
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Master Degree in Physics of Data

Final Dissertation

Gradient-based quantum optimal control on

superconducting qubit systems

Thesis supervisor Candidate

Prof. Simone Montangero Samuele Piccinelli

Thesis co-supervisors

Dr. Felix Motzoi

Prof. Matteo Rizzi

Academic Year 2021/2022





Abstract

Quantum technologies are expected to help solve many of today’s global
challenges, revolutionizing several fields such as computing, sensing and se-
cure communications. In this regard, the need for precise manipulation of
the dynamics of a quantum system and its optimization has given rise to
the field of quantum control theory. In the search for optimal controls, ac-
curate derivatives are a possible method to traverse and ultimately converge
in quantum optimization landscapes.
In this work we study an efficient algorithm for computing analytically-exact
derivatives by formulating the control problem in the basis that diagonalizes
the control Hamiltonian and applying a specific Trotterized time propaga-
tion scheme. The method is numerically verified for a system of supercon-
ducting transmon qubits in the few- and many body regime using matrix
product states. The comparison between the results obtained using an exact
dynamics via Krylov subspace methods shows how the approximate dynam-
ics ultimately sets a trade-off between computational complexity and quality
of the final solutions.
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4.4.2 Padé approximation method . . . . . . . . . . . . . . 28
4.4.3 Krylov subspace methods . . . . . . . . . . . . . . . . 28

5 Quantum optimal control theory 31
5.1 Applied quantum optimal control . . . . . . . . . . . . . . . . 31

5.1.1 Controllability . . . . . . . . . . . . . . . . . . . . . . 32

v



5.1.2 Quantum speed limit . . . . . . . . . . . . . . . . . . . 33
5.1.3 Cost functions . . . . . . . . . . . . . . . . . . . . . . 34
5.1.4 Gradient-based quantum optimal control . . . . . . . 36
5.1.5 The GRAPE and Krotov algorithm . . . . . . . . . . 36

5.2 Efficient exact derivatives . . . . . . . . . . . . . . . . . . . . 37

6 Tensor networks 45
6.1 Tensor diagram notation and tensor operations . . . . . . . . 46
6.2 Matrix product state and matrix product operator . . . . . . 48
6.3 Time-evolution block-decimation . . . . . . . . . . . . . . . . 49

7 Simulations and results 53
7.1 Approximate dynamics . . . . . . . . . . . . . . . . . . . . . . 53

7.1.1 Two-level system . . . . . . . . . . . . . . . . . . . . . 54
7.1.2 Transmon system . . . . . . . . . . . . . . . . . . . . . 57

7.2 Many-body systems . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.1 Automatic differentiation for Tensor Networks . . . . 65
7.2.2 Transmon chain . . . . . . . . . . . . . . . . . . . . . 67

7.3 General comments on Jensen’s derivative method . . . . . . . 70
7.4 Krylov methods . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8 Conclusions and outlook 77

A Exact derivatives calculation 79

B IBM “Washington” processor experimental parameters 83



Notation

Multidimensional quantities are denoted in bold: vectors with lowercase
letters (x), higher order tensors with uppercase letters (X).
The following abbreviations will be used:

AD Automatic Differentiation . . . . . . . . . . . . . . . . . . . . . . 25
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BFGS Broyden-Fletcher-Goldfarb-Shanno . . . . . . . . . . . . . . . 23

ED Exact Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . 27

ESC Equivalent-State-Controllability . . . . . . . . . . . . . . . . . . 32

GD Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

GRAPE GRadient Ascent Pulse Engineering . . . . . . . . . . . . . . 36

LZ Landau-Zener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

MPO Matrix Product Operator . . . . . . . . . . . . . . . . . . . . . 49

MPS Matrix Product States . . . . . . . . . . . . . . . . . . . . . . . 45

QC Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . . 3

QHO Quantum Harmonic Oscillator . . . . . . . . . . . . . . . . . . . 7

QOC Quantum Optimal Control . . . . . . . . . . . . . . . . . . . . . 31

QSL Quantum Speed Limit . . . . . . . . . . . . . . . . . . . . . . . . 33
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Chapter 1

Introduction

Since the discovery of the black body radiation law by Max Planck in 1900,
quantum theory has lead to profound and radical changes in our society in
terms of technological progress and collective philosophical thought. With
the advent of the theory of wave mechanics counter-intuitive concepts like
entanglement and superposition were introduced: such phenomena, so dis-
tant from our day-to-day experience, are now fundamental cornerstones of
quantum information processing, a field which has experienced over the
past three decades an impressive growth. This second quantum revolution,
sparked by Feynman’s famous paper [1], has interested academia as well
as industry in a race to practical quantum advantage, i.e. to build pro-
grammable quantum devices capable of solving a problem that no classical
computer can solve in any feasible amount of time.

The physical realization of controllable quantum devices is however an ex-
tremely challenging engineering task, since the fundamental building blocks
of computation - the qubits - are highly susceptible to any external source of
noise. Up to these days, this is the greatest obstacle preventing any concrete
breakthrough towards real world quantum applications. A common trait for
technologies relying on quantum laws such as metrology, communications or
computation, is thus the need for stable and precise control of quantum sys-
tems, capable of limiting the noise and synthesize a specific transformation
with a given precision. This is the field of study of optimal control theory,
which will be the central topic of this thesis.
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2 Chapter 1. Introduction

Organization

After the introduction given in Chapter 1, in Chapter 2 we will deal with
the fundamentals of quantum computation, namely the quantum logical
bit, quantum gates and quantum hardware, focusing on superconducting
qubits. In Chapter 3 we will discuss the equations governing the time evolu-
tion and frame transformations, which allow for a simpler representation of
the dynamics of a quantum system. We will then concentrate in Chapter 4
on the numerical simulation and optimization concepts that will be used
throughout this thesis. In Chapter 5 we will give an introduction to optimal
control theory, describing some common derivative based methods for op-
timal control and focusing on a particular methodology aimed at reducing
computational cost and time. In Chapter 6 we will give a brief introduction
on tensor network methods, which will be later used to expand our discus-
sion into the many-body regime. In Chapter 7 we will present the results
of this thesis: finally, in Chapter 8 conclusions will be drawn and possible
future prospects will be discussed.



Chapter 2

Universal quantum
computation

This chapter is aimed at giving an overview of the main principles and no-
tation used in Quantum Computing (QC) which we will use in the following
chapters. In the last section we will describe one of the most prominent
platform for constructing a multi-qubit quantum processor, namely super-
conducting qubits. For an extensive and recent overview of the physics of
quantum information we refer to [2]: parts of this chapter have been based
on [3].

2.1 Gate-based quantum computing

2.1.1 The quantum bit

A qubit is a two-level system whose quantum mechanical state displays phase
coherence between two basis states, |0⟩ and |1⟩. The definition of coherence
lies at the heart of quantum computation: given a generic state of a qubit
as linear superposition of the two basis states

|ψ⟩ = α |0⟩+ β |1⟩ α, β ∈ C , |α|2 + |β|2 = 1 , (2.1)

we can define the relative quantum phase φ as

φ ≡ arg(α⋆β) , (2.2)

where we denote with ⋆ complex conjugation. A state with a finite value of
φ is said to be coherent. The complex coefficients α and β are analogous to
amplitudes of a physical wave, and the vector (α, β)⊺ is referred to as the
wave vector.

3



4 Chapter 2. Universal quantum computation

An arbitrary qubit state can also be expressed via its density matrix form,

ρ̂ = |ψ⟩ ⟨ψ| =
(
|α|2 αβ⋆

α⋆β |β|2
)
. (2.3)

The diagonal entries of the density matrix (populations) give the effective
probabilities of the respective basis states, while the off-diagonal elements
(coherences) represent the phase coherences between these same states.

A qubit state is often represented by an arrow, called the Bloch vector, in
the Bloch sphere (see Fig. 2.1). Conventionally the qubit quantization axis
sits on the z axis and the north (south) pole represent the |0⟩ (|1⟩) state: the
longitudinal component of the Bloch vector corresponds to the polarization
of the qubit, whereas the transverse component corresponds to the coherence
between the two basis states. In spherical coordinates, a generic quantum

Figure 2.1: Bloch sphere representation of the qubit state.

state can be represented using a Block vector s⃗ of the form

s⃗ = (sin θ cosϕ, sin θ sinϕ, cos θ) , (2.4)

where θ (ϕ) is the polar (azimuthal) angle. The Bloch vector is related to
the density matrix via the Pauli matrices,

ρ̂ =
1

2
(1 + sxσ̂x + syσ̂y + szσ̂z) (2.5)

=

(
cos2 (θ/2) e−iϕ cos (θ/2) sin (θ/2)

eiϕ cos (θ/2) sin (θ/2) sin2 (θ/2)

)
. (2.6)

Practically, a qubit is (for the majority of cases) implemented by the two
lowest states of a quantum system, such as (artificial or natural) atoms.
This subspace is called the computational subspace: in general, any Hilbert
space whose dimension is truncated into two can be used as a qubit.
Finally, the dynamics of the qubit state are often conveniently described
in the rotating frame (see Chapter 3) which allows one to focus on the
dynamics of interest, effectively eliminating trivial evolution via a unitary
transformation.
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2.1.2 Superposition and measurement

The fundamental difference between quantum and classical computation lies
in two requirements of quantum mechanics that QC is able to simultane-
ously satisfy. From the superposition principle of quantum mechanics imme-
diately follows the possibility of creating states without a classical analogue
(Eq. (2.1)). Quantum operations are described by the unitary group [4], in
contrast to digital computations and probabilistic computation, which are
based on permutations and stochastic matrices respectively.
The second constraint is that the basis states must be distinguishable: this
distinguishability in turn ensures that any intermediary states have no in-
terpretation as measurable elements of reality and fundamentally separates
QC from models of conventional analog computation.
To produce an output we have to make a measurement on the qubit, which
will only have two possible results, either |0⟩ or |1⟩. The state information
can can only be obtained from a large set of perfectly identical qubits and
reconstruct, at least in principle, the exact coefficients of the original |ψ⟩ via
quantum tomography techniques. In particular, the information extracted
will be proportional to the number of measurements taken, thus returning
to a case equivalent to a classical system of many bits. Colloquially speak-
ing, the advantage of QC can be summarized in that the complex numbers
defining |ψ⟩ remain available during the quantum process - i.e. at any in-
stant preceding the measurement - and are thus capable of influencing its
evolution.

2.1.3 Quantum gates

A quantum gate is a discrete control acting on qubits inducing the unitary
evolution of the quantum states of the qubits: quantum computation is ba-
sically a series of quantum gate operations. If we consider a closed quantum
system described by the Hamiltonian Ĥ, a gate operation is implemented by
engineering the system Hamiltonian (see Chapter 5) such that the resulting
(unitary) evolution of the qubits implements the target gate.
A set of universal quantum gates is any set of gates to which any operation
possible on a quantum computer can be reduced: in other words, a set is
universal if any unitary operation can be expressed as a finite sequence of
gates from the set. An example is given by the single-qubit gates (the ro-
tation operators {Ri(θ)}i=x,y,z, the phase shift gate P (ϕ)) and the CNOT
gate. The set of rotations is critical to QC because the gates create the inter-
mediate non-computational (non-basis) states discussed in the last section.
Moreover, the Solovay–Kitaev theorem guarantees that for unitaries on a
constant number of qubits any quantum operation can be approximated by
a sequence of gates from the finite universal set.
The set composed by Hadamard, phase shift and CNOT form a group called
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the Clifford group, which is particularly relevant for QC, particularly for
quantum error correction. The Clifford set alone is not universal and can
be efficiently simulated on a probabilistic classical computer by the Gottes-
man–Knill theorem. The addition of a T gate makes however the set uni-
versal.
The unitary matrices form of quantum gates is not here reported for brevity
but can be easily found in most quantum information science textbooks, as
e.g. [5].

2.2 Quantum hardware

A viable implementation of a quantum computer has to meet a set of re-
quirements known as the DiVincenzo criteria [6, 7]: a quantum computer
has to operate on an easily extendable set of well characterized qubits (1)
whose coherence times are long enough to allow coherent operation (2) and
whose initial state can be set (3): moreover, the qubits of the system can
be operated on logically with a universal set of gates (4) and the final state
can be measured (5). Moreover, an essential aspect to enable the operation
of any quantum computer is the possibility of efficiently correcting errors,
which are inevitable and much more likely than in classical computers.
Today quantum processors are implemented using a range of physical sys-
tems containing quantum degrees of freedom that can be controlled. An
exhaustive overview of this platforms is outside the scope of this thesis: we
will instead concentrate on one on the most flexible and perhaps promising
QC technologies, i.e. Superconducting (SC) qubits which in the last years
have been the focus of research efforts of companies such as Google [8] and
IBM [9].

2.2.1 Superconducting qubits

In SC qubits the information is stored in the quantum degrees of freedom of
anharmonic oscillators constructed from superconducting circuit elements.
In superconducting materials electrons are effectively attracted to each other
and combine as Cooper pairs, i.e. bosonic particles with charge and mass
double that of an electron, which take energy (not available thermally at low
temperatures) to break up. Historically, the first type of superconducting
qubit discovered was the Cooper Pair Box, consisting of a superconducting
island that can (cannot) possesses an extra Cooper pair of charge 2e, which
is identified as the ground state |0⟩ (excited state |1⟩).
However, the Cooper Pair Box is particularly sensitive the noise caused by
fluctuating charges nearby, the so called charge noise, which led to the design
of a qubit with higher-order energy levels, the transmon (from transmission-
line shunted plasma oscillation qubit). At the price of sacrificing anhar-
monicity, i.e. the difference between the states transition frequencies, charge
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noise is suppressed while still allowing the lowest two levels to be addressed
as a qubit. The quantum states are now encoded in oscillations of Cooper
pairs across a tunnel junction between two superconducting islands, with
the excited |1⟩ state oscillating at a higher frequency than the ground |0⟩.
We will now derive the transmon Hamiltonian in a more formal way.

Starting from an LC circuit, we quantize its Hamiltonian, obtaining the
Quantum Harmonic Oscillator (QHO)

Ĥ =
Q̂2

2C
+

Φ̂2

2L
, (2.7)

which is analogous to that of a mechanical harmonic oscillator, with mass
m = C, and resonant frequency ω = 1/

√
LC. The operators Q̂, Φ̂, just like

position an momentum, satisfy the commutation relation[
Q̂, Φ̂

]
= iℏ . (2.8)

By defining the reduced flux ϕ = 2πΦ/Φ0 and the reduced charge n = Q/2e,
where Φ0 = h/2e is the superconducting magnetic flux quantum, Eq. (2.7)
can be more easily written as

ĤQHO = 4EC n̂
2 +

1

2
ELϕ̂

2 , (2.9)

where EC = e2/2C is the charging energy required to add each electron of
the Cooper-pair to the island and EL = (Φ0/2π)

2 is the inductive energy.
Moreover, the quantum operator n̂ is the excess number of Cooper-pairs
on the island, and ϕ̂ the reduced flux across the inductor. These two op-
erators form a canonical conjugate pair, obeying the commutation relation[
n̂, ϕ̂

]
= i. The solution to this eigenvalue problem gives an infinite se-

ries of eigenstates {|k⟩}k=0,1,... whose corresponding eigenenergies Ek are all

equidistantly spaced, Ek+1 − Ek = ℏωr, with ωr =
√
8ELEC =

√
LC the

resonant frequency of the system.
In order to be able to drive transitions between energy levels independently
we introduce a level of anharmonicity (i.e. non linearity), which consists in
requiring for the transition frequencies ω0→1

q and ω1→2
q to be sufficiently dif-

ferent from one another to be individually addressable. This allows to prop-
erly define a computational subspace consisting of only two energy states in
between which transitions can be driven without also exciting other levels
in the system. In practice, the amount of anharmonicity sets a limit on
how short the pulses used to drive the qubit can be. Experimentally, this
is obtained by replacing the linear inductor of the QHO with a Josephson
junction, playing the role of a nonlinear inductor. This results in a modified
Hamiltonian in the form

ĤTSN = 4EC n̂
2 − EJ cos ϕ̂ , (2.10)
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where the Josephson energy EJ = I0Φ0/2π replaces the inductive energy
from the QHO. The regime EJ ≫ EC is characterized by a low sensitivity
to charge noise: to reach it, the junction is shunted with a large capacitor,
obtaining a circuit commonly known as the transmon qubit.
We can now define the creation and annihilation operators in terms of the
zero-point fluctuations of charge n0 and phase ϕ0,

n0 =

(
EJ

32EC

)1/4

ϕ0 =

(
2EC
EJ

)1/4

, (2.11)

as

n̂ = in0(b̂
† + b̂) ϕ̂ = ϕ̂0(b̂

† + b̂) , (2.12)

where b̂† =
∑

j

√
j + 1 |j⟩ |j + 1⟩ denotes the transmon annihilation opera-

tor. We will now operate a few approximations. First, we note that ϕ ≪ 1
because in the transmon regime EJ/EC ≫ 1: we can thus expand the term
cos ϕ̂ of Eq. (2.10) in series obtaining

ĤTSN ≈
√
8ECEJ

(
b̂†b̂+

1

2

)
− EJ −

EC

12
(b̂† + b̂)4 . (2.13)

We now expand the terms of the transmon operator b̂ and drop the fast-
rotating terms characterized by an uneven number of b̂ and b̂†, neglecting
constants that have no influence on the transmon dynamics. We define
ω0 =

√
8ECEJ and identify δ = −EC as the transmon anharmonicity, finally

coming to

ĤTSN =

(
ω0 +

δ

2

)
b̂†b̂+

δ

2
(b̂†b̂)2 . (2.14)

From this expression, it is immediate to see how the transmon levels have
energy spacings differing by the anharmonicity δ as ωj+1 − ωj = ω + δj,
ω = ω0 + δ which corresponds to the drive frequency of the transmon qubit
for the ω1 − ω0 transition.
This discussion, far from being exhaustive, can be further extended to other
topics concerning superconducting circuits in [3, 10].

