bit TC-ADCs in 90nm CMOS technology

Design, analysis and optimization of a dynamically

reconfigurable regenerative comparator for

ultra-low power 6-bit TC-ADCs in 90nm CMOS
technology

roberto sartori

Supervisor Prof.ssa Maria Elena Valcher

Assistant Supervisor Dr.D. Juan A. Montiel-Nelson

October 2013

Roberto Sartori: Design, analysis and optimization of a dynamically recon-
figurable regenerative comparator for ultra-low power 6-bit TC-ADCs in
90nm CMOS technology, , © October 2013

Escuela de Ingeniería de
Telecomunicación y Electrónica

Facultad de Ingeniería
Universidad de Las Palmas de

Gran Canaria

Dipartimento di Ingegneria
dell’Informazione

Facoltà di Ingegneria
Università degli Studi di Padova

"While the pessimists complain about the wind,
and the optimists expect the wind to change,

we adjust the sails." — William Arthur Ward

To my family.

A B S T R A C T

Analog-to-Digital Converters (ADCs) have always been a topic of in-
tense research in electronics since the advances in digital process-
ing and storage technologies enabled for the pre-processing, post-
processing and storage of analog signals as large streams of digital
values. Mixed signal integrated circuits, including data acquisition
and conversion, experienced a real revolution in terms of the number
of emerging applications in electronics and telecommunications.

Powerful processors appeared for mixed signal processing, allow-
ing for longer word-length, higher operation frequencies and larger
memory sizes. Research efforts were initially focused on increasing
the sampling rate and the resolution of the analog-to-digital and
digital-to-analog converters to meet real-time multimedia processing
requirements. Several acquisition methodologies and architectures
were presented to support a wide range of applications oriented to
processing huge volumes of data [1].

However, nowadays there is a high number of emerging applica-
tions where it is still necessary to collect and process analog data,
but they are subject to strong energy consumption restrictions. Mo-
bile phones containing gyroscopes and accelerometers among other
sensor assisted Global Positioning System (GPS) navigation applica-
tions, sensor networks supported by small batteries, or medical aids
using remote sensing battery-less are typical ultra-low power appli-
cations requiring Analog-to-Digital Converter (ADC) subsystems. The
conversion rate and resolution specifications are less restrictive than
the power consumption restrictions in these applications. Typically,
ultra-low power requirements must be met, but just some few sam-
ples or kilo-samples per second are needed for 4-8 bit resolutions.
Therefore, among all ADC architectures in literature, the Successive
Approximation Register (SAR) and SD converters are the more suit-
able architectures [2] for this purpose.

It is well known that SAR architectures are preferable in terms of
area and power consumption in comparison with the other topologies
[3] at medium and low conversion rates. Furthermore, due to the fact
that high performance technologies are mainly focused on reducing
the delay while maintaining low power consumption in the digital
circuitry, the use of recent technlogies in ADC design is more effective
as greater is the digital section in comparison with its analog one [4].
In this sense, several approaches have been presented to optimize the
digital controller reducing the power and increasing the conversion
speed on SAR ADC architectures by using comparator-based binary
search [5, 6] and asynchronous controllers [7, 8, 9]. In a Comparator-

ix

based Asynchronous Binary Search (CABS), the need for digital-to-
analog conversion and digital controllers is completely removed by
using a binary tree of comparators with built-in thresholds which
are triggered to run the successive approximation algorithm [5]. But
the circuit complexity of this approach follows the same exponential
growth than flash ADCs.

Recently, a novel ADC architecture named Threshold-Configuring
ADC (TC-ADC) was introduced [10]. TC-ADC is based on a single com-
parator and a programable array of transistors that allow to imple-
ment the ADC and Digital-to-Analog Converter (DAC) functionalities
[11]. The TC-ADC authors demonstrate the usefulness of this new ar-
chitecture when low power consumption is required at medium/low
conversion rates.

In this work the threshold configurable regenerative comparator
on which TC-ADCs are based is optimized to further reduce the power
consumption for use in battery-less biomedical sensor applications.
Moreover, the effect of device mismatches on the offset, gain and
linearity errors of the ADC is analyzed by means of Monte Carlo
simulations. This optimized comparator reduces the power consump-
tion from 13µW to 3µW in the more power hungry section of the
TC-ADC (65% of the overall TC-ADC power is dissipated in the re-
generative comparator), while maintaining the same full scale range.
The optimized comparator achieves also better performance (about
50% improvement) in terms of offset, gain and non-linearity errors
when matched devices are given. In the presence of device mismatch
just the gain error shows a significative improvement, although non-
linearity error analysis indicates higher simmetry and predictabil-
ity which can be further exploited to reduce the complexity of non-
linearity cancellation circuits required for higher resolution applica-
tions.

R E S U M E N

En este trabajo se optimiza el comparador regenerativo configurable
de umbral en lo que el Threshold-Configuring SAR-ADC se basa para
reducir aún más el consumo de energía, en aplicaciones de sensores
biomédicos sin batería [1]. Por otra parte, el efecto de la dispersión
de proceso de los dispositivos en características del conversor como el
offset, la ganancia y los errores de linealidad del ADC se han de anali-
zar de forma cualitativa y cuantitativa por medio de simulaciones de
Monte Carlo. Resultados previos muestran que estos comparadores

x

optimizados permiten reducir el consumo de energía de 13µW hasta
3µW manteniendo constante el mismo fondo de escala.

En presencia de la dispersión de proceso “device mismatch”, los
mismos resultados previos muestran que sólo el error de ganancia
muestra una mejora significativa, aunque el análisis de error de no
linealidad indica una mayor simetría y la previsibilidad. Estas dos ca-
racterísticas pueden aprovecharse más para reducir la complejidad de
los circuitos de cancelación de no linealidad requerida para aquellas
aplicaciones de mayor resolución [12].

Por todo lo anterior, es objetivo de este trabajo obtener las rela-
ciones cualitativas y cuantitativas entre dimensiones de dispositivos,
potencia consumida, fondo de escala, errores de linealidad, offset
y ganancia del conversor ADC basado en un comparador de um-
bral reconfigurable y regenerativo como el referenciado en [13]. Es-
tas relaciones permiten dimensionar el comparador para una aplica-
cion de ultra bajo consumo de potencia. El proceso tecnologico es
de UMC, Complementary Metal-Oxide-Semiconductor (CMOS) 90nm
“Standard Process 1.0V CMOS 1P9M”.

C O M P E N D I O

Il presente studio mira ad ottimizzare il comparatore di soglia di ten-
sione regenerativo riconfigurabile su cui si basa il Threshold-Configuring
SAR ADC, al fine di ridurre ulteriormente il consumo di energia in ap-
plicazioni quali sensori biomedici senza batteria. Vengono inoltre ana-
lizzati in forma qualitativa e quantitativa gli effetti della dispersione
di processo dei dispositivi che costituiscono il convertitore, l’offset,
il guadagno e gli errori di linearità del ADC, attraverso simulazioni
Monte Carlo. Risultati precedenti mostrano come questi comparatori
ottimizzati permettano di ridurre il consumo di energia da 13µW a
3µW mantenendo costante il fondo scala.

L’obiettivo finale è dunque quello di ottenere le relazioni qualitative
e quantitative tra le dimensioni dei dispositivi, la potenza dissipata,
il fondo di scala, gli errori di linearità, l’offset e il guadagno del ADC

basato sul comparatore di soglia di tensione riconfigurabile e rigene-
rativo presentato in [13]. Tali relazioni permettono di dimensionare
il comparatore per applicazioni ad ultra basso consumo di potenza.
Il processo tecnologico con cui vengono sviluppate le simulazioni è
UMC, CMOS 90nm “Standard Process 1.0V CMOS 1P9M”.

xi

C O N T E N T S

Abstract . ix
List of Figures . xv
List of Tables . xx
Listings . xxi

i ultra-low power adc architectures 1

1 introduction . 3

1.1 Basic A/D converter function 3

1.1.1 Conversion systems 4

1.2 Specifications of converters 4

1.2.1 Absolute accuracy 5

1.2.2 Relative accuracy 5

1.2.3 Differential nonlinearity 6

1.2.4 Offset . 7

1.2.5 Signal-to-Noise Ratio 7

1.2.6 Effective Number of Bits 8

1.2.7 Figure of Merit 8

2 a/d converters . 9

2.1 Low-power ADC architectures 13

2.1.1 Nyquist-rate ADCs 14

2.1.2 Oversampled ADCs 17

2.2 Successive Approximation Register ADCs 19

2.2.1 Low-power SAR ADCs 21

2.3 Comparator-Based Binary Search ADCs 22

2.3.1 SAR ADCs using CC 24

2.4 Threshold-Configuring ADCs 25

2.4.1 TC-ADC Principle of Operation 25

2.4.2 Architectural Details 27

2.4.3 Circuit Implementation 28

ii an ultra-low power comparator 31

3 threshold-configurable comparator 33

3.1 Basic Operation . 34

3.2 Threshold Generation 35

3.3 Design Methodology 36

4 design specification requirements 39

4.1 TC-Comparator power consumption vs full scale . . 39

4.1.1 Results . 41

4.2 RFID Reader radiated power vs distance 44

iii sizing and optimization 47

5 simulation environment set-up 49

xiii

xiv contents

5.1 HSPICE Environment Structure 49

5.1.1 Files Hierarchy 51

5.2 Simulation Setup 52

6 sizing for ultra-low power and fs operation 55

6.1 Characteristics of CMOS Devices 55

6.1.1 Threshold voltage 55

6.1.2 Maximum drain-source Currents 56

6.1.3 Parasitic Capacitance and on-state Resistance 56

6.1.4 Transconductance and gain-bandwidth . . 57

6.2 UMC CMOS 90nm Process Characteristics 57

6.2.1 Electrical parameters 59

6.2.2 Model fitting accuracy 62

7 optimization for linearity improvement . . . 63

7.1 Analysis Methodology 63

7.1.1 Optimization analysis by Bisection method 65

7.2 Design restrictions Achievement 66

7.3 NonLinearity Analysis: DNL and INL errors . . . 67

8 mismatch analysis 69

8.1 Mismatch optimization through DNL analysis . . 69

9 results . 71

9.1 Optimization Results – scanning method 77

9.2 Reference Values – scanning method 92

9.3 Mismatch Results – Monte Carlo simulation 108

9.4 Conclusions . 135

iv appendix . 137

a appendix . 139

a.1 The SAR Algorithm 139

a.2 Nyquist sampling condition 140

a.3 Nyquist frequency 141

a.4 Corner of Process 141

a.5 Bisection Methodology in HSPICE 143

a.6 tcadc file code . 147

a.7 Optimization models files code 158

a.7.1 Simulation script for sheader.sp file 158

a.7.2 Simulation script for oheader.sp file 164

a.7.3 Simulation script for mheader file 169

a.8 circuits.inc file code 181

bibliography . 185

Acknowledgments . 191

L I S T O F F I G U R E S

Figure 1.1 Block diagram of an ADC 3

Figure 1.2 A/D converter system 4

Figure 1.3 Ideal converter 5

Figure 1.4 Transfer curve of a 4-bit ADC 7

Figure 2.1 Full-flash ADC architecture 9

Figure 2.2 Sub ranging converter architecture 10

Figure 2.3 Dual slope ADC architecture 12

Figure 2.4 Pipeline converter architecture 15

Figure 2.5 Low-power pipeline SC ADC 15

Figure 2.6 Block diagram of an SAR ADC 16

Figure 2.7 3-bit SA ADC 17

Figure 2.8 Sigma-delta ADC architecture 18

Figure 2.9 Incremental ADC architecture 19

Figure 2.10 SAR ADC architecture 20

Figure 2.11 Low-power DAC architecture 22

Figure 2.12 Operating principle of a CABS ADC, shown
for a 3-bit ADC with 0.3 input on a 0 to range
(dashed lines indicate active path) 23

Figure 2.13 Operating principle of a SAR-CC ADC, after
sampling the input every bit is determined by
a comparator which controls a feedback DAC
(dashed lines indicate active path) 24

Figure 2.14 TC-ADC architecture 26

Figure 2.15 Simplified block diagram of the digital con-
troller . 29

Figure 3.1 Simplified Threshold Configuring regenerative
Comparator 33

Figure 4.1 Qualitative output of scanning optimization method 40

Figure 4.2 vid values generation for scanning 41

Figure 4.3 Inner resistance Model for the comparator left
branch . 42

Figure 4.4 TC-Comparator concentrated parameters Model 42

Figure 4.5 Qualitative analysis of the current i flowing
through the comparator branches 43

Figure 4.6 Illustration of the Friis Transmission Formula 44

Figure 4.7 Available power at the output of the receiving
antenna as a function of the distance . . . 45

Figure 5.1 HSPICE Environment structure 50

Figure 5.2 Netlist structure 50

Figure 5.3 Ideal Equilibrium Point Inputs-Loads in a TC-
Comparator 52

xv

xvi List of Figures

Figure 5.4 Imbalance between Input and Load due to ther-
mal noise 53

Figure 5.5 Threshold Voltage Detection for a TC-Comparator 54

Figure 6.1 Origin of MOSFET Internal Resistance . . 57

Figure 7.1 Power consumption and FS trends over time for
a TC-Comparator 64

Figure 7.2 Stable region for Output values detection 65

Figure 7.3 Qualitative plot of non-linear relationship be-
tween Input voltage and Output digital code
for a TC-Comparator 68

Figure 8.1 Qualitative plot of INL errors for each digital
code generated through Monte Carlo simula-
tions . 70

Figure 9.1 Non-linearity plots 74

Figure 9.2 INL plots using mismatched devices: (a) and
(b) are 3D-plots, and (c) and (d) are the corre-
sponding 2D-plots, for the reference and power
optimized comparators 75

Figure 9.3 INL plots using mismatched devices: (a) and
(b) are 3D-plots, and (c) and (d) are the corre-
sponding 2D-plots, for the reference and power
optimized comparators 76

Figure 9.4 Vth Determination Conditions 1 - scanning mode,
opt.val. 77

Figure 9.5 Vth Determination Conditions 2 - scanning mode,
opt.val. 77

Figure 9.6 Average Power Consumption vs Vth - scanning
mode, opt.val. 78

Figure 9.7 RMS Power Consumption vs Vth - scanning mode,
opt.val. 78

Figure 9.8 Int Power Consumption vs Vth - scanning mode,
opt.val. 79

Figure 9.9 Average Current vs Vth 1 - scanning mode, opt.val. 79

Figure 9.10 Average Current vs Vth 2 - scanning mode, opt.val. 80

Figure 9.11 Average Current vs Vth 3 - scanning mode, opt.val. 80

Figure 9.12 Average Current vs Vth 4 - scanning mode, opt.val. 81

Figure 9.13 Average Current vs Vth 5 - scanning mode, opt.val. 81

Figure 9.14 Average Current vs Vth 6 - scanning mode, opt.val. 82

Figure 9.15 Average Current vs Vth 7 - scanning mode, opt.val. 82

Figure 9.16 Average Current vs Vth 8 - scanning mode, opt.val. 83

Figure 9.17 RMS Current vs Vth 1 - scanning mode, opt.val. 83

Figure 9.18 RMS Current vs Vth 2 - scanning mode, opt.val. 84

Figure 9.19 RMS Current vs Vth 3 - scanning mode, opt.val. 84

Figure 9.20 Int Current vs Vth 1 - scanning mode, opt.val. 85

Figure 9.21 Int Current vs Vth 2 - scanning mode, opt.val. 85

Figure 9.22 Int Current vs Vth 3 - scanning mode, opt.val. 86

List of Figures xvii

Figure 9.23 Average Current vs Vth 1 - scanning mode, opt.val. 86

Figure 9.24 Average Current vs Vth 2 - scanning mode, opt.val. 87

Figure 9.25 RMS Current vs Vth 4 - scanning mode, opt.val. 87

Figure 9.26 RMS Current vs Vth 5 - scanning mode, opt.val. 88

Figure 9.27 RMS Current vs Vth 6 - scanning mode, opt.val. 88

Figure 9.28 Int Current vs Vth 4 - scanning mode, opt.val. 89

Figure 9.29 Int Current vs Vth 5 - scanning mode, opt.val. 89

Figure 9.30 Int Current vs Vth 6 - scanning mode, opt.val. 90

Figure 9.31 Time Delay for Decode vs Vth 1 - scanning mode,
opt.val. 90

Figure 9.32 Time Delay for Decode vs Vth 2 - scanning mode,
opt.val. 91

Figure 9.33 Time Delay for Decode vs Vth 3 - scanning mode,
opt.val. 91

Figure 9.34 Vth Determination Conditions 1 - scanning mode,
ref.val. 93

Figure 9.35 Vth Determination Conditions 2 - scanning mode,
ref.val. 93

Figure 9.36 Average Power Consumption vs Vth - scanning
mode, ref.val. 94

Figure 9.37 RMS Power Consumption vs Vth - scanning mode,
ref.val. 94

Figure 9.38 Int Power Consumption vs Vth - scanning mode,
ref.val. 95

Figure 9.39 Average Current vs Vth 1 - scanning mode, ref.val. 95

Figure 9.40 Average Current vs Vth 2 - scanning mode, ref.val. 96

Figure 9.41 Average Current vs Vth 3 - scanning mode, ref.val. 96

Figure 9.42 Average Current vs Vth 4 - scanning mode, ref.val. 97

Figure 9.43 Average Current vs Vth 5 - scanning mode, ref.val. 97

Figure 9.44 Average Current vs Vth 6 - scanning mode, ref.val. 98

Figure 9.45 Average Current vs Vth 7 - scanning mode, ref.val. 98

Figure 9.46 Average Current vs Vth 8 - scanning mode, ref.val. 99

Figure 9.47 RMS Current vs Vth 1 - scanning mode, ref.val. 99

Figure 9.48 RMS Current vs Vth 2 - scanning mode, ref.val.100

Figure 9.49 RMS Current vs Vth 3 - scanning mode, ref.val.100

Figure 9.50 Int Current vs Vth 1 - scanning mode, ref.val. 101

Figure 9.51 Int Current vs Vth 2 - scanning mode, ref.val. 101

Figure 9.52 Int Current vs Vth 3 - scanning mode, ref.val. 102

Figure 9.53 Average Current vs Vth 1 - scanning mode, ref.val.102

Figure 9.54 Average Current vs Vth 2 - scanning mode, ref.val.103

Figure 9.55 RMS Current vs Vth 4 - scanning mode, ref.val.103

Figure 9.56 RMS Current vs Vth 5 - scanning mode, ref.val.104

Figure 9.57 RMS Current vs Vth 6 - scanning mode, ref.val.104

Figure 9.58 Int Current vs Vth 4 - scanning mode, ref.val. 105

Figure 9.59 Int Current vs Vth 5 - scanning mode, ref.val. 105

Figure 9.60 Int Current vs Vth 6 - scanning mode, ref.val. 106

xviii List of Figures

Figure 9.61 Time Delay for Decode vs Vth 1 - scanning mode,
ref.val. 106

Figure 9.62 Time Delay for Decode vs Vth 2 - scanning mode,
ref.val. 107

Figure 9.63 Time Delay for Decode vs Vth 3 - scanning mode,
ref.val. 107

Figure 9.64 Slope - mismatch, MonteCarlo EndPoint method109

Figure 9.65 Offset - mismatch, MonteCarlo EndPoint method109

Figure 9.66 Offset Error (LSB) - mismatch, MonteCarlo End-
Point method 110

Figure 9.67 Gain Error % - mismatch, MonteCarlo EndPoint
method . 110

Figure 9.68 Min INL (LSB) - mismatch, MonteCarlo EndPoint
method . 111

Figure 9.69 Max INL (LSB) - mismatch, MonteCarlo EndPoint
method . 111

Figure 9.70 Median INL (LSB) - mismatch, MonteCarlo End-
Point method 112

Figure 9.71 Mean INL (LSB) - mismatch, MonteCarlo End-
Point method 112

Figure 9.72 Standard Deviation INL (LSB) - mismatch, Mon-
teCarlo EndPoint method 113

Figure 9.73 Sum INL (LSB) - mismatch, MonteCarlo EndPoint
method . 113

Figure 9.74 Sum Sq INL (LSB) - mismatch, MonteCarlo End-
Point method 114

Figure 9.75 Min DNL (LSB) - mismatch, MonteCarlo End-
Point method 114

Figure 9.76 Max DNL (LSB) - mismatch, MonteCarlo End-
Point method 115

Figure 9.77 Median DNL (LSB) - mismatch, MonteCarlo End-
Point method 115

Figure 9.78 Mean DNL (LSB) - mismatch, MonteCarlo End-
Point method 116

Figure 9.79 Sum DNL (LSB) - mismatch, MonteCarlo End-
Point method 116

Figure 9.80 Slope - mismatch, MonteCarlo LSE method . 117

Figure 9.81 Offset - mismatch, MonteCarlo LSE method 117

Figure 9.82 Offset Error (LSB) - mismatch, MonteCarlo LSE
method . 118

Figure 9.83 Gain Error % - mismatch, MonteCarlo LSE method118

Figure 9.84 Min INL (LSB) - mismatch, MonteCarlo LSE method119

Figure 9.85 Max INL (LSB) - mismatch, MonteCarlo LSE method119

Figure 9.86 Median INL (LSB) - mismatch, MonteCarlo LSE
method . 120

List of Figures xix

Figure 9.87 Mean INL (LSB) - mismatch, MonteCarlo LSE
method . 120

Figure 9.88 Standard Deviation INL (LSB) - mismatch, Mon-
teCarlo LSE method 121

Figure 9.89 Sum INL (LSB) - mismatch, MonteCarlo LSE method121

Figure 9.90 Sum Sq INL (LSB) - mismatch, MonteCarlo LSE
method . 122

Figure 9.91 Min DNL (LSB) - mismatch, MonteCarlo LSE method122

Figure 9.92 Max DNL (LSB) - mismatch, MonteCarlo LSE
method . 123

Figure 9.93 Median DNL (LSB) - mismatch, MonteCarlo LSE
method . 123

Figure 9.94 Mean DNL (LSB) - mismatch, MonteCarlo LSE
method . 124

Figure 9.95 Standard Deviation DNL (LSB) - mismatch, Mon-
teCarlo LSE method 124

Figure 9.96 Sum DNL (LSB) - mismatch, MonteCarlo LSE
method . 125

Figure 9.97 Sum Sq DNL (LSB) - mismatch, MonteCarlo LSE
method . 125

Figure 9.98 Slope - mismatch, MonteCarlo EndPoint&LSE method126

Figure 9.99 Offset - mismatch, MonteCarlo EndPoint&LSE method126

Figure 9.100 Offset Error (LSB) - mismatch, MonteCarlo End-
Point&LSE method 127

Figure 9.101 Gain Error % - mismatch, MonteCarlo EndPoint&LSE
method . 127

Figure 9.102 Min INL (LSB) - mismatch, MonteCarlo EndPoint&LSE
method . 128

Figure 9.103 Max INL (LSB) - mismatch, MonteCarlo EndPoint&LSE
method . 128

Figure 9.104 Median INL (LSB) - mismatch, MonteCarlo End-
Point&LSE method 129

Figure 9.105 Mean INL (LSB) - mismatch, MonteCarlo End-
Point&LSE method 129

Figure 9.106 Standard Deviation INL (LSB) - mismatch, Mon-
teCarlo EndPoint&LSE method 130

Figure 9.107 Sum INL (LSB) - mismatch, MonteCarlo EndPoint&LSE
method . 130

Figure 9.108 Sum Sq INL (LSB) - mismatch, MonteCarlo End-
Point&LSE method 131

Figure 9.109 Min DNL (LSB) - mismatch, MonteCarlo End-
Point&LSE method 131

Figure 9.110 Max DNL (LSB) - mismatch, MonteCarlo End-
Point&LSE method 132

Figure 9.111 Mean DNL (LSB) - mismatch, MonteCarlo End-
Point&LSE method 132

Figure 9.112 Standard Deviation DNL (LSB) - mismatch, Mon-
teCarlo EndPoint&LSE method 133

Figure 9.113 Sum DNL (LSB) - mismatch, MonteCarlo End-
Point&LSE method 133

Figure 9.114 Sum Sq DNL (LSB) - mismatch, MonteCarlo End-
Point&LSE method 134

Figure A.1 Successive Approximation ADC Block Diagram139

Figure A.2 Process corners in PMOS/NMOS fabrication
parameters 142

Figure A.3 Bisection Example for Three Iterations . . 144

L I S T O F TA B L E S

Table 2.1 Classification of Nyquist-rate ADCs
(T = clock period, N = resolution in bits) 14

Table 4.1 Size vs Power consumption vs Full-Scale relation-
ships . 41

Table 6.1 Geometry range for UMC CMOS 90nm Pro-
cess Model 58

Table 6.2 Voltage range for UMC CMOS 90nm Process
Model . 58

Table 6.3 Temperature range for UMC CMOS 90nm Pro-
cess Model 58

Table 6.4 Electrical parameters for NMOS UMC 90nm
Process Model 60

Table 6.5 Electrical parameters for PMOS UMC 90nm Pro-
cess Model 61

Table 7.1 Impact of device sizing in the performance of
the threshold configuring comparator . . 66

Table 9.1 Device sizing parameters for reference (REF)
and optimized (OPT) comparators 72

Table 9.2 Obtained performance for reference (REF) and
optimized (OPT) comparators, without device
mismatch 72

Table 9.3 Obtained performance for reference (REF) and
optimized (OPT) comparators, with device mis-
match . 72

Table A.1 Device name reference for HSPICE codes 181

xx

Listings xxi

L I S T I N G S

Listing 1 tcadc . 147

Listing 2 sheader.sp - Scanning optimization mode 158

Listing 3 oheader.sp - Bisection optimization mode 164

Listing 4 mheader.sp - Monte Carlo optimization mode169

Listing 5 circuits.inc 181

A C R O N Y M S

ADC Analog-to-Digital Converter

AVG AVeRage

BS Binary Search

CABS Comparator-based Asynchronous Binary Search

CC Comparator-based Controller

CMOS Complementary Metal-Oxide-Semiconductor

CR Charge-Redistribution

CS Charge-Sharing

CtrlTC Threshold Configuration control

DAC Digital-to-Analog Converter

DNL Differential NonLinearity

DoE Design-of-Experiments

ENOB Effective Number Of Bits

EOC End Of the Conversion

ERP Effective Radiated Power

FOM Figure Of Merit

FS Full-Scale

FTL Fast FeedThrough Logic

GaAs Gallium Arsenide

GPS Global Positioning System

IDC Incremental Data Converter

INL Integral NonLinearity

LSB Least Significant Bit

MOM Metal-Oxide-Metal

MOS Metal-Oxide-Semiconductor

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

xxii

acronyms xxiii

MSB Most Significant Bit

RFID Radio-Frequency IDentification

RMS Root Mean Square

S/H Sample and Hold

SA Successive Approximation

SAR Successive Approximation Register

SC Switched Capacitor

SNDR Signal-to-Noise and Distortion Ratio

SNR Signal-to-Noise Ratio

T/H Track and Hold

TC Threshold-Configuring

TC-ADC Threshold-Configuring ADC

VLSI Very-Large-Scale-Integrated

Part I

U LT R A - L O W P O W E R A D C A R C H I T E C T U R E S

1
I N T R O D U C T I O N

Analog-to-digital and digital-to-analog converters provide the link be-
tween the analog world of systems where transducers are involved
and the digital world of signal processing, computing, and other dig-
ital data collection or data processing systems. Numerous types of
converters have been designed that use the best technology available
at the time a design is made. High-performance sub-micron CMOS

technologies result in high-resolution or high-speed ADCs and DACs
that can be applied to digital audio, digital video, instrumentation
and signal processing systems.

In many recent applications, such as in battery-operating medical
devices or in habitat monitoring sensor networks, special data con-
verters which can operate on battery or even harvested power are
needed. The available power in these devices is very limited, often
only a few tens of microwatts. In these situations data converters are
used to convert only low-frequency signals with just low-to-medium
accuracy. Low power consumption, however, is critical. Examples
of such applications include battery-powered biomedical sensors for
electrocardiogram or electroencephalogram signals, hearing aids and
sensor networks for industrial or environmental applications. These
applications stimulated novel algorithms, novel architectures and spe-
cial circuit design strategies for both DACs and ADCs.

1.1 basic a/d converter function

In a digital system the amplitude is quantized into discrete steps and
at the same time the signal is sampled at discrete time intervals. A
block diagram of an A/D converter is shown in Figure 1.1. A Sample

Figure 1.1: Block diagram of an ADC

and Hold (S/H) amplifier is added to sample the input signal and hold
the signal information at the sampled value during the time in which

3

4 introduction

the conversion into a digital number is performed. The analog input
value is converted into a digital value using the following equation

Va

Rre f
= Dout + qe =

n−1

∑
m=0

Bm2m + qe (1.1)

In this equation Dout represents the digitized value of the analog
input signal Va and qe represents the quantization error. The quanti-
zation error represents the difference between the analog input signal
Va divided by Rre f and the quantized digital signal Dout when a finite
number of quantization levels n is used [3].

