
Università degli studi di Padova
Department of Information Engineering

Master Degree in

Automation Engineering

Design of a workcell incorporating a
gripper-based SCARA robot

Advisors Author

Prof. Luca Schenato Daniele Fadanelli

Dr. Richard Kavanagh

Anno Accademico 2015/2016

ii

To my grandparents,
that would certainly be proud of my achievements.

iv

v

Abstract

This Master Thesis dealt with the development of an operative gripping
system, which has to be mounted on a SCARA manipulator.
The design concerned both electrical and mechanical part, with focus on the
choices of each selected component making up the overall system. The final
tool is a pneumatic gripper whose opening/closing actions are controlled by a
pneumatic valve driven via Arduino and a suitable electric circuit.
To prove the reliability of the system, a camera-based application was devel-
oped and therefore implemented through MATLAB software. Image Process-
ing Toolbox allowed to elaborate an initial acquired snapshot (got via a fixed
webcam) to obtain a suitable final image that can be used for an interest
object detection.
Final application deals with a sort of palletizing operation of eight paral-
lelepipeds, placed on two levels (four objects above other four).

vi

Acknowledgements

Firstly I feel to thank my irish supervisor, Dr. Richard Kavanagh for his
support and kindness and for having allowed me to work on the project that
most I liked. I also want to show gratitude to my italian advisor, Dr. Luca
Schenato who immediately accepted to follow my project and tried to advise
me when possible.

Moreover, I greatly appreciated the help of the UCC’s technicians whose
technical support allowed me to overcome practical issues faced during this
six months period. Thank you so much Michael O’Shea, Timothy Power,
Hilary Mansfield, James Griffiths.
I can not forget even Ralph O’Flaherty who, with his sympathy and avail-
ability, always trying to make you feel in a good mood.
Finally, I like to thank Haiyang Lee and my labmate Fabiana who, in differ-
ent ways, kept me company during these six months at UCC Mechatronics
Laboratory.
As well as I would like to thank Luca Ferrari and Sean McSweeney for initially
having helped me to get to know the laboratory instrumentation.

Many other people deserve my thanks, as far I have always believed that the
joys of life are more beautiful if shared.
Massive thanks to Gaia, the person who was been closest to me in recent years
and has never failed to lend her support and her love. I hope to share together
many other achievements. Thanks to all the people I met during these last
five years in Padova, each of them has contributed to make pleasant this
demanding path. Thanks to all the longtime friends in Trento, with whom I
shared and am enjoying much of my free time. I hope that our friendship can
continue much longer.
Last but not least, heartfelt thanks to my parents, Stefano and Nella, who
taught me so many thing during this years, supporting my efforts and always
urging to achieve than initially planned. Your contribution was essential to
complete my studies.

vii

viii

Contents

1 Introduction 1
1.1 Background studies on work-cell design 2
1.2 Project and Thesis goal descriptions 4
1.3 Proposed contribution . 4
1.4 Thesis outline . 5

2 SCARA robot 7
2.1 Mechanical structure . 8
2.2 Mathematical analysis: Kinematics 8

2.2.1 Direct Kinematics . 9
2.2.2 Inverse Kinematics . 12

2.3 The Sankyo SR8048 . 14

3 Gripping System Design 17
3.1 Gripper Selection . 18
3.2 Pneumatic feed system . 18

3.2.1 Adjustable pressure regulator 20
3.2.2 I/P converter . 20

3.3 Sensor system . 22
3.3.1 Gauge Pressure Transducer 22
3.3.2 Force Sensor . 24

3.4 Gripping action control: use of Arduino 27
3.4.1 Data acquisition system 28
3.4.2 Gripping action driver 29

3.5 Signal Processing and Conditioning 30
3.6 HD Webcam . 34

4 Robotic work-cell control 37
4.1 Use of MATLAB for controlling the Robot 37

4.1.1 Software part . 37
4.1.2 Hardware part . 38

ix

x CONTENTS

4.2 Matlab Robot Functions . 39
4.2.1 Motion in the Cartesian Coordinate System: point to

point . 40
4.2.2 Speed/acceleration set 41
4.2.3 Mark function . 42
4.2.4 I/O functions . 42
4.2.5 Palletizing functions 43

4.3 Gripping action control . 44
4.3.1 Communication procedure 46

5 Vision System 49
5.1 Vision approach through MATLAB 51

5.1.1 Image Acquisition . 51
5.1.2 Image Processing . 53

5.2 Camera Calibration . 58

6 Camera-based application 63
6.1 Camera-calibration: practical setup 64
6.2 Parallelepipeds detection . 66
6.3 Application execution . 72

6.3.1 Results and comments 73

7 Conclusions 77
7.1 Future works . 78

A Code 79

B Image processing steps 89

Bibliography 89

List of Figures

1.1 Example of gripper . 2
1.2 Example of industrial application: pick and place 6

2.1 Example of SCARA robot . 7
2.2 Basic mechanical structure of the manipulator 8
2.3 SCARA Sankyo SR8408 . 9
2.4 Scheme showing Kinematics Parameters 10
2.5 Link frames placement for a SCARA type manipulator 11
2.6 Schematic Top view of SCARA robot 13

3.1 Typical layout of robotic work-cell 17
3.2 Gripper configuration . 19
3.3 Pneumatic gripper used in the project 19
3.4 Scheme of the pneumatic feed system implemented in the project 20
3.5 Air Flow pressure regulator 20
3.6 I/P converter . 21
3.7 . 22
3.8 Setra 280E Pressure Transducer 23
3.9 Relation between pressure and voltage 24
3.10 . 25
3.11 Relation between pressure and force 26
3.12 Arduino Uno . 27
3.13 . 30
3.14 Differential amplifier for Wheatstone bridge devices 31
3.15 . 32
3.16 Electric scheme solution for the driving circuit 33
3.17 Creative Live! Cam Chat HD Webcam 34
3.18 Camera position with respect to the manipulator 35
3.19 Mechanical tool used to keep the camera fixed 35
3.20 Gripper work-cell Overview 36

xi

xii LIST OF FIGURES

4.1 Robot control hardware configuration 38
4.2 SCARA available coordinate systems 40
4.3 Trapezoidal trajectory for Robot movements 42
4.4 Example of pallet definition 44
4.5 Electric configuration of a external output of the SCARA

controller . 45
4.6 Electric circuit for driving the gripper 45
4.7 Electric configuration of relay: Double Pole Double Throw(DPDT) 46

5.1 typical configuration of a vision-based robotic work-cell 50
5.2 . 54
5.3 Choice of image theshold . 55
5.4 Gray-scale distribution due to non uniform illumination 56
5.5 . 56
5.6 Manipulator and vision coordinate systems 59

6.1 . 63
6.2 Sample of parallelepiped used for the application 64
6.3 Practical implementation of camera calibration 65
6.4 Initial acquired image snapshot 67
6.5 Image obtained through Niblack’s thresholding method 68
6.6 Image processed by Image_processing_niblack function . . . 68
6.7 Centroid detection: possible results 69
6.8 Detected rectangles with associated centroids (blue points) . . 71
6.9 Flowchart describing MATLAB approach for work-piece detection 71
6.10 Example of application iterations implemented via MATLAB

code . 74
6.11 Flowchart describing MATLAB control application 75

B.1 Image processing steps performed via MATLAB functions . . 90

List of Tables

2.1 Link and joint parameters . 12
2.2 Main features of SCARA SR8408 15

3.1 Setra 280E specifications . 23

4.1 Enabling/Disabling of gripping action 47

6.1 Work-piece features . 64
6.2 Range value for image descriptors 70

xiii

xiv LIST OF TABLES

Listings

3.1 Sketch Arduino: Data acquisition code 28
4.1 Sketch Arduino: Example of gripping action control performed 47
5.1 start camera function: enabling video storing and previewing 52
6.1 Cartesian position detector function 66
6.2 Circularity and aspect ratio computation 70
6.3 Calibration of gripper orientation 72
A.1 close camera function: disabling video storing 79
A.2 estimate of θx and θy . 79
A.3 Interest objects detection 80
A.4 Camera-based application 85

xv

xvi LISTINGS

Chapter 1

Introduction

Nowadays industrial automation plays a key role in the development of many
Companies.
Generally the word Automation is associated with the technology that allows
human workers to be replaced by machines, not only to perform physical
operations, but also for intelligently decide which operations have to be carried
out and how to.
An other important advantage concerns the fact that robots are able to
act with greater efficiency than men, even ensuring higher productivity and
precision.
The robots which substitute for human arms are the robotic manipulators,
also known as robotic arms, i.e. a set of rigid bodies interconnected by
mechanical joints, which together form a kinematic chain that allows a certain
degree of articulation.
There are a many possible configuration for the kinematic chain, each of
which represents a different type of manipulator such as:

• cartesian;

• cylindrical;

• spherical;

• SCARA;

• anthropomorphic.

The manipulator ends with a mechanical wrist on which terminal devices
are mounted to permit the manipulation of objects or to perform useful
operations on workpieces. Those tools are the parts that allow the robotic
arm to interact with the environment.

1

2 CHAPTER 1. INTRODUCTION

The terminal device or end-effector can be classified in two main categories:
Robotics tools and Robotic grippers.
The tools are generally used for specific function as soldering, spray painting,
milling and drilling, laser cutting etc.
The robotic grippers for industrial manipulators have the task of grasping
objects and allow a movement, a processing or an assembly operation; there
are commonly four types of grippers:

1. electrical / servo gripper;

2. pneumatic gripper;

3. suction cups;

4. magnetic gripper.

Each of these presents its own advantages and disadvantages related to the
costs and the efficiency.

Figure 1.1: Example of gripper

1.1 Background studies on work-cell design
Historically, technical systems such as machines have been designed, built and
further developed for a particular application. This specialization always led to
the problem of limited operating flexibility. Therefore, aim of manufacturers
is to integrate electronic controls, new materials and sensors to increase

1.1. BACKGROUND STUDIES ON WORK-CELL DESIGN 3

machinery flexibility, although they are faced with the problem of meeting the
requirements for all applications. As a result, complex solutions for various
components, which again are special high-tech elements, are demanded in
order to meet the requirements of each application as well as possible [1].
However, in industrial field, the process of handling component parts or
work-pieces is often underrated as technically simple or even trivial.
From the production point of view, it is obvious that the work-piece itself does
not increase in value during the handling process. Since a gripper makes a
great contribution to practical success of using an automated and/or robotized
solution, a proper design may be of fundamental importance. The design of a
gripper must take into account several aspects of the system design, together
with the peculiarities of a given application or a multi-task purpose. Strong
constraints on the gripping system can be considered for lightness, small
dimensions, rigidity, multi-task capability, simplicity and lack of maintenance.
These design characteristics can be achieved by considering specific end-
effectors or grippers [2, 3].
Moreover, if present, sensors are represented only by elementary devices and
specialized for a single task. Depending on the specific work-cell position,
special encoders, which monitor the movements of manipulator end-effector,
or transducers able to test the compactness of an object, such as contact
sensors, and to measure the values relating to interactions of work-pieces with
the current application, can be found (for instance, in the case of a pneumatic
gripper, it is good practice to monitor the values of applied contact force, the
pressure provided to drive a specific force, the current/voltage required to
power the robot movements etc.).
The manipulators can be therefore considered as “blind” robots, and they
are generally programmed to constantly carry out the same sequence of
movements.
In these conditions robotic arms are forced to operate in an specifically built
environment.
On the other hand, it is not always easy to produce every time, especially
for small and medium-sized companies, suitable robotic configurations, since
each component adjustment could lead to an increase of the costs.
For this reason the flexibility of a work-cell can be significantly improved by
the use of a suitable sensor that allows the robot to have the perception of
its surrounding environment; typical devices are cameras, thereby requiring
the study of a proper vision system [4, 5].

4 CHAPTER 1. INTRODUCTION

1.2 Project and Thesis goal descriptions
The Mechatronics Laboratory of the UCC (University College Cork) Electrical
and Electronic Engineering Department was provided with four SCARA
Sankyo SR8408 robots in September 2013; these manipulators were previously
used for product assembly, based on electronic components. This scenario had
the aim of giving the opportunity to the engineering students to experiment
real industrial problems, allowing them to perform practical research in the
field of robotics.
Some work, supervised by Dr. Richard Kavanagh, has already been made; in
particular the following tasks were performed

• Task 1: Development of an interpreter for controlling the robot through
MATLAB;

• Task 2: Design of a vacuum gripping system to allow pick and place
operations using the end-effector (vacuum based);

• Task 3: Implementation of an off-line camera calibration algorithm
so that image processing routines can be developed to control the
robot/vacuum system;

• Task 4: Design of a Simulink virtual model of the manipulator, so that
its simulated movements can be compared with the ones of the real
robot; the model could be used for training tests.

1.3 Proposed contribution
To increase the reliability of these robots, a robotic gripping system (pneu-
matic based) was designed in this Thesis in order to make the manipulator
suitable for common manufacturing processes, such as grasping objects, as-
sembling, palletizing etc.
This procedure not only focused on the choice of the mechanical structure
of the gripper, but also analysed what were the best circuit solutions and
assembly components (choice of actuators, sensors, transducers, etc.) that
would provide an operative gripping system.
In particular, the control of the opening/closing actions is carried out by a
pneumatic valve, which appositely regulate the air flow able to actuate the
gripper tool. An electric circuit, with suitably selected components, makes
the control operation working.
Using an Arduino microcontroller board, it was also possible to separately
handle the gripping action, so that the movements of the manipulator were

1.4. THESIS OUTLINE 5

managed by the Sankyo Controller, while the task of grasping an object was
run by simple Arduino Sketch code.
The hardware synchronization was basically implemented thanks to a relay
circuit which was well adaptable to the output ports of the manipulator
controller.
Once designed and tested, the gripping system mounted on the manipulator
was used to demonstrate a useful application for the SCARA robot, such
as pick and place operation able to autonomously position eight similar
parallelepipeds into a pallet configuration (see Figure 1.2 for an illustrative
example).
To perform such a task, a simple webcam was mounted on the top of the
manipulator and then calibrated. A camera calibration procedure was fun-
damental to relate a pixel point inside an image with respect to the same
position measured (in [mm]) in the workplace by a manipulator encoder. A
mathematical approach, exploiting a maximum likelihood estimation of the
coefficients linking the two coordinates systems, is performed, proving to be
satisfying and improving a previous offline technique able to work only on a
small area of the workspace.
Several image processing techniques were then applied to the initial acquired
snapshot to properly detect the interest objects to be grasped.
This vision process, implemented via MATLAB, allowed to make available a
black and white image, suitable for the extraction of those features which are
necessary to distinguish a meaningful object from the background.
The implemented technique cleans also the shapes, allowing to deal with
rectangles instead of 3D parallelepiped. This simplification makes the appli-
cation design much easier, especially with regards to the alignment of the
end-effector tool with the object to be grasped.