We now focus on the problem of a system of N = 2 transmon qutrits dis-
persively coupled through a linear microwave resonator activated by a mi-
crowave field. We report, as done in Appendix E of [11], the expression
of the effective Hamiltonian where the cavity is removed adiabatically and
the qutrit-cavity coupling is replaced with an effective qutrit-qutrit coupling
as in [12]. The starting point is to model each transmon as an anharmonic
Duffing oscillator as in Eq. (2.14) and describe the transmon cavity coupling
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via the Jaynes-Cummings model, which in the absence of control is given by

Ĥ0 =
∑
j=1,2

ωb†jbj +
δj
2
b†jbj(b

†
jbj − 1) + ωra

†a (2.15)

+
∑
j=1,2

gj(ajb
†
j + a†bj) , (2.16)

where ωr is the cavity resonance frequency and gj are transmon-cavity cou-
plings.
First, we eliminate the cavity by going to a frame rotating at ωr (see Chap-

ter 3) via R = exp [−iωr(b†1b1 + b†2b2 + a†a)]. This gives

Ĥ =
∑
j=1,2

∆jb
†
jbj +

δj
2
b†jbj(b

†
jbj − 1) +

∑
j=1,2

gj(ab
†
j + a†bj) , (2.17)

where ∆j = ωj−ωr. We then perform a Schrieffer-Wolff transformation [13]
using

S =
∑
j=1,2

gj
∆j

(ab†j − a†bj) (2.18)

in order to eliminate the cavity. The resulting Hamiltonian, once any con-
stant energy shifts have been removed and the cavity neglected, is

Ĥ =
∑
j=1,2

ω̃jb
†
jbj +

δj
2
b†jbj(b

†
jbj − 1) + J(b†1b2 + b1b

†
2) . (2.19)

Here we see that the transmon-cavity coupling has been replaced with an
effective transmon-transmon coupling where

J =
g1g2(∆1 +∆2)

∆1∆2
, ω̃j = ωj +

g2j
∆j

(2.20)

is now the dressed transmon state (a term we will clarify in Section 3.2.1).

As a final step we perform a second rotation R′ = exp [−iω̃2(b
†
1b1 + b†2b2)]

such that the detuning becomes ∆ = ω̃2 − ω̃1.
We finally come to

Ĥeff(t) = ∆b†1b1 +
∑
j=1,2

δj
2
b†jbj(b

†
jbj − 1) + J(b†1b2 + b1b

†
2) (2.21)

+ Ω(t)(b†1 + b1) , (2.22)

a central equation of this work. Note that we added a direct drive on the
first transmon Hc(t) = Ω(t)(b†1 + b1) [12], which will be later applied also to
the other qutrits when considering N > 2.
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Chapter 3

Quantum dynamics and
frame transformations

The Schrödinger equation governs the wave function of a quantum-mechanical
system. Solving it is often a non-trivial task (due to e.g. multiple qubit cou-
plings and time-dependence), even with numerical techniques which are still
limited by an exponential scaling with number of qubits. One of the most
diffuse methods developed to simplify such problem is to apply unitary trans-
formations to the Hamiltonian of the system: such an operation can result
in a simplified version of the Schrödinger equation which has nonetheless
the same solution as the original and can be efficiently calculated (generally
polynomial in the number of qubits). Moreover, this process has the added
benefit of allowing for a better conceptual understanding of the physical
processes in act.
In this chapter we first derive the time evolution equations governing quan-
tum dynamics and successively discuss the time-dependent transformations
that make the aforementioned tractable representations possible. We will
use [14] as a reference point.

3.1 Quantum dynamics

The time evolution of a state vector in the quantum mechanical Hilbert space
for an isolated system is governed by the Liouville-von Neumann equation

i
d

dt
ρ̂(t) =

[
Ĥ(t), ρ̂(t)

]
, (3.1)

where Ĥ(t) is the Hamiltonian operator, which is in general a function of
time t, and ρ̂ is the density matrix describing the state of the system: if ad-
ditionally the initial state is pure one can alternatively rewrite it to describe

11
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the dynamics of the plain state |ψ(t)⟩. In that case the time evolution is
determined by the Schrödinger equation,

iℏ
d

dt
|ψ(t)⟩ = Ĥ(t) |ψ(t)⟩ . (3.2)

This equation is valid in the Schrödinger picture, where the state evolves over
time, while the operators acting on it do not. However, the matrix nature
of the density matrix shows a strong analogy with the equation of time
evolution of operators A(H)(t) in Heisenberg’s picture where ρ̂ is independent
of time:

iℏ
dA(H)(t)

dt
= −

[
Ĥ(t), A(H)(t)

]
, (3.3)

up to a sign difference given by the different picture. In this section and for
the rest of this work we will focus on the (simpler) case of pure states.

The solution to Eq. (3.2) defines the time evolution operator Û(t, t0),

|ψ(t)⟩ = Û(t, t0) |ψ(t0)⟩ , (3.4)

where the state vector at time t0 provides the initial condition for the time
evolution of |ψ(t)⟩. Plugging Eq. (3.4) in Eq. (3.2) yields a partial differential
equation for Û(t, t0); now, since the initial state is arbitrary, it follows that
the propagator must satisfy

iℏ
∂

∂t
Û(t, t0) = Ĥ(t)Û(t, t0) (3.5)

subject to the initial condition Û(t0, t0) = 1. By Taylor expansion, one can
derive an expression for Û(t+ δt, t) in the limit t→ 0,

Û(t+ δt, t) = exp
[
−iĤ(t)δt/ℏ

]
+ O(δt2) . (3.6)

To obtain an explicit formula for the solution to Eq. (3.4) we discretize time
in regular δt intervals,

t ∈ [t1, t2, . . . , tN ] = [0, δt, . . . , T ] tj = (j − 1)δt , (3.7)

with time indices denoted as subscripts. Physical quantities evaluated at
these grid points are similarly denoted by Ĥn = Ĥ(tn). By recursively
applying the fundamental composition law of the time evolution propagator,
it follows that

Û(t, t0) =
N∏
n=1

Û (t0 + nδt, t0 + (n− 1)δt) , (3.8)
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which can be rewritten as a product of exponential using the expansion in
Eq. (3.6). At this point, if one further assumes for the Hamiltonian operator
to satisfy [Ĥ(ti), Ĥ(tj)] = 0 for all choices of ti and tj , the expression above
simplifies to

Û(t, t0) = lim
δt→0

exp

[
− iδt

ℏ

N−1∑
n=0

Ĥ(t0 + nδt)

]
(3.9)

and by finally by taking the limit,

Û(t, t0) = exp

[
− i
ℏ

∫ t

t0

Ĥ(t) dt

]
. (3.10)

However, this is not the general case: for [Ĥ(ti), Ĥ(tj)] ̸= 0 the eval-
uation of Eq. (3.8) via the nested commutators of the Baker-Campbell-
Hausdorff (BCH) formula becomes prohibitive. A different approach con-
sists in rewriting Eq. (3.5) in integral form,

Û(t, t0) = 1− i

ℏ

∫ t

t0

Ĥ(t′)Û(t′, t0) dt
′ (3.11)

which can be used to obtain a formal expansion of Û(t, t0) in form of a Dyson
series,

Û(t, t0) = 1 +
∞∑
n=1

(
− i
ℏ

)n ∫ t

t0

dt1

∫ t1

t0

dt2· · ·
∫ tn−1

t0

dtnĤ(t1)Ĥ(t2) . . . Ĥ(tn) .

(3.12)
To rewrite the nth term of the previous expression in a more convenient
form in which the integration limits are uncoupled, one must introduce the
time-ordered product of operators,

T
[
Ĥ(t1)Ĥ(t2) . . . Ĥ(tn)

]
= Ĥ(ti1)Ĥ(ti2) . . . Ĥ(tin), ti1 > ti2 > . . . tin

(3.13)

with n positive integer. That is, the time-ordered product of operators is
an instruction to reorder the operators such that the time arguments of the
corresponding operators decrease as one moves from left to right. Using this
new formalism, one can rewrite Eq. (3.12) as

Û(t, t0) = 1+
∞∑
n=1

1

n!

(
− i
ℏ

)n ∫ t

t0

dt1

∫ t

t0

dt2· · ·
∫ t

t0

dtnT
[
Ĥ(t1)Ĥ(t2) . . . Ĥ(tn)

]
.

(3.14)
The right hand side of the previous expression defines the time-ordered ex-

ponential, T exp
[
− i

ℏ
∫ t
t0
Ĥ(t) dt

]
: in light of this new definition, we con-

clude that the most general solution to Eq. (3.5) with the initial condition
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Û(t0, t0) = 1 is given by

Û(t, t0) = T exp

[
− i
ℏ

∫ t

t0

Ĥ(t) dt

]
. (3.15)

As a final remark, we note that if the Hamiltonian operators evaluated at
different times commute, then we may simply drop the T symbol, since it
has no effect in this case.

3.2 Frame transformation general theory

The mathematical formulation of the dynamics of a quantum system is not
unique. The two orthogonal approaches are considering either the basis
states or the wavevectors completely static in time: these are known, as
previously mentioned, as the Heisenberg and Schrödinger pictures respec-
tively. We will refer to a basis which does not contain implicit time-evolution
of the basis states as bare basis states and as dressed basis states when in-
stead such time-dependence is allowed.
Ultimately, all description must satisfy the Schrödinger equation in Eq. (3.2).

3.2.1 Unitary transformation formula

A unitary transformation (or frame change) can be expressed in terms of
a time-dependent Hamiltonian Ĥ(t) and unitary operator V (t) - or equiva-
lently as a transformation to a new dressed basis |ϕ⟩ = V (t) |ψ⟩. Under this
change, the evolution transforms as

−iĤϕ |ϕ⟩ =
d

dt
|ϕ⟩

−iĤϕ |ϕ⟩ =
(
d

dt
V

)
|ψ⟩+ V

(
d

dt
|ψ⟩
)

Ĥϕ |ϕ⟩ =
(
V Ĥψ + iV̇

)
|ψ⟩

Ĥϕ |ϕ⟩ =
(
V ĤψV

† + iV̇ V †
)
|ϕ⟩ , (3.16)

from which we can distill the Hamiltonian transformation Ĥψ → V ĤψV
† +

iV̇ V † =: Ĥϕ. From this last expression one can see how the total evolution

of a system Ĥϕ is given by a combination of the explicit evolution of the

wavevectors given by Ĥϕ and the implicit evolution of its basis states given
by V . Moreover, if the wave function ψ(t) satisfies the original equation,
then V (t)ψ(t) will satisfy the new equation: for the time evolution operator
acting on an initial wavevector state |ϕ(0, T )⟩ to a final state |ϕ(0, T )⟩ it
holds instead [14]

Ûϕ(0, T ) = V (T )Ûψ(0, T )V
†(0) . (3.17)
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One of the most important transformation that one can perform is the di-
agonalization of the Hamiltonian, which is e.g. the primary method for its
exponentiation (see also Section 4.4).

3.2.2 Equivalent frames

The additional requirement for the the state of the quantum system to be
identical at the start and at the end of gate operations in both frames,

V (0) = V (T ) = 1 , (3.18)

defines the subclass of transformations that leave the computational states
unaltered. It goes without saying that such transformations leave complete
freedom in the evolution Û, which is left untouched.

3.2.3 Interaction frames

Unitary transformations can be seen as a generalization of the interaction (or
Dirac) picture. The latter approach is a sort of a middle ground between the
Schrödinger picture and the Heisenberg picture as both the quantum states
and the operators carry time dependence. We consider an Hamiltonian in
the form

Ĥ = Ĥ0 + Ĥ1,
[
Ĥ1(t), Ĥ1(t

′)
]
= 0 , (3.19)

containing both a free term and an interaction term. The correspondence to

a unitary transformation can be shown by choosing V (t) = exp
(
i
∫ t
0 H1(t) dt

)
:

then, by virtue of Eq. (3.16)

Ĥeff = V (Ĥ0 + Ĥ1)V
† + iV̇ V †

= V H0V
† + V H1V

† −H1V V
†

= exp

(
i

∫ t

0
H1(t) dt

)
H0 exp

(
−i
∫ t

0
H1(t) dt

)
, (3.20)

i.e. the Hamiltonian in Eq. (3.19) transforms as V H0V
†.

The state vectors in the interaction picture evolve in time according to the
interaction term only, while operators only through the free Hamiltonian
H0. The evolution is given by Ûeff = V (T )Û for a non-cyclic interaction
term H1 - in which case the interaction frame evolution Ûeff is equivalent to
that of the original frame.

3.3 Phase transformations

If we loosen the boundary condition in Eq. (3.18) to include the indistin-
guishably by measurement,

eiϕ1V (0) = eiϕ2V (T ) = 1 , (3.21)
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we include all transformations which are diagonal. In the following we will
introduce the case of rotating frame transformations with the example of a
qubit subject to a linearly polarized drive [15], which in turn will serve as
an excuse to introduce the Rotating Wave Approximation (RWA).

3.3.1 Rotating frames

The system Hamiltonian of a qubit subject to a linearly polarized drive in
the laboratory frame reads

Ĥlab(t) =
ω0

2
σz +

H1(t)

2
cos(ωt+ ϕ)σx , (3.22)

where ω0 and ω are the qubit and drive frequencies respectively and H1(t)
is the time-dependent amplitude function (envelope) of the applied drive.
Furthermore, the drive is assumed to have a constant phase offset ϕ.
A suitable frame of reference for this system is the one rotating around the
z axis with the drive frequency ω of the applied field. Transforming the
Hamiltonian according to Eq. (3.16) with V (t) = e−iωtσz/2 leads to

Ĥrot(t) =
H1(t)

4
( cos(ϕ)σx + cos(2ωt+ ϕ)σx

+ sin(ϕ)σy − sin(2ωt+ ϕ)σy) +
∆

2
σz , (3.23)

where we have introduced the amplitude function H1(t) and the detuning
∆ = ω0 − ω. The period of the counter-rotating field of the drive is instead
given by tc = π/ω. We now restrict to drives that are in resonance with the
qubit, i.e. ω = ω0 or ∆ = 0 and that have zero phase offset, ϕ = 0: for this
special case the rotating-frame Hamiltonian reduces to

Ĥrot(t) =
H1(t)

4
(σx + cos(2ωt)σx − sin(2ωt)σy) . (3.24)

Thus, in the standard rotating frame the Hamiltonian contains non-commuting
terms (which can be attributed to the counter rotating field of the drive)
that oscillate quickly: when fully taken into consideration, these prevent a
simple analytic form for the qubit’s exact time evolution.
Applying the RWA results in a simple Hamiltonian which is straightforward
to integrate for the cases in which the drive is weak (|H1(t) ≪ ω), near
resonant (ω ≈ ω0), and varies only slightly on the time scale dictated by
the inverse qubit frequency 1/ω. To do this, one neglects the fast-oscillating
terms in the rotating-frame Hamiltonian: this results in a significantly sim-
plified expression that depends on time only through H1(t),

ĤRWA(t) =
H1(t)

4
(cos(ϕ)σx + sin(ϕ)σy) +

∆

2
σz . (3.25)
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If ∆ = 0 and, for example, the qubit state is initialized to |ψ(t)⟩ = |0⟩,
solving the dynamics via RWA results in Rabi oscillations with period of
4π/H1 for a constant H1. Finally, we highlight that for field strengths
|H1(t)| ≳ 0.01ω the RWA if often not applicable.
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Chapter 4

Numerical simulation and
optimisation

4.1 Time-slicing

In Section 3.1 we introduced temporal discretization as aid to finding the
solution for the time evolution propagator: in order to numerically integrate
the Schrödinger equation, the discretization becomes necessary. Again, the
evolution is discretized into piece-wise constant intervals,

t ∈ [t1, t2, . . . , tNt ] = [0, δt, . . . , T ] tj = (j − 1)δt , (4.1)

with time indices denoted as subscripts.
The process of discretization leads to a product of time evolution operators,

Û(t, t0) ≈
Nt−1∏
j=1

Ûj = ÛNt−1 . . . Û2Û1 , (4.2)

where

Ûn = exp

(
−i
∫ tn+δt

tn

Ĥ(t, u(t)) dt

)
(4.3)

is the propagator across the time interval [tn, tn+1] = (tn, tn + δt). This ap-
proximation can be seen as deriving from substituting Eq. (3.10) in Eq. (3.8):

indeed, it holds true for
[
Ĥ(tj), Ĥ(ti)

]
= 0 for all ti, tj . Instead, the er-

ror made with respect to Eq. (3.15) is given by Nt − 1 first-order Trotter
expansions and vanishes when δt→ 0 ⇐⇒ Nt →∞.

19
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4.2 Optimization algorithms

4.2.1 Unconstrained optimization

An unconstrained optimization problem [16] takes the form

min
x∈Cn

f(x) (4.4)

for a (smooth) objective function f : Cn → R. In most applications of
optimization problems, one is usually interested in a global minimum x⋆,
which satisfies f(x⋆) ≤ f(x) for all x in Cn (or at least for all x in the
domain of interest). Optimization algorithms are often not guaranteed to
converge to global minima but only yield local minima. Formally, a point
x⋆ is called a (strict) local minimum if there is a neighborhood N such that
f(x⋆) ≤ f(x) (f(x⋆) < f(x)) ∀x ∈ N (with x ̸= x⋆). For the purposes of
this discussion we will assume f at least continuously differentiable.