1.1.1 Conversion systems

When an ADC or a DAC are applied in a complete system using digi-
tal signal processing, then extra components must be added. In Fig-
ure 1.2 an A/D converter system is shown. The filters at the input of

Figure 1.2: A/D converter system

the ADC limit the input signal band. In many cases this signal band
is a low-pass band, but bandpass applications are possible too. In
the bandpass case the high frequency band is converted into a low-
pass frequency band and then converted into a digital value. Such
an operation is called sub-sampling. When the S/H amplifier shows
good high frequency performance, then the sub-sampling operation
is performed with low distortion. Bandpass signals can be converted
into low-pass signals.

The performance of the filters in A/D and D/A converter systems
has a strong influence on the total performance of such systems.

1.2 specifications of converters

To obtain insights into the design criteria for converters it is important
to arrive at an unanimous definition of specifications. These specifi-
cations must include the application of converters into conversion
systems. Dynamic specifications of converters are needed to obtain
insights in the applicability of a certain converter in a digital signal
processing system: for example, digital audio or digital video. In
a conversion system the complete conversion from analog into dig-
ital or digital into analog information is performed. Such a system
includes input or output amplification and anti-alias filtering.

1.2 specifications of converters 5

A converter basically consists of an amplitude quantizer followed
by a sampler (Figure 1.3). In an ideal converter the sequence of quan-

Figure 1.3: Ideal converter

tizer and sampler can be changed without having any influence on
the performance or the operation of the system. In practical convert-
ers, electronic elements used to construct the converter show finite
matching. Noise in active and passive elements reduces the maxi-
mum dynamic range of a system. Especially with low supply voltages
the limiting effects of noise will occur in wide-band or high-resolution
converters. The non-idealities introduced by component mismatch
introduce errors in the operation of the converter. In general a de-
signed converter meets a linearity specification set at about ± 1

2 Least
Significant Bit (LSB). Such a specification will introduce errors that
are far more significant than the errors introduced by quantization. It
is therefore important to refer these errors to the quantization error.
The non-ideality then results in a decrease of performance in Effective
Number Of Bits (ENOB)s compared to the ideal converter [3].

1.2.1 Absolute accuracy

The absolute accuracy of a converter is the actual full-scale input or out-
put (ADC or DAC) signal (voltage, current, or charge) referred to the
absolute standard of the National Bureau of Standards. This absolute ac-
curacy is mostly related to the reference source used in the converter.
In integrated circuits this reference consists of an integrable source
which in modern systems is based on the band-gap voltage of sili-
con. This reference source should have low-noise with respect to the
resolution of the converter. Temperature coefficients in the ideal case
should be so small that the accuracy of the reference over the spec-
ified temperature range stays within the resolution of the converter
(± 1

2 LSB over the full temperature range).

1.2.2 Relative accuracy

The relative accuracy is the deviation of the output signal or output
code of a converter from a straight line drawn through zero and full

6 introduction

scale. Output signals or output codes must be corrected from a pos-
sible zero offset. This relative accuracy is called Integral NonLinear-
ity (INL).

The ± 1
2 LSB INL definition (the boundaries for which the nonlinear-

ity deviates not more than ± 1
2 LSB from a straight line through zero

and full scale) implies a monotonic behavior of the converter.
In an ADC monotonicity means that no missing codes can occur. It

must be noted at this point that converters can be designed which are
guaranteed monotonic but do not have the half LSB linearity specifi-
cation. These converters are based on non-binary weighting of the bit
currents.

In an ADC the INL definition including the quantization levels equal
to

INL ≤ 1
2

LSB (1.2)

is valid. In case the Most Significant Bit (MSB) value is 2LSB values
larger than the sum of all the smaller bits, then a missing code ap-
pears in the converter. To guarantee monotonicity of the converter,
the sum of the errors must never exceed ± 1

2 LSB value.
Note that the monotonicity specification does not automatically en-

sure that a converter has an INL error less than or equal to ± 1
2 LSB,

while the nonlinearity specification of less than or equal to ± 1
2 LSB is

sufficient to prove monotonicity of a binary-weighted converter.

1.2.3 Differential nonlinearity

The Differential NonLinearity (DNL) error describes the difference be-
tween two adjacent analog signal values compared to the step size
(LSB weight) of a converter generated by transitions between adjacent
pairs of digital code numbers over the full range of the converter.

The differential nonlinearity is zero if every transition to its neigh-
bors equals 1LSB. In a monotonic binary-weighted converter an in-
crease of the digital code value by 1LSB can result in an increase in
the analog signal between 0 and 2LSBs. The maximum differential
nonlinearity in this case is ±1LSB.

Writing down the DNL for an ADC in a formula gives:

DNL = Ainput(Qm+1)− Ainput(Qm)− 1LSB (1.3)

where Qm+1 and Qm are two adjacent quantization levels. Ainput(Qm)

is the analog input voltage corresponding to the quantization level
Qm.

In Figure 1.4 the transfer curve of a 4-bit ADC is shown. The drawn
line shows the ideal transfer characteristic, while a dashed line indi-
cates the measured transfer curve of a practical converter.

1.2 specifications of converters 7

Figure 1.4: Transfer curve of a 4-bit ADC

1.2.4 Offset

Input amplifiers, output amplifiers, and comparators in practical cir-
cuits inherently have a built-in offset voltage and offset current. This
offset is caused by the finite matching of components. The offset re-
sults in a non-zero input or output voltage, current or digital code
although a zero signal is applied to the converter.

1.2.5 Signal-to-Noise Ratio

The Signal-to-Noise Ratio (SNR) depends on the resolution of the con-
verter and automatically includes specifications of linearity, distor-
tion, sampling time uncertainty, glitches, noise, and settling time.
Over half the sampling frequency, the SNR must be specified and
should ideally follow the theoretical formula

S/Nmax = 6.02n + 1.76dB (1.4)

The SNR is calculated for a sine wave input with the maximum
amplitude allowed by the system. The ratio between the frequency
of the sine wave and the sampling frequency should be irrational. In
case input signals with a smaller amplitude are applied, then the SNR
decreases in accordance to the input signal decrease.

8 introduction

1.2.6 Effective Number of Bits

To get a comparison method for converters, the ENOBs is measured
under Nyquist conditions (see Section A.2). The dynamic range of the
converter under comparison includes quantization errors, clock jitter
errors, distortion errors and circuit noise. Then the ENOBs is defined
as

ENOB =
(SNDRmeasured)dB − 1.76

6.02
dB (1.5)

with the Signal-to-Noise and Distortion Ratio (SNDR), measurement
of the purity of a signal, defined [14] as

SNDR =
Psignal

PquantizationError + PrandomNoise + Pdistortion
(1.6)

where P is the average power of the signal, quantization error, ran-
dom noise and distortion components.

Using this definition of SNDR it is very easy to compare ADCs or
DACs with the same number of bits, but, due to different circuit de-
signs, having different performance.

1.2.7 Figure of Merit

To compare different architectures and performances of a converter
the Figure Of Merit (FOM) has been defined. This index compares
converters with respect to power consumption, ENOBs and maximum
input signal frequency. The FOM is defined as

FOM =
Power

2 fin2ENOB (1.7)

In this equation 2 fin can be defined as the Nyquist frequency (see Sec-
tion A.3), however, in case the resolution is determined by the ENOB

the input frequency can be different from the sampling frequency
and in such a case will be smaller than the Nyquist frequency. With
improved technology and advanced converter architectures the FOM

drops about a factor every 10 years.

2
A / D C O N V E RT E R S

According to the necessity of high-speed or high-accuracy ADCs, some
converter architectures are more suitables than others.

Flash converter

The best-known architecture for high-speed ADC is the flash converter
structure. In this structure an array of comparators compares the in-
put voltage with a set of increasing reference voltages (Figure 2.1).
The comparator outputs represent the input signal in a digital (ther-

Figure 2.1: Full-flash ADC architecture

mometer) code which can be easily converted into a Gray or binary
weighted output code. The flash architecture shows a good speed
performance and it can easily be implemented in an integrated cir-
cuit as a repetition of simple comparator blocks and a (ROM) decoder
structure. However, this architecture requires 2N − 1 comparators to
achive an N-bit resolution. The parallel structure makes it difficult to
obtain a high-resolution while maintaining at the same time a large
bandwidth, a low power consumption, and a small die size. Interpo-
lation between reference levels reduces the number of reference taps
and input amplifiers resulting in a lower power consumption. The
influence of offset voltages in the input amplifiers can be reduced by

9

10 a/d converters

using averaging between active amplifier stages. At the same time,
SNR is improved without using more power.

Sub ranging converter

An alternative to the full-flash architecture is the multi-step A/D con-
version or sub ranging principle. In high-speed converters the two-
step architecture is the most popular because of the ease of implemen-
tation. However, in the sub ranging system no gain stage between the
first converter stage and the second converter stage is used. Matching
problems between gain stages and reference voltage of the second or
subrange converter stage are avoided in this way. In Figure 2.2 a ba-

Figure 2.2: Sub ranging converter architecture

sic subrange system is shown. An ideal 8-bit sub ranging converter
consists of a 4-bit coarse quantizer using 16 coarse comparators and
a 4-bit fine quantizer using 15 fine comparators. Furthermore a refer-
ence ladder with 2N − 1 ladder taps is used. The coarse comparators
are connected to 16 coarse ladder taps. These ladder taps have 15 fine
taps in between of every coarse tap. When the coarse information is
obtained, then the fine ladder taps in between of the coarse signal are
addressed and the fine conversion can take place. It must be clear
that at the input a S/H amplifier is needed to sample the analog input
information. During the hold mode the coarse and fine conversion
takes place. In general the coarse comparators have less gain than the
fine comparators. Furthermore in a practical system an over and an
under range is required for the fine converter to correct for small er-
rors encountered in the coarse quantization. Linearity of this system
is determined by the input S/H amplifier, the linearity of the reference
ladder and the offset voltage of the fine comparators.

a/d converters 11

After the coarse quantization is performed, the digital signal is ap-
plied to a DAC to reconstruct the analog signal. This reconstructed
signal is subtracted from the analog input signal which is held by the
S/H amplifier. After subtraction has taken place the residue signal
can be amplified and is then applied to the fine quantizer which per-
forms the conversion into a digital value. The coarse plus fine output
code with, in many cases, an error correction operation results in the
final digital output word. A good balance between circuit complexity,
power consumption, and die size is obtained in this type of converter.
The final dynamic performance, however, depends substantially on
the quality and dynamic performance of the S/H amplifier.

In Metal-Oxide-Semiconductor (MOS) technology circuits can be op-
erated in a continuous-time mode or in a discrete-time mode. Most
architectures in MOS use a discrete-time mode of operation. In such
a solution the S/H operation is combined with the system function.
Tipically the discrete-time operation includes an automatic offset can-
celation technique in the comparator stages. In a full-flash system,
2N − 1 small S/H amplifier-comparators are therefore used to perform
the conversion function. Because of the small value of the hold capac-
itor, offsets induced by switching transients and channel charges of
the switching devices limit the resolution of the total system.

Pipeline converter

Pipeline converter architectures are very popular in CMOS technology.
This architecture consists of a cascade of simple modular converter
blocks performing between 1 and 5 bit conversions each. Each block
consists of an ADC, a DAC for the reconstruction of the analog signal, a
subtracter to determine the signal residue after the quantization and a
gain stage. A S/H function is part of the converter block. Analog data
is delayed by the S/H amplifier stage during the conversion resulting
in an output code latency equal to the number of cascaded stages.

A high resolution at a high sampling frequency is possible using
the pipeline architecture. Sharing of amplifiers in a pipeline converter
is possible. This reduces power consumption and reduces die size.

An analysis of Low-Power Pipeline ADCs is presented in Section
2.1.1.

Folding converter

To overcome some problems of the S/H amplifier, design alternatives
have been worked out that have the advantage of the digital sampling
used in the full-flash converter and the die size of the two-step system
but do not require a S/H amplifier. This architecture is called a folding
architecture, which is capable of achieving a large analog bandwidth
and high resolution without incurring in the power and area penalties

12 a/d converters

associated with the flash architectures (details can be found in [15,
16]).

High-resolution monolithic ADCs are subject to growing interest
due to the rapidly expanding market for digital signal processing sys-
tems. Monolithic converters with such a high linearity are difficult to
design and require special circuit configurations. When a low conver-
sion speed is needed, integrating types of converters can be used. In
integrating types of high-resolution ADCs basically the analog input
signal is converted into a time which is proportional to the input sig-
nal. Time is measured using a counter with an accurate clock. These
systems are relatively slow because of the counting operation in the
time-to-number conversion cycle. A speed improvement is obtained
by using a coarse and fine conversion cycle in the time-to-number
counting operation. A well-known ADC based on this system is the
dual slope converter.

Dual slope converter

This system consists of an input switch, an integrator with a compara-
tor, a clock generator with control logic, and a counter (Figure 2.3a)
. The operation of the system is as follows. Starting from a reseted

(a) Dual slope ADC system (b) Dual slope ADC timing

Figure 2.3: Dual slope ADC architecture

integrator, the input signal Vin is integrated during a time t1 which
corresponds to a full count of the counter. Then the input is switched
to the reference voltage VR having the opposite sign compared to the
input signal. The integrator is now discharged. During the discharge
time pulses are counted. Counting stops when the comparator de-
tects zero. As a result, the counts in the counter represent the digital
value of the input signal. The timing of the operation is shown in
Figure 2.3b. A simple calculation shows

Vin =
t2

t1
VR (2.1)

2.1 low-power adc architectures 13

Here t2 is the time during which the integrator is discharged from
the integrated input signal to zero. As it is shown in Equation 2.1
the clock is not critical; only the ratio between the charge and dis-
charge times is important. A disadvantage of this system is the low
conversion speed if a high resolution is required.

Successive approximation converter

In fast and highly accurate ADCs, the successive approximation method
is commonly used. Accuracy and linearity in this system are deter-
mined by the DAC, while the conversion speed depends on the com-
parator response time and the settling time of the DAC. In a successive
approximation system the analog input signal is approximated by the
step-by-step built-up analog output voltage of the DAC, starting with
the most significant bit. To obtain the high accuracy for the DAC

needed to construct a 14- to 16-bit ADC, Dynamic Element Matching is
used.

Due to the construction of the bit switches, which in the high-
accuracy part consist of a diode-transistor configuration, the output
voltage swing at the D/A current output must be small. This voltage
swing, called output voltage compliance, reduces the bit switching
accuracy of the DAC. To avoid problems in this system, a special
comparator operation is needed. In general-purpose ADCs, a general
nonlinear comparator circuit with high gain around the zero-crossing
level is used.

SAR converters are discussed more in details in Section 2.2.

Cyclic converter

The ease with which a hold operation can be constructed allows the
ADC implementation using a cyclic converter algorithm. In the cyclic
converter the number of components is drastically reduced and con-
sists of two S/H amplifier circuits with an accurate times two amplifier
stage and a subtracter circuit. Per conversion step the remaining sig-
nal is compared with a reference signal. If the remainder is larger
than the reference signal, a subtraction of the reference signal from
the remainder is performed. The error signal that is then generated
is amplified by two and compared with the reference signal again.
This operation is repeated until the total number of bits that can be
converted is obtained [3].

2.1 low-power adc architectures

It is possible to classify ADCs as Nyquist-rate or oversampling ADCs.
Nyquist-rate ADCs are memoryless, and each analog sample is indi-

vidually converted into its digital equivalent. By contrast, each digital
output word of an oversampled ADC is derived from all preceding in-

14 a/d converters

put samples. This allows the digital output to have very short output
words and, hence, it allows the use of simple internal quantizers.

2.1.1 Nyquist-rate ADCs

Table 2.1: Classification of Nyquist-rate ADCs
(T = clock period, N = resolution in bits)

Table 2.1 shows a classification of Nyquist-rate ADCs by their algo-
rithms. For micropower applications, the parallel and subranging
converter architectures are usually unsuitable, and the counting con-
verters may be too slow. Hence, the analysis will focus on pipeline
and serial converters.

Low-Power Pipeline ADCs

The general architecture of a pipeline converter is shown in Figure 2.4
. In general a pipeline converter consists of a cascade of identical
stages that are separated by a S/H amplifier. This S/H amplifier is
part of the sub-converter stage. Tipically the converter is preceeded
by a S/H amplifier. As it can be seen from Figure 2.4 the lower part
of a converter stage consists of the already mentioned S/H amplifier
followed by a p-bit analog-to-digital sub converter. This ADC drives
directly a p-bit DAC to reconstruct the quantized analog signal. This
quantized analog signal is subtracted from the sampled analog input
signal of the stage. After subtraction of the quantized signal from
the analog input signal this residue is amplified by the gain stage
and then applied to the following sub-converter stage. By pipelining
in the converter an optimization can be obtained between maximum
sampling clock and the speed of the circuits used. In the first stage
the maximum accuracy is required. This accuracy depends on the res-
olution the converter is designed for. After the first stage a reduced
accuracy can be applied without influencing the overall converter ac-

2.1 low-power adc architectures 15

Figure 2.4: Pipeline converter architecture

curacy too much. What architecture and what resolution are used per
stage depends on the overall resolution that is required and what a
designer thinks he can achieve [3].

Most pipeline ADCs currently use the multiplied residue algorithm
[17]. This requires the use of an internal ADC, a DAC and a residue
amplifier in every stage. Although several of these functions can be
combined by clever circuit design, the power dissipation of the circuit
is usually too high for most micropower applications. An alternative
pipeline configuration, based on the divided reference principle [18], is
shown in Figure 2.5. Here, the analog input samples are held in

Figure 2.5: Low-power pipeline SC ADC

capacitors C1 to Cn until all bits are determined by the combination of
the DACs and comparators. The only active elements in the circuit are

16 a/d converters

the comparators, and hence, the operation requires very little power
[1].

Serial ADCs

An N-bit serial ADC samples and holds the analog input for N clock
periods and derives 1 bit of the digital output word in each period.
The conversion may be based on the multiplied residue algorithm,
also called algorithmic conversion, or on a divided reference principle
(Successive Approximation (SA)). The former requires an accurate
amplifier and a comparator, whereas the latter needs only Switched
Capacitor (SC) circuitry [19] and a comparator. Hence, the SA ADC is
more suitable for micropower converters.

Figure 2.6 shows the block diagram of a SA ADC (often, the whole
ADC is called a SAR converter.) An SC realization is shown for N = 3
in Figure 2.7a [20]. The operation is performed in three steps.

a. All capacitors are charged between Vin and ground.

b. The bottom plate of the largest (MSB) capacitor is switched to
Vre f , generating a test voltage Vre f /2− Vin at the comparator
input. The sign of this voltage determines the MSB.

c. Depending on the MSB, a test voltage (3Vre f /4−Vin) or (Vre f /4−
Vin) is generated at the comparator input. This determines the
next bit.

Steps b. and c. are then repeated until all bits have been found.
The spread between the largest and smallest capacitors is large: for
N-bit resolution, their ratio is 2N. Since the smallest capacitance
has a minimum value determined by technological considerations,
the largest capacitors often need to have high values. Thus, the dy-
namic power dissipated by charging and discharging them during
the conversion can become significant. Charging a capacitor C to a
voltage V requires an energy CV2 , half of which is dissipated in the
switches used. For the 3-bit ADC of Figure 2.7a, the energy needed
to convert a small input voltage into the code 000 requires an energy
E = (49/8)CV2. Several papers discussed modifications of the basic
circuit of Figure 2.7a to reduce the dynamic power dissipation. An ef-
fective method [21] is illustrated in Figure 2.7b. In this structure, the

Figure 2.6: Block diagram of an SAR ADC

2.1 low-power adc architectures 17

(a) Circuit diagram of a SA ADC

(b) Low-power equivalent circuit

Figure 2.7: 3-bit SA ADC

conversion starts using the smallest, rather than the largest, capaci-
tors, and additional capacitors are gradually switched into the circuit.
As a result, the total power dissipation is significantly reduced; for
the generation of the code 000, the energy required is only (7/8)CV2.
The average energy is reduced by about 75% compared with that in
the original structure. A design issue arising for the structure of Fig-
ure 2.7b is that the required accuracy of the smallest capacitors C is
increased, since now they directly affect the MSBs.

2.1.2 Oversampled ADCs

Sigma-delta ADCs

In Figure 2.8 a general form of a sigma-delta (Σ∆) ADC system is
shown. The system uses a multi-bit quantizer (ADC) and a multi-bit
DAC to reconstruct the analog signal. When multi-bit DACs are used
to reconstruct the analog signal, then the linearity of such a converter
is important. In case of high-resolution converters an accuracy prob-
lem in the D/A system is encountered. To overcome this accuracy
problem a 1-bit system is used. In a 1-bit DAC the linearity is deter-
mined by the accuracy of switching between the reference signals. If
a high switching accuracy can be guaranteed, then a very linear sys-
tem is obtained. From the input signal the output signal of the 1-bit
DAC is subtracted. The difference of these two signals is filtered by

18 a/d converters

Figure 2.8: Sigma-delta ADC architecture

the loop filter, and the output signal of the loop filter is applied to
the 1-bit quantizer or ADC. The clock frequency of the system is high
compared to the maximum analog input frequency while the order
of the loop filter determines the dynamic range of the system. The
output of the 1-bit ADC is usually applied to a digital low-pass which
rejects signals above the signal band of interest. Then sub-sampling
or decimation is applied to obtain a multi-bit output code. The whole
operation results in a binary-weighted digital output signal that can
have a minimum sampling ratio equal to twice the signal bandwidth.

When the loop filter that is applied in this system consists of a
continuous-time filter, then the analog signal band is filtered with
the same filtering characteristic that is applied for noise-shaping. A
cost-effective solution is obtained in this way. In the case of a discrete-
time loop filter the anti-alias filtering must be performed before the
analog signal enters the ADC. Discrete-time filters are mixing the high
frequency input signals with the sampling clock, resulting in aliasing
of signals which is not allowed [3].

Σ∆ ADCs are typically used for high-resolution applications and sel-
dom in micropower systems, although by using a passive loop filter
or noise coupling [22], the number of opamps needed, and hence the
power requirements, may be reduced.

Incremental ADCs

A modified version of the Σ∆ ADC, that is the incremental ADC, is
more often used in micropower applications [23]. It basically uses
the same architecture as the Σ∆ ADC, but its operation is pulsed: the
loop and the decimation filter are both powered for M clock periods
and then reset. The final output words d(M), d(2M), ... of the deci-
mation filter form the output sequence. To illustrate the operation
of the Incremental Data Converter (IDC), Figure 2.9 shows the analog
portion of a third-order converter. Assuming that the loop is stable
and scaled so that all integrator outputs satisfy

|vi(n)| < Vre f (i = 1, 2, 3), (2.2)

2.2 successive approximation register adcs 19

Figure 2.9: Incremental ADC architecture

analysis shows that∣∣∣∣∣u− 6
M(M− 1)(M− 2)

M−1

∑
m=0

m−1

∑
L=0

L−1

∑
k=0

dout [k]Vre f

∣∣∣∣∣ ≤ 6Vre f

bc1c2M(M− 1)(M− 2)
(2.3)

Hence, choosing the decimation filter as a scaled triple accumulator
like that its output is

D =
6

M(M− 1)(M− 2)

M−1

∑
m=0

m−1

∑
L=0

L−1

∑
k=0

dout [k]Vre f (2.4)

the conversion error satisfies

|ε| = |u− D| ≤ 6Vre f

bc1c2M(M− 1)(M− 2)
(2.5)

Even for high-resolution converters, M needs to be only of the order
of a few hundred clock periods. Hence, the IDC may spend a consider-
able time in the sleep mode between conversions, reducing its power
dissipation. Alternatively, a single IDC may be multiplexed between
many sensors or channels.

Besides, the power dissipation of the IDC may further be reduced by
cascading it with a Nyquist-rate ADC, for example a SAR ADC [24, 25].

2.2 successive approximation register adcs

The architecture of a SAR ADC is shown in Figure 2.10. The basic
converter consists of a comparator stage (Comp), the successive ap-
proximation register (SAR) and the DAC. A S/H and an anti-alias filter
are added to limit the maximum analog input frequency and to con-
vert the continuous time input signal into a discrete time signal. At
the beginning of the conversion the MSB is switched on and the in-
put signal is compared to the output signal of the DAC. When the
input signal is larger than the output signal of the DAC, then the MSB

remains on, the next bit is switched on and a comparison will be per-
formed. A bit-by-bit operation is performed in this system to bring

20 a/d converters

(a)

(b)

Figure 2.10: SAR ADC architecture

the D/A output signal within 1LSB to the time discrete input signal.
In the lower part of Figure 2.10 the conversion procedure as a func-
tion of bit weighting is shown. The output value in the figure equals
1011. A complete conversion in this system requires N switchings
and comparison operations to convert the input signal into a N-bit
digital output value. The conversion time equals

Tconversion = N · Tsettling (2.6)

The settling time is defined as the time required to settle within LSB of
the DAC. The linearity and accuracy of this system depends on the
DAC.

Different SAR architectures originate from different ways of imple-
menting both the DAC and the digital controller.
An efficient way of implementing the binary search algorithm uses a
Charge-Redistribution (CR) DAC with binary weighted capacitors. As
originally proposed in [20], the S/H function can be realized by the
DAC itself. The charge redistribution principle has several advantages.
It is hardware efficient, since it requires a minimum amount of logic
and simple analog circuits, with no need for “precision”, high gain
opamps. By leveraging both parallelism [7, 26] and redundancy [26],
efficiency and yield of CR-SAR ADCs can be improved by interleav-
ing slower and power-efficient ADC slices, at the cost of a larger area.

2.2 successive approximation register adcs 21

Also, more sophisticated switching techniques have allowed reaching
record energy efficiencies [27], by charging and discharging the ca-
pacitances of CR-SAR ADCs in multiple steps or via a split capacitor
bank [26, 28, 29].

A CR ADC can, however, require generating clock signals at a higher
frequency than the sample rate to drive the comparator, or sizing the
comparator for the worst case comparison time. Moreover, power-
hungry active buffers may be needed for input and reference voltages
to settle within the required time and accuracy, while driving high
capacitive loads [30]. To solve the first issue, asynchronous processing
can be successfully adopted [7, 29]. To alleviate the second issue, the
input capacitance of the whole converter can be decoupled from the
DAC capacitor array [27]. A DAC composed of unit capacitors (in
fully differential topologies) for bits of resolution is, however, still
necessary, with possibly additional hardware to support multi-step
redistribution. A detailed analysis of the power consumption and the
linearity of capacitive-array DACs employed in SAR ADCs can be found
in [31]. At moderate resolutions, capacitor matching and insensitivity
to (nonlinear) parasitics [27] provide the lower bound for the unit
capacitor size, which is certainly the ultimate limitation to further
area and power reductions in charge redistribution ADCs.

The need for more efficient and compact DAC implementations has
motivated the use of series capacitive ladder networks [7], to make
the input capacitance independent of the ADC resolution, or non-
binary successive approximation DACs [30], to relax the settling re-
quirements on DAC and buffers at the cost of additional conversion
steps and digital processing. However, a series ladder structure can
still be vulnerable to the parasitic capacitance, especially when the
capacitor is implemented as a low-cost Metal-Oxide-Metal (MOM) ca-
pacitor available in a standard digital CMOS process. Furthermore, if
the size limit of this ladder is pushed down, expensive digital post-
processing and calibration becomes unavoidable to compensate for
random errors [7]. As an alternative approach, asynchronous Charge-
Sharing (CS) SAR ADCs [8, 9] with two-stage passive S/H have also
proved to bring power savings on the fast settling circuitry that pro-
vides both the input and the reference voltages in the feedback DAC.
[11]

2.2.1 Low-power SAR ADCs

An example of a micropower successive approximation ADC is de-
scribed in [32]. The important part of this design is the DAC and the
current subtracter circuit. The architecture is identical to the previous
system. In Figure 2.11 the DAC architecture is shown. In the DAC seg-
mentation in combination with an R/2R resistor network is shown.
The segmented section is driven by the segment decoder. This seg-

22 a/d converters

Figure 2.11: Low-power DAC architecture

mentation is used to ensure monotonicity of this converter, while the
R/2R network reduces the total amount of elements to a practical ap-
plicable size. In this system a 3-bit segmentation is used. Note that
not all segmented resistors have been drawn in this circuit diagram.
Then a 5 to 7 bit binary weighted R/2R network completes the DAC.
At the output of the network an operational amplifier is shown. This
amplifier guarantees the output level after the bit switches to be at
ground level. The bit switches have to be designed in such a manner
that equal voltage drops across the switches are generated to avoid
accuracy problems. Furthermore a DC bias current via transistor M1

is applied to the system to obtain a proper DC biasing adjustment.
The Rdac determines part of the gain in the subtracter/comparator
chain. The successive approximation logic drives the MSB and LSB bit
switches. Because of the segmentation more clock pulses are needed
to obtain a conversion. In a full binary weighted 10-bit system only
10 clock cycles are required while in this system with 3-bit segmen-
tation the total amount of clock cycles increases to 7 + 7 = 14 clock
cycles. This can be seen as a disadvantage of this system.

