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Abstract

The Kalman Filter (KF) is a mathematical tool well suited for an algorithmic
implementation that estimates the state of a linear dynamic system by exploiting
the knowledge of the system’s dynamics, its statistics and a set of measurements.
In practice however, the linearity conditions are often not satisfied, but some
extensions of the filter algorithm can be implemented in order to overcome
this problem. One possible extension is represented by the Extended Kalman
Filter (EKF) which is one of the best known non-linear filter versions.

The human arm is a highly non-linear system. Hence, the EKF algorithm
can be exploited to estimate its joint-space configuration through few motion
capture markers placed along the human arm. Other approaches, such as Least
Squares (LS) and Linearized Kalman Filter (LKF) are tested to show how the EKF
leads in general to better joint variable estimates. The design and validation of
such estimation procedures are performed in a simulation environment, offered
by Simulink and Simscape platforms in Matlab. Here it is possible to develop the
7 Degrees of Freedom (DoF) Robot Manipulator (RM) which models the human
arm and to find a suitable combination of the number of markers on the shoulder,
forearm and hand for which it is possible to compute the state estimates, namely
for which singular configurations are avoided. The aforementioned estimation
algorithms are implemented in the real system and they are closely compared.





Sommario

Il filtro di Kalman KF è uno strumento matematico adatto per un’implementazione
algoritmica che stima lo stato di un sistema dinamico lineare sfruttando la
conoscenza della dinamica del sistema, delle sue statistiche e di un insieme
di misure. In pratica tuttavia, le condizioni di linearità spesso non sono soddis-
fatte ed alcune estensioni di tale algoritmo possono essere implementate per fare
fronte al problema. Un possibile approccio è rappresentato dal filtro di Kalman
esteso EKF che è una delle versioni di filtri non lineari più conosciute.

Il braccio umano è un sistema altamente non lineare. Quindi, l’algoritmo
EKF può essere sfruttato per stimare la configurazione del braccio attraverso
l’acquisizione di misure di alcuni sensori posti lungo di esso. Altri approcci,
come il metodo dei minimi quadrati LS e il filtro di Kalman linearizzato lungo
una traiettoria nominale LKF sone testati per mostrare come EKF porti in gen-
erale a una migliore stima. La progettazione e la validazione di tali procedure di
stima vengono eseguite in un ambiente di simulazione, offerto dalle piattaforme
Simulink e Simscape in Matlab. Qui è possibile sviluppare il 7 gradi di libertà
manipolatore robotico che modella il braccio umano. Inoltre, diverse combi-
nazioni del numero di sensori da porre sulla spalla, avambraccio e mano ven-
gono testate. Una volta terminata la fase di simulazione, i diversi algoritmi di
stima vengono applicati al sistema reale e strettamente analizzati.
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1
Introduction

The design of control systems exploits many approaches in which all the state
variables are assumed to be available for feedback. In practice, however, none
or some of the state variables may be directly available for feedback. Indeed,
the measurements may consist of noisy linear/non-linear combinations of the
state variables which need to be estimated. Here is where estimation algorithms
come into play. In systems engineering the estimation process leads to extracting
information about state variables from noisy measurements. If the process does
not contain any stochastic elements, then the estimation process leads to the
straightforward LS estimation technique. On the other hand, if the process
has non-stationary stochastic variables and it is linear then the solution to the
optimal state estimation is the well known KF. The derivation of the discrete-
time Kalman filter is provided in detail in Chapter 2.2. Whenever the states to
estimate concern a non-linear system, one extensions of the Kalman filter, the
EKF, can be used. This topic is covered in Chapter 3.1.

Since the aim of this work is to estimate the states of a highly non-linear
system, such as the human arm, main focus is given to the design, validation
and implementation of the EKF. However, also other approaches, namely LS and
LKF, are tested. Specifically, the human arm configuration estimation is driven
by the acquisition of some markers’ measurements which are placed along the
shoulder, forearm and hand. A good estimate of the joint-space configuration
of the human arm means a better experimental outcome of the control strategy
for human-robot cooperative manipulation under the collaboration of a human
agent [19], about which a brief description follows.
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1.1. A GENERAL OVERVIEW

1.1 A general overview

Human-robot collaboration is expected to play a very important role in a lot
of scenarios, i.e. agricultural robotics. Therefore, flexible and robust controllers
which specifically consider the interaction capabilities in their formulation are
needed. Specifically, in order to cope with the human agent, an adaptive up-
date law inferring the human contribution to the system dynamics from basic
perception feedback through the human arm stiffness is used [19].

The overall system is depicted in Fig. 1.1, where the human operator arm (H)
is assumed to be equivalent to a 7-DoF RM with flexible modes and the flexible
joint RM model in [3] is employed to represent its intrinsic complexity. Given
the assumption that the external forces are compensated by the elastic forces
transmitted through the joints, namely

𝐾𝜹 = −𝐽⊤𝐻f𝐻 , (1.1)

a simplified (H)model is adopted:

𝐾𝜹 = d𝐻 − 𝐽⊤𝐻f𝐻 (1.2)

Consequently, the least-squares solution is given by

f̂𝐻 =
(︁
𝐽⊤𝐻

)︁† [︂
d̂𝐻 − �̂�𝜹

]︂
(1.3)

where

• 𝐽𝐻 is the geometric Jacobian of (H).

•
(︁
𝐽⊤
𝐻

)︁† =
(︁
𝐽𝐻 𝐽

𝑇
𝐻

)︁−1
𝐽𝐻 is the left Moore-Penrose pseudoinverse of 𝐽𝑇

𝐻
.

• d𝐻 ∈ R7 is an unknown slow time-varying disturbance modelling the
small deviations.

• 𝐾 represents the unknown stiffness of the flexible DoF of (H).

• 𝜹 are the flexible deflections, namely 𝜹 = 𝜼 − 𝝁 with 𝜼 ∈ R7 as the angle of
the links and 𝝁 ∈ R7 as the angle of the motors.

• f𝐻 are the forces and torques exerted by (H) to (L).

Before the collaborative manipulation, a given configuration of the human arm
is assumed to be at the equilibrium, i.e. 𝝁(0) = 𝜼(0). Moreover, from the

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Overall system scheme -with (H) in aquamarine and (R) in red- and
{ℬ} and {ℐ} reference frames

assumption that it does not move beyond a small area, i.e. 𝝁(𝑡) ≈ 𝝁(0), ∀𝑡 ≥ 0,
it follows that 𝜹(𝑡) = 𝜼(𝑡) − 𝝁(𝑡) ≈ 𝜼(𝑡) − 𝝁(0) = 𝜼(𝑡) − 𝜼(0), ∀𝑡 ≥ 0. In other
words, at first, no flexible deflections are assumed to affect the initial joint-
space configuration of (H)while, successively, all the movements of the arm are
attributed to the flexible modes.
In [19], the quantity 𝜼(𝑡) is found by simply getting the directions of the links
(using some markers since the whole experiment exploited the presence of the
Motion Capture System (MCS)) and estimating the angle between these vectors.
An important fact to remark is that, in this scenario, no filtering is applied.
Any noise in the sensors implies amplified noise for 𝜼 and any wrong marker
position creates complete new configurations. In order to make the estimate
more accurate, more robust and more stable, other estimation algorithms have
to be exploited. In the following, they are seen in detail.

3



1.2. STRUCTURE OF THE THESIS

1.2 Structure of the thesis

The thesis is structured as follows: chapter 2 and chapter 3 give a detailed
explanation on the methods to estimate state variables for linear and non-linear
systems. They give a theoretical overview concerning the Least Squares (LS), the
Kalman filter (KF) and the Extended Kalman filter (EKF) approaches. As far as
the human arm model is concerned, its mathematical formulation is provided by
chapter 4, where the Forward Kinematics (FK) and Differential Kinematics (DK)
equations are computed. By exploiting its mathematical system description,
it is possible to simulate the human arm behaviour in the simulation environ-
ment Simulink and Simscape platforms where, the aforementioned estimation
algorithms can be implemented. Different algorithm parameters are considered
and closely analyzed in chapter 5. Finally, chapter 6 assess that the Extended
Kalman filter algorithm, verified to work in the simulations step, works in the
real experiment as well. It follows a brief discussion on the obtained results.

4



2
Linear filters

A potential target for state estimation is any discipline that is interested in
the mathematical modeling of its systems. This covers a wide range of fields,
such as robotics, economics, ecology, and biology, as well as electrical engineer-
ing, mechanical engineering, chemical engineering, aerospace engineering and
many others. Engineers find state estimation relevant for at least two reasons:

• In order to implement a state-feedback controller, an engineer frequently
needs to estimate the system states.

• Because the system states often represents important quantities them-
selves, engineers frequently have to estimate them.

Methods for obtaining estimations of the state vector from the given measure-
ments must be thought of. The study of the required state estimators is covered
in this chapter, where linear state estimators are addressed, and the following
one, which deals with non-linearities.

The least-squares (LS) principle is the standard approach for estimating un-
known parameters from uncertain data. The parameters of interest, as well as
the dominant error sources, are often time varying. If these time variations can
be modeled, the parameters can be resolved based on minimum mean squared
error prediction, filtering, and smoothing techniques. Of the various such tech-
niques, the Kalman filter (KF) is most prominent. It is able to recursively estimate
the state of a dynamic system.

In the following, the least-squares and its recursive version are closely ad-
dressed. The latter will serve as foundation of the kalman filter algorithm.

5



2.1. LEAST-SQUARES

2.1 Least-squares

2.1.1 Least-squares estimator for linear regression models

In this section, the estimation of a constant from a number of noisy measure-
ments of it is provided. Assume that 𝜽 is a constant but unknown 𝑛-element
vector and that y is a noisy 𝑚-element measurement vector. How can the "best"
estimate of �̂� for 𝜽 be determined? Each element of the measurement vector y is
supposed to be a linear combination of the 𝜽 elements plus some measurement
noise:

𝑦1 = Φ11�1 + · · · +Φ1𝑛�𝑛 + 𝑣1
...

𝑦𝑚 = Φ𝑚1�1 + · · · +Φ𝑚𝑛�𝑛 + 𝑣𝑚

This set of equations can be put into matrix form as

y = Φ𝜽 + v

Let 𝜖y be the difference between the noisy measurements and the vector Φ𝜽,
namely the measurement residual:

𝜖y = y −Φ𝜽

Specifically, the most likely value for the vector 𝜽, �̂�𝐿𝑆, is the one minimizing
the sum of squares between the observed values of y and the vector Φ𝜽.
The LS estimator is given by:

�̂�𝐿𝑆(y) = argmin
𝜽∈𝚯

𝑓𝐿𝑆(𝜽)

= argmin
𝜽∈𝚯

𝜖y

𝑇𝜖y

= argmin
𝜽∈𝚯

∥y −Φ𝜽∥2

6



CHAPTER 2. LINEAR FILTERS

Theorem 2.1.1. Let

𝑓𝐿𝑆 : R𝑛 → R
𝜽 ↦→ ∥y −Φ𝜽∥2

Then, 𝑓𝐿𝑆 is a convex function. Moreover, 𝜽 is a global minimum of 𝑓𝐿𝑆 if and only if 𝜽

is a stationary point of 𝑓𝐿𝑆.

Proof. A sufficient condition for convexity is

𝜕2 𝑓𝐿𝑆(𝜽)
𝜕𝜽2 =

[︃
𝜕2 𝑓𝐿𝑆(𝜽)
𝜕𝜽𝑖𝜕𝜽 𝑗

]︃
𝑖 𝑗

⪰ 0

Notice that

𝜕2 𝑓𝐿𝑆(𝜽)
𝜕𝜽2 =

𝜕2
(︂
y
𝑇

y − 𝜽𝑇Φ
𝑇

y − y
𝑇

Φ𝜽 + 𝜽𝑇Φ
𝑇

Φ𝜽
)︂

𝜕𝜽2

= Φ
𝑇

Φ ⪰ 0

which proves that 𝑓𝐿𝑆 is convex. The remaining part of the statement follows
from the next proposition.

Proposition 2.1.1. Let 𝑓 (𝜽): R𝑛 → R be convex. Then, 𝜽 is a global minimum for 𝑓

if and only if 𝜽 is a stationary point for 𝑓 .

Therefore, all its minimum points are given by setting its gradient equal to zero.
The latter is:

𝜕

𝜕𝜽
∥y −Φ𝜽∥2 =

𝜕

𝜕𝜽

(︂
y
𝑇

y − 𝜽𝑇Φ
𝑇

y − y
𝑇

Φ𝜽 + 𝜽𝑇Φ
𝑇

Φ𝜽
)︂

= −2Φ
𝑇

y + 2Φ
𝑇

Φ𝜽

Then

𝜕

𝜕𝜽
𝑓𝐿𝑆 = 0⇑⃦⇓

Φ
𝑇

Φ�̂�𝐿𝑆 = Φ
𝑇

y (2.1)

7



2.1. LEAST-SQUARES

Two possible scenarios follow:

Scenario 1: Φ
𝑇

Φ is non-singular

Φ is a matrix over the real numbers. Since rank (Φ) = rank
(︁
Φ
𝑇

Φ

)︁
= 𝑛, Φ is full

column-rank.
In this case, Eq. 2.1 has a unique solution given by

�̂�𝐿𝑆 =

(︂
Φ
𝑇

Φ

)︂−1
Φ
𝑇⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

Φ
†
𝐿

y (2.2)

where Φ
†
𝐿

is the Moore-Penrose left pseudo-inverse of Φ (see Appendix A).

Scenario 2: Φ
𝑇

Φ is singular

Also in this second scenario, Eq. 2.1 admits solution. Indeed, it has solu-
tion if Φ

𝑇
y ∈ ℛ(Φ𝑇

Φ). This fact is always true since ℛ(Φ𝑇
Φ) = ℛ(Φ𝑇) and

Φ
𝑇

y ∈ ℛ(Φ𝑇) by construction.
Let 𝜽∗ be a solution to Φ

𝑇
Φ𝜽∗ = Φ

𝑇
y. Since Φ

𝑇
Φ is singular, ∃ �̃�(�̃� ≠ 0) 𝑠.𝑡.

Φ
𝑇

Φ�̃� = 0.
Therefore,

Φ
𝑇

Φ(𝜽∗ + �̃�) = Φ
𝑇

y ∀�̃� ∈ ker(Φ𝑇
Φ)

where

ker(Φ𝑇
Φ) = {�̃� ∈ R𝑛 : Φ

𝑇
Φ�̃� = 0}

The solution to Eq. 2.1 is not unique. In particular, with reference to Appendix
B, let Φ = USV

𝑇 its Singular Value Decomposition (SVD). It follows that Φ =

U𝑘S𝑘V
𝑇
𝑘

where U𝑘 ∈ R𝑚×𝑘 , S𝑘 ∈ R𝑘×𝑘 and V𝑘 ∈ R𝑛×𝑘 with 𝑘 = rank (Φ).

8
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Lemma 2.1.1. Given the SVD Φ = USV
𝑇
, 𝜽∗ = V𝑘S

−1
𝑘

U
𝑇
𝑘
y is a solution to Eq. 2.1.

Proof.

Φ
𝑇

Φ𝜽∗ = (U𝑘S𝑘V
𝑇
𝑘
)𝑇(U𝑘S𝑘V

𝑇
𝑘
)V𝑘S

−1
𝑘

U
𝑇
𝑘
y =

= V𝑘S𝑘 U
𝑇
𝑘
U𝑘⏞⏟⏟⏞

I𝑘×𝑘

S𝑘 V
𝑇
𝑘
V𝑘⏞⏟⏟⏞

I𝑘×𝑘

S
−1
𝑘

U
𝑇
𝑘
y

= V𝑘S𝑘U
𝑇
𝑘⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞

Φ
𝑇

y

= Φ
𝑇

y

Lemma 2.1.2. 𝜽∗, defined as in Lemma 2.1.1, is the minimum-norm solution to Eq. 2.1

i.e. ∥�̂�∥2 ≥ ∥𝜽∗∥2 ∀�̂� solution to Eq. 2.1.

Proof. Let �̂� be any solution to Eq. 2.1, then �̂� = 𝜽∗ + �̃� ∀ �̃� ∈ ker (Φ).
Indeed:

(Φ𝑇
Φ)�̂� = Φ

𝑇
y =⇒ �̂�is solution

(Φ𝑇
Φ)𝜽∗ = Φ

𝑇
y =⇒ 𝜽∗is solution

(Φ𝑇
Φ)(�̂� − 𝜽∗⏞ˉ⏟⏟ˉ⏞

�̃�

) = 0 =⇒ �̃� ∈ ker
(︂
Φ
𝑇

Φ

)︂
Since ker

(︁
Φ
𝑇

Φ

)︁
= ker (Φ), then �̃� ∈ ker (Φ).

Moreover,

𝜽∗ = V𝑘S
−1
𝑘

U
𝑇
𝑘
y ∈ ℛ (V𝑘) = ℛ

(︂
Φ
𝑇
)︂

It follows

�̂� = 𝜽∗ + �̃�

�̃� ∈ ker (Φ)
𝜽∗ ∈ ℛ

(︁
Φ
𝑇
)︁
⎫⎪⎪⎪⎬⎪⎪⎪⎭

ℛ(Φ𝑇) ⊥ ker(Φ)
============⇒ 𝜽∗ ⊥ �̃�

∥�̂�∥2 = �̂�𝑇 �̂� = (𝜽∗ + �̃�)𝑇(𝜽∗ + �̃�) = 𝜽∗𝑇𝜽∗ + �̃�𝑇 �̃� = ∥𝜽∗∥2 + ∥�̃�∥2.
This shows that ∥�̂�∥2 ≥ ∥𝜽∗∥2.

9
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2.1.2 Recursive least-square

In the previous section, a method for computing the estimate of a constant
was seen. However, if sequentially measurements are obtained and the current
estimate of 𝜽 is needed to be updated with each new measurement, the Φ matrix
has to be augmented and �̂� has to be recomputed. This becomes a problem when
the number of measurements becomes large, therefore the computational effort
could become prohibitive. Recursive estimation is a method of estimating a
constant without increasing the computational effort of the algorithm, regardless
of how many measurements are available. Suppose �̂� is known after (𝑚 − 1)
measurements, and a new measurement 𝑦𝑚 is obtained. Is there a way to
update the estimate without completely reworking Eq. 2.2? Firstly, consider
the problem of estimating a scalar constant, �, based on 𝑚 noise corrupted
measurements which are modeled as 𝑦𝑖 = � + 𝑣𝑖 , 𝑖 = 1, . . . , 𝑚. An estimate �̂

can be obtained by averaging all the measurements

�̂𝑚 =
1
𝑚

(︄
𝑚∑︂
𝑖=1

𝑦𝑖

)︄
When an additional measurement is available, the new estimate is updated as

�̂𝑚+1 =
1

𝑚 + 1

(︄
𝑚+1∑︂
𝑖=1

𝑦𝑖

)︄
By manipulating this equation, the need to store all the measurements can be
avoided. This is shown as follows

�̂𝑚+1 =
𝑚

𝑚 + 1

(︄
1
𝑚

𝑚∑︂
𝑖=1

𝑦𝑖

)︄
+ 1
𝑚 + 1𝑦𝑚+1

�̂𝑚+1 =
𝑚

𝑚 + 1 �̂𝑚 +
1

𝑚 + 1 𝑦𝑚+1

�̂𝑚+1 = �̂𝑚 +
1

𝑚 + 1

(︂
𝑦𝑚+1 − �̂𝑚

)︂
Thus, we have a recursive linear estimator. This idea can be applied also to vec-
tors quantities. The vector notation for the measurements available is given as:

10
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𝑦𝑘 =
[︂
Φ𝑘1 · · · Φ𝑘𝑛

]︂
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

Φ𝑘

𝜽 + v𝑘

where 𝑦𝑘 is the 𝑘𝑡ℎ measurement, Φ𝑘 is the corresponding measurement matrix,
𝜽 is the unknown constant vector and v𝑘 is the measurement noise quantity.
Therefore, a linear recursive estimator can be written in the form

⎧⎪⎪⎨⎪⎪⎩
𝑦𝑘 = Φ𝑘𝜽 + v𝑘

�̂�𝑘 = �̂�𝑘−1 +K𝑘

(︂
𝑦𝑘 −Φ𝑘�̂�𝑘−1

)︂
The new estimate �̂�𝑘 is computed on the basis of the previous estimate �̂�𝑘−1 and
the new measurement 𝑦𝑘 . K𝑘 is called the estimator gain matrix. The quantity(︂
𝑦𝑘 −Φ𝑘�̂�𝑘−1

)︂
is called the correction term. It is important to mention that if the

correction term is zero, or if the gain matrix is zero, then the estimate does not
change from time step (𝑘 − 1) to 𝑘.

In the following, the mean of the estimation error is computed:

𝐸 [𝜖𝜽,𝑘] = 𝐸
[︁
𝜽 − �̂�𝑘

]︁
= 𝐸

[︂
𝜽 − �̂�𝑘−1 −K𝑘

(︂
𝑦𝑘 −Φ𝑘�̂�𝑘−1

)︂]︂
= 𝐸

[︂
𝜖𝜽,𝑘−1 −K𝑘

(︂
Φ𝑘𝜽 + v𝑘 −Φ𝑘�̂�𝑘−1

)︂]︂
= 𝐸

[︂
𝜖𝜽,𝑘−1 −K𝑘Φ𝑘

(︂
𝜽 − �̂�𝑘−1

)︂
−K𝑘v𝑘

]︂
= (I −K𝑘Φ𝑘)𝐸 [𝜖𝜽,𝑘−1] −K𝑘𝐸 [v𝑘]

(2.3)

The estimator is unbiased, namely, on average, the estimate �̂� is equal to the true
value 𝜽. Indeed, if the measurement noise v𝑘 is zero-mean ∀𝑘 and the initial
estimate of 𝜽 is set equal to the expected value of 𝜽 [i.e. �̂�0= 𝐸 (𝜽) ] , then 𝐸 [𝜖𝜽,𝑘]
= 0 ∀𝑘. This property holds regardless of the value of the gain matrix K𝑘 , whose
optimal value has to be determined. In order to do so, a cost function is needed
to be defined. Specifically:

K̂𝑘 = argmin
K𝑘

𝑓𝑘

where, the cost function 𝑓𝑘 is chosen to be the sum of the variances of the

11
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estimation errors at time k, namely:

𝑓𝑘 = 𝐸

[︃(︂
�1 − �̂1

)︂2
]︃
+ · · · + 𝐸

[︃(︂
�𝑛 − �̂𝑛

)︂2
]︃

= 𝐸
[︂
𝜖2
�1 ,𝑘
+ · · · + 𝜖2

�𝑛 ,𝑘

]︂
= 𝐸

[︁
𝜖𝜽,𝑘

𝑇𝜖𝜽,𝑘
]︁

= 𝐸
[︂
Tr

(︂
𝜖𝜽,𝑘𝜖𝜽,𝑘

𝑇
)︂]︂

= Tr𝐸
[︁
𝜖𝜽,𝑘𝜖𝜽,𝑘

𝑇
]︁

= Tr P𝑘

where P𝑘 is the estimation-error covariance. By following the same approach
used in Eq. 2.3, a recursive formula for the calculation of P𝑘 can be obtained:

P𝑘 = 𝐸
[︁
𝜖𝜽,𝑘𝜖𝜽,𝑘

𝑇
]︁

= 𝐸
{︂
[(I −K𝑘Φ𝑘) 𝜖𝜽,𝑘−1 −K𝑘v𝑘] [(I −K𝑘Φ𝑘) 𝜖𝜽,𝑘−1 −K𝑘v𝑘]𝑇

}︂
= 𝐸

[︂
(I −K𝑘Φ𝑘) 𝜖𝜽,𝑘−1𝜖𝜽,𝑘−1

𝑇 (I −K𝑘Φ𝑘)𝑇 −K𝑘v𝑘𝜖𝜽,𝑘−1
𝑇 (I −K𝑘Φ𝑘)𝑇 −

(I −K𝑘Φ𝑘) 𝜖𝜽,𝑘−1v𝑘
𝑇

K𝑘
𝑇 +K𝑘v𝑘v𝑘

𝑇
K𝑘

𝑇
]︂

= (I −K𝑘Φ𝑘)𝐸
[︁
𝜖𝜽,𝑘−1𝜖𝜽,𝑘−1

𝑇
]︁
(I −K𝑘Φ𝑘)𝑇 −K𝑘𝐸

[︁
v𝑘𝜖𝜽,𝑘−1

𝑇
]︁
(I −K𝑘Φ𝑘)𝑇 −

(I −K𝑘Φ𝑘)𝐸
[︁
𝜖𝜽,𝑘−1v𝑘

𝑇
]︁

K𝑘
𝑇 +K𝑘𝐸

[︁
v𝑘v𝑘

𝑇
]︁

K𝑘
𝑇

(2.4)

Since the estimation error at time (𝑘 − 1), i.e. 𝜖𝜽,𝑘−1, is independent of the mea-
surement noise at time 𝑘, i.e. v𝑘 , and both expected values are zero, 𝐸

[︁
v𝑘𝜖𝜽,𝑘−1

𝑇
]︁

= 𝐸 [v𝑘]𝐸 [𝜖𝜽,𝑘−1] = 0. Therefore, Eq. 2.4 becomes

P𝑘 = (I −K𝑘Φ𝑘)P𝑘−1 (I −K𝑘Φ𝑘)𝑇 +K𝑘R𝑘K𝑘
𝑇 (2.5)

where R𝑘 is the covariance of v𝑘 . Looking at Eq. 2.5, as the measurement noise
increases (namely, R𝑘 increases) the uncertainty in the estimate also increases
(i.e. P𝑘 increases).

The optimal value of K𝑘 , K̂𝑘 , is the one minimizing Tr P𝑘 hence, the estimation
error will not only be zero-mean but it will also be consistently close to zero.