Line search methods

To traverse the optimization landscape, one has to take informed decisions
using local information about the landscape topography for every new it-
eration k. The line search strategy is one of two fundamental approaches
to this problem (the other one being the trust region). General line search
methods for solving the optimization problem in Eq. (4.4) take the form

xk+1 = xk + αkpk , (4.5)

where αk > 0 is called the step length and pk is called the search direction.
Practically, pk is direction along which the objective function will be reduced
while αk determines how far x should move along that direction.
A natural requirement is for p to be such that the slope of f in the direction
p is negative. Since

lim
t→0+

f(x+ tp)− f(x)
∥tp∥ = ∇f(x)⊺p , (4.6)

a vector p ̸= 0 is called descent direction of a function f at a point x if
∇f(x)⊺p < 0. The search direction pk can be thus calculated from the
current local gradient (as is the case for steepest descent but also for con-
jugate gradient and quasi-Newton directions) and possibly also the Hessian
(as e.g. Newton direction). On the other hand, the step length αk can be
determined either exactly or inexactly: its values largely depend on both
the chosen algorithm, search direction, problem scaling and how close to a
minimum the iterate is (typically is of O(1) as it approaches convergence).
Each step in the problem of Eq. (4.4) involves (approximately) solving the
sub-problem

min
α
f(xk + αpk) : (4.7)
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the minimization algorithm might either exactly solve it for αk ∈ R+, or
rather loosely, asking for a sufficient decrease in the objective function.
More quantitatively, as a requirement for any guessed α, practical imple-
mentations of line search algorithms make use of a specific set of inequalities,
referred to as Wolfe conditions: a step length αk is said to satisfy the Wolfe
conditions restricted to the direction pk, if the following two inequalities
hold:

1) f(xk + αkpk)− f(xk) ≤ c1αk∇f(xk)⊺pk (Armijo rule) (4.8)

2) ∇f(xk + αkpk)
⊺pk ≥ c2∇f(xk)⊺pk (curvature condition) , (4.9)

with 0 < c1 < c2 < 1 and c1 ≪ 1, c1 ≪ c2. The first condition in Eq. (4.8)
ensures that the reduction in f is proportional to the step length and the
directional derivative, guaranteeing a sufficient decrease in the objective
function, while Eq. (4.9) makes sure that αk does not become unreasonably
small. This latter expression can be modified to force αk to lie close to a
critical point of Eq. (4.7) (restricted to the direction pk) by modifying the
curvature condition as

|∇f(xk + αkpk)
⊺pk| ≤ −c2∇f(xk)⊺pk ; (4.10)

together, Eq. (4.9) and Eq. (4.10) are known as strong Wolfe conditions.
It can be shown that there always exist step lengths satisfying the Wolfe
conditions under reasonable assumptions on f .

Method of steepest descent

It is reasonable to choose p such that the slope of f in the direction p is as
negative as possible. This leads to the minimization problem

min
∥p∥=1

∇f(x)⊺p (4.11)

which can be easily solved. Indeed, if ∇f(x) ̸= 0, then the above expression
has the unique solution

p = − ∇f(x)∥∇f(x)∥ =: pmin , (4.12)

and any vector of the form α ·pmin with α > 0 is called direction of steepest
descent.
An important result from optimization theory states that, for the case of
steepest descent, the line search method converges (globally) to a stationary
point. However, this does not imply that the method converges to a local
minimum: such a statement requires to make additional information about
the Hessian, which will in turn lead to the Newton methods discussed in the
following section.
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The Newton method

The Newton method offers a faster algorithm for minimizing f(x), which
is based on obtaining further information about the landscape topology by
means of the second order derivative. This amounts to choosing the search
direction as

pk = −H(xk)
−1∇f(xk) , (4.13)

with H being the Hessian matrix. One way to motivate this expression for
αk = 1 is to see it as the standard Newton method for solving the nonlinear
equation ∇f(x) = 0; moreover, the same form minimize exactly the second
order expansion to the objective function. In practice, the Newton method is
often combined with the Armijo or the full Wolfe conditions. If the objective
function is sufficiently simple near an optimal solution x⋆, a nearby initial
guess x0 will converge as

∥xk+1 − x⋆∥ ≤ C∥xk − x⋆∥q , (4.14)

where C ≥ 0 for most cases. The Newton method can be shown to converge
quadratically (q = 2 in Eq. (4.14)).

Quasi-Newton methods

The computation of the Newton direction in Eq. (4.13) is often too expen-
sive, due to both the need of determining the Hessian and the effort of
solving a linear system. The general idea of quasi-Newton methods is to
approximate H(xk) by a symmetric positive matrix Bk, leading to a search
direction of the form

pk = −B−1
k ∇f(xk) . (4.15)

To ensure faster convergence than the steepest descent method, it is im-
portant to quantify the extent to which Bk shall approximate H(xk): to
this end, it is sufficient to require that Bk provides an increasingly accurate
approximation of H(xk) along the search direction pk:

lim
k→∞

∥(Bk −H(xk))pk∥
∥pk∥

= 0 . (4.16)

There is a lot of freedom in choosing Bk to satisfy the relation in Eq. (4.16).
Quasi-Newton methods choose a sequence {B0, B1, B2, . . .} satisfying the
condition

Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk) , (4.17)

starting from an initial symmetric positive definite matrix B0, preferably
chosen to be an approximation of H(x0). The expression in Eq. (4.17)
mimics the approximation of a tangent vector by the secant vector: if we let

sk = xk+1 − xk = αkpk yk = ∇f(xk+1)−∇f(xk) , (4.18)
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then Bk+1 satisfies Bk+1sk = yk, formally known as the secant equation.
The term quasi-Newton is due to this “secant” condition from Newton’s
root-finding algorithm.
One usually further restricts the freedom in Eq. (4.16) by requiring the
update Bk+1 − Bk to be a low-rank matrix, which allows for the efficient
inversion of Bk+1. In particular, when requiring the update to be symmetric
and of rank 1, the choice of Bk+1 becomes unique:

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)⊺

(yk −Bksk)⊺sk
. (4.19)

The quasi-Newton method resulting from Eq. (4.18) is called Symmetric
Rank-1 (SR1). However, some care needs to be applied when using SR1: the
denominator (yk −Bksk)⊺sk may become negative or even zero, preventing
positive definiteness.
By far, the most popular quasi-Newton method is the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) slgorithm, with update:

Bk+1 = Bk +
yky

⊺
k

y⊺
ksk
− (Bksk)(Bksk)

⊺

s⊺kBksk
. (4.20)

The analysis of BFGS is significantly more complicated than the analysis
of the Newton method, due to the evolution of Bk. Most notably, since
the updates of the BFGS curvature matrix do not require matrix inver-
sion, its computational complexity is only O(n2), compared to O(n3) in
Newton’s method. Under suitable conditions, it can be shown that BFGS
satisfies Eq. (4.16) and hence converges super-linearly (i.e. with 1 < q < 2
in Eq. (4.14)).

Due to its approximate nature, BFGS can yield to sub-optimal solutions
with respect to Hessian-based optimizations, since the latter has generally
more information on the landscape curvature: second order exact analyti-
cal derivatives have been shown to give an improvement compared to the
approximated BFGS version in quantum dynamics [11] and to require fewer
iterations to reach convergence [17]. A visual representation of this be-
havior, together with a comparison with a simple Gradient Descent (GD)
algorithm, is given in Fig. 4.1. A popular version of BFGS is L-BFGS, that
uses a limited amount of computing memory and is thus particularly well
suited for optimization problems with many variables. The Hessian approx-
imation Bk, instead of being based on the full history of gradients, relies
only on the most recent m updates, where generally m < 10: for a problem
of dimension n this is a much smaller storage requirement than the (n× n)
elements required to otherwise store the full Hessian estimate. Moreover, Bk
is never explicitly formed nor stored: rather, the m are used to do implicit
operations requiring matrix-vector products.
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Figure 4.1: Comparison of exact and approximate second-order methods on a two
dimensional optimization problem. BFGS converges towards a local solution, while
the Hessian-based is able to find the global minimum. Figure from [11].

BFGS is nowadays a standard within optimal control theory [18–21] and
has been shown to outperform first-order methods by providing a greater
convergence acceleration [22].

4.2.2 Constrained optimization

Constrained optimization is the same problem of Eq. (4.4) in presence of
bounds on the variables with respect to the minimizing/maximizing vari-
ables,

min
x∈Cn

f(x) subject to

gi(x) = ci for i = 1, . . . , n (4.21)

hj(x) ≥ dj for j = 1, . . . ,m (4.22)

where gi(x) = ci for i = 1, . . . , n and hj(x) ≥ dj for j = 1, . . . ,m are the
equality and inequality constraints to be satisfied (in Eq. (4.21), Eq. (4.22)
respectively). The paradigmatic example in mathematical optimization of
a problem in subject to Eq. (4.21) are the Lagrange multipliers, in which
a constrained problem is reformulated in terms of an unconstrained one, to
which the usual (derivative) techniques apply.
The methods discussed for the unconstrained case are often transferable to
the constrained one, and many algorithms can be adapted to fit the added
condition. An example is given by L-BFGS-B, a version of the limited
memory BFGS that handles bound constraints on the optimizing variables
and that will be discussed in the following section.
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L-BFGS-B

L-BFGS-B [23] extends L-BFGS in that it ads the conditions li ≤ xi ≤ ui ∀i
where li, ui are lower and upper bound on each component of x. The op-
timization is performed by distinguishing between fixed and free variables
at each step using a basic gradient method; successively L-BFGS is applied
exclusively to the free variables to improve accuracy: the process is then
repeated.
This algorithm is particularly useful when simulating an optimal control
problem, since physically realizable pulses are always confined in amplitude
due to either experimental equipment limits or, more typically, to minimize
unwanted phenomena like as leakage, ionization, heating, decoherence, and
theoretical model breakdown.

For these mentioned reasons, for its particularly favorable convergence prop-
erties and its widespread implementation in several software packages, L-
BFGS-B is the preferred optimization method in this work and will be used
throughout Chapter 7.

Software implementations

Once the gradient has been calculated it can be directly fed into the opti-
mization toolboxes implemented in numerous programming languages, most
notably Python [24] and matlab [25] or standalone packages like Julia’s
Optim.jl [26] and OptimKit.jl [27].
For this work, Fortran’s L-BFGS-B version [28, 29] has been found to pro-
vide a robust implementation of the algorithm: moreover, the routines are
conveniently wrapped for both Python [24] and Julia [30]. Other packages
offer a more extensive customization in the line search algorithms [31]: how-
ever, no tangible advantage has been observed over the built-in methods
of L-BFGS-B which additionally provides low-level access to quantities of
interest during run-time.

4.3 Automatic differentiation

As we saw in the previous chapter, computing derivatives is a fundamental
operation in the maximization/minimization of an objective function and a
common requirement for a large class of numerical methods. As algorithms
gain in complexity, computing derivatives becomes a very challenging task:
for many problems, we cannot calculate derivatives analytically, but only
evaluate them numerically at certain points. In this section we qualitatively
describe some fundamental aspects of Automatic Differentiation (AD), a
method that will be explored in Section 7.2. The main ideas of this chapter
are taken from [32, 33], to which we refer for an in-depth review of this
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family of techniques.

Methods for the computation of derivatives in computer programs can be
classified into four categories: (1) hand-coded analytical derivatives; (2) nu-
merical differentiation using finite differences approximations; (3) symbolic
differentiation using expression manipulation in computer algebra frame-
works such as Mathematica; (4) AD, also referred to as algorithmic differ-
entiation.
Manual differentiation is time consuming, error prone and not applicable
to problems with implicit solutions. Numerical differentiation is simple to
implement but is subject to floating point precision errors and slow, espe-
cially in high dimensions; the method requires at least n evaluations, with
n being the number of partial derivatives required. Symbolic differentiation
addresses the weaknesses of both the manual and numerical methods, but
is particularly slow and memory intensive. Furthermore, manual and sym-
bolic methods require a formulation of the task as closed-form expression,
which rules out a large portion of problems. In contrast, AD is based on the
fact that, independently of the complexity, every computer written function
can be broken down to fundamental operations such as summations and
multiplications that can be easily differentiated. By iteratively applying the
chain rule AD is able to generate numerical derivative evaluations rather
than derivative expressions: this allows to obtain derivatives at machine
precision with only a small constant factor of overhead and (ideally) asymp-
totic efficiency.
For what has being said so far, it goes without saying that fundamental to
AD is the decomposition of differentials provided by the chain rule. Usually,
AD operates in two distinct modes, i.e. forward and reverse accumulation,
based on the direction in which the chain rule is applied.
We refer to [32] for an extensive review of this mechanisms: given the pur-
pose of this work we do not further indulge in technicalities.

4.4 Matrix exponentiation

The fundamental step to solve Schrödinger equation is the matrix exponen-
tiation (as in Eq. (3.15)) which is one of the most expensive operations in
solving the dynamics of a given system. We will first introduce the problems
that exact diagonalization faces and than present the Padé approximation
and the Krylov subspace methods for matrix exponentiation. In [34] is pre-
sented a thorough survey on matrix exponentiation algorithms, whereas we
will use [35, 36] as main reference for the following sections.
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4.4.1 Exact diagonalization

The starting point of an exact diagonalization algorithm is a appropriate
representation of the computational basis. Basis states can be encoded very
efficiently in a computer using the bit representation of integer variables and
identifying for e.g. a N spin-1/2 system the eigenvalues of the Ŝz operator
as |↓ 0 ≡ 0⟩ and |↑⟩ ≡ 1. In this manner we can relate any physical repre-
sentation to an index, simplifying operations with the basis list.
Once a basis list {bi}i,...,N is set up the matrix elements Ĥij = ⟨bi|Ĥ|bj⟩ can
be computed by considering the action of the constituents of the Hamiltonian
on each basis element: this operation returns the Hamiltonian matrix repre-
sentation. The resulting matrix can be diagonalized by standard numerical
algorithms yielding the eigenbasis {|Ei⟩}i,...,N with corresponding eigenener-
gies {Ei}i,...,N . It is then straightforward to compute the time evolution of
an initial state |ψ0⟩ as

|ψ(t)⟩ = e−iĤt |ψ0⟩ =
N∑
i=1

e−iEit ⟨Ei|ψ0⟩ |Ei⟩ , (4.23)

which is exact for all times.
A first approach to exponentiating the Hamiltonian, would consider its
eigenvector decomposition

Ĥ = RHdiagR
† , (4.24)

which exponentiate trivially to

Û = e−iĤt = Re−iĤdiagtR† ; (4.25)

the exponential can then be obtained by exponentiating each entry on the
main diagonal. Clearly, the maximal system size that can be treated in
this way is limited by the available computational resources. The dimension
of the Hilbert space to describe a system of size N is dN , where d is the
dimension of the local Hilbert space. Hence, writing a matrix representation
of a Hamiltonian means storing d2N numbers in memory: assuming the
matrix elements are all real and stored with double precision an Hamiltonian
matrix of a spin-1/2 system with N = 14 lattice sites already requires almost
2.2GB of memory. Moreover, the computational cost to diagonalize the
matrix grows exponentially, because it is polynomial in N . This obstacle
can be mitigated by taking into account certain symmetries of the system
but the size of system that are tractable with Exact Diagonalization (ED)
remains unavoidably limited. Approximations are thus necessary to obtain
numerically implementable solutions.
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4.4.2 Padé approximation method

In mathematics a Padé approximant is the approximation of a function by
a rational function of given order, i.e. the power series of the approximant
agrees with that of the function it is approximating. The (p, q)-Padé ap-
proximation to eA is defined by the relation

Rpq(A) = [Dpq(A)]
−1Npq(A) , (4.26)

where

Npq(A) =

p∑
j=0

(p+ q +−j)!p!
(p+ q)!j!(p− j)!A

j (4.27)

and

Dpq(A) =

q∑
j=0

(p+ q +−j)!p!
(p+ q)!j!(p− j)! (−A)

j . (4.28)

Padé approximants are used e.g. in SciPy’s expm method (see Section 7.4
for a comparison).

4.4.3 Krylov subspace methods

Krylov subspace methods are a family of algorithms based on the exact rep-
resentation of the many-body Hilbert space that allows for a reduction both
in terms of memory and computational complexity. In many application, as
for the quantum time evolution, we do not really need the full representation

of the matrix e−iĤt but rather its action on some given vector [37].
The central idea of the Krylov subspace methods is to approximately project
the exponential of the large intractable matrix onto a small Krylov subspace,
after which the only effective exponential operation computed is with a much
smaller matrix size.
Formally, we are interested in approximations to the matrix exponential
operation eAv of the form

eAv ≈ pm−1(A)v , (4.29)

where A is a matrix of dimension N , v is a normalized vector, and pm−1 is a
polynomial of degree m− 1; pm−1(A)v is an element of the Krylov subspace
defined by

Km = span {v,Av, . . . , Am−1v} . (4.30)

For the general non-symmetric case, we can apply the Arnoldi algorithm [38]
or the non-symmetric Lanczos algorithm [39]. Both reduce to the symmetric
Lanczos algorithm when the matrix A becomes symmetric.
This Arnoldi algorithm is applied to a (generally non-symmetric) matrix
A and a random vector v. Consequently, {v1, v2, . . . , vm} is built as an
orthonormal basis of the Krylov subspace Km and Vm := [v1, v2, . . . , vm] is
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defined as an orthogonal matrix of dimensions n×m. If we let Hm := [hij ]
be the m×m upper Hessenberg matrix1 then

AVm = VmHm + hm+1,mvm+1e
T
m . (4.31)

Thanks to the orthogonality of Vm, we have Hm = V T
mAVm, which is the

wanted projection of A onto the Krylov subspace Km with respect to the
basis Vm. Consequently, the Krylov subspace method for matrix exponenti-
ation consist in the approximation

eAv ≈ VmeHme1 . (4.32)

Krylov subspace methods are implemented e.g. in the Python package QuS-
pin [40] and KrylovKit.jl [41] for Julia. This latter will be used in Sec-
tion 7.4 to compare exact and approximate state dynamics calculations.