2.3 comparator-based binary search adcs

By further pushing the quest for scalable and “digital” architectures,
ADCs using comparator-based asynchronous binary search have been also
proposed. Both DAC and digital controller can be completely avoided
in a CABS ADC.

The operating principle of the CABS converter is based on binary
search, the same principle that is used in a SA ADC. But instead of
approximating the input signal, in the CABS architecture comparators
with built-in thresholds are used to bracket the input signal (shown
in Figure 2.12). Similarly to a flash converter, the sampled input sig-
nal is applied to all comparators, but unlike flash converters, not all

2.3 comparator-based binary search adcs 23

Figure 2.12: Operating principle of a CABS ADC, shown for a 3-bit ADC
with 0.3 input on a 0 to range (dashed lines indicate active path)

comparators are clocked. Instead the comparators are connected in
a binary tree, in which the root comparator compares the input sig-
nal with zero and based on its decision asynchronously triggers one
of its children, comparators with threshold 1/2 and −1/2. If the in-
put signal is greater than zero the comparator with threshold 1/2 is
triggered, if smaller than zero, the comparator with threshold −1/2 is
triggered. This second comparator in turn triggers one of its children
in the third layer, closing in on the input signal. Based on the outputs
of the activated comparators an unsigned binary code is derived: a
logic 1 is encoded for “greater than” and a logic 0 for “smaller than”
(Figure 2.12). In this manner the input value is converted into an
unsigned binary representation.

In Figure 2.12 the operating principle is illustrated for 3 bits, but
it can be extended to more bits. The number of comparators in the
tree is for an n-bit converter equal to 2n − 1 as is the case in a (full)
flash converter, but only comparators are triggered. So the power
consumption is reduced to the power required to do a minimal bi-
nary search, hence much smaller than the power of a parallel search
implemented in a standard flash converter. The quantization starts
on the rising clock edge: successively, layer by layer, one compara-
tor decides. A falling clock edge resets all the activated comparators
following the same path through the tree that was followed during
quantization. As a result this architecture does not need explicit con-
troller circuitry.

24 a/d converters

Figure 2.13: Operating principle of a SAR-CC ADC, after sampling the in-
put every bit is determined by a comparator which controls a
feedback DAC (dashed lines indicate active path)

2.3.1 SAR ADCs using CC

Although the CABS architecture reduces power consumption in an
ADC, it does have the disadvantage of exponential complexity. This
can be avoided by implementing a SAR ADC in which the compara-
tors also implement the controller function (SAR using a Comparator-
based Controller (CC)). The operating principle of this architecture
is shown in Figure 2.13. Once again the sampled input signal is ap-
plied to all comparators in the architecture in parallel. But instead
of a tree, a chain of comparators is implemented in which each one
controls a feedback DAC that modifies the sampled input signal. The
algorithm implemented on this architecture is also successive approx-
imation. Normally this algorithm is implemented by a synchronous
or asynchronous controller, in the presented approach the compara-
tors serve as state machine of the algorithm: if a comparator is reset
both “greater than” and “smaller than” outputs are zero, if it is acti-
vated one of them is logic 1 and its feedback DAC modifies the input
signal. The output of a comparator however can not immediately
trigger the next one in the chain, since the DAC feedback signal needs
to settle. Hence, an appropriate delay block with delay τ is inserted,
such that the next comparator is only triggered when the feedback
signal of the DAC is stable. Also this architecture is edge triggered,
a rising clock edge at the start of the chain starts the quantization, a
falling clock edge resets the structure. [5]

Recently, a Binary Search (BS) ADC implementation has been pro-
posed in [6], where a switched reference voltage network and a reference-
prediction circuit are used to alleviate the calibration burden, and
avoid the exponential growth in comparator count respectively. The
number of comparator scales linearly with the ADC resolution, at

2.4 threshold-configuring adcs 25

the expense of increased complexity in the switching network, which
now tends to grow exponentially with n.

2.4 threshold-configuring adcs

The evolution of ADCs in the last few years has been driven by the
quest for both power and technology scalable architectures. Compat-
ibility with advanced digital CMOS processes determines the success
of highly digital architectures, such as SAR and SD ADCs for ultra-low
power applications as wireless sensing nodes or implanted biomedi-
cal devices. High research effort has been done in the recent past to
introduce highly digital architectures in ADCs for both high speed and
low power applications. The use of digital regenerative comparators
is a key factor in the design of these novel architectures. TC-ADC was
introduced in [10] and [11] for medium resolutions and speed, and
low power applications. It combines the principles of operation of
SAR ADCs with the use of a regenerative comparator, a programmable
array of threshold configuring transistors, and an asynchronous con-
troller, allowing to implement together the ADC and DAC functionali-
ties while increasing the power scalability.

2.4.1 TC-ADC Principle of Operation

The simplified schematic diagram of a TC-ADC is shown in Figure 2.14a.
The principle of operation of such architecture is as follows:

a. The Track and Hold (T/H) circuitry is responsible for sampling
the analog signal – by means of its switching devices – and
then keeping constant the input terminals of the comparator –
by means of the holding capacitors – until the decision is com-
pleted. This funtion is done at each clock cycle, controlled by
the track signal generated in the controller.

b. The asynchronous controller initializes the comparator thresh-
old to 0.0V, and generates the Track and Compare signals needed
to perform the first decision, which is triggered at the falling
edge of the Track signal, as shown in Figure 2.14b. As soon
as the decision is taken and notified by the raising edge of the
comparator signal Ready, the MSB of the output word, B[5], is
determined and the comparator is reset by the falling edge of
the Compare signal. The threshold CompTH can then be set to
its next value, e.g., either +VREF/2 (if CompIN = (INp − INn) is
larger than 0) or−VREF/2 (if CompIN is smaller than 0) based on
the comparator decision. A new comparison is then triggered
and the signal sequence described above repeats until all output
bits, from the MSB to the LSB, are determined.

26 a/d converters

(a) TC-ADC schematic diagram

(b) Timing diagram of a TC-ADC conversion cycle. CompIN = (INp − INn) is the
input differential voltage at the comparator, CompTH is the comparator threshold
voltage as set by the threshold configuring devices at each conversion step

Figure 2.14: TC-ADC architecture

2.4 threshold-configuring adcs 27

The asynchronous controller provides the Track (Hold), Compare (Re-
set) signals, and latches the output bits at the end of each conver-
sion. Based on each comparison’s result, the controller computes, us-
ing low complexity combinational logic, the necessary configuration
words to adequately shift the threshold for the next cycle. To program
comparator’s thresholds, two binary-scaled arrays of switchable ca-
pacitors connected at the outputs of the latch are exploited. The dig-
ital words TCA[4 : 0] and TCB[4 : 0], shown in Figure 2.14a, control
the amount of imbalance 4C

C in the load of one of the two comparator
outputs, which in turn generates a shift in the comparator trip point.
Each switched capacitor in the arrays is implemented using PMOS
transistors with short-circuited source and drain terminals, behaving
as MOS varactors. [13]

2.4.2 Architectural Details

By restricting the focus to medium resolution and speed applications,
it is possible to operate conversions with a minimal number of com-
ponents.

A dedicated feedback DAC to generate the error signal between the
sampled input and the ADC output is avoided, since the compara-
tor itself implements both the A/D and D/A functionalities. In fact,
since moderate resolutions are the target, the CR-DAC of a traditional
SAR ADC is conveniently replaced by a TC-ADC. The TC-ADC will also
consist of binary-scaled arrays of capacitors, thus presenting the same
linearity and matching requirements as the CR-DAC, for a given res-
olution. However, while in CR-DACs capacitors need to be highly
linear, since they provide the gain between charge and voltage, in a
TC-ADC capacitors are switched on or off in a mostly “digital” fashion
to trim the trip points. These capacitors can then be implemented
using small transistors out of a standard digital technology. More-
over, since no capacitors are used for the MSB decision, (2n − 2) unit
devices are required to realize an n-bit TC-ADC, which is one half of
the total number of units (2n+1) in fully differential CR converters.

Although the comparator threshold generation mechanism can be
affected by supply voltage and temperature variations, it still brings
area advantages and enough linearity for the target resolution [11].
Moreover, “reference” voltages (except, of course, for supply volt-
ages) do not need to be externally generated and buffered by possibly
power-hungry circuits. At the same time, the asynchronous operation
based on a self-timed comparator [7, 33] avoids high-speed clock gen-
eration and buffering, as well as comparator design for the worst case
conversion time.

Since the target is compact solutions at moderate speeds, the se-
rial conversion process is performed out of only one comparator.
All thresholds are, therefore, generated out of the same comparator,

28 a/d converters

which needs to be steered by a controller during its n conversion
cycles. For this reason, a TC-ADC may be slower and less power ef-
ficient than a BS-ADC without controller. However, its area and com-
plexity advantage can be substantial since the controller area, which
scales approximately linearly with n, is generally negligible with re-
spect to other components. On the other hand, comparator area in
BS-ADC with built-in thresholds shows exponential complexity, and
has been reduced to linear only with sophisticated reference switch-
ing schemes [6]. Finally, an offset compensated TC-ADC at moderate
resolutions can basically operate without calibration, while 2n− 1 trip
points need to be calibrated in a CABS-ADC with built-in thresholds.

2.4.3 Circuit Implementation

Here are presented analysis and design details for all the building
blocks of a 6-bit TC-ADC.

Track-and-Hold

The T/H simply consists of two NMOS switches (with no bootstrap
circuits) that sample the input signal onto low-cost MOM capacitors.
These are the only passive components in the ADC. The Track signal
is generated from an external clock through a digital buffer.

Threshold-Configurable Comparator

The fully dynamic threshold-configurable comparator at the heart of
the TC-ADC originates from a modified PMOS version of the StrongArm
architecture [34], which has been also used in high-speed low-power
flash ADCs [35, 36].

The working principle it is based on is fully described in Chapter 3.

Digital Controller

The controller generates the Track (Hold), Compare (Reset) signals, and
latches the output bits at the end of each conversion (Figure 2.14b).
Asynchronous operation enables higher sampling rates for the same
power consumption, since there is no need to generate a clock at
approximately n times the sampling frequency fs for an n-bit ADC.
Moreover, a new conversion step can start as soon as the previous one
is completed in a domino-fashion, so that the sampling time needs
not be sized for the worst-case comparator’s decision time.

A conceptual, simplified block diagram of the controller is repre-
sented in Figure 2.15 . The timing signals of the ADC are all derived
from a single ended 50% duty cycle clock input. At the beginning of
each conversion, the clock drives the output register to latch the re-
sult of previous conversion, and a pulse generator to provide the Track
signal. Another pulse generator triggered by the end of the tracking

2.4 threshold-configuring adcs 29

Figure 2.15: Simplified block diagram of the digital controller

phase drives the comparator and guarantees its proper reset. Finally,
there are six cascaded Threshold Configuration control (CtrlTC) units,
each of them includes registers and low-complexity combinational
logic to store the conversion result into the output bit, compute the
threshold configuration signals and activate the next unit in the cas-
cade. All the units have the same structure, with the exception of
the first and the last ones, which are adequately modified to accom-
modate the first and last comparator conversion of each cycle. The
cascade of CtrlTC units build the SAR “shift-register”, which operates
as follows.

As soon as the input signal tracking starts, the Track Generator sends
a reset pulse to all of the 6 CtrlTC units so that the threshold config-
uration signals TCA[i] and TCB[i] become low and no TC device
is activated. The comparator is then ready for its first conversion.
When triggered by the Ready signal from the comparator, the first
unit CtrlTC[5] will store the conversion result B[5], and compute the
configuration signals TCA[4] and TCB[4] to properly shift the com-
parator threshold for the next comparison. At the same time, the state
variable GO[5] is raised and activates the next unit CtrlTC[4], which
will now be the only one to be sensitive to the Ready signal from the
comparator. After the end of the second conversion, the new bit value
B[4] is stored and the next configuration signals TCA[3] and TCB[3]
are computed, while the control flow proceeds through CtrlTC[3− 0]
until the last conversion occurs. At this point, the state variable GO[0]
will denote the end of conversion and will be used to trigger the reset
of the TC logic for the next conversion cycle. If the whole cycle is not
completed within one clock period, a new conversion will anyway
start. The CLK signal is used to latch the current output B and reset
the CtrlTC units.

30 a/d converters

In each CtrlTC unit, the configuration signals TCA[i] and TCB[i] are
generated from the state variables GO and the outputs B using low
complexity combinational logic as follows:

TCA [i] = (B [5] + GO [i + 1]) · (B [i] · GO [i])

TCB [i] = (B [5] + GO [i + 1]) · (B [i] · GO [i]) (2.7)

After the first comparison cycle, when all the configuration arrays are
deactivated, the MSB B[5] determines which one of the two CTCA−B
arrays will be configured during the subsequent conversion cycles.
For instance, when B[5] is 0 and GO[i + 1] rises to 1, B[i] and GO[i]
are still 0 and the TCA[i] signal becomes high, thus activating the ith
unit of the CTCA array. As soon as the conversion step is completed,
the signal GO[i] is set and TCA[i] will then evaluate its final logic
level based on B[i], i.e., the current comparison result. [11]

Part II

A N U LT R A - L O W P O W E R C O M PA R AT O R

The main key in the TC-ADC operation is the understand-
ing on how the digital comparator is influenced by the
digitally configurable capacitor arrays. Regenerative com-
parators rely on the principle of operation of the well
known latch–type voltage sense amplifiers used in dig-
ital circuits to read the contents of different memories
[37]. Latch-type comparators are well suited for these
applications as they achieve fast decisions due to strong
positive feedback, but they are subject to static and dy-
namic random offset voltages as effect of the device mis-
match [38, 39]. Moreover, regenerative comparators are
based on the same principle of operation as novel Fast
FeedThrough Logic (FTL) logic families for digital Gallium
Arsenide (GaAs) [40] and CMOS [41, 42] circuits. The ba-
sic operation and design methodology are described in
Chapter 3, while Chapter 4 presents the relationship be-
tween power consumption and full scale of the Threshold-
Configuring (TC)-Comparator, compared with the radiated
power vs distance characteristic of a Radio-Frequency IDen-
tification (RFID) reader.

3
T H R E S H O L D - C O N F I G U R A B L E C O M PA R AT O R

As shown in Figure 3.1a1, the core comparator topology consists of
an input differential pair (M1 and M2) feeding a current into a regen-
erative back-to-back inverter pair (M3 through M6).

(a) Schematic diagram

(b) Waverforms at Compare, O1 and O2 nodes

Figure 3.1: Simplified Threshold Configuring regenerative Comparator

1 This Simplified version is derived from the TC-Comparator schematic originally pre-
sented in [11].

33

34 threshold-configurable comparator

3.1 basic operation

The Compare signal sets the operating phases. When Compare is low,
switches NMOS S1 and S2 reset the comparator, pushing nodes O1

and O2 down to ground, so that identical initial charge conditions are
put in both output nodes. In this phase, the comparator is inactive
and cleared from the previous state. No current is drawn in the circuit
as Mclk is off.

When Compare goes high, the comparator is activated: the Eval-
uation phase starts and Mclk is switched on, while S1 and S2 are
switched off. In this way the input differential voltage is sensed and
a decision is taken by the regenerative back-to-back inverter pair.

The Evaluation phase can be approximately divided into three sub-
phases.

a. At first, M1 and M2 operate in saturation regime, nodes X1 and
X2 are charged almost linearly while the cross-coupled inverters
are off. In this sub-phase any voltage difference between INA
and INB generates an imbalance between the drain currents I1

and I2 of M1 and M2 so that the charge rate of nodes X1−2 is
not the same.

b. When the voltages of nodes X1−2 raise approximately to
∣∣VTp3

∣∣
(VTp is the threshold voltage of the PMOS transistors), a second
sub-phase begins, in which M3−4 start conducting and produce
a voltage difference between nodes O1 and O2 as well. In this
sub-phase the common mode voltage at nodes X1−2 keeps grow-
ing approximately from

∣∣VTp3
∣∣ to VDD, while nodes O1−2 charge

up to VTn5 (VTn being the threshold voltage of the NMOS tran-
sistors), still with an approximately constant slope.

c. In the third sub-phase, when M1−2 exit and M5−6 enter their
saturation regions, the circuit mostly behaves as a cross-coupled
inverter pair amplifying the initial output voltage difference to
logic levels.

Finally, after the decision has been taken, no current is drawn into the
circuit as either the n or the p transistor will be off in the inverters. A
typical representation of the voltage waveforms at the internal nodes
is shown in Figure 3.1b.

A NAND gate generates the Ready signal indicating when O1 and
O2 assume opposite logic values and the comparison is done. This
signal is used by the asynchronous SAR controller as a trigger to re-
set the comparator and continue the conversion process with another
threshold configuration word. To avoid slowing down the conver-
sion process, O1 and O2 are buffered by properly skewed inverters,
as in [7]. For very small comparator inputs, the metastable voltage
of nodes OutA and OutB is designed to fall below the NAND gate

3.2 threshold generation 35

threshold, to be interpreted as a “data ready” and pass the control to
the next conversion step.

3.2 threshold generation

If the implemented circuit was perfectly differential, the output would
depend on the sign of the differential input, thus providing a refer-
ence threshold of 0. On the other side, any mismatch purposely intro-
duced between the two half-circuits causes the comparator trip point
to shift, which will result in a different “built-in” threshold. Differ-
ently from [35, 36], where the input pair device widths are balanced,
a relative capacitance imbalance on nodes O1−2 is exploited to create
the “reference” threshold.

A load difference 4CO = CO1 − CO2 at nodes O1−2 needs to be
compensated by corresponding differences in both the charging cur-
rents of O1−2 and X1−2, namely4I3 (flowing through M3−4) and4I1

(flowing through M1−2). Computing how these current differences
translate into a trip point shift 4VIN is equivalent to analyzing the
dynamic offset voltage due to output load mismatch in a latched com-
parator.

A few approaches have been proposed in the literature to analyze
the input referred offset of dynamic comparators. As in the balanced
method, described in [38], 4VIN is regarded as the compensation
voltage needed at the input terminals, to cancel the mismatch effect
and ensure that the comparator reaches its balanced status in spite
of any load imbalance. This principle has been used, for instance, in
[36], to evaluate the offset voltage induced by random MOS thresh-
old voltage mismatch, current factor mismatch, and input pair device
widths.

In this TC-Comparator, differently from [36] and [38], it is adopted
a piece-wise linearization method, similar to the noise analysis tech-
nique proposed in [43], to achieve higher modeling accuracy. The
bias point variations are tracked across the main comparator oper-
ation phases, and these are accounted for all the transient currents
and voltages due to capacitance charge and discharge, as also demon-
strated in [39] for a simple two-inverter latch structure. In particular,
it is assumed that the circuit is solicited by a constant signal voltage
4VIN , and a finite number of operating phases are defined as above
(Section 3.1. Basic Operation), where the circuit is linearized and an-
alyzed. Transitions between phases are assumed instantaneous, and
thus neglected. The evolution of the output voltage is obtained by
solving the differential equations governing the equivalent circuit in
each phase and combining results with continuity so that the starting
point of each phase coincides with the final point of the previous one.

The input differential voltage 4VIN required to balance the cross-
coupled inverters back in their metastable state during the latch re-

36 threshold-configurable comparator

generation phase (sub-phase c), in spite of the preexisting imbal-
ance, is calculated in [11] with a “pseudo-noise” analysis and simula-
tion technique (recently advocated also in [44]), as a fast estimation
method for transient performance variations due to device mismatch.
It leads to the following formula:

4VIN ≈
∣∣VGS1 −VTp1

∣∣
4

∣∣VGS3 −VTp3
∣∣∣∣VTp3

∣∣
(

1 +
VDD −VTinv

VTn5

) 4CO

CO
(3.1)

where VTinv is the metastable voltage of the latch M3−6 during sub-
phase c, and VGSi, VTpi, VTni denote the gate-source voltage, and the
(PMOS or NMOS) threshold voltage of device i respectively. In par-
ticular, VTinv can be approximated as VDD/2 for a non-skewed cross-
coupled inverter pair. VGS1 is the “average” gate-source voltage of
M1−2 in sub-phase a, and it can be approximated as VCM−VDD, VCM
being the input common mode voltage. VGS3 is the “average” gate-
source voltage of M3−4 in sub-phase b, which can be approximately
expressed as

(
VTn5 + VTp3 −VDD

)
/2.

To create a capacitive delta, two binary-weighted arrays of digitally
switchable capacitors, CTCA and CTCB, are implemented using small
PMOS varactors, with drain and source short-circuited and gate con-
nected to the comparator, on both sides, as shown in Figure 3.1a.

During the conversion process, capacitors are sequentially activated
only on one side, based on the MSB value, to generate the closest
threshold to the given input. Note that for ideally matched devices,
the word TCA = 0, TCB = 0 implies a zero threshold comparator:
any differential component in the analog signal will thus induce a
delta between the M1−2 differential pair, which in turn will produce
the latch decision. [11]

3.3 design methodology

Both comparator and configuration devices must be codesigned to
guarantee the global ADC performance, since capacitance at nodes
O impacts the comparator speed. In fact, at the beginning of the
evaluation phase, the linear charge time is mostly determined by the
charging current I0 set by the Mclk switch and the total capacitances
at nodes X1, X2, as estimated in [37]. However, when regeneration
starts, the time constant changes according to the transistors that are
active at that time, being primarily determined by the approximate
expression

τR =
(gds1 + gm3)CO

gds1(gm3 + gm5) + gm3gm5
(3.2)

which reduces to CO/(gm3 + gm5) when gds1 � gm3 · gm5, i.e., when
M1−2 enter their linear region of operation. From Equation 3.1, the
larger the PMOS device Con/Co f f ratio or input pair overdrive, the

3.3 design methodology 37

larger the threshold shift. However, large threshold configuration de-
vices may slow down the comparator, while a larger overdrive will
also increase noise, as shown by the analysis in [43]. Since the max-
imum threshold shift determines the ADC built-in VREF, CTCA−B de-
vices and input pair overdrive must be sized to provide the desired
dynamic range. Based on estimations of the total decision time from
[37] and Equation 3.2, in [11] it is derived a time-varying, nonlin-
ear behavioral model of the comparator, which also includes non-
stationary noise effects and nonlinearities in the threshold generation
mechanism.

4
D E S I G N S P E C I F I C AT I O N R E Q U I R E M E N T S

The TC-Comparator performance optimization, object of this study,
could not be properly elaborated whitout well-defined criteria to in-
dentify the exact value of Vth for each digital code.

4.1 tc-comparator power consumption vs full scale

Looking into the best optimization methodology to adopt for the TC-
Comparator elements sizing led to the plain necessity of being able
to search and define the threshold voltage Vth related to each digital
code included into the comparator full-scale. Vth is used indeed as
“reference value” inside the range of vid values corresponding to each
digital code, due to the non-linear relationship between vid and digital
codes (Figure 7.3).

The first investigation and optimization method adopted was the
scanning mode (described in Section 5.1.1; script of the corresponding
sheader.sp file presented in Section A.7.1). This method of analysis
by parameters variation turned out to be too slow for the main aim,
that is the sizing optimization, but powerful for detecting the most
precise value of Vth for each digital code included into the full-scale.
In Figure 4.1 it is described how the scanning mode can detect each
Vth value with the required precision, in a performance vs vid output
plot. Due to the finite precision provided by the calculator and the in-
trinsic delay time shown by the comparator before the output signals
go to the High or Low level (Figure 5.5b), the performance vs vid traces
result non-asymptotic. Anyway, Vth values can be limited within a
defined range with sufficient precision, by applying the following it-
erative algorithm:

1. Fix a digital code.

2. Set the region to a maximum (absolute) value. (Note that only
half of all possible voltage values are swept. Note also that the
limit value for the first iteration should be the largest possible,
that is the power supply voltage value, in this case −1.0V).

3. Sweep inside the defined region.

4. Plot the output performance vs vid.

5. Redefine the (narrower) sweeping region.

6. Go to 3.

39

40 design specification requirements

P
e
r
f
o
r
m
a
n
c
e

vid
Digital Code#1#0 #2 #3 #4

Vth#0 Vth#1 Vth#2 Vth#3 Vth#4

Full-scale

precision value

Figure 4.1: Qualitative output of scanning optimization method

Note that values of only half of the x-axys are provided. This choice
is due to the inner simmetry of the two comparator branches, which
allow to avoid useless data processing during simulations.

The vid variation modality is provided to the scanning optimiza-
tion method as a differential voltage obtained by varying vi1 and vi2
signals over time (Figure 4.2). The sweep trend is linear.

Actually, the main script contained into the sheader.sp file oper-
ates by iterating, for each digital code, two main steps:

a. Obtain the sweep region

b. Do the sweep

where point b refers to the entire algorithm described just above. The
sheader.sp file is built by concatenating other three files:

pre-header.sp and post-header.sp containing fixed parameters
(scanning resolution, ...);

vid-header.sp containing the varying parameters which define and
redefine the sweeping region; updated parameters are obtained
from the output measurements file, through a search and com-
pare with the previous ones, by keeping the one which makes
the region narrower. The process is iterated until the required
precision is reached.

4.1 tc-comparator power consumption vs full scale 41

vcm

vi1

vid

vi2

[V]

t[s]

Figure 4.2: vid values generation for scanning

4.1.1 Results

By applying the scanning optimization method iteratively, a precise
relationship among transistors size, power consumption and full-scale
(vid range) was obtained:

device Size Power consumption FS

Mclk ⇑ ⇑ ⇑
M1−2 ⇑ ⇑ ⇑
M3−4 ⇓ ⇓ ⇑
M5−6 ⇓ ⇓ ⇑

Table 4.1: Size vs Power consumption vs Full-Scale relationships

Note that in Table 4.1 relationships for each device size variation
were obtained by keeping the other transistor size constant.

Note also that power consumption is calculated as an average power:

〈P〉 = 1
T

∫ T

0
Pcomparator · dt (4.1)

where Pcomparator = ∑ PMOSFET, with PMOSFET = ∑ Vi Ii.

Referring to Figure 3.1a, if the Mclk (or M1−2) transistor size is in-
creased, its inner resistance will reduce, by leaving more current to

42 design specification requirements

flow from the power supply VDD, with an increment of the overall
power consumption. An other consequence of the size increasing is
also the change of the X1 (or X2, respectively) voltage node which, be-
cause of the smaller inner resistance of Mclk (M1−2), will have a value
closer to VDD. For this reason, the voltage gap 4V between GND
and X1 (X2), that is the Full-Scale (FS) range, increases (Figure 4.3).

Mclk & M1−2

X1

M3−4

VDD

GND

∆V

Figure 4.3: Inner resistance Model for the comparator left branch

The same size vs power consumption relationship is valid for the
M3−4 (or M5−6) transistor, where the size reduction of the chip area
entails a bigger inner resistance, which leads to a smaller current flow
from VDD towards GND. On the other hand, there is a different rea-
son behind the inverse trend of size vs full-scale. By considering a con-
centrated parameters model of the TC-Comparator (Figure 4.4) it is

R

Civi vo

Figure 4.4: TC-Comparator concentrated parameters Model

easy to find a first order solution for the current i(t) flowing through
the circuit, in fact it is an RC circuit, whose well-known solution is
given by

i(t) =
dQ
dt

(t) = − Q0

RC
· e− t

RC = Io · e−
t

RC (4.2)

with Q(t) the charge on the equivalent capacitor C at time t and
Q0 = Q(t = 0).

If i(t) is plotted (Figure 4.5), it is possible to observe that with a
constant current flow (by fixing Mclk and M1−2 sizes), an increment of
the inner resistance R of M3−4 and M5−6 due to their size reduction
would necessary lead to an increment of the time t required to dis-
charge the load capacitances. This situation is not possible because
the TC-Comparator is designed to balance load differencies, so the

4.1 tc-comparator power consumption vs full scale 43

i(t)

t

∆t

i = cost

Light C load Heavy C load

Figure 4.5: Qualitative analysis of the current i flowing through the com-
parator branches

only solution is a current increase, which once again implies a bigger
FS range.