1.4 Thesis outline
The remainder of this Thesis is organized in other six Chapters. All of them
are briefly described in the following points.

• Chapter 2 deals with structure and mathematical analysis of the
SCARA manipulator, with a detailed Section describing the features of
model installed in the Mechatronics Laboratory, Robot SR840.

• Chapter 3 introduces the design of gripping system, presenting in detail
all the electric and mechanical components used for the development of
the operative gripper tool.

6 CHAPTER 1. INTRODUCTION

Figure 1.2: Example of industrial application: pick and place

• Chapter 4 focuses on the overall system control, describing the pro-
gramming fundamentals used to control the robotic arm and regulate the
gripping action. In this section of the Thesis, MATLAB functions, used
to manage robot movements, are introduced, as well as Arduino Sketches
required to drive and monitor gripper actions (in particular explaining
the hardware and software solutions implemented to synchronize the
manipulator controller and the Arduino board).

• Chapter 5 deals with the vision system designed to make the robot
autonomous. Techniques and algorithms, provided by MATLAB Tool-
boxes and required for application purposes, are described by the help of
some pictures. In the end, the camera calibration procedure (extremely
important for the relation between image informations with robot move-
ments), based on a parameter identification process, is explained from
a mathematical point of view.

• Chapter 6 concerns a vision-based application, developed using both
the webcam and the gripping system.

• Chapter 7 concludes the Thesis with a brief summary of project
achievements. Last Section presents possible future developments.

Chapter 2

SCARA robot

The SCARA, which stands for “Selective Compliance Assembly Robot Arm”,
was firstly designed in 1979 by Hiroshi Makino, a professor of Yamanashi
University (Japan). Since that time, it became one of the most used robotic
arms in the world.
Its success was due to many factors, such as precision, compact dimension,
simple structure, small backlash between the components and easy assembling.
This robotic arm is well suited for factory assembly lines, mainly due to its
capacity of performing not only movements on an horizontal plane, but also
onto the vertical one, allowing, for example, to grasp a part and move it into
another position of the workspace.
It can be thereby used in many typical industrial application as pick and
place, palletizing, assembling and packaging.

Figure 2.1: Example of SCARA robot

7

8 CHAPTER 2. SCARA ROBOT

2.1 Mechanical structure

Despite the differences introduced by each company that produces this robot,
the main mechanical structure remain almost the same (see Figure 2.2).

Figure 2.2: Basic mechanical structure of the manipulator

It has 4 degrees of freedom (DOFs), provided by two links and four axes. In
practice, this is guaranteed by two parallel revolute joints and one prismatic
joint, which allow the motion into the X-Y-Z space (3 DOFs), and by the
rotational motion of the end-effector along the vertical axes (1 DOFs).
The manipulator is well fixed by an heavy base. See Figure 2.3 for the
structure of SCARA installed in the Mechatronics Lab.

2.2 Mathematical analysis: Kinematics

Kinematics is the branch of mechanics that studies the motion of a body or a
system of bodies without consideration given to its mass or the forces acting
on it.
Even if its study is not essential for the basic operation of the arm, it represents
a fundamental mathematical tool to solve problems such as obstacle avoidance
or finding the orientation of mounted vision systems with respect to an object.

2.2. MATHEMATICAL ANALYSIS: KINEMATICS 9

Figure 2.3: SCARA Sankyo SR8408

2.2.1 Direct Kinematics
The main goal of direct kinematics it to calculate the position and the
orientation of the end-effector, i.e. the pose, with the respect to the main
frame, commonly labeled as based frame, knowing the joint variables of the
manipulator [6, 7].
Assuming that the joint axis for a revolute joint and for a prismatic joint
are respectively around the rotational axis and along the positive direction
of motion, it is possible to introduce four main parameters which describe
each link of the manipulator; they are shown in the example of Figure 2.4
and described below:

• ai: common normal distance between joint axes, measured from the
axis of the current joint i to the axis of the following joint i+ 1;

• α: angle by which the axis of the current joint i must be twisted to
bring it into alignment with the axis of the following joint i+ 1 when
looking along ai. It is commonly assumed that the sign of the angle
corresponds to the clockwise positive;

• di: distance between the two normals ai−1 and ai measured along the

10 CHAPTER 2. SCARA ROBOT

joint axis from ai−1 to ai;

• Θi: joint angle from ai−1 to ai in the plane normal to the joint axis.

Figure 2.4: Scheme showing Kinematics Parameters

These parameters can be calculated only after having defined a reference
frame for each link of the mechanical structure; one of the most common
method is represented by the Denavit-Hartenberg (DH) convention.
Hence, in order to get the i-th frame link of Figure 2.4 the following steps
have to be performed [6].

• Choose axis zi along the axis of the Joint i+ 1;

• Locate the origin Oi at the intersection of axis zi with the common
normal to axes zi−1 and zi. In addition, locate the Oi′ at the intersection
of the common normal with axis zi−1;

• Choose axis xi along the common normal to axes zi−1 and zi with the
direction from Joint i to Joint i+ 1;

• Choose axis yi so as to complete a right-handed frame.

Once the link frames are determined, the kinematics parameters can be
calculated for each link.
This procedure allows an easy way to find the mathematical transformation

2.2. MATHEMATICAL ANALYSIS: KINEMATICS 11

between successive frames, which now is represented by a 4 matrix having
the following standard structure:

Ai+1
i =


cos Θi − sin Θi cosαi sin Θi sinαi ai cos Θi

sin Θi cos Θi cosαi − cos Θi sinαi ai sin Θi

0 sinαi cosαi di

0 0 0 1

 (2.1)

After the calculation of all the matrices Ai+1
i , it is easy to find the final

mathematical expression that links the pose of the end effector with the
respect to a base frame, performing two simple steps:

1. calculation of the pose of the last n-th link with the respect to the first
one T 0

n = A0
1 · · ·An−1

n ;

2. calculation of the pose of the end-effector e with the respect to the base
frame b: T b

e = T b
0T

0
nT

n
e .

The frame placement, for the SCARA robot used in this project, is showed in
Figure 2.5.

Figure 2.5: Link frames placement for a SCARA type manipulator

Due to SCARA structure, only four parameters are not fixed, i.e. Θ1, Θ2, d3

12 CHAPTER 2. SCARA ROBOT

and Θ4.
Following the rules explained previously, these values were calculated and
carried into Table 2.1:

Table 2.1: Link and joint parameters

Link ai αi di Θi Home
1 l2 180◦ l1 Θ1 0°
2 l3 0◦ 0 Θ2 0°
3 0 0◦ d3 0◦ dmax

4 0 0◦ l4 Θ4 90°

The substitution of these values into the expression (2.1) and further calcula-
tions lead to the matrix linking the end-effector frame to the base frame:

T e
b =


cos Θ1−2−4 sin Θ1−2−4 0 l2 cos Θ1 + l3 cos Θ1−2
sin Θ1−2−4 − cos Θ1−2−4 0 l2 sin Θ1 + l3 sin Θ1−2

0 0 −1 l1 − d3 − l4
0 0 0 1

 (2.2)

where
Θ1−2−4 = Θ1 −Θ2 −Θ4 (2.3)

Θ1−2 = Θ1 −Θ2. (2.4)

2.2.2 Inverse Kinematics
The purpose of Inverse Kinematics is the determination of the joint variables
corresponding to a given end-effector pose, i.e. position and orientation. The
solution to this problem is really important in common applications since
transforms the motion specifications, assigned to the end-effector, into the
corresponding joint space motions that allow execution of the desired action
[6].
For a SCARA manipulator means finding the right values for parameters Θ1,
Θ2, d3 and Θ4.
The relation between the end-effector and the manipulator base is described
by the matrix:

T tool
base =


R11 R12 R13 px

R21 R22 R23 py

R31 R32 R33 pz

0 0 0 1

 , (2.5)

2.2. MATHEMATICAL ANALYSIS: KINEMATICS 13

. Observing Figure 2.6, it easy to obtain the following expressions:

px = l2 cos Θ1 + l3 cos(Θ1 + Θ2)
py = l2 sin Θ1 + l3 sin(Θ1 + Θ2)

(2.6)

Let’s also define the orientation of the end-effector φ as:

φ = θ1 + θ2 + Θ4 (2.7)

Looking Figure 2.5, the first unknown parameter d3 results:

d3 = l1 − l4 − pz (2.8)

, where the negative sign of pz is due to the fact that the end-effector has
always a straight down approach.
By straightforward trigonometric expressions, Θ2 can be easily calculated
with respect to Figure 2.6:

p2
x + p2

y = l22 + l23 + 2l2l3 cos Θ2 (2.9)

Since the position of the end-effector is well known, i.e. px and py, Θ2 is given
by:

Θ2 = ± arccos
(p2

x + p2
y − l22 − l23
2l2l3

)
. (2.10)

Figure 2.6: Schematic Top view of SCARA robot

The positive and the negative solution corresponds to the possibility to set

14 CHAPTER 2. SCARA ROBOT

left-handed or right-handed mode to the manipulator, respectively.
To find Θ1 it is necessary to substitute the expression of Θ2 into 2.6:

px = l2 cos Θ1 + l3 cos(Θ1 + Θ2) = (l2 + l3 cos Θ2) cos Θ1 + l3 sin Θ2 sin Θ1

py = l2 sin Θ1 + l3 sin(Θ1 + Θ2) = (l2 + l3 cos Θ2) sin Θ1 − l3 sin Θ2 cos Θ1
(2.11)

Isolating cos Θ1 and sin Θ1, it results:[
cos Θ1
sin Θ1

]
=
[
l2 + l3 cos Θ2 l3 sin Θ2
−l3 sin Θ2 l2 + l3 cos Θ2

]−1 [
px

py

]
(2.12)

⇒ Θ1 = arctan 2(l3 sin Θ2px + (l2 + l3 cos Θ2)py , (l2 + l3 cos Θ2)px − l3 sin Θ2py)
= atan2(sin Θ1, cos Θ1)

(2.13)

In the end, the value of Θ4 is calculated:

Θ4 = φ−Θ1 −Θ2 (2.14)

2.3 The Sankyo SR8048
This Section deals with a brief description of the SCARA model used for
Thesis purposes, i.e. the NIDEC SANKYO Robot SR8408 (further details
are reported in [8]).
Table 2.2 shows the main features of the manipulator.
These parameters are extremely important because able to constrain design
choices for any application to be performed by the robot.
The manipulator has got a fixed bas which permits safe and stable movements.
Any change of position is allowed by 4 servo motors, one for every degree of
freedom.
Θ1 and Θ2 motions are allowed by the two servo motors directly mounted at
the top of revolute joints, while the roll motion of the end-effector is possible
due to the servo motor placed in the middle of the first arm and to a system
of belts and pulley. Through the same mechanism, the Z-axis motion is
transmitted up to the prismatic joint by a motor installed in the middle of
the second arm.
Electromagnetic brakes are used to regulate the movements.

2.3. THE SANKYO SR8048 15

Table 2.2: Main features of SCARA SR8408

Weigth 40 [Kg]
Max couple 3 [Nm]
Pay-load 3 [Kg]

Arm lengths
First arm 330 [mm]
Second arm 250 [mm]

Total 550 [mm]

Workspace constraints

Θ1 ± 120 ◦

Θ2 ± 120 ◦

Z axis travel 150 [mm]
Θ4 ± 360 ◦

Speed limits
Composite speed 5000 [mm/s]

Z axis 1000 [mm/s]
Rotational speed 730 [◦/s]

Repeatability
X-Y 0.1 [mm]
Z 0.02 [mm]

Rotation 0.05 [◦]

The Sankyo SR8048 is suitably commanded by the SC3150 Controller pro-
duced by the same company, the NIDEC SANKYO Corporation.
The controller has been developed for the purpose of controlling the robot
system,equipped with AC servomotors and absolute encoders (ABS encoders)
backed-up by battery. Therefore, the operation of returning to home position
(which was needed in the case of conventional controllers) is no more required
at the time of operation start and/or in the case of servo power down (further
details in [9]).

16 CHAPTER 2. SCARA ROBOT

Chapter 3

Gripping System Design

This thesis dealt with not only the design and the implementation of a single
end-effector tool, but also an entire operational gripping work-cell.
Generally, a robotic work-cell, or simply robotic cell, is defined as a complete
system that includes the robot, controller, and other peripherals such as
sensors, transducers (used for monitoring the apparatus) and actuators able
to feed the manipulator in suitable ways (see Figure 3.1).
The design and the implementation of a gripping work-cell represented a
major part of this project.
This chapter introduces all the components (mechanical and electric) that
constitutes the experimental apparatus, describing in details every choice
made during the development of the system.