1A square n× n matrix A is said to be in upper Hessenberg form if ai,j = 0 ∀i, j with
i > j + 1. A lower Hessenberg matrix is the transposed of an upper Hessenberg matrix.
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Chapter 5

Quantum optimal control
theory

Control is a key component in turning science into technology [42]. In a
broad sense, the goal of control is to provide the experimentalist with exter-
nal parameters to steer a given dynamical system in a determined way rather
than passively observing its dynamics. Quantum Optimal Control (QOC)
transfers this idea to quantum systems dynamics and thus deals with de-
signing an optimal control field modulation that most precisely implements
a desired quantum operation with minimum energy consumption and max-
imum robustness against hardware imperfections as well as external noise
[43]. Practically, the desired quantum dynamics is realized with the help of
electric, magnetic, or electromagnetic control fields.
In this chapter we will discuss the main aspects of control theory, describing
its salient features: after a general introduction to the problem of QOC we
will give some definition to characterize the controllability of a system and
the physical time limits to the transformation one can operate. We will then
present the cost function used to find the control realizing the unitary (or
nonunitary) operations and introduce gradient-based optimal control with
two prime examples. Finally, we will describe a method to efficiently com-
pute exact derivatives from the perspective of a QOC problem.

5.1 Applied quantum optimal control

We consider an Hamiltonian of the form

Ĥ = Ĥ(t,Ω(t)) = Ĥd(t) +
∑
k

ck(t)Ĥ
c
k(t,Ω(t)) , (5.1)

ck(t) is a continuous field parameterized by the control vector Ωk. The
drift Hamiltonian Ĥd(t) represents parts of the system dynamics that is

31
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uncontrollable. The control Hamiltonian Ĥc
k(t,Ω(t)) on the other hand,

depends on the control Ωk and is used to realize the desired dynamics. To
fix the ideas, for a single-particle system the drift could be the kinetic energy
Ĥd(t) = T̂ and the control Hamiltonian the potential profile Ĥc = V̂ (x,Ω).
It is common practice (see [44]) to use the discretization (Section 4.1) as a
map between the continuous fields of Eq. (5.1) and the control vector,

ck(t) =

N−1∑
i

Ωk,iΠi(t,∆t) , (5.2)

Πi(t,∆t) ≡ [Θ(t− i∆t)−Θ(t− (i+ 1)∆t)] , (5.3)

Π and Θ being the rectangular and Heaviside function respectively [14].

5.1.1 Controllability

In this section we provide a quick overview of controllability in the quantum
context: for a more in-depth description of the central concepts from linear
algebra and differential geometry which are here neglected, we refer to [45].
Let Γ = [γi]

N
i=1 be a (finite) set of configurations for a given quantum system

satisfying Eq. (5.1): the system is said to be controllable if for any pair of
configurations γ1, γ2 ∈ Γ there exists a set of time-dependent controls un
that can drive the system from the initial configuration γ1 to the final one γ2
in a finite time t. As we will later see for the cost functions in Section 5.1.3,
depending on the specific control problem, the notion of configuration refers
to either the state of the system, the expectation value of a specific observ-
able or the evolution operator Û(t, t0). For an n-level closed system, the
unitary Û(t, t0) with initial conditions Û(t0, t0) = 1 varies on the Lie group
of (special) unitary matrices U(n) (SU(n)). In particular, we can distinguish
between:

— Operator-Controllability (OC). The system is operator-controllable if
every desired unitary operation on the state can be performed using
an appropriate control field. Operator controllability in the unitary
case is referred to as complete controllability: for this special case
every unitary operator Û is accessible from the identity operator 1 via
a (common) path γ(t) = Û(t, t0) where Û(t, t0) satisfies Eq. (3.5) [46].

— Pure-State-Controllability (PSC). The system is pure-state-controllable
if for every pair of initial and final states, |ψ0⟩ and |ψf ⟩ there exist a
vector of controls un and a time t > 0 such that the solution of the
time evolution at time t with initial condition |ψ0⟩ is |ψ(t)⟩ ≡ |ψf ⟩.

— Equivalent-State-Controllability (ESC). The system is equivalent-state-
controllable if, for every pair of initial and final states, |ψ0⟩ and |ψf ⟩
there exist a vector of controls Ωn and a phase factor ϕ such that
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the solution of the time evolution with initial condition |ψ0⟩ satisfies
|ψ(t)⟩ = eiϕ |ψf ⟩ at some t > 0.

It is immediate to see how having PSC is as good as having ESC.
With the given definitions, it can been demonstrated [47, 48] that a nec-
essary and sufficient condition for OC is that the the Lie group generated
by the system’s (traceless) Hamiltonian is U(N) (SU(N)). Nevertheless,
the controllability criterion is not a guarantee of success: even if a system
is controllable, finding the optimal driving pulses can become arbitrarily
difficult. On the contrary, it might still be possible to identify a specific
transformation after a given time even if a system is not controllable: thus,
the controllability criterion can only infer on the theoretical possibility of
the existence of all such transformations [49].

5.1.2 Quantum speed limit

The Quantum Speed Limit (QSL) provides fundamental bound on how fast
a quantum system can evolve between the initial and the final states, a
property that relates to the time-energy uncertainty relation. The notion
of QSL naturally arises in time-optimal control theory, where the goal is
to achieve quantum operations with both high accuracy and speed. This
approach is opposed to the one of the adiabatic theorem [50], for which one
leaves enough transition time and only varies dynamical parameters of the
Hamiltonian slowly, such that the instantaneous eigenstates are kept well
under control. However, this strategy is too slow for practical uses and does
not guarantee for fast times for the initial and final state to be eigenstates
of the system.
If we want to maintain coherence and the high-speed criterion of driving
the quantum system to its target as fast as possible, for every non-trivial
quantum control problem a lower bound on the transfer time occurs. This
limit is not to be attributed to numerical or experimental imperfections
nor our lack in finding a better solution. As theoretical esteem, there exist
two independent relations that define this minimal time τQSL, the first one
known as Mandelstam-Tamm bound [51],

τ ≥ τQSL =
πℏ
2∆E

, (5.4)

where ∆E is the energy variance
√
⟨ψ0 | (H − E)2 |ψ0⟩ and E = ⟨ψ0 |H |ψ0⟩.

Alternatively, there is the Margolus-Levitin bound [52],

τ ≥ τQSL =
πℏ
2E

; (5.5)
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in general, the two speed limits are independent and the minimal evolution
time is therefore given by

τ ≥ τQSL = max

{
πℏ
2∆E

,
πℏ
2E

}
=

πℏ
E+∆E− |E−∆E| . (5.6)

As a final remark, a more direct approach consists in considering a cost
functional resulting from the optimization process as a function of the time
evolution window T : the threshold is then found for times T ≥ τQSL above
which the objective functional reaches values arbitrarily close to the desired
ones [53].

5.1.3 Cost functions

Upon temporal discretization of the propagators (see Section 4.1), the op-
timal control task consists in finding appropriate control vector(s) Ω that
correspond to local (and hopefully global) minima in the control landscape:
the latter is in its most general form defined by the cost

J(u) = J
(
ÛNt−1 . . . Û2Û1

)
. (5.7)

The expression of J(u) depends on the particular unitary task (as e.g. gate
synthesis, state transfer, or maximization of a given observable, see [54])
and whether a pure state or density matrix description is considered. In the
following we will give a short overview of the different expressions depending
on each specific case.

Average error

As shown in [55] the state fidelity of a unitary (or anti-unitary) map Û and
a general linear, trace-preserving, transformation M acting on an initially
pure state |ψ⟩ ⟨ψ| is given by

F|ψ⟩⟨ψ| =

∫
dψTr

[
Ûideal |ψ⟩ ⟨ψ| Û†

idealM [|ψ⟩ ⟨ψ|]
]
, (5.8)

where the average is defined by integrating over all pure input states. We
can in turn define the average error as

J|ψ⟩⟨ψ| = 1− F|ψ⟩⟨ψ| . (5.9)

For single qubits the expression simplifies to

EG = 1− 1

6

∑
j=±x,±y,±z

Tr
[
ÛidealρjÛ

†
idealM [ρj ]

]
, (5.10)

where x, y, z represent the 6 axial states on the Bloch sphere. From this,
one can clearly see how the worst error for the qubit case is less than 6 times
the average error.
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Overlap fidelity

Let us first consider the average complex overlap of the target states with
the forward-propagated states. If we denote with s the dimension of the
Hilbert subspace (which coincides with the number of objectives), this is
given by

fτ =
1

s

s∑
k=1

w(k)τ (k) , τ (k) =


⟨ψ(k)

tgt |ψ(k)(T )⟩ in Hilbert space

Tr
(
ρ̂
†(k)
tgt ρ̂

(k)(T )
)

in Liouville space

,

(5.11)

where the superscript (k) labels each objective (e.g. a specific state for the
case of a gate transfer). The weight attributes w(k) are not automatically
normalized, but rather assumed to have values such that the resulting fτ
lies in the unit circle of the complex plane. This means that the weights
should sum to s and are usually considered w(k) ≡ 1 ∀k.

We can now introduce two measures of “closeness” between quantum states,
namely the state-to-state phase-insensitive fidelity Fss and the square-modulus
fidelity Fsm,

Fss =
1

s

s∑
k=1

w(k)|τ (k)|2 , Fsm = |fτ |2 , (5.12)

both defined ∈ [0, 1]. Solving an optimal control problem with Fsm as a
function of merit is simpler in the sense that we are neglecting the phase
information. The same ideas can be translated for the purposes of evaluating
quantum gates, where a standard measure of how close the two unitary
operations are to one other is given by the overlap fidelity [44],

Φ4 =
1

s2

∣∣∣Tr(Û†Û†
get(T )

)∣∣∣2 ; (5.13)

the squaring removes the global phase and gives the interpretation of a
probability. The reformulation of the same expression with the overlaps
τ (k) instead of gates leads to Fsm and can be trivially obtained with a few
analytical steps. The expression in Eq. (5.13) is related to the average
fidelity in Eq. (5.8) through [56],

F|ψ⟩⟨ψ| =
1

dQ + 1
(1 + dQΦ4) . (5.14)

Subspace fidelity

For higher dimensional cases where the qubits are embedded in a larger
Hilbert space (as e.g. in presence of leakage channels), one can instead use
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[57]

Φ5 =
1

s2

∣∣∣Tr(Û†PQÛ
†
get(T )PQ

)∣∣∣2 , (5.15)

where PQ is a projector onto the computational subspace. The notation of
the subscripts for Φ is the one adopted in [44], to which we refer for further
discussion.

Given a fidelity F, the actual cost function, the so called infidelity, is then
simply defined as 1−F, with the optional addition of a re-scaling factor 1/2
in front.
We do not address the more complicated case of a fidelity measure for inco-
herent dynamics.

5.1.4 Gradient-based quantum optimal control

In this work we focus on derivative-based local optimization methodologies
characterized by update rules that rely on local gradient and Hessian calcu-
lation of the optimization objective: the search direction p(k) is calculated
from the current local gradient (e.g. steepest descent, conjugate gradient,
quasi-Newton directions) and possibly also the Hessian (e.g. Newton direc-
tion), as seen in Section 4.2.
The Krotov and GRadient Ascent Pulse Engineering (GRAPE) algorithm
constitute two fundamental gradient-based approaches to the optimal con-
trol problem and will be briefly presented in the following section.

5.1.5 The GRAPE and Krotov algorithm

The key idea of the GRAPE algorithm [44] is to Taylor-expand the yield
functional JF(Ω) to first order in Ω,

JF(Ω+∆Ω) ≈ JF(Ω) + ∆Ω
dJF
dΩ

; (5.16)

the update to the controls can be derived to be

∆Ω = Ω(i+1)(t)− Ω(i)(t) = −2α

ℏ
Im

{〈
χ(i)(t)

∣∣∣∣∣ ∂Ĥ∂Ω(i)

∣∣∣∣∣ψ(i)(t)

〉}
, (5.17)

where i is the iteration number and α the search length: the update ∆Ω is
then being applied on the previous pulse for all times at once which makes
it a concurrent algorithm.
The state trajectory |ψ(i)(t)⟩ (|χ(i)(t)⟩) are both solutions to the Schrödinger
equation and are obtained from a forward (backward) propagation of the sys-
tem with the previous (next) pulse Ω(i). The function to be maximized is
the overlap squared with the target state |ψtgt⟩, | ⟨ψtgt |ψ(T )⟩ |2 for a time
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window T . For higher precision and faster convergence rates, second order
information can also be taken into account in Eq. (5.16), which however be-
comes prohibitively computationally complex for most practical scenarios:
instead, quasi-Newton algorithms are thus employed.

The Krotov algorithm has been developed before GRAPE: formally, there
are two different algorithms that go under the name “Krotov”. The first one
[58] is based on a forward propagation in time, updating controls as well
as the state trajectory |ψ(t)⟩ simultaneously which makes it a sequential
algorithm: the central equation for updating the controls reads

Ω(i+1)(t) = Ω(i)(t) + αS(t)Re

{〈
χ(i)(t)

∣∣∣∣∣ ∂Ĥ∂Ω(i)

∣∣∣∣∣ψ(i+1)(t)

〉}
, (5.18)

with the same definitions seen for the GRAPE case and S(t) ∈ [0, 1] being
the “update shape” function. In contrast, in the formulation presented in
[59], the sweeping procedure is applied also for the backward propagation
on the adjoint equation.
An interesting aspect of the Krotov method is that it presents the so called
monotonic convergence property for a discretization time δt → 0, which
gives an exclusively positive increase in the yield functional at every itera-
tion, provided that a proper regularization term R is added to the objective
JF = JF + R. In practice however, due to the stringent condition of small
time steps, true convergence cannot be guaranteed and we are left with a
sub-optimal solution.

We close this section with a few remarks on the pathologies of gradient-based
algorithms, finally proposing a novel approach to the problem.

Numerical issues

As highlighted in [7, 60] current challenges and goals of modern control
design are accuracy and computational speed. In the framework of gradient-
based methods first-order methods are however prone to the build-up of
errors in the Hessian approximation (which build iteratively from gradients
in standard quasi-Newton methods, see Section 4.2.1) that eventually lead
convergence astray. An alternative circumventing such issues was presented
in [61] and will be discussed in the following section.

5.2 Efficient exact derivatives

In this chapter we describe a method to efficiently compute exact derivatives
with an approximate dynamics. In short, the basic idea is to derive ana-
lytically exact gradients and Hessian for an approximated dynamics using
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Figure 5.1: The planes are spanned by control functions u(t) with associated func-
tional values given by the color-map, dots denote optimization iterates. Following
the identification of optimization landscape with a dynamical scheme, we can derive
analytically exact expression for the derivatives in both the exact and approximate
scenario. As here abstractly depicted, exact derivatives in an exact landscape (left
panel) are expensive but ultimately lead to optimal results: despite being cheaper,
approximate derivatives may not. On the other hand, exact derivatives on the
approximated landscape (right panel) are significantly cheaper (as the dynamics
itself) and yield faithful optimal results under appropriate conditions. Figure from
[61].

Suzuki-Trotter propagation schemes: these are interpreted as (not necessar-
ily dynamically exact) optimization landscapes, for which a visual represen-
tation is given in Fig. 5.1. If we additionally introduce the assumption of
a control-diagonal Hamiltonian, the derivative calculations greatly simplify.
At this point, analytically exact derivatives can be computed very efficiently,
and are upper bounded only by the time it takes to propagate states which
is also particularly cheap to implement due to the dynamical approximation
adopted [61]. By using this two-fold assumption, in [61] is obtained a sig-
nificant reduction in complexity of the analytical exact derivatives and in
parallel a reduced propagation time due to the dynamical approximation,
which directly address the main challenges of accuracy and speed mentioned
in the previous section.
With these new tools, for the same optimization wall-clock time, a common
initial guess in the optimization landscape leads to a different solution and
hence manifests a performance gap (Fig. 5.1), which becomes particularly
appealing as the system size enters the many-body regime, where exact di-
agonalization, exact propagation, and associated exact derivatives are no
more numerically feasible to compute. In the following we will dive deeper
into the theoretical aspects of this approach (we will refer to it as Jensen’s
method, for the first author in [61]), discussing its properties and limits, in
particular its generalization to scenarios with more than one control.
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General framing

Independently of the particular unitary task, the cost function is in the
form of Eq. (5.7), which in turn leads to the same principal expression for
the control derivative calculations, specifically

(∇J)n ∼
∂

∂un

(
ÛNt−1 . . . Û2Û1

)
(5.19)

(H(J))n,m ∼
∂2

∂un∂um

(
ÛNt−1 . . . Û2Û1

)
. (5.20)

For simplicity, we are going to restrict ourselves to the case of a pure sin-
gle state transfer |ψini⟩ → |ψtgt⟩, ideally obtaining unit fidelity given by
Eq. (5.11) and here rewritten with a slight change of notation,

F = | ⟨ψtgt |ψ(T )⟩ |2 ≡
∣∣∣〈ψtgt

∣∣∣ Û(T ; 0) ∣∣∣ψini

〉∣∣∣2 , (5.21)

where |ψini⟩, |ψtgt⟩ are the initial and final states respectively. Considering
the state-transfer case can be done without loss of generality since the largest
numerical effort is dictate by Eq. (5.19), thus any other unitary control task
can be seen as a straight generalization of this simple case.
The state |ψ(T )⟩ ≡ |ψNt⟩ = Û(T ; 0) |ψini⟩ at final time T is produced by
step-wise evolution according to |ψn+1⟩ = Ûn |ψn⟩. The associated fidelity
cost is JF = (1−F)/2. We re-write the fidelity as F = o⋆o, with o being the
overlap (or transfer amplitude) defined as

o = ⟨χNt |ψNt⟩ = ⟨χNt |ÛNt−1 . . . ÛnÛ1|ψ1⟩ , (5.22)

where |χNt⟩ ≡ |ψtgt⟩ is an auxiliary state with |χn⟩ = Û
†
n |χn+1⟩. This

rewriting allows for the derivatives of the cost function to be expressed as

∂JF
∂un

= −Re

(
o⋆

∂o

∂un

)
(5.23)

∂2JF
∂un∂um

= −Re

((
∂o

∂um

⋆ ∂o

∂un
+ o⋆

∂2o

∂un∂um

))
,

while for the overlap derivatives it holds

∂o

∂un
=

〈
χNt

∣∣∣∣ ∂

∂un

(
ÛNt−1 . . . ÛnÛ1

) ∣∣∣∣ψ1

〉
(5.24)

∂2o

∂un∂um
=

〈
χNt

∣∣∣∣ ∂2

∂un∂um

(
ÛNt−1 . . . ÛnÛ1

) ∣∣∣∣ψ1

〉
.