44 design specification requirements

4.2 rfid reader radiated power vs distance

The DC chip power consumption (Pcons) and the efficiency in the RF
into DC power conversion (η) are the factors that limit the operation
range in a passive tag. For better understanding this statement, the
Friis Transmission Equation (4.3) is introduced. This equation gives
the power transmitted from one antenna to another, in free space:

Pr

Pt
= GrGt

(
λ

4πd

)2

(4.3)

Here Pt is the power fed into the transmitting antenna at its input ter-
minals; Pr is the power available at the output terminal of the receiv-
ing antenna; Gr and Gt are the gains of the receiving and transmitting
antenna, respectively; λ is the wavelength; d is the distance between
the antennas (see Figure 4.6).

Figure 4.6: Illustration of the Friis Transmission Formula

For proper operation it is indispensable that

Pr ≥ ηPcons (4.4)

where Pcons is the upper bound of the power consumption on chip
and η is the RF into DC power conversion efficiency. If condition (4.4)
is not verified, there will not be enough power available to supply
the chip. Assuming that PtGt is limited by governmental regulations
in Europe to 2W Effective Radiated Power (ERP), with a frequency of
868MHz, a typical value for Gr is 2.5dBi, with polarization losses of
3dB; the function Pr vs d is illustrated in Figure 4.7.

4.2 rfid reader radiated power vs distance 45

Figure 4.7: Available power at the output of the receiving antenna as a func-
tion of the distance

The figure shows the power that reaches the tag as a function of
the distance, without considering obstacles and reflections. It is clear
that tags consumption severely limits the operation range of the sys-
tem. For an operation range of 2 meters, it will require a factor
ηPcons ≤ 520µW. Hence assuming η = 20%, the upper bound of
the power consumpion on chip with 2 meters between antennas is
Pcons = 2.6mW [45].

Part III

S I Z I N G A N D O P T I M I Z AT I O N

Simulations developed in this study aim at obtaining the
best chip sizes for a power optimized design of a TC-Comparator.
Wonder to attain this goal, a Simulation environment set-
up must be preliminarily defined (Chapter 5). Afterwards,
process corner and variation parameters are set into the
simulator scripts for the selected technology process model
(Chapter 6). Finally, results are obtained and analyzed in
different linearity and mismatch conditions.

5
S I M U L AT I O N E N V I R O N M E N T S E T- U P

To be able to evaluate the TC Comparator behaviour and which pa-
rameters are critical for its optimization, it is foundamental to de-
velop a Simulation Environment where obtaining values related to
the adopted technology, the UMC CMOS 90 nm “Standard Process
1.0V CMOS 1P9M”.

5.1 hspice environment structure

HSPICE is a program that, starting from a circuit description and
analysis options, outputs the analysis it has done on that circuit.

Doing an HSPICE simulation requires some input elements, as
shown in Figure 5.1 ; in particular, it must be provided that:

• the Technology File, containing the reference parameters of the
UMC CMOS 90 nm “Standard Process 1.0V CMOS 1P9M” tech-
nology;

• the Netlist, a set of files, typically with a .sp extension. Its
structure is decribed in Figure 5.2 ;

• the Measurements File, where the parameters that it is necessary
to monitor are defined;

• the Corner of Process with a defined variance σ, required for
Monte Carlo Analysis (see Section A.4).

Although HSPICE produces many output files, the main one is the
file with .lis extension, for example circuit.lis. This file contains
all the important results from the HSPICE analysis: operating points,
measurement results, error messages. Typically after simulating a
circuit, it is better to check this file first in order to ensure there were
no errors in the netlist. The other files that HSPICE generates are
used by GnuPlot, a portable command-line driven graphic utility that
allows to graphically plot HSPICE analysis results.

49

50 simulation environment set-up

HSPICE

Technology File Netlist Measurements File Corner of Process
σ

.lis file GnuPlot
plottable files

GnuPlot

Post-Process

Inputs

Outputs

Figure 5.1: HSPICE Environment structure

Stimulus DUT
(DeviceUnderTest)

Loads

Figure 5.2: Netlist structure

5.1 hspice environment structure 51

5.1.1 Files Hierarchy

From a detailed analysis of the virtual workspace used during the
simulation workflow, it appears what follows:

bin/ It contains the main command files used to run the simulations;
in particular:

go it works structurally over the tcadc command file, allowing
to iterate the simulation with some parameters variations;

tcadc the properly called main file containing the preprocess-
ing simulation directives (see Section A.6) . It presents the
following internal structure:

title ’Threshold Voltage Determination’

options

lib L90_SP10_V031_MC_CORNER.lib,
where CORNER means that the Typical Corner Process
Model is adopted

includes

• parameters

• global nets

• inputs/stimulus

• netlist

the top netlist

measurements

probe points

optimization models contains variation values in or-
der to evaluate performances in terms of [AVeRage
(AVG) and Root Mean Square (RMS)] power dissipation,
current and voltage (see Section A.7)

sheader.sp Scanning optimization mode (Section A.7.1).
It contains a number of .alter commands, which
modify any previous HSPICE sentence. In particu-
lar, these commands operate on x-axis parameters
like

• vid

• digital code

oheader.sp Bisection optimization mode (Section A.7.2)

mheader.sp Monte Carlo optimization mode (Section A.7.3)

extractor it is fundamental for data postprocessing, as it ex-
tracts data from the measurements output files and gener-
ates tables of data in the right format for GnuPlot graphic
analysis.

52 simulation environment set-up

lib/ It contains the technology libraries for the UMC 90nm Process
Models used by HSPICE. The version adopted is L90_SP10_V031.

v7.6-v7.9/ Its contain the output files obtained by the simulations.
The main one is

circuits.inc (see Section A.8)

• netlist of the components

• cl0 ∼ cl5 capacitive loads initial values

Note that all the command files are written in Perl.

5.2 simulation setup

By considering the Decision Phase of the TC-Comparator operating
principle (Section 3.1, sub-phase c), it is possible to see how the cir-
cuit – behaving like a cross-coupled inverter pair – amplifies the ini-
tial output voltage difference to logic levels (Figure 3.1b). Therefore
the key point in the analysis of the comparator operating principle
comes down to the detection of the Ideal Equilibrium Point between
the input differential voltage vid = (INA − INB) and the load capaci-
tances connected (Figure 5.3).

O2

Load2Load1

O1

Clk

INA INB

Comparator

(a) 7-pole TC-Comparator model

O1 ≡ O2

Clk

V

t

(b) Ideal waverforms at Compare, O1
and O2 nodes

Figure 5.3: Ideal Equilibrium Point Inputs-Loads in a TC-Comparator

Actually, this status of equilibrium cannot exist because of the pres-
ence of thermal noise (and mismatch) that randomly unbalances the
relation between Imput and Load.

5.2 simulation setup 53

INPUT

LOAD

Noise

INPUT

LOAD

Noise

(a) (b)

Figure 5.4: Imbalance between Input and Load due to thermal noise

The strategy adopted to pick out the searched threshold voltage Vth
(for each digital code) can be described as follows.

Given a defined input load, for INA ≡ INB, outputs O1−2 are ob-
tained. Subsequently, the minimum value of vid

Vth = min(vid) = min(INA − INB) (5.1)

necessary for changing the outputs will be revealed (Figure 5.5).
This value can be numerically determined using an optimization

procedure implemented in HSPICE, the Bisection Methodology, which
uses a binary search method to find the value of an input variable
(see Section A.5).

The Bisection Method requires the definition of a precision variable,
used like decision parameter. The most suitable choice in this case is
Õ(T) measured at time T, defined as

Õ(T) = O1(T)−O2(T) (5.2)

At this point, Vth is obtained by two successive simulations, which
give:

V−th = Vth −
ε

IN

V+
th = Vth +

ε
IN (5.3)

where

V−th = vid|O1>O2

V+
th = vid|O2>O1
ε

IN ' ε · vid, ε� 1

By recursively repeating these simulations, it is possible to obtain
a value for Vth with the required precision.

54 simulation environment set-up

Clk

O1

O2

Inputs

Outputs

INA − INB = ˜IN

INA − INB < ˜IN INA − INB > ˜IN

O1

O2

(a)

(b)

(c)

HL

LL

delay time
∆t

Figure 5.5: Threshold Voltage Detection for a TC-Comparator

6
S I Z I N G F O R U LT R A - L O W P O W E R A N D F S
O P E R AT I O N

Defining Integrated Circuit performance without further qualification
is somewhat subjective. However for the purpose of comparison, it is
possible to quantify performance in terms of three parameters: power
dissipation, functional throughput rate and communication limits. In
computationally intensive structures, usually one has to address the
best approach that can be pursued to partition a given system. For
example, the question that may arise in this process is the choice as to
whether one creates a very high speed single channel or to take the
alternative approach of partitioning the system into parallel channels
clocked at lower frequency. However, according to design specifica-
tion of an ultra-low power ADC for blood pressure applications, the
suitable technology needs to satisfy the following criteria:

• Very low propagation delay possibly less than 100ps/gate;

• Low gate dissipation in order of 100µW/gate;

• Very low dynamic switching energy, that is less than 0.1pJ;

• Very high level of integration, greater than 50000 gates;

• High process yield.

6.1 characteristics of cmos devices

The CMOS device is the key active device used in the Comparator
circuits. Therefore a comparison of processes must consider the gain-
bandwidth product ft, transconductance gm, parasitic capacitances
and resistances of the Metal-Oxide-Semiconductor Field-Effect Tran-
sistor (MOSFET) to evaluate circuit performance.

6.1.1 Threshold voltage

Threshold voltage, Vth, is defined as the minimum gate electrode bias
required to strongly invert the surface under the poly and form a
conducting channel between the source and the drain regions. Vth
is usually measured at a drain-source current of 250µA. Common
values are 2− 4V for high voltage devices with thicker gate oxides,
and 1− 2V for lower voltage, logic-compatible devices with thinner
gate oxides. With power MOSFETs finding increasing use in portable
electronics and wireless communications where battery power is at

55

56 sizing for ultra-low power and fs operation

a premium, the trend is toward lower values of Vth and RDS(on),
withRDS(on) the on-state resistance of a power MOSFET (defined in
Section 6.1.3).

6.1.2 Maximum drain-source Currents

The drain-source current is the maximum current the MOSFET has
available to drive the circuit. A large value implies the MOSFET is
able to drive large capacitive loads, however the power dissipation
directly increases. Sub-threshold current flows from drain to source
when the gate to source voltage is below the pinch off voltage. This is
when electrons are transported in the channel by diffusion and drift.

6.1.3 Parasitic Capacitance and on-state Resistance

The gate capacitance of a MOSFET is the major limiting factor of
circuit speed if the interconnect lengths are short, as is the case in
densely packed VLSI circuits. Cgs0 and Cgd0 are the gate-source and
gate-drain zero-bias junction capacitances per micron gate width re-
spectively. These are used to model the gate capacitance of MOS-
FET’s.

The on-state resistance of a power MOSFET is made up of several
components as shown in Figure 6.1 :

RDS(on) = Rsource + Rch + RA + RJ + RD + Rsub + Rwcml(6.1)

Rsource =Source diffusion resistance

Rch =Channel resistance

RA =Accumulation resistance

RJ ="JFET" component - resistance of the region

between the two body regions

RD =Drift region resistance

Rsub =Substrate resistance

Rwcml = Sum of bond wire resistance, metallization

and leadframe contributions

6.2 umc cmos 90nm process characteristics 57

Figure 6.1: Origin of MOSFET Internal Resistance

6.1.4 Transconductance and gain-bandwidth

The transconductance of a MOSFET in digital circuits is related to
the noise margin of a circuit through the gain in the transition region.
The transconductance gm is given by

gm =
∂IDS

∂VGS

∣∣∣∣
VDS=cost

(6.2)

It is also proportional to the transconductance parameter β. High gm

is desirable for voltage gain, however switching speed is also deter-
mined by the gain-bandwidth product ft, given by

ft =
gm

2π
(
Cgs + Cgd

) (6.3)

where Cgs and Cgd are small signal gate-source and gate-drain capac-
itances.

6.2 umc cmos 90nm process characteristics

UMC1 provides a global model for design works of products manu-
factured using the 90nm LOGIC/MIXED_MODE 1P9M Process.

1 UMC is a leading global semiconductor foundry that provides advanced technology
and manufacturing services for applications spanning every major sector of the IC
industry. For more information, http://www.umc.com

58 sizing for ultra-low power and fs operation

To cope with the impact of process variations on circuit perfor-
mance, worst-case models are provided along with the typical case
and they are listed below. Note that “fast” here means lower thresh-
old voltage, higher leakage and driving current, and “slow” means
higher threshold voltage, lower leakage and driving current.

tt : Typical n-ch MOSFET and Typical p-ch MOSFET

ff : Fast n-ch MOSFET and Fast p-ch MOSFET

ss : Slow n-ch MOSFET and Slow p-ch MOSFET

fnsp : Fast n-ch MOSFET and Slow p-ch MOSFET

snfp : Slow n-ch MOSFET and Fast p-ch MOSFET

The provided model is valid within the following geometry (Table 6.1),
voltage (Table 6.2), and temperature (Table 6.3) ranges. Device behav-
ior beyond these ranges may not be well described by the model and
is not guaranteed.

1.0 V n-ch MOSFET 1.0 V p-ch MOSFET

0.08µm ≤ LDES ≤ 50µm 0.08µm ≤ LDES ≤ 50µm

0.12µm ≤WDES ≤ 100µm 0.12µm ≤WDES ≤ 100µm

(adopt multi-finger structures if WDES > 10µm) (adopt multi-finger structures if WDES > 10µm)

0.24µm ≤ SA, SB 0.24µm ≤ SA, SB

0.28µm ≤ SD(NF > 1) 0.28µm ≤ SD(NF > 1)

Note: SAREF = SBREF = 1.76µm is the reference dimension of the
STI-stress effect.

Table 6.1: Geometry range for UMC CMOS 90nm Process Model

1.0 V n-ch MOSFET 1.0 V p-ch MOSFET

0V ≤ VGS ≤ 1.0V(∗1.1) 0V ≥ VGS ≥ −1.0V(∗1.1)

0V ≤ VDS ≤ 1.0V(∗1.1) 0V ≥ VGDS ≥ −1.0V(∗1.1)

1.0V ≤ VBS ≤ 0V 1.0V ≥ VBS ≥ 0V

Table 6.2: Voltage range for UMC CMOS 90nm Process Model

1.0 V n-ch MOSFET 1.0 V p-ch MOSFET

−55°C ∼ +125°C −55°C ∼ +125°C

Table 6.3: Temperature range for UMC CMOS 90nm Process Model

6.2 umc cmos 90nm process characteristics 59

6.2.1 Electrical parameters

The most important electrical parameters for the characterization of
this device are summarized in Table 6.4 for NMOS and in Table 6.5
for PMOS, respectively.

Linear and saturation threshold voltages are extracted at

ID = 300nA ·WDES/(LDES − 0.01µm)

for NMOS and

ID = −70nA ·WDES/(LDES − 0.01µm)

for PMOS. All the normalized currents are divided with WDES.
All parameters are given for T = 25°C, VBS = 0V unless specified

otherwise.

60 sizing for ultra-low power and fs operation

Table 6.4: Electrical parameters for NMOS UMC 90nm Process Model

6.2 umc cmos 90nm process characteristics 61

Table 6.5: Electrical parameters for PMOS UMC 90nm Process Model

62 sizing for ultra-low power and fs operation

6.2.2 Model fitting accuracy

The model fitting accuracy of parameters ID, GM and GDS (Table 6.11)
is quantified by using the following equation:

error% = 100 · |meaasurement− simulation|
measurement+simulation

2

(6.4)

Different error criteria are defined for different parameters (ID, GM

and GDS) as well as for different operation region. These criteria are
explained below.

a. ID accuracy criteria

a) ID in sub-threshold region, i.e. VGS < VT;

b) ID in moderate inversion region, that is VT ≤ VGS < VT +

VX;

c) ID in strong inversion region, that is VT +VX ≤ VGS ≤ VCC;
where VX = (VCC −VT)/2

b. GM and GDS accuracy criteria

a) GM and GDS in sub-threshold region, that is VGS < VT

b) GM and GDS in inversion region, that is VT ≤ VGS ≤ VCC

In-depth analysis about Worst Case model and other parameters trends
can be retrieved in [46].

Table 6.11: Requirement for model fit accuracy

7
O P T I M I Z AT I O N F O R L I N E A R I T Y I M P R O V E M E N T

The main goal of this study is to further reduce the power consump-
tion of the presented 6-bit TC-ADC circuit in [11] and estimate how the
offset, gain and threshold calibrating networks are affected by such
power optimization. Although random offset errors, yield and noise
sensitivity of regenerative comparators have been studied [37, 39], the
power optimization has not been considered at all. Therefore, tradi-
tional transistor sizing techniques are applied to optimize the power
consumption. Additionally, it is analyzed the offset, gain and TC cali-
brating networks requeriments by means of Monte Carlo simulations.

7.1 analysis methodology

The main power consumption in TC-ADC is generated by the threshold
configuring comparator, so optimization is focused, in this section,
on the circuit. The procedure for power optimization and mismatch
analysis is sum up in the next items:

a. In order to guide the optimization, circuit operation is analyzed
by looking at power, delay and full scale contributions of each
device.

b. Circuit parameters that best match the available specifications
in [11] are obtained. A reference cell comparator using such
circuit parameters is considered for comparison purposes.

c. The circuit operation know-how is used to optimize the thresh-
old configuring comparator in terms of power consumption,
looking for no delay degradation while maintaining the same
FS operation range (obtained through the simulation procedure
described in Section 4.1).

d. Offset, gain and non-linearity errors are obtained by simulation
of both reference and optimized regenerative comparators un-
der perfect device matching condition.

e. Finally offset, gain and non-linearity errors are analyzed by
means of Monte Carlo simulations, using mismatch models for
the UMC CMOS 90nm “Standard Process 1.0V CMOS 1P9M”
technology.

As shown in Section 4.1, to conduct the research about the maximum
power consumption for each digital code generation (that is in corre-
spondence of the threshold voltage Vth) by varying the sizes of the

63

64 optimization for linearity improvement

P
ow

er
[W

]

FS[V]

t[s]

Power FS

Optimization Aim

Figure 7.1: Power consumption and FS trends over time for a TC-Comparator

comparator transistors through the scanning optimization method, re-
sulted unfeasible. For this reason, another optimization mode, based
on the Bisection methodology (see Section A.5) – whose script is con-
tained into the oheader.sp file (Section A.7.2) – was adopted.

The optimization aim can be described through the following con-
dition:

min(P), max(FS) ≡

∀P, max(FS)

∀FS min(P)
(7.1)

By observing the results presented in Table 4.1, it is clear that, once
fixed the size for M1 and M2, the power consumption and FS trends
for M3 and M4 sizing present a trade-off (Figure 7.1). The issue is
formally described by the condition 7.1, that is obtaining the lowest
overall power consumption and the largest FS range for a given size.

After the initial analysis about size vs power consumption vs FS de-
scribed in Section 4.1.1, where trends for each transistor were ob-
tained by keeping the size of the other ones fixed, the following in-
vestigation was about the effects in terms of mutual influence by mod-
ifying more than one transistor size at the same time. The identical
behaviour noticed for M1−2 and M3−4 suggested to set a multiply-
ing factor between sizes in order to reduce the number of possible
combinations: M2 = m12 ·M1

M4 = m34 ·M3

(7.2)

7.1 analysis methodology 65

In this way, given the M1 size (dependent on the maximum current
flowing out of VDD) and the m34 size factor (fixed by the technology1),
the search was limited to finding m12 in order to minimize the power
consumption and m34 to maximize the FS.

7.1.1 Optimization analysis by Bisection method

Given a fixed digital code, the threshold voltage Vth is the input volt-
age which leads the converter to keep the output at the middle value,
in a metastable equilibrium. So, to measure it, it is not possible to
directly detect the exact value, while the Bisection approach can be
used in the following way.

As shown in Figure 7.2 , it is always possible to find a time region

Reset

O1

O2

HL

LL

∆t

V

t

10%

10%

Stable output values Region

Figure 7.2: Stable region for Output values detection

where the two output signals O1 and O2 are stable, one at the High
and the other one at the Low level. In this situation, it is possible to
determine the correspondent vid region, whose edges are

∃v+id : vO1 − vO2 > 0

∃v−id : vO1 − vO2 < 0 (7.3)

with v−id < Vth < v+id

Through iterative application of Bisection method, this region be-
comes narrower, with v−id and v+id values increasingly closer to the
searched Vth.

1 In particular, M3 is a p-MOS transistor, while M4 is a n-MOS transistor. Because of the
known different performance of the two MOSFET types, an exact multiplying factor
(3 ≤ m34 ≤ 4) can be calculated in order to balance the effect.

66 optimization for linearity improvement

Following this procedure, a plot useful for calculating INL and DNL

errors for each digital code can be quickly obtained and with the
required precision.

7.2 design restrictions achievement

From the analysis of circuit operation, it can be concluded that sizing
of each device has a relative effect on circuit performance as shown
in Table 7.1 . First, by using data available at the reference design
specification (4CLSB = 0.5 f F, C = 40 f F and W/L = 0.12µm/0.32µm
for the TC unit device) it was obtained that just one TC unit device is
used for the LSB of TC networks. Initially, M3-M6 transistors on the
reference design are sized to obtain an inverter threshold near VDD/2,
and S1-S4 to minimum dimensions. Then, M1 and M2 devices are
sized to obtain the desired FS for a larger enough Mclk device. Last,
Mclk is sized to obtain the desired delay and power specification,
while allowing some minor variation in the S1-S4 devices to get a
fine matching. This will shift the obtained FS again, so the procedure
is iterated by resizing the devices again until very small shifts are
generated for the M1-M2 sizes. Finally, a last iteration is done to take
into account the technology pitch.

Note that, if the reference specification does not correspond to an
optimum power consumption point, there will be a non-unique so-
lution which satisfies the specifation constrains. To avoid high dis-
sipation in the latch transistors, the minimum M3-M6 area solution
is selected, although other solutions could lower the offset and non-
linearity errors due to device mismatch. Also, note that the higher
the FS condition is, the larger the Mclk transistors will be required
in order to allow for higher current flow through the differential pair
M1-M2, or the larger M1 and M2 transistors will be required to cause
higher current imbalance for a fixed Mclk size.

Next, power optimization is accomplished by repeating a similar
procedure as described before for power, delay and FS matching. But

Device Power Consumption Delay Full Scale Range

Mclk high high high

M1-M2 low low high

M3-M6 low high low

S1-S4 low low low

CTCA-CTCB low* low* high

*assuming small devices for threshold configuring networks.

Table 7.1: Impact of device sizing in the performance of the threshold con-
figuring comparator

7.3 nonlinearity analysis : dnl and inl errors 67

in this case power specification is reduced to its minimum value. Min-
imum power consumption can be determined by initially making M1-
M2 devices large enough, and reducing the size of Mclk till delay and
FS conditions are met. To avoid highly non-linear behavior, Mclk can-
not be too much reduced in comparison with M1 and M2. On the
other hand, as lower the M3/M5 (or M4/M6) ratio is, the smaller will
be the required Mclk devices. Thus, optimum power sizing tends to
reduce M3/M5 and M4/M6 ratios and slighlty increase the M1/Mclk
and M2/Mclk ones.

The sizing of TC units in the reference design allows for increased
Con/Co f f ratio (approximately 6 times) when compared with mini-
mum size devices. On the one hand, high capacitive deltas in TC

networks relax the sizing condition of Mclk to fit the FS specification
and could reduce the power consumption. But on the other hand, it
is preferrable to keep devices close to the minimum size in order to
reduce the overall capacitive load, except for the case that reduced
device mismatch is required. The obtained device sizing for TC units
is considered a good compromise between Con/Co f f ratio, mismatch
and impact on power consumption.

Both, in the reference design and in the optimized one, we as-
sumed that the matching of power and delay constrains are met for
input differential voltages at ±10µV from the zero threshold condi-
tion (TCA = TCB = 0). A common mode input voltage of 0.3V is
also assumed in the INA-INB terminals, because this is an optimum
design point for the speed and yield [37] performance of latch-type
voltage sense amplifiers.

7.3 nonlinearity analysis : dnl and inl errors

Once the threshold voltage Vth,#n has been individuated for each #n
digital code (through Scanning optimization mode, as described in
Section 4.1), it is possible to plot the real behavior of the TC-Comparator
(Figure 7.3)

68 optimization for linearity improvement

Output Code#1 #2 #3 #4#0

Vth,#0

Vth,#1

Vth,#2

Vth,#3

FS ≡ Vth,#4

v i
d
[V

]

Linear Behaviour

INL

Note that ideal linear behaviour of comparator is traced by drawing
a straight line through zero and FS.

Figure 7.3: Qualitative plot of non-linear relationship between Input voltage
and Output digital code for a TC-Comparator

and compare it with the ideal linear working function. From this
comparation it is obtained the INL error, that is the deviation of the
output code from the linear trend (as defined in Section 1.2.2).

The same graph is also useful for obtaining and evaluating the DNL

error of each digital code, calculated through Equation 1.3.

8
M I S M AT C H A N A LY S I S

Regenerative comparators are very sensitive to device mismatch and
noise. So adequate layout techniques must be used in order to re-
duce mismatch and allow for high symmetry in the designs [42, 12].
If small devices are assumed in threshold configuring and calibrat-
ing networks, capacitive load and minimum power consumption are
highly related with the routing parasitic capacitances. Thus, to reduce
routing complexity associated with offset, gain and TC calibrating net-
works will be a key factor in order to further reduce the overall power
consumption in TC comparators and ADC.

The goal of Monte Carlo analysis is to obtain the design restrictions
that must be met by calibrating networks (offset, gain and thresh-
old configuring calibration) and the way they are affected when opti-
mized power consumption cells are used. Additionally, conclusions
of this analysis can guide the development of future TC-ADC architec-
ture improvements for ultra-low power applications.

Unfortunately, the noise analysis is not a kind of error that can
be compensated by the calibrating networks. Expected non-linearity
values caused by the noise component must be inside the 0.2LSBs
range for 90nm CMOS technologies [43].

Note that device mismatch around the typical process corner, which
accounts for both, static and dynamic offset errors caused by all the
devices in the circuit, is used in the simulations.

8.1 mismatch optimization through dnl analysis

After having implemented an effective algorithm (based on scanning
and bisection optimization modes) to detect the INL error for each
digital code, it was used time after time through Monte Carlo simu-
lations, which permit to analyze the effects of process scattering over
the observed parameters.

By plotting all the results on the same graph, it is easy to spot the
biggest INL (absolute) value, which has to be smaller than 1

2 LSB (as
specified in Equation 1.2):

69

70 mismatch analysis

0000 0001 1111 Code

INL

+1LSB

−1LSB

+ 1
2LSB

+ 1
2LSB

Figure 8.1: Qualitative plot of INL errors for each digital code generated
through Monte Carlo simulations

9
R E S U LT S

All the circuit parameters and performance obtained are presented in
Table 9.1 and Table 9.2 for the reference design (REF) and the power
optimized one (OPT) respectively. Circuit parameters are shown in
Table 9.1, in terms of transistor size, while circuit performance is
shown in Table 9.2 in terms of delay, power and FS range, and the
maximum absolute offset, gain and non-linearity (DNL, INL) errors
for all the possible threshold configuring TCA and TCB words. As
commented before, power and delay measurements are referred to
a ±10µV input signal for the TCA = TCB = 0 codes. A resolution
step of 100µV (about 0.02 LSBs) is used for the voltage sweep and a
common mode input voltage of 0.3V is assumed at the INA-INB ter-
minals. The best-fit of the trip points to a straight line obtained by the
least squares method is assumed for linearity parameters (offset, gain,
DNL and INL). The sampling period is fixed at 40ns, in order to avoid
non-linear power behavior near the maximum sampling frequency
(50MSps).

It can be observed that the optimized design reduces the power con-
sumption and delay of more than 77% and 20% respectively, for a full
scale range of ±160mV. Moreover, our power optimized design ex-
hibits near 50% improvement for the linearity error parameters. The
higher energy efficiency of the optimized solution delivers energy to
the capacitor arrays in a more efficient way than the reference solu-
tion did. As lower energy is dissipated by the internal devices in
comparison with the quantity distributed to capacitor arrays, lower
non-linear effects are obtained. Non-linearity errors for each TC code
are shown in Figure 9.1. Note that, due to perfect simmetry in the
design, the INL error for TCA = TCB = 0 (code number 31) is null.