Figure 3.1: Typical layout of robotic work-cell

17

18 CHAPTER 3. GRIPPING SYSTEM DESIGN

3.1 Gripper Selection

The main part of a gripping system is obviously represented by the gripper
device.
As mentioned in Chapter 1, there are several possibilities.
The work environment, the work-pieces (a priori knowledge of the object to
be grasped is often suggested), the model of the robot on which the gripper
has to be mounted, assembling and costs are all parameter that affect this
fundamental choice.
Thanks to the fact that the Mechatronics Laboratory is provided with a
compressed air supply system, the implementation of a pneumatic gripper
proved to be feasible.
A previous UCC project [10] involved the use of this kind of end-effector,
thus, it was decided to adapt the old version of the gripper for the current
robot installed in the Lab.
Figure 3.2 shows the mechanical configuration of the gripper used for the
experiment.
This device is a fair trade-off between construction costs, project time con-
straints, capabilities and complexity of the mechanical structure.
It is important to underline the limits imposed by the choice of this simple
configuration: the use of this actuator does not allow the grasping of a large
workpiece due to the limited distance between the two tips, making the device
suitable only for particular applications.
To overcome this constraint, partially mobile tips were inserted, in order to
allow the handling of objects having different shapes.
In order to mount the gripper on the robotic arm, it was necessary to adjust
the Z-axis shaft, since the previous one was suitable for an older manipulator
model; the compressed air supply is provided through a hose which brings the
air up to the parallelepiped block placed above the clamps (see Figure 3.3).
The compressed air causes displacement of a circular inner bearing which
leads to the closing action; the presence of springs allow also for the correct
opening of the gripper, as soon as the air feed is turned off.

3.2 Pneumatic feed system

In this section, the pneumatic feed system and each of its individual compo-
nents are described.

3.2. PNEUMATIC FEED SYSTEM 19

Figure 3.2: Gripper configuration

Figure 3.3: Pneumatic gripper used in the project

20 CHAPTER 3. GRIPPING SYSTEM DESIGN

Figure 3.4: Scheme of the pneumatic feed system implemented in the project

3.2.1 Adjustable pressure regulator
The compressed air supply is provided by special tubes installed in the Mecha-
tronics Laboratory. The air flow is therefore adjusted via a pressure regulator
(shown in Figure 3.5) which allows the setting of the right value of pressure
to be supplied to the whole system.
The pressure was kept set to 100 [PSI] (Pounds per Square Inch)1, equal to
about 69 [MPa].

Figure 3.5: Air Flow pressure regulator

3.2.2 I/P converter
Figure 3.6 shows the Current to Pressure (I/P) converter used in this project.

The I/P converter is a force balance device in which a coil is suspended in
the field of a magnet by a flexure. Current flowing through the coil generates

1This is the pressure unit of measurement in the imperial system of units, British
Weights and Measures Act

3.2. PNEUMATIC FEED SYSTEM 21

Figure 3.6: I/P converter

axial movement of the coil and flexure.
The flexure moves against the end of a nozzle, and creates a back-pressure
in the nozzle by restricting air flow through it. This back-pressure acts as a
pilot pressure to an integral booster relay.
Consequently, as the input signal increases (or decreases, for reverse acting),
output pressure increases proportionally (it works as a proportional valve).
Due to the advanced age of the device (impossible to find its own datasheet),
it was necessary to spend some time finding typical values, such as impedance
and sensitivity.
It was rationally thought to model the valve as a series circuit with a resistor
and an inductor; however, since the switching frequencies used to stress the
device involved only few Hz, it was decided to neglect the second component.
It was therefore possible to estimate a static model for the I/P converter
simply providing a voltage input to the I/P inverter and measuring the flowing
current through it. By Ohm’s Law, this results in a resistance R equal to
about 127 Ω (in Figure 3.7a are shown the data that allowed the estimation).
Finally measuring the output pressure and comparing these values with the
input current, an estimated value for the sensitivity S was found.
Concerning this parameter, it was noted that the device responded only to
those input signals having amplitude exceeding a predetermined threshold;
after this, sensitivity had an almost constant value, i.e. S u 2.145[mA

PSI] (see
Figure 3.7b, where is plotted only the linear trend on purpose).
This phenomenon can be attributed to the friction components inside the
transduction circuit.

22 CHAPTER 3. GRIPPING SYSTEM DESIGN

The choice of using an I/P converter, used as a proportional valve (rather than
a simple directional solenoid valves), is justified by the ability of changing
arbitrarily the compressed air flow. In fact, the output flow from the valve
drives the closing action of the gripper: the possibility to appropriately
controlling this operation enabled a greater versatility in the operation to
be carried out (abrupt closure operations may damage the work-piece to be
grasped).

(a) Relation between Current and Voltage (b) Relation between Current and Pression

Figure 3.7

3.3 Sensor system
As dealt with in Chapter 1, in order to improve the flexibility and the efficiency
of the system, some sensors are generally added to the experimental apparatus.
In the following sections the devices used to improve the capabilities of the
pneumatic gripper are described, explaining in details the advantages that
those bring to the system.

3.3.1 Gauge Pressure Transducer
The characteristics and the values in this section can be found in the datasheet
[11, 12].

A common approach for monitoring a pneumatic system involves the constant
measurement of the air pressure flowing inside the hoses.
Due due its availability inside the Mechatronics Lab, a gauge pressure trans-
ducer was mounted on the system.
This device (shown in Figure 3.8) allows measurement of the pressure varia-
tions which are detected and therefore converted into an analogue voltage

3.3. SENSOR SYSTEM 23

signal. To do this, the transducer uses a capacitive sensor that translates a
physical phenomenon into an electric one.
In this project, the sensor supply was set to a rated voltage of 24 [VDC].
The specification found directly on the front side of the sensor are reported
in the Table 3.1.

Table 3.1: Setra 280E specifications

max value min value
input [PSIA] 0 100

excit [V] 15 32
output [V] 0.03 5.03

Figure 3.8: Setra 280E Pressure Transducer

The Setra 280 E, i.e. model of project transducer, was mounted just after
the exit port of the proportional valve with the goal of having a permanent
pressure feedback, useful for monitoring the air flow system, and for providing
a feedback control signal.
Since the datasheet was lacking, the sensitivity, which links current and
pressure, of the device needed to be obtained via multiple experiments. Some
tests provided the linear expected expression (see Figure 3.9 for an example
of acquired data):

V = K1P +K0 (3.1)
, where V represents the output voltage and P the input pressure, while K1
and K0 are the coefficients of the straight line, whose estimated values are

24 CHAPTER 3. GRIPPING SYSTEM DESIGN

shown below: K̂1 = 0.05[V
P SIA

]
K̂0 = 0.03[V]

Figure 3.9: Relation between pressure and voltage

The pressure of this device refers to the unit [PSIA] 2 (Pounds per square
inch absolute), which caused a suitable pressure unit conversion in the project
(either in [PSI] or in [MPa] or [bar]), when needed.

3.3.2 Force Sensor
The characteristics and the values in this section can be found in the datasheet
[13, 14].

An other important parameter for a pneumatic gripper is the force applied
by the clamps of the gripper on the grasped work-piece.
In order to have this important feedback signal for the purposes of contact
sensing, it was decided to install sensors just upon the tips of the gripper (see
Figure 3.2).

2Pounds per square inch absolute (PSIA) is used to make it clear that the pressure is
relative to a vacuum rather than the ambient atmospheric pressure. Since atmospheric
pressure at sea level is around 14.7 [PSI], this will be added to any pressure reading made
in air at sea level

3.3. SENSOR SYSTEM 25

Despite the possibility of mounting a single sensor for each tip, it was de-
cided to use only one force transducer (to minimize cost and to simplify
construction), filling the hole present on the other opposite tip: this choice
was sufficient for the applications used in this project (despite a greater
amount of required force).
The FSG15N1A (the device used for the project and shown in Figure 3.10a)
features a proven sensing technology that utilizes a specialized piezoresis-
tive micro-machined silicon sensing element. The low power, unamplified,
noncompensated Wheatstone bridge circuit design provides inherently stable
millivolt [mV] outputs over the force range.

(a) FSG15N1A Honeywell Force Sensor (b) Wheatstone bridge sensor configu-
ration

Figure 3.10

The resistance of silicon implanted piezoresistors will increase when the re-
sistor flex under under an applied force. The amount of resistance changes
in proportion to the amount of force being applied. This change in circuit
resistance results in a corresponding output voltage range level.
For the purpose of the Thesis, the sensor supply was set to a rated voltage of
10 [VDC].
For this sensor, an analysis of the static relation between the applied force
and the supplied pressure of the gripper was carried out.
Assuming that the air pressure measured at the output of the valve was
reasonably equal to that supplied to the gripper actuator, it was possible to
get the relation between pressure and force.
Given the sensitivity of the device

Sforce = 0.24 [mV]
[gforce] = 24.473189[mV]

[N] (3.2)

26 CHAPTER 3. GRIPPING SYSTEM DESIGN

the measured force expressed in Newton [N] could be measured at a given
time.
Finally, performing grasping test on a suitable work-piece, a linear relation
between [MPa]3 and [N] was obtained (see Figure 3.11).

Figure 3.11: Relation between pressure and force

3the pascal is the official unit of measurement of pressure for the International System
of Units

3.4. GRIPPING ACTION CONTROL: USE OF ARDUINO 27

3.4 Gripping action control: use of Arduino

Figure 3.12: Arduino Uno

This section includes informations found in the official website [15].

In order to manage all the electric signals involved in the experiments, an
Arduino board was used.
The choice of using Arduino was due to the need of a having a compact
system, which could be also easy to control, especially for inexperienced users.
Arduino has many other advantages, including:

• Nearly instantaneous start (plug in a USB cord and load an example
program require few time);

• Large assortment of included libraries for interfacing to a wide range of
hardware;

• Ease of use. The Arduino Uno has built in pin-outs for providing 5 [V],
3.3 [V], ground, analog input, digital output, SPI, I2C, which is useful;

• Lots of available support over the web and offline;

• Free IDE (Integrated development environment) available in all popular
PC operating systems, provides an efficient debugger.

In this project, the microcontroller has carried out two main tasks:

1) data acquisition system;

2) driver of the gripping action.

28 CHAPTER 3. GRIPPING SYSTEM DESIGN

3.4.1 Data acquisition system

Due to the need to acquire analogue signals coming from more sources (input
driving current of the valve and output voltages from the pressure and force
sensors), it was necessary to provide a data acquisition device to the system,
which allowed an easy data collection, making the interfacing with the PC as
simple as possible .
Given the impossibility of finding a suitable NI (National Instruments) DAQ
(Data AcQuisition device),which represents one of the most common used
method [16], it was chosen to employ a simple and efficient solution, i.e. use
of Arduino (this project concerned an Arduino Uno version, whose layout is
shown in Figure 3.12).
The Uno is a microcontroller board equipped of 14 digital input/output pins
(of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz quartz
crystal, a USB connection, a power jack, an ICSP header and a reset button
[15].
Through the analog inputs (maximum input value equal to 5 [V]), labeled A0
up to A5, each of which provided by an 10 bit Analog to Digital Converter
(ADC), i.e. with 1024 different possible measurable values (49 [mV] per unit),
and the simple Arduino sketch, shown in 3.1, a series of datas can be easily
collected.
The acquired data were then handled and processed by the spreadsheet
Microsoft Excel.

Listing 3.1: Sketch Arduino: Data acquisition code
1

2 /*
3 ReadAnalogData
4 Reads analog inputs on pin 0,1 and 2;
5 Converts them into voltage;
6 Prints the result on the serial monitor.
7 */
8 // define a variable as an iteration counter
9 int n=0;

10

11 // the setup routine runs once when you press reset:
12 void setup() {
13

14 // initialize serial communication at 9600 bits per second:
15 Serial.begin(9600);
16

17 }
18

19 // the loop routine runs over and over again forever:

3.4. GRIPPING ACTION CONTROL: USE OF ARDUINO 29

20 void loop() {
21

22 // read the input on analog pin 0:
23 int inputVoltage = analogRead(A0);
24

25 // read the input on analog pin 1:
26 int PressureSensorValue = analogRead(A1);
27

28 // read the input on analog pin 2:
29 int ForceSensorValue = analogRead(A2);
30

31 // Convert the read digital value to analog voltage:
32 // digital range = 0−1023 & voltage range = 0−5 V
33 float supply = inputVoltage * (5.0 / 1023.0);
34 float voltagePressure = PressureSensorValue * (5.0 / 1023.0);
35 float voltageForce = ForceSensorValue * (5.0 / 1023.0);
36

37 // print out the values you read:
38 Serial.print(',');
39 Serial.print(supply,4);
40 Serial.print(',');
41 Serial.print(voltagePressure,4);
42 Serial.print(',');
43 Serial.println(voltageForce,4);
44

45 delay(1);
46 }
47

48 (Note: The value printed in the serial monitor have to be
49 therefore translated into propper unit, i.e. Current,
50 Pressure, Force, by the knowledge of sensitivity)

3.4.2 Gripping action driver
In order to have an experimental apparatus as compact as possible, it was
decided to use the Arduino board even for controlling the system input, which
is represented by the proportional valve, i.e. I/P converter.
Unfortunately this version of Arduino is only able to read analog signals,
using a 10-bit ADC, and not to generate them as output (remember that the
valve has to be fed with analogue current).
Despite this limitation, the board provides an alternative: it lets the user to
generate Pulse Width Modulation (PWM) signals as output, which represents
a smart technique for getting analog results with digital means.
To realize this task the Uno has specific output ports; in fact, there are 13
digital I/0 pins, six of which can be set to produce a PWM output signal(see
Figure 3.13a).

30 CHAPTER 3. GRIPPING SYSTEM DESIGN

Digital control is used to create a square wave, i.e. a signal switched between
ON and OFF. In Arduino, this on-off pattern can simulate voltages between
full ON (5 Volts) and OFF (0 Volts) by changing the proportion of time the
signal spends ON (whose percentage represent the duty cycle) versus the time
the signal spends off [15]. The duration of ”ON time” is called pulse width,
which has to be modulated in order to get various analog values.
The frequency of the PWM on Arduino is based on 8-bit configuration and
can vary between 2 set values, 490 [Hz] or 980[Hz].
For this reason the sketch Arduino instruction analogWrite() is on a scale
of 0-255, such that analogWrite(255) request a 100% duty cycle, i.e. 5 [V]
as output, and analogWrite(127) is a 50% duty cycle, i.e. 2.5 [V] as output
(for example, see Figure 3.13b).