Since Eq. (5.23) depend on Eq. (5.24), the problem has now moved to analyt-
ically calculate the latter, will clearly depend on the details of the propagator
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Ûn.

For the purpose of evaluating Eq. (4.3), we consider numerical quadratures
based on the left-point rectangle rule and the trapezoidal rule,

∫ tn+δt

tn

Ĥ(t, u(t)) dt ≈ δt


Ĥ

(1)
n ≡ 1

2

(
Ĥn+1 + Ĥn

)
(trapezoidal)

Ĥ
(2)
n ≡ Ĥ (tn, un) (rectangle)

, (5.25)

with integration errors O
(
δt3
)
and O

(
δt2
)
, respectively if the underlying

time dependence is assumed continuous and exactly known; for a piece-wise
constant time dependence the rectangular approximation becomes exact.
We refer to the exact propagators as

ÛEX1
n = exp

(
−iĤ(1)

n δt
)

ÛEX2
n = exp

(
−iĤ(2)

n δt
)
, (5.26)

and their corresponding Suzuki-Trotter (or trotterized) propagators as, re-
spectively

ÛST1
n = Û

c/2
n+1Û

d
nÛ

c/2
n ≈ ÛEX1

n , ÛST2
n = Ûc/2n ÛdnÛ

c/2
n ≈ ÛEX2

n , (5.27)

with definitions for the control and drift exponentials as

Ûc/2n ≡ exp

(
−iδt

2
Ĥ(2)c
n

)
, Ûdn ≡


exp

(
−iĤ(1)d

n δt
)
for ST1

exp
(
−iĤ(2)d

n δt
)
for ST2

. (5.28)

The separation of the operators is due to the Trotter product formula (see
e.g. also [62]) which gives a limit where the factorization eST = eSeT holds
in a weak sense, even when S and T are non-commutative. In more formal
terms, if S and T are bounded self-adjoint operators on H with domains
D(S) and D(T ) respectively, then for every t ∈ R and for all ξ ∈ D(S+T ) =
D(S) ∩D(T ),

lim
n→∞

∥∥∥e−iδt(S+T )ξ − (e−i δtn Se−i δtn T) ξ∥∥∥ = 0 . (5.29)

This types of factorization are often referred to as Suzuki-Trotter expansions
(hence the name and notation of Eq. (5.27)) and have Trotterization errors
in the order O(tp), where p = 2, 3 depending on the approximation scheme
employed. We do not elaborate on the matter and refer to [63] for a more
in-depth analysis.
The local O (δtp) Trotterization errors accumulate throughout the Nt − 1
evolutions of Eq. (4.2), yielding a total error of

(Nt − 1) δtp ≈ (T/δt)δtp = Tδtp−1 ∼ O
(
δtp−1

)
. (5.30)
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It is convenient to interpret this as an approximation error with respect to
the exact landscape [61],

JST
F (u) = JEX

F (u) + OJST
F

(
δtp−1

)
(5.31)

where we dropped the subscripts for notational simplicity.

Analytical results

We can now come back to the problem of computing the expressions in
Eq. (5.24) using the propagators in Eq. (5.27); we report in Appendix A the
full derivation. We simplify the notation, identifying ST2 ≡ ST. First, we
consider the recursive commutator,

[X,Y ]k = [X, [X,Y ]k−1] , [X,Y ]0 = Y . (5.32)

The key aspect of this approach is considering the derivative of the exact
propagator in the form

∂ÛEX
n

∂un
= ÛEX

n (−iδt)
∞∑
k=0

ikδtk

(k + 1)!

[
Ĥn,

∂Ĥc
n

∂un

]
k

, (5.33)

where ∂Ĥc
n/∂un = ∂Ĥn/∂un is the control derivative Hamiltonian. Since the

Hamiltonian and its control derivative generally do not commute,
[
Ĥn,

∂Ĥc
n

∂un

]
̸=

0, the recursive commutator is not guaranteed to terminate. This implies
that in the most general case the summation has to continue until machine
precision is reached or up to a desired accuracy. A similar expression to
Eq. (5.33) can be found for the trotterized propagators in Eq. (5.27), with
the substitution Ĥn → Ĥc

n in the first argument of the recursive commu-
tator. If we now introduce the additional hypothesis of a diagonal control
Hamiltonian, Eq. (5.33) simplifies dramatically as two diagonal matrices

always commute,
[
Ĥc
n,

∂Ĥc
n

∂un

]
k
= ∂Ĥc

n
∂un
· δ0,k:

∂

∂un

(
ÛST1
n ÛST1

n−1

)
= (−iδt) · ÛST1

n

∂Ĥc
n

∂un
ÛST1
n−1, (5.34)

∂ÛST2
n

∂un
= − iδt

2

(
∂Ĥc

n

∂un
ÛST2
n + ÛST2

n

∂Ĥc
n

∂un

)
. (5.35)
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We thus obtain the wanted gradient elements,

∂JEX
F

∂un
= Re

(
io⋆

〈
χn

∣∣∣∣∣∂Ĥc
n

∂un

∣∣∣∣∣ψn
〉)

δt+ O∇JEX
F

(
δt2
)

(5.36)

∂JST1
F

∂un
= Re

(
io⋆

〈
χn

∣∣∣∣∣∂Ĥc
n

∂un

∣∣∣∣∣ψn
〉)

δt (5.37)

∂JST2
F

∂un
= Re

(
io⋆

2

{〈
χn+1

∣∣∣∣∣∂Ĥc
n

∂un

∣∣∣∣∣ψn+1

〉
+

〈
χn

∣∣∣∣∣∂Ĥc
n

∂un

∣∣∣∣∣ψn
〉})

δt ,

(5.38)

where the remainder term for the exact propagator inherits the infinite series
of Eq. (5.33)

O∇JEX
F

(
δt2
)
∝
〈
χn

∣∣∣∣∣
( ∞∑
k=1

ikδtk

(k + 1)!

[
Ĥn,

∂Ĥc
n

∂un

]
k

)∣∣∣∣∣ψn
〉
δt . (5.39)

An interesting thing to notice is that the gradient for the trapezoidal rule
corresponds to the first-order approximation k = 0 of the exact expression.
Looking back at Eq. (5.31), we can distill a central argument of Jensen’s
method: the derivatives should match the dynamics. Exact derivatives for
an approximate landscape offer an increased accuracy at a lower computa-
tional cost.

Generalization to multiple controls

We now give the extension of the discussion beyond the case of a single,
generically parameterized control Hamiltonian Ĥc(t,u(t)). We start from
defining a set of K controls and their corresponding control Hamiltonians
by

C(t) =
{
Ĥc

(k)

(
t, u(k)(t)

)}K
k=1

= ∪Qq=1Cq(t) , (5.40)

sorted into a number Q of sets Cq of mutually commuting elements with

K =
∑

q |Cq(t)|. We denote with R̂q(t) the unitary basis change operator
that simultaneously diagonalizes the elements of Cq(t) from a chosen refer-
ence basis.
The core idea here is that Jensen’s method depends on the computational
feasibility of maintaining the diagonality criteria for the control Hamiltoni-
ans. For this to be an effective approach for Q > 1, performing the basis
change R̂n,q must be significantly cheaper than the original dense exponen-
tiation. As stated in [61], Sec. V, “The one exceptional instance where
this condition is not met occurs when R̂n,q depends on the control value
and, simultaneously, no closed analytical solution to the transformations
are known. This implies that R̂n,q must be obtained anew in each iteration



5.2. Efficient exact derivatives 43

by numerical diagonalization, which is as expensive as dense exponentiation.
Otherwise, R̂n,q and products involving these need only be calculated max-
imally once and can be stored on the disk and be loaded into memory at
run-time.”
If we further impose for the controls to be bilinear, i.e. simply a scaling
factor to the matrix diagonalization, Ĥc

(k)(t,u(t))→ u(k)(t)Ĥ
c
(k)(t), this ex-

ceptional case can be directly ruled out. In particular, this is valid (but not
exclusively) for a transmon Hamiltonian, which constitutes the one physical
case considered in this work.

Further considerations to address these specificities will be discussed in
Chapter 7, where we will also present some progresses towards an increased
generalization of Jensen’s method.
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Chapter 6

Tensor networks

The exponential growth of the Hilbert space dimension poses a fundamental
limit to the simulation of many-body quantum systems: the exact treatment
based on a full uncompressed representation of the wave function becomes
prohibitively expensive already at small system sizes. This so-called curse
of dimensionality is in reality (at least in part) misleading: what bounds the
simulation capabilities of classical resources is not so much the size of the
system as the amount of entanglement.
In this regard, Tensor Network (TN) ansätze have proven to be an incredi-
bly successful technique, with far reaching applications in condensed matter,
statistical models and machine learning [64]. TNs allow to target the (small)
“corner” of the full Hilbert space occupied by the physically relevant states,
usually characterized by low entanglement, with sub-exponential resources
[65]. In such approaches, the wave function is encoded as a tensor contrac-
tion of a network of individual tensors: the power of such representations is
owed to the fact that the size of the corner is governed by favorable so-called
area scaling laws [66] for the entanglement entropy [67].
In the numerical regime, TNs provide variational classes of states which
can be efficiently described, most notably Matrix Product States (MPS),
projected entangled pair states (PEPS), and multiscale entanglement renor-
malisation ansatz (MERA).
In the following we will give a brief overview of the formalism of TNs and
subsequently focus on the class of MPS, presenting some of its key properties,
and introduce a variant of the Time Evolution Block-Decimation (TEBD),
a standard tool in numerical many-body physics. Images in this chapter are
taken from the open source project in [68].
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Figure 6.1: Example of TNN for a tensor contraction in the form
∑

j MijNjkl.

6.1 Tensor diagram notation and tensor operations

Tensors are the generalization of vectors in any dimension. In this context,
an N -rank tensor is an object with N indices in the form Ti1,i2,...,iN , where
ij labels each index.
Tensor Network Notation (TNN) is a graphical notation used to represent
tensors and tensor operations and first introduced by R. Penrose in the early
1970s [69]. The widespread success of this representation lies in its graphical
and intuitive nature that does not sacrifice rigorousness: many general prop-
erties of the quantum states can be identified directly from the structure of
the network needed to describe them.
TNN can be seen as a generalization of Einstein summation notation: ten-
sors are notated by shapes, tensor indices are notated by lines and a con-
traction (or summation) over indices is implied by connecting two index
lines (see Fig. 6.2). Representation conventions than varies from author and
context: for example, shapes or shadings can be used to mark properties
of tensors and arrows on lines to distinguish contravariant and covariant
indices. An example is given in Fig. 6.1.
TNN has various benefits, the main feature of which is the ability to repre-
sent various operations, such as a trace, tensor product, or tensor contraction
in a straightforward manner. For instance, the tensor product between two
tensors A and B is the element-wise product of all the components,

[A⊗B]i1,...,iNA
,j1,...,jNB

:= Ai1,...,iNA
·Bj1,...,jNB

, (6.1)

with rank(A) = NA and rank(B) = NB and is obtained in diagrammatic
notation by placing 2 tensors next to one another (see Fig. 6.3).

Figure 6.2: Example of tensor contraction, which can be seen as a tensor product
followed by a summation over the connected indexes
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Figure 6.3: Outer product between 2 tensors in diagrammatic form.

Figure 6.4: Trace of a tensor in diagrammatic form.

Next, from a tensor A having two indexes m,n with identical dimension
(dm = dn), the partial trace over these indexes is the joint summation

Trm,n(A)
N∑
α=1

Ai1,...in−1,α,in+1,...,im−1αim+1,...iN , (6.2)

which is simply obtained graphically by connecting two index lines of the
same tensor (see Fig. 6.4).

We can now give a single definition of a tensor network: a tensor network
is a collection of tensors connected via contracted links (indices). Using
a TN as many-body wave function ansatz for a system with local Hilbert
space dimension p and N components, the quantum many body state can
be written as

|Ψ⟩ =
p∑

i1,...,iN=1

T i1...iN |i1⟩ ⊗ · · · ⊗ |iN ⟩ , (6.3)

with {|i⟩}pi=1 a canonical basis of the i-th subsystem. The complex wave
function coefficients determine the state uniquely: the TN expresses the
many-body state as the contraction of a set of smaller rank tensors

{
T (q)

}
q=1,...Q

over virtual (contracted) indices {αi}i=1,...L, namely

T i1...iN =
∑

α1,...,αN

T
(1)
{i}1{α}1

T
(2)
{i}2{α}2

. . .T
(Q)
{i}Q{α}Q

, (6.4)

with Q and L the number of nodes and links respectively.

With this new formalism at hand, there are several quantities of interest
obtainable from a TN representations: in this discussion we will focus only
on the state overlap and the Von Neumann entanglement entropy.
For any two states |Ψ⟩ and |Ψ′⟩, their overlap can be computed with the
same numerical cost as for the state norm, i.e. in polynomial computational
time (a property which is referred to as efficient contractibility). This is
always the case for loop-free TN (i.e. without closed cycles in the network
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geometry) as MPS to which we will limit our discussion.
Given then a loop-free TN, we can consider its bipartition A and B, which
will in turn correspond to the bipartition of the system: by contracting the
two sub-networks we can compute the Von Neumann entropy (or bipartition
entanglement, entanglement entropy) between the two.
Formally, for a bipartition of the TN |Ψ⟩ into partitions A and B, we first
have to introduce the reduced density matrix with respect to system A as

ρA = TrB |Ψ⟩ ⟨Ψ| =
∑
α

pα |ψAα ⟩ ⟨ψAα | , (6.5)

with pα being the eigenvalues of ρα. The entropy SVN of the sub-network
A is then defined as

SVN(A) = −Tr ρA log ρA = −
∑
α

pα log pα , (6.6)

and is a measure of the amount of entanglement between the partitions A
and B. Naturally, the entanglement entropy can be computed for all the
possible bipartition of the network, that is for every link connecting two sites.

We will now introduce MPS, a particular class of TNs that will be used to
study a many-body transmon chain in Chapter 7.

6.2 Matrix product state and matrix product op-
erator

The MPS (also referred to as Tensor Train (TT)) TN is a factorization of a
tensor with N indices into a chain-like product of three-index tensors. An
MPS of a tensor T can be expressed in traditional notation as

T s1...sN =
∑
{α}

As1
α1
As2
α1α2

. . .AsN
αN−1

, (6.7)

where the indices α are summed over; this is equivalent in diagrammatic
notation to Fig. 6.5.
The dimension of the indices α (which can vary from bond to bond) is

referred to as bond dimension m (or TT-rank, virtual dimension) and is a
fundamental parameter of an MPS, controlling its expressivity. Via its bond
dimension, an MPS can interpolate between a fully separate state and its
correct representation: if we consider a tensor T s1,...,sN having N indices

Figure 6.5: Diagrammatic representation of an MPS for 6 sites.
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all of dimension d, then this tensor can always be represented exactly as an
MPS with bond dimension m = dN/2. In most applications the MPS form
is used as an approximation and m is either fixed at a moderate size, or
determined adaptively.
If a generic tensor necessitates of dN parameters (exponential in N) to
be completely determined, representing the same tensor via MPS requires
Ndm2 (linear in N) parameters, a number that can be reduced even further
by imposing or exploiting certain constraints on the factor tensors. Typi-
cally, a maximal discarded weight is introduced as control parameter, based
on which the bond dimension is adjusted dynamically such that it is minimal
with the constraint that the allowed discarded weight is not exceeded.

Leaving for a moment formalisms aside, if one thinks of an MPS as pa-
rameterizing a large vector in a high-dimensional space, then an Matrix
Product Operator (MPO) is the generalization to the case of a matrix act-
ing in the same space. More rigorously, in analogy to an MPS, an MPO
is a factorization of a tensor with N covariant and N contravariant indices
into a contracted product of smaller tensors, each with one of the origi-
nal contravariant and covariant indices and bond indices connecting to the
neighboring tensors. This can be expressed in traditional notation as

M s1...sN
s′1...s

′
N

=
∑
{α}

As1α1

s′1
As2α2

α1s′2
. . .AsN

αN−1s
′
N
, (6.8)

which is equivalent in diagrammatic notation to Fig. 6.6.
One particularly useful application of MPOs is representing sums of local

terms in a compressed manner, which becomes especially convenient for
algorithms involving MPSs [70].

6.3 Time-evolution block-decimation

Time evolution is the fundamental operation for quantum optimal control.
In this section we present a variant used in [67] and inspired from [71] which
is be more tailored to the structure of our problem, thus allowing to speed up
computations. For a complete derivation of the traditional TEBD algorithm
we refer to [72].