Finally, mismatch analysis results are presented in Table 9.3 . It
can be observed that the maximum absolute offset errors of both de-
signs are close to each other. But the optimized power consumption
version achieves more than 30% gain and DNL errors reduction. The
lower gain error can be directly used for decreasing the correspond-
ing calibrating network size (and complexity) and to further reduce
the power consumption. On the other hand the INL error is about
21% worse for the power optimized design. The INL error increase is
due to the higher relative variations of the node currents in presence
of a mismatch condition when reducing the device size.

Figure 9.2 plots the INL errors corresponding to each code and
Monte Carlo run. 3D plots are shown in Figure 9.2a and Figure 9.2b.
Overlayed 2D plots for each run are shown in Figure 9.2c and Fig-

71

72 results

Device Size (REF) Size (OPT)

Mclk 41.13µm× 0.08µm 2.69µm× 0.08µm

M1, M2 2.79µm× 0.08µm 4.18µm× 0.08µm

M3, M6 0.13µm× 0.08µm 0.40µm× 0.08µm

S1, S4 1.22µm× 0.08µm 1.70µm× 0.08µm

CTCA , CTCB(LSB) 0.12µm× 0.32µm 0.12µm× 0.32µm

Table 9.1: Device sizing parameters for reference (REF) and optimized (OPT)
comparators

Device REF OPT

Power[µW] 13.00 2.92

Delay[ns] 1.65 1.31

FS[mV] ±159.95 ±160.10

Offset[mV] −3.11 −1.5

Gain Error[%] +2.00 −0.98

DNL[LSBs] ±0.118 ±0.071

INL[LSBs] ±0.639 ±0.338

Table 9.2: Obtained performance for reference (REF) and optimized (OPT)
comparators, without device mismatch

Device REF OPT

Offset[mV] ±93.60 ±91.25

Gain Error[%] ±8.54 ±5.40

DNL[LSBs] ±0.124 ±0.085

INL[LSBs] ±0.956 ±1.163

Table 9.3: Obtained performance for reference (REF) and optimized (OPT)
comparators, with device mismatch

results 73

ure 9.2d. The offset and gain erros are depicted in Figure 9.3. Al-
though the INL error is about 0.2 LSBs worse for the power optimized
design it can be more easily modeled than the reference ones. This
could be used to simplify the required calibration parameters in the
case, for example, of a memory-based cancellation scheme.

74 results

(a) DNL

(b) INL

Figure 9.1: Non-linearity plots

results 75

(a)

(b)

(c)

(d)

Figure 9.2: INL plots using mismatched devices: (a) and (b) are 3D-plots,
and (c) and (d) are the corresponding 2D-plots, for the reference
and power optimized comparators

76 results

(a)

(b)

(c)

(d)

Figure 9.3: INL plots using mismatched devices: (a) and (b) are 3D-plots,
and (c) and (d) are the corresponding 2D-plots, for the reference
and power optimized comparators

9.1 optimization results – scanning method 77

9.1 optimization results – scanning method

Plots presented in this section are generated by GnuPlot from the
scanning mode simulation data.

Each device size is set to the optimal value (see Table 9.1).

Figure 9.4: Vth Determination Conditions 1 - scanning mode, opt.val.

Figure 9.5: Vth Determination Conditions 2 - scanning mode, opt.val.

78 results

Figure 9.6: Average Power Consumption vs Vth - scanning mode, opt.val.

Figure 9.7: RMS Power Consumption vs Vth - scanning mode, opt.val.

9.1 optimization results – scanning method 79

Figure 9.8: Int Power Consumption vs Vth - scanning mode, opt.val.

Figure 9.9: Average Current vs Vth 1 - scanning mode, opt.val.

80 results

Figure 9.10: Average Current vs Vth 2 - scanning mode, opt.val.

Figure 9.11: Average Current vs Vth 3 - scanning mode, opt.val.

9.1 optimization results – scanning method 81

Figure 9.12: Average Current vs Vth 4 - scanning mode, opt.val.

Figure 9.13: Average Current vs Vth 5 - scanning mode, opt.val.

82 results

Figure 9.14: Average Current vs Vth 6 - scanning mode, opt.val.

Figure 9.15: Average Current vs Vth 7 - scanning mode, opt.val.

9.1 optimization results – scanning method 83

Figure 9.16: Average Current vs Vth 8 - scanning mode, opt.val.

Figure 9.17: RMS Current vs Vth 1 - scanning mode, opt.val.

84 results

Figure 9.18: RMS Current vs Vth 2 - scanning mode, opt.val.

Figure 9.19: RMS Current vs Vth 3 - scanning mode, opt.val.

9.1 optimization results – scanning method 85

Figure 9.20: Int Current vs Vth 1 - scanning mode, opt.val.

Figure 9.21: Int Current vs Vth 2 - scanning mode, opt.val.

86 results

Figure 9.22: Int Current vs Vth 3 - scanning mode, opt.val.

Figure 9.23: Average Current vs Vth 1 - scanning mode, opt.val.

9.1 optimization results – scanning method 87

Figure 9.24: Average Current vs Vth 2 - scanning mode, opt.val.

Figure 9.25: RMS Current vs Vth 4 - scanning mode, opt.val.

88 results

Figure 9.26: RMS Current vs Vth 5 - scanning mode, opt.val.

Figure 9.27: RMS Current vs Vth 6 - scanning mode, opt.val.

9.1 optimization results – scanning method 89

Figure 9.28: Int Current vs Vth 4 - scanning mode, opt.val.

Figure 9.29: Int Current vs Vth 5 - scanning mode, opt.val.

90 results

Figure 9.30: Int Current vs Vth 6 - scanning mode, opt.val.

Figure 9.31: Time Delay for Decode vs Vth 1 - scanning mode, opt.val.

9.1 optimization results – scanning method 91

Figure 9.32: Time Delay for Decode vs Vth 2 - scanning mode, opt.val.

Figure 9.33: Time Delay for Decode vs Vth 3 - scanning mode, opt.val.

92 results

9.2 reference values – scanning method

Plots presented in this section are generated by GnuPlot from the
scanning mode simulation data.

Each device size is set to the reference value (see Table 9.1).

9.2 reference values – scanning method 93

Figure 9.34: Vth Determination Conditions 1 - scanning mode, ref.val.

Figure 9.35: Vth Determination Conditions 2 - scanning mode, ref.val.

94 results

Figure 9.36: Average Power Consumption vs Vth - scanning mode, ref.val.

Figure 9.37: RMS Power Consumption vs Vth - scanning mode, ref.val.

9.2 reference values – scanning method 95

Figure 9.38: Int Power Consumption vs Vth - scanning mode, ref.val.

Figure 9.39: Average Current vs Vth 1 - scanning mode, ref.val.

96 results

Figure 9.40: Average Current vs Vth 2 - scanning mode, ref.val.

Figure 9.41: Average Current vs Vth 3 - scanning mode, ref.val.

9.2 reference values – scanning method 97

Figure 9.42: Average Current vs Vth 4 - scanning mode, ref.val.

Figure 9.43: Average Current vs Vth 5 - scanning mode, ref.val.

98 results

Figure 9.44: Average Current vs Vth 6 - scanning mode, ref.val.

Figure 9.45: Average Current vs Vth 7 - scanning mode, ref.val.

9.2 reference values – scanning method 99

Figure 9.46: Average Current vs Vth 8 - scanning mode, ref.val.

Figure 9.47: RMS Current vs Vth 1 - scanning mode, ref.val.

100 results

Figure 9.48: RMS Current vs Vth 2 - scanning mode, ref.val.

Figure 9.49: RMS Current vs Vth 3 - scanning mode, ref.val.

9.2 reference values – scanning method 101

Figure 9.50: Int Current vs Vth 1 - scanning mode, ref.val.

Figure 9.51: Int Current vs Vth 2 - scanning mode, ref.val.

102 results

Figure 9.52: Int Current vs Vth 3 - scanning mode, ref.val.

Figure 9.53: Average Current vs Vth 1 - scanning mode, ref.val.

9.2 reference values – scanning method 103

Figure 9.54: Average Current vs Vth 2 - scanning mode, ref.val.

Figure 9.55: RMS Current vs Vth 4 - scanning mode, ref.val.

104 results

Figure 9.56: RMS Current vs Vth 5 - scanning mode, ref.val.

Figure 9.57: RMS Current vs Vth 6 - scanning mode, ref.val.

9.2 reference values – scanning method 105

Figure 9.58: Int Current vs Vth 4 - scanning mode, ref.val.

Figure 9.59: Int Current vs Vth 5 - scanning mode, ref.val.

106 results

Figure 9.60: Int Current vs Vth 6 - scanning mode, ref.val.

Figure 9.61: Time Delay for Decode vs Vth 1 - scanning mode, ref.val.

9.2 reference values – scanning method 107

Figure 9.62: Time Delay for Decode vs Vth 2 - scanning mode, ref.val.

Figure 9.63: Time Delay for Decode vs Vth 3 - scanning mode, ref.val.

108 results

9.3 mismatch results – monte carlo simulation

Plots presented in this section are generated by GnuPlot from Monte
Carlo simulation data.

Each device size is set to the optimal value (see Table 9.1).

9.3 mismatch results – monte carlo simulation 109

Figure 9.64: Slope - mismatch, MonteCarlo EndPoint method

Figure 9.65: Offset - mismatch, MonteCarlo EndPoint method

110 results

Figure 9.66: Offset Error (LSB) - mismatch, MonteCarlo EndPoint method

Figure 9.67: Gain Error % - mismatch, MonteCarlo EndPoint method

9.3 mismatch results – monte carlo simulation 111

Figure 9.68: Min INL (LSB) - mismatch, MonteCarlo EndPoint method

Figure 9.69: Max INL (LSB) - mismatch, MonteCarlo EndPoint method

112 results

Figure 9.70: Median INL (LSB) - mismatch, MonteCarlo EndPoint method

Figure 9.71: Mean INL (LSB) - mismatch, MonteCarlo EndPoint method

9.3 mismatch results – monte carlo simulation 113

Figure 9.72: Standard Deviation INL (LSB) - mismatch, MonteCarlo EndPoint
method

Figure 9.73: Sum INL (LSB) - mismatch, MonteCarlo EndPoint method

114 results

Figure 9.74: Sum Sq INL (LSB) - mismatch, MonteCarlo EndPoint method

Figure 9.75: Min DNL (LSB) - mismatch, MonteCarlo EndPoint method

9.3 mismatch results – monte carlo simulation 115

Figure 9.76: Max DNL (LSB) - mismatch, MonteCarlo EndPoint method

Figure 9.77: Median DNL (LSB) - mismatch, MonteCarlo EndPoint method

116 results

Figure 9.78: Mean DNL (LSB) - mismatch, MonteCarlo EndPoint method

Figure 9.79: Sum DNL (LSB) - mismatch, MonteCarlo EndPoint method

9.3 mismatch results – monte carlo simulation 117

Figure 9.80: Slope - mismatch, MonteCarlo LSE method

Figure 9.81: Offset - mismatch, MonteCarlo LSE method

118 results

Figure 9.82: Offset Error (LSB) - mismatch, MonteCarlo LSE method

Figure 9.83: Gain Error % - mismatch, MonteCarlo LSE method

9.3 mismatch results – monte carlo simulation 119

Figure 9.84: Min INL (LSB) - mismatch, MonteCarlo LSE method

Figure 9.85: Max INL (LSB) - mismatch, MonteCarlo LSE method

120 results

Figure 9.86: Median INL (LSB) - mismatch, MonteCarlo LSE method

Figure 9.87: Mean INL (LSB) - mismatch, MonteCarlo LSE method

9.3 mismatch results – monte carlo simulation 121

Figure 9.88: Standard Deviation INL (LSB) - mismatch, MonteCarlo LSE
method

Figure 9.89: Sum INL (LSB) - mismatch, MonteCarlo LSE method

122 results

Figure 9.90: Sum Sq INL (LSB) - mismatch, MonteCarlo LSE method

Figure 9.91: Min DNL (LSB) - mismatch, MonteCarlo LSE method

9.3 mismatch results – monte carlo simulation 123

Figure 9.92: Max DNL (LSB) - mismatch, MonteCarlo LSE method

Figure 9.93: Median DNL (LSB) - mismatch, MonteCarlo LSE method

124 results

Figure 9.94: Mean DNL (LSB) - mismatch, MonteCarlo LSE method

Figure 9.95: Standard Deviation DNL (LSB) - mismatch, MonteCarlo LSE
method

9.3 mismatch results – monte carlo simulation 125

Figure 9.96: Sum DNL (LSB) - mismatch, MonteCarlo LSE method

Figure 9.97: Sum Sq DNL (LSB) - mismatch, MonteCarlo LSE method

126 results

Figure 9.98: Slope - mismatch, MonteCarlo EndPoint&LSE method

Figure 9.99: Offset - mismatch, MonteCarlo EndPoint&LSE method

9.3 mismatch results – monte carlo simulation 127

Figure 9.100: Offset Error (LSB) - mismatch, MonteCarlo EndPoint&LSE
method

Figure 9.101: Gain Error % - mismatch, MonteCarlo EndPoint&LSE method

128 results

Figure 9.102: Min INL (LSB) - mismatch, MonteCarlo EndPoint&LSE method

Figure 9.103: Max INL (LSB) - mismatch, MonteCarlo EndPoint&LSE method

9.3 mismatch results – monte carlo simulation 129

Figure 9.104: Median INL (LSB) - mismatch, MonteCarlo EndPoint&LSE
method

Figure 9.105: Mean INL (LSB) - mismatch, MonteCarlo EndPoint&LSE method

130 results

Figure 9.106: Standard Deviation INL (LSB) - mismatch, MonteCarlo End-
Point&LSE method

Figure 9.107: Sum INL (LSB) - mismatch, MonteCarlo EndPoint&LSE method

9.3 mismatch results – monte carlo simulation 131

Figure 9.108: Sum Sq INL (LSB) - mismatch, MonteCarlo EndPoint&LSE
method

Figure 9.109: Min DNL (LSB) - mismatch, MonteCarlo EndPoint&LSE method

132 results

Figure 9.110: Max DNL (LSB) - mismatch, MonteCarlo EndPoint&LSE method

Figure 9.111: Mean DNL (LSB) - mismatch, MonteCarlo EndPoint&LSE method

9.3 mismatch results – monte carlo simulation 133

Figure 9.112: Standard Deviation DNL (LSB) - mismatch, MonteCarlo End-
Point&LSE method

Figure 9.113: Sum DNL (LSB) - mismatch, MonteCarlo EndPoint&LSE method

134 results

Figure 9.114: Sum Sq DNL (LSB) - mismatch, MonteCarlo EndPoint&LSE
method

9.4 conclusions 135

9.4 conclusions

The aim of this work was the optimization of a threshold configurable
regenerative comparator for ultra-low power battery-less applications
and the analysis of the effect that this power reduction has over non-
linearity in a 6-bit TC-ADC.

The power optimized comparator cuts down on 77% the power
consumption and improves by a 20% the maximum sampling rate for
a constant FS specification of ±160mV. The higher energy efficiency
causes improved linearity (about 50% for offset, gain, DNL and INL er-
rors) for perfectly matched devices, while it exhibits higher sensitivity
to dynamic random errors (21% worse INL for mismatched devices).
Gain error is significatively improved even in the presence of random
errors.

Future work has to be done by using the higher predictability of
INL errors obtained for the power optimized comparator in order to
simplify the calibrating networks.

Part IV

A P P E N D I X

A
A P P E N D I X

a.1 the sar algorithm

The successive approximation ADC circuit typically consists of four
chief subcircuits (Figure A.1):

Figure A.1: Successive Approximation ADC Block Diagram

1. A S/H circuit to acquire the input voltage (VIN).

2. An analog voltage comparator that compares VIN to the output
of the internal DAC and outputs the result of the comparison to
the SAR.

3. A successive approximation register subcircuit designed to sup-
ply an approximate digital code of VIN to the internal DAC.

4. An internal reference DAC that supplies the comparator with an
analog voltage equivalent of the digital code output of the SAR

for comparison with VIN .

The SAR is initialized so that the MSB is equal to a digital 1. This
code is fed into the DAC, which then supplies the analog equivalent
of this digital code

(
Vre f

2

)
into the comparator circuit for comparison

with the sampled input voltage. If this analog voltage exceeds VIN

the comparator causes the SAR to reset this bit; otherwise, the bit is
left to 1. Then the next bit is set to 1 and the same test is done,
continuing this binary search until every bit in the SAR has been tested.
The resulting code is the digital approximation of the sampled input
voltage and is finally output by the DAC at the End Of the Conversion
(EOC).

139

140 appendix

Mathematically, assume Vin = x Vre f , so that x in [−1, 1] is the nor-
malized input voltage. The objective is to approximately digitize x to
an accuracy of 1

2n . The algorithm proceeds as follows:

1. Initial approximation x0 = 0.

2. ith approximation xi = xi−1 − s(xi−1−x)
2i .

where s (x) is the signum-function sgn(x) (+1 for x ≥ 0, −1 for x < 0).
It follows, by mathematical induction, that |xn− x| ≤ 1

2n . [47]
As shown in the above algorithm, a SAR ADC requires:

a. An input voltage source VIN .

b. A reference voltage source Vre f to normalize the input.

c. A DAC to convert the ith approximation xi to a voltage.

d. A Comparator to perform the function s (xi − x) by comparing
the DAC’s voltage with the input voltage.

e. A Register to store the output of the comparator and apply
xi−1 − s(xi−1−x)

2i .

a.2 nyquist sampling condition

The Nyquist–Shannon sampling theorem, after Harry Nyquist and
Claude Shannon, in the literature more commonly referred to as the
Nyquist sampling condition, is a fundamental result in the field of
information theory.

Shannon’s version of the theorem states:

If a function x(t) contains no frequencies higher than
B Hz, it is completely determined by giving its ordinates
at a series of points spaced 1

2B s apart.

In other words, a bandlimited function can be perfectly reconstructed
from an infinite sequence of samples if the bandlimit B is no greater
than 1

2 the sampling rate (samples per second). The theorem also
leads to a formula for reconstruction of the original function from its
samples. When the bandlimit is too high (or there is no bandlimit),
the reconstruction exhibits imperfections known as aliasing. The Pois-
son summation formula provides a graphic understanding of aliasing
and an alternative derivation of the theorem, using the perspective of
the function’s Fourier transform. In practice of course, infinite se-
quences, perfect sampling, and perfect interpolation are all replaced
by approximations that deviate from the mathematical ideal of per-
fect reconstruction. Moreover, the theorem is a sufficient, but not
necessary, condition.

A.3 nyquist frequency 141

To formalize the statements above, let X(f) be the Fourier trans-
form of the bandlimited function x(t):

X(f)
de f
=

∞∫
−∞

x(t)e−i2π f tdt (A.1)

and assume that
X(f) = 0, ∀ | f | > B

When x(t) is uniformly sampled at intervals of T seconds, the result-
ing sequence is denoted by x(nT), for all integer values of n, and the
sample-rate (samples per second) is:

fs
de f
=

1
T

A sufficient condition to reconstruct x(t) from its samples is fs > 2B,
or equivalently B < fs

2 . The two thresholds, 2B and fs
2 , are respec-

tively called the Nyquist rate and Nyquist frequency. And they are
attributes of x(t) and of the sampling equipment respectively. The
condition described by these inequalities is called the Nyquist condi-
tion [48].

a.3 nyquist frequency

The Nyquist frequency is half the sampling frequency of a discrete
signal processing system [49, 50]. It is sometimes known as the fold-
ing frequency of a sampling system [51].

When the continuous function to be sampled contains no frequen-
cies equal or higher than the Nyquist frequency, all the aliases caused
by sampling occur above the Nyquist frequency. The term aliasing
usually refers to the case where some original frequency components
have aliases below Nyquist. That often causes distortion when a con-
tinuous function is subsequently reconstructed from samples.[52]

a.4 corner of process

In semiconductor manufacturing, a process corner is an example of
a Design-of-Experiments (DoE) technique that refers to a variation of
fabrication parameters used in applying an integrated circuit design
to a semiconductor wafer. Process corners represent the extremes of
these parameter variations within which a circuit that has been etched
onto the wafer must correctly function (Figure A.2):

• Slow corner. Everything goes wrong, that is all process varia-
tions deviate towards a device with reduced currents.

• Fast corner. Everything is better than planned, that is all
process variations deviate towards a device with increased cur-
rents.

142 appendix

PMOS Speed

NMOS Speed

Typical

Fast N Fast P

Slow N Slow P Fast N Slow P

Slow N Fast P
σ

Figure A.2: Process corners in PMOS/NMOS fabrication parameters

• Cross corners. One device type has increased, the other type
reduced currents.

A circuit running on devices fabricated at these process corners may
run slower or faster than specified and at lower or higher tempera-
tures and voltages, but if the circuit does not function at all at any of
these process extremes the design is considered to have inadequate
design margin [53].

In Very-Large-Scale-Integrated (VLSI) circuit microprocessor design
and semiconductor fabrication, a process corner represents a three or
six sigma variation from nominal doping concentrations (and other
parameters) in transistors on a silicon wafer. This variation can cause
significant changes in the duty cycle and slew rate of digital signals,
and it can sometimes result in catastrophic failure of the entire system.
Variation may occur for many reasons, such as minor changes in the
humidity or temperature changes in the clean-room when wafers are
transported, or due to the position of the die relative to the center of
the wafer [54].

A.5 bisection methodology in hspice 143

a.5 bisection methodology in hspice

Bisection is an optimization methodology that uses a binary search
method to find the value of an input variable (target value). This
variable is associated with a goal value of an output variable. The
type of the input and output variables can be voltage, current, delay
time, or gain, related by some transfer function. In general, it is
used a binary search to locate the goal value of the output variable,
within a search range of the input variable. Then iteratively halve
that range, to rapidly converge on the target value. At each iteration,
HSPICE compares the measured value of the output variable, with
the goal value. Both the pass/fail method and the bisection method
use bisection [55].

The bisection procedure involves two measurement and optimiza-
tion steps:

a. Detects whether the output transition occurred.

b. Automatically varies the input parameter, to find the value for
which the transition barely occurs.

Measurement

The MAX measurement function can be used to detect the success or
failure of an output transition. For a low-to-high output transition, a
MAX measurement produces zero on failure, or approximately the Vdd
supply voltage on success. This measurement, using a goal of Vdd
(minus a suitable small value to ensure a solution), is sufficient to
drive the optimization.

Optimization

The bisection method is straightforward, if you specify a single mea-
surement, with a goal, and known upper and lower boundary values,
for the input parameter. The engineer must specify acceptable upper
and lower boundary values.

Using Bisection

Before being able to use bisection, the following specifications must
be given:

• A pair of values, for the upper and lower boundaries of the input
variables. To find a solution, one of these values must result in
an output variable S |goal value| and the other must result in
< |goal value|.

• A goal value.

144 appendix

Figure A.3: Bisection Example for Three Iterations

• Error tolerance value. The bisection process stops when the dif-
ference between successive test values is minor or equal to the
error tolerance. If the other criteria are also met, see below.

• Related variables. A monotonic transfer function to relate vari-
ables has to be used. A steadily-progressing time (increase or
decrease) results in a single occurrence of the goal value at the
target input variable value.

HSPICE includes the error tolerance in a relation, used as a process-
termination criterion.

Figure A.3 shows an example of the binary search process, which
the bisection algorithm uses. This example is the pass/fail type, and
for example it is appropriate for a setup-time analysis that tests for
the presence of an output transition. In this case:

A.5 bisection methodology in hspice 145

1. A long setup time TS(= T2 − T1) results in a VOUT transition (a
pass).

2. A too-short setup time (where the latch has not stabilized the
input data, before the clock transition) results in a fail.

3. For example, it is possible to define a pass time value as any
setup time, TS, that produces a VOUT output equal to the mini-
mum High logic output level (2.7V), which is the goal value.

4. The target value is a setup time that just produces the VOUT
value of 2.7V. Finding the exact value is impractical, if not
impossible, so specify an error tolerance, to calculate a solution
arbitrarily close to the target value.

5. The bisection algorithm performs tests for each specified bound-
ary value, to determine the direction in which to pursue the tar-
get value, after the first bisection. In this example, the upper
boundary has a pass value, and the lower boundary has a fail
value.

6. To start the binary search, specify the lower and upper bound-
aries. The program tests the point midway between the lower
and upper boundaries.

a) If the initial value passes the test, the target value must be
less than the tested value (in this example). The bisection
algorithm moves the upper search limit to the value that it
just tested.

b) If the test fails, the target value must be greater than the
tested value. Bisection moves the lower limit to the value
that it just tested.

7. The algorithm tests a value midway between the new limits.

8. The search continues in this manner, moving one limit or the
other to the last midpoint, and testing the value midway be-
tween the new limits.

9. The process stops when the difference between the latest two
test values is less than or equal to the specified error tolerance.
To normalize this value, there is to multiply by the initial bound-
ary range.

Command Syntax

The following syntax is used for bisection:

.MODEL <OptModelName> OPT METHOD=BISECTION ... �

146 appendix

or

.MODEL <OptModelName> OPT METHOD=PASSFAIL ... �
OptModelName is the model to be used. The METHOD keyword indi-

cates which optimization method to use. The OPT keyword indicates
that optimization is to be performed.

For bisection, the method can be one of the following:

• BISECTION. When the difference between the two latest test in-
put values is within the error tolerance and the latest measured
value exceeds the goal, bisection has succeeded and then ends.
This process reports the optimized parameter that corresponded
to the test value that satisfies this error tolerance and this goal
(passes).

• PASSFAIL. When the difference between the two latest test input
values is within the error tolerance and one of the values ≥ goal
(passes) and the other fails, bisection has succeeded and then
ends. The process reports the input parameter value associated
with the “pass” measurement.

The parameters are passed in a normal optimization specification:

.PARAM <ParamName>=<OptParFun> (<Initial>, <Lower>, <Upper>) �
In the BISECTION method, the measure results for <Lower> and

<Upper> limits of <ParamName> must be on opposite sides of the goal
value in the .MEASURE statement. In the PASSFAIL method, the mea-
sure must pass for one limit and fail for the other limit. The process
ignores the value of the <Initial> field. The error tolerance is a pa-
rameter in the model being optimized. In both methods, bisectional
search is applied to only one parameter.

When the OPTLST option is set (.OPTION OPTLST=1), the process out-
puts the following information for the BISECTION method:

bisec-opt iter = <num_iterations> xlo = <low_val> xhi = <high_val

>

x = <result_low_val> xnew = <result_high_val>

err = <error_tolerance> �
The x is the old parameter value and xnew is the new parameter

value.
When .OPTION OPTLST=1, the process outputs the following infor-

mation for the PASSFAIL method:

bisec-opt iter = <num_iterations> xlo = <low_val> xhi = <high_val

>

A.6 tcadc file code 147

x = <result_low_val> xnew = <result_high_val>

measfail = 1 �
In this syntax, measfail = 0 for a test failure for the x value.

Performing Transient Analyses with Bisections

When performing transient analysis bisection with the .TRAN state-
ment, use the following syntax:

.TRAN <TranStep> <TranTime> SWEEP OPTIMIZE=<OptParFun>

+ RESULTS=<MeasureNames> MODEL=<OptModelName> �
When performing a transient analysis bisection with the .MEASURE

statement, use the following syntax:

.MEASURE TRAN <MeasureName> <MeasureClause> GOAL=<GoalValue> �
a.6 tcadc file code

It is presented the Perl code for the tcadc file, actually the main file
which contains all the preprocessing simulation commands, parame-
ters, stimulus, netlist, measurements and probe points that have to be
run.