By combining the fact that 𝜕Tr(AX
𝑇)

𝜕X
= A, 𝜕Tr(XAX

𝑇)
𝜕X

= XA+XA
𝑇 with A and X of

12
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same dimension and that 𝜕Tr(ABA
𝑇)

𝜕A
= 2AB with B symmetric, it follows

𝜕 𝑓𝑘
𝜕K𝑘

=
𝜕

𝜕K𝑘
Tr

(︂
(I −K𝑘Φ𝑘)P𝑘−1 (I −K𝑘Φ𝑘)𝑇 +K𝑘R𝑘K𝑘

𝑇
)︂

=
𝜕

𝜕K𝑘
Tr

(︂
P𝑘−1 −K𝑘Φ𝑘P𝑘−1 − P𝑘−1Φ

𝑇
𝑘
K
𝑇
𝑘
+K𝑘

(︂
Φ𝑘P𝑘−1Φ

𝑇
𝑘

)︂
K
𝑇
𝑘

)︂
+ 𝜕

𝜕K𝑘
Tr

(︂
K𝑘R𝑘K

𝑇
𝑘

)︂
= −2 𝜕

𝜕K𝑘
Tr

(︂
P𝑘−1Φ

𝑇
𝑘
K
𝑇
𝑘

)︂
+ 2K𝑘

(︂
Φ𝑘P𝑘−1Φ

𝑇
𝑘

)︂
+ 2K𝑘R𝑘

= −2P𝑘−1Φ
𝑇
𝑘
+ 2K𝑘Φ𝑘P𝑘−1Φ

𝑇
𝑘
+ 2K𝑘R𝑘

= 2 (I −K𝑘Φ𝑘)P𝑘−1

(︂
−Φ

𝑇
𝑘

)︂
+ 2K𝑘R𝑘

By setting the above derivative equal to zero and solving for K𝑘 :

K𝑘 = P𝑘−1Φ
𝑇
𝑘

(︂
Φ𝑘P𝑘−1Φ

𝑇
𝑘
+ R𝑘

)︂−1⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
S𝑘
−1

(2.6)

Alternative forms for K𝑘 and P𝑘

Often it is useful to write the equations for K𝑘 and P𝑘 in alternate forms.
Although these alternate forms are mathematically identical, they can be ben-
eficial from a computational point of view. Firstly, an alternate form for the
estimation-error covariance will be found. Substituting Eq. 2.6 in Eq. 2.5:

P𝑘 = (I −K𝑘Φ𝑘)P𝑘−1 (I −K𝑘Φ𝑘)𝑇 +K𝑘R𝑘K𝑘
𝑇

=
[︁
I − P𝑘−1Φ

𝑇
𝑘
S𝑘
−1

Φ𝑘

]︁
P𝑘−1

[︁
I − P𝑘−1Φ

𝑇
𝑘
S𝑘
−1

Φ𝑘

]︁𝑇 + P𝑘−1Φ
𝑇
𝑘
S𝑘
−1

R𝑘S𝑘
−1

Φ𝑘P𝑘−1

= P𝑘−1 − P𝑘−1Φ
𝑇
𝑘
S𝑘
−1

Φ𝑘P𝑘−1 − P𝑘−1Φ
𝑇
𝑘
S𝑘
−1

Φ𝑘P𝑘−1+
P𝑘−1Φ

𝑇
𝑘
S𝑘
−1

Φ𝑘P𝑘−1Φ
𝑇
𝑘
S𝑘
−1

Φ𝑘P𝑘−1 + P𝑘−1Φ
𝑇
𝑘
S𝑘
−1

R𝑘S𝑘
−1

Φ𝑘P𝑘−1

= P𝑘−1 − P𝑘−1Φ
𝑇
𝑘
S𝑘
−1

Φ𝑘P𝑘−1 − P𝑘−1Φ
𝑇
𝑘
S𝑘
−1

Φ𝑘P𝑘−1 + P𝑘−1Φ
𝑇
𝑘
S𝑘
−1

S𝑘S𝑘
−1

Φ𝑘P𝑘−1

= P𝑘−1 − P𝑘−1Φ
𝑇
𝑘
S𝑘
−1

Φ𝑘P𝑘−1 (2.7)

= P𝑘−1 −K𝑘Φ𝑘P𝑘−1

= (I −K𝑘Φ𝑘)P𝑘−1 (2.8)

Eq. 2.8 is simpler with respect to Eq. 2.5 but numerical computing problems
may cause this expression for P𝑘 to not be positive definite, even when P𝑘−1 and
R𝑘 are positive definite. Moreover, it is possible to find an other expression for
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P𝑘 , by exploiting the inversion lemma. Indeed, consider Eq. 2.7 and take the
inverse of both sides:

(P𝑘)−1
=

(︁
P𝑘−1⏞⏟⏟⏞

A

−P𝑘−1Φ
𝑇
𝑘⏞ˉ̄⏟⏟ˉ̄⏞

B

(︁
Φ𝑘P𝑘−1Φ

𝑇
𝑘
+ R𝑘⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

D

)︁−1
Φ𝑘P𝑘−1⏞ˉ̄⏟⏟ˉ̄⏞

C

)︁−1

= P
−1
𝑘−1 + P

−1
𝑘−1P𝑘−1Φ

𝑇
𝑘

(︂
Φ𝑘P𝑘−1Φ

𝑇
𝑘
+ R𝑘 −Φ𝑘P𝑘−1P

−1
𝑘−1P𝑘−1Φ

𝑇
𝑘

)︂−1
Φ𝑘P𝑘−1P

−1
𝑘−1

= P
−1
𝑘−1 +Φ

𝑇
𝑘
R
−1
𝑘

Φ𝑘

Inverting both sides, one obtains:

P𝑘 =

(︂
P
−1
𝑘−1 +Φ

𝑇
𝑘
R
−1
𝑘

Φ𝑘

)︂−1
(2.9)

Eq. 2.9 for P𝑘 is more complicated that Eq. 2.8 since it requires three matrix
inversions, but it may be computationally advantageous in some situations. As
far as K𝑘 is concerned, by using Eq. 2.6 and Eq. 2.9, one obtains

K𝑘 = P𝑘−1Φ
𝑇
𝑘

(︂
Φ𝑘P𝑘−1Φ

𝑇
𝑘
+ R𝑘

)︂−1

= P𝑘P
−1
𝑘

P𝑘−1Φ
𝑇
𝑘

(︂
Φ𝑘P𝑘−1Φ

𝑇
𝑘
+ R𝑘

)︂−1

= P𝑘

(︂
P
−1
𝑘−1 +Φ

𝑇
𝑘
R
−1
𝑘

Φ𝑘

)︂
P𝑘−1Φ

𝑇
𝑘

(︂
Φ𝑘P𝑘−1Φ

𝑇
𝑘
+ R𝑘

)︂−1

= P𝑘

(︂
Φ
𝑇
𝑘
+Φ

𝑇
𝑘
R
−1
𝑘

Φ𝑘P𝑘−1Φ
𝑇
𝑘

)︂ (︂
Φ𝑘P𝑘−1Φ

𝑇
𝑘
+ R𝑘

)︂−1

= P𝑘Φ
𝑇
𝑘

(︂
I + R

−1
𝑘

Φ𝑘P𝑘−1Φ
𝑇
𝑘

)︂ (︂
Φ𝑘P𝑘−1Φ

𝑇
𝑘
+ R𝑘

)︂−1

= P𝑘Φ
𝑇
𝑘
R
−1
𝑘

(︂
R𝑘 +Φ𝑘P𝑘−1Φ

𝑇
𝑘

)︂ (︂
Φ𝑘P𝑘−1Φ

𝑇
𝑘
+ R𝑘

)︂−1

= P𝑘Φ
𝑇
𝑘
R
−1
𝑘

(2.10)
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2.2 Kalman filter

Most of the earlier section was written also to provide the foundation for
this section. The Kalman filter is known as an optimal recursive data processing
algorithm. Depending on the criteria chosen to evaluate the performance, there
are many ways of defining optimal. Under some particular assumptions, which
are analyzed in the next section, the Kalman filter is optimal with respect to any
criterion that makes sense. Indeed, by exploting the knowledge of the system
and measurement device dynamics, the statistical description of the process
noise, measurement noise and any available information about initial conditions
of the variables of interest, the KF is able to process all available measurements,
regardless of their precision, to estimate the current value of the variables of
interest.

Moreover the KF is a recursive algorithm. Indeed, it does not need to keep in
memory all previous data and reprocess every time each measurement is taken.
It operates by propagating the mean and covariance of the state through time
where

• The mean of the state represents the Kalman filter estimate of the state.

• The covariance of the state is the covariance of the Kalman filter estimate
of the state.

Every time that there is a new measurement, the mean and covariance of the
state are updated. This is similar to the idea in the previous section where the
measurements were used to recursively update the estimate of a constant. Fig.
2.1 shows a possible application of the Kalman filter. The system of interest is
driven by some control inputs and the aim is to determine the system’s states,
which are unknown. Some measurement devices can provide the value of some
pertinent quantities, which most of times, do not coincide with the variables
of interest. Here is where the Kalman filter comes into play. By combining
the controls and the observed measurements coming from the sensors with
the prior knowledge of the system and devices’ dynamics, it computes the
optimal system’s state estimate. In the following the discrete-time Kalman filter
derivation is addressed.
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System ++

Measurement noise

Kalman Filter

Control inputs

Process noise

Outputs Measurements

Optimal state

estimate

Figure 2.1: Typical Kalman filter application

2.2.1 Kalman filter dynamics for linear discrete-time systems

Let the following be a linear discrete-time system

𝚺 :
⎧⎪⎪⎨⎪⎪⎩
𝜽𝑘+1 = F𝑘𝜽𝑘 +G𝑘u𝑘 +w𝑘

y𝑘+1 = Φ𝑘+1𝜽𝑘+1 + v𝑘+1
(2.11)

𝜽𝑘 ∈ R𝑛 , u𝑘 ∈ R𝑝 , y𝑘 ∈ R𝑚 . Let the matrices F𝑘 , G𝑘 and Φ𝑘 be of appropriate
size. The process noise {w𝑘} and the measurement noise {v𝑘} are white, Gaus-
sian, zero-mean and have known covariance matrices Q𝑘 and R𝑘 , respectively;
moreover, the sequence {u𝑘} is deterministic and {𝜽0,w1, · · · ,w𝑘 , v1, · · · , v𝑘}
are assumed to be mutually independent.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w𝑘 ∼ 𝒩 (0,Q𝑘)
v𝑘 ∼ 𝒩 (0,R𝑘)
𝐸

[︂
w𝑘w

𝑇
𝑗

]︂
= Q𝑘𝛿𝑘−𝚥

𝐸
[︂
v𝑘v

𝑇
𝑗

]︂
= R𝑘𝛿𝑘−𝑗

𝐸
[︂
v𝑘w

𝑇
𝚥

]︂
= 0

, 𝛿𝑘−𝑗 =

⎧⎪⎪⎨⎪⎪⎩
1 𝑘 = 𝑗

0 𝑘 ≠ 𝑗

Based on the available information (control inputs U
𝑘−1
0 = {u0, · · · , u𝑘−1} and

observations Y
𝑘
1 = {y1, · · · , y𝑘}) it is required to obtain an estimate of the system’s

state �̂�𝑘 that optimizes a given criteria. This is the role played by a filter.
From a Bayesian viewpoint, the filter propagates the conditional probability

16
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density function of the desired quantities, conditioned on the knowledge of the
actual data coming from the measuring devices, namely the filter evaluates and
propagates the conditional pdf

𝑝(𝜽𝑘 | y1, · · · , y𝑘 , u0, · · · , u𝑘−1) = 𝑝(𝜽𝑘 | Y𝑘
1 ,U

𝑘−1
0 )

Once such conditional probability is propagated, it is possible to define the
optimal estimate as:

1. The mean: the "center of probability mass" estimate.

2. The mode: the value of 𝜽𝑘 that has the highest probability.

3. The median: the value of 𝜽𝑘 such that half of the probability weight lies to
the left and half to the right of it.

A Kalman filter performs this conditional probability density propagation
for problems in which the system can be described as in Eq. 2.11. Under these
conditions, there is a unique best estimate of the value of𝜽𝑘 since the mean, mode,
median, and virtually any reasonable choice for an optimal estimate all coincide.
In particular, since𝜽0 is a Gaussian random vector, the process and measurement
noises w𝑘 and v𝑘 are white and Gaussian and the system equations are linear,
the conditional probability density function 𝑝(𝜽𝑘 | Y𝑘

1 ,U
𝑘−1
0 ) propagated by the

filter is Gaussian for every 𝑘, hence

𝑝(𝜽𝑘 | Y𝑘
1 ,U

𝑘−1
0 ) ∼ 𝒩

(︂
�̂�𝑘 |𝑘 , P𝑘 |𝑘

)︂
The state estimate �̂�𝑘 |𝑘 is the conditional mean of the pdf and the covariance
matrix P𝑘 |𝑘 quantifies the uncertainty of the estimate.

�̂�𝑘 |𝑘 = 𝐸
[︁
𝜽𝑘 | Y𝑘

1 ,U
𝑘−1
0

]︁
P𝑘 |𝑘 = 𝐸

[︃(︂
𝜽𝑘 − �̂�𝑘 |𝑘

)︂ (︂
𝜽𝑘 − �̂�𝑘 |𝑘

)︂𝑇
| Y𝑘

1 ,U
𝑘−1
0

]︃
Therefore, rather than propagating the entire conditional pdf, the Kalman filter
only propagates the first and second moments, hence the filter dynamics defines
the general transition from 𝑝(𝜽𝑘 | Y𝑘

1 ,U
𝑘−1
0 ) to 𝑝(𝜽𝑘+1 | Y𝑘+1

1 ,U𝑘
0). This transition

is implemented as a two step-procedure, a prediction cycle (time-update) and a
filtering cycle (measurement-update), where

17
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𝑝(𝜽𝑘 | Y𝑘
1 ,U

𝑘−1
0 ) 𝑝(𝜽𝑘+1 | Y𝑘+1

1 ,U𝑘
0)

P
r
e
d
i
c
t
i
o
n

𝑝(𝜽𝑘+1 | Y𝑘
1 ,U

𝑘
0)

F
i
l
t
e
r
i
n
g

Figure 2.2: Prediction and Filtering cyles in the Kalman Filter dynamics

• 𝑝(𝜽𝑘+1 | Y𝑘
1 ,U

𝑘
0) represents what can be said about 𝜽𝑘+1 without exploiting

the measurement y𝑘+1.

• 𝑝(𝜽𝑘+1 | Y
𝑘+1
1 ,U𝑘

0) states how to improve the estimate by exploiting the
measurement y𝑘+1.

Let

𝑝(𝜽𝑘 | Y𝑘
1 ,U

𝑘−1
0 ) ∼ 𝒩

(︂
�̂�𝑘 |𝑘 , P𝑘 |𝑘

)︂
𝑝(𝜽𝑘+1 | Y𝑘

1 ,U
𝑘
0) ∼ 𝒩

(︂
�̂�𝑘+1|𝑘 , P𝑘+1|𝑘

)︂
𝑝(𝜽𝑘+1 | Y𝑘+1

1 ,U𝑘
0) ∼ 𝒩

(︂
�̂�𝑘+1|𝑘+1, P𝑘+1|𝑘+1

)︂
Fig. 2.3 highlights the fact that, after the measurement at time 𝑘 is processed,
the estimate of 𝜽𝑘 and covariance of that state estimate, denoted as �̂�𝑘 |𝑘 and
P𝑘 |𝑘 , become available. As soon as time (𝑘 + 1) arrives, the state estimate and
corresponding covariance are computed without using the measurement at time
𝑘 + 1. These are denoted by �̂�𝑘+1|𝑘 , also called a-priori state-estimate, and P𝑘+1|𝑘 .
The measurement y𝑘+1 is used to refine these estimates and are defined as
�̂�𝑘+1|𝑘+1, also called a-posteriori state-estimate, and P𝑘+1|𝑘+1.

k k+1

�̂�𝑘 |𝑘−1

P𝑘 |𝑘−1

�̂�𝑘 |𝑘

P𝑘 |𝑘

�̂�𝑘+1|𝑘

P𝑘+1|𝑘

�̂�𝑘+1|𝑘+1

P𝑘+1|𝑘+1

Figure 2.3: Timeline showing a-priori and a-posteriori state estimates and estima-
tion error covariance
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In the following the prediction and filtering errors are defined respectively as

�̃�𝑘+1|𝑘 = 𝜽𝑘+1 − �̂�𝑘+1|𝑘 , �̃�𝑘+1|𝑘+1 = 𝜽𝑘+1 − �̂�𝑘+1|𝑘+1

Prediction: evaluating 𝑝(𝜽𝑘+1 | Y𝑘
1 ,U

𝑘
0)

𝑝(𝜽𝑘+1 | Y𝑘
1 ,U

𝑘
0) ∼ 𝒩

(︂
�̂�𝑘+1|𝑘 , P𝑘+1|𝑘

)︂
, where

�̂�𝑘+1|𝑘 = 𝐸
[︁
𝜽𝑘+1 | Y𝑘

1 ,U
𝑘
0
]︁

P𝑘+1|𝑘 = 𝐸

[︃(︂
𝜽𝑘+1 − �̂�𝑘+1|𝑘

)︂ (︂
𝜽𝑘+1 − �̂�𝑘+1|𝑘

)︂𝑇
| Y𝑘

1 ,U
𝑘
0

]︃
By considering Eq. 2.11 and the fact that

{︁
w𝑘 , Y

𝑘
1
}︁

and
{︁
�̃�𝑘 |𝑘 , w𝑘

}︁
are indepen-

dent:

�̂�𝑘+1|𝑘 = 𝐸
[︁
𝜽𝑘+1 | Y𝑘

1 ,U
𝑘
0
]︁

= 𝐸
[︁
F𝑘𝜽𝑘 +G𝑘u𝑘 +w𝑘 | Y𝑘

1 ,U
𝑘
0
]︁

= F𝑘𝐸
[︁
𝜽𝑘 | Y𝑘

1 ,U
𝑘
0
]︁
+G𝑘u𝑘

= F𝑘�̂�𝑘 |𝑘 +G𝑘u𝑘 (2.12)

P𝑘+1|𝑘 = 𝐸
[︂
�̃�𝑘+1|𝑘�̃�

𝑇
𝑘+1|𝑘 | Y

𝑘
1 ,U

𝑘
0

]︂
= 𝐸

[︂ (︁
F𝑘�̃�𝑘 |𝑘 +w𝑘

)︁ (︁
F𝑘�̃�𝑘 |𝑘 +w𝑘

)︁𝑇 | Y𝑘
1 ,U

𝑘
0

]︂
= F𝑘𝐸

[︂
�̃�𝑘 |𝑘�̃�

𝑇
𝑘 |𝑘 | Y

𝑘
1 ,U

𝑘
0

]︂
F
𝑇
𝑘
+ 𝐸

[︁
w𝑘w

𝑇
𝑘

]︁
= F𝑘P𝑘 |𝑘F

𝑇
𝑘
+Q𝑘 (2.13)

Notice that the prediction dynamics follows exactly the system’s dynamics. The
predicted estimate and the associated covariance matrix in Eq. 2.12 and Eq. 2.13
correspond to the best knowledge of the system’s state at time instant (𝑘 + 1)
before making the observation at this time instant.
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Filtering: evaluating 𝑝(𝜽𝑘+1 | Y𝑘+1
1 ,U𝑘

0)
𝑝(𝜽𝑘+1 | Y𝑘+1

1 ,U𝑘
0) ∼ 𝒩

(︂
�̂�𝑘+1|𝑘+1, P𝑘+1|𝑘+1

)︂
, where

�̂�𝑘+1|𝑘+1 = 𝐸
[︁
𝜽𝑘+1 | Y𝑘+1

1 ,U𝑘
0
]︁

P𝑘+1|𝑘+1 = 𝐸

[︃(︂
𝜽𝑘+1 − �̂�𝑘+1|𝑘+1

)︂ (︂
𝜽𝑘+1 − �̂�𝑘+1|𝑘+1

)︂𝑇
| Y𝑘+1

1 ,U𝑘
0

]︃
One note that Y

𝑘+1
1 =

{︁
Y
𝑘
1 , y𝑘+1

}︁
. Moreover, Y

𝑘
1 and y𝑘+1 are statistically depen-

dent, while 𝜽𝑘+1, Y
𝑘
1 and y𝑘+1 are jointly Gaussian random vectors. Recalling

[13, Theorem 12-4 on p. 105],

�̂�𝑘+1|𝑘+1 = 𝐸
[︁
𝜽𝑘+1 | Y𝑘

1 , y𝑘+1,U
𝑘
0
]︁
= 𝐸

[︁
𝜽𝑘+1 | Y𝑘

1 , ỹ𝑘+1|𝑘 ,U
𝑘
0
]︁

(2.14)

where
ỹ𝑘+1|𝑘 = y𝑘+1 − 𝐸

[︁
y𝑘+1 | Y𝑘

1 ,U
𝑘
0
]︁

(2.15)

Hence

�̂�𝑘+1|𝑘+1 = 𝐸
[︁
𝜽𝑘+1 | Y𝑘

1 ,U
𝑘
0
]︁
+ 𝐸

[︁
𝜽𝑘+1 | ỹ𝑘+1|𝑘 ,U

𝑘
0
]︁
− 𝐸

[︁
𝜽𝑘+1 | U𝑘

0
]︁

(2.16)

Eq. 2.15 is called the innovation process. By manipulating this expression and
using the measurement Eq. 2.11, one obtains the following equivalent assertion

ỹ𝑘+1|𝑘 = Φ𝑘+1�̃�𝑘+1|𝑘 + v𝑘+1

The associated covariance matrix follows, knowing that 𝐸
[︁
ỹ𝑘+1|𝑘 | Y𝑘

1 ,U
𝑘
0
]︁
= 0

and the fact that �̃�𝑘+1|𝑘 does not depend on the measurement y𝑘+1

Pỹ𝑘+1|𝑘 = 𝐸
[︂
ỹ𝑘+1|𝑘ỹ

𝑇
𝑘+1|𝑘 | Y

𝑘
1 ,U

𝑘
0

]︂
= 𝐸

[︂ (︁
Φ𝑘+1�̃�𝑘+1|𝑘 + v𝑘+1

)︁ (︁
Φ𝑘+1�̃�𝑘+1|𝑘 + v𝑘+1

)︁𝑇 | Y𝑘
1 ,U

𝑘
0

]︂
= Φ𝑘+1P𝑘+1|𝑘Φ

𝑇
𝑘+1 + R𝑘+1

Eq. 2.16 is the starting point for the derivation of the Kalman filter. Recall that
𝜽𝑘+1 and y𝑘+1 are jointly Gaussian. In Eq. 2.14 y𝑘+1 has been replaced by ỹ𝑘+1|𝑘 .
In particular, one can show that ỹ𝑘+1|𝑘 is computable from y𝑘+1, and that y𝑘+1

is computable from ỹ𝑘+1|𝑘 . Because of this fact, 𝜽𝑘+1 and ỹ𝑘+1|𝑘 are also jointly

20



CHAPTER 2. LINEAR FILTERS

Gaussian. By exploiting [13, Theorem 12-1 on p. 102],

𝐸
[︁
𝜽𝑘+1 | ỹ𝑘+1|𝑘 ,U

𝑘
0
]︁
= 𝐸

[︁
𝜽𝑘+1 | U𝑘

0
]︁
+ P𝜽𝑘+1 , ỹ𝑘+1|𝑘P

−1
ỹ𝑘+1|𝑘

ỹ𝑘+1|𝑘 (2.17)

with

Pỹ𝑘+1|𝑘 = Φ𝑘+1P𝑘+1|𝑘Φ
𝑇
𝑘+1 + R𝑘+1

P𝜽𝑘+1 ,ỹ𝑘+1|𝑘 = 𝐸
[︂(︂
𝜽𝑘+1 − 𝐸

[︁
𝜽𝑘+1 | U𝑘

0
]︁ )︂

ỹ
𝑇
𝑘+1|𝑘 | Y

𝑘
1 ,U

𝑘
0

]︂
= 𝐸

[︂
𝜽𝑘+1ỹ

𝑇
𝑘+1|𝑘 | Y

𝑘
1 ,U

𝑘
0

]︂
= 𝐸

[︂
𝜽𝑘+1�̃�

𝑇
𝑘+1|𝑘 | Y

𝑘
1 ,U

𝑘
0

]︂
Φ
𝑇
𝑘+1

= P𝑘+1|𝑘Φ
𝑇
𝑘+1

In the above computation 𝐸
[︁
ỹ𝑘+1|𝑘 | Y𝑘

1 ,U
𝑘
0
]︁
= 0, 𝐸

[︁
𝜽𝑘+1v𝑘+1 | U𝑘

0
]︁
= 0 and the

innovation expression were used.
By combining Eq. 2.16 and Eq. 2.17, one obtains:

�̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 + P𝑘+1|𝑘Φ
𝑇
𝑘+1

(︂
Φ𝑘+1P𝑘+1|𝑘Φ

𝑇
𝑘+1 + R𝑘+1

)︂−1⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
K𝑘+1

ỹ𝑘+1|𝑘 (2.18)

K𝑘+1 is termed Kalman gain. As far as the corresponding covariance P𝑘+1|𝑘+1 is
concerned, analogously from computing P𝑘+1|𝑘 :

P𝑘+1|𝑘+1 = 𝐸
[︂
�̃�𝑘+1|𝑘+1�̃�

𝑇
𝑘+1|𝑘+1 | Y

𝑘+1
1 ,U𝑘

0

]︂
= 𝐸

[︂ (︁
�̃�𝑘+1|𝑘 −K𝑘+1ỹ𝑘+1|𝑘

)︁ (︁
�̃�𝑘+1|𝑘 −K𝑘+1ỹ𝑘+1|𝑘

)︁𝑇 | Y𝑘+1
1 ,U𝑘

0

]︂
= 𝐸

[︂ (︁
�̃�𝑘+1|𝑘 −K𝑘+1

(︁
Φ𝑘+1�̃�𝑘+1|𝑘 + v𝑘+1

)︁ )︁ (︁
�̃�𝑘+1|𝑘 −K𝑘+1

(︁
Φ𝑘+1�̃�𝑘+1|𝑘 + v𝑘+1

)︁ )︁𝑇 |
Y
𝑘+1
1 ,U𝑘

0
]︁

= 𝐸
[︂ (︁
(I −K𝑘+1Φ𝑘+1) �̃�𝑘+1|𝑘 −K𝑘+1v𝑘+1

)︁ (︁
(I −K𝑘+1Φ𝑘+1) �̃�𝑘+1|𝑘 −K𝑘+1v𝑘+1

)︁𝑇 |
Y
𝑘+1
1 ,U𝑘

0
]︁

= (I −K𝑘+1Φ𝑘+1)𝐸
[︂
�̃�𝑘+1|𝑘�̃�

𝑇
𝑘+1|𝑘 | Y

𝑘
1 ,U

𝑘
0

]︂
(I −K𝑘+1Φ𝑘+1)𝑇 +K𝑘+1𝐸

[︁
v𝑘+1v

𝑇
𝑘+1

]︁
K
𝑇
𝑘+1

= (I −K𝑘+1Φ𝑘+1)P𝑘+1|𝑘 (I −K𝑘+1Φ𝑘+1)𝑇 +K𝑘+1R𝑘+1K
𝑇
𝑘+1 (2.19)
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Recall from the recursive least squares development in Subsection 2.1.2 that the
availability of the measurement 𝑦𝑘+1 changes the estimate of a constant 𝜽 as
follows:

K𝑘+1 =

⎧⎪⎪⎨⎪⎪⎩
P𝑘Φ

𝑇
𝑘+1

(︂
Φ𝑘+1P𝑘Φ

𝑇
𝑘+1 + R𝑘+1

)︂−1

P𝑘+1Φ
𝑇
𝑘+1R

−1
𝑘+1

P𝑘+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(I −K𝑘+1Φ𝑘+1)P𝑘 (I −K𝑘+1Φ𝑘+1)𝑇 +K𝑘+1R𝑘+1K𝑘+1

𝑇

(I −K𝑘+1Φ𝑘+1)P𝑘(︂
P
−1
𝑘
+Φ

𝑇
𝑘+1R

−1
𝑘+1Φ𝑘+1

)︂−1

�̂�𝑘+1 = �̂�𝑘 +K𝑘+1

(︂
𝑦𝑘+1 −Φ𝑘+1�̂�𝑘

)︂
where �̂�𝑘 and P𝑘 are the estimate of the constant 𝜽 and the corresponding
estimation error covariance before the measurement 𝑦𝑘+1 is processed while
�̂�𝑘+1 and P𝑘+1 are the estimate and covariance after the measurement 𝑦𝑘+1 is
processed.