Figure 6.6: Diagrammatic representation of an MPO for 6 sites.
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Time evolution block decimation for trotterized propagators

The TEBD (or Trotter decomposition) algorithm is based on a Trotter-
Suzuki [62] decomposition and successive approximation of the time-evolution
operator Ûexact(δt). We report here the main calculation as shown in [67]
to derive a TEBD scheme for the trotterized propagators in Eq. (5.27) and
the Hamiltonian in the form (see Section 7.1.2)

Ĥn =
N∑
j=1

∆j b̂
†
j b̂j +

1

2
δj b̂

†
j b̂j

(
b̂†j b̂j − 1

)
+
∑
⟨i,j⟩

Jij

(
b̂†j b̂i + b̂ib̂

†
j

) (6.9)

+
N∑
j=1

Ω(j)
n

(
b̂†j + b̂j

)
= Ĥd + Ĥc

n . (6.10)

We denote with ĥd[j,j+1] and ĥc[j] the arguments of the sums in Eq. (6.9)

and Eq. (6.10) respectively. From now on, we focus on the trapezoidal
quadrature (ST1 in Eq. (5.27)), identifying ST1 ≡ ST. Each term in the
diagonal control Hamiltonian commutes and we may thus write exactly

Ûc/2n = exp

−i
 N∑
j=1

[
un,[j](b̂

†
j + b̂j)

] δt

2

 =

N∏
j

Ûcn,[j] , (6.11)

where Ûcn,[j] = exp
(
−iĥc[j]δt/2

)
. For the drift Hamiltonian we can obtain a

first-order Suzuki-Trotter expansion by applying the same technique as in
standard TEBD for nearest-neighbor Hamiltonians,

Ûd
(a)
= e−i(Ĥ

d
even+Ĥ

d
odd)δt ≈ exp

(
−iĤd

evenδt
)
exp

(
−iĤd

oddδt
)

=

 N−1∏
j even

Ûd[j,j+1]

N−1∏
j odd

Ûd[j,j+1]

 , (6.12)

where ÛD[j,j+1] = exp
(
−iĥd[j,j+1]δt/2

)
and in (a) we grouped even and odd

terms,

Ĥd = Ĥd
even + Ĥd

odd =
N∑

j even

ĥd[j,j+1] +
N∑

j odd

ĥd[j,j+1] . (6.13)

Since
[
Ĥd

even, Ĥ
d
odd

]
̸= 0 the approximation introduces a O(δt2) error: each

term has then total internal-commutativity, which allows the subsequent
exact product form in Eq. (6.12).
If now combine the above expressions and move each individual even (odd)
ĥdj,j+1 to the left (right) until they meet a non-commutative operator, we
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i = 1

i = 2

i = 3

A[1] A[2] A[3] A[4]

ÛJx
[1,2]

ÛJx
[2,3]

ÛJx
[3,4]

×

un

un+1

|ψn〉

|ψn+1〉

ÛU
[1] ÛU

[2] ÛU
[3] ÛU

[4]

ÛU
[1] ÛU

[2] ÛU
[3] ÛU

[4]

Figure 6.7: TN diagram showing the full calculation |ψn+1⟩ = ÛST
n |ψn⟩ =

Ûc
n+1Û

d
nÛ

c
n |ψn⟩ for N = 4. The notation slightly differs from the one used in

this chapter since it refers to the problem in [67].

obtain (N even)

ÛST
n ≈

N∏
j

Ûcn+1,[j]

N−1∏
j even

Ûd[j,j+1]

N−1∏
j odd

Ûd[j,j+1]

N∏
j

Ûcn,[j] =

= Ûcn+1,[1]

(
j even∏
N−1

Ûcn+1,[j]Û
c
n+1,[j+1]Û

d
[j,j+1]

)
×

× Ûcn+1,[N ]

N−1∏
j odd

Ûd[j,j+1]Û
c
n,[j+1]Û

c
n,[j]

 ≡
≡ Ûcn+1,[1]

(
j even∏
N−1

Ûccdn+1,[j,j+1]

)
× (6.14)

× Ûcn+1,[N ]

N−1∏
j odd

Ûdccn,[j,j+1]

 (6.15)

≡ Ûcn+1,[1]ÛbacksweepÛ
c
n+1,[N ]Ûforwardsweep . (6.16)

For odd N it is sufficient to substitute in the last expression Ûcn+1,[N ] →
Ûcn,[N ].

Since the grouping of product triples Ûdccn,[j,j+1] act only on nearest-neighbor

pairs of indices [j, j + 1], the overhead in the tensor network contraction
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ÛST
n |ψ⟩ is reduced. The central site (gauge1) of the matrix product state is

advanced after each contraction: the product of triples is applied over odd
j in a “forward sweep” (Eq. (6.15)) and over even j in a “backward sweep”
(Eq. (6.14)), as shown in Fig. 6.7.

1Gauge transformations (a term borrowed from field theories) are a class of linear
transformations which leave the physical quantum many-body state (and thus all the
physical quantities) unchanged. In many architectures (most notably in MPS) adapting
the gauge during run-time is a central operation to achieve speed-up and an increased
precision. [73]



Chapter 7

Simulations and results

In this chapter we report the analytical results and simulations of this work.
The discussion can be seen as tripartite: first we apply Jensen’s method in
different scenarios, in particular to the case not dealt with in the literature of
a gate transfer, focusing on some relevant points of discussion. We will then
enter the many body regime, tackling the same problem on a longer chain of
qubits via MPS: in this context, the use of automatic differentiation will be
explored, with the gained advantage of a greater generalisability. However,
no relevant result will be (yet) obtained due to the long compilation times
that make it unsuitable for optimisation routines.
Finally, we will tackle the case of the time evolution using a Krylov-Lanczos
propagation scheme. We verify the quality of the solutions found via Jensen’s
method with the exact (physical) dynamics, showing that an optimal solu-
tion in the Trotterized landscape ceases to be such for an exact landscape,
thus highlighting some fundamental weaknesses of this approach.

Most of the results of this chapter have been generated on a 2017 laptop with
16GB RAM using two 6-core 2.20GHz Intel Core i7 processors. For the most
computational demanding tasks we used the resources made available by the
PGI-8 cluster at Forschungszentrum Jülich, using four 16-core 2.60GHz Intel
Xeon Gold processors.

7.1 Approximate dynamics

In this first section we apply the methodologies discussed in Section 5.2 to
the case of both a two-level and a transmon system, similarly to what has
been shown in [61]. The numerical simulations are written in Python and
we make extensive use of the NumPy [74] and SciPy [24] libraries.

53
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Figure 7.1: Real and imaginary part for the (back-) evolved wave functions for the
known solution to the Landau-Zener (LZ) transition problem. The states for the
rectangular rule ST2 are mirrored around the x = 1/2 axis for better visibility. By
reading the plot from right to left (e.g. following the blue line), one can see that
the target state (0, 1)⊺ is reached from the initial state (1, 0)⊺ with an additional
phase of eiπ which is irrelevant to the optimization cost function.

7.1.1 Two-level system

In this section we study the dynamics of one of the simplest non-trivial
quantum problem in which two states are optically coupled by a LZ type
Hamiltonian of the form [75]

Ĥ = −Ω(t)σz + ω(t)σx , (7.1)

where Ω is the detuning and ω the Rabi frequency. From the perspective of
an optimal control problem, Ω is the control function that we shall optimize:
furthermore, we assume ω = 1/2 time-independent.
We consider the state transfer

|ψini⟩ ≡ |↑⟩ → |ψtgt⟩ ≡ |↓⟩ . (7.2)

The problem is of interest also because it constitutes a first basic step for the
control of complex many-body systems, whose evolution is in many cases a
cascade of LZ transitions [53].
The advantage of such a model is that for a time TF

min = π it has well-
understood solutions of a single, analytical π-pulse Ωn = 0. By formulating
the problem in the basis {|↑⟩ , |↓⟩} the problem is naturally set in the control-
diagonal basis. We set T = TF

min in units of π and discretize the problem
in 50 time steps. We first test the time evolution on the know solution: in
Fig. 7.1 we show on the two axis the real and imaginary part of the forward-
and back-evolved wave function which, by virtue the particular choice of
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Figure 7.2: Example of a piece-wise constant control pulse for the Landau-Zener
transition for both the trapezoidal and rectangular rule of integration. Axes are in
numerical (simulation) units, T = TF

min.

initial conditions, coincide with the first and second component of the wave
vector respectively.
As an additional sanity check, one can notice that regardless of the problem
addressed, due to the properties of the evolved |ψn⟩ and auxiliary state |χn⟩
it holds for the overlap ⟨χj |ψj⟩ = c ∈ R ∀j ∈ [1, . . . , Nt]

⟨χj |ψj⟩ = ⟨χNt |ÛNt−1ÛNt−2 . . . ÛjÛj−1Û2Û1|ψ1⟩ = ⟨χ1|ψ1⟩ , (7.3)

which is constant. This fact will be often used as a test, considering the
modulus squared of the overlap to avoid complex values.
In the trapezoidal setting, the first and last element of the gradient are

zero; in fact, recalling Eq. (5.37),

∂F

∂Ωj
= δt(2− δj,0 − δj,Nt) · Im

[
⟨ψj |χj⟩

〈
χj

∣∣∣∣ ∂Hc(tj)

∂Ωj

∣∣∣∣ψj〉]
= δt(2− δj,0 − δj,Nt) · Im

[
Tr

(
|χj⟩

〈
χj

∣∣∣∣ ∂Hc(tj)

∂Ωj

∣∣∣∣ψj〉 ⟨ψj |)]
= δt(2− δj,0 − δj,Nt) · Im

[
Tr

(
ρ̂
(χ)
j

∂Hc(tj)

∂Ωj
ρ̂
(ψ)
j

)]
(a)
=
δ

4
(2− δj,0 − δj,Nt) sin(θ

(χ)
j ) sin(θ

(ψ)
j ) sin(φ

(χ)
j − φ

(ψ)
j ) , (7.4)

where in (a) we used

∂Hc(tj)

∂Ωj
=

1

2
σ̂z, ρ̂ =

1

2
(1 + r⃗ · ⃗̂σ) . (7.5)

Thus, whenever one of two points is at the pole of the Bloch sphere, ∂F
∂Ωj

= 0.

This is exactly what happens for j = 0, j = Nt with the initial and final
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Figure 7.3: Comparison for 20 different seeds for GD and L-BFGS-B (GD and
BFGS respectively in the legend box) using the trapezoidal rule.

conditions in Eq. (7.2).
This example shows that the gradient can indicate 0 in a lot of cases where
the overlap is not maximal. Indeed, the fidelity in terms of the same
parametrization reads:

F =
1

2

(
1 + cos(θ(χ)) cos(θ(ψ)) + sin(θ(χ)) sin(θ(ψ)) cos(φ(χ) − φ(ψ))

)
.

(7.6)
Both the results for the overlap and gradient are numerically tested and
found true up to machine precision.

We now come to the proper optimal control search. We generate piece-wise
constant controls in the interval [−10; 10] (as previously done in [61]) by
uniform sampling: as a side note, due to the expression of the gradient in
Eq. (5.38) (specifically, due to the n + 1 subscript in the first braket), the
rectangular rule has Ωn with n = 1, . . . , Nt − 1 instead of the more natural
n = 1, . . . , Nt that holds for the trapezoidal rule.
We optimize each initial condition via both a simple GD routine and using
the L-BFGS-B search direction implemented in SciPy [24] for both trape-
zoidal and rectangular rule (Fig. 7.3 and Fig. 7.4 respectively: lower is
better). We find that while GD gets easily stuck after < 5 iterations, BFGS
is able to reach 4 to 5 figure fidelity (i.e. 10−4/−5 infidelity), qualitatively
proving the convergence properties mentioned in Section 4.2. Performing the
optimization for shorter time steps allows for a smaller number of required
iterations to reach convergence: empirically, is due to the fact that the con-
trol landscape approaches (i.e. better approximates) the exact one. For this
cases the optimized fidelities differ only slightly, meaning that different seeds
converge to the same optimal solution.
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Figure 7.4: Comparison for 20 different seeds for GD and L-BFGS-B (GD and
BFGS respectively in the legend box) using the rectangular rule.

7.1.2 Transmon system

In this section we study the higher-dimensional problem of a superconduct-
ing transmon system discussed in Section 2.2.1. This setup is a common
test-bed for gradient and machine learning based optimal control, as e.g. in
[76, 77].
For the N = 2 sites, the computational basis is composed by the set of
vectors {|00⟩ , |10⟩ , . . . , |12⟩ , |22⟩} and the system described by the Hamil-
tonian

Ĥn =

∆b̂†1b̂1 + 1

2

∑
j=1,2

δj b̂
†
j b̂j

(
b̂†j b̂j − 1

)
+ J

(
b̂†1b̂2 + b̂1b̂

†
2

)
+Ωn

(
b̂†1 + b̂1

)
= Ĥd + Ĥc

n . (7.7)

For a more in-depth traction of the form for the Hamiltonian we refer to
Section 2.2.1. As for the parameters, initially set as in [11], we make use
of the calibration data (as of 16th September, 2022) of the 127-qubit IBM
Washington processor and reported in Appendix B and available through
the IBM Quantum Compute Resources cloud [78].

State transfer

We consider the state transfer

|ψini⟩ = |10⟩ → |ψtgt⟩ = |11⟩ , (7.8)

i.e. a single state mapping of a CNOT gate in the qubit subspace {|00⟩ , |01⟩ , |10⟩ , |11⟩}.
Note that the control Hamiltonian is not diagonal in the natural computa-
tional basis and to obtain a proper representation for the Trotter exact
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Figure 7.5: Square modulus of the overlap for the evolved wave function with the
target state for each basis state at each time step: the upper (lower) panel show the
results for the trapezoidal (rectangular) rule. The first 2 states have unit overlap
also in the first few iterations, since they are left untouched by a CNOT gate.

derivatives we therefore numerically diagonalize Ĥc
n = Ωn(b̂

†
1 + b̂1). The

controls Ωn constitute only a scaling factor of the control Hamiltonian Ĥc
n,

whose eigenvectors are identical ∀ Ωn ̸= 0: we thus consider Ωn = 1 for
simplicity. We rotate both the Hamiltonian and the states via the transfor-
mations

Ĥc
n ← R̂†Ĥc

nR̂, Ĥd ← R̂†ĤdR̂ (7.9)

|ψini⟩ ← R̂† |ψini⟩ , |ψtgt⟩ ← R̂† |ψtgt⟩ ,

where ← indicate assignment and R̂ is the basis transformation operator
whose columns are the eigenvectors of Ĥc. Where possible, we use a sparse
matrix representation to aid computation time; for the matrix diagonal-
ization we fall back to the dense representation, since the available sparse
algorithms (as e.g. the implicitly restarted Arnoldi method implemented in
scipy.sparse.linalg.eigs) are capable of computing only a few eigenval-
ues with specific features such as largest real part or largest magnitude.
Quantities are given in non-dimensionalized numerical units: setting ℏ = 1,
frequencies are in units of GHz, energies in units of the coupling parame-
ter Eunit := J ≈ 5.654 · 10−2 n.u. and time in units of 1/|J |. For the time
evolution, we find Eq. (7.3) true up to 100 · ε where ε = 2.22 · 10−16 is the
machine precision for the double-precision floating-point format.
We limit our controls to be in the range of Ω/2π = ±200MHz and uniformly
draw piece-wise constant sequences. This constrained amplitude, which will
be enforced by the optimization algorithm, determines in part the QSL, for
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Figure 7.6: Infidelity for 50 different initial conditions for the transmon gate trans-
fer: means are superimposed (solid lines). Overall, the trapezoidal rule shows to
have slightly better convergence properties in terms of number of iterations and
final fidelity. Due to the different number of iterations for each run, the mean is
computed truncating the trajectories to the length of the shortest one.

which the control problem becomes exactly solvable [11, 53]. We evolve the
state for a duration T = 50ns and Nt = 100; having fixed the time interval,
the effective gate duration is reduced by the fraction needed for it to be a
multiple of it, Teff := T − [(Tδt)%1]δt (% is the remainder operator).
After optimizing with L-BFGS-B we find in both cases fidelities > 99.99%.

This prototypical state-to-state transfer can best serve as a starting point
for more complicated cases rather than a standalone problem. In fact, a
more interesting task is given by realizing a specific transformation for the
whole set of the basis states, namely a gate transfer.

Gate transfer

In this section we synthesize a CNOT gate using piece-wise constant pulse
Ω(t). The dynamics is again described by an Hamiltonian in the form of
Eq. (7.7),

Ĥn =
N∑
j=1

∆j b̂
†
j b̂j +

1

2
δj b̂

†
j b̂j

(
b̂†j b̂j − 1

)
+
∑
⟨i,j⟩

Jij

(
b̂†j b̂i + b̂ib̂

†
j

) (7.10)

+
N∑
j=1

Ω(j)
n

(
b̂†j + b̂j

)
= Ĥd + Ĥc

n , (7.11)

where N is the number of sites and ⟨·⟩ indicates nearest neighbors indices.
As an important caveat, the detuning is 0 for the target qubit involved in the



60 Chapter 7. Simulations and results

20 40 60 80 100

Gate duration (ns)

10−5

10−4

10−3

10−2

10−1

1
−
〈F
〉

N = 2 qubits

N = 3 qubits

trap.

rect.

Figure 7.7: Average infidelity as a function of the gate duration for a fixed dis-
cretization time step δt = 2.5 · 10−2. For 2 qubits a 4-figure fidelity is reached at
approximately 60 ns: an added third spectator qubit prevents a fidelity under 2
figures also for much longer time windows.
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Figure 7.8: L-BFGS-B mean wall time as a function of the gate duration for a fixed
discretization time step δt = 2.5 · 10−2: shaded areas are ± one standard deviation
around the mean. Interestingly, for 2 qubits the time it takes for the algorithm to
converge stays roughly constant above 60 ns, a threshold that is also observed in
Fig. 7.7 to reach acceptable values of fidelity: the convergence time is thus fixed by
the QSL independently of the gate duration.
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Figure 7.9: Mean infidelity as a function of the discretization time step δt for a
fixed physical time of T = 60ns. Remarkably, arbitrarily decreasing δt does not
lead to a higher fidelity: a possible issue with shorter time steps is that the larger
frequency of the system is responsible for setting the time scale. With shorter time
steps, the system picks up the initial set of random controls as white noise, since
it is not able to generate the lower frequencies: shorter time steps imply a larger
frequency window. A possible workaround would be to instead generate ad-hoc
controls with characteristic frequencies as a first informed initial guess. Values
around 4 · 10−2 ≈ 1 ns are within the sampling frequencies of standard microwave
pulse generators.

gate transformation as a consequence of the rotating frame transformation
(see Section 3.3.1).
Practically, the problem consists in simultaneously evolving all basis states
and consider the fidelity in the form Eq. (5.15), which represents a cumula-
tive figure of merit of the composite problem. The derivative have therefore
to be changed accordingly: retracing the steps done in Appendix A one
can recover for e.g. the trapezoidal rule in the formalism of Section 5.2 the
gradient form

∇JFsm =
1

s2

∣∣∣∣∣
s∑

k=1

⟨χ(k)
Nt
|ψ(k)
Nt
⟩
∣∣∣∣∣
2

, (7.12)

which is the reformulation of Eq. (5.15) in terms of overlaps and allows
to take into account only the dynamics in the computational subspace of
interest, tracing out the remaining transmon levels. The case of Fss can
be trivially obtained by taking the modulus squared under the summation
sign.