Listing 1: tcadc

#!/usr/bin/perl

$inputstr = ’ s ’;
$inputm = 1;

$dotest = 0;

$noiseprocess = 0;

if($#ARGV == 0){

$inputstr = $ARGV[0];

}

elsif($#ARGV == 1) {

$inputstr = $ARGV[0];

$inputm = $ARGV[1];

}

elsif($#ARGV == 2) {

$inputstr = $ARGV[0];

$inputm = $ARGV[1];

}

elsif($#ARGV == 3) {

$inputstr = $ARGV[0];

$inputsts = $ARGV[1];

$inputm = $ARGV[2];

}

else {

148 appendix

goto USAGE;

}

START:

if ($inputstr eq ’C’) {

$unique_filename = " * ";
$unique_dir = $ARGV[1];

goto RM;

}

elsif ($inputstr eq ’ c ’) {

$prefix = " tcadc";
$sufix = " . dat";
$unique_filename = $ARGV[1];

$unique_dir = $ARGV[1];

goto CLEAN;

}

elsif ($inputstr eq ’ r ’) {

$prefix = " tcadc";
$sufix = " . dat";
$inputstr = $inputsts;

$unique_dir = $ARGV[3];

$unique_filename = $ARGV[3];

goto PROCESS;

}

elsif ($inputstr eq ’n ’) {

$prefix = " tcadc";
$sufix = " . dat";
$inputstr = $inputsts;

$unique_dir = $ARGV[3];

$unique_filename = $ARGV[3];

$noiseprocess = 1;

goto NOISE;

}

elsif ($inputstr eq ’u ’) {

$prefix = " tcadc";
$sufix = " . dat";
if(($inputsts ne ’o ’)&&($inputsts ne ’m’)){
goto USAGE;

}

$inputstr = $inputsts;

$inputsts = ’ s ’;
$unique_dir = $ARGV[3];

$unique_filename = $ARGV[3];

$noiseprocess = 2;

goto NOISE;

}

elsif ($inputstr eq ’ t ’) {

$prefix = " tcadc";
$sufix = " . dat";
$unique_dir = " test ";
$unique_filename = " test ";
$dotest=1;;

A.6 tcadc file code 149

goto MKDIR;

}

elsif ($inputstr eq ’x ’) {

$prefix = " tcadc";
$sufix = " . dat";
$inputstr = $inputsts;

$unique_dir = $ARGV[3];

$unique_filename = $ARGV[3];

goto RERUN;

}

elsif ((($inputstr eq ’m’)||($inputstr eq ’o ’)||(
$inputstr eq ’ s ’))&&($#ARGV == 2)){

$prefix = " tcadc";
$sufix = " . dat";
$unique_filename = $ARGV[2];

$unique_dir = $ARGV[2];

goto MKDIR;

}

elsif ((($inputstr eq ’m’)||($inputstr eq ’o ’)||(
$inputstr eq ’ s ’))&&($#ARGV == 1)){

$prefix = " tcadc";
$sufix = " . dat";
$unique_filename = $prefix . "_" .

get_timestamp();

$unique_dir = $unique_filename;

goto MKDIR;

}

NOISE:

$mkvth = " . ./ bin/mkvthsp ";
$vthfile = $unique_dir . "/" . $prefix . $sufix . $inputstr .

$inputm . "−vth";
$spfile = $unique_dir . "/" . $prefix . $sufix . $inputstr .

$inputm . "−vth−sp";
$command = join " ", $mkvth, " ", $vthfile, " > ", $spfile;

print "\n";
print " . . . processing command: $command\n";
print "\n";
system($command);

$command = join " ", " cat ", "pre−", $inputsts, "header . sp > ",
$inputsts, "header . sp";

@args = ($command);

print "\n";
print " . . . generating header f i l e : @args\n";
print "\n";
system(@args);

if(($inputsts eq ’m’)){
$command = join " ", " printf \" monte=%d\\n\"", " ",

$inputm, " >> ", $inputsts, "header . sp";
@args = ($command);

print "\n";
print " . . . generating header f i l e : @args\n";

150 appendix

print "\n";
system(@args);

}

$command = join " ", " cat ", $spfile ," >> ", $inputsts, "header .
sp";

@args = ($command);

print "\n";
print " . . . generating header f i l e : @args\n";
print "\n";
system(@args);

$command = join " ", " cat ", "pos−", $inputsts, "header . sp >> ",
$inputsts, "header . sp";

@args = ($command);

print "\n";
print " . . . generating header f i l e : @args\n";
print "\n";
system(@args);

$inputstr = $inputsts;

$unique_filename = $prefix . "_" . get_timestamp();

$unique_dir = $unique_filename;

goto MKDIR;

MKDIR:

$command = join " ", "mkdir ", $unique_dir;

@args = ($command);

print "\n";
print " . . . making simulation dir : @args\n";
print "\n";
system(@args);

MKMT:

if($dotest){

for($iitem=0;

$iitem<=62;

$iitem++){

$command = join " ", " printf \"# \\n\"", " > ",
$unique_dir, "/", $unique_filename, " .mt",
$iitem;

print "\n";
print " . . . making gnuplot command: $command\n";
print "\n";
system($command);

$command = join " ", " printf \"# Test File
Generated : %s\\n\"", " ", get_timestamp(), "
>> ", $unique_dir, "/", $unique_filename, " .

mt", $iitem;

print "\n";
print " . . . making gnuplot command: $command\n";
print "\n";
system($command);

$command = join " ", " printf \"index vid tdeco1

tdeco2 vdeco1 vdeco2 avgpt avgim0 avgim1

A.6 tcadc file code 151

avgim2 avgim1−avgim2 avgim1+avgim2 avgiam1

avgiam2 avgiam3 avgiam4 rmspt rmsim0 rmsim1

rmsim2 rmsim1−rmsim2 rmsim1+rmsim2 rmsiam1

rmsiam2 rmsiam3 rmsiam4 intpt intim0 intim1

intim2 intim1−intim2 intim1+intim2 intiam1

intiam2 intiam3 intiam4 vid_ dout1 dout2
dout1−dout2 vina_ vinb_ vx0 vx1 vx2 temper
alter#\\n\"", " >> ", $unique_dir, "/",
$unique_filename, " .mt", $iitem;

print "\n";
print " . . . making gnuplot command: $command\n";
print "\n";
system($command);

$command = join " ", " printf \"1 %g 03 04 05 06 07

08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

38 39 40 41 42 43 44 45 46 %g\\n\"", " ", -

$iitem + 31, " ", $iitem + 1, " >> ",
$unique_dir, "/", $unique_filename, " .mt",
$iitem;

print "\n";
print " . . . making gnuplot command: $command\n";
print "\n";
system($command);

}

print "usage : tcadc ’ r m 1 test ’\n";
print "and modify spec f i l e ’\n";
goto EXIT;

}

HEADER:

if(($noiseprocess == 0)){

$command = join " ", " cat ", "pre−", $inputstr, "header . sp
> ", $inputstr, "header . sp";

@args = ($command);

print "\n";
print " . . . generating header f i l e : @args\n";
print "\n";
system(@args);

if(($inputstr eq ’m’)){
$command = join " ", " printf \" monte=%d\\n\"", "

", $inputm, " >> ", $inputstr, "header . sp";
@args = ($command);

print "\n";
print " . . . generating header f i l e : @args\n";
print "\n";
system(@args);

}

$command = join " ", " cat ", "vid−", $inputstr, "header . sp >>
", $inputstr, "header . sp";
@args = ($command);

print "\n";

152 appendix

print " . . . generating header f i l e : @args\n";
print "\n";
system(@args);

$command = join " ", " cat ", "pos−", $inputstr, "header . sp
>> ", $inputstr, "header . sp";

@args = ($command);

print "\n";
print " . . . generating header f i l e : @args\n";
print "\n";
system(@args);

}

SIMULATION:

$command = join " ", " cat ", $prefix, " . sp ", $inputstr, "header .
sp > ", $unique_dir, "/", $unique_filename, " .hsp";

@args = ($command);

print "\n";
print " . . . generating simulation f i l e : @args\n";
print "\n";
system(@args);

RERUN:

$command = join " ", "hspice ", $unique_dir, "/", $unique_filename

, " .hsp > ", $unique_dir, "/", "simulation . log";
@args = ($command);

print "\n";
print " . . . running hspice simulation : @args\n";
print "\n";
system(@args);

$command = join " ", "mv ", $unique_filename, " . * ", $unique_dir,

"/. ";
@args = ($command);

print "\n";
print " . . . moving hspice output f i l es to simulation dir : @args\n";
print "\n";
system(@args);

PROCESS:

$zero = join " ", $unique_dir, "/", $unique_filename;

$first = join " ", $unique_dir, "/", $unique_filename, " .mt";
$second = join " ", $unique_dir, "/", $prefix, $sufix, $inputstr;

$extract = " . ./ bin/extractor ";
$catcomm = " cat ";
if($inputstr eq ’m’){

@letters = ("+31", "+30", "+29", "+28", "+27", "+26", "
+25", "+24", "+23", "+22", "+21", "+20", "+19", "+18"
, "+17", "+16", "+15", "+14", "+13", "+12", "+11", "
+10", "+9", "+8", "+7", "+6", "+5", "+4", "+3", "+2",

"+1", "−0", "−1", "−2", "−3", "−4", "−5", "−6", "−7"
, "−8", "−9", "−10", "−11", "−12", "−13", "−14", "−15

", "−16", "−17", "−18", "−19", "−20", "−21", "−22", "
−23", "−24", "−25", "−26", "−27", "−28", "−29", "−30"
, "−31");

A.6 tcadc file code 153

}

else {

@letters = ("−0", "−1", "−2", "−3", "−4", "−5", "
−6", "−7", "−8", "−9", "−10", "−11", "−12", "
−13", "−14", "−15", "−16", "−17", "−18", "−19

", "−20", "−21", "−22", "−23", "−24", "−25",
"−26", "−27", "−28", "−29", "−30", "−31");

}

if(($inputstr eq ’ s ’)){
$i = 0; $iitem=1;

foreach $stritem (@letters){

$command = join " ", $extract, $first, $i, " > ",
$second, $iitem, $stritem;

print "\n";
print " . . . processing command: $command\n";
print "\n";
system($command);

$i++;

}

}

if(($inputstr eq ’o ’)||($inputstr eq ’m’)){
$i = 0;

foreach $stritem (@letters){

for ($iitem = 1;

$iitem <= $inputm;

$iitem++){

$command = join " ", $extract, $first, $i,

" line ", $iitem, " > ", $second,

$iitem, $stritem;

print "\n";
print " . . . processing command: $command\n

";
print "\n";
system($command);

}

$i++;

}

}

if(($inputstr eq ’o ’)||($inputstr eq ’m’)){
for ($iitem = 1;

$iitem <= $inputm;

$iitem++){

foreach $stritem (@letters){

$command = join " ", $catcomm, $second,

$iitem, $stritem, " >> ", $second,

$iitem;

print "\n";
print " . . . processing command: $command\n

";
print "\n";
system($command);

}

154 appendix

if($inputstr eq ’o ’){
$command = join " ", $catcomm, $second,

$iitem, "−0 ", $second, $iitem, "−31

> ", $second, $iitem, "−0", "−31";
print "\n";
print " . . . processing command: $command\n

";
print "\n";
system($command);

}

else {

$command = join " ", $catcomm,

$second, $iitem, "+31 ",
$second, $iitem, "−31 > ",
$second, $iitem, "+31", "−31"
;

print "\n";
print " . . . processing command:

$command\n";
print "\n";
system($command);

}

}

}

if(($inputstr eq ’o ’)||($inputstr eq ’m’)) {

$j = 0;

foreach $stritem (@letters){

$j++;

if($j==1){

$stritem1 = $stritem;

}

elsif($j==2){

$stritem2 = $stritem;

for ($iitem = 1; $iitem

<= $inputm; $iitem++)

{

$command = join "
", $extract,

$second,

$iitem,

$stritem1, "
", $second,

$iitem,

$stritem2, "
> ", $second,

$iitem,

$stritem1,

$stritem2;

print "\n";
print " . . .

processing

A.6 tcadc file code 155

command:
$command\n";

print "\n";
system($command);

}

$stritem1 = $stritem2;

$j--;

}

}

}

goto CPSPEC;

BISECOPT: #Jump this part of the code. This is to generate a

check file for bisection opt.

$bisecopt = " . ./ bin/bisecopt ";
$simlogfile = $unique_dir . "/simulation . log";
$bisecoptfile = $unique_dir . "/" . $prefix . $sufix . $inputstr

. $inputm . "bisec−opt";
if($inputstr eq ’o ’){

$command = join " ", $bisectopt, $simlogfile, " > ",
$bisectoptfile;

@args = ($command);

print "\n";
print " . . . obtaining bisec−opt f i l e from output simulation

log f i l e : @args\n";
print "\n";
system(@args);

}

CPSPEC:

$command = join " ", "cp ", $prefix, $sufix, $inputstr, "−spec ",
$unique_dir, "/. ";

@args = ($command);

print "\n";
print " . . . copying spec f i l e to simulation dir : @args\n";
print "\n";
system(@args);

GNU:

$command = join " ", " printf \"gnuplot −e \\\"argv0=’%s ’ ;
argv1=%g;
argv2=’%s ’ ;
argv3=−1\\\" %s . gpl\\n\"", " ", $inputstr, " ", $inputm, " ",

$unique_dir, " ", $prefix, " > ", $unique_filename, " .gnu";
print "\n";
print " . . . making gnuplot command: $command\n";
print "\n";
system($command);

if(($inputstr eq ’o ’)||($inputstr eq ’m’)) {

$command = join " ", " printf \"gnuplot −e \\\"argv0=’%s ’ ;
argv1=0;
argv2=’%s ’ ;

156 appendix

argv3=−1\\\" %s . gpl\\n\"", " ", $inputstr, " ",
$unique_dir, " ", $prefix, " >> ", $unique_filename,

" .gnu";
print "\n";
print " . . . making gnuplot command: $command\n";
print "\n";
system($command);

}

$command = join " ", "chmod +x ", $unique_filename, " .gnu",;
print "\n";
print " . . . modifying gnuplot command: $command\n";
print "\n";
system($command);

goto EXIT;

RM:

$command = join " ", "rm ", $unique_dir, "/", $unique_filename, " .
hsp";

print "\n";
print " . . . processing command: $command\n";
print "\n";
system($command);

$command = join " ", "rm ", $unique_dir, "/", $unique_filename, " .
mt* ";

print "\n";
print " . . . processing command: $command\n";
print "\n";
system($command);

$command = join " ", "rm ", $unique_dir, "/", $unique_filename, " .
tr * ";

print "\n";
print " . . . processing command: $command\n";
print "\n";
system($command);

$command = join " ", "rm ", $unique_dir, "/", $unique_filename, " .
st * ";

print "\n";
print " . . . processing command: $command\n";
print "\n";
system($command);

$command = join " ", "rm ", $unique_dir, "/", $unique_filename, " .
pa* ";

print "\n";
print " . . . processing command: $command\n";
print "\n";
system($command);

$command = join " ", "rm ", $unique_dir, "/", $unique_filename, " .
ic * ";

print "\n";
print " . . . processing command: $command\n";
print "\n";
system($command);

A.6 tcadc file code 157

CLEAN:

$command = join " ", "rm ", $unique_dir, "/", $prefix, $sufix, " * "
;

print "\n";
print " . . . processing command: $command\n";
print "\n";
system($command);

$command = join " ", "rm *tmp";
print "\n";
print " . . . processing command: $command\n";
print "\n";
system($command);

$command = join " ", "rm *.*~ ";
print "\n";
print " . . . processing command: $command\n";
print "\n";
system($command);

$command = join " ", "rm *~";
print "\n";
print " . . . processing command: $command\n";
print "\n";
system($command);

EXIT: print "\n";
print " . . . That ’ s a l l folks\n";
print "\n";
exit;

USAGE:

print "usage : tcadc ’ t ’|{ ’ s ’| ’o’| ’m’ index { tag } , index
=1 ,2 ,3 . . . }| ’x ’| ’ r ’| ’u’| ’n ’ ’ s ’| ’o’| ’m’ { . . . } tag\n";

print "C: do a hard clean ;
c : do a soft clean ;
\n";
print " t : test ;
s : scan mode;
o : bisection opt . ;
m: montecarlo + bisection opt ;
\n";
print "x : rerun simulation (do a soft clean f i r s t) ;
r : pos−process simulation (do a soft clean f i r s t) ;
\n";
print "n: do noise analysis\n";
print "u: from ’o’| ’m’ to scan mode with noise analysis ;
\n";
print " tag : directory tag ;
\n";
exit;

sub get_timestamp {

@abbr = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Dec);

158 appendix

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =

localtime(time);

$year += 1900;

return $mday . ’_ ’ . $abbr[$mon] . ’_ ’ . $year . ’_ ’ .

$hour. ’_ ’ . $min. ’_ ’ . $sec;

} �
a.7 optimization models files code

Here it is reported the code written in order to run different types of
optimizing simulations for performance evaluation of TC-Comparator
power dissipation, current and voltage best fitting values.

a.7.1 Simulation script for sheader.sp file

The sheader.sp file contains the directives for simulations based on
the Scanning optimization mode.

Listing 2: sheader.sp - Scanning optimization mode

**** Header for NO MonteCarlo Simulation

**** Mismatch for MonteCarlo Simulation

.param sigma=0

.param process=0 mismatch=0

.param vid=0 vid_start=0 vid_stop=0 vid_incr=0

.param vid_noise=10.0uv vid_noise_incr=1.0uv vid_fs=-200mv

.param vid_start_31= ’vid_noise+−8.6994776e−09’ vid_stop_31= ’−

vid_noise+−8.6994776e−09’
.param vid_start_30= ’vid_noise+−4.8675948e−03’ vid_stop_30= ’−

vid_noise+−4.8675948e−03’
.param vid_start_29= ’vid_noise+−9.7177363e−03’ vid_stop_29= ’−

vid_noise+−9.7177363e−03’
.param vid_start_28= ’vid_noise+−1.4564207e−02’ vid_stop_28= ’−

vid_noise+−1.4564207e−02’
.param vid_start_27= ’vid_noise+−1.9407156e−02’ vid_stop_27= ’−

vid_noise+−1.9407156e−02’
.param vid_start_26= ’vid_noise+−2.4253818e−02’ vid_stop_26= ’−

vid_noise+−2.4253818e−02’
.param vid_start_25= ’vid_noise+−2.9080763e−02’ vid_stop_25= ’−

vid_noise+−2.9080763e−02’
.param vid_start_24= ’vid_noise+−3.3941531e−02’ vid_stop_24= ’−

vid_noise+−3.3941531e−02’
.param vid_start_23= ’vid_noise+−3.8771286e−02’ vid_stop_23= ’−

vid_noise+−3.8771286e−02’

A.7 optimization models files code 159

.param vid_start_22= ’vid_noise+−4.3659324e−02’ vid_stop_22= ’−
vid_noise+−4.3659324e−02’

.param vid_start_21= ’vid_noise+−4.8545729e−02’ vid_stop_21= ’−
vid_noise+−4.8545729e−02’

.param vid_start_20= ’vid_noise+−5.3428821e−02’ vid_stop_20= ’−
vid_noise+−5.3428821e−02’

.param vid_start_19= ’vid_noise+−5.8357190e−02’ vid_stop_19= ’−
vid_noise+−5.8357190e−02’

.param vid_start_18= ’vid_noise+−6.3295966e−02’ vid_stop_18= ’−
vid_noise+−6.3295966e−02’

.param vid_start_17= ’vid_noise+−6.8252648e−02’ vid_stop_17= ’−
vid_noise+−6.8252648e−02’

.param vid_start_16= ’vid_noise+−7.3236715e−02’ vid_stop_16= ’−
vid_noise+−7.3236715e−02’

.param vid_start_15= ’vid_noise+−7.8241682e−02’ vid_stop_15= ’−
vid_noise+−7.8241682e−02’

.param vid_start_14= ’vid_noise+−8.3272059e−02’ vid_stop_14= ’−
vid_noise+−8.3272059e−02’

.param vid_start_13= ’vid_noise+−8.8300299e−02’ vid_stop_13= ’−
vid_noise+−8.8300299e−02’

.param vid_start_12= ’vid_noise+−9.3413144e−02’ vid_stop_12= ’−
vid_noise+−9.3413144e−02’

.param vid_start_11= ’vid_noise+−9.8463285e−02’ vid_stop_11= ’−
vid_noise+−9.8463285e−02’

.param vid_start_10= ’vid_noise+−1.0359673e−01’ vid_stop_10= ’−
vid_noise+−1.0359673e−01’

.param vid_start_9= ’vid_noise+−1.0874526e−01’ vid_stop_9= ’−
vid_noise+−1.0874526e−01’

.param vid_start_8= ’vid_noise+−1.1384806e−01’ vid_stop_8= ’−
vid_noise+−1.1384806e−01’

.param vid_start_7= ’vid_noise+−1.1900904e−01’ vid_stop_7= ’−
vid_noise+−1.1900904e−01’

.param vid_start_6= ’vid_noise+−1.2420357e−01’ vid_stop_6= ’−
vid_noise+−1.2420357e−01’

.param vid_start_5= ’vid_noise+−1.2932084e−01’ vid_stop_5= ’−
vid_noise+−1.2932084e−01’

.param vid_start_4= ’vid_noise+−1.3459414e−01’ vid_stop_4= ’−
vid_noise+−1.3459414e−01’

.param vid_start_3= ’vid_noise+−1.3976896e−01’ vid_stop_3= ’−
vid_noise+−1.3976896e−01’

.param vid_start_2= ’vid_noise+−1.4495092e−01’ vid_stop_2= ’−
vid_noise+−1.4495092e−01’

.param vid_start_1= ’vid_noise+−1.5013130e−01’ vid_stop_1= ’−
vid_noise+−1.5013130e−01’

.param vid_start_0= ’vid_noise+−1.5523863e−01’ vid_stop_0= ’−
vid_noise+−1.5523863e−01’

.title ’00000 00000 − Scan for Threshold Voltage Determination ’

.param vtca4=0 vtca3=0 vtca2=0 vtca1=0 vtca0=0

.param vtcb4=0 vtcb3=0 vtcb2=0 vtcb1=0 vtcb0=0

160 appendix

.param vid_start=vid_start_31 vid_stop=vid_stop_31 vid_incr=

vid_noise_incr

.tran 0.1p ’2*T+2n’ sweep vid vid_start vid_stop vid_incr

.alter .title ’00001 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=0 vtca1=0 vtca0=1

.param vid_start=vid_start_30 vid_stop=vid_stop_30 vid_incr=

vid_noise_incr

.alter .title ’000010 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=0 vtca1=1 vtca0=0

.param vid_start=vid_start_29 vid_stop=vid_stop_29 vid_incr=

vid_noise_incr

.alter .title ’000011 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=0 vtca1=1 vtca0=1

.param vid_start=vid_start_28 vid_stop=vid_stop_28 vid_incr=

vid_noise_incr

.alter .title ’000100 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=1 vtca1=0 vtca0=0

.param vid_start=vid_start_27 vid_stop=vid_stop_27 vid_incr=

vid_noise_incr

.alter .title ’000101 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=1 vtca1=0 vtca0=1

.param vid_start=vid_start_26 vid_stop=vid_stop_26 vid_incr=

vid_noise_incr

.alter .title ’000110 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=1 vtca1=1 vtca0=0

.param vid_start=vid_start_25 vid_stop=vid_stop_25 vid_incr=

vid_noise_incr

.alter .title ’000111 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=1 vtca1=1 vtca0=1

A.7 optimization models files code 161

.param vid_start=vid_start_24 vid_stop=vid_stop_24 vid_incr=

vid_noise_incr

.alter .title ’001000 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=0 vtca1=0 vtca0=0

.param vid_start=vid_start_23 vid_stop=vid_stop_23 vid_incr=

vid_noise_incr

.alter .title ’001001 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=0 vtca1=0 vtca0=1

.param vid_start=vid_start_22 vid_stop=vid_stop_22 vid_incr=

vid_noise_incr

.alter .title ’001010 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=0 vtca1=1 vtca0=0

.param vid_start=vid_start_21 vid_stop=vid_stop_21 vid_incr=

vid_noise_incr

.alter .title ’001011 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=0 vtca1=1 vtca0=1

.param vid_start=vid_start_20 vid_stop=vid_stop_20 vid_incr=

vid_noise_incr

.alter .title ’001100 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=1 vtca1=0 vtca0=0

.param vid_start=vid_start_19 vid_stop=vid_stop_19 vid_incr=

vid_noise_incr

.alter .title ’001101 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=1 vtca1=0 vtca0=1

.param vid_start=vid_start_18 vid_stop=vid_stop_18 vid_incr=

vid_noise_incr

.alter .title ’001110 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=1 vtca1=1 vtca0=0

.param vid_start=vid_start_17 vid_stop=vid_stop_17 vid_incr=

vid_noise_incr

.alter .title ’001111 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=1 vtca1=1 vtca0=1

.param vid_start=vid_start_16 vid_stop=vid_stop_16 vid_incr=

vid_noise_incr

162 appendix

.alter .title ’10000 00000 − Scan for Threshold Voltage
Determination ’

.param vtca4=1 vtca3=0 vtca2=0 vtca1=0 vtca0=0

.param vid_start=vid_start_15 vid_stop=vid_stop_15 vid_incr=

vid_noise_incr

.alter .title ’10001 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=0 vtca1=0 vtca0=1

.param vid_start=vid_start_14 vid_stop=vid_stop_14 vid_incr=

vid_noise_incr

.alter .title ’10010 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=0 vtca1=1 vtca0=0

.param vid_start=vid_start_13 vid_stop=vid_stop_13 vid_incr=

vid_noise_incr

.alter .title ’10011 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=0 vtca1=1 vtca0=1

.param vid_start=vid_start_12 vid_stop=vid_stop_12 vid_incr=

vid_noise_incr

.alter .title ’10100 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=1 vtca1=0 vtca0=0

.param vid_start=vid_start_11 vid_stop=vid_stop_11 vid_incr=

vid_noise_incr

.alter .title ’10101 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=1 vtca1=0 vtca0=1

.param vid_start=vid_start_10 vid_stop=vid_stop_10 vid_incr=

vid_noise_incr

.alter .title ’10110 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=1 vtca1=1 vtca0=0

.param vid_start=vid_start_9 vid_stop=vid_stop_9 vid_incr=

vid_noise_incr

.alter .title ’10111 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=1 vtca1=1 vtca0=1

.param vid_start=vid_start_8 vid_stop=vid_stop_8 vid_incr=

vid_noise_incr

.alter .title ’11000 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=0 vtca1=0 vtca0=0

A.7 optimization models files code 163

.param vid_start=vid_start_7 vid_stop=vid_stop_7 vid_incr=

vid_noise_incr

.alter .title ’11001 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=0 vtca1=0 vtca0=1

.param vid_start=vid_start_6 vid_stop=vid_stop_6 vid_incr=

vid_noise_incr

.alter .title ’11010 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=0 vtca1=1 vtca0=0

.param vid_start=vid_start_5 vid_stop=vid_stop_5 vid_incr=

vid_noise_incr

.alter .title ’11011 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=0 vtca1=1 vtca0=1

.param vid_start=vid_start_4 vid_stop=vid_stop_4 vid_incr=

vid_noise_incr

.alter .title ’11100 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=1 vtca1=0 vtca0=0

.param vid_start=vid_start_3 vid_stop=vid_stop_3 vid_incr=

vid_noise_incr

.alter .title ’11101 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=1 vtca1=0 vtca0=1

.param vid_start=vid_start_2 vid_stop=vid_stop_2 vid_incr=

vid_noise_incr

.alter .title ’11110 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=1 vtca1=1 vtca0=0

.param vid_start=vid_start_1 vid_stop=vid_stop_1 vid_incr=

vid_noise_incr

.alter .title ’11111 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=1 vtca1=1 vtca0=1

.param vid_start=vid_start_0 vid_stop=vid_stop_0 vid_incr=

vid_noise_incr

.end �

164 appendix

a.7.2 Simulation script for oheader.sp file

The oheader.sp file contains the directives for simulations made by
using the Bisection optimization mode.