(a) Digital Arduino PWM pins (b) Examples of how to generate PWM
with Arduino instruction

Figure 3.13

Using Arduino both for acquiring analog measurable values and generating
control output signals allowed to get a compact and easy tool for monitoring
and handling the gripping action at the same time, using only one device.

3.5 Signal Processing and Conditioning
The characteristics and the values in this section can be found in the datasheet
[17, 18, 19].

3.5. SIGNAL PROCESSING AND CONDITIONING 31

This section of the project describes the circuit connections established to
make the whole operating system working, hence allowing each device to have
the correct interface inside the experimental apparatus.
Firstly some signal conditioning had to be done in order to adapt the acquired
values (introduced in 3.4.1) to the input range of Arduino (0-5 [V]).
Fortunately, the values coming from the pressure transducer had already a
proper output range (as shown in Table 3.1), hence the device was able to be
connected directly to the analog pin A1 of Arduino board.
On the other hand the output voltage from the force sensor, mounted on the
gripper tips required the use of an amplifier, since the measured values in
millivolts were too small to be read and preprocessed by the 10-bit ADC.
This idea is graphically explained through the electric circuit of Figure 3.14,
which exploits a simple differential amplifier, i.e. an op amp along with four
resistors.

Figure 3.14: Differential amplifier for Wheatstone bridge devices

Besides this easy solution, the amplification circuit could be improved, since
the voltage output coming from most sensors, is coarse and prone to common
mode voltage as well as noise due to the wiring carrying the voltage from
the sensor back to the motherboard, which the simple 741 op amp used in
isolation is bad equipped to deal with.
As such, in any real world application the use of instrumentation amplifier
is advised in order to offset the null point (i.e. zero voltage reference) and
such that the sensor sees infinite input impedance, thus avoiding stray sensor
currents. Another benefit, that the use of an instrumentation amplifier gives
for a sensor measurement, is its CMRR (Common Mode Rejection Ratio), a

32 CHAPTER 3. GRIPPING SYSTEM DESIGN

measure of the amplifiers ability to reject common voltage in inputs terminals,
which is quite high [20].
The Instrumentation Amplifier chosen in this project was an INA118P , whose
basic scheme is shown in Figure 3.15a.

(a) INA118P Instrumentatio amplifier (b) Amplification circuit

Figure 3.15

The connection shown in Figure 3.15b allows to amplify at will the differential
output of the force sensor (simply changing the value of RG,where the gain
expression is given by G = 1 + 50kΩ

RG
).

It was chosen a gain resistance RG = 5.6KΩ which is the best one that
approximated as good as possible a gain of 10; this choice was made in order
to constantly have a feedback of what really the force sensor is measuring,
even if Arduino is actually reading a value coming from the output of the
instrumentation amplifier.
Choosing INA118P, which can can operate with a supply voltage of ±10[V],
allowed to use efficiently one of the power supply of the Laboratory: with
the same setted voltage it was easy to feed the amplifier and the force sen-
sor at the same time, remembering that V +

s,F sensor = 10[V], V −
s,F sensor = GND.

As introduced in Section 3.4.2, a PWM output signal was used to control the
system, i.e. the air flow passing through the proportional valve.
Some electromechanical devices, as motors, are able to handle a PWM signal,
managing easily the quite high PWM switching frequency and the associated
analog values, making them suitable for application purpose.
However many cases, like the one in this project, need a real Digital to Analog
Converter (DAC) which has to be interposed between the PWM source and
the load/device to be driven.
The simple way to design such DAC is assembling a simple low pass filter,
which represents a specific configuration of RC-filter, composed of a resistor
and a capacitor respectively in series and in parallel with the load.

3.5. SIGNAL PROCESSING AND CONDITIONING 33

For this Thesis, suitable values for resistance and capacitance were chosen,
advised by the fact that the valve could switch between closing and opening
only to low frequency; a 10 [Hz] cutting frequency seemed to be enough for
the project purpose: R = 15kΩ

C = 1µF
(3.3)

The driving circuit required two important additional component: a buffer
amplifier and a bipolar bipolar junction transistor (BJT).
Given the low impedance of the valve (see Section 3.2.2), the use of a buffer
amplifier, designed via an µA 741 Op-amp, is generally advised to decouple
the input (Arduino) and the load (valve); this device integration guaranteed
that the output voltage coming from the microcontroller almost exactly fits
the one at the buffer output.
The use of the BJT was necessary (used as current gain) to overcome the
current feed problem introduced by the buffer: the valve needs a certain
amount of current in order to operate, which could not be provided by the
buffer (the Op-amp shows only few milliAmps as output current [18]).
A proper connection between a BJT npn 2N3053A and the buffer amplifier
showed the expected behaviour, i.e. the right amount of current related to
the voltage supplied by Arduino pin.
Figure 3.16 shows an overview of the adjusted driving circuit with all its
components.

Figure 3.16: Electric scheme solution for the driving circuit

34 CHAPTER 3. GRIPPING SYSTEM DESIGN

3.6 HD Webcam
For characteristics and specifications see [22].

An other important component of the work-cell is represented by a vision
sensor, a camera in this project.
In order to realize the vision application (explained in detail in Chapter
6) an HD 720p Webcam was used to acquire, via snapshots, images of the
work-pieces placed inside the workspace.
The model used in the project is the Creative Live! Cam Chat HD (see Figure
3.17).

Figure 3.17: Creative Live! Cam Chat HD Webcam

As can be see in Figure ??, the Webcam was mounted, by the use of an
aluminium extension, at the top of the the the prismatic joint. The position
turned out to be the best for a good view of the worktop.
Moreover, the necessity of keeping the camera well fixed during the movement
of the manipulator suggested to install a simple mechanical tool (shown in
Figure 3.19) which allowed to maintain fixed the orientation and the position
of the camera, but also to let these last parameters be adjustable, if necessary,
by a couple of screws.

The communication between the “host” PC and the vision sensor was estab-
lished through USB cord, which was simply fixed around the structure of the
manipulator in order to avoid unexpected obstacles during movements.
The main technical specifications of the device are summarized as following:

• Video resolution: 1280 pixels.

• Picture resolution: 5.7 megapixels.

• Frame rate: Up to 30 fps.

• Fixed focus.

3.6. HD WEBCAM 35

(a) Frontal view of the Camera (b) Side view of the Camera

Figure 3.18: Camera position with respect to the manipulator

Figure 3.19: Mechanical tool used to keep the camera fixed

• Cable length: 1.5 meters.

• USB 2.0 HI-Speed.

Figure 3.20 shows an overview of the system with all its components.

36 CHAPTER 3. GRIPPING SYSTEM DESIGN

Figure 3.20: Gripper work-cell Overview

Chapter 4

Robotic work-cell control

The entire experimental apparatus needed a proper set-up in order to be
easily controlled by remote with one of the Lab PCs.
The use of Arduino for handling the gripping action was already introduced
in Section 3.4 , while no explanations were made about how to deal with the
movements control of the manipulator.
This issue was fortunately already solved in a previous project [23], which
allowed a complete control of the SCARA through the simple use of MATLAB
software.
Some of the available MATLAB functions were exploited in this Thesis,
especially for properly implementing the synchronization between the robot
and the gripping system, which is indispensable for any kind of grasping
application.

4.1 Use of MATLAB for controlling the Robot
This section has the aim of introducing and explaining to the reader the
basics of the communication (both hardware and software part) between the
manipulator controller and the PC installed in the Laboratory.

4.1.1 Software part
The use of MATLAB for the purpose of controlling the manipulator increased
the flexibility and the functionality of the SCARA, when combined with the
original programming language provided by the robot manufacturer, Sankyo
Corporation, called SSL/E Language (Sankyo Structured Language/En-
hanced). This language runs inside a SANKYO Robot Application Develop-
ment Software named Buzz2, that supports the writing, compiling or building,

37

38 CHAPTER 4. ROBOTIC WORK-CELL CONTROL

editing, monitoring and debugging of the user application programs which
thereby has to be written inside Buzz2 and then every time downloaded inside
the Controller.
Despite these tools provided by the SANKYO Company, the use of SSL/E
Language presents some limitations such as:

• limited possibility to operate modular programming;

• weak mathematical tools;

• programming is not straightforward and comfortable due use unfamiliar
language;

• hardware limitations in terms of I/0 communications ports.

To overcome these issues, and to allow the user to easily control the robot
actions through MATLAB code, an interpretation was necessary in order to
translate a MATLAB script into the original SSL/E code: this operation
was carried out by the interpreter, a program written in the robot native
language, which is running on the robot controller [23].

4.1.2 Hardware part
The Hardware Configuration used for control the manipulator is shown in
Figure 4.1.

Figure 4.1: Robot control hardware configuration

MATLAB is installed on a PC connected to the SC3150 Controller, through

4.2. MATLAB ROBOT FUNCTIONS 39

a RS232 cable (maximum rate: 115.200 [bps]): this communication was
previously established by simple MATLAB instruction thanks to the Matlab
Communications System Toolbox.
The communication arrangement is a standard 9 pin RS-232 connection:

• Data bits=8

• Stop bits=2

• Parity=Even

• Speed=Up to 19200 baud (the controller operates at 9600 baud4).
The robot controller is connected to the SCARA in order to provide power
to the motors and to Absolute Home Position (ABS) encoders, which are
position sensors able to detect the position of the joints, and to receive the
most recent encoder position feedback signals from this last ones.
The Teaching Pendant allows many operations, the most important of which
is the starting and stopping of the interpreter execution. It is also possible to
manually move the manipulator via a joypad.

4.2 Matlab Robot Functions
For the purpose of this project, only a few of the translated MATLAB robot
functions were used: the main ones are described in the following Subsection.
For completeness, it is important to underline the possibility of referring to
two different coordinate systems: the Cartesian Coordinate System and the
Joint Coordinate System (see Figure 4.2 to explain).

In this Thesis only the first one, which describes the position of the end-effector
with respect to the Cartesian frame relative to the base of the manipulator,
was used for the application purpose described in Chapter 6.
For instance, defining a position p=[x y z s] in the Cartesian Coordinate
System means:

• x represents the X − axis position measured in [mm];

• y represents the Y − axis position measured in [mm];

• z represents the Z − shaft position measured in [mm];

• s represents the Roll − axis position of the the last joint measured in
[deg].

4baud is the unit for symbol rate and represents the number of distinct symbol changes
that occur per second

40 CHAPTER 4. ROBOTIC WORK-CELL CONTROL

(a) Cartesian Coordinate System (b) Joint Coordinate System

Figure 4.2: SCARA available coordinate systems

4.2.1 Motion in the Cartesian Coordinate System: point
to point

MOVE

This function allows the manipulator to move to a precise point,
previously defined.
As input it needs a Nx4 matrix, where N = 1, ..., 8; this means that up
to 8 different positions can be reached in succession. The output value
is none.

SMOVE

This function allows the manipulator to move only one of the
Cartesian Coordinates, i.e. x, y, z, s, and to specify the absolute
displacement. As input it needs two parameter:

• n: number to select the coordinate to change (x=1 or y=2 or z=3
or s=4);

• d: value of the absolute displacement expressed in [mm] or [deg].

The output value is none.

4.2. MATLAB ROBOT FUNCTIONS 41

4.2.2 Speed/acceleration set

SPEED

Due to the fact that point to point functions are built to let the
robot to operate at the maximum speed, a function that permits to
arbitrarily change this parameter is extremely useful.
With this function, which as an integer number as input representing
the set percentage of the speed limit, all the velocities of each axis are
modified at the same time. When not specified the default percentage is
10%. The output is the previous set value.

WEIGHT

Sometimes is wise to know the payload for a precise application.
For this value, it is also common habit to set a precise acceleration and
deceleration to the movement of the manipulator. In fact when the speed
function is used, the imposed value of velocity is not reached immediately,
but takes a while. This time could therefore be set in relation with the
weight of the workpiece grasped by the gripper.
As input it needs a real number between 0 and the maximum payload
weight expressed in [Kg].
The output value is none.

AUTOACL

This function enables or disables the automatic optimum acceler-
ation and deceleration settings for the point to point motion. The
automatic acceleration and deceleration settings depend, as previously
explained, on the payload handled by the weight function.
The input parameter can be chosen between:

• 0: Disabling the automatic acceleration and deceleration settings;

• 1: Enabling the automatic acceleration and deceleration settings.

The output value is none.

42 CHAPTER 4. ROBOTIC WORK-CELL CONTROL

Figure 4.3: Trapezoidal trajectory for Robot movements

4.2.3 Mark function

MARK

This function is extremely useful, since it provides the current
position of the end-effector in the Cartesian Coordinate System. The
input is none, whereas the output is a 1x4 position vector.
Since the values are calculated by reverse-conversion of position pulse
(not command pulse), a small error may be introduced between the real
position and the one obtained through the use of the function.

4.2.4 I/O functions

OUT

The aim of this function is simply to enable or disable a digital
port of the Robot controller. As input it needs two parameter:

• number representing an output port;

• 0(OFF) or 1(ON).

The output value is none

4.2. MATLAB ROBOT FUNCTIONS 43

4.2.5 Palletizing functions

SETPLT

This function permits the definition of a pallet configuration. The
example, shown in Figure 4.4, allows one to understand the meaning of
the input parameters to be provided with this function. In order to
define a pallet, it is necessary to know its main corner positions and the
number of objects that could stand between these set positions. It is also
possible, by the use of this function, to label the designed pallet with a
number which will prove extremely useful for the next function.
The output value is none.

PLT

This function calculates the position corresponding to a point
number on an user-defined pallet previously designed through use of
SETPLOT. Thereby as input it needs two parameter:

• n: pallet number (positive integer);

• a: point number configuration (positive integer).

The output value is none.

44 CHAPTER 4. ROBOTIC WORK-CELL CONTROL

Figure 4.4: Example of pallet definition

4.3 Gripping action control
In order to make the system easier to control, it was decided to implement a
technique allowing synchronization between the movements of the SCARA
(handled by the SANKYO Controller via MATLAB) and the gripping action
(handled by Arduino Uno).