Both the cases of local (Ω
(j)
n ) and global (Ω

(j)
n ≡ Ωn ∀j) control are im-

plemented. We choose a gate duration of 60 ns for a time step of δt =
1.5 · 10−2 n.u.. The normalization parameter for the energy is in this case
chosen to be the absolute value of the minimum of the coupling parameters
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Jij . The time evolution over the entire range of gate duration is rendered
visually in Fig. 7.5 for both rules.
We optimize 50 different seeds and the optimization trajectories are shown
in Fig. 7.6: on average with Jensen’s derivative method we reach fidelities
> 99%.

Scaling with the number of qubits

With this tools we can now start asking more complex questions. In Fig. 7.7
and Fig. 7.8 we show the mean infidelity and the mean wall time consump-
tion for each gate duration averaged over 10 different seeds. In the former
we see that when the gate duration increases above 60 ns the control prob-
lem becomes exactly solvable for 2 qubits in the sense that the infidelities
become insignificantly low: moreover, a larger time window does not con-
tribute to better results. The gate time reported by IBM [78] are inferior to
this result by at least an order of magnitude. This is due to the fact that
the simulated system is more controllable, in the sense that I can resolve
frequencies above 1GHz and drive both qubit and leakage transitions; more-
over, the Hamiltonian describing the dynamics is a theoretical model which
does not include (most notably) leakage and other experimentally present
effects.
For a certain set of initial conditions the optimization landscape becomes
more difficult to traverse: over the (small) statistics collected, for e.g. 2
qubit at T = 20 roughly 60% of the initial seeds failed. Similarly, for too
big time steps (see Fig. 7.9) starting form δt = 5.0 · 10−2 to δt = 6.5 · 10−2

the seeds failure rate grows from 9% to more than 97%. Importantly, both
rules perform equally on average even at a shorter gate duration.
For 3 qubits no significant improvement in the fidelity is observed at the
price of an exponential trend in the computational time.

In a real-life scenario, the number of controls is limited by experimental
constraints: here, since we are not constrained by any practical engineering
issues, we run the optimization tasks for system with and without an indi-
vidual set of controls for each qubit. Results are shown in Fig. 7.10 for the
average fidelity over 10 different seeds: fundamentally, more controls bring a
relevant advantage only for a low system size and the inclusion of spectator
qubits is detrimental to the fidelity. In Fig. 7.11 is evident the exponential
scaling (note the log-scale) with the number of qubits of the mean wall time:
both rules perfectly overlap with one another.
Being the two integration rules comparable by all means, for the sake of
clarity we will restrict our analysis from this section onward to the sole case
of the trapezoidal rule.
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Figure 7.10: Mean infidelity as a function of the number of qubits. While perfor-
mances are almost identical for both integration rules, local controls provide a gain
of one more significant figure in fidelity. This trend does not scale with the number
of sites: for 5 qubits the fidelities become comparable with the global control case.
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Figure 7.11: Mean wall time as a function of the number of qubits. For both local
and global controls the trend is linear (in log-scale): curves become separated by
almost an order of magnitude for a number of qubit ≥ 4.



64 Chapter 7. Simulations and results

B
ro

ok
ly

n

T
or

on
to

C
ai

ro

M
an

ha
tt

an
D

ub
lin

P
ee

ks
ki

ll

H
an

oi

M
um

ba
i

M
on

tr
ea

l
Sy

dn
ey

K
ol

ka
ta

pattern engineered LASIQ δEJ

flux-tunable δEJ

9.8 10.1 10.4 10.7 11.1 11.4

10−1

100

〈EJ〉[GHz]

δE
J

[G
H

z]

Hummingbird (65 qubits)
Falcon (27 qubits)

10 12 14
0

0.2

0.4

0.6

EJ [GHz]

pr
ob

ab
ili

ty

10.5 11.5 12.5

EJ [GHz]

(b)(a)

(c)

IBM Brooklyn

Figure 7.12: (a) Layout of the 65-qubit transmon array “Brooklyn”: note the
variation of the Josephson energies EJ which is largely uncorrelated in space. (b)
Spread of the EJ plotted for the “Brooklyn” chip, consistent with a Gaussian
distribution (solid line). Similar levels of disorder and distributions are found in all
IBM’s transmon devices. Figure and caption from [79].

7.2 Many-body systems

We now enter the many-body regime with the theoretical tools introduced
in Chapter 6. Our goal is to demonstrate the feasibility of the methods in
Section 5.2 also for many-body systems using TNs methods. For this, we
analyze a state transfer from the ground |ψini⟩ = |0, 0, . . . , 0⟩ to the excited
state |ψtgt⟩ = |1, 1, . . . , 1⟩ of a N = 10 transmon chain.
The code in this section has been developed in Julia using ITensors [80];
we make use of the LBFGSB.jl [30] previously mentioned, fixing the max-
imum number of iterations to 1800 and to 10−10 the tolerance for the the
infinity norm of the projected gradient. In contrast with Section 7.1.2, the
simulation parameters are chosen by random sampling from a gaussian dis-
tribution with a 10% standard deviation around the values of [11]. This type
of “noisy” approach is actually enforced by recent results: indeed, “a certain
amount of intentional frequency detuning (’disorder’) is crucially required to
protect individual qubit states against the destabilizing effects of nonlinear
resonator coupling” [79]. To report a concrete example, Fig. 7.12(b) shows
that the spread of Josephson energies in IBM devices is consistent with a
Gaussian distribution, a common feature for all IBM current devices whose
parameters are documented publicly [78].
After the initialization of the initial and final state via MPS, we do not set a
maximal bond dimension but instead fix a cutoff parameter that allows the
new bond dimension after each step to be determined adaptively as long as
the resulting truncation error remains below the value provided. In Fig. 7.13
we show a color-map of the squared overlap of the evolved wave function
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Figure 7.13: Color-map for each iteration and time step of the fidelity, indicated by
the color dimension. After the first couple of hundreds iteration, the fidelity follows
the same evolution pattern (horizontal sections): we interpret this as the controls
effectively “learning” the correct time evolution.

with the target state (i.e. the fidelity) for each time step, over all the opti-
mization iterations. The final fidelity is around 91.93% (see Fig. 7.14, with
the red dashed line), a result that could be further improved by relaxing the
fixed convergence constraints. Moreover, the representation in TN allows
to extract some additional information: we can observe the evolution of the
Von Neumann entropy of Eq. (6.6) for each iteration, which is reported in
Fig. 7.14.
The results here shown demonstrate the possibility of extending Jensen’s
argument to the many-body case, with the added possibility offered by the
TN framework to compute physical quantities of interest.

7.2.1 Automatic differentiation for Tensor Networks

The hypotheses set by Jensen’s method pose a restriction to the size of
the class of problems we can tackle. The possibility to free the gradient
form from additional assumptions is given by AD (see Section 4.3), which
is able to numerically evaluate derivatives independently of the problem’s
nature. AD has just begun to attract the attention of the machine learning
community and has so far seen few applications to the TN sphere (see e.g.
[81]).
We analyze this possibility by first tackling the more simple problem of
finding the energies of a 10-sites 1/2-spin chain in the transverse field Ising
model.
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Figure 7.14: Von Neumann entropies for each bipartition of a 10-sites transmon
chain. As expected for pure state, the initial value is identically null for all biparti-
tions and approaches 0 from above in the last few iterations: its value of O(10−2),
together with the fidelity, gives another measure (more general since it is not state
specific) of the goodness of the optimized set of controls.

1−D Ising chain in transverse field1

The system dynamics follows the Hamiltonian

Ĥ = −J
4

∑
⟨i,j⟩

σzi σ
z
j −

h

2

N∑
i=1

σxi , (7.13)

where σ
x/z
i denote Pauli operators acting on site i and the first sum runs

over neighboring lattice sites. As the computational basis we choose the
spin basis states |s⃗⟩ = |s1, . . . , sN ⟩ with si =↑, ↓.
The transverse field Ising model can exactly be solved by mapping it to
a non interacting fermion model via Jordan-Wigner transformations: this
Hamiltonian can then be solved by finding the eigenstates of the single
particle Bogoliubov-de Gennes Hamiltonian of dimensions (2N × 2N) [82].
This allows us to have the exact solutions at hand to confront with the
numerically obtained ones. The optimization is performed by a GD routine
using, in a similar fashion to variational methods, the energy of the k-th
level as a cost function. The gradient is computed using Zygote.jl [83], an
AD library for the Julia language.
We introduce a penalty, i.e. an extra term to the cost function, to enforce
the separation of states: this term is chosen to be the projection of the
current state onto all previous ones up to a multiplicative factor w fixed at

1The code for this section was developed by Niklas Tausendpfund, a PhD student in
the host group at Forschungszentrum Jülich.
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Figure 7.15: Upper panel: theoretical and numerical normalized expectation values
of the energies for site for the transverse field Ising model. Bottom panel: modulus
of the difference between theoretical and numerical solution. We attribute the
discrepancy obtained for the third energy level to the fact that the addition of a
penalty term often brings with it poor convergence properties of the optimization
algorithm, as it makes many small adjustments to ensure the parameters satisfy
the constraints.

100. Thus, for the k-th energy level, the cost function Jk(ψx) has the form

Jk(ψx) ⟨ψx|ψx⟩ =
〈
ψx

∣∣∣ Ĥ ∣∣∣ψx〉+ (1− δk,0)w
k−1∑
i=1

| ⟨ψx|ψk⟩ | . (7.14)

Results are shown in Fig. 7.15: the numerical solutions show a good accor-
dance with the expected theoretical values, with the exception made of the
third energy level (see caption to Fig. 7.15).

7.2.2 Transmon chain

The transmon chain is much more challenging than the spin chain case due
to the greater complexity of the Hamiltonian and the additional compu-
tational difficulty due to the calculation of the time evolution. Moreover,
integrating libraries with each other is a highly non-trivial task. The (ap-
parent) immediacy of Zygote comes at the price of many practical issues, the
main one being mutating functions. AD systems like Zygote are built on top
of basic principle of calculus where a function f(x) does not modify x and
only produces the output y based on x. AD systems are built to program-
matically apply the chain rule to a series of function calls, which is often
not how typical programs behave. Variable or array mutations as a result of
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� �
# benchmark for Jensen's cost function and gradient evaluation
Range (min … max): 855.982 ms … 1.151 s ┊ GC (min … max): 7.32% … 8.74%
Time (median): 961.111 ms ┊ GC (median): 8.03%
Time (mean ± σ): 982.266 ms ± 107.560 ms ┊ GC (mean ± σ): 8.09% ± 0.45%

Memory estimate: 749.09 MiB, allocs estimate: 2722431.� �
� �
# benchmark for AD with custom rules
Range (min … max): 1.372 s … 1.707 s ┊ GC (min … max): 10.47% … 9.55%
Time (median): 1.455 s ┊ GC (median): 10.26%
Time (mean ± σ): 1.497 s ± 147.867 ms ┊ GC (mean ± σ): 9.77% ± 0.85%

Memory estimate: 1.14 GiB, allocs estimate: 4247737.� �
� �
# benchmark for AD withouot custom rules
Single result which took 20.874 s (11.50% GC) to evaluate,
with a memory estimate of 2.26 GiB, over 15534040 allocations.� �

� �
function ChainRulesCore.rrule(::typeof(normalize), ψ::MPS)

ψn = normalize(ψ)
nrm = norm(ψ)
maxdim = maxlinkdim(ψ)

function pullback_normalize(c̄)
∂ψ = add(c̄/nrm, -1/nrm^3 * real(inner(ψ,c̄)) * ψ, maxdim=maxdim)
return NoTangent(), ∂ψ

end
return ψn, pullback_normalize

end� �

Figure 7.16: Time and memory benchmark to compute the analytical value of the
cost function and gradient with Jensen’s derivative method. The median, as a
robust measure of central tendency, should be relatively unaffected by outliers and
can be used as representative value.

the application of a function are difficult for AD systems to handle, because
they must track the changes and store older versions of the variable. Thus,
most AD frameworks (including Zygote) do not support e.g. in-place linear
algebra operations, which can greatly speed up the simulation of quantum
dynamics. Circumventing this limitations requires to manually derive a gra-
dient (where possible) and writing a custom differentiation rule. Without
going into the technicalities of AD theory, we refer to such custom rules as
“adjoints”.
As a reference point, we benchmark [84] the time needed both to evaluate
the cost function and to compute the gradient, here shown in Fig. 7.16. Our
first naive approach consists in simply using the AD engine as a black box.
A benchmarks of the time and memory usage is reported in the bottom
panel of Fig. 7.17: clearly the amount of resources required sets this first
attempt outside of any practical use.
A more informed approach requires computing the adjoints. For this, one
has to define a “pullback” (in the differential geometry sense) By that given

� �
# benchmark for Jensen's cost function and gradient evaluation
Range (min … max): 855.982 ms … 1.151 s ┊ GC (min … max): 7.32% … 8.74%
Time (median): 961.111 ms ┊ GC (median): 8.03%
Time (mean ± σ): 982.266 ms ± 107.560 ms ┊ GC (mean ± σ): 8.09% ± 0.45%

Memory estimate: 749.09 MiB, allocs estimate: 2722431.� �
� �
# benchmark for AD with custom rules
Range (min … max): 1.372 s … 1.707 s ┊ GC (min … max): 10.47% … 9.55%
Time (median): 1.455 s ┊ GC (median): 10.26%
Time (mean ± σ): 1.497 s ± 147.867 ms ┊ GC (mean ± σ): 9.77% ± 0.85%

Memory estimate: 1.14 GiB, allocs estimate: 4247737.� �
� �
# benchmark for AD withouot custom rules
Single result which took 20.874 s (11.50% GC) to evaluate,
with a memory estimate of 2.26 GiB, over 15534040 allocations.� �

� �
function ChainRulesCore.rrule(::typeof(normalize), ψ::MPS)

ψn = normalize(ψ)
nrm = norm(ψ)
maxdim = maxlinkdim(ψ)

function pullback_normalize(c̄)
∂ψ = add(c̄/nrm, -1/nrm^3 * real(inner(ψ,c̄)) * ψ, maxdim=maxdim)
return NoTangent(), ∂ψ

end
return ψn, pullback_normalize

end� �

Figure 7.17: Time and memory benchmark to compute the analytical value of the
cost function and gradient with AD for the TN transmon chain with (upper panel)
and without (bottom panel) custom differentiation rules.
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y = f(x) and the gradient x̄ := dℓ
dx implements the vector-Jacobian product

x̄ =
dℓ

dx
=
dℓ

dy

dy

dx
= By(ȳ) . (7.15)

Let’s make some examples. The scaling function f(α,A) = αA of a complex
variable has a pullback according to

f∗α,A(B
b)# = Re

(
Tr(A†B)

)
en + αBv⊥ , (7.16)

where en denotes the direction along α and v⊥ stands symbolically for the
orthogonal directions, i.e. along A. The pullback of the norm function

f(A) =
(√

Tr(A†A)
)−1

is given by

f∗A(c̄)
# = − c̄

f(A)3
A , (7.17)

while the normalizing function f(A) = A/∥A∥ has the pullback

f∗A(B
b)# = −Re

(
Tr[A†B]

)
∥A∥3 A+

1

∥A∥B . (7.18)

As one can see, things get easily very complicated, very fast. Implementing
Eq. (7.18) and a custom rule to compute the exponential of a matrix used to
compute the Trotter gates does bring some advantage both in terms of time
and memory (see the upper panel in Fig. 7.17). The full expressions are
not here reported both for brevity and for the fact that ultimately the effort
did not pay off to any tangible result. Moreover, such computations are
tedious, error prone and not easily implementable: several obstacles have to
be overcome of inter-library compatibilities.
As pointed out in [85], “The more high-level the elemental functions are,
the less the numerical overhead of AD. However, this comes at the cost
of having to define more and more analytical adjoints. This is why many
AD frameworks have been slow to adopt operations that are outside of the
narrow scope of machine learning, which only requires real-valued dense
matrix-vector operations. In contrast, quantum dynamics is inherently de-
scribed with complex-valued state vectors, and operators are usually sparse.
Defining AD adjoints for complex linear algebra operations is possible, but
has only recently seen adoption.”

Despite the great advantage that AD would potentially bring in terms of
accuracy and generaizability, we conclude that such methods are still imma-
ture for practical use when applied to TN methods.
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Figure 7.18: Percentage sparsity (note the different axis scales) of the drift Hamil-
tonian Hd as a function of the number of qubits. The change of basis heavily effects
the number of non-zero elements present, preventing to exploit the computational
advantage that derives by using a sparse representation formalism. The sparsity
for Hd follows a O(N/dN ) trend, with N the number of qubit and d the local di-
mension.

7.3 General comments on Jensen’s derivative method

In this section we analyze some specificities of Jensen’s method, discussing
some of its limitations and ultimately aiming to extend its applicability to
more general scenarios.