In this framework, �̂�𝑘+1|𝑘 and P𝑘+1|𝑘 are the estimate of 𝜽𝑘+1 and related
covariance before the measurement y𝑘+1 is processed while �̂�𝑘+1|𝑘+1 and P𝑘+1|𝑘+1

are the ones after the corresponding measurement is processed. Following the
same reasoning done in Subsection 2.1.2, one can obtain different expressions
for K𝑘+1 and P𝑘+1|𝑘+1. The expressions for �̂�𝑘+1|𝑘+1, �̂�𝑘+1|𝑘 and P𝑘+1|𝑘 are also
reported for conveniency.

Prediction

�̂�𝑘+1|𝑘 = F𝑘�̂�𝑘 |𝑘 +G𝑘u𝑘

P𝑘+1|𝑘 = F𝑘P𝑘 |𝑘F
𝑇
𝑘
+Q𝑘

Filtering

K𝑘+1 =

⎧⎪⎪⎨⎪⎪⎩
P𝑘+1|𝑘Φ

𝑇
𝑘+1

(︂
Φ𝑘+1P𝑘+1|𝑘Φ

𝑇
𝑘+1 + R𝑘+1

)︂−1

P𝑘+1|𝑘+1Φ
𝑇
𝑘+1R

−1
𝑘+1

P𝑘+1|𝑘+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(I −K𝑘+1Φ𝑘+1)P𝑘+1|𝑘 (I −K𝑘+1Φ𝑘+1)𝑇 +K𝑘+1R𝑘+1K𝑘+1

𝑇

(I −K𝑘+1Φ𝑘+1)P𝑘+1|𝑘(︂
P
−1
𝑘+1|𝑘 +Φ

𝑇
𝑘+1R

−1
𝑘+1Φ𝑘+1

)︂−1

�̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 +K𝑘+1

(︂
y𝑘+1 −Φ𝑘+1�̂�𝑘+1|𝑘

)︂
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−+ K𝑘+1 ++

++

G𝑘

u𝑘

Φ𝑘+1

z
−1

F𝑘

y𝑘+1 ỹ𝑘+1|𝑘

�̂�𝑘+1|𝑘

�̂�𝑘+1|𝑘ŷ𝑘+1|𝑘

�̂�𝑘+1|𝑘+1

�̂�𝑘 |𝑘

Figure 2.4: Kalman filter block diagram

Fig. 2.4 depicts the interconnection of the Kalman filter system. Note that in the
prediction set of equations, the predicted state estimate and corresponding co-
variance depend only on the filtered state and filtered covariance at the previous
step. One can observe that it is possible to obtain the predicted state estimate as
function of the predicted state at the previous step, i.e �̂�𝑘+1|𝑘 = 𝑓5

(︂
�̂�𝑘 |𝑘−1

)︂
and

the predicted covariance as P𝑘+1|𝑘 = 𝑓6
(︁
P𝑘 |𝑘−1

)︁
. By applying the same reasoning,

�̂�𝑘+1|𝑘+1 = 𝑓7

(︂
�̂�𝑘 |𝑘

)︂
and the predicted covariance as P𝑘+1|𝑘+1 = 𝑓8

(︁
P𝑘 |𝑘

)︁
. Mathe-

matically, by making use of the prediction and filtering equations, this is shown
below:

⎧⎪⎪⎨⎪⎪⎩
�̂�𝑘+1|𝑘 = F𝑘 (I −K𝑘Φ𝑘) �̂�𝑘 |𝑘−1 + F𝑘K𝑘y𝑘 +G𝑘u𝑘

�̂�𝑘+1|𝑘+1 = (I −K𝑘+1Φ𝑘+1)
(︂
F𝑘�̂�𝑘 |𝑘 +G𝑘u𝑘

)︂
+K𝑘+1y𝑘+1

(2.20)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
P𝑘+1|𝑘 = F𝑘P𝑘 |𝑘−1F

𝑇
𝑘
+Q𝑘 − F𝑘P𝑘 |𝑘−1Φ

𝑇
𝑘

(︂
Φ𝑘P𝑘 |𝑘−1Φ

𝑇
𝑘
+ R𝑘

)︂−1
Φ𝑘P𝑘 |𝑘+1F

𝑇
𝑘

P𝑘+1|𝑘+1 =

{︃
I −

[︁
F𝑘P𝑘 |𝑘F

𝑇
𝑘
+Q𝑘

]︁
Φ
𝑇
𝑘+1

[︂
Φ𝑘+1

(︂
F𝑘P𝑘 |𝑘F

𝑇
𝑘
+Q𝑘

)︂
Φ
𝑇
𝑘+1 + R𝑘+1

]︂−1
Φ𝑘+1

}︃
[︁
F𝑘P𝑘 |𝑘F

𝑇
𝑘
+Q𝑘

]︁
(2.21)

Eq. 2.20 represent the recursive predictor and recursive filter. Eq. 2.21 are the so
called Riccati equations.
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KF algorithm

Algorithm 1 KF algorithm
System:{︄

𝜽𝑘+1 = F𝑘𝜽𝑘 +G𝑘u𝑘 +w𝑘

y𝑘+1 = Φ𝑘+1𝜽𝑘+1 + v𝑘+1
, where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐸

[︂
w𝑘w

𝑇
𝑗

]︂
= Q𝑘𝛿𝑘−𝚥

𝐸
[︂
v𝑘v

𝑇
𝑗

]︂
= R𝑘𝛿𝑘−𝑗

𝐸
[︂
v𝑘w

𝑇
𝚥

]︂
= 0

Initialize:

�̂�0|0 = 𝐸[𝜽0]

P0|0 = 𝐸

[︃(︂
𝜽0 − �̂�0|0

)︂ (︂
𝜽0 − �̂�0|0

)︂𝑇]︃
for 𝑘 = 0, 1, · · · do

Prediction

{︄
�̂�𝑘+1|𝑘 ← F𝑘�̂�𝑘 |𝑘 +G𝑘u𝑘

P𝑘+1|𝑘 ← F𝑘P𝑘 |𝑘F
𝑇
𝑘
+Q𝑘

y𝑘+1← new measurement

Filtering

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K𝑘+1←
⎧⎪⎪⎨⎪⎪⎩P𝑘+1|𝑘Φ

𝑇
𝑘+1

(︂
Φ𝑘+1P𝑘+1|𝑘Φ

𝑇
𝑘+1 + R𝑘+1

)︂−1

P𝑘+1|𝑘+1Φ
𝑇
𝑘+1R

−1
𝑘+1

P𝑘+1|𝑘+1←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(I −K𝑘+1Φ𝑘+1)P𝑘+1|𝑘 (I −K𝑘+1Φ𝑘+1)𝑇 +K𝑘+1R𝑘+1K𝑘+1

𝑇

(I −K𝑘+1Φ𝑘+1)P𝑘+1|𝑘(︂
P
−1
𝑘+1|𝑘 +Φ

𝑇
𝑘+1R

−1
𝑘+1Φ𝑘+1

)︂−1

�̂�𝑘+1|𝑘+1← �̂�𝑘+1|𝑘 +K𝑘+1

(︂
y𝑘+1 −Φ𝑘+1�̂�𝑘+1|𝑘

)︂
end for

The first expression for P𝑘+1|𝑘+1 guarantees that P𝑘+1|𝑘+1 will always be sym-
metric positive definite, as long as P𝑘+1|𝑘 is symmetric positive definite. The
second expression for P𝑘+1|𝑘+1 is computationally simpler than the first expres-
sion, but its form does not guarantee symmetry or positive definiteness for
P𝑘+1|𝑘+1 . The third form for P𝑘+1|𝑘+1 is rarely implemented and it is used if
the second expression for K𝑘+1 is considered. Finally, the calculation of P𝑘+1|𝑘 ,
K𝑘+1, and P𝑘+1|𝑘+1 do not depend on the measurements y𝑘+1 , but depend only
on the system parameters. This means that the Kalman gain K𝑘+1 can be calcu-
lated offline. In contrast, as discussed later on, the filter gain and covariance for
non-linear systems cannot in general be computed offline because they depend
on the measurements.
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2.2.2 Kalman filter dynamics for linear time-invariant station-
ary systems

The system of Eq. 2.11 is considered now time-invariant, namely F𝑘 = F, G𝑘

= G and Φ𝑘 = Φ, ∀ 𝑘 ≥ 0. Moreover Q𝑘 = Q and R𝑘 = R.

𝚺 :
⎧⎪⎪⎨⎪⎪⎩
𝜽𝑘+1 = F𝜽𝑘 +Gu𝑘 +w𝑘

y𝑘+1 = Φ𝜽𝑘+1 + v𝑘+1
(2.22)

As before {w𝑘} and {v𝑘} are white, Gaussian, zero-mean. Their covariance
is now constant, namely 𝐸

[︁
w𝑘w

𝑇
𝑘

]︁
= Q and 𝐸

[︁
v𝑘v

𝑇
𝑘

]︁
= R. The Kalman filter

dynamics for the time-invariant stationary case is obtained as a particularization
of the general time-varying non-stationary dynamics.

Prediction

�̂�𝑘+1|𝑘 = F�̂�𝑘 |𝑘 +Gu𝑘

P𝑘+1|𝑘 = FP𝑘 |𝑘F
𝑇 +Q

Filtering

K𝑘+1 =

⎧⎪⎪⎨⎪⎪⎩
P𝑘+1|𝑘Φ

𝑇
(︁
ΦP𝑘+1|𝑘Φ

𝑇 + R

)︁−1

P𝑘+1|𝑘+1Φ
𝑇

R
−1

P𝑘+1|𝑘+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(I −K𝑘+1Φ)P𝑘+1|𝑘 (I −K𝑘+1Φ)𝑇 +K𝑘+1RK𝑘+1

𝑇

(I −K𝑘+1Φ)P𝑘+1|𝑘(︂
P
−1
𝑘+1|𝑘 +Φ

𝑇
R
−1

Φ

)︂−1

�̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 +K𝑘+1

(︂
y𝑘+1 −Φ�̂�𝑘+1|𝑘

)︂
The expression for �̂�𝑘+1|𝑘+1 is also in this case time-varying. This is due to the
fact that the Kalman gain K𝑘+1 is time-varying.

Steady-state Kalman filter

For time-invariant and stationary systems, if lim𝑘→∞ P𝑘+1|𝑘 = P̄ exists, then
lim𝑘→∞K𝑘+1 −→ K̄ and the Kalman filter equation �̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 +K𝑘+1ỹ𝑘+1|𝑘
becomes a constant coefficient filter. Since P𝑘+1|𝑘 and P𝑘+1|𝑘+1 are related, then,
if P̄ exists, lim𝑘→∞ P𝑘+1|𝑘+1, also exists. So, instead of computing P𝑘+1|𝑘 , P𝑘+1|𝑘+1

and K𝑘+1 at each time step, K̄ can be used as Kalman gain at each instant. The
steady-state Kalman filter is not optimal because the optimal Kalman gain at
each time step is not being used.
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Asymptotic issues

As already mentioned, 𝚺 is time-invariant but the predictor �̂� is time-variant,
since the Kalman gain K𝑘 varies in time. �̂� is reported below

�̂� :
⎧⎪⎪⎨⎪⎪⎩
�̂�𝑘+1|𝑘 = F (I −K𝑘Φ) �̂�𝑘 |𝑘−1 + FK𝑘y𝑘 +Gu𝑘

ŷ𝑘+1|𝑘 = Φ�̂�𝑘+1|𝑘

Some motivations for studying the asymptotic predictor are explained below.

1. If lim𝑘→∞K𝑘 = K̄ then K̄ could be used, obtaining a sub-optimal predictor
converging to the optimal one. This motivates the study for lim𝑘→∞ P𝑘 |𝑘−1.
Specifically, if P̄ exists, it has to satisfy the Algebraic Riccati Equation (ARE):

P̄ = FP̄F
𝑇 +Q − FP̄Φ

𝑇
(︂
ΦP̄Φ

𝑇 + R

)︂−1
ΦP̄F

𝑇

(a) When does lim𝑘→∞ P𝑘 |𝑘−1 = P̄ exist?
(b) Does the limit P̄ (if it exists) depend on P0|0 ?
(c) Can ARE admit more than one solution? Which is the right P̄ to which

P𝑘 |𝑘−1 converges?

2. Beyond computational considerations, study of lim𝑘→∞ P𝑘 |𝑘−1 makes us
understand if �̂� can predict the state with an error variance P𝑘 |𝑘−1 which
remains small.

3. Asymptotic behaviour study permits to assess if �̂� tends to a stable system

�̂�∞ :
{︃
�̂�𝑘+1|𝑘 = F

(︁
I − K̄Φ

)︁
�̂�𝑘 |𝑘−1 + FK̄y𝑘 +Gu𝑘

ŷ𝑘+1|𝑘 = Φ�̂�𝑘+1|𝑘

The predictor �̂�∞ is stable if max𝑖
|︁|︁�𝑖 (︁ (︁F − FK̄Φ

)︁ )︁ |︁|︁ < 1
Stability of 𝚺, observability of (F,Φ) and controllability of (F,Q) are only a
sufficient condition for predictor convergence. On the other hand, the general
convergence theorem gives sufficient and necessary conditions for predictor con-
vergence.

Theorem 2.2.1 (General convergence theorem).

(F,Φ) detectable

(F,Q) stabilizable

⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1. ∀P0|0 = P0|0

𝑇 ≥ 0, lim𝑘→∞ P𝑘 |𝑘−1 = P̄

2. �̂�∞ is stable

3. P̄ is the only P̄ = P̄
𝑇 ≥ 0 which solves the ARE
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3
Non linear filters

All of previous discussion to this point has considered linear filters for linear
systems. However, many real-world systems are continuous-time in nature and
quite a few are also non-linear. A lot of systems are close enough to be linear such
that linear estimation approaches give satisfactory results. Eventually, a system
does not behave linearly even over a small range of operation, and the linear
approaches for estimation no longer give good results. In this case, there is the
need to explore non-linear estimators. In the following section, a very important
non-linear estimator is discussed, namely the Extended Kalman Filter (EKF).

3.1 Extended Kalman filter

The Kalman filter that was discussed earlier in the previous section directly
applies only to linear systems. However, a non-linear system can be linearized
around a nominal trajectory so that the states of the linearized system can
represent the deviation from the nominal trajectory. Thus, linear estimation
technique, such as KF, can be applied. However, the linearized Kalman filter
(LKF) usually gives poor results, because it relies on an open-loop strategy for
choosing the nominal trajectory �̄�𝑘 , with 𝜽𝑘 representing the state at time 𝑘.
When �̄�𝑘 is precomputed there is no way of forcing �̄�𝑘 to remain close to 𝜽𝑘 , and
this must be done or else the perturbation state-variable model is invalid. This
is the reason why divergence of LKF often occurs. It does not use the non-linear
nature of the original system in an active manner.
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On the other hand, the EKF relinearizes the non-linear system about each
new estimate as it becomes available. The purpose of relinearizing about the
filter’s output is to use a better reference trajectory for �̄�𝑘 . Doing this, 𝜽𝑘 - �̄�𝑘 will
be held as small as possible, so that our linearization assumptions are less likely
to be violated than in the case of the LKF. Consider the non-linear dynamics

𝚺 :
⎧⎪⎪⎨⎪⎪⎩
𝜽𝑘+1 = f𝑘 (𝜽𝑘 , u𝑘) +w𝑘

y𝑘+1 = 𝝓𝑘+1 (𝜽𝑘+1) + v𝑘+1
(3.1)

w𝑘 , v𝑘 are white Gaussian, independent random processes with zero mean and
covariance matrix

𝐸
[︁
w𝑘w

𝑇
𝑘

]︁
= Q𝑘 , 𝐸

[︁
v𝑘v

𝑇
𝑘

]︁
= R𝑘

The initial state 𝜽0 is a random vector with known mean �̂�0|0 and covariance
P0|0. The filter’s goal is to obtain an estimate of the system’s state based on the
available information (control inputs U

𝑘−1
0 = {u0, · · · , u𝑘−1} and observations Y

𝑘
1

= {y1, · · · , y𝑘}). As presented earlier, the estimator that minimizes the mean-
square error evaluates the condition mean of the pdf of 𝜽𝑘 given

(︁
Y
𝑘
1 ,U

𝑘−1
0

)︁
.

Except in very particular cases, the computation of the conditional mean requires
the knowledge of the entire conditional pdf. One of these particular cases
is the one in which the system dynamics is linear, the initial conditional is
a Gaussian random vector and system and measurement noises are mutually
independent white Gaussian processes with zero mean. As a consequence, the
conditional probability density functions 𝑝

(︁
𝜽𝑘 | Y𝑘

1 ,U
𝑘−1
0

)︁
, 𝑝

(︁
𝜽𝑘+1 | Y𝑘

1 ,U
𝑘
0
)︁

and
𝑝
(︁
𝜽𝑘+1 | Y𝑘+1

1 ,U𝑘
0
)︁

are Gaussian.
With the non linear dynamics Eq. 3.1, these probability density functions

are non Gaussian. To evaluate their first and second moments, the optimal
non-linear filter has to propagate the entire pdf which, in the general case,
represents a heavy computational burden. The Extended Kalman filter gives an
approximation of the optimal estimate. With reference to Fig. 2.2, the prediction
and filtering cycles follow.
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Prediction

Assume that an estimate �̂�𝑘 |𝑘 = 𝐸
[︁
𝜽𝑘 | Y𝑘

1 ,U
𝑘−1
0

]︁
and associate covariance P𝑘 |𝑘

are given. The predictable part of 𝜽𝑘+1 is given by

�̂�𝑘+1|𝑘 = 𝐸
[︁
𝜽𝑘+1 | Y𝑘

1 ,U
𝑘
0
]︁

= 𝐸
[︁
f𝑘 (𝜽𝑘 , u𝑘) +w𝑘 | Y𝑘

1 ,U
𝑘
0
]︁

= 𝐸
[︁
f𝑘 (𝜽𝑘 , u𝑘) | Y𝑘

1 ,U
𝑘
0
]︁

Expanding f𝑘 (·) around the optimal estimate �̂�𝑘 |𝑘 , one has

f𝑘 (𝜽𝑘 , u𝑘) ≈ f𝑘

(︂
�̂�𝑘 |𝑘 , u𝑘

)︂
+ F𝑘 ·

(︂
𝜽𝑘 − �̂�𝑘 |𝑘

)︂
where the jacobian F𝑘 is defined as

F𝑘 =
𝜕f𝑘

𝜕𝜽

|︁|︁|︁|︁
(�̂�𝑘 |𝑘 ,u𝑘)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕 𝑓1𝑘
𝜕�1

𝜕 𝑓1𝑘
𝜕�2

· · · 𝜕 𝑓1𝑘
𝜕�𝑛

𝜕 𝑓2𝑘
𝜕�1

𝜕 𝑓2𝑘
𝜕�2

· · · 𝜕 𝑓2𝑘
𝜕�𝑛

...
... · · · ...

𝜕 𝑓𝑛 𝑘
𝜕�1

𝜕 𝑓𝑛 𝑘
𝜕�2

· · · 𝜕 𝑓𝑛 𝑘
𝜕�𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ |(�̂�𝑘 |𝑘 ,u𝑘)
, f𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑓1𝑘
𝑓2𝑘
...

𝑓𝑛 𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Hence,

�̂�𝑘+1|𝑘 = 𝐸
[︁
f𝑘 (𝜽𝑘 , u𝑘) | Y𝑘

1 ,U
𝑘
0
]︁

≈ 𝐸
[︂
f𝑘

(︂
�̂�𝑘 |𝑘 , u𝑘

)︂
+ F𝑘 ·

(︂
𝜽𝑘 − �̂�𝑘 |𝑘

)︂
| Y𝑘

1 ,U
𝑘
0

]︂
= f𝑘

(︂
�̂�𝑘 |𝑘 , u𝑘

)︂
+ F𝑘𝐸

[︁
𝜽𝑘 − �̂�𝑘 |𝑘 | Y𝑘

1 ,U
𝑘
0
]︁

= f𝑘

(︂
�̂�𝑘 |𝑘 , u𝑘

)︂
Thus, the predicted value of 𝜽𝑘+1 is

�̂�𝑘+1|𝑘 ≈ f𝑘

(︂
�̂�𝑘 |𝑘 , u𝑘

)︂
(3.2)

29



3.1. EXTENDED KALMAN FILTER

The prediction error equation results

�̃�𝑘+1|𝑘 = 𝜽𝑘+1 − �̂�𝑘+1|𝑘

≈ f𝑘 (𝜽𝑘 , u𝑘) +w𝑘 − f𝑘

(︂
�̂�𝑘 |𝑘 , u𝑘

)︂
≈ F𝑘 ·

(︂
𝜽𝑘 − �̂�𝑘 |𝑘

)︂
+w𝑘

The forecast error covariance is

P𝑘+1|𝑘 = 𝐸
[︂
�̃�𝑘+1|𝑘�̃�

𝑇
𝑘+1|𝑘 | Y

𝑘
1 ,U

𝑘
0

]︂
≈ 𝐸

[︂ (︁
F𝑘�̃�𝑘 |𝑘 +w𝑘

)︁ (︁
F𝑘�̃�𝑘 |𝑘 +w𝑘

)︁𝑇 | Y𝑘
1 ,U

𝑘
0

]︂
= F𝑘P𝑘 |𝑘F

𝑇
𝑘
+Q𝑘 (3.3)

Filtering

At time 𝑘 + 1 two pieces of information are present: the forecast value �̂�𝑘+1|𝑘
with the covariance P𝑘+1|𝑘 and the measurement y𝑘+1 with the covariance R𝑘+1.
The goal is to approximate the best unbiased estimate, in the least squares sense,
�̂�𝑘+1|𝑘+1 of 𝜽𝑘+1. One way is to assume that the estimate is a linear combination
of both �̂�𝑘+1|𝑘 and y𝑘+1.

�̂�𝑘+1|𝑘+1 = 𝜹 +K𝑘+1y𝑘+1 (3.4)

From the unbiasedness condition

0 = 𝐸
[︁
𝜽𝑘+1 − �̂�𝑘+1|𝑘+1 | Y𝑘+1

1 ,U𝑘
0
]︁

= 𝐸
[︂(︂
�̃�𝑘+1|𝑘 + �̂�𝑘+1|𝑘

)︂
−

(︁
𝜹 +K𝑘+1𝝓𝑘+1 (𝜽𝑘+1) +K𝑘+1v𝑘+1

)︁
| Y𝑘+1

1 ,U𝑘
0

]︂
= �̂�𝑘+1|𝑘 − 𝜹 −K𝑘+1𝐸

[︁
𝝓𝑘+1 (𝜽𝑘+1) | Y𝑘+1

1 ,U𝑘
0
]︁

Therefore,
𝜹 = �̂�𝑘+1|𝑘 −K𝑘+1𝐸

[︁
𝝓𝑘+1 (𝜽𝑘+1) | Y𝑘+1

1 ,U𝑘
0
]︁

(3.5)

Substituting Eq. 3.5 in Eq. 3.4, it holds that

�̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 +K𝑘+1

(︂
y𝑘+1 − 𝐸

[︁
𝝓𝑘+1 (𝜽𝑘+1) | Y𝑘+1

1 ,U𝑘
0
]︁ )︂
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CHAPTER 3. NON LINEAR FILTERS

The same reasoning as in the prediction step can be applied. Performing the
Taylor expansion of 𝝓𝑘+1 (·) about �̂�𝑘+1|𝑘 , one obtains

𝝓𝑘+1 (𝜽𝑘+1) ≈ 𝝓𝑘+1

(︂
�̂�𝑘+1|𝑘

)︂
+𝚽𝑘+1 ·

(︂
𝜽𝑘+1 − �̂�𝑘+1|𝑘

)︂
where the jacobian 𝚽𝑘+1 is defined as

𝚽𝑘+1 =
𝜕𝝓𝑘+1
𝜕𝜽

|︁|︁|︁|︁
�̂�𝑘+1|𝑘

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝜙1𝑘+1
𝜕�1

𝜕𝜙1𝑘+1
𝜕�2

· · · 𝜕𝜙1𝑘+1
𝜕�𝑛

𝜕𝜙2𝑘+1
𝜕�1

𝜕𝜙2𝑘+1
𝜕�2

· · · 𝜕𝜙2𝑘+1
𝜕�𝑛

...
... · · · ...

𝜕𝜙𝑚𝑘+1
𝜕�1

𝜕𝜙𝑚𝑘+1
𝜕�2

· · · 𝜕𝜙𝑚𝑘+1
𝜕�𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ |�̂�𝑘+1|𝑘

, 𝝓𝑘+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝜙1𝑘+1
𝜙2𝑘+1
...