4.3. GRIPPING ACTION CONTROL 45

This task required the design of a simple signal communication between the
two controllers.
Given the output configuration of the robot controller (shown in Figure 4.5),
a relay circuit was included in order to insulate Arduino with the SCARA
controller (for safety purposes).

Figure 4.5: Electric configuration of a external output of the SCARA controller

Figure 4.6 shows the simple circuit used to implement the communication
process.

Figure 4.6: Electric circuit for driving the gripper

46 CHAPTER 4. ROBOTIC WORK-CELL CONTROL

The MATLAB robot function out was used to switch ON and OFF the BJT
placed inside the output port of the robot controller: this required action
permitted the feeding of relay.
Hence, the use of relay allowed, through an if statement of Arduino sketch,
to arbitrarily turn ON or OFF the gripping action, an operation completely
handled by the microcontroller board. This concept is explained in detail in
the following Subsection.

4.3.1 Communication procedure
When the relay switches from OFF state to ON state, it works as switcher
for any other circuit connected to it (in this case the simple circuit at the
right of the relay in Figure 4.6).
Observing the electric configuration of the relay used in this project (shown in
Figure 4.7), the procedure just explained above is implemented by applying
24 [VDC] between pin 1 and 8.
To optimize the procedure and thus decrease the number of electric compo-
nents involved, it was decided to use the power supply of the Arduino (5 V
pin) as a driving signal.

Figure 4.7: Electric configuration of relay: Double Pole Double Throw(DPDT)

One of the Arduino digital pins (D2 for the project) was used instead, for

4.3. GRIPPING ACTION CONTROL 47

reading sensor: signals above 3 V are considered as HIGH logic value, i.e. 1,
while inputs below 1.3 V are associated with LOW logic value, i.e. 0 [15].
This simple circuit solution allowed to parallely manage the two controllers
of the main system: when the pin D2 reads HIGH (pins 3 and 4 of the relay
connected), then Arduino operates the closing action for the gripper through
the use of PWM pin (explained in Subsection 3.4.2), while when the read
value is LOW (pins 2 and 3 of the relay connected), the microcontroller stops
supplying power, causing the opening of the jaws of the gripper (which is
spring based).
Table 4.1 summarized the overall method:

Table 4.1: Enabling/Disabling of gripping action

MATLAB status relay status D2 status gripper

out(938,0) OFF LOW CLOSING
out(938,1) ON HIGH OPENING

Arduino sketch 4.1 represents an example of code used to run the Arduino
control on the gripping action.

Listing 4.1: Sketch Arduino: Example of gripping action control performed
1

2 /*
3 Gripping action control
4 Use of digital pin 2 & 6;
5 */
6 // Define variable for level signal HIGH and LOW
7 int High=1;
8 int Low=0;
9

10 // Define number of the digital pin used as interrupt operator
11 int interrupt = 2;
12

13 // the setup routine runs once when you press reset:
14 void setup() {
15

16 // initialize serial communication at 9600 bits per second:
17 Serial.begin(9600);
18

19 // set digital pin 2 as input
20 pinMode(interrupt, INPUT);
21 }

48 CHAPTER 4. ROBOTIC WORK-CELL CONTROL

22

23 // the loop routine runs over and over again forever:
24 void loop() {
25

26 // define the if statement use for control the gripping action
27 int switchOperator = digitalRead(interrupt);
28 if (switchOperator == High) {
29

30 analogWrite(6, 180);
31 delay(1);
32 }
33 else {
34

35 analogWrite(6, 0);
36 delay(1);
37 }

Chapter 5

Vision System

The development and the integration of vision systems inside the industrial
automation had a big increase in the last decade, largely due to low component
costs and to the presence of image processing algorithms more efficient and
robust. [24].
The advantages and the limits of a vision system are various, and mostly
depend on the work environment in which they are installed.
Despite this peculiarity, it is generally possible to define the main aspects
that distinguish a vision system from a human being, pointing the advantages
and disadvantages of their use.
The pros of using a vision system are summarized as follows:

• Repeatability. A human operator is not able to provide a constant
performance, while a robot can easily do it. Even if all members of a
team-workers collaborate for the same operation purpose, each of them
has a way of working which will be slightly different from the others
causing possible problems.

• The possibility to operate in hostile work environments. There are
many areas inside industrial environment, where an operator can not
work under safe conditions.

• Speed of check/efficiency. A vision system is able to perform monitoring
operations in fractions of a second, even on objects moving fast, as on
conveyor belts.

• Generation and elaboration of process data. During a process could be
extremely important the detection and the storing of potential defects
in data form, allowing the human operator to apply suitable corrections.

49

50 CHAPTER 5. VISION SYSTEM

At the same time there are still many technical limitations for application
purposes, especially if the system is designed and installed without following
well predefined specifications.
Operations that the human brain is able to carry out in fractions of a second
require, instead, thousands lines of code and powerful calculators.

Figure 5.1: typical configuration of a vision-based robotic work-cell

Typical examples are the detection of complex or 3D shapes: each of us is
able to recognize hundreds of faces in a fraction of a second or to find a
screwdriver in a box of very messy tools. Our eye is also able to adapt to
illumination changes, to variations of distance and to keep the interest object
permanently inside the field of view, focusing on those important aspects
useful for specific purposes.
All these aspect are not obvious for a vision system (see Figure 5.1 for an
example).
). Typical examples are the detection of complex or 3D shapes: each of us
is able to recognize hundreds of faces in a fraction of a second or to find a
screwdriver in a box of very messy tools. Our eye is also able to adapt to
illumination changes, to variations of distance and to keep the interest object
permanently inside the field of view, focusing on those important aspects
useful for specific purposes.
All these aspect are not obvious for a vision system (see Figure ?? for an
example).
). Some limitations belong to such a system, especially when has to work
with:

• various and different object shapes to be detected;

5.1. VISION APPROACH THROUGH MATLAB 51

• work-pieces with complex structures which have to be checked from
different point of views;

• illumination variations on the interest field of view;

• dirty and dusty work environment conditions.

The vision system designer’s task is to emphasize the advantages resulting
from that specific system, in particular arranging the layout of the cell in
order to make it as easy as possible the analysis on interest parts and to
overcome the issues just introduced.

For application purposes dealt with in Chapter 6, a vision system had to be
appositely designed.
The vision sensor used in this project was already introduced in Section 3.6
and it is represented by a simple HD Webcam. Its use regards the detection
of interest objects inside its field of view through the acquisition of an image
frame. Afterwards, the acquired image is processed in order to store those
useful features for application task.

5.1 Vision approach through MATLAB
The capture of an image frame and its elaboration are generally known as
Image acquisition and Image processing.
Both of them are quite straightforward to implement thanks to the use of
two MATLAB Toolboxes:

• Image Acquisition Toolbox [25];

• Image Processing Toolbox [26].

5.1.1 Image Acquisition
Image acquisition performed in this project is carried out by the use of Image
Acquisition Toolbox.
Through a simple MATLAB code (see Listing 5.1), it is possible to switch ON
the camera, configure the frame acquisition and return the video input object,
which could therefore be used to store a snapshot image for the processing
application.
The MATLAB function has to be called every time it is necessary to acquire
an image for application purposes.

52 CHAPTER 5. VISION SYSTEM

At the end of the Image acquisition process the camera has to be turned OFF
by close_cam function (see Appendix A).

Listing 5.1: start camera function: enabling video storing and previewing
1

2 %% this function allows the operator to switch on the camera
3 % and set the parameter for the acquisition of a frame
4

5 function [o] = start_cam(a)
6

7 persistent vid;
8

9 if (strcmp(a,'open')) % if the two strings perfectly match each
10 % others, it returns TRUE
11

12 pause on;
13

14 % The video input object is saved as variable vid
15 vid =videoinput('winvideo',1);
16

17 % Settings to acquire a single snapshot
18 set(vid, 'FramesPerTrigger', 1);
19

20 set(vid, 'TriggerRepeat', Inf);
21

22 triggerconfig(vid, 'manual');
23

24 start(vid);
25

26 % preview of the video
27 preview(vid);
28

29 else
30

31 if(strcmp(a,'retrieve')) % if a=='retrieve', the vid variable
32 % is saved in the workspace
33 o=vid
34

35 end
36

37 end
38

39 end

5.1. VISION APPROACH THROUGH MATLAB 53

5.1.2 Image Processing
Image processing is a computational process that transforms, via algorithms,
one or more input images into an output image.
Image processing is frequently used to enhance an image for human viewing
or interpretation (for instance, to improve contrast).
Alternatively, and of more interest to robotics, it is the foundation for the
process of feature extraction, which results essential for an operative vision-
based application.
Other possible applications for image processing are:

• Image display and printing;

• Image editing and manipulation;

• Image compression;

Image Processing Toolbox offers a big set of algorithms and functions for
image processing, analysis, visualization, and code development.
The remaining of this Subsection discusses the main techniques (used in this
project) that provided a suitable image to be used for application purposes.
The first step dealt with the conversion of the Red-Green-Blue (RGB) ac-
quired image into a gray-scale image which results to be more easy to process.
An RGB image, sometimes referred to as a truecolor image, is stored as an
m-by-n-by-3 data array that defines red, green, and blue color components
for each individual pixel. RGB images do not use a palette. The color of each
pixel is determined by the combination of the red, green, and blue intensities
stored in each color plane at the pixels location. Graphics file formats store
RGB images as 24-bit images, where the red, green, and blue components are
8 bits each. This yields a potential of 16 million colors. The precision with
which a real-life image can be replicated has led to the nickname “truecolor
image" [26].
On the other hand a gray-scale image is a representation where each pixel
corresponds to an integer value (stored in a matrix) corresponding to the
brightness of the pixel. For instance an 8-bit image has a gray-scale of 256
(28) possible values, where 0 represents black pixel while 255 stands for
white pixel.
The distribution of gray levels within image can be shown by an histogram
which indicates the number of times each gray pixel value occurs.
Figure 5.2 shows an example of histogram.

54 CHAPTER 5. VISION SYSTEM

(a) Gray-scale acquired image (b) Gray-scale histogram

Figure 5.2

After the conversion into a gray-scale image, it was possible to proceed
with the image segmentation process, which represents the operation by
which items in an image are separated from each other and from the back-
ground, making them meaningful regions.
This is one of the earliest approaches to scene understanding and while con-
ceptually straightforward, it is a very challenging problem.
A key requirement is robustness which evaluates how gradually the method
degrades as soon as specific assumptions are not followed, for example chang-
ing scene illumination or viewpoint.
Generally the first step of image segmentation involves the use of a classifi-
cation method which most of the time presents itself as binary classification
(c ∈ C = {0, 1}): the pixels have been classified as object (c=1) or not-object
(c=0) which are displayed as white or black pixels respectively [7].
If regions are homogeneous with respect to some pixel characteristic, an ideal
classification is possible. In practice, it is common rule to accept that this
stage is imperfect and that pixels may be misclassified: next processing steps
will have to deal with this.
The decision of labelling a gray pixel as white or black depends on a set
brightness value t, called threshold. If the brightness of a pixel is less than t
then that pixel will be classified as background (c=0), otherwise it will be a
component of the object of interest (c=1).

c[u, v] =
0 I[u, v] < t

1 I[u, v] ≥ t
∀(u, v) ∈ I (5.1)

There are several ways to implement a binary classification through threshold-
ing techniques. The easiest one is represented by a trial and error approach
for choosing the best value of t, once a gray-scale histogram is given: the

5.1. VISION APPROACH THROUGH MATLAB 55

aim is to manually select a threshold that divides the brightness scale in two
distinct sets as best as possible.
Figure 5.3 shows an example of thresholding.

Figure 5.3: Choice of image theshold

The optimal global threshold can be selected through the Otsu’s method
[27](implementable with a single MATLAB function) which separates an im-
age into two classes of pixels in a way that minimizes the intra-class variance
(the variance within the class) while maximizes the inter-class variance (the
variance between different classes).
The algorithm needs the strong assumption of bimodal distribution of the
brightness.
Unfortunately the performances of these first two techniques deteriorate quite
fast if the histogram does not present two distinct peaks. This circumstance
could happen, for example, when the illumination is not uniform (see Figure
5.4 for an example of such case).
An alternative is to choose a local threshold rather than a global one. This
solution can be implemented, for example, through the Niblack’s algorithm
[28] which computes a pixel-wise threshold by sliding a rectangular window
W over the gray-scale image.
The computation of threshold is based on the local mean µ(·) and the standard
deviation σ(·) of all the pixels in the window W and is given by the following
equation:

t(u, v) = µ(u, v) + kσ(u, v) (u, v) ∈ I (5.2)

where k is a parameter used to control and adjust the effect of standard
deviation, which depends on object features (defaults values are 0.2 for bright
objects and -0.2 for dark objects).
The size of window W is a critical parameter and has to be set as similar as

56 CHAPTER 5. VISION SYSTEM

Figure 5.4: Gray-scale distribution due to non uniform illumination

possible to the size to the objects to be detected.
Despite these common rules, the choices of the size of W and the parameter
k are generally given by a trial and error process.
Once a binary image is available, the second step of image segmentation, i.e.
the representation process, can be performed [7]. This operation includes
all those techniques which provide a final image where all adjacent pixels
of the same class, i.e c=0 or c=1, are connected forming a blob (a spatially
contiguous region of pixels of the same class).
Figure 5.5 shows the same scenario, before and after the implementation of
representation process: it is clear how, in the processed image, the white
blobs are clearly detectable and all other “impure” pixels are vanished.

(a) Binary image before representation (b) Binary image after represention

Figure 5.5

5.1. VISION APPROACH THROUGH MATLAB 57

The main techniques, implemented in the Thesis via MATLAB functions, are
briefly described in the following list.

• Noise removal through opening and closing morphological operations
(see [7] for details).

• Enhancement through the use of suitable filter.