Listing 3: oheader.sp - Bisection optimization mode

**** Header for NO MonteCarlo Simulation

**** Mismatch for MonteCarlo Simulation

.param sigma=0 .param process=0 mismatch=0

.param vid=0 vid_start=0 vid_stop=0 vid_incr=0

.param vid_noise=1.0mv vid_noise_incr=1.0mv

.param vid_start_31= ’vid_noise+−3.05e−06’ vid_stop_31= ’−vid_noise

+−3.05e−06’
.param vid_start_30= ’vid_noise+−4.87e−03’ vid_stop_30= ’−vid_noise

+−4.87e−03’
.param vid_start_29= ’vid_noise+−9.73e−03’ vid_stop_29= ’−vid_noise

+−9.73e−03’
.param vid_start_28= ’vid_noise+−1.46e−02’ vid_stop_28= ’−vid_noise

+−1.46e−02’
.param vid_start_27= ’vid_noise+−1.94e−02’ vid_stop_27= ’−vid_noise

+−1.94e−02’
.param vid_start_26= ’vid_noise+−2.42e−02’ vid_stop_26= ’−vid_noise

+−2.42e−02’
.param vid_start_25= ’vid_noise+−2.91e−02’ vid_stop_25= ’−vid_noise

+−2.91e−02’
.param vid_start_24= ’vid_noise+−3.39e−02’ vid_stop_24= ’−vid_noise

+−3.39e−02’
.param vid_start_23= ’vid_noise+−3.88e−02’ vid_stop_23= ’−vid_noise

+−3.88e−02’
.param vid_start_22= ’vid_noise+−4.37e−02’ vid_stop_22= ’−vid_noise

+−4.37e−02’
.param vid_start_21= ’vid_noise+−4.85e−02’ vid_stop_21= ’−vid_noise

+−4.85e−02’
.param vid_start_20= ’vid_noise+−5.34e−02’ vid_stop_20= ’−vid_noise

+−5.34e−02’
.param vid_start_19= ’vid_noise+−5.84e−02’ vid_stop_19= ’−vid_noise

+−5.84e−02’
.param vid_start_18= ’vid_noise+−6.33e−02’ vid_stop_18= ’−vid_noise

+−6.33e−02’
.param vid_start_17= ’vid_noise+−6.83e−02’ vid_stop_17= ’−vid_noise

+−6.83e−02’
.param vid_start_16= ’vid_noise+−7.32e−02’ vid_stop_16= ’−vid_noise

+−7.32e−02’
.param vid_start_15= ’vid_noise+−7.82e−02’ vid_stop_15= ’−vid_noise

+−7.82e−02’

A.7 optimization models files code 165

.param vid_start_14= ’vid_noise+−8.33e−02’ vid_stop_14= ’−vid_noise
+−8.33e−02’

.param vid_start_13= ’vid_noise+−8.83e−02’ vid_stop_13= ’−vid_noise
+−8.83e−02’

.param vid_start_12= ’vid_noise+−9.34e−02’ vid_stop_12= ’−vid_noise
+−9.34e−02’

.param vid_start_11= ’vid_noise+−9.85e−02’ vid_stop_11= ’−vid_noise
+−9.85e−02’

.param vid_start_10= ’vid_noise+−1.04e−01’ vid_stop_10= ’−vid_noise
+−1.04e−01’

.param vid_start_9= ’vid_noise+−1.09e−01’ vid_stop_9= ’−vid_noise
+−1.09e−01’

.param vid_start_8= ’vid_noise+−1.14e−01’ vid_stop_8= ’−vid_noise
+−1.14e−01’

.param vid_start_7= ’vid_noise+−1.19e−01’ vid_stop_7= ’−vid_noise
+−1.19e−01’

.param vid_start_6= ’vid_noise+−1.24e−01’ vid_stop_6= ’−vid_noise
+−1.24e−01’

.param vid_start_5= ’vid_noise+−1.29e−01’ vid_stop_5= ’−vid_noise
+−1.29e−01’

.param vid_start_4= ’vid_noise+−1.34e−01’ vid_stop_4= ’−vid_noise
+−1.34e−01’

.param vid_start_3= ’vid_noise+−1.40e−01’ vid_stop_3= ’−vid_noise
+−1.40e−01’

.param vid_start_2= ’vid_noise+−1.45e−01’ vid_stop_2= ’−vid_noise
+−1.45e−01’

.param vid_start_1= ’vid_noise+−1.50e−01’ vid_stop_1= ’−vid_noise
+−1.50e−01’

.param vid_start_0= ’vid_noise+−1.55e−01’ vid_stop_0= ’−vid_noise
+−1.55e−01’

.title ’00000 00000 − Scan for Threshold Voltage Determination ’

.param vtca4=0 vtca3=0 vtca2=0 vtca1=0 vtca0=0

.param vtcb4=0 vtcb3=0 vtcb2=0 vtcb1=0 vtcb0=0

.param vid_start=vid_start_31 vid_stop=vid_stop_31 vid_incr=

vid_noise_incr

.param vid=optadc(vid_start,vid_start,vid_stop)

.tran 0.1p ’2*T+2n’ sweep optimize=optadc results=dout1-dout2

model=opt3

.alter .title ’00001 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=0 vtca1=0 vtca0=1

.param vid_start=vid_start_30 vid_stop=vid_stop_30 vid_incr=

vid_noise_incr

166 appendix

.alter .title ’000010 00000 − Scan for Threshold Voltage
Determination ’

.param vtca4=0 vtca3=0 vtca2=0 vtca1=1 vtca0=0

.param vid_start=vid_start_29 vid_stop=vid_stop_29 vid_incr=

vid_noise_incr

.alter .title ’000011 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=0 vtca1=1 vtca0=1

.param vid_start=vid_start_28 vid_stop=vid_stop_28 vid_incr=

vid_noise_incr

.alter .title ’000100 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=1 vtca1=0 vtca0=0

.param vid_start=vid_start_27 vid_stop=vid_stop_27 vid_incr=

vid_noise_incr

.alter .title ’000101 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=1 vtca1=0 vtca0=1

.param vid_start=vid_start_26 vid_stop=vid_stop_26 vid_incr=

vid_noise_incr

.alter .title ’000110 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=1 vtca1=1 vtca0=0

.param vid_start=vid_start_25 vid_stop=vid_stop_25 vid_incr=

vid_noise_incr

.alter .title ’000111 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=1 vtca1=1 vtca0=1

.param vid_start=vid_start_24 vid_stop=vid_stop_24 vid_incr=

vid_noise_incr

.alter .title ’001000 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=0 vtca1=0 vtca0=0

.param vid_start=vid_start_23 vid_stop=vid_stop_23 vid_incr=

vid_noise_incr

.alter .title ’001001 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=0 vtca1=0 vtca0=1

A.7 optimization models files code 167

.param vid_start=vid_start_22 vid_stop=vid_stop_22 vid_incr=

vid_noise_incr

.alter .title ’001010 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=0 vtca1=1 vtca0=0

.param vid_start=vid_start_21 vid_stop=vid_stop_21 vid_incr=

vid_noise_incr

.alter .title ’001011 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=0 vtca1=1 vtca0=1

.param vid_start=vid_start_20 vid_stop=vid_stop_20 vid_incr=

vid_noise_incr

.alter .title ’001100 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=1 vtca1=0 vtca0=0

.param vid_start=vid_start_19 vid_stop=vid_stop_19 vid_incr=

vid_noise_incr

.alter .title ’001101 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=1 vtca1=0 vtca0=1

.param vid_start=vid_start_18 vid_stop=vid_stop_18 vid_incr=

vid_noise_incr

.alter .title ’001110 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=1 vtca1=1 vtca0=0

.param vid_start=vid_start_17 vid_stop=vid_stop_17 vid_incr=

vid_noise_incr

.alter .title ’001111 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=1 vtca1=1 vtca0=1

.param vid_start=vid_start_16 vid_stop=vid_stop_16 vid_incr=

vid_noise_incr

.alter .title ’10000 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=0 vtca1=0 vtca0=0

.param vid_start=vid_start_15 vid_stop=vid_stop_15 vid_incr=

vid_noise_incr

.alter .title ’10001 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=0 vtca1=0 vtca0=1

.param vid_start=vid_start_14 vid_stop=vid_stop_14 vid_incr=

vid_noise_incr

168 appendix

.alter .title ’10010 00000 − Scan for Threshold Voltage
Determination ’

.param vtca4=1 vtca3=0 vtca2=0 vtca1=1 vtca0=0

.param vid_start=vid_start_13 vid_stop=vid_stop_13 vid_incr=

vid_noise_incr

.alter .title ’10011 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=0 vtca1=1 vtca0=1

.param vid_start=vid_start_12 vid_stop=vid_stop_12 vid_incr=

vid_noise_incr

.alter .title ’10100 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=1 vtca1=0 vtca0=0

.param vid_start=vid_start_11 vid_stop=vid_stop_11 vid_incr=

vid_noise_incr

.alter .title ’10101 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=1 vtca1=0 vtca0=1

.param vid_start=vid_start_10 vid_stop=vid_stop_10 vid_incr=

vid_noise_incr

.alter .title ’10110 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=1 vtca1=1 vtca0=0

.param vid_start=vid_start_9 vid_stop=vid_stop_9 vid_incr=

vid_noise_incr

.alter .title ’10111 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=1 vtca1=1 vtca0=1

.param vid_start=vid_start_8 vid_stop=vid_stop_8 vid_incr=

vid_noise_incr

.alter .title ’11000 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=0 vtca1=0 vtca0=0

.param vid_start=vid_start_7 vid_stop=vid_stop_7 vid_incr=

vid_noise_incr

.alter .title ’11001 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=0 vtca1=0 vtca0=1

.param vid_start=vid_start_6 vid_stop=vid_stop_6 vid_incr=

vid_noise_incr

.alter .title ’11010 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=0 vtca1=1 vtca0=0

A.7 optimization models files code 169

.param vid_start=vid_start_5 vid_stop=vid_stop_5 vid_incr=

vid_noise_incr

.alter .title ’11011 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=0 vtca1=1 vtca0=1

.param vid_start=vid_start_4 vid_stop=vid_stop_4 vid_incr=

vid_noise_incr

.alter .title ’11100 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=1 vtca1=0 vtca0=0

.param vid_start=vid_start_3 vid_stop=vid_stop_3 vid_incr=

vid_noise_incr

.alter .title ’11101 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=1 vtca1=0 vtca0=1

.param vid_start=vid_start_2 vid_stop=vid_stop_2 vid_incr=

vid_noise_incr

.alter .title ’11110 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=1 vtca1=1 vtca0=0

.param vid_start=vid_start_1 vid_stop=vid_stop_1 vid_incr=

vid_noise_incr

.alter .title ’11111 00000 − Scan for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=1 vtca1=1 vtca0=1

.param vid_start=vid_start_0 vid_stop=vid_stop_0 vid_incr=

vid_noise_incr

.end �
a.7.3 Simulation script for mheader file

The mheader.sp file contains the directives for mismatch analysis led
through Monte Carlo simulation technique.

Listing 4: mheader.sp - Monte Carlo optimization mode

**** Header for MonteCarlo Simulation

**** Mismatch for MonteCarlo Simulation

.param sigma=3 .param process=0 mismatch=1

****** Analysis conditions

170 appendix

.param vid_noise=0.0mv vid_noise_incr=1.0mv

.param vid=-100mv vid_start=+1000.0mv vid_stop=-1000.0mv vid_incr

=-0.1mv

.param vid=optadc(vid_start,vid_start,vid_stop)

.tran 0.1p ’2*T+2n’ sweep optimize=optadc results=dout1-dout2

model=opt3 monte=30

.param vid_noise=0.0mv vid_noise_incr=1.0mv vid_fs=200mv

.param vid_start_62= ’vid_noise+vid_fs ’ vid_stop_62= ’−vid_noise−

vid_fs ’
.param vid_start_61= ’vid_noise+vid_fs ’ vid_stop_61= ’−vid_noise−

vid_fs ’
.param vid_start_60= ’vid_noise+vid_fs ’ vid_stop_60= ’−vid_noise−

vid_fs ’
.param vid_start_59= ’vid_noise+vid_fs ’ vid_stop_59= ’−vid_noise−

vid_fs ’
.param vid_start_58= ’vid_noise+vid_fs ’ vid_stop_58= ’−vid_noise−

vid_fs ’
.param vid_start_57= ’vid_noise+vid_fs ’ vid_stop_57= ’−vid_noise−

vid_fs ’
.param vid_start_56= ’vid_noise+vid_fs ’ vid_stop_56= ’−vid_noise−

vid_fs ’
.param vid_start_55= ’vid_noise+vid_fs ’ vid_stop_55= ’−vid_noise−

vid_fs ’
.param vid_start_54= ’vid_noise+vid_fs ’ vid_stop_54= ’−vid_noise−

vid_fs ’
.param vid_start_53= ’vid_noise+vid_fs ’ vid_stop_53= ’−vid_noise−

vid_fs ’
.param vid_start_52= ’vid_noise+vid_fs ’ vid_stop_52= ’−vid_noise−

vid_fs ’
.param vid_start_51= ’vid_noise+vid_fs ’ vid_stop_51= ’−vid_noise−

vid_fs ’
.param vid_start_50= ’vid_noise+vid_fs ’ vid_stop_50= ’−vid_noise−

vid_fs ’
.param vid_start_49= ’vid_noise+vid_fs ’ vid_stop_49= ’−vid_noise−

vid_fs ’
.param vid_start_48= ’vid_noise+vid_fs ’ vid_stop_48= ’−vid_noise−

vid_fs ’
.param vid_start_47= ’vid_noise+vid_fs ’ vid_stop_47= ’−vid_noise−

vid_fs ’
.param vid_start_46= ’vid_noise+vid_fs ’ vid_stop_46= ’−vid_noise−

vid_fs ’
.param vid_start_45= ’vid_noise+vid_fs ’ vid_stop_45= ’−vid_noise−

vid_fs ’
.param vid_start_44= ’vid_noise+vid_fs ’ vid_stop_44= ’−vid_noise−

vid_fs ’

A.7 optimization models files code 171

.param vid_start_43= ’vid_noise+vid_fs ’ vid_stop_43= ’−vid_noise−
vid_fs ’

.param vid_start_42= ’vid_noise+vid_fs ’ vid_stop_42= ’−vid_noise−
vid_fs ’

.param vid_start_41= ’vid_noise+vid_fs ’ vid_stop_41= ’−vid_noise−
vid_fs ’

.param vid_start_40= ’vid_noise+vid_fs ’ vid_stop_40= ’−vid_noise−
vid_fs ’

.param vid_start_39= ’vid_noise+vid_fs ’ vid_stop_39= ’−vid_noise−
vid_fs ’

.param vid_start_38= ’vid_noise+vid_fs ’ vid_stop_38= ’−vid_noise−
vid_fs ’

.param vid_start_37= ’vid_noise+vid_fs ’ vid_stop_37= ’−vid_noise−
vid_fs ’

.param vid_start_36= ’vid_noise+vid_fs ’ vid_stop_36= ’−vid_noise−
vid_fs ’

.param vid_start_35= ’vid_noise+vid_fs ’ vid_stop_35= ’−vid_noise−
vid_fs ’

.param vid_start_34= ’vid_noise+vid_fs ’ vid_stop_34= ’−vid_noise−
vid_fs ’

.param vid_start_33= ’vid_noise+vid_fs ’ vid_stop_33= ’−vid_noise−
vid_fs ’

.param vid_start_32= ’vid_noise+vid_fs ’ vid_stop_32= ’−vid_noise−
vid_fs ’

.param vid_start_31= ’vid_noise+vid_fs ’ vid_stop_31= ’−vid_noise−

vid_fs ’

.param vid_start_30= ’vid_noise+vid_fs ’ vid_stop_30= ’−vid_noise−

vid_fs ’
.param vid_start_29= ’vid_noise+vid_fs ’ vid_stop_29= ’−vid_noise−

vid_fs ’
.param vid_start_28= ’vid_noise+vid_fs ’ vid_stop_28= ’−vid_noise−

vid_fs ’
.param vid_start_27= ’vid_noise+vid_fs ’ vid_stop_27= ’−vid_noise−

vid_fs ’
.param vid_start_26= ’vid_noise+vid_fs ’ vid_stop_26= ’−vid_noise−

vid_fs ’
.param vid_start_25= ’vid_noise+vid_fs ’ vid_stop_25= ’−vid_noise−

vid_fs ’
.param vid_start_24= ’vid_noise+vid_fs ’ vid_stop_24= ’−vid_noise−

vid_fs ’
.param vid_start_23= ’vid_noise+vid_fs ’ vid_stop_23= ’−vid_noise−

vid_fs ’
.param vid_start_22= ’vid_noise+vid_fs ’ vid_stop_22= ’−vid_noise−

vid_fs ’
.param vid_start_21= ’vid_noise+vid_fs ’ vid_stop_21= ’−vid_noise−

vid_fs ’
.param vid_start_20= ’vid_noise+vid_fs ’ vid_stop_20= ’−vid_noise−

vid_fs ’
.param vid_start_19= ’vid_noise+vid_fs ’ vid_stop_19= ’−vid_noise−

vid_fs ’

172 appendix

.param vid_start_18= ’vid_noise+vid_fs ’ vid_stop_18= ’−vid_noise−
vid_fs ’

.param vid_start_17= ’vid_noise+vid_fs ’ vid_stop_17= ’−vid_noise−
vid_fs ’

.param vid_start_16= ’vid_noise+vid_fs ’ vid_stop_16= ’−vid_noise−
vid_fs ’

.param vid_start_15= ’vid_noise+vid_fs ’ vid_stop_15= ’−vid_noise−
vid_fs ’

.param vid_start_14= ’vid_noise+vid_fs ’ vid_stop_14= ’−vid_noise−
vid_fs ’

.param vid_start_13= ’vid_noise+vid_fs ’ vid_stop_13= ’−vid_noise−
vid_fs ’

.param vid_start_12= ’vid_noise+vid_fs ’ vid_stop_12= ’−vid_noise−
vid_fs ’

.param vid_start_11= ’vid_noise+vid_fs ’ vid_stop_11= ’−vid_noise−
vid_fs ’

.param vid_start_10= ’vid_noise+vid_fs ’ vid_stop_10= ’−vid_noise−
vid_fs ’

.param vid_start_9 = ’vid_noise+vid_fs ’ vid_stop_9 = ’−vid_noise−
vid_fs ’

.param vid_start_8 = ’vid_noise+vid_fs ’ vid_stop_8 = ’−vid_noise−
vid_fs ’

.param vid_start_7 = ’vid_noise+vid_fs ’ vid_stop_7 = ’−vid_noise−
vid_fs ’

.param vid_start_6 = ’vid_noise+vid_fs ’ vid_stop_6 = ’−vid_noise−
vid_fs ’

.param vid_start_5 = ’vid_noise+vid_fs ’ vid_stop_5 = ’−vid_noise−
vid_fs ’

.param vid_start_4 = ’vid_noise+vid_fs ’ vid_stop_4 = ’−vid_noise−
vid_fs ’

.param vid_start_3 = ’vid_noise+vid_fs ’ vid_stop_3 = ’−vid_noise−
vid_fs ’

.param vid_start_2 = ’vid_noise+vid_fs ’ vid_stop_2 = ’−vid_noise−
vid_fs ’

.param vid_start_1 = ’vid_noise+vid_fs ’ vid_stop_1 = ’−vid_noise−
vid_fs ’

.param vid_start_0 = ’vid_noise+vid_fs ’ vid_stop_0 = ’−vid_noise−
vid_fs ’

****** B Side Code ******

.param vtca4=0 vtca3=0 vtca2=0 vtca1=0 vtca0=0

.param vtcb4=0 vtcb3=0 vtcb2=0 vtcb1=0 vtcb0=0

.title ’00000 11111 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=1 vtcb3=1 vtcb2=1 vtcb1=1 vtcb0=1

A.7 optimization models files code 173

.param vid_start=vid_start_62 vid_stop=vid_stop_62 vid_incr=

vid_noise_incr

.alter .title ’00000 11110 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=1 vtcb3=1 vtcb2=1 vtcb1=1 vtcb0=0

.param vid_start=vid_start_61 vid_stop=vid_stop_61 vid_incr=

vid_noise_incr

.alter .title ’00000 11101 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=1 vtcb3=1 vtcb2=1 vtcb1=0 vtcb0=1

.param vid_start=vid_start_60 vid_stop=vid_stop_60 vid_incr=

vid_noise_incr

.alter .title ’00000 11100 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=1 vtcb3=1 vtcb2=1 vtcb1=0 vtcb0=0

.param vid_start=vid_start_59 vid_stop=vid_stop_59 vid_incr=

vid_noise_incr

.alter .title ’00000 11011 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=1 vtcb3=1 vtcb2=0 vtcb1=1 vtcb0=1

.param vid_start=vid_start_58 vid_stop=vid_stop_58 vid_incr=

vid_noise_incr

.alter .title ’00000 11010 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=1 vtcb3=1 vtcb2=0 vtcb1=1 vtcb0=0

.param vid_start=vid_start_57 vid_stop=vid_stop_57 vid_incr=

vid_noise_incr

.alter .title ’00000 11001 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=1 vtcb3=1 vtcb2=0 vtcb1=0 vtcb0=1

.param vid_start=vid_start_56 vid_stop=vid_stop_56 vid_incr=

vid_noise_incr

.alter .title ’00000 11000 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=1 vtcb3=1 vtcb2=0 vtcb1=0 vtcb0=0

.param vid_start=vid_start_55 vid_stop=vid_stop_55 vid_incr=

vid_noise_incr

174 appendix

.alter .title ’00000 10111 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=1 vtcb3=0 vtcb2=1 vtcb1=1 vtcb0=1

.param vid_start=vid_start_54 vid_stop=vid_stop_54 vid_incr=

vid_noise_incr

.alter .title ’00000 10110 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=1 vtcb3=0 vtcb2=1 vtcb1=1 vtcb0=0

.param vid_start=vid_start_53 vid_stop=vid_stop_53 vid_incr=

vid_noise_incr

.alter .title ’00000 10101 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=1 vtcb3=0 vtcb2=1 vtcb1=0 vtcb0=1

.param vid_start=vid_start_52 vid_stop=vid_stop_52 vid_incr=

vid_noise_incr

.alter .title ’00000 10100 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=1 vtcb3=0 vtcb2=1 vtcb1=0 vtcb0=0

.param vid_start=vid_start_51 vid_stop=vid_stop_51 vid_incr=

vid_noise_incr

.alter .title ’00000 10011 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=1 vtcb3=0 vtcb2=0 vtcb1=1 vtcb0=1

.param vid_start=vid_start_50 vid_stop=vid_stop_50 vid_incr=

vid_noise_incr

.alter .title ’00000 10010 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=1 vtcb3=0 vtcb2=0 vtcb1=1 vtcb0=0

.param vid_start=vid_start_49 vid_stop=vid_stop_49 vid_incr=

vid_noise_incr

.alter .title ’00000 10001 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=1 vtcb3=0 vtcb2=0 vtcb1=0 vtcb0=1

.param vid_start=vid_start_48 vid_stop=vid_stop_48 vid_incr=

vid_noise_incr

.alter .title ’00000 10000 − Bisection for Threshold Voltage

Determination ’

A.7 optimization models files code 175

.param vtcb4=1 vtcb3=0 vtcb2=0 vtcb1=0 vtcb0=0

.param vid_start=vid_start_47 vid_stop=vid_stop_47 vid_incr=

vid_noise_incr

.alter .title ’00000 01111 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=0 vtcb3=1 vtcb2=1 vtcb1=1 vtcb0=1

.param vid_start=vid_start_46 vid_stop=vid_stop_46 vid_incr=

vid_noise_incr

.alter .title ’00000 01110 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=0 vtcb3=1 vtcb2=1 vtcb1=1 vtcb0=0

.param vid_start=vid_start_45 vid_stop=vid_stop_45 vid_incr=

vid_noise_incr

.alter .title ’00000 01101 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=0 vtcb3=1 vtcb2=1 vtcb1=0 vtcb0=1

.param vid_start=vid_start_44 vid_stop=vid_stop_44 vid_incr=

vid_noise_incr

.alter .title ’00000 01100 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=0 vtcb3=1 vtcb2=1 vtcb1=0 vtcb0=0

.param vid_start=vid_start_43 vid_stop=vid_stop_43 vid_incr=

vid_noise_incr

.alter .title ’00000 01011 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=0 vtcb3=1 vtcb2=0 vtcb1=1 vtcb0=1

.param vid_start=vid_start_42 vid_stop=vid_stop_42 vid_incr=

vid_noise_incr

.alter .title ’00000 01010 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=0 vtcb3=1 vtcb2=0 vtcb1=1 vtcb0=0

.param vid_start=vid_start_41 vid_stop=vid_stop_41 vid_incr=

vid_noise_incr

.alter .title ’00000 01001 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=0 vtcb3=1 vtcb2=0 vtcb1=0 vtcb0=1

.param vid_start=vid_start_40 vid_stop=vid_stop_40 vid_incr=

vid_noise_incr

176 appendix

.alter .title ’00000 01000 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=0 vtcb3=1 vtcb2=0 vtcb1=0 vtcb0=0

.param vid_start=vid_start_39 vid_stop=vid_stop_39 vid_incr=

vid_noise_incr

.alter .title ’00000 00111 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=0 vtcb3=0 vtcb2=1 vtcb1=1 vtcb0=1

.param vid_start=vid_start_38 vid_stop=vid_stop_38 vid_incr=

vid_noise_incr

.alter .title ’00000 00110 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=0 vtcb3=0 vtcb2=1 vtcb1=1 vtcb0=0

.param vid_start=vid_start_37 vid_stop=vid_stop_37 vid_incr=

vid_noise_incr

.alter .title ’00000 00101 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=0 vtcb3=0 vtcb2=1 vtcb1=0 vtcb0=1

.param vid_start=vid_start_36 vid_stop=vid_stop_36 vid_incr=

vid_noise_incr

.alter .title ’00000 00100 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=0 vtcb3=0 vtcb2=1 vtcb1=0 vtcb0=0

.param vid_start=vid_start_35 vid_stop=vid_stop_35 vid_incr=

vid_noise_incr

.alter .title ’00000 00011 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=0 vtcb3=0 vtcb2=0 vtcb1=1 vtcb0=1

.param vid_start=vid_start_34 vid_stop=vid_stop_34 vid_incr=

vid_noise_incr

.alter .title ’00000 00010 − Bisection for Threshold Voltage

Determination ’
.param vtcb4=0 vtcb3=0 vtcb2=0 vtcb1=1 vtcb0=0

.param vid_start=vid_start_33 vid_stop=vid_stop_33 vid_incr=

vid_noise_incr

A.7 optimization models files code 177

.alter .title ’00000 00001 − Bisection for Threshold Voltage
Determination ’

.param vtcb4=0 vtcb3=0 vtcb2=0 vtcb1=0 vtcb0=1

.param vid_start=vid_start_32 vid_stop=vid_stop_32 vid_incr=

vid_noise_incr

**** 0 Code ******

.alter .title ’00000 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=0 vtca1=0 vtca0=0

.param vtcb4=0 vtcb3=0 vtcb2=0 vtcb1=0 vtcb0=0

.param vid_start=vid_start_31 vid_stop=vid_stop_31 vid_incr=

vid_noise_incr

**** A Side Code ******

.alter .title ’00001 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=0 vtca1=0 vtca0=1

.param vid_start=vid_start_30 vid_stop=vid_stop_30 vid_incr=

vid_noise_incr

.alter .title ’000010 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=0 vtca1=1 vtca0=0

.param vid_start=vid_start_29 vid_stop=vid_stop_29 vid_incr=

vid_noise_incr

.alter .title ’000011 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=0 vtca1=1 vtca0=1

.param vid_start=vid_start_28 vid_stop=vid_stop_28 vid_incr=

vid_noise_incr

.alter .title ’000100 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=1 vtca1=0 vtca0=0

.param vid_start=vid_start_27 vid_stop=vid_stop_27 vid_incr=

vid_noise_incr

178 appendix

.alter .title ’000101 00000 − Bisection for Threshold Voltage
Determination ’

.param vtca4=0 vtca3=0 vtca2=1 vtca1=0 vtca0=1

.param vid_start=vid_start_26 vid_stop=vid_stop_26 vid_incr=

vid_noise_incr

.alter .title ’000110 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=1 vtca1=1 vtca0=0

.param vid_start=vid_start_25 vid_stop=vid_stop_25 vid_incr=

vid_noise_incr

.alter .title ’000111 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=0 vtca2=1 vtca1=1 vtca0=1

.param vid_start=vid_start_24 vid_stop=vid_stop_24 vid_incr=

vid_noise_incr

.alter .title ’001000 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=0 vtca1=0 vtca0=0

.param vid_start=vid_start_23 vid_stop=vid_stop_23 vid_incr=

vid_noise_incr

.alter .title ’001001 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=0 vtca1=0 vtca0=1

.param vid_start=vid_start_22 vid_stop=vid_stop_22 vid_incr=

vid_noise_incr

.alter .title ’001010 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=0 vtca1=1 vtca0=0

.param vid_start=vid_start_21 vid_stop=vid_stop_21 vid_incr=

vid_noise_incr

.alter .title ’001011 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=0 vtca1=1 vtca0=1

.param vid_start=vid_start_20 vid_stop=vid_stop_20 vid_incr=

vid_noise_incr

.alter .title ’001100 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=1 vtca1=0 vtca0=0

.param vid_start=vid_start_19 vid_stop=vid_stop_19 vid_incr=

vid_noise_incr

A.7 optimization models files code 179

.alter .title ’001101 00000 − Bisection for Threshold Voltage
Determination ’

.param vtca4=0 vtca3=1 vtca2=1 vtca1=0 vtca0=1

.param vid_start=vid_start_18 vid_stop=vid_stop_18 vid_incr=

vid_noise_incr

.alter .title ’001110 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=1 vtca1=1 vtca0=0

.param vid_start=vid_start_17 vid_stop=vid_stop_17 vid_incr=

vid_noise_incr

.alter .title ’001111 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=0 vtca3=1 vtca2=1 vtca1=1 vtca0=1

.param vid_start=vid_start_16 vid_stop=vid_stop_16 vid_incr=

vid_noise_incr

.alter .title ’10000 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=0 vtca1=0 vtca0=0

.param vid_start=vid_start_15 vid_stop=vid_stop_15 vid_incr=

vid_noise_incr

.alter .title ’10001 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=0 vtca1=0 vtca0=1

.param vid_start=vid_start_14 vid_stop=vid_stop_14 vid_incr=

vid_noise_incr

.alter .title ’10010 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=0 vtca1=1 vtca0=0

.param vid_start=vid_start_13 vid_stop=vid_stop_13 vid_incr=

vid_noise_incr

.alter .title ’10011 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=0 vtca1=1 vtca0=1

.param vid_start=vid_start_12 vid_stop=vid_stop_12 vid_incr=

vid_noise_incr

.alter .title ’10100 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=1 vtca1=0 vtca0=0

.param vid_start=vid_start_11 vid_stop=vid_stop_11 vid_incr=

vid_noise_incr

.alter .title ’10101 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=1 vtca1=0 vtca0=1

180 appendix

.param vid_start=vid_start_10 vid_stop=vid_stop_10 vid_incr=

vid_noise_incr

.alter .title ’10110 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=1 vtca1=1 vtca0=0

.param vid_start=vid_start_9 vid_stop=vid_stop_9 vid_incr=

vid_noise_incr

.alter .title ’10111 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=0 vtca2=1 vtca1=1 vtca0=1

.param vid_start=vid_start_8 vid_stop=vid_stop_8 vid_incr=

vid_noise_incr

.alter .title ’11000 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=0 vtca1=0 vtca0=0

.param vid_start=vid_start_7 vid_stop=vid_stop_7 vid_incr=

vid_noise_incr

.alter .title ’11001 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=0 vtca1=0 vtca0=1

.param vid_start=vid_start_6 vid_stop=vid_stop_6 vid_incr=

vid_noise_incr

.alter .title ’11010 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=0 vtca1=1 vtca0=0

.param vid_start=vid_start_5 vid_stop=vid_stop_5 vid_incr=

vid_noise_incr

.alter .title ’11011 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=0 vtca1=1 vtca0=1

.param vid_start=vid_start_4 vid_stop=vid_stop_4 vid_incr=

vid_noise_incr

.alter .title ’11100 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=1 vtca1=0 vtca0=0

.param vid_start=vid_start_3 vid_stop=vid_stop_3 vid_incr=

vid_noise_incr

.alter .title ’11101 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=1 vtca1=0 vtca0=1

.param vid_start=vid_start_2 vid_stop=vid_stop_2 vid_incr=

vid_noise_incr

A.8 circuits.inc file code 181

.alter .title ’11110 00000 − Bisection for Threshold Voltage
Determination ’

.param vtca4=1 vtca3=1 vtca2=1 vtca1=1 vtca0=0

.param vid_start=vid_start_1 vid_stop=vid_stop_1 vid_incr=

vid_noise_incr

.alter .title ’11111 00000 − Bisection for Threshold Voltage

Determination ’
.param vtca4=1 vtca3=1 vtca2=1 vtca1=1 vtca0=1

.param vid_start=vid_start_0 vid_stop=vid_stop_0 vid_incr=

vid_noise_incr

.end �
a.8 circuits.inc file code

For a correct interpretation of Perl code containing the Netlist of
the TC-Comparator, device references are related to the ones of Fig-
ure 3.1a, to follow presented in Table A.1.