𝜙𝑚𝑘+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Thus,

𝐸
[︁
𝝓𝑘+1 (𝜽𝑘+1) | Y𝑘+1

1 ,U𝑘
0
]︁
≈ 𝐸

[︂
𝝓𝑘+1

(︂
�̂�𝑘+1|𝑘

)︂
+𝚽𝑘+1 ·

(︂
𝜽𝑘+1 − �̂�𝑘+1|𝑘

)︂
| Y𝑘+1

1 ,U𝑘
0

]︂
= 𝝓𝑘+1

(︂
�̂�𝑘+1|𝑘

)︂
Therefore, the filtered estimate is given by

�̂�𝑘+1|𝑘+1 ≈ �̂�𝑘+1|𝑘 +K𝑘+1 ·
[︂
y𝑘+1 − 𝝓𝑘+1

(︂
�̂�𝑘+1|𝑘

)︂]︂
(3.6)

The error in the estimate �̂�𝑘+1|𝑘+1 is

�̃�𝑘+1|𝑘+1 = 𝜽𝑘+1 − �̂�𝑘+1|𝑘+1

≈ f𝑘 (𝜽𝑘 , u𝑘) +w𝑘 − �̂�𝑘+1|𝑘 −K𝑘+1 ·
[︂
y𝑘+1 − 𝝓𝑘+1

(︂
�̂�𝑘+1|𝑘

)︂]︂
≈ f𝑘 (𝜽𝑘 , u𝑘) − f𝑘

(︂
�̂�𝑘 |𝑘 , u𝑘

)︂
+w𝑘 −K𝑘+1 ·

[︂
𝝓𝑘+1 (𝜽𝑘+1) + v𝑘+1 − 𝝓𝑘+1

(︂
�̂�𝑘+1|𝑘

)︂]︂
≈ F𝑘�̃�𝑘 |𝑘 +w𝑘 −K𝑘+1

(︁
𝚽𝑘+1�̃�𝑘+1|𝑘 + v𝑘+1

)︁
≈ F𝑘�̃�𝑘 |𝑘 +w𝑘 −K𝑘+1𝚽𝑘+1

(︁
F𝑘�̃�𝑘 |𝑘 +w𝑘

)︁
−K𝑘+1v𝑘+1

= (I −K𝑘+1𝚽𝑘+1)F𝑘�̃�𝑘 |𝑘 + (I −K𝑘+1𝚽𝑘+1)w𝑘 −K𝑘+1v𝑘+1
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The posterior covariance of the new estimate is

P𝑘+1|𝑘+1 = 𝐸
[︂
�̃�𝑘+1|𝑘+1�̃�

𝑇
𝑘+1|𝑘+1 | Y

𝑘+1
1 ,U𝑘

0

]︂
≈ (I −K𝑘+1𝚽𝑘+1)F𝑘P𝑘 |𝑘F𝑇𝑘 (I −K𝑘+1𝚽𝑘+1)𝑇 +
(I −K𝑘+1𝚽𝑘+1)Q𝑘 (I −K𝑘+1𝚽𝑘+1)𝑇 +K𝑘+1R𝑘+1K

𝑇
𝑘+1

≈ (I −K𝑘+1𝚽𝑘+1)P𝑘+1|𝑘 (I −K𝑘+1𝚽𝑘+1)𝑇 +K𝑘+1R𝑘+1K
𝑇
𝑘+1 (3.7)

Like in the standard Kalman Filter K𝑘+1 is found out by minimizing tr
(︁
P𝑘+1|𝑘+1

)︁
with respect to K𝑘+1. Hence, the Kalman gain is

K𝑘+1 = P𝑘+1|𝑘𝚽𝑇
𝑘+1

(︂
𝚽𝑘+1P𝑘+1|𝑘𝚽𝑇

𝑘+1 + R𝑘+1

)︂−1

The expressions for �̂�𝑘+1|𝑘+1, �̂�𝑘+1|𝑘 , P𝑘+1|𝑘+1, P𝑘+1|𝑘 are reported again below.

Prediction

�̂�𝑘+1|𝑘 ≈ f𝑘

(︂
�̂�𝑘 |𝑘 , u𝑘

)︂
P𝑘+1|𝑘 ≈ F𝑘P𝑘 |𝑘F

𝑇
𝑘
+Q𝑘

Filtering

K𝑘+1 =

⎧⎪⎪⎨⎪⎪⎩
P𝑘+1|𝑘Φ

𝑇
𝑘+1

(︂
Φ𝑘+1P𝑘+1|𝑘Φ

𝑇
𝑘+1 + R𝑘+1

)︂−1

P𝑘+1|𝑘+1Φ
𝑇
𝑘+1R

−1
𝑘+1

P𝑘+1|𝑘+1 ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(I −K𝑘+1𝚽𝑘+1)P𝑘+1|𝑘 (I −K𝑘+1𝚽𝑘+1)𝑇 +K𝑘+1R𝑘+1K

𝑇
𝑘+1

(I −K𝑘+1Φ𝑘+1)P𝑘+1|𝑘(︂
P
−1
𝑘+1|𝑘 +Φ

𝑇
𝑘+1R

−1
𝑘+1Φ𝑘+1

)︂−1

�̂�𝑘+1|𝑘+1 ≈ �̂�𝑘+1|𝑘 +K𝑘+1 ·
[︂
y𝑘+1 − 𝝓𝑘+1

(︂
�̂�𝑘+1|𝑘

)︂]︂

−+ K𝑘+1 ++

𝝓𝑘+1 (·)

z
−1

f𝑘 (·, ·)

u𝑘

y𝑘+1 ỹ𝑘+1|𝑘

ŷ𝑘+1|𝑘

�̂�𝑘+1|𝑘+1

�̂�𝑘 |𝑘�̂�𝑘+1|𝑘

Figure 3.1: Extended Kalman filter block diagram
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EKF algorithm

Algorithm 2 EKF algorithm
System:{︄

𝜽𝑘+1 = f𝑘 (𝜽𝑘 , u𝑘) +w𝑘

y𝑘+1 = 𝝓𝑘+1 (𝜽𝑘+1) + v𝑘+1
, where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐸

[︂
w𝑘w

𝑇
𝑗

]︂
= Q𝑘𝛿𝑘−𝚥

𝐸
[︂
v𝑘v

𝑇
𝑗

]︂
= R𝑘𝛿𝑘−𝑗

𝐸
[︂
v𝑘w

𝑇
𝚥

]︂
= 0

Initialize:

�̂�0|0 = 𝐸[𝜽0]

P0|0 = 𝐸

[︃(︂
𝜽0 − �̂�0|0

)︂ (︂
𝜽0 − �̂�0|0

)︂𝑇]︃
for 𝑘 = 0, 1, · · · do

Prediction

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
F𝑘 ← 𝜕f𝑘

𝜕𝜽

|︁|︁|︁
(�̂�𝑘 |𝑘 ,u𝑘)

�̂�𝑘+1|𝑘 ← f𝑘

(︂
�̂�𝑘 |𝑘 , u𝑘

)︂
P𝑘+1|𝑘 ← F𝑘P𝑘 |𝑘F

𝑇
𝑘
+Q𝑘

y𝑘+1← new measurement

Filtering

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝚽𝑘+1← 𝜕𝝓𝑘+1
𝜕𝜽

|︁|︁|︁
�̂�𝑘+1|𝑘

K𝑘+1←
⎧⎪⎪⎨⎪⎪⎩P𝑘+1|𝑘Φ

𝑇
𝑘+1

(︂
Φ𝑘+1P𝑘+1|𝑘Φ

𝑇
𝑘+1 + R𝑘+1

)︂−1

P𝑘+1|𝑘+1Φ
𝑇
𝑘+1R

−1
𝑘+1

P𝑘+1|𝑘+1←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(I −K𝑘+1Φ𝑘+1)P𝑘+1|𝑘 (I −K𝑘+1Φ𝑘+1)𝑇 +K𝑘+1R𝑘+1K𝑘+1

𝑇

(I −K𝑘+1Φ𝑘+1)P𝑘+1|𝑘(︂
P
−1
𝑘+1|𝑘 +Φ

𝑇
𝑘+1R

−1
𝑘+1Φ𝑘+1

)︂−1

�̂�𝑘+1|𝑘+1← �̂�𝑘+1|𝑘 +K𝑘+1 ·
[︂
y𝑘+1 − 𝝓𝑘+1

(︂
�̂�𝑘+1|𝑘

)︂]︂
end for
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4
Human arm model

The human arm is modeled as a 7 DoF RM. As it is well known, a manipulator
can be represented from a mechanical viewpoint as a kinematic chain of rigid
bodies, known as links, connected by means of revolute or prismatic joints. In
this framework, the 7 joint variables of the RM modeling the human arm are
all revolute. Indeed, it can be thought as 3 links representing the shoulder, the
forearm and the hand. At the base of each link the joint is placed. Specifically,
the joint at the base of the shoulder is governed by 3 joint variables, called �1(𝑡),
�2(𝑡) and �3(𝑡); the joint at the base of the forearm is associated with 1 joint
variable �4(𝑡) while �5(𝑡), �6(𝑡) and �7(𝑡) are placed at the base of the hand.
One may be interested at the position of one object placed in the hand. This
can be expressed as a function of the joint variables of the mechanical structure
with respect to a reference frame. The representative model of the human arm
is depicted below in Fig 4.1, where the World RF, 𝑅𝐹𝑊 , is considered fixed at
the base of the shoulder link, therefore it never moves. In the figure, the joint
variables are omitted for simplicity and they are discussed in the following.
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𝑥𝐸𝑙

𝑦𝐸𝑙
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𝑦 𝐸𝑙
′
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𝑥𝑊𝑟

𝑦𝑊𝑟

𝑧𝑊𝑟 𝐿 𝑓 𝑜

𝐻ℎ𝑎

𝐿ℎ𝑎

𝑊ℎ𝑎

Mh

ph

𝑊𝑟

Figure 4.1: Human arm model representation

At the base of each link, a specific reference frame is attached which determines
the orientation of the following links. For instance, the reference frame at the
base of the shoulder, denoted as 𝑅𝐹𝑆ℎ with axes {𝑥𝑆ℎ , 𝑦𝑆ℎ , 𝑧𝑆ℎ}, represents the
rotation of the shoulder wrt 𝑅𝐹𝑊 .

In the following, by convention, all rotations are assumed positive if they
are performed counter-clockwise and each component of 𝜼 performs a rotation
around the 𝑧-axis of the corresponding frame. On the arm, some markers are
attached. Specifically, let

𝒮 = {1, 2, . . . , |𝒮|}
ℱ = {|𝒮| + 1, |𝒮| + 2, . . . , |𝒮| + |ℱ |}
ℋ = {|𝒮| + |ℱ | + 1, |𝒮| + |ℱ | + 2, . . . , |𝒮| + |ℱ | + |ℋ |}

be the set of indices such that

• |𝒮| is the number of markers placed on the shoulder.

• |ℱ | is the number of markers placed on the forearm.

• |ℋ | is the number of markers placed on the hand.

Thus,
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• Ms, 𝑠 ∈ 𝒮, is a marker placed on the shoulder.

• Mf, 𝑓 ∈ ℱ , is a marker placed on the forearm.

• Mh, ℎ ∈ ℋ , is a marker placed on the hand.

The aim of this section is twofold:

i compute the forward kinematics equations for each marker, namely express
the position of each marker in terms of 𝑅𝐹𝑊 coordinates and 𝜼.

ii compute the differential kinematics equations for each marker, hence find the
relationship between the joint velocities and the corresponding markers’
linear velocity.

4.1 Forward kinematics

Let 𝑚 = |𝒮| + |ℱ | + |ℋ | be the total number of markers placed on the human
arm and pi

𝑊 a generic marker Mi express wrt 𝑅𝐹𝑊 . With the slightly change of
notation pi = pi

𝑊 , one has

pi = Φi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ𝑆ℎ

(︁
𝜼1−3, pi

𝑆ℎ
)︁
, 𝑖 ∈ 𝒮

Φ𝐹𝑜

(︁
𝜼1−4, pi

𝐸𝑙
)︁
, 𝑖 ∈ ℱ

Φ𝐻𝑎

(︁
𝜼, pi

𝑊𝑟
)︁
, 𝑖 ∈ ℋ

, pi

𝐵 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pi

𝑆ℎ , 𝑖 ∈ 𝒮
pi

𝐸𝑙 , 𝑖 ∈ ℱ
pi

𝑊𝑟 , 𝑖 ∈ ℋ
𝑖 = 1, . . . , 𝑚

Hence

p =

⎡⎢⎢⎢⎢⎢⎣
p1

...

pm

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
Φ1

...

Φm

⎤⎥⎥⎥⎥⎥⎦ = Φ

(︂
𝜼, p𝐵

)︂
, p

𝐵 =

⎡⎢⎢⎢⎢⎢⎣
p1

𝐵

...

pm

𝐵

⎤⎥⎥⎥⎥⎥⎦ (4.1)

Before proceeding, it is important to remark that, given a generic Reference
Frame (RF) 𝑂 with axes {𝑥, 𝑦, 𝑧}, if it is rotated by an angle 𝛼 about axis 𝑧,
obtaining the frame 𝑂′ with axes {𝑥′, 𝑦′, 𝑧′}, then the rotation matrix of frame
𝑂′ with respect to frame 𝑂 is given by:

R𝑧 (𝛼) =
⎡⎢⎢⎢⎢⎢⎣

cos (𝛼) − sin (𝛼) 0
sin (𝛼) cos (𝛼) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
𝑐𝛼 −𝑠𝛼 0
𝑠𝛼 𝑐𝛼 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

37



4.1. FORWARD KINEMATICS

In a similar manner, it can be shown that the rotations by an angle 𝛽 about axis
𝑦 and by an angle 𝛾 about axis 𝑥 are respectively given by

R𝑦 (𝛽) =
⎡⎢⎢⎢⎢⎢⎣

cos (𝛽) 0 sin (𝛽)
0 1 0

− sin (𝛽) 0 cos (𝛽)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
𝑐𝛽 0 𝑠𝛽

0 1 0
−𝑠𝛽 0 𝑐𝛽

⎤⎥⎥⎥⎥⎥⎦
R𝑥 (𝛾) =

⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 cos (𝛾) − sin (𝛾)
0 sin (𝛾) cos (𝛾)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 𝑐𝛾 −𝑠𝛾
0 𝑠𝛾 𝑐𝛾

⎤⎥⎥⎥⎥⎥⎦
In the following, depending on where the marker is placed, the corresponding
FK is obtained.

4.1.1 Shoulder forward kinematics

Let Ms, 𝑠 ∈ 𝒮, be a generic marker attached on the shoulder with coordinates
ps

𝑆ℎ =

(︂
ps

𝑆ℎ
𝑥 , ps

𝑆ℎ
𝑦 , ps

𝑆ℎ
𝑧

)︂
∈ R3, expressed in terms of 𝑅𝐹𝑆ℎ . The same marker

can also be expressed wrt 𝑅𝐹𝑊 , obtaining pMs

𝑊 . Since the origins of the two
reference frames coincide, it follows

ps

𝑊 (�1, �2, �3) = R
𝑊
𝑆ℎ (�1, �2, �3)ps

𝑆ℎ

where R
𝑊
𝑆ℎ

represents the transformation matrix of the vector coordinates in frame
𝑅𝐹𝑆ℎ into the coordinates of the same vector in frame 𝑅𝐹𝑊 , namely the rotation
matrix of frame 𝑅𝐹𝑆ℎ wrt frame 𝑅𝐹𝑊 and it depends on �1, �2 and �3.
In order to obtain 𝑅𝐹𝑆ℎ , the following rotations are performed consecutively.

Rotation by �1

Observe Fig. 4.2a below. 𝑅𝐹𝑊 , as already mentioned, is a fixed RF. Specif-
ically, �1 represents the rotation around 𝑥𝑊 , the 𝑥-axis of 𝑅𝐹𝑊 . However, be-
cause of the aforementioned convention, 𝑅𝐹𝑊′ = {𝑥𝑊′ , 𝑦𝑊′ , 𝑧𝑊′} is derived where
𝑧𝑊′ = 𝑥𝑊 , 𝑥𝑊′ = 𝑦𝑊 and the frame is right-handed and it is achieved by firstly
rotating 𝑅𝐹𝑊 by an angle of 𝜋

2 about 𝑧𝑊 and secondly rotating the current frame
by 𝜋

2 about 𝑥𝑊 . Since composition of successive rotations is obtained by post-
multiplication of the rotation matrices following the given order of rotations, it
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follows that the rotation of frame 𝑅𝐹𝑊′ wrt 𝑅𝐹𝑊 is given by

R
𝑊
𝑊′ = R𝑧

(︂𝜋
2

)︂
R𝑥

(︂𝜋
2

)︂
=

⎡⎢⎢⎢⎢⎢⎣
0 0 1
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦
At this point, let 𝑅𝐹�1 the resulting reference frame after that the rotation by �1

is performed about axes 𝑧𝑊′. Hence, the rotation of frame 𝑅𝐹�1 wrt 𝑅𝐹𝑊 is given
by

R
𝑊
�1 (�1) = R

𝑊
𝑊′R𝑧 (�1) =

⎡⎢⎢⎢⎢⎢⎣
0 0 1
𝑐�1 −𝑠�1 0
𝑠�1 𝑐�1 0

⎤⎥⎥⎥⎥⎥⎦
Rotation by �2

By applying the same reasoning as before, the rotation of frame 𝑅𝐹�′1 wrt
𝑅𝐹�1 is given by

R

�1
�′1

= R𝑦

(︂𝜋
2

)︂
R𝑧

(︂𝜋
2

)︂
=

⎡⎢⎢⎢⎢⎢⎣
0 0 1
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦
Let 𝑅𝐹�2 the resulting reference frame after that the rotation by �2 is performed
about axes 𝑧�′1 . Hence, the rotation of frame 𝑅𝐹�2 wrt 𝑅𝐹�1 is given by

R

�1
�2 (�2) = R

�1
�′1

R𝑧 (�2) =
⎡⎢⎢⎢⎢⎢⎣

0 0 1
𝑐�2 −𝑠�2 0
𝑠�2 𝑐�2 0

⎤⎥⎥⎥⎥⎥⎦
Rotation by �3

With reference to Fig. 4.2c, in order to align frame 𝑅𝐹�2 to 𝑅𝐹�′2 the following
rotation matrix has to be applied

R

�2
�′2

= R𝑦

(︂𝜋
2

)︂
R𝑧

(︂𝜋
2

)︂
=

⎡⎢⎢⎢⎢⎢⎣
0 0 1
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦
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Let 𝑅𝐹𝑆ℎ the resulting reference frame after that the rotation by �3 is performed
about axes 𝑧�′2 . Hence, the rotation of frame 𝑅𝐹𝑆ℎ wrt 𝑅𝐹�2 is given by

R

�2
𝑆ℎ
(�3) = R

�2
�′2

R𝑧 (�3) =
⎡⎢⎢⎢⎢⎢⎣

0 0 1
𝑐�3 −𝑠�3 0
𝑠�3 𝑐�3 0

⎤⎥⎥⎥⎥⎥⎦

𝑥𝑊 = 𝑧𝑊′ = 𝑧�1

𝑦𝑊 = 𝑥𝑊′

𝑧𝑊 = 𝑦𝑊′

�1

𝑥�1

𝑦�1

(a) Rotation by �1 about 𝑧𝑊′

𝑥�1 = 𝑧�′1 = 𝑧�2

𝑦�1 = 𝑥�′1

𝑧�1 = 𝑦�′1

�2𝑥�2

𝑦�2

(b) Rotation by �2 about 𝑧�1′

𝑥�2 = 𝑧�′2 = 𝑧𝑆ℎ

𝑦�2 = 𝑥�′2

𝑧�2 = 𝑦�′2

�3

𝑥𝑆ℎ

𝑦𝑆ℎ

(c) Rotation by �3 about 𝑧�′2

Figure 4.2: Shoulder rotations
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At this point it is possible to compute R
𝑊
𝑆ℎ

. Since all the rotations analyzed
previously are wrt the current RF, the overall rotation matrix is then obtained
by post-multiplication of the rotation matrices following the order of rotations.

R
𝑊
𝑆ℎ (�1, �2, �3) = R

𝑊
�1 (�1)R�1

�2 (�2)R�2
𝑆ℎ
(�3)

=

⎡⎢⎢⎢⎢⎢⎣
𝑐�2𝑐�3 −𝑐�2𝑠�3 𝑠�2

𝑠�1𝑠�2𝑐�3 + 𝑐�1𝑠�3 −𝑠�1𝑠�2𝑠�3 + 𝑐�1𝑐�3 −𝑠�1𝑐�2

−𝑐�1𝑠�2𝑐�3 + 𝑠�1𝑠�3 𝑐�1𝑠�2𝑠�3 + 𝑠�1𝑐�3 𝑐�1𝑐�2

⎤⎥⎥⎥⎥⎥⎦
If R

𝑊
𝑆ℎ

is known then it is possible to express the given marker Ms wrt 𝑅𝐹𝑊 . In
general, since the position of each marker placed on the shoulder only depends
on the rotation of 𝑅𝐹𝑆ℎ wrt 𝑅𝐹𝑊 , the forward kinematics of the general marker
Ms on the shoulder is given by

ps

𝑊 = Φ𝑆ℎ

(︂
�1, �2, �3, ps

𝑆ℎ
)︂

= R
𝑊
𝑆ℎ (�1, �2, �3)ps

𝑆ℎ

=

⎡⎢⎢⎢⎢⎢⎣
ps

𝑊
𝑥

ps

𝑊
𝑦

ps

𝑊
𝑧

⎤⎥⎥⎥⎥⎥⎦
(4.2)

with

ps

𝑊
𝑥 = 𝑐�2𝑐�3ps

𝑆ℎ
𝑥 − 𝑐�2𝑠�3ps

𝑆ℎ
𝑦 + 𝑠�2ps

𝑆ℎ
𝑧

ps

𝑊
𝑦 =

(︁
𝑠�1𝑠�2𝑐�3 + 𝑐�1𝑠�3

)︁
ps

𝑆ℎ
𝑥 +

(︁
−𝑠�1𝑠�2𝑠�3 + 𝑐�1𝑐�3

)︁
ps

𝑆ℎ
𝑦 − 𝑠�1𝑐�2ps

𝑆ℎ
𝑧

ps

𝑊
𝑧 =

(︁
−𝑐�1𝑠�2𝑐�3 + 𝑠�1𝑠�3

)︁
ps

𝑆ℎ
𝑥 +

(︁
𝑐�1𝑠�2𝑠�3 + 𝑠�1𝑐�3

)︁
ps

𝑆ℎ
𝑦 + 𝑐�1𝑐�2ps

𝑆ℎ
𝑧

4.1.2 Forearm forward kinematics

In the case in which one marker is placed on the forearm, its position does
depend also on �4. Let Mf a generic marker on the forearm. The aim, as before,
is to express it in terms of 𝑅𝐹𝑊 coordinates. Observe Fig. 4.1. First, the quantity
pf

𝑆ℎ is computed and then the rotation matrix R
𝑊
𝑆ℎ

is applied. Let O
Sh
′𝑆ℎ be the

origin of frame 𝑅𝐹𝑆ℎ′ expressed wrt 𝑅𝐹𝑆ℎ
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O
Sh
′𝑆ℎ =

⎡⎢⎢⎢⎢⎢⎣
0
−𝐿𝑠ℎ

0

⎤⎥⎥⎥⎥⎥⎦
As before, the coordinates of pf

𝐸𝑙 =

(︂
pf

𝐸𝑙
𝑥 , pf

𝐸𝑙
𝑦 , pf

𝐸𝑙
𝑧

)︂
are assumed to be known.

The joint of the elbow is modeled as 1 DoF and it rotates about axis 𝑧𝑆ℎ′ by �4.

Rotation by �4

The orientation of frame 𝑅𝐹𝑆ℎ′ is the same as 𝑅𝐹𝑆ℎ . Let 𝑅𝐹𝐸𝑙 the resulting
reference frame after that the rotation by �4 is performed about axes 𝑧𝑆ℎ′. Hence,
the rotation is simply given by

R
𝑆ℎ′

𝐸𝑙 (�4) =
⎡⎢⎢⎢⎢⎢⎣
𝑐�4 −𝑠�4 0
𝑠�4 𝑐�4 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

𝑥𝑆ℎ′

𝑦𝑆ℎ′

𝑧𝑆ℎ′=𝑧𝐸𝑙

�4 𝑥𝐸𝑙

𝑦𝐸𝑙

Figure 4.3: Elbow rotation

By summing the translational vector O
Sh
′𝑆ℎ and the quantity R

𝑆ℎ′

𝐸𝑙
(�4)pf

𝐸𝑙

one obtains the position of the marker Mf wrt 𝑅𝐹𝑆ℎ . Thus, one obtains the
desired quantity if the rotation matrix R

𝑊
𝑆ℎ
(�1, �2, �3) is applied.
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pf

𝑊 = Φ𝐹𝑜

(︂
�1, �2, �3, �4, pf

𝐸𝑙
)︂

= R
𝑊
𝑆ℎ (�1, �2, �3)

(︂
R
𝑆ℎ′

𝐸𝑙 (�4)pf

𝐸𝑙 +O
Sh
′𝑆ℎ

)︂
=

⎡⎢⎢⎢⎢⎢⎣
pf

𝑊
𝑥

pf

𝑊
𝑦

pf

𝑊
𝑧

⎤⎥⎥⎥⎥⎥⎦
(4.3)

with

pf

𝑊
𝑥 =𝑐�2𝑐�3

(︂
𝑐�4pf

𝐸𝑙
𝑥 − 𝑠�4pf

𝐸𝑙
𝑦

)︂
− 𝑐�2𝑠�3

(︂
𝑠�4pf

𝐸𝑙
𝑥 + 𝑐�4pf

𝐸𝑙
𝑦 − 𝐿𝑠ℎ

)︂
+ 𝑠�2pf

𝐸𝑙
𝑧

pf

𝑊
𝑦 =

(︁
𝑠�1𝑠�2𝑐�3 + 𝑐�1𝑠�3

)︁ (︂
𝑐�4pf

𝐸𝑙
𝑥 − 𝑠�4pf

𝐸𝑙
𝑦

)︂
+

(︁
𝑐�1𝑐�3 − 𝑠�1𝑠�2𝑠�3

)︁ (︂
𝑠�4pf

𝐸𝑙
𝑥 +

𝑐�4pf

𝐸𝑙
𝑦 − 𝐿𝑠ℎ

)︂
− 𝑠�1𝑐�2pf

𝐸𝑙
𝑧

pf

𝑊
𝑧 =

(︁
𝑠�1𝑠�3 − 𝑐�1𝑠�2𝑐�3

)︁ (︂
𝑐�4pf

𝐸𝑙
𝑥 − 𝑠�4pf

𝐸𝑙
𝑦

)︂
+

(︁
𝑐�1𝑠�2𝑠�3 + 𝑠�1𝑐�3

)︁ (︂
𝑠�4pf

𝐸𝑙
𝑥 +

𝑐�4pf

𝐸𝑙
𝑦 − 𝐿𝑠ℎ

)︂
+ 𝑐�1𝑐�2pf

𝐸𝑙
𝑧

4.1.3 Hand forward kinematics

What about pMh

𝑊? where Mh is a generic marker placed on the hand of the
human arm. Following the same reasoning as before, one first computes ph

𝐸𝑙 ;
secondly, ph

𝑆ℎ is obtained and thereafter the rotation matrix R
𝑊
𝑆ℎ

is applied.

ph

𝐸𝑙 = R
𝐸𝑙′

𝑊𝑟 (�5, �6, �7)ph

𝑊𝑟 +O
El
′𝐸𝑙

where

ph

𝑊𝑟 =

(︂
ph

𝑊𝑟
𝑥 , ph

𝑊𝑟
𝑦 , ph

𝑊𝑟
𝑧

)︂
, O

El
′𝐸𝑙 =

⎡⎢⎢⎢⎢⎢⎣
0
−𝐿 𝑓 𝑜

0

⎤⎥⎥⎥⎥⎥⎦
and R

𝐸𝑙′

𝑊𝑟
(�5, �6, �7) is obtained as R

𝑊
𝑆ℎ
(�1, �2, �3).