• Filling of the undesired holes.

• Clearing of the image borders.

• Deleting of meaningless detected objects.
Once it is known which pixels belong to each single objects in the scene (
thanks to the representation step), it is therefore possible to extract the most
significant features of the blobs. Their knowledge allows to distinguish objects
of interest with the remaining ones and the background.
This procedure represents the third step of image segmentation and it is
commonly known as description.
In this project, thanks to the MATLAB function regionprops, a set of useful
features for each labeled region were stored.

• Area: the actual number of pixels in the region [26];

• Centroid: centre of mass of the region [26];

• Orientation: the angle (in degrees ranging from -90 to 90) between
the x-axis and the major axis of the ellipse that has the same second
moments as the region [26];

• Perimeter: the distance between each adjoining pair of pixels around
the boundary of the region [26];

• Major Axis Length: the length (in pixels) of the major axis of the
ellipse that has the same normalized second central moments as the
region [26];

• Minor Axis Length: the length (in pixels) of the minor axis of the
ellipse that has the same normalized second central moments as the
region [26].

The direct use of this features could lead to misdetections, since none of them
is simultaneously invariant to translation, rotation and scaling concerning
observed objects.
In Chapter 6 the alternatives introduced to solve this limitations are described
in details.

58 CHAPTER 5. VISION SYSTEM

5.2 Camera Calibration
One of the most important aspect of a vision system regards camera calibra-
tion.
This procedure has the aim to determine all those parameters that allow a
correct mapping between the (pixels) image coordinate frame and the main
reference frame of the manipulator.
The efficiency of this operation results strictly important for application
purposes.
In fact, an accurate calibration allows to control the robot movements through
out the informations detectable in a simple image snapshot.
Before explaining the procedure, it is important to define and describe the
two reference frames dealt with.

• Manipulator Reference Frame.

• Vision Reference Frame.

The acquired image is constituted by a matrix in which each element is the
smallest unit of information on the pixel’s brightness of the scene at that
point.
The vision coordinate system is therefore given by row-column indices of the
matrix, i.s. a discrete system based on the resolution of the camera (in this
project there are 1280 x-axis and 720 y-axis possible values).
While the vision system is limited to 2-D coordinates (xv,yv), the manipulator
Reference Frame is defined inside the real space, thus allowing 3-D coordinates
(xr,yr,zr).
Figure 5.6 shows a scheme for both coordinate systems.
It appears obvious the need to find a map that links the two reference systems,
especially if the application is camera-based. A suitable and well-designed
map is able to reduce the problems due to the perspective of the scene and
to optical distortions related to the lenses present inside the camera (typical
issues for a vision system).
The SANKYO SCARA (4 DOFs) allows to place the end-effector exactly
above a precise point of the camera field of view, assuming a perpendicular
angle between the end-effector z axis and the plane framed by the Webcam.
Following this assumption, the mapping function between pixel coordinates
and manipulator coordinates can be expressed by:

xr = fx(xv, yv)
yr = fy(xv, yv)
zr = z0

(5.3)

5.2. CAMERA CALIBRATION 59

Figure 5.6: Manipulator and vision coordinate systems

where z0 is a constant and known parameter.
A common approach for camera calibration would provide an estimation
of extrinsic and intrinsic parameters of the camera, which are fundamental
parameters to pass firstly from the robot reference system to the one of the
camera and finally from the latter to the two-dimensional image plane frame
[29].
The use of a simple Webcam as a vision sensor makes the implementation of
this procedure really complex, suggesting to search for an alternative.
An ideal calibration can be seen as a particular rototranslation between the
two different reference systems: xr

yr

zr

 =

 cos(α) − sin(α) a0
sin(α) cos(α) b0

0 0 z0

 ·
 xv

yv

1



=

 a1 a2
b1 b2
0 0

 · [xv

yv

]
+

 a0
b0
z0


(5.4)

from which is possible to get polynomial expressions for fx and fy:{
fx(xv, yv) = a1 · xv + a2 · yv + a0

fy(xv, yv) = b1 · xv + b2 · yv + b0
(5.5)

Despite its simplicity, this simple linear model often is not robust for vision
applications because not able to handle the problems concerning perspective
and optical distortions.
These optical issues can however be compensated with good accuracy using

60 CHAPTER 5. VISION SYSTEM

a non-linear model. This can be achieved increasing the degree of the poly-
nomials describing fx and fy (in the project a second-order polynomial was
enough to get satisfactory results):{

fx = a1 · xv + a2 · yv + a3 · x2
v + a4 · y2

v + a0

fy = b1 · xv + b2 · yv + b3 · x2
v + b4 · y2

v + b0
(5.6)

Once this model is chosen, the camera calibration process can be seen as an
parameter identification problem where the coefficients θx =[a1 a2 a3 a4 a0
]T and θy =[b1 b2 b3 b4 b0]T are the parameters to be estimated belonging to
the two following linear statistical models (particular Gauss model):{

xr = S · θx + wx

yr = S · θy + wy
(5.7)

, where xr =[xr(1) · · · xr(n)]T and yr =[yr(1) · · · yr(n)]T can be seen as
the result of n measurements performed by placing the robot end effector just
above different points of the workspace plane and S represents a matrix that
includes their corresponding coordinates in the vision reference frame

S =

 xv(1) yv(1) xv(1)2 yv(1)2 1
· · ·

xv(n) yv(n) xv(n)2 yv(n)2 1

 ∈ Rnxp (5.8)

and wx and wy modelize measurement noises.
Model 5.7 is typically used in the description of digital communication chan-
nels, or for measurements made sequentially in time by numeric sensors of
control systems [30].
In order to complete the camera calibration procedure, it necessary to cal-
culate the maximum likelihood (ML) estimator of the parameters θx and θy

∈ Rp for the linear statistic model. [31].
Assuming n > p (that means more measurements than number of parameters)
and w = σv, where v ∼ N (0, I), I ∈ Rnxn and σ unknown.
A noise covariance matrix R can be derived by w model:

R = E
[
w ·wT

]
= σ2I

(5.9)

Thus because wx and wy are assumed independent and identically distributed
(i.i.d.).
It can be also proved that, for Rothenberg Theorem, the parameter θ is globally
identifiable (i.e. vector θ uniquely identifiable) if and only if S is full rank

5.2. CAMERA CALIBRATION 61

(rank(S) = p), i.e. if and only if S has p columns linearly independents.
In the project p = 5, meaning 5 independent measurements had to be taken
for the camera calibration operation, each of which is able to provide 5 linearly
independent vectors such as [xv yv x

2
v y

2
v 1] .

It is finally possible to define the expression of ML estimators for coefficient
vectors θx and θy:

θ̂x =
[
STR−1S

]−1
STR−1 · xr

=
[
ST

(1
σ2 I

)
S
]−1

ST
(1
σ2 I

)
· xr

=
[
STS

]−1
ST · xr

(5.10)

θ̂y =
[
STR−1S

]−1
STR−1 · yr

=
[
ST

(1
σ2 I

)
S
]−1

ST
(1
σ2 I

)
· yr

=
[
STS

]−1
ST · yr

(5.11)

For an identification process is always useful to test its efficiency.
To do that, it is compulsory to calculate the variance of the estimator. For a
ML estimation, this parameter assumes the following expression:

V ar(θ̂(·)) = σ2
[
STR−1S

]−1 (5.12)

It can be proved that the variance expression coincides with Cramer-Rao
bound, thus resulting minimum variance estimator, i.e. fully efficient (the
theory of Cramer-Rao can be applied since the estimator is unbiased) [30].

62 CHAPTER 5. VISION SYSTEM

Chapter 6

Camera-based application

“The characteristic design of a SCARA offers compliance in the horizontal
plane and high rigidity in vertical direction which is perfectly suited for Pick
and Place Applications” [8].
As final part of the project, a vision-based application was designed and
implemented.
It dealt with a grasping operation where eight identical small parallelepipeds
had to be picked from a random position and placed into a predefined one.
The latter represents a specific point of a pallet configuration (resulted
straightforward due to the MATLAB function described in Subsection 4.2.5).
The manipulator has to perform this operation autonomously by using the
mounted webcam and the pneumatic gripping system.
Figure 6.1 shows the workspace at the beginning and the end of the application
execution.

(a) Random initial configuration (b) Final pallet configuration

Figure 6.1

The worktop is represented by a black metal base on which Eight manufactured
plastic parallelepipeds are placed on a black metal base, representing the
worktop. They are uniformly varnished with gray opaque paint in order to

63

64 CHAPTER 6. CAMERA-BASED APPLICATION

avoid reflection issues.
Table 6.1 stores the main characteristics of a workpiece 4 (see Figure 6.2 for
an example).

Table 6.1: Work-piece features

color gray
material plastic
weight 35 [g]
eight (a) 35.48 [mm]
width (b) 33.32 [mm]
thickness (c) 26.31 [mm]

Figure 6.2: Sample of parallelepiped used for the application

6.1 Camera-calibration: practical setup
Section 5.2 already introduced camera calibration procedure from a theoretical
point of view.
On the other hand this section provides an explanation about the practical
implementation, describing, in details, the approach used to get an efficient
map between image coordinates and manipulator coordinates.
First, the pneumatic gripper was replaced with an end-effector previously
used in another project (see Figure 6.3b).
Given the like-pointer nature of this tool, it was possible to obtain a good
precision regarding the acquisition of precise spatial coordinates within the

4the dimension values are related to a workpiece sample. The same parameters could
be slightly different if measured on another parallelepiped, due to possible errors in
manufacturing process.

6.1. CAMERA-CALIBRATION: PRACTICAL SETUP 65

(a) (b)

Figure 6.3: Practical implementation of camera calibration

robot workspace.
The procedure begins with the placement of five parallelepipeds in as many
random positions within the workspace. These positions need to be included
within the same field of view of the camera.
The operator must then manually position, through the teaching pendant, the
end-effector exactly above the centroid of the upper rectangular face of the
interest objects as precisely as possible, and thus acquire spatial coordinates
relative to the manipulator coordinate system [xr(i), yr(i), zr(i)]5.
It is necessary to accurately point the centroid of the rectangle, since it repre-
sents also the grasping centre of the pneumatic gripper, which is fundamental

5The Z-axis coordinate zr(i) is not important since the system separately handles the
z-shaft displacement and not affect the mapping between the two coordinate systems.

66 CHAPTER 6. CAMERA-BASED APPLICATION

for a correct grasping (see Figure 6.3a).
After this stage, the robot must be moved to a position such that the five
objects can simultaneously be observed. Successively, thanks to image pro-
cessing techniques introduced in the previous Chapter, centroid positions in
pixels coordinates [xv(i) yv(i)] can be detected.
Knowing the centroid coordinate both in the worktop and in the image allows
to determine the estimators of the coefficients that map the two coordinate
systems (this calculation was possible due to the use of MATLAB codes posx
and posy, which are listed in Appendix A).
These coefficient vectors are then passed to another MATLAB function (see
Listing 6.1) which receives an object centroid position in pixels as input
parameter, and outputs the same position measured in the manipulator
workspace.

Listing 6.1: Cartesian position detector function
1

2 %% This function translates the pixel coordinates into Cartesian
3 % coordinates
4 % INPUT: − a=vector containing centroid coordinates [pixell] of
5 % interest objects;
6 % − theta_x and theta_y vectors containing the estimated
7 % coefficients with ML
8 % estimator;
9 % OUTPUT: − vector containing the x−axis and y−axis position of

10 % the object inside the manipulator coordinate system.
11 function [o] = position_Cartesian(a,theta_x,theta_y)
12

13 X=theta_x;
14 Y=theta_y;
15

16 px=X(1,1)*a(1,1)+X(1,2)*a(1,2)+X(1,3)*a(1,1)^2+X(1,4)*a(1,2)^2
17 +X(1,5);
18 py=Y(1,1)*a(1,1)+Y(1,2)*a(1,2)+Y(1,3)*a(1,1)^2+Y(1,4)*a(1,2)^2
19 +Y(1,5);
20

21 o=[px,py];
22

23 end

6.2 Parallelepipeds detection
A suitable MATLAB function was developed for parallelepiped detection, i.e.
OBJ_detection_niblack()(see Appendix A for the code).

6.2. PARALLELEPIPEDS DETECTION 67

This function exploits the Niblack’s thresholding method which proved to be
the best for application purposes 6.
Function OBJ_detection_niblack exploits two other MATLAB local func-
tions, both developed in the same m-file: optimum_threshold_niblack and
Image_processing_niblack.
The first one has the aim to detect the best combination between window size
W and k gain, which are the two variables that set and eventually modify
Niblack’s threshold (see formula 5.2). This solution proved to be robust even
for lighting changes. It is important to remind that if a threshold is not
correct, an interest object could be not recognized.
The function Image_processing_niblack uses those techniques (using Matlab
Image Processing Toolbox functions) allowing to reduce noise, clear borders,
and make the shape of detectable interest object placed in the workspace as
clear as possible.
Figure 6.4, Figure 6.5 and Figure 6.6 show the initial acquired image, the
same snapshot after thresholding and the processed image, respectively.

Figure 6.4: Initial acquired image snapshot

Figure 6.6 shows optimal result. Issues due to perspective disappeared, since
in the final image only two-dimensional rectangular shapes were plotted (all
the remaining meaningless objects have been assimilated to the black back-
ground).

6Some application tests were performed also using different thresholding techniques,
such as “trial and error” and Otsu’s method. To improve their efficiency, a MATLAB
function for correcting non-uniform illumination was developed. Despite this solution,
Niclack’s approach remained the most reliable.

68 CHAPTER 6. CAMERA-BASED APPLICATION

Figure 6.5: Image obtained through Niblack’s thresholding method

Figure 6.6: Image processed by Image_processing_niblack function

This aspect is crucial for a correct development of the application execution.
In fact, the centre of grasping must be associated to the centroid of the
upper rectangular face (see Figure 6.7a) and not to the global gray object
viewed from the top in the initial acquired image (see again 6.4). In the
last undesired case, which may result from a wrong threshold choice (see
Figure 6.7b), the gripper could not be able to properly grab the parallelepiped,
causing damages to the system and to the gripper itself (unexpected collision
with one of work-piece edge).