As a first step, we note that the change of basis in Eq. (7.9) involves a decisive
increase in the percentage of non-zero elements in the matrix representation
of the control Hamiltonian, as depicted in Fig. 7.18. This potentially poses
a threat to the use of ED methods, but can be circumvented (as the authors
in [61] mention for separate reasons) by caching the matrix calculation and
loading it into memory at run time.

One important detail that is not explicitly stressed in [61] is that in or-
der to have the simplified gradient formula, the diagonality condition for
the control Hamiltonian is just one special case of the required hypothe-
ses of commutativity between the control Hamiltonian and its derivative
with respect to the controls. If we want to strictly adhere to the formalism
of Eq. (5.33), remembering the definition of the recursive commutator in
Eq. (5.32), the effective condition is[

Ĥc
n,
∂Ĥc

n

∂un

]
!
= 0 , (7.19)
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which is valid in particular for the (less general) case in which the Hamil-
tonian is bilinear in the controls, i.e. such that Hc

n = f(Ωn)H
c, which

incidentally corresponds to the class of problems we are considering.
If we focus on the trapezoidal rule for a moment, substituting the rule for
unitary transformation Eq. (3.17) in the definition of the trotterized propa-
gator ÛST1

n in Eq. (5.27) we get

˜̂
UST1
n =

˜̂
U
c/2
n+1

˜̂
Udn

˜̂
Uc/2n

= R̂†
nÛ

c/2
n R̂nR̂

†
n−1Û

d
n−1R̂n−1R̂

†
n−1Û

c/2
n−1R̂n−1

̸= R̂†
nÛ

ST1
n R̂n−1 , (7.20)

where ·̃ indicates the transformed unitary. The last inequality is due to the
fact that

R̂†
nR̂n+1 = e−i

˙̂
R
†
nR̂n dt , (7.21)

a relation that can be simply proven by choosing e.g.

R̂ = exp (−if(t)θ) f ′(t) =
f(t+ dt)− f(t)

dt
, (7.22)

where θ is some constant operator.
Given that for a single time instant it holds R̂†R̂ = 1, we have a series of
lucky cancellations happening in Eq. (7.20) only (a) in the time-independent
case and (b) for the rectangular rule also in presence of time dependence (the
subscripts are identical between next-nearest rotations). In both cases, the
formulae for the gradients Eq. (5.37), Eq. (5.38) become basis-independent,
which constitutes an important improvement of the method. Note that this
also applies to the overlap formula in Eq. (5.22) by construction.

The authors in [61] state that the only case in which there is no advantage
in performing the basis change over the dense exponentiation for Q > 1
(see Section 5.2 for the notation) is that for which (1) the rotation matrix
depends on the controls (and hence on the time) and simultaneously (2)
there is no analytic closed expression. In fact, if (1) is true but not (2) the
matrix can always be expressed as a function of the controls and succes-
sively simply evaluated for each instant (which is cheaper than constructing
R̂ by diagonalization). On the contrary, if (2) is also true, the only way is
diagonalisation at each step.
This confirms what we previously stated. Indeed, if only (1) is true, there
is no computational disadvantage: what does increase, however, is the diffi-
culty of implementing the solution, which in this case requires many more
rotations - one for each time step. The same holds for the Q = 1 case.
As already stressed, the fact that the rotations are to be calculated at each
time instant in the most general case is a central aspect of the method which
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Figure 7.19: Infidelity for 20 different initial conditions for the transmon gate trans-
fer for both the exact (Krylov) and approximate (Jensen) dynamics: means are
superimposed (solid lines). Jensen’s method is capable of reaching very high fideli-
ties for certain initial conditions, whereas the exact dynamics cannot get under 4
significant figures. However, the overall performances remain comparable.

does not emerge in the examples treated in the previous sections, where the
matrix Hc was already diagonal or Hc

n = f(Ωn)H
c. This difficulty has to

be directly addressed in further studies for a complete benchmarking of the
method also in more general scenarios.

To (partially) demonstrate this observations, since condition (a) holds for
the transmon case, the simulations of the next section are implemented
without the rotations listed in Eq. (7.9).

7.4 Krylov methods

In this last section we compare Jensen’s method (from here on: Jensen) to
the exact propagation: the goal is to verify the claim that an exact gradient
with approximate dynamics yields better results compared to an approxi-
mate gradient with exact dynamics. To do so, we abandon the use of the
trotterized propagators and instead adopt an ED approach where the ma-
trix exponentiation is computed via Krylov subspace methods introduced in
Section 4.4.3 (from here on: Krylov), where exponential operator applica-
tions are performed without explicit construction. The gradient is instead
computed as in Eq. (5.37), which we interpret in this context as first order
approximation to the analytical form of the gradient, i.e. k = 0 in Eq. (5.36).
As a first test, we implement the algorithm in Python and confront its per-
formances with SciPy’s common matrix exponential functions. In detail,
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Figure 7.20: Optimal solutions as found by Jensen’s approximate dynamics (blue),
Krylov’s full exponentiation (green) and Jensen’s optimal set of controls in Krylov
evolution (yellow). Error bars are ± one standard deviation around the average
for 10 runs. Remarkably, the error of Jensen’s dynamics accumulates in non-trivial
ways, making a solution found with the approximate dynamics impractical for the
real experimental case that instead follows an exact evolution.

expm implements the matrix exponential described in [86], which is essen-
tially a Padé approximation; exp multiply is based on [87] and implements
the action of the exponential of matrix on a matrix/vector. Finally the
krylov method shown is a Python wrapper to the implementation of expm
from Expokit build for Fortran and C++ [88]. As an important note, all
three methods produced the same results up to a relative tolerance fixed at
10−7.
Results are reported in Fig. 7.21 and Fig. 7.22 respectively for constant 10%
and 90% sparsity (here intended as fraction of non-zero elements) and show
encouraging results. The case of a sparsity following an exponentially de-
creasing trend in the form O(N/dN ) represents the physical scenario and is
thus of central interest.

We now address the problem of the dynamics. For the sake of comparison,
we use the same system size and simulation parameters of [61] for the case
of gate transfer analyzed previously. In Fig. 7.19 we show the comparison of
different convergence trajectories in the optimization landscape. We high-
light that for the majority of cases, Krylov’s iteration ends due to satisfying
the constrain on the gradient projection whereas Jensen’s iterations saturate
the number of function calls.

To evaluate the error committed by approximating the dynamics we plug
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Figure 7.21: Benchmark for 3 different exponential methods as a function of the
Hilbert space dimension. See the main text for their precise description. Krylov
subspace projection techniques allow for a dramatic speed-up with respect to the
known SciPy methods. Interestingly for the case of an exponentially decreasing
sparsity, the time remains approximately constant over all matrix sizes. Notice-
ably, for a dimension < 100 feeding the matrices to the expm multiply method is
faster: this is due to the fact that Krylov approximations rely on repeated matrix-
vector multiplications, which are not advantageous for such small Hilbert space
dimensions.
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Figure 7.22: Benchmark as in Fig. 7.21 with constant sparsity 10%→ 90%. The in-
creased sparsity worsens performances noticeably: the expm multiply method be-
comes comparable with expm for the densly populated matrix cases. Still, Krylov’s
method maintain the computational advantage.
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the optimized set of controls via Jensen into the exact dynamics. Results
are show in Fig. 7.20.
As a first remark, we note that the average distance between Jensen and
Krylov is around an order of magnitude, which coincides with the observa-
tions of the averages in Fig. 7.19 and confirms the exceptionally good fidelity
solutions as outliers. Moreover, this distanc ecould be further reduced by
using the exact derivatives for the Krylov optimization.
Clearly, an optimal solution for Jensen is not an optimal solution for Krylov.
This trend is steady across different values of the time discretization and only
mitigates for very small intervals (in particular, smaller the one used in [61])
when the approximated landscape comes closer to the exact one. Under this
light the trajectories in Fig. 7.19 appear as too optimistic and not leading
to real, experimentally obtainable solution. In fact, the time evolution ob-
tained with Krylov is, up to numerical errors, what happens in a real-life
scenario: the only context in which this is does not hold is the special case
of a stroboscopic evolution protocol (or Floquet dynamics).
Ultimately, although we observe by empirical benchmarking roughly a factor
of 10 separating the performances of exact and approximate time evolution
methods, sacrificing gradient exactness in favour of a gained computational
advantage proves detrimental for the quality of the minima of the control
landscape. This evidence exposes a fundamental flaw of Jensen’s method:
the need for in-depth studies to further explore this aspect sets the natural
conclusion to this section.
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Chapter 8

Conclusions and outlook

In this thesis we explored gradient-based optimal control algorithms for su-
perconducting qubits in the few- and many-body regime.
We examined a recently developed method (Jensen’s method) to efficiently
derive analytically exact control derivatives assuming a diagonal control
Hamiltonian and adopting two trotterized propagators to describe the (ap-
proximate) dynamics, which was interpreted in terms of optimization land-
scape. We demonstrated the main ideas by considering a state transfer for
two problems of varying Hilbert space size, namely a Landau-Zener transi-
tion and the higher dimensional case of a superconducting transmon system,
achieving for both a fidelity of over 99.99%.
We expanded this treatment to the case of a gate transfer and showed its ap-
plication in the many-body scenario using matrix product states combined
with a variant of the time evolution block decimation algorithm tailored to
the structure of the problem. The results validate the approach to the class
of very high-dimensional, many-body state transfer problems: an unsatis-
factory fidelity value was not considered of central importance since (1) the
aim was to show the extensibility of the method to many-body problems for
which (2) better results are only a matter of fine tuning of the optimization
algorithm.
Successively, we explored the application of automatic differentiation to ten-
sor network methods, first considering the energy levels of an Ising model
in transverse field and then the state transfer from ground to first excited
of the transmon chain. Particular attention was posed in the fruitful inter-
play of scientific computing libraries and the efficiency of the written code.
Despite their appealing advantages, time and memory constraints ruled out
the adoption of automatic differentiation techniques in the optimal control
context.
We extended Jensen’s argument of exact derivatives, freeing it from the con-
straint of formulating the problem in a control-diagonal basis. Finally, we
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compared this approach to the exact dynamics via Krylov subspace meth-
ods to compute the matrix exponential. The results obtained show that
an optimal solution of the approximate landscape found via approximate
derivatives does not lead to the same minima when applied to the exact
evolution. This last point sets the stage for further discussion on the topic.

Future prospects can be developed in many directions. Starting with the
method at the heart of the discussion in this work, accurate time benchmarks
and study on the quality of the solutions are needed to assess the validity
of such methodologies for the search of experimentally realizable solutions.
Within the context of tensor networks, an interesting line of research could
explore the use of semi-implicit methods, generalizing these techniques to
long range interactions, an approach that has still not being done in the
literature. In this context gradients would also easier to write analytically,
being the ratio of two polynomials. As for automatic differentiation, hybrid
approaches could be a winning strategy, as shown in some some very recent
works (see e.g. [85]).

In conclusion, this thesis poses a first stepping-stone to the study of gradient-
based optimal control within many-body systems. Future work based on the
study of efficient numerical techniques able to simulate large quantum sys-
tems may open new pathways to solve new problems in the field of quantum
optimal control.



Appendix A

Exact derivatives calculation

In this section we report the calculation calculations leading to the exact
gradient expressions for the two Trotterized propagators with a diagonal
control Hamiltonian defined in Eq. (5.27). We make use of the same notation
employed in Section 5.2, considering however a slightly different derivation
as the one shown in [61], Appendix A.
Our goal is thus to evaluate the derivatives in Eq. (5.23) for the propagators
in Eq. (5.27). Remembering the time discretization, we recall

|ψn⟩ = Ûn . . . Û2Û1 |ψ0⟩ (A.1)

|χn⟩ = Û
†
Nt−n+1 . . . Û

†
Nt−1Û

†
Nt
|χ0⟩ , (A.2)

and the objective function to be maximized is as in Eq. (5.21).

Trapezoidal rule, ST1

In the specific control-drift setting, with the trapezoidal rule for the Trotter-
splitting we have

Ûn = Ûc/2n Ûdn−1Û
c/2
n−1, with


Û
c/2
n = exp

(
−i δt2 Ĥ

(2)c
n

)
Ûdn = exp

(
−iδtĤ(1)d

n

) , (A.3)
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where again Ĥ
(1)d
n is computed as two-point average. For the derivatives of

the propagator it holds (δij being the Kronecker delta)

∂Ûn
∂Ωj

= δj,n−1Û
c/2
j+1Û

d
j

∂Û
c/2
j

∂Ωj
+ δj,n

∂U
c/2
j

∂Ωj
Ûdj−1Û

c/2
j−1 (A.4)

(a)
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δj,n−1Û

c/2
j+1Û
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j Û

c/2
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(
∂Hc(tj)

∂Ωj

)
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(
∂Hc(tj)

∂Ωj

)
Û
c/2
j Ûdj−1Û

c/2
j−1

)

= −iδt
2

δj,n−1Ûj + 1︸ ︷︷ ︸
=n

(
∂Hc(tj)

∂Ωj

)
+ δj,n

(
∂Hc(tj)

∂Ωj

)
Û j︸︷︷︸

=n

 , (A.5)

where in (a) we used the fact that

∂ exp(−iA)
∂u

=
∂

∂u

( ∞∑
α=0

(−i)α
α!

Aα

)

=

∞∑
α=1

(−i)α
α!

α−1∑
β

Aβ
∂A

∂u
Aα−β−1


(b)
= −i∂A

∂u
exp(−iA) = −i exp(−iA)∂A

∂u
. (A.6)

The simplification happening in (b) is possible if A is diagonal and there-
fore commuting with its derivatives, which is one of the two fundamental
hypothesis of Jensen’s method. Coming to the gradient computation we can
write

∂F

∂Ωj
= o⋆

∂o

∂Ωj
+
∂o⋆

∂Ωj
= 2Re

(
o⋆

∂o

∂Ωj

)
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N∑
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〈
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∣∣∣∣∣ ÛNt . . . Ûn+1
∂Ûn
∂Ωj

Ûn−1 . . . Û1

∣∣∣∣∣ψ0

〉)
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= −δtRe

(
io⋆
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〉
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where we recognize in Eq. (A.7) the expression of Eq. (5.37). In (c) we
substituted the results of Eq. (A.4), taking care of the fact that the first
(second) addend in the braket in Eq. (A.5) has meaning only for j < Nt

(j > 0), first to evaluate the derivative of the propagator and successively

to recombine the initial propagators, since
[
∂Ĥc

n
∂Ωn

, Û
c/2
n

]
= 0. From Eq. (A.7)

one can see that the gradient on Ω0, ΩNt is just 1/2 of the same expression
as for Ωj with j = 1, . . . , Nt − 1. Finally, we notice that the expression
for Jensen’s cost function carries an additional factor −1/2 which has to be
further taken into consideration.

Rectangular rule, ST2

The Suzuki-Trotter expansion now reads ÛST2
n = Û

c/2
n ÛdnÛ

c/2
n : for the overlap

derivatives it holds

∂o

∂Ωn
=

∂

∂Ωn

(
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Nt−1 . . . Û
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1
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〈
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n

∂Ωn

∣∣∣∣∣ψn
〉
. (A.8)

Again, thanks to the imposed diagonality criterion on the control Hamilto-
nian, we can use the exponential expansion in Eq. (A.6) (or equivalently the
form with the recursive commutator in Eq. (5.33)), to compute the deriva-

tives of Û
c/2
n as
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∂Û
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. (A.9)

If we substitute back into Eqs. (5.21) and (A.8) we obtain
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for all n = 1, . . . , Nt − 1 which is the expression in Eq. (5.38).
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Appendix B

IBM “Washington”
processor experimental
parameters

We report in Table B.1 the experimental parameters for the 127-qubit IBM
“Washington” chip whose map view is shown in Fig. B.1.
T1,2 are colloquially known as decoherence times, but slightly more precisely
also as the (qubit) relaxation time (T1) and the (qubit) dephasing time (T2);
f is the frequency and ∆ the anharmonicity. Rerr and Rlen are the readout
error and length respectively. The first is obtained by preparing the qubit
in either the 0 or the 1 state and then immediately measuring the qubit
state: at this point, two types of readout errors can occur, namely P(1|0)
and P(0|1) (often referred to as SPAM, state-preparation-and-measurement,
errors). Rerr is the average of the rate of those two errors. Rlen is instead
the time it takes to perform a measurement and constitutes one of the main
limiting factors of current quantum hardware, as these times are often con-
siderably longer than T2, which makes intermediate measurements (i.e. mea-
surements that are not at the end of a circuit) practically unfeasible.
As for the single-qubit σx, the idea is to use randomized benchmarking [89],
in which sequences of gates (specifically Clifford gates) are applied with the
goal of taking the qubit on a random walk among certain points on the Bloch
sphere and returning it to the 0 state it started in. As the number of gates
in the sequence is increased, the chance of returning to zero drops exponen-
tially and eventually saturates near 50%. The gate error rate is extracted
from the fit to this exponential decay. Likewise, the ID error is measure of
the error induced by having the qubit idle for a typical gate time, while the√
x error is a measure of error induced by applying the gate in question and

averaging over all different qubits.
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The reason there is no error shown for the σz is because there is (virtually)
none. This is because the IBM machines don’t really implement z rotations
- they keep track of the z rotations through software, and update the x (and
y) gates accordingly. Effectively, they rotate the x and y axes of the Bloch
sphere along the z axis: the σx gate is thus actually any rotation along an
axis in the x − y plane of the Bloch sphere. By changing the phase of the
induced wave on the resonator, one can pick the angle the axis makes with
a predetermined reference point, and thus implement both x and y gates.
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Figure B.1: Layout of the 127-qubit transmon array “Washington”. The color code
from blue to white indicate the frequency (min. 4.767GHz, max. 5.292GHz) for
the qubits and the CNOT error (min. 5.721 · 10−3, max. 1.000) for the bonds. The
parameters used for the simulations in this work are taken from the row starting
with the 18th to the 32nd qubit.
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