Rotation by �5

Recalling Fig. 4.3, the orientation of frame 𝑅𝐹𝐸𝑙 is the same as frame 𝑅𝐹𝐸𝑙′.
The rotation of 𝑅𝐹𝐸𝑙′′ wrt 𝑅𝐹𝐸𝑙′ is given by
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R
𝐸𝑙′

𝐸𝑙′′
= R𝑧

(︂𝜋
2

)︂
R𝑥

(︂𝜋
2

)︂
=

⎡⎢⎢⎢⎢⎢⎣
0 0 1
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦
Let 𝑅𝐹�5 the resulting reference frame after that the rotation by �5 is performed
about axes 𝑧𝐸𝑙′′.

R
𝐸𝑙′
�5 (�5) = R

𝐸𝑙′

𝐸𝑙′′
R𝑧 (�5) =

⎡⎢⎢⎢⎢⎢⎣
0 0 1
𝑐�5 −𝑠�5 0
𝑠�5 𝑐�5 0

⎤⎥⎥⎥⎥⎥⎦
Rotation by �6

The rotation of frame 𝑅𝐹�′5 wrt 𝑅𝐹�5 is given by

R

�5
�′5

= R𝑦

(︂𝜋
2

)︂
R𝑧

(︂𝜋
2

)︂
=

⎡⎢⎢⎢⎢⎢⎣
0 0 1
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦
Let 𝑅𝐹�6 the resulting reference frame after that the rotation by �6 is performed
about axes 𝑧�′5 . Hence, the rotation of frame 𝑅𝐹�6 wrt 𝑅𝐹�5 is given by

R

�5
�6 (�6) = R

�5
�′5

R𝑧 (�6) =
⎡⎢⎢⎢⎢⎢⎣

0 0 1
𝑐�6 −𝑠�6 0
𝑠�6 𝑐�6 0

⎤⎥⎥⎥⎥⎥⎦
Rotation by �7

In order to align frame 𝑅𝐹�6 to 𝑅𝐹�′6 , the following rotation matrix has to be
applied

R

�6
�′6

= R𝑦

(︂𝜋
2

)︂
R𝑧

(︂𝜋
2

)︂
=

⎡⎢⎢⎢⎢⎢⎣
0 0 1
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦
Let 𝑅𝐹𝑊𝑟 the resulting reference frame after that the rotation by �7 is performed
about axes 𝑧�′6 . Hence, the rotation of frame 𝑅𝐹𝑊𝑟 wrt 𝑅𝐹�6 is given by
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R

�6
𝑊𝑟
(�7) = R

�6
�′6

R𝑧 (�7) =
⎡⎢⎢⎢⎢⎢⎣

0 0 1
𝑐�7 −𝑠�7 0
𝑠�7 𝑐�7 0

⎤⎥⎥⎥⎥⎥⎦

𝑥𝐸𝑙′=𝑧𝐸𝑙′′=𝑧�5

𝑦𝐸𝑙′=𝑥𝐸𝑙′′

𝑧𝐸𝑙′=𝑦𝐸𝑙′′
�5

𝑥�5

𝑦�5

(a) Rotation by �5 about 𝑧𝐸𝑙′′
𝑥�5 = 𝑧�5′ = 𝑧�6

𝑦�5 = 𝑥�5′

𝑧�5 = 𝑦�5′�6 𝑥�6

𝑦�6

(b) Rotation by �6 about 𝑧�′5

𝑥�6 = 𝑧�6′ = 𝑧𝑊𝑟

𝑦�6 = 𝑥�6′

𝑧�6 = 𝑦�6′

�7

𝑥𝑊𝑟

𝑦𝑊𝑟

(c) Rotation by �7 about 𝑧�′6

Figure 4.4: Wrist rotations

Thus, it is possible to compute R
𝐸𝑙′

𝑊𝑟

R
𝐸𝑙′

𝑊𝑟 (�5, �6, �7) = R
𝐸𝑙′
�5 (�5)R�5

�6 (�6)R�6
𝑊𝑟
(�7)

=

⎡⎢⎢⎢⎢⎢⎣
𝑐�6𝑐�7 −𝑐�6𝑠�7 𝑠�6

𝑠�5𝑠�6𝑐�7 + 𝑐�5𝑠�7 −𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7 −𝑠�5𝑐�6

−𝑐�5𝑠�6𝑐�7 + 𝑠�5𝑠�7 𝑐�5𝑠�6𝑠�7 + 𝑠�5𝑐�7 𝑐�5𝑐�6

⎤⎥⎥⎥⎥⎥⎦
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By combining Eq. 4.3 and the expression for ph

𝐸𝑙 one obtains, after some
computations, the below equations with the notation𝜼𝑖−𝑗 = �𝑖 , �𝑖+1, . . . , � 𝑗 , 𝑗 > 𝑖.

ph

𝑊 = Φ𝐻𝑎

(︂
𝜼, ph

𝑊𝑟
)︂

= R
𝑊
𝑆ℎ

(︁
𝜼1−3

)︁ ⎛⎜⎜⎜⎜⎜⎝
R
𝑆ℎ′

𝐸𝑙 (�4)
(︂
R
𝐸𝑙′

𝑊𝑟

(︁
𝜼5−7

)︁
ph

𝑊𝑟 +O
El
′𝐸𝑙

)︂
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

ph

𝐸𝑙(𝜼5−7)

+O
Sh
′𝑆ℎ

⎞⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
ph

𝑆ℎ(𝜼4−7)

=

⎡⎢⎢⎢⎢⎢⎣
ph

𝑊
𝑥

ph

𝑊
𝑦

ph

𝑊
𝑧

⎤⎥⎥⎥⎥⎥⎦

(4.4)

with

ph

𝑊
𝑥 =

(︂
𝑐�6𝑐�7ph

𝑊𝑟
𝑥 − 𝑐�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑠�6ph

𝑊𝑟
𝑧

)︂ (︁
𝑐�2𝑐�3𝑐�4 − 𝑐�2𝑠�3𝑠�4

)︁
−
[︁ (︁
𝑠�5𝑠�6𝑐�7+

𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑠�5𝑐�6ph

𝑊𝑟
𝑧 − 𝐿 𝑓 𝑜

]︁ (︁
𝑐�2𝑐�3𝑠�4+

𝑐�2𝑠�3𝑐�4

)︁
+ 𝑠�2

[︁ (︁
−𝑐�5𝑠�6𝑐�7 + 𝑠�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
𝑐�5𝑠�6𝑠�7 + 𝑠�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 +

𝑐�5𝑐�6ph

𝑊𝑟
𝑧

]︁
+ 𝑐�2𝑠�3𝐿𝑠ℎ

ph

𝑊
𝑦 =

(︂
𝑐�6𝑐�7ph

𝑊𝑟
𝑥 − 𝑐�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑠�6ph

𝑊𝑟
𝑧

)︂ (︁
𝑠�1𝑠�2𝑐�3𝑐�4 − 𝑠�1𝑠�2𝑠�3𝑠�4 + 𝑐�1𝑠�3𝑐�4

+𝑐�1𝑐�3𝑠�4

)︁
+
[︁ (︁
𝑠�5𝑠�6𝑐�7 + 𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑠�5𝑐�6ph

𝑊𝑟
𝑧

− 𝐿 𝑓 𝑜
]︁ (︁
−𝑠�1𝑠�2𝑐�3𝑠�4 − 𝑐�1𝑠�3𝑠�4 + 𝑐�1𝑐�3𝑐�4 − 𝑠�1𝑠�2𝑠�3𝑐�4

)︁
− 𝑠�1𝑐�2

[︁ (︁
−𝑐�5𝑠�6𝑐�7

+𝑠�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
𝑐�5𝑠�6𝑠�7 + 𝑠�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 + 𝑐�5𝑐�6ph

𝑊𝑟
𝑧

]︁
−

(︁
𝑐�1𝑐�3 − 𝑠�1𝑠�2𝑠�3

)︁
𝐿𝑠ℎ

ph

𝑊
𝑧 =

(︂
𝑐�6𝑐�7ph

𝑊𝑟
𝑥 − 𝑐�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑠�6ph

𝑊𝑟
𝑧

)︂ (︁
𝑐�1𝑠�2𝑠�3𝑠�4 − 𝑐�1𝑠�2𝑐�3𝑐�4 + 𝑠�1𝑠�3𝑐�4

+𝑠�1𝑐�3𝑠�4

)︁
+
[︁ (︁
𝑠�5𝑠�6𝑐�7 + 𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑠�5𝑐�6ph

𝑊𝑟
𝑧

− 𝐿 𝑓 𝑜
]︁ (︁
𝑐�1𝑠�2𝑐�3𝑠�4 + 𝑐�1𝑠�2𝑠�3𝑐�4 − 𝑠�1𝑠�3𝑠�4 + 𝑠�1𝑐�3𝑐�4

)︁
+ 𝑐�1𝑐�2

[︁ (︁
−𝑐�5𝑠�6𝑐�7

+𝑠�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
𝑐�5𝑠�6𝑠�7 + 𝑠�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 + 𝑐�5𝑐�6ph

𝑊𝑟
𝑧

]︁
−

(︁
𝑠�1𝑐�3 + 𝑐�1𝑠�2𝑠�3

)︁
𝐿𝑠ℎ
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CHAPTER 4. HUMAN ARM MODEL

4.2 Differential kinematics

It is desired to express the markers’ linear velocity, denoted as ṗ, as a func-
tion of the joint velocities �̇�. This mapping is described by a matrix, termed
Jacobian J (𝜼), which depends on the arm configuration, and it can be computed
via differentiation of the forward kinematics function with respect to the joint
variables. The translational velocity of one marker frame Mi can be expressed
as the time derivative of vector pi, representing the origin of the marker frame
with respect to the base frame. This leads to

ṗi = Ji · �̇� =
𝜕Φi

𝜕𝜼
· �̇� =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜕Φ𝑆ℎ(𝜼1−3 ,pi

𝑆ℎ)
𝜕𝜼 · �̇� = J𝑆ℎ

(︁
𝜼1−3, pi

𝑆ℎ
)︁
· �̇�, 𝑖 ∈ 𝒮

𝜕Φ𝐹𝑜(𝜼1−4 ,pi

𝐸𝑙)
𝜕𝜼 · �̇� = J𝐹𝑜

(︁
𝜼1−4, pi

𝐸𝑙
)︁
· �̇�, 𝑖 ∈ ℱ

𝜕Φ𝐻𝑎(𝜼,pi

𝑊𝑟)
𝜕𝜼 · �̇� = J𝐻𝑎

(︁
𝜼, pi

𝑊𝑟
)︁
· �̇�, 𝑖 ∈ ℋ

where Ji ∈ R3×𝑛 , 𝑛 = 7 is the number of joint variables. As Φi, also Ji depends on(︁
𝜼1−3, pi

𝑆ℎ
)︁
,
(︁
𝜼1−4, pi

𝐸𝑙
)︁

or
(︁
𝜼, pi

𝑊𝑟
)︁

but this dependence is dropped for simplic-
ity. Indeed Φi = Φ𝑆ℎ

(︁
𝜼1−3, pi

𝑆ℎ
)︁
, Φi = Φ𝐹𝑜

(︁
𝜼1−4, pi

𝐸𝑙
)︁
, or Φi = Φ𝐻𝑎

(︁
𝜼, ph

𝑊𝑟
)︁
,

depending on where the marker Mi is placed. In general, one has

ṗ =

⎡⎢⎢⎢⎢⎢⎣
ṗ1

...

ṗm

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
J1

...

Jm

⎤⎥⎥⎥⎥⎥⎦ ·�̇� =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜕Φ1

𝜕𝜼
...

𝜕Φm

𝜕𝜼

⎤⎥⎥⎥⎥⎥⎥⎦ ·�̇� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕Φ1

𝜕�1
· · · 𝜕Φ1

𝜕�7
𝜕Φ2

𝜕�1
· · · 𝜕Φ2

𝜕�7
...

...
...

𝜕Φm

𝜕�1
· · · 𝜕Φm

𝜕�7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
·�̇� =

𝜕Φ

(︁
𝜼, p𝐵

)︁
𝜕𝜼

·�̇� = J

(︂
𝜼, p𝐵

)︂
·�̇�

(4.5)
where J

(︁
𝜼, p𝐵

)︁
∈ R(3𝑚)×𝑛 .

4.2.1 Shoulder differential kinematics

Let Ms be a marker on the shoulder. Recalling that Φ𝑆ℎ

(︁
𝜼, ps

𝑆ℎ
)︁
=

⎡⎢⎢⎢⎢⎢⎣
ps𝑥

ps𝑦

ps𝑧

⎤⎥⎥⎥⎥⎥⎦ ,

ṗs =

⎡⎢⎢⎢⎢⎢⎣
ṗs𝑥

ṗs𝑦

ṗs𝑧

⎤⎥⎥⎥⎥⎥⎦ =
𝜕Φ𝑆ℎ

(︁
𝜼1−3, ps

𝑆ℎ
)︁

𝜕𝜼
· �̇� = J𝑆ℎ

(︂
𝜼1−3, ps

𝑆ℎ
)︂
· �̇�
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Taking the partial derivatives of Eq. 4.2, one obtains

[J𝑆ℎ]1:1,...,𝑛

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[J𝑆ℎ]1,1 = [J𝑆ℎ]1,4 = [J𝑆ℎ]1,5 = [J𝑆ℎ]1,6 = [J𝑆ℎ]1,7 = 0

[J𝑆ℎ]1,2 = −𝑠�2𝑐�3ps

𝑆ℎ
𝑥 + 𝑠�2𝑠�3ps

𝑆ℎ
𝑦 + 𝑐�2ps

𝑆ℎ
𝑧

[J𝑆ℎ]1,3 = −𝑐�2𝑠�3ps

𝑆ℎ
𝑥 − 𝑐�2𝑐�3ps

𝑆ℎ
𝑦

[J𝑆ℎ]2:1,...,𝑛

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[J𝑆ℎ]2,4 = [J𝑆ℎ]2,5 = [J𝑆ℎ]2,6 = [J𝑆ℎ]2,7 = 0

[J𝑆ℎ]2,1 =
(︁
𝑐�1𝑠�2𝑐�3 − 𝑠�1𝑠�3

)︁
ps

𝑆ℎ
𝑥 −

(︁
𝑐�1𝑠�2𝑠�3 + 𝑠�1𝑐�3

)︁
ps

𝑆ℎ
𝑦 − 𝑐�1𝑐�2ps

𝑆ℎ
𝑧

[J𝑆ℎ]2,2 = 𝑠�1𝑐�2𝑐�3ps

𝑆ℎ
𝑥 − 𝑠�1𝑐�2𝑠�3ps

𝑆ℎ
𝑦 + 𝑠�1𝑠�2ps

𝑆ℎ
𝑧

[J𝑆ℎ]2,3 =
(︁
−𝑠�1𝑠�2𝑠�3 + 𝑐�1𝑐�3

)︁
ps

𝑆ℎ
𝑥 −

(︁
𝑠�1𝑠�2𝑐�3 + 𝑐�1𝑠�3

)︁
ps

𝑆ℎ
𝑦

[J𝑆ℎ]3:1,...,𝑛

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[J𝑆ℎ]3,4 = [J𝑆ℎ]3,5 = [J𝑆ℎ]3,6 = [J𝑆ℎ]3,7 = 0

[J𝑆ℎ]3,1 =
(︁
𝑠�1𝑠�2𝑐�3 + 𝑐�1𝑠�3

)︁
ps

𝑆ℎ
𝑥 +

(︁
−𝑠�1𝑠�2𝑠�3 + 𝑐�1𝑐�3

)︁
ps

𝑆ℎ
𝑦 − 𝑠�1𝑐�2ps

𝑆ℎ
𝑧

[J𝑆ℎ]3,2 = −𝑐�1𝑐�2𝑐�3ps

𝑆ℎ
𝑥 + 𝑐�1𝑐�2𝑠�3ps

𝑆ℎ
𝑦 − 𝑐�1𝑠�2ps

𝑆ℎ
𝑧

[J𝑆ℎ]2,3 =
(︁
𝑐�1𝑠�2𝑠�3 + 𝑠�1𝑐�3

)︁
ps

𝑆ℎ
𝑥 +

(︁
𝑐�1𝑠�2𝑐�3 − 𝑠�1𝑠�3

)︁
ps

𝑆ℎ
𝑦

4.2.2 Forearm differential kinematics

Let Mf be a marker on the forearm. Since Φ𝐹𝑜 =

⎡⎢⎢⎢⎢⎢⎣
pf𝑥

pf𝑦

pf𝑧

⎤⎥⎥⎥⎥⎥⎦ ,

ṗf =

⎡⎢⎢⎢⎢⎢⎣
ṗf𝑥

ṗf𝑦

ṗf𝑧

⎤⎥⎥⎥⎥⎥⎦ =
𝜕Φ𝐹𝑜

(︁
𝜼1−4, pf

𝐸𝑙
)︁

𝜕𝜼
· �̇� = J𝐹𝑜

(︂
𝜼1−4, pf

𝐸𝑙
)︂
· �̇�

Taking the partial derivatives of Eq. 4.3, one obtains
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[J𝐹𝑜]1:1,...,𝑛

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[J𝐹𝑜]1,1 = [J𝐹𝑜]1,5 = [J𝐹𝑜]1,6 = [J𝐹𝑜]1,7 = 0

[J𝐹𝑜]1,2 = −𝑠�2𝑐�3

(︂
𝑐�4pf

𝐸𝑙
𝑥 − 𝑠�4pf

𝐸𝑙
𝑦

)︂
+ 𝑠�2𝑠�3

(︂
𝑠�4pf

𝐸𝑙
𝑥 + 𝑐�4pf

𝐸𝑙
𝑦 − 𝐿𝑠ℎ

)︂
+ 𝑐�2pf

𝐸𝑙
𝑧

[J𝑆ℎ]1,3 = −𝑐�2𝑠�3

(︂
𝑐�4pf

𝐸𝑙
𝑥 − 𝑠�4pf

𝐸𝑙
𝑦

)︂
− 𝑐�2𝑐�3

(︂
𝑠�4pf

𝐸𝑙
𝑥 + 𝑐�4pf

𝐸𝑙
𝑦 − 𝐿𝑠ℎ

)︂
[J𝑆ℎ]1,4 = 𝑐�2𝑐�3

(︂
−𝑠�4pf

𝐸𝑙
𝑥 − 𝑐�4pf

𝐸𝑙
𝑦

)︂
− 𝑐�2𝑠�3

(︂
𝑐�4pf

𝐸𝑙
𝑥 − 𝑠�4pf

𝐸𝑙
𝑦

)︂

[J𝐹𝑜]2:1,...,𝑛

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[J𝐹𝑜]2,5 = [J𝐹𝑜]2,6 = [J𝐹𝑜]2,7 = 0

[J𝐹𝑜]2,1 =
(︁
𝑐�1𝑠�2𝑐�3 − 𝑠�1𝑠�3

)︁ (︂
𝑐�4pf

𝐸𝑙
𝑥 − 𝑠�4pf

𝐸𝑙
𝑦

)︂
−(︁

𝑠�1𝑐�3 + 𝑐�1𝑠�2𝑠�3

)︁ (︂
𝑠�4pf

𝐸𝑙
𝑥 + 𝑐�4pf

𝐸𝑙
𝑦 − 𝐿𝑠ℎ

)︂
− 𝑐�1𝑐�2pf

𝐸𝑙
𝑧

[J𝐹𝑜]2,2 = 𝑠�1𝑐�2𝑐�3

(︂
𝑐�4pf

𝐸𝑙
𝑥 − 𝑠�4pf

𝐸𝑙
𝑦

)︂
− 𝑠�1𝑐�2𝑠�3

(︂
𝑠�4pf

𝐸𝑙
𝑥 + 𝑐�4pf

𝐸𝑙
𝑦 − 𝐿𝑠ℎ

)︂
+

𝑠�1𝑠�2pf

𝐸𝑙
𝑧

[J𝐹𝑜]2,3 =
(︁
−𝑠�1𝑠�2𝑠�3 + 𝑐�1𝑐�3

)︁ (︂
𝑐�4pf

𝐸𝑙
𝑥 − 𝑠�4pf

𝐸𝑙
𝑦

)︂
−(︁

𝑐�1𝑠�3 + 𝑠�1𝑠�2𝑐�3

)︁ (︂
𝑠�4pf

𝐸𝑙
𝑥 + 𝑐�4pf

𝐸𝑙
𝑦 − 𝐿𝑠ℎ

)︂
[J𝐹𝑜]2,4 = −

(︁
𝑠�1𝑠�2𝑐�3 + 𝑐�1𝑠�3

)︁ (︂
𝑠�4pf

𝐸𝑙
𝑥 + 𝑐�4pf

𝐸𝑙
𝑦

)︂
+(︁

𝑐�1𝑐�3 − 𝑠�1𝑠�2𝑠�3

)︁ (︂
𝑐�4pf

𝐸𝑙
𝑥 − 𝑠�4pf

𝐸𝑙
𝑦

)︂

[J𝐹𝑜]3:1,...,𝑛

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[J𝐹𝑜]3,5 = [J𝐹𝑜]3,6 = [J𝐹𝑜]3,7 = 0

[J𝐹𝑜]3,1 =
(︁
𝑐�1𝑠�3 + 𝑠�1𝑠�2𝑐�3

)︁ (︂
𝑐�4pf

𝐸𝑙
𝑥 − 𝑠�4pf

𝐸𝑙
𝑦

)︂
+(︁

−𝑠�1𝑠�2𝑠�3 + 𝑐�1𝑐�3

)︁ (︂
𝑠�4pf

𝐸𝑙
𝑥 + 𝑐�4pf

𝐸𝑙
𝑦 − 𝐿𝑠ℎ

)︂
− 𝑠�1𝑐�2pf

𝐸𝑙
𝑧

[J𝐹𝑜]3,2 = −𝑐�1𝑐�2𝑐�3

(︂
𝑐�4pf

𝐸𝑙
𝑥 − 𝑠�4pf

𝐸𝑙
𝑦

)︂
+ 𝑐�1𝑐�2𝑠�3

(︂
𝑠�4pf

𝐸𝑙
𝑥 + 𝑐�4pf

𝐸𝑙
𝑦 − 𝐿𝑠ℎ

)︂
−

𝑐�1𝑠�2pf

𝐸𝑙
𝑧

[J𝐹𝑜]3,3 =
(︁
𝑠�1𝑐�3 + 𝑐�1𝑠�2𝑠�3

)︁ (︂
𝑐�4pf

𝐸𝑙
𝑥 − 𝑠�4pf

𝐸𝑙
𝑦

)︂
+(︁

𝑐�1𝑠�2𝑐�3 − 𝑠�1𝑠�3

)︁ (︂
𝑠�4pf

𝐸𝑙
𝑥 + 𝑐�4pf

𝐸𝑙
𝑦 − 𝐿𝑠ℎ

)︂
[J𝐹𝑜]3,4 = −

(︁
𝑠�1𝑠�3 − 𝑐�1𝑠�2𝑐�3

)︁ (︂
𝑠�4pf

𝐸𝑙
𝑥 − 𝑐�4pf

𝐸𝑙
𝑦

)︂
+(︁

𝑐�1𝑠�2𝑠�3 + 𝑠�1𝑐�3

)︁ (︂
𝑐�4pf

𝐸𝑙
𝑥 − 𝑠�4pf

𝐸𝑙
𝑦

)︂
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4.2. DIFFERENTIAL KINEMATICS

4.2.3 Hand differential kinematics

Let Mh be a marker on the hand.