Figure 3.1a Listing 5 Figure 3.1a Listing 5

Mclk xm0 S2 xms2

M1 xm1 X1 x1

M2 xm2 X2 x2

M3 xm3 TCA(4...0) tca(4...0)

M4 xm4 TCB(4...0) tcb(4...0)

M5 xm5 O1 xam1

M6 xm6 O2 xam2

S1 xms1

Table A.1: Device name reference for HSPICE codes

Listing 5: circuits.inc

.subckt inv in out

xm0 vdd in out vbgp P_10_SP w=0.12u l=0.08u

xm1 out in gnd vbgn N_10_SP w=0.12u l=0.08u

.ends

.subckt tc_comp ina inb nreset tca0 tca1 tca2 tca3 tca4 tcb0 tcb1

tcb2 tcb3 tcb4 o1 o2 x0 x1 x2

xamvdd vdd vddx1 amp

xamgnd gnd gndx1 amp

182 appendix

xamvbgp vbgp vbgpx1 amp

xamvbgn vbgn vbgnx1 amp

xamnreset nreset nresetx1 amp

xamx0 x0 x0x1 amp

xamx1 x1 x1x1 amp

xamx2 x2 x2x1 amp

xamina ina inax1 amp

xaminb inb inbx1 amp

xamo1 o1 o1x1 amp

xamo2 o2 o2x1 amp

xamtca0 tca0 tca0x1 amp

xamtca1 tca1 tca1x1 amp

xamtca2 tca2 tca2x1 amp

xamtca3 tca3 tca3x1 amp

xamtca4 tca4 tca4x1 amp

xamtcb0 tcb0 tcb0x1 amp

xamtcb1 tcb1 tcb1x1 amp

xamtcb2 tcb2 tcb2x1 amp

xamtcb3 tcb3 tcb3x1 amp

xamtcb4 tcb4 tcb4x1 amp

xm0 vddx1 nresetx1 x0 vbgpx1 P_10_SP w= ’ 0.12u*m1’ l=0.08u

xm1 x0x1 inax1 x1 vbgpx1 P_10_SP w= ’ 0.12u*m2’ l=0.08u

xm2 x0x1 inbx1 x2 vbgpx1 P_10_SP w= ’ 0.12u*m2’ l=0.08u

xm3 x1x1 o22 o11 vbgpx1 P_10_SP w= ’ 0.12u*m3’ l=0.08u

xm4 x2x1 o11 o22 vbgpx1 P_10_SP w= ’ 0.12u*m3’ l=0.08u

xm5 o11 o22 gndx1 vbgnx1 N_10_SP w= ’ 0.12u*m4’ l=0.08u

xm6 o22 o11 gndx1 vbgnx1 N_10_SP w= ’ 0.12u*m4’ l=0.08u

xam1 o11 o1x1 amp

xam2 o22 o2x1 amp

xms1 o1x1 nresetx1 gndx1 vbgnx1 N_10_SP w= ’ 0.12u*m5’ l=0.08u

xms2 o2x1 nresetx1 gndx1 vbgnx1 N_10_SP w= ’ 0.12u*m5’ l=0.08u

xms3 x1x1 nresetx1 gndx1 vbgnx1 N_10_SP w= ’ 0.12u*m5’ l=0.08u

xms4 x2x1 nresetx1 gndx1 vbgnx1 N_10_SP w= ’ 0.12u*m5’ l=0.08u

xam3 o1x1 o111 amp

xam4 o2x1 o222 amp

xma0 tca0x1 o111 tca0x1 vbgpx1 P_10_SP w= ’ 0.12u’ l= ’ 0.32u’ mf=

mxma0 m=mxma0

xma1 tca1x1 o111 tca1x1 vbgpx1 P_10_SP w= ’ 0.12u’ l= ’ 0.32u’ mf=

mxma1 m=mxma1

xma2 tca2x1 o111 tca2x1 vbgpx1 P_10_SP w= ’ 0.12u’ l= ’ 0.32u’ mf=

mxma2 m=mxma2

xma3 tca3x1 o111 tca3x1 vbgpx1 P_10_SP w= ’ 0.12u’ l= ’ 0.32u’ mf=

mxma3 m=mxma3

xma4 tca4x1 o111 tca4x1 vbgpx1 P_10_SP w= ’ 0.12u’ l= ’ 0.32u’ mf=

mxma4 m=mxma4

A.8 circuits.inc file code 183

xmb0 tcb0x1 o222 tcb0x1 vbgpx1 P_10_SP w= ’ 0.12u’ l= ’ 0.32u’ mf=

mxmb0 m=mxmb0

xmb1 tcb1x1 o222 tcb1x1 vbgpx1 P_10_SP w= ’ 0.12u’ l= ’ 0.32u’ mf=

mxmb1 m=mxmb1

xmb2 tcb2x1 o222 tcb2x1 vbgpx1 P_10_SP w= ’ 0.12u’ l= ’ 0.32u’ mf=

mxmb2 m=mxmb2

xmb3 tcb3x1 o222 tcb3x1 vbgpx1 P_10_SP w= ’ 0.12u’ l= ’ 0.32u’ mf=

mxmb3 m=mxmb3

xmb4 tcb4x1 o222 tcb4x1 vbgpx1 P_10_SP w= ’ 0.12u’ l= ’ 0.32u’ mf=

mxmb4 m=mxmb4

cl0 o1x1 gndx1 ’25f−3.1f ’
cl1 o2x1 gndx1 ’25f−3.1f ’
cl2 x1x1 gndx1 15f

cl3 x2x1 gndx1 15f

cl4 x0x1 gndx1 4f

cl5 nresetx1 gndx1 5f

*ci0 o1 vdd c= ’ (v(tca0)+v(tca1)*2+v(tca2)*4+v(tca3)*8+v(tca4) *16)
*0 .5 f ’ ctype=1

*ci1 o2 vdd c= ’ (v(tcb0)+v(tcb1)*2+v(tcb2)*4+v(tcb3)*8+v(tcb4) *16)
*0 .5 f ’ ctype=1

.ends

.subckt amp i1 i2

vamp i1 i2 dc 0.0

.ends �

B I B L I O G R A P H Y

[1] G. Temes. “Micropower data converters: A tutorial”. IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 57(no. 6):pp. 405–410, 2010. (Cited
on pages ix, x, and 16.)

[2] L.L. Lewyn, T. Ytterdal, C. Wulff, and K. Martin. “Analog Circuit
Design in Nanoscale CMOS Technologies”. Proceedings of the
IEEE, vol. 97(no. 10):pp. 1687–1714, Oct. 2009. (Cited on page ix.)

[3] R. Van de Plassche. “CMOS Integrated Analog–to–Digital and
Digital–to–Analog Converters”. Kluwer Academic, 2th edition,
2003. (Cited on pages ix, 4, 5, 13, 15, and 18.)

[4] S. Saxena, C. Hess, H. Karbasi, A. Rossoni, S. Tonello, P. McNa-
mara, S. Lucherini, S. Minehane, C. Dolainsky, and M. Quar-
antelli. “Variation in Transistor Performance and Leakage in
Nanometer–Scale Technologies”. Electron Devices, IEEE Transac-
tions, vol. 55(no. 1):pp. 131–144, Jan. 2008. (Cited on page ix.)

[5] G. Van der Plas and B. Verbruggen. “A 150 MS/s 133µW 7 bit
ADC in 90 nm Digital CMOS”. IEEE J. Solid–State Circuits, vol. 43

(no. 12):pp. 2631–2640, Dec. 2008. (Cited on pages ix, x, and 24.)

[6] Y.Z. Lin, S.J. Chang, Y.T. Liu, C.C. Liu, and G.Y. Huang. “A
5b 800MS/s 2 mW asynchronous binary–search ADC in 65 nm
CMOS”. IEEE Int. Solid–State Circuits Conf. Dig. Tech. Papers,
pages pp. 80–81, 2009. (Cited on pages ix, 24, and 28.)

[7] M. Chen and R. Brodersen. “A 6b 600 MS/s 5.3 mW asyn-
chronous ADC in 0.13”. IEEE J. Solid–State Circuits, vol. 41(no.
12):pp. 2669–2680, Dec. 2006. (Cited on pages ix, 20, 21, 27,
and 34.)

[8] Craninckx and G. Van der Plas. “a 65 fj/conversion–step 0–to–50

MS/s 0–to–0.7 mw 9b charge–sharing SAR ADC in 90 nm digi-
tal CMOS”. IEEE Int. Solid–State Circuits Conf. Dig. Tech. Papers,
pages pp. 246–600, Feb. 2007. (Cited on pages ix and 21.)

[9] V. Giannini, P. Nuzzo, V. Chironi, A. Baschirotto, G. Van der
Plasand, and J. Craninckx. “An 820 µW 9b 40 MS/s noise–
tolerant dynamic-SAR ADC in 90 nm digital CMOS”. IEEE Int.
Solid–State Circuits Conf. Dig. Tech. Papers, pages pp. 238–239, Feb.
2008. (Cited on pages ix and 21.)

[10] P. Nuzzo, C. Nani, C. Armiento, A. Sangiovanni Vincentelli,
J. Craninckx, and G. Van der Plas. “A 6–bit 50–MS/s threshold

185

186 bibliography

configuring SAR ADC in 90–nm digital CMOS”. VLSI Circuits,
2009 Symposium, pages pp. 238–239, Jun. 2009. (Cited on pages x
and 25.)

[11] P. Nuzzo, C. Nani, C. Armiento, A. Sangiovanni Vincentelli,
J. Craninckx, and G. Van der Plas. “A 6–bit 50–MS/s Thresh-
old Configuring SAR ADC in 90–nm Digital CMOS”. Circuits
and Systems I: Regular Papers IEEE Transaction, vol. 59(no. 1):pp.
80–92, Jan. 2012. (Cited on pages x, 21, 25, 27, 30, 33, 36, 37,
and 63.)

[12] A. Hastings. “The art of analog layout”. Prentice Hall, Upper
Saddle Riverand, NJ, 2001. (Cited on pages xi and 69.)

[13] V. Navarro-Botello, J. Sosa, and Juan A. Montiel-Nelson. “Anal-
ysis and optimization of dinamically reconfigurable regenera-
tive comparators for ultra–low power 6–bit TC–ADCs in 90nm
CMOS technologies”. in 27th. Intl. Conf. on Design of Circuits and
Integrated Systems (DCIS 2012), Nov. 2012. (Cited on pages xi
and 27.)

[14] “SNDR”. http://en.wikipedia.org/wiki/Sndr, Retrieved Au-
gust 2012. (Cited on page 8.)

[15] U. Fiedler and D. Seitzer. “A high-speed 8 bit A/D converter
based on a Gray-code multiple forlding circuit”. IEEE Journal of
Solid-State Circuits, vol. SC-14:pp. 547–551, June 1979. (Cited on
page 12.)

[16] R.E.J. van der Grift, W.J.M. Rutten, and M. van der Veen. “An
8-bit video ADC incorporating folding and interpolation tech-
niques”. IEEE Journal of Solid-State Circuits, vol. SC-22:pp. 944–
953, Dec. 1987. (Cited on page 12.)

[17] D. A. Johns and K. Martin. “Analog Integrated Circuit Design”.
Wiley, New York, 1997. (Cited on page 15.)

[18] G. C. Temes. “High-accuracy pipeline ADC configuration”. Elec-
tron. Lett., vol. 21(no. 17):pp. 762–763, Aug. 1985. (Cited on
page 15.)

[19] “Switched Capacitor”. http://en.wikipedia.org/wiki/

Switched_capacitor, Retrieved August 2012. (Cited on
page 16.)

[20] J.L. McCreary and P.R. Gray. “All-MOS charge distribution
analog-to-digital conversion techniques–Part I”. IEEE J.Solid-
State Circuits, vol. SSC-10(no. 6):pp. 371–379, Dec. 1975. (Cited
on pages 16 and 20.)

http://en.wikipedia.org/wiki/Sndr
http://en.wikipedia.org/wiki/Switched_capacitor
http://en.wikipedia.org/wiki/Switched_capacitor

bibliography 187

[21] J.-S. Lee and L.-C. Park. “Capacitor array structure and switch
control for energy-efficient SAR ADCs”. Proc. IEEE Int. Symp.
Circuits Syst., pages pp. 236–239, 2008. (Cited on page 16.)

[22] K. Lee, J. Chae, M. Aniya, K. Hamashita, K. Takasuka,
S. Takeuchi, and G.C. Temes. “A noise-coupled time-interleaved
delta-sigma ADC with 4.2 MHz bandwidth, -98 dB THD, and 79

dB SNDR”. IEEE J.Solid-State Circuits, vol. 43(no. 12):pp. 2601–
2612, Dec. 2008. (Cited on page 18.)

[23] J. Markus, J. Silva, and G. C. Temes. “Theory and applications
of incremental delta-sigma converters”. IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 51(no. 4):pp. 678–690, April 2004. (Cited on
page 18.)

[24] A. Agah, K. Vleugels, P.B. Griffin, M. Ronaghi, J.D. Plummer,
and B.A. Wooley. “A high-resolution low-power oversampling
ADC with extended-range for bio-sensor arrays”. Proc. IEEE Int.
Symp. VLSI Circuits, pages pp. 244–245, June 2007. (Cited on
page 19.)

[25] J. De Maeyer, P. Rombouts, and L. Weyten. “A double-sampling
extended-counting ADC”. IEEE J. Solid-State Circuits, vol. 39(no.
3):pp. 411–418, March 2004. (Cited on page 19.)

[26] B.P. Ginsburg and A.P. Chandrakasan. “Highly interleaved 5-
bit, 250-MSample/s, 1.2-mW ADC with redundant channels in
65-nm CMOS”. IEEE J. Solid-State Circuits, vol. 43(no. 12):pp.
2641–2650, Dec. 2008. (Cited on pages 20 and 21.)

[27] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel,
E. Klumperink, and B. Nauta. “A 1.9 µW 4.4 fJ/conversion-step
10b 1MS/s charge-redistribution ADC”. IEEE Int. Solid-State Cir-
cuits Conf. Dig. Tech. Papers, 3-7:pp. 244–610, Feb. 2008. (Cited on
page 21.)

[28] B.P. Ginsburg and A.P. Chandrakasan. “500-MS/s 5-bit ADC in
65-nm CMOS with split capacitor array DAC”. IEEE J. Solid-State
Circuits, vol. 42(no. 4):pp. 739–747, Apr. 2007. (Cited on page 21.)

[29] Y.-K. Cho, Y.-D. Jeon, J.-W. Nam, and J.-K. Kwon. “A 9-bit 80

MS/s successive approximation register analog-to-digital con-
verter with a capacitor reduction technique”. IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 57(no. 7):pp. 502–506, Jul. 2010. (Cited on
page 21.)

[30] F. Kuttner. “A 1.2 V 10b 20 MSample/s non-binary successive
approximation ADC in 0.13 µm CMOS”. IEEE Int. Solid-State Cir-
cuits Conf. Dig. Tech. Papers, vol. 2:pp. 136–137, Feb. 2002. (Cited
on page 21.)

188 bibliography

[31] M. Saberi, R. Lotfi, K. Mafinezhad, and W.A. Serdijn.
“Analysis of power consumption and linearity in capacitive
digital-to-analog converters used in successive approximation
ADCs”. IEEE Trans. Circuits Syst. I, Reg. Papers, 2011. doi:
10.1109/TCSI.2011.2107214. (Cited on page 21.)

[32] S. Mortezapour and E.K.F. Lee. “A 1-V, 8-bit successive approx-
imation ADC in standard CMOS process”. IEEE Journal of Solid-
State Circuits, vol. 35:pp. 642–646, April 2000. (Cited on page 21.)

[33] G. Promitzer. “12-bit low-power fully differential switched
capacitor noncalibrating successive approximation ADC with
1MS/s”. IEEE Solid-State Circuits, vol. 36(no. 7):pp. 1138–1143,
Jul. 2001. (Cited on page 27.)

[34] T. Kobayashi, K. Nogami, T. Shirotori, and Y. Fujimoto. “A
current-controlled latch sense amplifier and a static power-
saving input buffer for low-power architectures”. IEEE J. Solid-
State Circuits, vol. 28(no. 4):pp. 523–527, Apr. 1993. (Cited on
page 28.)

[35] G. Van der Plas, S. Decoutere, and S. Donnay. “A 0.16

pJ/conversion-step 2.5 mW 1.25 GS/s 4b ADC in a 90 nm digi-
tal CMOS process”. IEEE Int. Solid-State Circuits Conf. Dig. Tech.
Papers, pages pp. 566–567, Feb. 2006. (Cited on pages 28 and 35.)

[36] P. Nuzzo, G. Van der Plas, F. De Bernardinis, L. Van der Perre,
B. Gyselinckx, and P. Terreni. “A 10.6 mW/0.8 pJ power-scalable
1 GS/s 4b ADC in 0.18 µm CMOS with 5.8 GHz ERBW”. Proc.
IEEE/ACM Design Automation Conf., pages pp. 873–878, Jul. 2006.
(Cited on pages 28 and 35.)

[37] B. Wicth, T. Nirschl, and D. Schmitt-Landsiedel. “Yeld and
Speed Optimization of a Latch-Type Voltage Sense Amplifier”.
Solid-State Circuits, IEEE Journal on, vol. 39(no. 7):pp. 1148–1158,
Jul. 2004. (Cited on pages 31, 36, 37, 63, and 67.)

[38] J. He, S. Zhan, D. Chen, and R. Geiger. “Analyses of static and
dynamic random offset voltages in dynamic comparators”. IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 56(no. 5):pp. 911–919, May
2009. (Cited on pages 31 and 35.)

[39] A. Nikoozadeh and B. Murmann. “An Analysis of Latch Com-
parator Offset Due to Load Capacitor Mismatch”. Circuits and
Systems II: Express Briefs, IEEE Transactions on, vol. 53(no. 12):pp.
1398–1402, Dec. 2006. (Cited on pages 31, 35, and 63.)

[40] S. Nooshabadi and J.A.Montiel-Nelson. “Fast Feedthrough
Logic: A high performance Logic Family for GaAs”. Circuits
and Systems I: Reg. Papers, IEEE Transactions on, vol. 51(no. 11):pp.
2189–2203, Nov. 2004. (Cited on page 31.)

bibliography 189

[41] V. Navarro-Botello, J.A. Montiel-Nelson, and S. Nooshabadi.
“Analysis of high performance fast feedthorugh logic families in
CMOS”. Circuits and Systems II: Express Briefs, IEEE Transactions
on, vol. 54(no. 6):pp. 489–493, Jun. 2008. (Cited on page 31.)

[42] V. Navarro-Botello, J.A. Montiel-Nelson, and S. Nooshabadi.
“Feedthrough: An Energy Efficient CMOS Logic Family for
Arithmetic Circuits”. CMOS Techonolgy, NOVA Publishers, Elec-
trical and Engineering Developments, 2010. (Cited on pages 31

and 69.)

[43] P. Nuzzo, F. De Bernardinis, P. Terreni, and G. Van der Plas.
“Noise analysis of regenerative comparators for reconfigurable
ADC architectures”. IEEE Trans. Circuits Syst. I, Reg. Papers, vol.
55(no. 6):pp. 1441–1454, Jul. 2008. (Cited on pages 35, 37, and 69.)

[44] J. Kim, K. Jones, and M. Horowitz. “Fast, non-Monte-Carlo es-
timation of transient performance variation due to device mis-
match”. IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57(no. 7):pp.
1746–1755, Jul. 2010. (Cited on page 36.)

[45] Ricardo M. Ramos. “Contributions to the design of the energy recov-
ery and stabilization system for long range passive wireless sensors”.
Tesis Doctoral. Las Palmas de Gran Canaria, 2009. (Cited on
page 45.)

[46] “UMC 90nm LOGIC/MIXED_MODE Standard Performance 1.0V
MOSFET SPICE Model (BSIM4V4.3.0 Global Model) Document”.
Version 0.6 Phase 1. April 2009. (Cited on page 62.)

[47] R. J. Baker. “CMOS Circuit Design, Layout and Simulation”. Wiley-
IEEE, 3th edition, 2010. (Cited on page 140.)

[48] “Nyquist–Shannon sampling theorem”. http://en.wikipedia.

org/wiki/Nyquist-Shannon_sampling_theorem, Retrieved May
2013. (Cited on page 141.)

[49] Ulf Grenander. “Probability and Statistics: The Harald Cramer Vol-
ume”. Wiley, 1959. (Cited on page 141.)

[50] Harry L. Stiltz. “Aerospace Telemetry”. Prentice-Hall, 1961. (Cited
on page 141.)

[51] T. Zawistowski and P. Shah. “An Introduction to Sampling The-
ory”. http://www2.egr.uh.edu/~glover/applets/Sampling/

Sampling.html, Retrieved August 2012. (Cited on page 141.)

[52] “Nyquist frequency”. http://en.wikipedia.org/wiki/

Nyquist_frequency, Retrieved August 2012. (Cited on page 141.)

http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
http://www2.egr.uh.edu/~glover/applets/Sampling/Sampling.html
http://www2.egr.uh.edu/~glover/applets/Sampling/Sampling.html
http://en.wikipedia.org/wiki/Nyquist_frequency
http://en.wikipedia.org/wiki/Nyquist_frequency

190 bibliography

[53] Weste Neil H.E. and Harris David. “CMOS VLSI Design: A Cir-
cuits and Systems Perspective”. Addison Wesley, 3th edition, 2005.
ISBN 0-321-14901-7. (Cited on page 142.)

[54] “Process corners”. http://en.wikipedia.org/wiki/Process_

corners, Retrieved September 2012. (Cited on page 142.)

[55] “HSPICE Application Manual”. Version X-2005.09. Synopsys,
USA, 2005. (Cited on page 143.)

http://en.wikipedia.org/wiki/Process_corners
http://en.wikipedia.org/wiki/Process_corners

Friendship.
Is not something

you learn in school.
But if you haven’t learned
the meaning of friendship,

you really haven’t learned anything.

— Muhammad Ali

A C K N O W L E D G M E N T S

I would like to thank a lot the Professor Maria Elena Valcher of the
Department of Information Engineering at University of Padova for
her excellent support.

Heartfelt thanks to the Supervisor Dr.D. Juan A. Montiel-Nelson of
the Department of Telecommunications and Electronic Engineering
at University of Las Palmas de Gran Canaria for his valuable support
and contribution to this work.

191

When you remove the impossible,
whatever remains,

however improbable,
must be the truth.

— Sherlock Holmes

Padova, October 2013

Roberto Sartori

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Final Version as of October 2, 2013 (classicthesis version 1.2).

http://code.google.com/p/classicthesis/

	Dedication
	Abstract
	Abstract
	Resumen
	Compendio

	Contents
	List of Figures
	List of Figures
	List of Tables
	List of Tables
	Listings
	Listings
	Acronyms
	Ultra-low power ADC Architectures
	1 Introduction
	1.1 Basic A/D converter function
	1.1.1 Conversion systems

	1.2 Specifications of converters
	1.2.1 Absolute accuracy
	1.2.2 Relative accuracy
	1.2.3 Differential nonlinearity
	1.2.4 Offset
	1.2.5 Signal-to-Noise Ratio
	1.2.6 Effective Number of Bits
	1.2.7 Figure of Merit

	2 A/D Converters
	2.1 Low-power ADC architectures
	2.1.1 Nyquist-rate ADCs
	2.1.2 Oversampled ADCs

	2.2 Successive Approximation Register ADCs
	2.2.1 Low-power SAR ADCs

	2.3 Comparator-Based Binary Search ADCs
	2.3.1 SAR ADCs using CC

	2.4 Threshold-Configuring ADCs
	2.4.1 TC-ADC Principle of Operation
	2.4.2 Architectural Details
	2.4.3 Circuit Implementation

	An ultra-low power comparator
	3 Threshold-Configurable Comparator
	3.1 Basic Operation
	3.2 Threshold Generation
	3.3 Design Methodology

	4 Design Specification Requirements
	4.1 TC-Comparator power consumption vs full scale
	4.1.1 Results

	4.2 RFID Reader radiated power vs distance

	Sizing and Optimization
	5 Simulation environment set-up
	5.1 HSPICE Environment Structure
	5.1.1 Files Hierarchy

	5.2 Simulation Setup

	6 Sizing for ultra-low power and FS operation
	6.1 Characteristics of CMOS Devices
	6.1.1 Threshold voltage
	6.1.2 Maximum drain-source Currents
	6.1.3 Parasitic Capacitance and on-state Resistance
	6.1.4 Transconductance and gain-bandwidth

	6.2 UMC CMOS 90nm Process Characteristics
	6.2.1 Electrical parameters
	6.2.2 Model fitting accuracy

	7 Optimization for Linearity improvement
	7.1 Analysis Methodology
	7.1.1 Optimization analysis by Bisection method

	7.2 Design restrictions Achievement
	7.3 NonLinearity Analysis: DNL and INL errors

	8 Mismatch analysis
	8.1 Mismatch optimization through DNL analysis

	9 Results
	9.1 Optimization Results – scanning method
	9.2 Reference Values – scanning method
	9.3 Mismatch Results – Monte Carlo simulation
	9.4 Conclusions

	Appendix
	A Appendix
	A.1 The SAR Algorithm
	A.2 Nyquist sampling condition
	A.3 Nyquist frequency
	A.4 Corner of Process
	A.5 Bisection Methodology in HSPICE
	A.6 tcadc file code
	A.7 Optimization models files code
	A.7.1 Simulation script for sheader.sp file
	A.7.2 Simulation script for oheader.sp file
	A.7.3 Simulation script for mheader file

	A.8 circuits.inc file code

	Bibliography
	Acknowledgments
	Declaration
	Colophon