From the processed image, the final step of detection process is implemented.

6.2. PARALLELEPIPEDS DETECTION 69

(a) (b)

Figure 6.7: Centroid detection: possible results

This deals with extraction of useful features that can distinguish between
meaningful and meaningless objects. Two functions, provided by MATLAB
Image Processing Toolbox, helps to achieve suitable results: bwlabel and
regionprops [26].
Some descriptors are already been introduced in Subsection 5.1.2, underlining
their weaknesses (possible misdetection).
For application purposes, other two common descriptors were used: aspect
ratio Ar (or eccentricity) and circularity ρ. The first one represents the ratio
of major to minor ellipse axis lengths. The second one is defined as:

ρ = 4πA
p2 (6.1)

where A is the Area of the region and p is its perimeter length. Circularity
has a maximum value of ρ = 1 for circle, is ρ = π/4 for a square and ρ = 0
for an infinite long line.
These two descriptors turn out to be extremely robust since are invariant to
translation, rotation and scale.
Listing 6.2 shows their computation.

70 CHAPTER 6. CAMERA-BASED APPLICATION

Listing 6.2: Circularity and aspect ratio computation
1

2 % features extraction
3 stats = regionprops(L,'Area', 'Centroid',
4 'Orientation','Perimeter','MajorAxisLength','MinorAxisLength');
5

6 % store useful features
7 area=cat(1, stats.Area);
8 perimeter=cat(1,stats.Perimeter);
9 MajorAxis_elippse=cat(1, stats.MajorAxisLength);

10 MinorAxis_elippse=cat(1, stats.MinorAxisLength);
11

12 % Circularity
13 Circularity=cat(1,4*pi*area ./ perimeter.^2);
14

15 % Aspect Ratio
16 Ar=MajorAxis_elippse ./ MinorAxis_elippse;

Through an empirical approach, standard range values for ρ and Ar were found.
These limits were appositely set in order to deal with slight shape differences
between each parallelepiped, non-uniform illumination and perspective point
of view.
Table 6.2 reports this range values.

Table 6.2: Range value for image descriptors

Descriptor range

circularity ρ [0.5-0.85]
aspect ratio Ar [1.10-1.35]

Once these two descriptors are computed for each possible interest object, a
simple if statement allows to store the interest rectangles.
If only a detected objects respect the range values then their orientation and
centroid features are stored inside a matrix and outputted.
Figure 6.8 plots the detected rectangles with respective centroids.
All the detection procedure is summarized in the flowchart scheme of Figure
6.9.

6.2. PARALLELEPIPEDS DETECTION 71

Figure 6.8: Detected rectangles with associated centroids (blue points)

Figure 6.9: Flowchart describing MATLAB approach for work-piece detection

72 CHAPTER 6. CAMERA-BASED APPLICATION

6.3 Application execution
The application is on the whole controlled through MATLAB function (see
Figure 6.11 for the flowchart) Camera_based_Palletizing), which includes
interest object detection and all those commands necessary to perform an
operative application.
Preliminary steps deal with the setting of speed and the automatic accelera-
tion/deceleration time related to the payload of a parallelepiped. Afterwards,
relevant points for a pallet configuration are defined as well as the initial
position point from where an image of the worktop is acquired and passed to
the OBJ_detection_niblack (see previous Section).
If one or more rectangles are detected, then an operation of picking and
placing of work-pieces into pallet points is performed.
An important aspect of the application concerned a suitable calibration be-
tween the effective angle measured by the end-effector and the orientation
of object to be picked. It is essential to underline that the gripper has to
align its axis in such a way that the object is grasped from the shorter side
of rectangle surface (longer side could not properly fit the distance between
gripper tips).
An empirical approach leads to the calibration showed in piece of code of
Listing 6.3, where the mapping between angles changes according to the sign
of detected ‘Orientation’ feature (this one is stored in the first column of
variable OBJ, while s variable represents gripper orientation).

Listing 6.3: Calibration of gripper orientation
1

2 % Calibraion of gripper's orientation
3 if(OBJ(i,1) >= 0)
4

5 s = −OBJ(i,1)+175;
6

7 else
8

9 s=−OBJ(i,1)−5;
10

11 end

Once the operation is completed, the manipulator moves to initial position
and the camera is turned off.
The following points summarize the whole procedure, briefly describing each
performed step:

1. Preliminary settings as: speed, acceleration/deceleration time, pallet

6.3. APPLICATION EXECUTION 73

configuration and initial position.

2. Turning on the camera and image acquisition.

3. Object detection through OBJ_detection_niblack and storing of ‘Cen-
troid’ and ‘Orientation’ features.

4. Starting of while cycle where each iteration corresponds to one pick
and place action:

a) position_Cartesian function allows to get centroid coordinates
with respect to the main reference frame of the manipulator;

b) moving the manipulator up to the centroid position;
c) change of the end-effector orientation in order to allow a correct

grasping (gripper calibration);
d) lowering of the gripper and grasp of the parallelepiped through

switch on the pneumatic feed system (out(938,1));
e) lifting of the gripper and move the manipulator up to a pallet

point, and release, when arrived, the work-piece (out(938,0));
f) lifting of the gripper and go ahead with the procedure if pallet

configuration is still not complete (return to point a)).

5. Initial position return.

6. Turning off the camera.

The complete code of the application can be found in A, while Figure 6.10
shows some snapshots of the application progress.

6.3.1 Results and comments
For a correct execution, few initial adjustments and constraints had to be
applied. These actions turned out to be useful and helpful solutions for a
feasible implementation of the pick&place operation.

• Due to delay time between an input signal, used to switch the air
flow by the valve, and the real response of the gripper status (opening
or closing), a manual time pause was set, after the call of MATLAB
functions out(938,0/1), in order to let a correct grasp and release.

• The pallet configuration required a precise space, which had to be left
available and known a priori (in order to avoid unexpected collisions).

74 CHAPTER 6. CAMERA-BASED APPLICATION

Figure 6.10: Example of application iterations implemented via MATLAB code

• Two adjacent objects were placed not too near, allowing the gripper to
focus only on the object to be picked without dealing with, during that
operation, other parts in the worktop.

• Time necessary to correctly detect the eight parallelepipeds is quite
high due to the while cycle used to find the best possible combination
between the parameters of Niblack’s thresholding. This represents a
trade-off between efficiency and execution velocity.

• The colors of work-piece and worktop board were chosen in order to
help the detection, hence improving the contrast between background
and interest objects and partially solving non-uniform illumination and
reflection issues.

Despite these necessary constraints, the final application showed optimal

6.3. APPLICATION EXECUTION 75

Figure 6.11: Flowchart describing MATLAB control application

result, especially in terms of robustness and reliability with respect of the
initial random placement of the eight parallelepipeds: the perspective problem
were successfully solved allowing a correct control of the grasping actions,
irrespective from initial position of an object.
Also the execution speed was high, with a fixed limit value only to avoid
damage of the manipulator structure.

76 CHAPTER 6. CAMERA-BASED APPLICATION

Chapter 7

Conclusions

This thesis work involved the development of a robotic work cell for gripper-
based SCARA manipulator.
The first part of the project dealt with the development of a suitable gripping
system (both pneumatic and electrical design). This study also concerned an
appropriate mounting of proper sensors and a microcontroller board used for
acquisition and control of the gripping action (this work exploits an Arduino
Uno board).
A crucial aspect of this section is represented by the use of MATLAB as
control software to handle the overall system: a previous project allowed
to translate many functions written in the manipulator own language into
feasible MATLAB code.
An important study involved a suitable synchronization between Arduino
signals and MATLAB commands.
On the other hand, the second part described the vision system connected to
the manipulator, describing in detail common algorithms used to manage the
acquisition and elaboration of images through MATLAB Toolboxes.
As natural consequence, the final part dealt with the design of a camera-based
application of automated pick and place, which allows to incorporate all
studies presented during this work.
The final result is appreciable due to good efficiency and reliability of such
application, made mainly possible by a careful calibration procedure via
parametric identification.
Moreover, the developed gripping system allowed to handle 3-D object, im-
proving a previous installed vacuum end-effector able only to suck planar
parts, such keys or poker fiches.

77

78 CHAPTER 7. CONCLUSIONS

7.1 Future works
Despite satisfactory achievements, few improvements can be applied to the
project.
Future works may include the following tasks.

• Development and design of an electrically based gripper, easier to control.
Regulate the air pressure is a complex procedure due to sponginess of
air.

• Modelling the overall system allowing the implementation of controller
such as PID or state-space controller.

• Improvement of the robotic work-cell adding dynamic devices such as
a conveyor belt. This inclusion forces the operator to develop a quick
image detector system.

• Employment of C++ language to control the manipulator which speed
a lot the communication between PC and robot, allowing real-time
controller.

• Use a camera with better performances able to make the vision system
more efficient. The vision sensor can be mounted on a fixed position
above the worktop, with the addition of a uniform lighting system
performed by suitably installed lamps.

Appendix A

Code

Listing A.1: close camera function: disabling video storing
1

2 %% This function allows the operator to turn off the camera
3

4 function [] = close_cam()
5

6 vid=start_cam('retrieve');
7

8

9 stop(vid);
10 delete(vid);
11

12 end

Listing A.2: estimate of θx and θy

1

2 %% theta_x axis parameter estimation through ML estimator
3 % (use of 5 positioning points)
4

5 % Matrix including image centroid O coordinates [pixel]
6 S=[O(1,2) O(1,3) O(1,2)^2 O(1,3)^2 1;
7 O(2,2) O(2,3) O(2,2)^2 O(2,3)^2 1;
8 O(3,2) O(3,3) O(3,2)^2 O(3,3)^2 1;
9 O(4,2) O(4,3) O(4,2)^2 O(4,3)^2 1;

10 O(5,2) O(5,3) O(5,2)^2 O(5,3)^2 1];
11

12 % vector inccluding y centroid coordinates [mm]
13 X_r=[P1(1,1) P2(1,1) P3(1,1) P4(1,1) P5(1,1)];
14

15

79

80 APPENDIX A. CODE

16

17 % Maximum Likelihood estimator, using Markov model
18 if(rank(S)==size(S))
19 theta_x=inv(S'*S)*S'*X_r'
20 end
21

22 %%%
23 %%%
24

25 %% theta_y axis parameter estimation through ML estimator
26 % (use of 5 positioning points)
27

28 % Matrix including image centroid O coordinates [pixel]
29 S=[O(1,2) O(1,3) O(1,2)^2 O(1,3)^2 1;
30 O(2,2) O(2,3) O(2,2)^2 O(2,3)^2 1;
31 O(3,2) O(3,3) O(3,2)^2 O(3,3)^2 1;
32 O(4,2) O(4,3) O(4,2)^2 O(4,3)^2 1;
33 O(5,2) O(5,3) O(5,2)^2 O(5,3)^2 1];
34

35

36 % vector including y coordinates [mm]
37 Y_r=[P1(1,2) P2(1,2) P3(1,2) P4(1,2) P5(1,2)];
38

39

40

41 % Maximum Likelihood estimation, using Markov model
42 if(rank(S)==size(S))
43 theta_y=inv(S'*S)*S'*Y_r'
44 end

Listing A.3: Interest objects detection
1

2 %% This function detects objects of interest and stores their
3 %% orientation and centre of mass inside OBJ variable
4 % INPUT=none;
5 % OUTPUT= − '−1' if no objects are detected;
6 % − Nx3 matrix where N is the number of detected objects
7 % first column: orientaion (degree)
8 % second column: x−position centroid (pixel)
9 % third column: y−postion centroid (pixel)

10

11 function [o]=OBJ_detection_niblack()
12

13 % save the video as variable and get a snapshot of it in order to
14 % process the acquired image
15 vid_obj=start_cam('retrieve');
16 Acquired_Image=getsnapshot(vid_obj);
17

81

18 % conversion of the colored image into a gray−scale image
19 I_gray=rgb2gray(Acquired_Image);
20

21 % Image Processing of the gray image
22 BW_final=Image_processing_niblack(I_gray);
23

24 % The next statements returns a matrix L (same size BW_final)
25 % containing labels for the connected objects.
26 % n is the number of connected objects.
27 [L, n] = bwlabel(BW_final);
28

29

30 % save the most importan feature of each labelled region
31 stats = regionprops(L,'Area', 'Centroid',
32 'Orientation','Perimeter','MajorAxisLength','MinorAxisLength');
33

34 % store useful features
35 area=cat(1, stats.Area);
36 perimeter=cat(1,stats.Perimeter);
37 MajorAxis_elippse=cat(1, stats.MajorAxisLength);
38 MinorAxis_elippse=cat(1, stats.MinorAxisLength);
39

40 % Circularity
41 Circularity=cat(1,4*pi*area ./ perimeter.^2);
42

43 % Aspect Ratio
44 Ar=MajorAxis_elippse ./ MinorAxis_elippse;
45

46

47 i = 1; % Iteration variable
48 j = 1; % Position pointer in 'OBJ'
49

50 OBJ=[0,0,0,0];
51

52 while(i <= n)
53 % range values were obtained from multiple experiments
54 if(Circularity(i,1) >= 0.5 & Circularity(i,1) <= 0.85 &
55 Ar(i,1)>= 1.10 & Ar(i,1)<=1.35)
56

57 % counting the detected objects
58 OBJ(j,1)=i;
59

60 % store the orientation [deg]
61 OBJ(j,2)=stats(i).Orientation;
62

63

64

65 %store the centroids
66 OBJ(j,3)=(stats(i).Centroid(1)); %x position [pixel]
67 OBJ(j,4)=(stats(i).Centroid(2)); %y position [pixel]
68