ṗh =

⎡⎢⎢⎢⎢⎢⎣
ṗh𝑥

ṗh𝑦

ṗh𝑧

⎤⎥⎥⎥⎥⎥⎦ =
𝜕Φ𝐻𝑎

(︁
𝜼, ph

𝑊𝑟
)︁

𝜕𝜼
· �̇� = J𝐻𝑎

(︂
𝜼, ph

𝑊𝑟
)︂
· �̇�

Taking the partial derivatives of Eq. 4.4,

[J𝐻𝑎]1:1,...,𝑛

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[J𝐻𝑎]1,1 = 0

[J𝐻𝑎]1,2 =

(︂
𝑐�6𝑐�7ph

𝑊𝑟
𝑥 − 𝑐�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑠�6ph

𝑊𝑟
𝑧

)︂ (︁
−𝑠�2𝑐�3𝑐�4 + 𝑠�2𝑠�3𝑠�4

)︁
+[︁ (︁

𝑠�5𝑠�6𝑐�7 + 𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑠�5𝑐�6ph

𝑊𝑟
𝑧 −

𝐿 𝑓 𝑜
]︁ (︁
𝑠�2𝑐�3𝑠�4 + 𝑠�2𝑠�3𝑐�4

)︁
+ 𝑐�2

[︁ (︁
−𝑐�5𝑠�6𝑐�7 + 𝑠�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +(︁

𝑐�5𝑠�6𝑠�7 + 𝑠�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 + 𝑐�5𝑐�6ph

𝑊𝑟
𝑧

]︁
− 𝑠�2𝑠�3𝐿𝑠ℎ

[J𝐻𝑎]1,3 =

(︂
𝑐�6𝑐�7ph

𝑊𝑟
𝑥 − 𝑐�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑠�6ph

𝑊𝑟
𝑧

)︂ (︁
−𝑐�2𝑠�3𝑐�4 − 𝑐�2𝑐�3𝑠�4

)︁
−[︁ (︁

𝑠�5𝑠�6𝑐�7 + 𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑠�5𝑐�6ph

𝑊𝑟
𝑧 −

𝐿 𝑓 𝑜
]︁ (︁
−𝑐�2𝑠�3𝑠�4 + 𝑐�2𝑐�3𝑐�4

)︁
+ 𝑐�2𝑐�3𝐿𝑠ℎ

[J𝐻𝑎]1,4 =

(︂
𝑐�6𝑐�7ph

𝑊𝑟
𝑥 − 𝑐�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑠�6ph

𝑊𝑟
𝑧

)︂ (︁
−𝑐�2𝑐�3𝑠�4 − 𝑐�2𝑠�3𝑐�4

)︁
−[︁ (︁

𝑠�5𝑠�6𝑐�7 + 𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑠�5𝑐�6ph

𝑊𝑟
𝑧 −

𝐿 𝑓 𝑜
]︁ (︁
𝑐�2𝑐�3𝑐�4 − 𝑐�2𝑠�3𝑠�4

)︁
[J𝐻𝑎]1,5 = −

(︁
𝑐�2𝑐�3𝑠�4 + 𝑐�2𝑠�3𝑐�4

)︁ [︁ (︁
𝑐�5𝑠�6𝑐�7 − 𝑠�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +(︁

−𝑐�5𝑠�6𝑠�7 − 𝑠�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑐�5𝑐�6ph

𝑊𝑟
𝑧

]︁
+ 𝑠�2

[︁ (︁
𝑠�5𝑠�6𝑐�7+

𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑠�5𝑐�6ph

𝑊𝑟
𝑧

]︁
[J𝐻𝑎]1,6 =

(︁
𝑐�2𝑐�3𝑐�4 − 𝑐�2𝑠�3𝑠�4

)︁ (︂
−𝑠�6𝑐�7ph

𝑊𝑟
𝑥 + 𝑠�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑐�6ph

𝑊𝑟
𝑧

)︂
−(︁

𝑐�2𝑐�3𝑠�4 + 𝑐�2𝑠�3𝑐�4

)︁ [︁
𝑠�5𝑐�6𝑐�7ph

𝑊𝑟
𝑥 − 𝑠�5𝑐�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑠�5𝑠�6ph

𝑊𝑟
𝑧

]︁
+

𝑠�2

[︁
− 𝑐�5𝑐�6𝑐�7ph

𝑊𝑟
𝑥 + 𝑐�5𝑐�6𝑠�7ph

𝑊𝑟
𝑦 − 𝑐�5𝑠�6ph

𝑊𝑟
𝑧

]︁
[J𝐻𝑎]1,7 = −

(︁
𝑐�2𝑐�3𝑐�4 − 𝑐�2𝑠�3𝑠�4

)︁ (︂
𝑐�6𝑠�7ph

𝑊𝑟
𝑥 + 𝑐�6𝑐�7ph

𝑊𝑟
𝑦

)︂
−(︁

𝑐�2𝑐�3𝑠�4 + 𝑐�2𝑠�3𝑐�4

)︁ [︁ (︁
−𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑥 +(︁

−𝑠�5𝑠�6𝑐�7 − 𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑦

]︁
+ 𝑠�2

[︁ (︁
𝑐�5𝑠�6𝑠�7 + 𝑠�5𝑐�7

)︁
ph

𝑊𝑟
𝑥 +(︁

𝑐�5𝑠�6𝑐�7 − 𝑠�5𝑠�7

)︁
ph

𝑊𝑟
𝑦

]︁
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CHAPTER 4. HUMAN ARM MODEL

[J𝐻𝑎]2:1,...,𝑛

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[J𝐻𝑎]2,1 =

(︂
𝑐�6𝑐�7ph

𝑊𝑟
𝑥 − 𝑐�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑠�6ph

𝑊𝑟
𝑧

)︂ (︁
𝑐�1𝑠�2𝑐�3𝑐�4 − 𝑐�1𝑠�2𝑠�3𝑠�4−

𝑠�1𝑠�3𝑐�4 − 𝑠�1𝑐�3𝑠�4

)︁
+
[︁ (︁
𝑠�5𝑠�6𝑐�7 + 𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +(︁

−𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑠�5𝑐�6ph

𝑊𝑟
𝑧 − 𝐿 𝑓 𝑜

]︁ (︁
−𝑐�1𝑠�2𝑐�3𝑠�4 + 𝑠�1𝑠�3𝑠�4−

𝑠�1𝑐�3𝑐�4 − 𝑐�1𝑠�2𝑠�3𝑐�4

)︁
− 𝑐�1𝑐�2

[︁ (︁
−𝑐�5𝑠�6𝑐�7 + 𝑠�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +(︁

𝑐�5𝑠�6𝑠�7 + 𝑠�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 + 𝑐�5𝑐�6ph

𝑊𝑟
𝑧

]︁
+

(︁
𝑠�1𝑐�3 + 𝑐�1𝑠�2𝑠�3

)︁
𝐿𝑠ℎ

[J𝐻𝑎]2,2 =

(︂
𝑐�6𝑐�7ph

𝑊𝑟
𝑥 − 𝑐�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑠�6ph

𝑊𝑟
𝑧

)︂ (︁
𝑠�1𝑐�2𝑐�3𝑐�4 − 𝑠�1𝑐�2𝑠�3𝑠�4

)︁
+[︁ (︁

𝑠�5𝑠�6𝑐�7 + 𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑠�5𝑐�6ph

𝑊𝑟
𝑧 −

𝐿 𝑓 𝑜
]︁ (︁
−𝑠�1𝑐�2𝑐�3𝑠�4 − 𝑠�1𝑐�2𝑠�3𝑐�4

)︁
+ 𝑠�1𝑠�2

[︁ (︁
−𝑐�5𝑠�6𝑐�7 + 𝑠�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +(︁

𝑐�5𝑠�6𝑠�7 + 𝑠�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 + 𝑐�5𝑐�6ph

𝑊𝑟
𝑧

]︁
+ 𝑠�1𝑐�2𝑠�3𝐿𝑠ℎ

[J𝐻𝑎]2,3 =

(︂
𝑐�6𝑐�7ph

𝑊𝑟
𝑥 − 𝑐�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑠�6ph

𝑊𝑟
𝑧

)︂ (︁
−𝑠�1𝑠�2𝑠�3𝑐�4 − 𝑠�1𝑠�2𝑐�3𝑠�4+

𝑐�1𝑐�3𝑐�4 − 𝑐�1𝑠�3𝑠�4

)︁
+
[︁ (︁
𝑠�5𝑠�6𝑐�7 + 𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +(︁

−𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑠�5𝑐�6ph

𝑊𝑟
𝑧 − 𝐿 𝑓 𝑜

]︁ (︁
𝑠�1𝑠�2𝑠�3𝑠�4 − 𝑐�1𝑐�3𝑠�4−

𝑐�1𝑠�3𝑐�4 − 𝑠�1𝑠�2𝑐�3𝑐�4

)︁
+

(︁
𝑐�1𝑠�3 + 𝑠�1𝑠�2𝑐�3

)︁
𝐿𝑠ℎ

[J𝐻𝑎]2,4 =

(︂
𝑐�6𝑐�7ph

𝑊𝑟
𝑥 − 𝑐�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑠�6ph

𝑊𝑟
𝑧

)︂ (︁
−𝑠�1𝑠�2𝑐�3𝑠�4 − 𝑠�1𝑠�2𝑠�3𝑐�4−

𝑐�1𝑠�3𝑠�4 + 𝑐�1𝑐�3𝑐�4

)︁
+
[︁ (︁
𝑠�5𝑠�6𝑐�7 + 𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +(︁

−𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑠�5𝑐�6ph

𝑊𝑟
𝑧 − 𝐿 𝑓 𝑜

]︁ (︁
−𝑠�1𝑠�2𝑐�3𝑐�4 − 𝑐�1𝑠�3𝑐�4−

𝑐�1𝑐�3𝑠�4 + 𝑠�1𝑠�2𝑠�3𝑠�4

)︁
[J𝐻𝑎]2,5 =

[︁ (︁
𝑐�5𝑠�6𝑐�7 − 𝑠�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑐�5𝑠�6𝑠�7 − 𝑠�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑐�5𝑐�6ph

𝑊𝑟
𝑧

]︁(︁
−𝑠�1𝑠�2𝑐�3𝑠�4 − 𝑐�1𝑠�3𝑠�4 + 𝑐�1𝑐�3𝑐�4 − 𝑠�1𝑠�2𝑠�3𝑐�4

)︁
−

𝑠�1𝑐�2

[︁ (︁
𝑠�5𝑠�6𝑐�7 + 𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 −

𝑠�5𝑐�6ph

𝑊𝑟
𝑧

]︁
[J𝐻𝑎]2,6 =

(︂
−𝑠�6𝑐�7ph

𝑊𝑟
𝑥 + 𝑠�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑐�6ph

𝑊𝑟
𝑧

)︂ (︁
𝑠�1𝑠�2𝑐�3𝑐�4 − 𝑠�1𝑠�2𝑠�3𝑠�4+

𝑐�1𝑠�3𝑐�4 + 𝑐�1𝑐�3𝑠�4

)︁
+

(︂
𝑠�5𝑐�6𝑐�7ph

𝑊𝑟
𝑥 − 𝑠�5𝑐�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑠�5𝑠�6ph

𝑊𝑟
𝑧

)︂(︁
−𝑠�1𝑠�2𝑐�3𝑠�4 − 𝑐�1𝑠�3𝑠�4 + 𝑐�1𝑐�3𝑐�4 − 𝑠�1𝑠�2𝑠�3𝑐�4

)︁
−

𝑠�1𝑐�2

[︁
− 𝑐�5𝑐�6𝑐�7ph

𝑊𝑟
𝑥 + 𝑐�5𝑐�6𝑠�7ph

𝑊𝑟
𝑦 − 𝑐�5𝑠�6ph

𝑊𝑟
𝑧

]︁
[J𝐻𝑎]2,7 =

(︂
−𝑐�6𝑠�7ph

𝑊𝑟
𝑥 − 𝑐�6𝑐�7ph

𝑊𝑟
𝑦

)︂ (︁
𝑠�1𝑠�2𝑐�3𝑐�4 − 𝑠�1𝑠�2𝑠�3𝑠�4 + 𝑐�1𝑠�3𝑐�4+

𝑐�1𝑐�3𝑠�4

)︁
+
[︁ (︁
−𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑠�5𝑠�6𝑐�7 − 𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑦

]︁(︁
−𝑠�1𝑠�2𝑐�3𝑠�4 − 𝑐�1𝑠�3𝑠�4 + 𝑐�1𝑐�3𝑐�4 − 𝑠�1𝑠�2𝑠�3𝑐�4

)︁
−

𝑠�1𝑐�2

[︁ (︁
𝑐�5𝑠�6𝑠�7 + 𝑠�5𝑐�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
𝑐�5𝑠�6𝑐�7 − 𝑠�5𝑠�7

)︁
ph

𝑊𝑟
𝑦

]︁
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4.2. DIFFERENTIAL KINEMATICS

[J𝐻𝑎]3:1,...,𝑛

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[J𝐻𝑎]3,1 =

(︂
𝑐�6𝑐�7ph

𝑊𝑟
𝑥 − 𝑐�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑠�6ph

𝑊𝑟
𝑧

)︂ (︁
−𝑠�1𝑠�2𝑠�3𝑠�4 + 𝑠�1𝑠�2𝑐�3𝑐�4+

𝑐�1𝑠�3𝑐�4 + 𝑐�1𝑐�3𝑠�4

)︁
+
[︁ (︁
𝑠�5𝑠�6𝑐�7 + 𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑠�5𝑠�6𝑠�7+

𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑠�5𝑐�6ph

𝑊𝑟
𝑧 − 𝐿 𝑓 𝑜

]︁ (︁
−𝑠�1𝑠�2𝑐�3𝑠�4 − 𝑠�1𝑠�2𝑠�3𝑐�4−

𝑐�1𝑠�3𝑠�4 + 𝑐�1𝑐�3𝑐�4

)︁
− 𝑠�1𝑐�2

[︁ (︁
−𝑐�5𝑠�6𝑐�7 + 𝑠�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +(︁

𝑐�5𝑠�6𝑠�7 + 𝑠�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 + 𝑐�5𝑐�6ph

𝑊𝑟
𝑧

]︁
−

(︁
𝑐�1𝑐�3 − 𝑠�1𝑠�2𝑠�3

)︁
𝐿𝑠ℎ

[J𝐻𝑎]3,2 =

(︂
𝑐�6𝑐�7ph

𝑊𝑟
𝑥 − 𝑐�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑠�6ph

𝑊𝑟
𝑧

)︂ (︁
𝑐�1𝑐�2𝑠�3𝑠�4 − 𝑐�1𝑐�2𝑐�3𝑐�4

)︁
+[︁ (︁

𝑠�5𝑠�6𝑐�7 + 𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 −

𝑠�5𝑐�6ph

𝑊𝑟
𝑧 − 𝐿 𝑓 𝑜

]︁ (︁
𝑐�1𝑐�2𝑐�3𝑠�4 + 𝑐�1𝑐�2𝑠�3𝑐�4

)︁
− 𝑐�1𝑠�2

[︁ (︁
−𝑐�5𝑠�6𝑐�7+

𝑠�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
𝑐�5𝑠�6𝑠�7 + 𝑠�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 + 𝑐�5𝑐�6ph

𝑊𝑟
𝑧

]︁
−

𝑐�1𝑐�2𝑠�3𝐿𝑠ℎ

[J𝐻𝑎]3,3 =

(︂
𝑐�6𝑐�7ph

𝑊𝑟
𝑥 − 𝑐�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑠�6ph

𝑊𝑟
𝑧

)︂ (︁
𝑐�1𝑠�2𝑐�3𝑠�4 + 𝑐�1𝑠�2𝑠�3𝑐�4+

𝑠�1𝑐�3𝑐�4 − 𝑠�1𝑠�3𝑠�4

)︁
+
[︁ (︁
𝑠�5𝑠�6𝑐�7 + 𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑠�5𝑠�6𝑠�7+

𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑠�5𝑐�6ph

𝑊𝑟
𝑧 − 𝐿 𝑓 𝑜

]︁ (︁
−𝑐�1𝑠�2𝑠�3𝑠�4 + 𝑐�1𝑠�2𝑐�3𝑐�4−

𝑠�1𝑐�3𝑠�4 − 𝑠�1𝑠�3𝑐�4

)︁
−

(︁
−𝑠�1𝑠�3 + 𝑐�1𝑠�2𝑐�3

)︁
𝐿𝑠ℎ

[J𝐹𝑜]3,4 =

(︂
𝑐�6𝑐�7ph

𝑊𝑟
𝑥 − 𝑐�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑠�6ph

𝑊𝑟
𝑧

)︂ (︁
𝑐�1𝑠�2𝑠�3𝑐�4 + 𝑐�1𝑠�2𝑐�3𝑠�4−

𝑠�1𝑠�3𝑠�4 + 𝑠�1𝑐�3𝑐�4

)︁
+
[︁ (︁
𝑠�5𝑠�6𝑐�7 + 𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑠�5𝑠�6𝑠�7+

𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑠�5𝑐�6ph

𝑊𝑟
𝑧 − 𝐿 𝑓 𝑜

]︁ (︁
𝑐�1𝑠�2𝑐�3𝑐�4 − 𝑐�1𝑠�2𝑠�3𝑠�4−

𝑠�1𝑠�3𝑐�4 − 𝑠�1𝑐�3𝑠�4

)︁
[J𝐹𝑜]3,5 =

[︁ (︁
𝑐�5𝑠�6𝑐�7 − 𝑠�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑐�5𝑠�6𝑠�7 − 𝑠�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑐�5𝑐�6ph

𝑊𝑟
𝑧

]︁(︁
𝑐�1𝑠�2𝑐�3𝑠�4 + 𝑐�1𝑠�2𝑠�3𝑐�4 − 𝑠�1𝑠�3𝑠�4 + 𝑠�1𝑐�3𝑐�4

)︁
+ 𝑐�1𝑐�2

[︁ (︁
𝑠�5𝑠�6𝑐�7

+𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑦 − 𝑠�5𝑐�6ph

𝑊𝑟
𝑧

]︁
[J𝐹𝑜]3,6 =

(︂
−𝑠�6𝑐�7ph

𝑊𝑟
𝑥 + 𝑠�6𝑠�7ph

𝑊𝑟
𝑦 + 𝑐�6ph

𝑊𝑟
𝑧

)︂ (︁
𝑐�1𝑠�2𝑠�3𝑠�4 − 𝑐�1𝑠�2𝑐�3𝑐�4+

𝑠�1𝑠�3𝑐�4 + 𝑠�1𝑐�3𝑠�4

)︁
+
[︁
𝑠�5𝑐�6𝑐�7ph

𝑊𝑟
𝑥 − 𝑠�5𝑐�6𝑠�7ph

𝑊𝑟
𝑦 +

𝑠�5𝑠�6ph

𝑊𝑟
𝑧

]︁ (︁
𝑐�1𝑠�2𝑐�3𝑠�4 + 𝑐�1𝑠�2𝑠�3𝑐�4 − 𝑠�1𝑠�3𝑠�4 + 𝑠�1𝑐�3𝑐�4

)︁
+

𝑐�1𝑐�2

[︁
− 𝑐�5𝑐�6𝑐�7ph

𝑊𝑟
𝑥 + 𝑐�5𝑐�6𝑠�7ph

𝑊𝑟
𝑦 − 𝑐�5𝑠�6ph

𝑊𝑟
𝑧

]︁
[J𝐹𝑜]3,7 =

(︂
−𝑐�6𝑠�7ph

𝑊𝑟
𝑥 − 𝑐�6𝑐�7ph

𝑊𝑟
𝑦

)︂ (︁
𝑐�1𝑠�2𝑠�3𝑠�4 − 𝑐�1𝑠�2𝑐�3𝑐�4 + 𝑠�1𝑠�3𝑐�4+

𝑠�1𝑐�3𝑠�4

)︁
+
[︁ (︁
−𝑠�5𝑠�6𝑠�7 + 𝑐�5𝑐�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
−𝑠�5𝑠�6𝑐�7 − 𝑐�5𝑠�7

)︁
ph

𝑊𝑟
𝑦

]︁(︁
𝑐�1𝑠�2𝑐�3𝑠�4 + 𝑐�1𝑠�2𝑠�3𝑐�4 − 𝑠�1𝑠�3𝑠�4 + 𝑠�1𝑐�3𝑐�4

)︁
+

𝑐�1𝑐�2

[︁ (︁
𝑐�5𝑠�6𝑠�7 + 𝑠�5𝑐�7

)︁
ph

𝑊𝑟
𝑥 +

(︁
𝑐�5𝑠�6𝑐�7 − 𝑠�5𝑠�7

)︁
ph

𝑊𝑟
𝑦

]︁
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CHAPTER 4. HUMAN ARM MODEL

4.3 Human arm model equations

From equations Eq. 4.1 and Eq. 4.5, the continuous non-linear model of the 7
DoF RM can be derived, where the dependence from the position of the markers
is not reported for simplicity. ⎧⎪⎪⎨⎪⎪⎩

ṗ = J (𝜼) · �̇�
p = Φ (𝜼)

In the hypothesis in which 𝑚 > 2 and the Jacobian J ∈ R(3𝑚)×𝑛 is full-rank, with
reference to A, J admits the left presudo-inverse J

†
𝐿
=

(︁
J
𝑇 · J

)︁−1 · J𝑇 . Hence

�̇� =

(︂
J
𝑇 (𝜼) · J (𝜼)

)︂−1
· J𝑇 (𝜼) · ṗ

which represent the LS solution for Eq. 4.5. Saying that J (𝜼) is full column-rank
means that the configuration of the arm 𝜼 is such that there are not kinematic

singularities. However, it is important to underline that the inversion of the
Jacobian can represent a serious inconvenience not only at a singularity but
also in the neighbourhood of a singularity. Indeed, in the neighbourhood of a
singularity, the determinant takes on a relatively small value which can cause
large joint velocities. In order to provide a measure of the distance from a
singularity, one can consider the ratio between the minimum and maximum
singular values of the Jacobian 𝜎1

𝜎𝑛
, assuming rank [J (𝜼)] = 𝑛, which is equivalent

to the condition number of matrix J (𝜼). The continuous-time non-linear model of
the 7 DoF RM follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�̇� (𝑡) =

(︂
J
𝑇 (𝜼 (𝑡)) · J (𝜼 (𝑡))

)︂−1
· J𝑇 (𝜼 (𝑡))⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

J
†
𝐿
(𝜼(𝑡))

·ṗ (𝑡)

p (𝑡) = Φ (𝜼 (𝑡))

(4.6)

As already mentioned, J and Φ depend also on the number of markers on
the shoulder, forearm and hand |𝒮|, |ℱ | and |ℋ | and on the specific markers’
position.
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5
Matlab simulations

As discussed in Section 1.1, in order to better the estimate of the forces and
torques exerted by (H) to (L) in Eq. 1.3, it is necessary to improve the estimate of
𝜼(𝑡) by using some different estimation algorithm approaches from that used in
[19]. Specifically, the interested quantity is estimated indirectly by making use of
some markers placed along the human arm. For this purpose, the Motion Cap-
ture System is used. Indeed, the Qualisys Track Manager (QTM) software can
measure the linear position and velocity as the cameras observing lightweight
markers attached to the object. In particular, three different estimation algorithm
are analyzed:

i Least-squares (LS)

ii Linearized Kalman filter (LKF)

iii Extended Kalman filter (EKF)

In all these estimation algorithms, the model of the human arm in Eq. 4.6 is
required. Before tackling the real-world experimental problem, where the real
human arm is used, some simulations are run, in which a Simscape model
of the human arm can be exploited, and different estimators can be analyzed
theoretically, leading to a first working solution.

By exploiting the Simscape platform, it is possible to develop the 7 DoF
model of the right human arm. It can be seen as a composition of:
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1. Shoulder

(a) Shoulder-joint block –> �1, �2, �3

i. World reference frame 𝑅𝐹𝑊
ii. Constant rotation R

𝑊
𝑊′

iii. Variable rotation R
𝑊′
�1 (�1) = R𝑧 (�1)

iv. Constant rotation R

�1
�1′

v. Variable rotation R

�1′

�2 (�2) = R𝑧 (�2)
vi. Constant rotation R

�2
�2′

vii. Variable rotation R

�2′

𝑆ℎ
(�3) = R𝑧 (�3)

viii. Shoulder base reference frame 𝑅𝐹𝑆ℎ

(b) Shoulder structure: 𝑅𝐹𝑆ℎ –> 𝑅𝐹𝑆ℎ′

2. Forearm

(a) Elbow-joint block –> �4

i. Shoulder final reference frame 𝑅𝐹𝑆ℎ′
ii. Variable rotation R

𝑆ℎ′

𝐸𝑙
(�4)

iii. Elbow base reference frame 𝑅𝐹𝐸𝑙

(b) Forearm structure: 𝑅𝐹𝐸𝑙 –> 𝑅𝐹𝐸𝑙′

3. Hand

(a) Wrist-joint block –> �5, �6, �7

i. Elbow final reference frame 𝑅𝐹𝐸𝑙′
ii. Constant rotation R

𝐸𝑙′

𝐸𝑙′′

iii. Variable rotation R
𝐸𝑙′′
�5 (�5) = R𝑧 (�5)

iv. Constant rotation R

�5
�5′

v. Variable rotation R

�5′

�6 (�6) = R𝑧 (�6)
vi. Constant rotation R

�6
�6′

vii. Variable rotation R

�6′

𝑊𝑟
(�7) = R𝑧 (�7)

viii. Wrist base reference frame 𝑅𝐹𝑊𝑟

(b) Hand structure
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Each joint block is composed of constant rotations, performed by using the Rigid

Transforms block, and variable rotations, by making use of the Revolute Joint

block. As far as the shoulder and the forearm structures are concerned, they
are represented by the Cylindrical Solid block. In the same library, the block
Brick Solid is employed to represent the hand structure. The 𝑚 markers are
instead constituted by the Spherical Solid block. In order to apply the estimation
algorithms, the specific number of markers |𝒮|, |ℱ |, |ℋ |, and the simulated
trajectory 𝜼𝑟𝑒 𝑓 have to be decided.

5.1 Suitable markers’ combinations and joint-space
trajectory

The markers can be located on the entire shoulder, forearm and hand surfaces.
Let Ms, Mf and Mh be three markers placed on the shoulder, forearm and hand,
respectively. Since the shoulder and forearm are modeled as a cylinder solid
while the hand as a brick solid, with reference to Fig. 4.1, it holds:

polar cartesian

Shoulder:

⎧⎪⎪⎨⎪⎪⎩
�𝑠 ∼ 𝑈 [0, 2𝜋]
𝜌𝑠 ∼ 𝑈 [−𝐿𝑠ℎ , 0]

=⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ps

𝑆ℎ
𝑥 = − (𝑟𝑠ℎ + 𝑟𝑀) · cos (�𝑠)

ps

𝑆ℎ
𝑦 = 𝜌𝑠

ps

𝑆ℎ
𝑧 = (𝑟𝑠ℎ + 𝑟𝑀) · sin (�𝑠)

Forearm:

⎧⎪⎪⎨⎪⎪⎩
� 𝑓 ∼ 𝑈 [0, 2𝜋]
𝜌 𝑓 ∼ 𝑈

[︁
−𝐿 𝑓 𝑜 , 0

]︁ =⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pf

𝐸𝑙
𝑥 = −

(︁
𝑟 𝑓 𝑜 + 𝑟𝑀

)︁
· cos

(︁
� 𝑓

)︁
pf

𝐸𝑙
𝑦 = 𝜌 𝑓

pf

𝐸𝑙
𝑧 =

(︁
𝑟 𝑓 𝑜 + 𝑟𝑀

)︁
· sin (�𝑠)

Hand: =⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ph

𝑊𝑟
𝑥 =∼ 𝑈

[︂
−𝑊ℎ𝑎

2 , 𝑊ℎ𝑎

2

]︂
ph

𝑊𝑟
𝑦 =∼ 𝑈 [−𝐿ℎ𝑎 , 0]

ph

𝑊𝑟
𝑧 =

𝐻ℎ𝑎

2 + 𝑟𝑀
(5.1)

where 𝑟𝑠ℎ , 𝑟 𝑓 𝑜 , 𝑟𝑀 are the radius of the shoulder, forearm and single marker.
Hence, it is possible to generate random markers, which are expressed with
respect to the corresponding base reference frame 𝑅𝐹𝑆ℎ , 𝑅𝐹𝐸𝑙 or 𝑅𝐹𝑊𝑟 . The two
aspects to decide are the number of markers on the 3 links and the reference joint-
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5.1. SUITABLE MARKERS’ COMBINATIONS AND JOINT-SPACE TRAJECTORY

space trajectory to use. As far as the former is concerned, various combinations
can be analyzed. The whole set of combinations is presented in Tab. 5.1.

Combinations of markers
# |𝒮| |ℱ | |ℋ | 𝑚

1𝑠𝑡 0 1 2
32𝑛𝑑 1 0 2

3𝑡ℎ 1 1 1
4𝑡ℎ 0 2 2

4
5𝑡ℎ 1 0 3
6𝑡ℎ 1 1 2
7𝑡ℎ 1 2 1
8𝑡ℎ 2 0 2
9𝑡ℎ 1 2 2 5
10𝑡ℎ 2 2 1

Table 5.1: Combination of number of markers on the shoulder, forearm and
hand to be analyzed

As it is well described in the next section, a first Matlab simulation is run to
analyze the Jacobian behaviour in each of the above markers’ combination.

Regarding the trajectory to choose as reference, each joint variable trajectory
is chosen by using cubic spline interpolation; a saturation block is added as to
constraint the motion. The assigned trajectory is depicted below
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Figure 5.1: LS, EKF: joint variables assigned trajectory
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5.2. PRELIMINARY SIMULATION

5.2 Preliminary simulation

Given the trajectory 𝜼𝑟𝑒 𝑓 (𝑡) and a specific combination of number of markers
on the 3 links |𝒮|, |ℱ | and |ℋ |, a first simulation is run in order to determine if the
𝑗𝑡ℎ combination, 𝑗 = 1, . . . , 10, is more likely or not to make the Jacobian singular
or close to be singular. In detail, for each combination, 30 simulations are run
where, in each one of them, the markers’ position are generated randomly, by
using eq. 5.1. Let them denote as p

𝐵
𝑗,𝑖

, where the index 𝑖 is referred to the 𝑖𝑡ℎ

simulation. At this point, the corresponding Jacobian is evaluated at each time
instant of𝜼𝑟𝑒 𝑓 , therefore one can establish if J

𝑗 ,𝑖

𝑡𝑘
= J

(︂
𝜼𝑟𝑒 𝑓 (𝑡𝑘) , p𝐵𝑗,𝑖

)︂
is non-singular,

singular or quasi-singular, ∀𝑡𝑘 . In order to determine if a point of the given

trajectory is quasi-singular, the condition number of matrix J

𝑗 ,𝑖

𝑡𝑘
, �

(︂
J

𝑗 ,𝑖

𝑡𝑘

)︂
=

𝜎1

(︂
J

𝑗 ,𝑖

𝑡𝑘

)︂
𝜎𝑛

(︂
J

𝑗 ,𝑖

𝑡𝑘

)︂ ,

is taken into account. The threshold above which J

𝑗 ,𝑖

𝑡𝑘
is considered to be quasi-

singular is chosen as �
(︂
J

𝑗 ,𝑖

𝑡𝑘

)︂
> 1000. This procedure is repeated ∀𝑗 ,∀𝑖. In the

following, for each markers’ combination and simulation, the percentage of non-

singular(NS), singular(S) and quasi-singular(QS) points of the known trajectory
are shown. Before proceeding, the values for the length and radius of the
shoulder, 𝐿𝑠ℎ and 𝑟𝑠ℎ , the length and radius of the forearm, 𝐿 𝑓 𝑜 and 𝑟 𝑓 𝑜 , the
hand dimensions,𝑊ℎ𝑎 , 𝐿ℎ𝑎 and 𝐻ℎ𝑎 , and the radius of the marker, 𝑟𝑀 , are given
below.

Human arm parameters
link dimensions [𝑚]

Shoulder 𝐿𝑠ℎ = 0.25
𝑟𝑠ℎ = 0.05

Forearm 𝐿 𝑓 𝑜 = 0.25
𝑟 𝑓 𝑜 = 0.03

Hand
𝑊ℎ𝑎 = 0.1
𝐿ℎ𝑎 = 0.18
𝐻ℎ𝑎 = 0.04

Markers 𝑟𝑀 = 0.01

Table 5.2: Human arm parameters

The 𝐿𝑠ℎ and 𝐿 𝑓 𝑜 values are necessary for the forward and differential kinematics
computation while all the other ones are needed for the markers generation.
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(a) 1𝑠𝑡 combination
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(b) 2𝑛𝑑 combination
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(c) 3𝑡ℎ combination

Figure 5.2: 1𝑠𝑡 , 2𝑛𝑑 and 3𝑡ℎ combination of 𝑚 = 3 markers

By observing Fig. 5.2, 5.3 and 5.4, one can state that the only markers’ com-
binations for which, for each one of the 30 simulations, all points along the
trajectory are singular are the ones with |ℋ | = 1, hence the 3𝑡ℎ , the 7𝑡ℎ and
the 10𝑡ℎ combination. At least two markers must be placed on the hand in
order not to have singular configurations. In the following, only a specific set
of markers is considered. This is chosen as the one, among the 30 simulations
of the 6𝑡ℎ combination, having the lowest condition number average. Let p1

𝑆ℎ
6,𝑖 ,

p2

𝐸𝑙
6,𝑖 , p3

𝑊𝑟
6,𝑖 and p4

𝑊𝑟
6,𝑖 be the random marker on the shoulder, the random marker

on the forearm and the 2 random markers on the hand of the 𝑖𝑡ℎ simulation
(𝑖 = 1, . . . , 30) of the 6𝑡ℎ combination. They are expressed with respect to 𝑅𝐹𝑆ℎ ,
𝑅𝐹𝐸𝑙 , 𝑅𝐹𝑊𝑟 and 𝑅𝐹𝑊𝑟 , respectively. By looking at Fig. 5.3c, each simulation has
100% non-singularities.

One can compute the average condition number of the 𝑖𝑡ℎ simulation (of the
6𝑡ℎ combination) as �̄6,𝑖 =

1
𝑁

∑︁𝑁
𝑘=1 �

(︂
J
6,𝑖
𝑡𝑘

)︂
.
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0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

 [
%

]

0 5 10 15 20 25 30

# Simulation

(a) 4𝑡ℎ combination
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(b) 5𝑡ℎ combination
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(c) 6𝑡ℎ combination
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(d) 7𝑡ℎ combination
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(e) 8𝑡ℎ combination

Figure 5.3: 4𝑡ℎ , 5𝑡ℎ , 6𝑡ℎ , 7𝑡ℎ and 8𝑡ℎ combination of 𝑚 = 4 markers
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(a) 9𝑡ℎ combination
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(b) 10𝑡ℎ combination

Figure 5.4: 9𝑡ℎ and 10𝑡ℎ combination of 𝑚 = 5 markers

Let
𝑖 = argmin

𝑖=1,...,30
�̄6,𝑖

Hence, p1

𝑆ℎ

6,𝑖
, p2

𝐸𝑙

6,𝑖
, p3

𝑊𝑟

6,𝑖
and p4

𝑊𝑟

6,𝑖
is the chosen set of markers. In Tab. 5.3 their

values is shown.

Chosen set of markers
link 𝑥 − 𝑦 − 𝑧 coordinates [𝑚]

Shoulder p1

𝑆ℎ

6,𝑖
=

⎡⎢⎢⎢⎢⎣
0.0292
−0.1249
−0.0524

⎤⎥⎥⎥⎥⎦
Forearm p2

𝐸𝑙

6,𝑖
=

⎡⎢⎢⎢⎢⎣
−0.0080
−0.1071
0.0392

⎤⎥⎥⎥⎥⎦

Hand

p3

𝑊𝑟

6,𝑖
=

⎡⎢⎢⎢⎢⎣
−0.0378
−0.0721
0.0300

⎤⎥⎥⎥⎥⎦
p4

𝑊𝑟

6,𝑖
=

⎡⎢⎢⎢⎢⎣
0.0171
−0.1699
0.0300

⎤⎥⎥⎥⎥⎦
Table 5.3: Set of markers with minimum condition number average, among the
30 simulations of the 6𝑡ℎ combination
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In some next simulations, the 2𝑛𝑑 combination of markers is used, showing
the estimation behaviour in the case in which the corresponding Jacobian is
quasi-singular. The considered set of markers p1

𝑆ℎ
2 , p2

𝑊𝑟
2 and p3

𝑊𝑟
2 can be found

in Tab. 5.4.

Chosen set of markers
link 𝑥 − 𝑦 − 𝑧 coordinates [𝑚]

Shoulder p1

𝑆ℎ
2 =

⎡⎢⎢⎢⎢⎣
0.0336
−0.2072
−0.0497

⎤⎥⎥⎥⎥⎦
p2

𝑊𝑟
2 =

⎡⎢⎢⎢⎢⎣
0.0206
−0.1302
0.0300

⎤⎥⎥⎥⎥⎦
Hand p3

𝑊𝑟
2 =

⎡⎢⎢⎢⎢⎣
−0.0468
−0.1717
0.0300

⎤⎥⎥⎥⎥⎦
Table 5.4: Set of markers of the 2𝑛𝑑 combination

With the choice of markers in Tab.5.3, the human arm model follows, where the
dependence from p

𝐵

6,𝑖
is made explicit. The position p (𝑡) and velocity ṗ (𝑡) of the

markers are measured directly. Since these two entities, in the real experiment,
are measured by the Motion Capture System, it is plausible to add a white
Gaussian noise to the outputs of the human arm , in Simscape, so to generate
noisy markers’ position and velocity. Let nṗ (𝑡) ∼ 𝒩

(︁
0,Nṗ

)︁
and v (𝑡) ∼ 𝒩 (0,R)

be the noises, concerning the markers’ velocity and position, respectively.⎧⎪⎪⎨⎪⎪⎩
�̇� (𝑡) = J

†
𝐿
(𝜼 (𝑡)) · ṗ (𝑡)

p (𝑡) = Φ (𝜼 (𝑡))
(5.2)
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with

p (𝑡) = p6,𝑖 (𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
p16,𝑖 (𝑡)
p26,𝑖 (𝑡)
p36,𝑖 (𝑡)
p46,𝑖 (𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ R3𝑚

Φ (𝜼 (𝑡)) = Φ

(︂
𝜼 (𝑡) , p𝐵

6,𝑖

)︂
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ𝑆ℎ

(︂
𝜼1−3 (𝑡) , p1

𝑆ℎ

6,𝑖

)︂
Φ𝐹𝑜

(︂
𝜼1−4 (𝑡) , p2

𝐸𝑙

6,𝑖

)︂
Φ𝐻𝑎

(︂
𝜼 (𝑡) , p3

𝑊𝑟

6,𝑖

)︂
Φ𝐻𝑎

(︂
𝜼 (𝑡) , p4

𝑊𝑟

6,𝑖

)︂
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R3𝑚

J (𝜼 (𝑡)) = J

(︂
𝜼 (𝑡) , p𝐵

6,𝑖

)︂
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J𝑆ℎ

(︂
𝜼1−3 (𝑡) , p1

𝑆ℎ

6,𝑖

)︂
J𝐹𝑜

(︂
𝜼1−4 (𝑡) , p2

𝐸𝑙

6,𝑖

)︂
J𝐻𝑎

(︂
𝜼 (𝑡) , p3

𝑊𝑟

6,𝑖

)︂
J𝐻𝑎

(︂
𝜼 (𝑡) , p4

𝑊𝑟

6,𝑖

)︂
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R(3𝑚)×𝑛

One question arises, at this point. How to estimate Nṗ and R? This was possible
since the MCS provides also the covariance matrices M

𝑖
𝑘

and Ṁ
𝑖
𝑘

related to the
𝑘𝑡ℎ measurement (position and velocity, respectively) of the 𝑖𝑡ℎ marker and gives
a measure on how much to trust the specific measurement. Since each marker
is assumed to be equal to each other and hence with the same covariances, they
can be denoted also as M𝑘 and Ṁ𝑘 . Hence, R and Nṗ, can be estimated as

R =

⎡⎢⎢⎢⎢⎢⎣
R1 . . . 0
...

. . .
...

0 . . . R𝑚

⎤⎥⎥⎥⎥⎥⎦ , Nṗ =

⎡⎢⎢⎢⎢⎢⎣
Nṗ1 . . . 0
...

. . .
...

0 . . . Nṗ𝑚

⎤⎥⎥⎥⎥⎥⎦
R𝑖 =

1
𝑁

𝑁∑︂
𝑘=1

M𝑘 = �̄�2
R
· I3×3, �̄�R =

√
1.57 · 10−6 [m] , 𝑖 = 1, · · · , 𝑚

Nṗ𝑖 =
1
𝑁

𝑁∑︂
𝑘=1

Ṁ𝑘 = 𝜎2
Nṗ

· I3×3, 𝜎Nṗ
=
√

0.0285 [m/s] , 𝑖 = 1, · · · , 𝑚

From these quantities, the goal is to estimate 𝜼 (𝑡). This estimate is indicated as
�̂�𝐿𝑆 (𝑡), �̂�𝐿𝐾𝐹 (𝑡) and �̂�𝐸𝐾𝐹 (𝑡), depending on which estimation procedure is used.
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5.3 Least-squares estimation

Considering the differential kinematics equation with the presence of the
noise nṗ (𝑡)

ṗ (𝑡) = J (𝜼 (𝑡)) · �̇� (𝑡) + nṗ (𝑡) (5.3)

the LS solution is given by

ˆ̇𝜼𝐿𝑆 (𝑡) = J
†
𝐿

(︂
�̂�𝐿𝑆 (𝑡)

)︂
· ṗ (𝑡) (5.4)

The previous equation can be computed, provided that J

(︁
�̂�𝐿𝑆 (𝑡)

)︁
is full-column

rank and far from being singular. It is possible to observe that, if the initial
condition �̂�𝐿𝑆 (0) is provided, one can simply obtain the estimate �̂�𝐿𝑆 (𝑡) as result
of the integration of Eq. 5.4. The LS algorithm is shown below.

++

nṗ (𝑡)

J
†
𝐿

(︁
�̂�𝐿𝑆 (𝑡)

)︁
· ṗ (𝑡)

∫
�̂�𝐿𝑆 (0)

J

(︁
𝜼𝑟𝑒 𝑓 (𝑡)

)︁
· �̇�𝑟𝑒 𝑓 (𝑡) ṗ (𝑡) ˆ̇𝜼𝐿𝑆 (𝑡)

�̂�𝐿𝑆 (𝑡)

Figure 5.5: LS estimation of joint-space configuration

The Simscape model can be exploited to analyze this estimator. Two parameters
must be taken into account before proceeding with the simulations.

1. Initial estimate �̂�𝐿𝑆 (0).

2. Deterministic or noisy ṗ (𝑡).

Different scenarios can be considered. In all the subsequent cases, a measure of
the goodness of the estimate is given by the Root Mean Square Error (RMSE),
that is:

𝑅𝑀𝑆𝐸
(︂
�̂�𝐿𝑆

)︂
=

⌜⃓⎷
1
𝑛
· 1
𝑁

𝑁∑︂
𝑘=1

∥︁∥︁𝜼𝑟𝑒 𝑓 (𝑘) − �̂�𝐿𝑆 (𝑘)∥︁∥︁2

The RMSE of all the different scenarios are given below.
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Root Mean Squared Error

Scenario |𝒮|,|ℱ |,|ℋ | 𝜼𝐿𝑆 (0) ṗ (𝑡) RMSE [rad]

1 1,1,2 𝜼𝐿𝑆 (0) = 𝜼𝑟𝑒 𝑓 (0) Deterministic 𝑅𝑀𝑆𝐸
(︁
�̂�𝐿𝑆

)︁
= 8.05 · 10−15

2 1,1,2 𝜼𝐿𝑆 (0) ≠ 𝜼𝑟𝑒 𝑓 (0) Noisy 𝑅𝑀𝑆𝐸
(︁
�̂�𝐿𝑆

)︁
= 0.1200

3 1,0,2 𝜼𝐿𝑆 (0) = 𝜼𝑟𝑒 𝑓 (0) Deterministic 𝑅𝑀𝑆𝐸
(︁
�̂�𝐿𝑆

)︁
= 2.52 · 10−10

4 1,0,2 𝜼𝐿𝑆 (0) = 𝜼𝑟𝑒 𝑓 (0) Noisy 𝑅𝑀𝑆𝐸
(︁
�̂�𝐿𝑆

)︁
= 0.6458

Table 5.5: Least-squares RMSE

Scenario 1 corresponds to the best-case scenario, since the quantity ṗ (𝑡) that
is measured is the true one and the initial estimate �̂�𝐿𝑆 (0) is equal to the initial
value of the given trajectory. Moreover, for all the scenarios, the Jacobian is
always full-rank and hence there exist only one solution to

J
𝑇
(︂
�̂�𝐿𝑆

)︂
J

(︂
�̂�𝐿𝑆

)︂
· ˆ̇𝜼𝐿𝑆 = J

𝑇
(︂
�̂�𝐿𝑆

)︂
· ṗ

Let J

(︁
�̂�𝐿𝑆 (𝑡)

)︁
= USV

𝑇 with U = [u1 . . . u3𝑚], V = [v1 . . . v𝑛] and S = diag [𝜎1 . . . 𝜎𝑛],
be the singular value decomposition of J

(︁
�̂�𝐿𝑆 (𝑡)

)︁
. Then, it is known that

ˆ̇𝜼𝐿𝑆 (𝑡) =
𝑛∑︂
𝑖=1

1
𝜎𝑖

v𝑖u
𝑇
𝑖 · ṗ (𝑡)

is the minimum-norm LS solution, leading to �̂�𝐿𝑆 (𝑡).
By looking at the previous equation, when a singularity is approached, the

𝑛𝑡ℎ singular value tends to zero. In this framework, what if J

(︁
�̂�𝐿𝑆 (𝑡)

)︁
is ill-

conditioned?

5.3.1 Probabilistic analysis of the quasi-singular case

In the case in which the Jacobian is quasi-singular, by adopting the notation
J (𝜼 (𝑡)) = J and ˆ̇𝜼𝐿𝑆 (𝑡) = ˆ̇𝜼, substituting the following equation

ṗ = J · �̇� + nṗ
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into
ˆ̇𝜼 =

(︂
J
𝑇

J

)︂−1
J
𝑇 · ṗ

one has

ˆ̇𝜼 =

(︂
J
𝑇

J

)︂−1
J
𝑇 ·

[︁
J · �̇� + nṗ

]︁
= �̇� +

(︂
J
𝑇

J

)︂−1
J
𝑇 · nṗ

Defining the estimation error as

˜̇𝜼 = ˆ̇𝜼 − �̇� =

(︂
J
𝑇

J

)︂−1
J
𝑇 · nṗ

one can simply obtain its gaussian distribution as

˜̇𝜼 ∼ 𝒩
(︃
0,Nṗ ·

(︂
J
𝑇

J

)︂−1
)︃

Moreover, by using the SVD of the Jacobian J = USV
𝑇 , it follows(︂

J
𝑇

J

)︂−1
= (VS U

𝑇
U⏞⏟⏟⏞

I(3𝑚)×(3𝑚)

SV
𝑇)−1 = VS

−2
V
𝑇

Hence the variance of the estimation error depends on the singular values of the
matrix J

var
[︁ ˜̇𝜼]︁ = Nṗ ·

(︂
J
𝑇

J

)︂−1

= Nṗ ·VS
−2

V
𝑇

When J is close to be singular, there are directions (combinations of the param-
eters which are very difficult to estimate) along which the estimation error has
a large variance. Indeed, as it is possible to observe in Fig. 5.8 and Fig. 5.9, the
introduced noise heavily affects the LS estimate.
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Figure 5.6: LS: scenario 1

69



5.3. LEAST-SQUARES ESTIMATION

0 2 4 6 8 10

Time [s]

-60

-40

-20

0

20

40

60

80

J
o
in

t 
v
a
ri
a
b
le

 [
°]

0 2 4 6 8 10

Time [s]

-20

-15

-10

-5

0

5

10

15

J
o
in

t 
v
a
ri
a
b
le

 [
°]

0 2 4 6 8 10

Time [s]

-20

0

20

40

60

80

100

J
o
in

t 
v
a
ri
a
b
le

 [
°]

0 2 4 6 8 10

Time [s]

0

20

40

60

80

J
o

in
t 

v
a

ri
a

b
le

 [
°]

0 2 4 6 8 10

Time [s]

-60

-40

-20

0

20

J
o
in

t 
v
a
ri
a
b
le

 [
°]

0 2 4 6 8 10

Time [s]

-50

-40

-30

-20

-10

0

10

20

J
o
in

t 
v
a
ri
a
b
le

 [
°]

0 2 4 6 8 10

Time [s]

-40

-20

0

20

40

J
o
in

t 
v
a
ri
a
b
le

 [
°]

Figure 5.7: LS: scenario 2
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Figure 5.8: LS: scenario 3
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Figure 5.9: LS: scenario 4
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5.4 Linearized Kalman filter estimation

In order to apply the KF algorithm, a model as in Eq. 2.11 has to be obtained.
Hence, Eq. 5.2 has to be discretized and linearized around a nominal trajectory.

5.4.1 Runge-Kutta discretization

Recall that the markers’ linear velocity and joint velocities are related by

�̇� (𝑡) = J
†
𝐿 (𝜼 (𝑡)) · ṗ (𝑡)

To obtain the state 𝜼
(︁
𝑡 𝑓

)︁
at any time 𝑡 𝑓 , the velocities need to be integrated over

time. This leads to

𝜼
(︁
𝑡 𝑓

)︁
= 𝜼 (0) +

∫ 𝑡 𝑓

0
�̇� (𝑡) 𝑑𝑡

Now suppose that the time interval
[︁
0, 𝑡 𝑓

]︁
is divided into 𝐿 equally spaced

intervals so that 𝑡𝑖 = 𝑖 · 𝑇𝑠 ∀ 𝑖 = 0, ..., 𝐿, and the time-interval 𝑇𝑠 =
𝑡 𝑓
𝐿 . Thus, the

previous equation can be written as

𝜼
(︁
𝑡 𝑓

)︁
= 𝜼 (0) +

𝐿∑︂
𝑖=1

∫ 𝑡𝑖

𝑡𝑖−1

�̇� (𝑡) 𝑑𝑡

More generally, for some 𝑘 ∈ [1, 𝐿], 𝜼 (𝑡𝑘−1) and 𝜼 (𝑡𝑘) can be written as

𝜼 (𝑡𝑘−1) = 𝜼 (0) +
𝑘−1∑︂
𝑖=1

∫ 𝑡𝑖

𝑡𝑖−1

�̇� (𝑡) 𝑑𝑡

𝜼 (𝑡𝑘) = 𝜼 (0) +
𝑘∑︂
𝑖=1

∫ 𝑡𝑖

𝑡𝑖−1

�̇� (𝑡) 𝑑𝑡

Hence,

𝜼 (𝑡𝑘) = 𝜼 (𝑡𝑘−1) +
∫ 𝑡𝑘

𝑡𝑘−1

�̇� (𝑡) 𝑑𝑡⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
(★)

By using the notation 𝜼 (𝑡𝑘) = 𝜼𝑘 , the following fourth-order Runge-Kutta inte-
gration represents a way to approximate the integral (★).
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𝜼𝑘 ≈ f

(︁
𝜼𝑘−1, ṗ𝑘−1

)︁
= 𝜼𝑘−1 +

𝑇𝑠

6 · (K1 + 2K2 + 2K3 +K4)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
(★)

where

K1 = J
†
𝐿

(︁
𝜼𝑘−1

)︁
· ṗ𝑘−1

K2 = J
†
𝐿

(︃
𝜼𝑘−1 +K1 ·

𝑇𝑠

2

)︃
· ṗ𝑘−1

K3 = J
†
𝐿

(︃
𝜼𝑘−1 +K2 ·

𝑇𝑠

2

)︃
· ṗ𝑘−1

K4 = J
†
𝐿

(︁
𝜼𝑘−1 +K3 · 𝑇𝑠

)︁
· ṗ𝑘−1

This leads to the non-linear discrete-time model⎧⎪⎪⎨⎪⎪⎩
𝜼𝑘 = f

(︁
𝜼𝑘−1, ṗ𝑘−1

)︁
p𝑘 = Φ

(︁
𝜼𝑘

)︁ (5.5)

In the real experiments, the capture rate that is used in a marker measurement
is 100 𝐻𝑧. For this reason, 𝑇𝑠 is set to 𝑇𝑠 = 10 𝑚𝑠.
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5.4.2 Linearization

The obtained non-linear system in Eq. 5.5 needs to be linearized around
an equilibrium point. In other words, a linear system that is approximately
equal to the non-linear one has to be computed. Specifically, the non-linear
system equations f

(︁
𝜼𝑘−1, ṗ𝑘−1

)︁
and Φ

(︁
𝜼𝑘

)︁
can be expanded around the nominal

operating point
(︁
�̄�, ¯̇p

)︁
as follows

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜼𝑘 = f

(︁
𝜼𝑘−1, ṗ𝑘−1

)︁
≈ f

(︁
�̄�, ¯̇p

)︁
+ 𝜕f

𝜕𝜼

|︁|︁|︁
(�̄�, ¯̇p)
·
(︁
𝜼𝑘−1 − �̄�

)︁
+ 𝜕f

𝜕ṗ

|︁|︁|︁
(�̄�, ¯̇p)
·
(︁
ṗ𝑘−1 − ¯̇p

)︁
p𝑘 = Φ

(︁
𝜼𝑘

)︁
≈ Φ (�̄�) + 𝜕Φ

𝜕𝜼

|︁|︁|︁
(�̄�, ¯̇p)
·
(︁
𝜼𝑘 − �̄�

)︁
Recall that the equilibrium point is such that f

(︁
�̄�, ¯̇p

)︁
= �̄� and Φ (�̄�) = p̄. Hence,

one obtains ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜼𝑘 − �̄�⏞⏟⏟⏞
Δ𝜼𝑘

≈ 𝜕f

𝜕𝜼

|︁|︁|︁|︁
(�̄�, ¯̇p)⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
F

·
(︁
𝜼𝑘−1 − �̄�

)︁⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
Δ𝜼𝑘−1

+ 𝜕f

𝜕ṗ

|︁|︁|︁|︁
(�̄�, ¯̇p)⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞

G

·
(︁
ṗ𝑘−1 − ¯̇p

)︁⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
Δṗ𝑘−1

p𝑘 − p̄⏞ˉ⏟⏟ˉ⏞
Δp𝑘

≈ 𝜕Φ

𝜕𝜼

|︁|︁|︁|︁
(�̄�, ¯̇p)⏞ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄⏞

J

·
(︁
𝜼𝑘 − �̄�

)︁⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
Δ𝜼𝑘

The linearized discrete-time model around the equilibrium point
(︁
�̄�, ¯̇p

)︁
is as fol-

lows ⎧⎪⎪⎨⎪⎪⎩
Δ𝜼𝑘 = F · Δ𝜼𝑘−1 +G · Δṗ𝑘−1 +w𝑘−1 , w𝑘−1 ∼ 𝒩 (0,Q)
Δp𝑘 = J · Δ𝜼𝑘 + v𝑘 , v𝑘 ∼ 𝒩 (0,R)

(5.6)

where w𝑘 and v𝑘 are the process and measurement noises, respectively. In
deriving Eq. 5.6, it was made the important assumption that higher-order terms
in the Taylor series expansions of f

(︁
𝜼𝑘−1, ṗ𝑘−1

)︁
could be neglected. Of course,

this is only correct as long as 𝜼𝑘−1 is close to �̄� and ṗ𝑘−1 is close to ¯̇p. The
LKF algorithm use the noise information about the process and measurement
equations to estimate the joint-space trajectory.