82 APPENDIX A. CODE

69 % update iteration variable
70 j=j+1;
71 end
72

73 % update iteration variable
74 i=i+1;
75 end
76

77

78 % if no parallelepiped is detected retrun −1, otherwise
79 % a vector including features
80 if(OBJ(1,1)==0 & OBJ(1,2)==0 & OBJ(1,3)==0 & OBJ(1,4)==0)
81 o=−1;
82 else
83 o=[OBJ(:,2), OBJ(:,3), OBJ(:,4)];
84 end
85 end
86

87 %%%
88 %%%
89

90 %% This function converts the gray image into a binary BW image
91 %% through the use of niblack's thresholding method
92 % INPUT= − gray−scale image;
93 % OUTPUT= − optimum threshold values represetend by a 1x3
94 % vector including size of the window W and value of
95 % constant k;
96 % − Binary BW processed image
97

98 function [o, opt_threshold] = Image_processing_niblack(I_gray)
99

100 % plot and show the gray−scale histogram
101 figure
102 imhist(I_gray)
103

104

105 % adaptive niblack algorithm
106 opt_threshold=optimum_threshold_niblack(I_gray)
107 BW_start=niblack(I_gray,[opt_threshold(1,1)
108 opt_threshold(1,2)],opt_threshold(1,3));
109

110 % noise removal=opening + closing
111 % SE has to be smaller than objects shape
112 SE=strel('square',2);
113

114 BW_start=imopen(BW_start,SE);
115 BW_start=imclose(BW_start,SE);
116

117 % EDGE DETECTION
118 BW_sobel = edge(BW_start,'sobel');
119 BW_canny = edge(BW_start,'canny');

83

120 BW_LoG = edge(BW_start, 'log');
121

122

123 % enhancement filter
124 h = fspecial('unsharp',0.3);
125 BW_filter = imfilter(BW_start,h,'conv');
126

127 % filling the holes
128 BW_fill = imfill(BW_filter,'holes');
129

130 % clear borders
131 BW_fill = bwmorph(BW_fill,'clean',200);
132 BW_border = imclearborder(BW_fill,26);
133

134 BW_final = bwareaopen(BW_border, 2400);
135 o=BW_final;
136 end
137

138 %%%
139 %%%
140

141 %% This function is able to find the best variable combination
142 that has to be pass to Niblack's thresholding formula.
143 % INPUT= gray−scale image;
144 % OUTPUT= − 1x3 array where
145 % first element: width of window W (pixel)
146 % second element: height of wondow W (pixel)
147 % third element: k gain parameter
148

149 function [o] = optimum_threshold_niblack(I)
150

151 opt_thr = [0 0 0]; %optimum BW array threshold
152

153 opt_thr_n_obj = 0; % Number of objects that match rectangular
154 % shape by using 'opt_thr'
155 current_n_obj = 0;
156

157 % iteration variable for window size W
158 p=0
159

160 % iteration variable for k gain parameter
161

162 % double loop cycle to detect best combination between
163 % window size and k gain parameter
164 for p=50:5:70
165

166 for l=0.2:0.05:0.8
167

168 BW = niblack(I,[p p],l);
169

170 SE=strel('square',2);

84 APPENDIX A. CODE

171

172 BW=imopen(BW,SE);
173 BW=imclose(BW,SE);
174

175 h = fspecial('unsharp',0.3);
176 BW = imfilter(BW,h,'conv');
177

178 BW = imfill(BW,'holes');
179 BW = bwareaopen(BW, 800);
180

181 [L, n] = bwlabel(BW);
182

183 stats = regionprops(L,'Area', 'Perimeter',
184 'MajorAxisLength','MinorAxisLength');
185

186 area=cat(1, stats.Area);
187

188 perimeter=cat(1,stats.Perimeter);
189

190 MajorAxis_elippse=cat(1, stats.MajorAxisLength);
191 MinorAxis_elippse=cat(1, stats.MinorAxisLength);
192

193 % Circularity
194 Circularity=cat(1,4*pi*area ./ perimeter.^2);
195

196 % Aspect Ratio
197 Ar=MajorAxis_elippse ./ MinorAxis_elippse;
198 i=1;
199

200 while(i <= n)
201

202 if(Circularity(i,1) >= 0.5 & Circularity(i,1) <= 1
203 & Ar(i,1)>= 1.10 & Ar(i,1)<=1.35)
204 current_n_obj = current_n_obj +1 ;
205 end
206 i=i+1;
207 end
208

209 if(current_n_obj > opt_thr_n_obj)
210

211 opt_thr_n_obj = current_n_obj;
212

213 opt_thr = [p p l];
214 end
215

216 current_n_obj = 0;
217

218 end
219

220 end
221

85

222 o = opt_thr;
223

224 end

Listing A.4: Camera-based application
1

2 %% CAMERA BASED PALLETIZING OPERATION
3

4 clear all
5 close all
6 clc
7

8 % Set the speed
9 speed(15);

10

11 % Set the acceleration and deceleration time
12 % (depending on the weight)
13 autoacl(1);
14 weight(0.035); %the weight of a parallelepiped is 35 g
15

16 % Open camera
17 start_cam('open')
18

19 % wait 2 s to give the camera the time to switch on
20 pause(2);
21

22

23 % Define the pallet points for the configuration
24 Ap=[124.1679 400.9497 56 85];
25 Bp=[124.1679 400.9497 20 85];
26 Cp=[200.1679 400.9497 56 85];
27 Dp=[124.1679 350.9497 56 85];
28

29

30 j=0; % work−piece placement position iteration variable
31

32

33

34 % define the initial position of the manipulator
35 pos_iniz = [130.0586 176.8722 25.0000 85.0000];
36

37 % move to the initial position if not already there
38 while(mark()~= pos_iniz)
39 move(pos_iniz);
40 end
41

42 % detect the centroids of the parallelipeds (in the image frame)
43 OBJ = OBJ_detection_niblack();

86 APPENDIX A. CODE

44

45 % define a pallet configuration knowing the main points
46 setplt(4,Ap,Bp,Cp,Dp,2,2,2);
47

48 % size of the vector inluding the centroid coordinates,
49 % allowing to know the number of detected work−pieces
50 [a,b] = size(OBJ); % Returns size of OBJ dimensions
51

52 i = 1; % Iteration variable
53

54

55 % Sequential pick and place operations
56 while(i <= a)
57

58 % selection of the i−th work−piece
59 p=OBJ(i,:);
60

61 % find the centroid position in Cartesian Coordinates
62 pos=position_Cartesian([p(1,2) p(1,3)], X,Y);
63

64 % move the gripper above the work−piece to be grasped
65 move([pos(1,1) pos(1,2) 25 85]);
66

67

68

69 % detection of the orientation of the parallelepipeds/Gripper
70 % calibration
71 if(OBJ(i,1) >= 0)
72

73 s = −OBJ(i,1)+175;
74

75 else
76

77 s=−OBJ(i,1)−5;
78

79 end
80

81 % orienting of the gripper to allign the jaws axis to the
82 % work−piece orientation
83 smove(4,s);
84

85 % lower down th gripper in order to reach a right height
86 % to grab the object
87 smove(3,130)
88

89 % activate the pneumatic feed =>closing action of the gripper
90 out(938,1);
91

92 % wait a while in order to let the correct grasping
93 pause(0.7)
94

87

95 % raise up the gripper: start of the placing movement
96 smove(3,40)
97

98

99 % recall the pallet configurationg and
100 % save one of its point as variable
101 pallet_point=plt(4,i);
102

103 % move the grasped object above pallet position
104 move(pallet_point)
105

106 % lower the gripper
107 srmove(3,75)
108

109 % opening action of the gripper
110 out(938,0);
111

112 % wait a while in order to let the correct object release
113 pause(0.5);
114

115 % raise the gripper again
116 smove(3,56);
117

118 % update variable
119 i=i+1;
120

121 % update variable
122 j=j+1;
123

124 end
125

126 % move back to the initial position
127 move(pos_iniz)
128

129 % desable the automatic setting of acceleration and deceleration
130 autoacl(0);
131

132 % close the camera
133 close_cam();

88 APPENDIX A. CODE

Appendix B

Image processing steps

This appendix shows some pictures describing how the image processing
procedure affects, step by step, the acquired initial snapshot.

Following points describes each of the seven pictures showed in Figure B.1.

1. Initial acquired coloured snapshot. This represent the first image which
is passed to MATLAB as soon as after its acquisition via webcam.

2. Gray-scale converted image. This element is provided by the use of
MATLAB function rgb2gray().

3. Thresholded black&white image (via Niblack’s method). The applica-
tion of Niblack’s thresholding provides a black and white image which
is easier to process with MATLAB tools.

4. Image after noise-removal technique. This operation starts to clean the
b&w image, getting rid of the smaller white dots via morphological
techniques.

5. Image after application of fill-the-holes procedure. The result is due to
the use of MATLAB function imfill() which closes the holes placed
in the rectangle’s centroids.

6. Image with cleared borders. imclearborder() function makes the
borders black to avoid misdetection.

7. Final processed image. bwareaopen() function provides the final b&w
image, removing those white regions with pixel area smaller than the
one associated with interest rectangles.

89

90 APPENDIX B. IMAGE PROCESSING STEPS

Figure B.1: Image processing steps performed via MATLAB functions

Bibliography

[1] A. Wolf, R. Steinmann, and H. Schunk, “Gripper in Motion: The Fascination
of Automated Handling Tasks", Springer, p.p. 16-31, 2005.

[2] G. Fantoni, S. Capiferri, J. Tilli, “Method for supporting the selection of robot
grippers”, 24th CIRP Design Conference, 2014.

[3] V. D. Latake, Dr. V. M. Phalle, “A survey paper on a factors affecting
on selection of mechanical gripper”, International Journal of Engineering
Development and Research.

[4] A. Glaser, “Industrial robotics: how to implement the right system for your
plant”, Industrial Press, 2008.

[5] E. Malamas, E. Petrakis, L. Petit, “A survey on Industrial Vision Systems,
Applications and Tools, Image and Vision Computing 21, 2008.

[6] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo “Robotics: Modelling, Planning
and Control”, Springer, 2009.

[7] P. Corke, “Robotics,Vision and Control, Fundamental Algorithms in MAT-
LAB”, Springer, 2011.

[8] SR8000 Series Hardware Manual,SC3000 Robot Systems, NIDEC SANKYO.

[9] SCARA Series Hardware Manual,SC3000 Robot Systems, NIDEC SANKYO.

[10] S. Mc Sweeney, “Construction of a Robot Manufacturing Cell”, Master Thesis,
University College Cork, 2007.

[11] Setra, Models 280E/C280E Pressure Transducer and Pressure Transmitter
Three-Wire, Voltage Output—Two Wire, Current Output, 280E Datasheet.

[12] Setra, Model 280 Gauge, Compound & Absolute Pressure Transducer.

[13] Honeywell Sensing and Control, FSG15N1A Datasheet.

[14] Honeywell Installation Instructions for FSG Series Force Sensor, Rev.A
50090349.

91

92 BIBLIOGRAPHY

[15] Online: https://www.arduino.cc/.

[16] M. Abdallah, O. Elkeelany, “A Survey on Data Acquisition Systems DAQ”,
Computing, Engineering and Information, 2009. ICC ’09. International Con-
ference on, p.p. 240-243, 2-4 April 2009, Fullerton, CA.

[17] Burr Brown, Precision, Low Power INSTRUMENTATION AMPLIFIER,
INA118 Datasheet.

[18] Texas Instrument, µA 741 General-Purpose Operational Amplifiers, µA 741
Op-amp Datasheet.

[19] Multicomp, Bipolar Transistor, BJT npn 2N3053A Datasheet.

[20] J. Karki, “Signal Conditioning Wheatstone Resistive Bridge Sensors”, Appli-
cation Report SLOA034, September 1999.

[21] B. Siciliano,O. Kathib, “Handbook of Robotics”, Springer, 2008.

[22] Creative, LIVE! CAM Chat HD manual, 2013.

[23] L. Ferrari, “Matlab-based Control of a SCARA Robot.”, Master Thesis, Uni-
versità degli Studi di Padova, 2014.

[24] M. Spong, S. Hutchinson, M. Vidyasagar, “Robot Dynamics and Control”,
Second Edition„ 2004

[25] Image Acquisition Toolbox User’s Guide, MathWorks, 2014.

[26] Image Processing Toolbox User’s Guide, MathWorks, 2014.

[27] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms”, IEEE
transactions on Systems, Man, and Cybernetics, Vol.SMC-9, No.1, January
1979.

[28] W. Niblack, “An introduction to Digital Image Processing”, Prentice-Hall,
1986.

[29] R. Kavanagh, “Industrial Automation and Control Course Notes”, UCC (Cork),
2013.

[30] G. Picci, “Metodi statistici per l’identificazione di sistemi lineari”, Dispense,
Padova, 2007.

[31] T. Sodestrom, P. Stoica, “System Identification”, Pretince Hall, 1989.

	Introduction
	Background studies on work-cell design
	Project and Thesis goal descriptions
	Proposed contribution
	Thesis outline

	SCARA robot
	Mechanical structure
	Mathematical analysis: Kinematics
	Direct Kinematics
	Inverse Kinematics

	The Sankyo SR8048

	Gripping System Design
	Gripper Selection
	Pneumatic feed system
	Adjustable pressure regulator
	I/P converter

	Sensor system
	Gauge Pressure Transducer
	Force Sensor

	Gripping action control: use of Arduino
	Data acquisition system
	Gripping action driver

	Signal Processing and Conditioning
	HD Webcam

	Robotic work-cell control
	Use of MATLAB for controlling the Robot
	Software part
	Hardware part

	Matlab Robot Functions
	Motion in the Cartesian Coordinate System: point to point
	Speed/acceleration set
	Mark function
	I/O functions
	 Palletizing functions

	Gripping action control
	Communication procedure

	Vision System
	Vision approach through MATLAB
	Image Acquisition
	Image Processing

	Camera Calibration

	Camera-based application
	Camera-calibration: practical setup
	Parallelepipeds detection
	Application execution
	Results and comments

	Conclusions
	Future works

	Code
	Image processing steps
	Bibliography