The Kalman filter algorithm can be applied to Eq. 5.6, leading to the filtered
estimate Δ�̂�𝑘 |𝑘 . One can observe that, in its implementation, the quantities K𝑘

and P𝑘 |𝑘 can be computed offline while Δ�̂�𝑘 |𝑘−1 and Δ�̂�𝑘 |𝑘 must be computed
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online, as it is shown in Fig. 5.10. In this context, an other reference trajectory is
chosen, depicted in Fig. 5.11, where its first part is close to the nominal trajectory
�̄� while the second one is not. The LKF should return a good estimate only when
the joint variables do not move away from the equilibrium. The linear model of
Eq. 5.6 which is used in the Kalman equations, was obtained after performing
the linearization around a nominal trajectory and nominal input

(︁
�̄�, ¯̇p

)︁
. In the

following simulations, this is chosen as⎧⎪⎪⎨⎪⎪⎩
�̄� = 𝜼𝑟𝑒 𝑓 (0)
¯̇p = 0

(5.7)

which is indeed an equilibrium point since 𝜼𝑟𝑒 𝑓 (0) = f

(︁
𝜼𝑟𝑒 𝑓 (0) , 0

)︁
.

Online KF

Δ�̂�𝑘 |𝑘−1=F·Δ�̂�𝑘−1|𝑘−1+G·Δṗ𝑘−1

Δ�̂�𝑘 |𝑘=Δ�̂�𝑘 |𝑘−1+K𝑘 ·(Δp𝑘−J·Δ�̂�𝑘 |𝑘−1)

Offline KF

P𝑘 |𝑘−1=F·P𝑘−1|𝑘−1·F𝑇+Q

K𝑘=P𝑘 |𝑘−1·J𝑇 ·(J·P𝑘 |𝑘−1·J𝑇+R)−1

P𝑘 |𝑘=(I−K𝑘 ·J)·P𝑘 |𝑘−1·(I−K𝑘 ·J)𝑇+K𝑘 ·R·K𝑘
𝑇

P0|0

+
−

−+
++

z
−1 Δ�̂�0|0

ṗ𝑘−1 Δṗ𝑘−1

p𝑘 Δp𝑘

Δ�̂�𝑘 |𝑘 �̂�𝑘 |𝑘

Δ�̂�𝑘−1|𝑘−1

K𝑘

P𝑘 |𝑘

¯̇p

p̄

�̄�

Figure 5.10: LKF estimation of joint-space configuration
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Figure 5.11: LKF: joint variables assigned trajectory
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5.4. LINEARIZED KALMAN FILTER ESTIMATION

The Linearized Kalman filter algorithm can be applied once the initial es-
timate Δ�̂�0|0, the process-measurement noise covariances Q, R and the initial
estimate covariance P0|0 are decided. As before, in the Simscape platform, the
gaussian noise nṗ (𝑘) ∼ 𝒩

(︁
0,Nṗ

)︁
is added to the joint velocities, leading to the

corrupted ṗ𝑘 . As far as �̂�0|0 is concerned, for each one of the subsequent simula-
tion, it is determined as �̂�0|0 ≠ �̄�, hence the initial estimate Δ�̂�0|0 ≠ 0. The initial
covariance is chosen as P0|0 = 𝜎2

P
· I𝑛×𝑛 with 𝜎P =

√
10−1 [rad]. Let the process

noise Q and the measurement noises R be

Q = 𝜎2
Q
· I𝑛×𝑛

R = 𝜎2
R
· I(3𝑚)×(3𝑚)

Three different scenarios follow, where, the first two consider the 6𝑡ℎ combina-
tion while the third scenario deals with the 2𝑛𝑑 combination. As far as the first
two scenarios are concerned, the value for the process and measurement covari-
ance is left unchanged while the generation of the markers’ velocity is changed.
This means that the quantity nṗ is either added or not at the joint velocities.
Specifically, the markers’ velocity noise is considered and, as it is depicted in
Fig. 5.13, more noise affects the linearized kalman estimate. Especially in the
first scenario, the estimate is considered acceptable when the trajectory of the
arm maintains close to the equilibrium point.

Root Mean Squared Error

Scenario |𝒮|,|ℱ |,|ℋ | ṗ𝑘 𝜎2
Q

𝜎2
R

RMSE [rad]

1 1,1,2 Deterministic 10−6 �̄�2
R

𝑅𝑀𝑆𝐸
(︁
�̂�𝐿𝐾𝐹

)︁
= 0.1690

2 1,1,2 Noisy 10−6 �̄�2
R

𝑅𝑀𝑆𝐸
(︁
�̂�𝐿𝐾𝐹

)︁
= 0.1824

3 1,0,2 Deterministic 10−6 �̄�2
R

𝑅𝑀𝑆𝐸
(︁
�̂�𝐿𝐾𝐹

)︁
= 0.4836

Table 5.6: Linearized Kalman filter RMSE
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Figure 5.12: LKF: scenario 1
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Figure 5.13: LKF: scenario 2
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Figure 5.14: LKF: scenario 3
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5.5 Extended Kalman filter estimation

In the previous subsection, it was shown that it is possible to apply the
Kalman filter algorithm to the linearized model of Eq. 5.6. However, this only
works with good results when the trajectory is close to the nominal point around
which the model is linearized. This limitation can be overcame by an extension
of the regular Kalman filter, known as Extended Kalman filter, which can be
applied directly to the non-linear model⎧⎪⎪⎨⎪⎪⎩

𝜼𝑘 = f

(︁
𝜼𝑘−1, ṗ𝑘−1

)︁
+w𝑘−1, w𝑘−1 ∼ 𝒩 (0,Q)

p𝑘 = Φ

(︁
𝜼𝑘

)︁
+ v𝑘 , v𝑘 ∼ 𝒩 (0,R)

(5.8)

The detailed derivation of the Extended Kalman filter algorithm can be found
in Section 3.1. Its summary is depicted in the following figure.

Filtering

J𝑘=
𝜕𝚽
𝜕𝜼

|︁|︁|︁
�̂�𝑘 |𝑘−1

K𝑘=P𝑘 |𝑘−1·J𝑇𝑘 ·(J𝑘 ·P𝑘 |𝑘−1·J𝑇𝑘+R)−1

P𝑘 |𝑘=(I−K𝑘 ·J𝑘)·P𝑘 |𝑘−1·(I−K𝑘 ·J𝑘)𝑇+K𝑘 ·RK𝑘
𝑇

�̂�𝑘 |𝑘=�̂�𝑘 |𝑘−1+K𝑘 ·[p𝑘−𝚽(�̂�𝑘 |𝑘−1)]

Prediction

F𝑘−1=
𝜕f

𝜕𝜼

|︁|︁|︁
�̂�𝑘−1|𝑘−1 ,ṗ𝑘−1

P𝑘 |𝑘−1=F𝑘−1·P𝑘−1|𝑘−1·F𝑇𝑘−1+Q

�̂�𝑘 |𝑘−1=f(�̂�𝑘−1|𝑘−1 ,ṗ𝑘−1)

z
−1P0|0 z

−1 �̂�0|0

ṗ𝑘−1

p𝑘

P𝑘 |𝑘−1 �̂�𝑘 |𝑘−1

�̂�𝑘 |𝑘

P𝑘 |𝑘

P𝑘−1|𝑘−1

�̂�𝑘−1|𝑘−1

Figure 5.15: EKF estimation of joint-space configuration

In order to apply this extension of the regular Kalman filter, one has to decide the
values for the initial estimates �̂�0|0, P0|0 and the covariance matrices Q, R. The
initial estimate is chosen slightly different wrt 𝜼𝑟𝑒 𝑓 (0) and the initial covariance
estimate is set as in the LKF case. As before, 3 scenarios are analyzed. The
first two scenarios concern the 6𝑡ℎ combination while the third one concerns the
2𝑛𝑑 combination. The same value for the process and measurement covariances
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Q and R are used in all the scenarios. The noise related to the linear velocity
of the markers nṗ is introduced in the second scenario. From the comparison
between Fig. 5.16 and 5.17, one can observe a worsening of the EKF estimate.
Considering scenario 1, still there is a mismatch between the kalman estimates
and the actual joint variables, even though there is no noise affecting the markers’
linear velocity. This is due to the value assumed by the process and measurement
covariances. The two quantities would perfectly match if either the measurement
noise or the process noise was further decreased. In scenario 3 instead the EKF
algorithm performs badly. For the same reasoning explained in Section 5.3,
since f

(︂
�̂�𝑘−1|𝑘−1, ṗ𝑘−1

)︂
is a function of J

†
𝐿

(︂
�̂�𝑘−1|𝑘−1

)︂
· ṗ𝑘−1, when the Jacobian is

quasi-singular, small deviation of the previous filtered estimate �̂�𝑘−1|𝑘−1 results
in large deviation of the predicted joint variables �̂�𝑘 |𝑘−1.
The RMSE, for all the different scenarios, is reported below.

𝑅𝑀𝑆𝐸
(︂
�̂�𝐸𝐾𝐹

)︂
=

⌜⃓⎷
1
𝑛
· 1
𝑁

𝑁∑︂
𝑘=1

∥︁∥︁∥︁𝜼𝑟𝑒 𝑓 (𝑘) − �̂�𝐸𝐾𝐹
𝑘 |𝑘

∥︁∥︁∥︁2

Root Mean Squared Error

Scenario |𝒮|,|ℱ |,|ℋ | ṗ𝑘 𝜎2
Q

𝜎2
R

RMSE [rad]

1 1,1,2 Deterministic 10−6 �̄�2
R

𝑅𝑀𝑆𝐸
(︁
�̂�𝐸𝐾𝐹

)︁
= 0.0215

2 1,1,2 Noisy 10−6 �̄�2
R

𝑅𝑀𝑆𝐸
(︁
�̂�𝐸𝐾𝐹

)︁
= 0.0692

3 1,0,2 Deterministic 10−6 �̄�2
R

𝑅𝑀𝑆𝐸
(︁
�̂�𝐸𝐾𝐹

)︁
= 0.4051

Table 5.7: Extended Kalman filter RMSE
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Figure 5.16: EKF: scenario 1
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Figure 5.17: EKF: scenario 2
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Figure 5.18: EKF: scenario 3
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6
Experimental results

All the experiments were carried out at KTH Royal Institute of Technology’s
SML (Smart Mobility Lab) in Sweden. Through the use of the Motion Capture
System (MCS) with twelve cameras arranged over the lab surface, the motion of
the involved rigid bodies (markers) could be tracked. Specifically, the Windows-
based data acquisition software Qualisys Track Manager (QTM), an interface
that allows the user to perform 2D and 3D motion capture, was used. Hence,
real-time 2D, 3D, and 6D camera information was displayed during the capture,
offering instant confirmation of accurate data acquisition. The data could then be
exported to analysis software via several external formats. All markers positions
were shared as Robot Operating System (ROS) topics within the ROS framework,
and the corresponding data could be accessed from the appropriate topic. The
source code of this project can be found at the GitHub repository 1.

Figure 6.1: Smart Mobility Lab

1URL GitHub: https://github.com/Gioo96/Master_thesis
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6.1. SETUP OF THE EXPERIMENTS

6.1 Setup of the experiments

The position and velocity of each marker Mi, pi

𝑊 and ṗ
𝑊
i

, 𝑖 = 1, · · · , 𝑚, are
provided by the MCS. However, these quantities are expressed with respect to
the World reference frame 𝑅𝐹𝑊 , placed at the center of the laboratory. In order
to make the setup of the real experiments equal to the one used in simulation,
it is decided to place one more marker M0 at the origin of the shoulder with
arbitrary reference frame 𝑅𝐹0. However, since the movement of the arm makes
𝑅𝐹0 slightly change orientation, the idea is to perform all the experiments by
being located in one specific position and to express each marker’ position and
velocity with respect to 𝑅𝐹0′, a new reference frame attached to M0 with the
same origin as 𝑅𝐹0 but with fixed orientation obtained after performing a −𝜋

2
rotation of 𝑅𝐹𝑊 about axis 𝑧. With reference to Fig. 6.2, the important quantities
pi

0′ and ṗ
0′
i

can be evaluated.

pi

0′ = R𝑧

(︂𝜋
2

)︂ [︁
pi

𝑊 − p0

𝑊
]︁

ṗ
0′
i
= R𝑧

(︂𝜋
2

)︂ [︁
ṗ
𝑊
i
− ṗ

𝑊
0

]︁

W𝑥 = 𝑦

𝑦

𝑧 = 𝑧

𝑥

−𝜋
2

𝑥

𝑅𝐹0′

𝑦

𝑧

p
0

M0

Mi

pi

0′

p
i

Figure 6.2: Experimental setup

At this point, it is immediate to obtain the quantities p
0′ and ṗ

0′. Moreover,
the model of the human arm requires the location of the markers in terms of the
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CHAPTER 6. EXPERIMENTAL RESULTS

corresponding base frame. While in the simulation step these quantities were
perfectly correct, in the experimental phase they are not. In order to evaluate
them with enough precision, a first experiment is run, for each specific set of
markers. The arm is placed at the 0-configuration, namely the position for
which each joint variable is set to � 𝑗 = 0, 𝑗 = 1, . . . , 𝑛 and it is maintained at that
configuration for the whole duration of the experiment. From pi

0′, pi

𝐵 can be
computed as follows, where 𝐵 = 𝑆ℎ, 𝐵 = 𝐸𝑙 or 𝐵 =𝑊𝑟 depending on the location
of marker Mi.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pi

𝑆ℎ = pi

0′ , 𝑖 ∈ 𝒮
pi

𝐸𝑙 = pi

0′ −OSh
′𝑆ℎ , 𝑖 ∈ ℱ

pi

𝑊𝑟 = pi

0′ −Osh
′𝑆ℎ −OEl

′𝐸𝑙 , 𝑖 ∈ ℋ

Indeed, all the base reference frames 𝑅𝐹𝑆ℎ , 𝑅𝐹𝐸𝑙 and 𝑅𝐹𝑊𝑟 , when the arm is at
the 0-configuration, have the same orientation as 𝑅𝐹0′ but they are translated
about 𝑦 axis of 𝑅𝐹0′ of 0 [𝑚], 𝐿𝑠ℎ and 𝐿𝑠ℎ + 𝐿 𝑓 𝑜 , respectively. By stacking
up all pi

𝐵, one obtains p
𝐵. The whole set of combinations, described in Tab.

5.1, are analyzed experimentally, except the ones for which singularities, in
simulation, have occurred. Hence, all the combination which are tested in the
real experiment are reported below.

Combinations of markers
# |𝒮| |ℱ | |ℋ | 𝑚

1𝑠𝑡 0 1 2 3
2𝑛𝑑 1 0 2
4𝑡ℎ 0 2 2

45𝑡ℎ 1 0 3
6𝑡ℎ 1 1 2
8𝑡ℎ 2 0 2
9𝑡ℎ 1 2 2 5

Table 6.1: Combination of number of markers on the shoulder, forearm and
hand to be analyzed in the real experiment
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6.2. NOISE COVARIANCES CHOICE

6.2 Noise covariances choice

Once the markers position p
𝐵 is computed, it is possible to compare the

performance of the different approaches. As far as LKF and EKF are concerned,
one has to decide the covariance matrices Q and R to use. For simplicity, they are
chosen equal for both in LKF and EKF. One first experiment is run to determine
Q
𝑖 and R

𝑖 , for each combination of number of markers 𝑖 = {1, 2, 4, 5, 6, 8, 9}.
Before actually running each experiment, the set of markers is placed along the
arm at the 0-configuration so that p

𝐵,𝑖 can be computed. Once the data related
to p

0′,𝑖 , ṗ
0′,𝑖 , which corresponds to the 𝑖𝑡ℎ combination, is obtained, the matrices

Q
𝑖 and R

𝑖 are determined as follows.(︂
Q
𝑖 ,R𝑖

)︂
= argmin

Q̃∈𝒮Q ,R̃∈𝒮R

RMSE
[︂
𝚽𝑖

(︂
�̂�EKF(Q̃,R̃)

)︂]︂
= argmin

Q̃∈𝒮Q ,R̃∈𝒮R

⌜⃓⎷
1

3𝑚 ·
1
𝑁

𝑁∑︂
𝑘=1

∥︁∥︁∥︁∥︁p
0′,𝑖 (𝑘) −𝚽𝑖

(︃
�̂�

EKF(Q̃,R̃)
𝑘 |𝑘

)︃∥︁∥︁∥︁∥︁2

Let

𝒮Q =

{︂
𝜎2

Q𝑖
· I𝑛×𝑛

}︂
, 𝜎2

Q𝑖
=

{︁
10−3, 10−2, 10−1, 1, 10, 102, 103}︁

𝒮R =

{︂
𝜎2

R𝑗
· �̄�2

R
· I(3𝑚)×(3𝑚)

}︂
, 𝜎2

R𝑗
=

{︁
10−2, 10−1, 1, 10, 102, 103, 104}︁

Hence, the process and measurement covariances are chosen as:

(Q,R) choice
𝑖 Q

𝑖
R
𝑖

1 10−2 · I𝑛×𝑛 10 · �̄�2
R
· I(3𝑚)×(3𝑚)

2 10−3 · I𝑛×𝑛 104 ·�̄�2
R
·I(3𝑚)×(3𝑚)

4 10−3 · I𝑛×𝑛 104 ·�̄�2
R
·I(3𝑚)×(3𝑚)

5 10−3 · I𝑛×𝑛 102 ·�̄�2
R
·I(3𝑚)×(3𝑚)

6 10−1 · I𝑛×𝑛 104 ·�̄�2
R
·I(3𝑚)×(3𝑚)

8 10−2 · I𝑛×𝑛 104 ·�̄�2
R
·I(3𝑚)×(3𝑚)

9 1 · I𝑛×𝑛 104 ·�̄�2
R
·I(3𝑚)×(3𝑚)

Table 6.2: Choice for
(︁
Q
𝑖 ,R𝑖

)︁
matrices
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6.3 Results

In the following, from Fig. 6.3 to Fig. 6.9, the results about the least-
squares LS and the Extended Kalman filter EKF approaches are shown, for each
combination of number of markers reported in Tab. 6.1. Instead, Fig. 6.10
reports the results about the comparison between the Linearized Kalman filter
LKF and the Extended Kalman filter EKF estimates. Specifically, the goodness
of the three different joint estimates �̂�𝐿𝑆, �̂�𝐿𝐾𝐹 and �̂�𝐸𝐾𝐹 is reported in terms of
RMSE namely, given the estimate �̂�𝑘 , the quantity√︃

1
3𝑚

∥︁∥︁
p

0′ (𝑘) −𝚽
(︁
�̂�𝑘

)︁∥︁∥︁2

is plotted ∀𝑘. The initial estimates which are fed to the different algorithms are
�̂�𝐿𝑆 (0) = �̂�𝐿𝐾𝐹0|0 = �̂�𝐸𝐾𝐹0|0 = 0. One can state that the case |𝒮| = 1, |ℱ | = 1, |ℋ | = 2
and |𝒮| = 1, |ℱ | = 2, |ℋ | = 2 leads in general to better joint estimate. Tab.
6.4 shows the corresponding RMSE. Moreover, As far the Linearized Kalman
filter is concerned, the nominal point along which the model is linearized is
chosen as

(︁
�̄�, ¯̇p

)︁
= (0, 0). Since the arm is moved differently in each one of the

following first 6 experiments, one more experiment is run, considering the case
|𝒮| = 1, |ℱ | = 2, |ℋ | = 2. Fig. 6.10 corresponds to this experiment in which the
trajectory of the arm is kept close to the chosen equilibrium point. Only in this
case, the performance of the LKF is close to the EKF. The LKF and EKF joint
estimates are compared and the corresponding RMSE are reported in Tab. 6.3.

LKF-EKF comparison when 𝜼 ≈ �̄�
|𝒮| |ℱ | |ℋ | Root Mean Squared Error [m]

1 2 2
RMSE

[︁
𝚽

(︁
�̂�LKF)︁ ]︁ = 0.0059

RMSE
[︁
𝚽

(︁
�̂�EKF)︁ ]︁ = 0.0031

Table 6.3: LKF-EKF performance when the trajectory of the human arm is close
to the equilibrium point in the 5 markers case. The corresponding figure is Fig.
6.10
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LS-EKF comparison
|𝒮| |ℱ | |ℋ | Root Mean Squared Error [m]

0 1 2
RMSE

[︁
𝚽

(︁
�̂�LS)︁ ]︁ = 0.2286

RMSE
[︁
𝚽

(︁
�̂�EKF)︁ ]︁ = 0.0261

1 0 2
RMSE

[︁
𝚽

(︁
�̂�LS)︁ ]︁ = 0.2510

RMSE
[︁
𝚽

(︁
�̂�EKF)︁ ]︁ = 0.1498

0 2 2
RMSE

[︁
𝚽

(︁
�̂�LS)︁ ]︁ = 0.1835

RMSE
[︁
𝚽

(︁
�̂�EKF)︁ ]︁ = 0.0263

1 0 3
RMSE

[︁
𝚽

(︁
�̂�LS)︁ ]︁ = 0.0850

RMSE
[︁
𝚽

(︁
�̂�EKF)︁ ]︁ = 0.0596

1 1 2
RMSE

[︁
𝚽

(︁
�̂�LS)︁ ]︁ = 0.0993

RMSE
[︁
𝚽

(︁
�̂�EKF)︁ ]︁ = 0.0085

2 0 2
RMSE

[︁
𝚽

(︁
�̂�LS)︁ ]︁ = 0.0933

RMSE
[︁
𝚽

(︁
�̂�EKF)︁ ]︁ = 0.0326

1 2 2
RMSE

[︁
𝚽

(︁
�̂�LS)︁ ]︁ = 0.0899

RMSE
[︁
𝚽

(︁
�̂�EKF)︁ ]︁ = 0.0052

Table 6.4: LS-EKF performance in the 3-4-5 markers case. The corresponding
figures are Figs. 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9
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Figure 6.3: |𝒮| = 0, |ℱ | = 1, |ℋ | = 2

93



6.3. RESULTS

0 5 10 15

Time [s]

-100

-50

0

50

100

J
o

in
t 

v
a

ri
a

b
le

 [
°]

0 5 10 15

Time [s]

-20

-10

0

10

20

J
o
in

t 
v
a
ri
a
b
le

 [
°]

0 5 10 15

Time [s]

0

50

100

J
o

in
t 
v
a
ri
a

b
le

 [
°]

0 5 10 15

Time [s]

0

20

40

60

80

J
o

in
t 

v
a

ri
a

b
le

 [
°]

0 5 10 15

Time [s]

-100

-50

0

50

J
o

in
t 

v
a

ri
a

b
le

 [
°]

0 5 10 15

Time [s]

-100

-80

-60

-40

-20

0

20

J
o

in
t 

v
a

ri
a

b
le

 [
°]

0 5 10 15

Time [s]

-50

0

50

J
o
in

t 
v
a
ri
a
b
le

 [
°]

0 5 10 15

Time [s]

0

0.1

0.2

0.3

0.4

R
M

S
E

 [
m

]

Figure 6.4: |𝒮| = 1, |ℱ | = 0, |ℋ | = 2
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Figure 6.5: |𝒮| = 0, |ℱ | = 2, |ℋ | = 2
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Figure 6.6: |𝒮| = 1, |ℱ | = 0, |ℋ | = 3
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Figure 6.7: |𝒮| = 1, |ℱ | = 1, |ℋ | = 2
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Figure 6.8: |𝒮| = 2, |ℱ | = 0, |ℋ | = 2
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Figure 6.9: |𝒮| = 1, |ℱ | = 2, |ℋ | = 2
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Figure 6.10: |𝒮| = 1, |ℱ | = 2, |ℋ | = 2 when 𝜼 ≈ �̄�
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6.4 Results discussion

As it is possible to observe in the previous figures, the LS approach does
not provide good estimation results as the EKF does. However, the quality of
the Extended Kalman filter estimates depend on the number of markers used
and, in particular, on |𝒮|, |ℱ | and |ℋ |. For each combination of markers, the
joint variables estimates are shown as well as the corresponding RMSE. As
already mentioned, the combinations which produce the best EKF estimates are
the following ones:

• |𝒮| = 1, |ℱ | = 1, |ℋ | = 2

• |𝒮| = 1, |ℱ | = 2, |ℋ | = 2

Concerning the LS estimates, it is not as good as the EKF for a number of
reasons. First of all, this estimation algorithm does not take into account the
noise information. Also, during the simulation step, it was shown that it is not
able to return a good estimate whenever there is a mismatch between the initial
conditions �̂�𝐿𝑆 (0) and 𝜼𝑟𝑒 𝑓 (0). Hence, multiple causes makes the LS approach
not to perform good.

Regarding Fig. 6.10, the LKF and EKF estimates are quite close since the
human arm was moved near the equilibrium along which the non-linear model
was linearized. Still, there is an improvement of the solution given by the
Extended Kalman filter algorithm.
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7
Conclusions and Future Works

A suitable algorithm, the Extended Kalman filter (EKF), for the estimation of
the joint-space configuration of the human arm, through the data acquisition of
some markers placed along, was designed. Other approaches were tested, such
as the Least-Squares (LS) and the Linearized Kalman filter (LKF). However, they
were shown to lead in general to worse results. In particular, different choices of
number of markers on the shoulder, forearm and hand were carefully analyzed
during the Matlab simulations, leading good results, both in the simulation and
experimental steps, when considering one marker on the shoulder, one on the
forearm, two on the hand or one marker on the shoulder, two on the forearm
and two on the hand.

However, for different number of markers on the shoulder, forearm and
hand, there was the risk of having even bad EKF estimate, due to the use of the
left-pseudoinverse of the Jacobian in the model of the human arm. The Singular
Value Decomposition (SVD) of the Jacobian can represent a valid tool to express
the pseudoinverse in terms of only large enough singular values so to avoid quasi-

singularities. This change of model may result in better joint estimates in those
cases in which quasi-singularities occur. This may be part of future work as well
as other extensions of the Kalman filter. Indeed, some limitations of the EKF as,
for example, its suboptimality due to the truncation of the higher-order terms
when linearizing the system, can be overcame by the Iterated Extended Kalman
Filters (IEKF), which is shown to improve the convergence of the first-order filter
by iterating at the measurement update step and the Unscented Kalman filter
(UKF).
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A
Pseudo-inverses

In many cases, a vector variable is a linear function of another vector. The
proportionality between the two is expressed by the matrix 𝚽:

y = 𝚽 · 𝜽 (A.1)

𝚽 has dimension (𝑚 × 𝑛), and it is conformable with 𝜽 ∈ R𝑛 and y ∈ R𝑚 .
In order to compute the inverse of matrix 𝚽, it has to be square (𝑛 = 𝑚) and
non-singular. How can an inverse relationship between y and 𝜽 be defined if
𝑚 and 𝑛 are not equal? The answer is found in the generalized inverse or
pseudo-inverse matrix, denoted by 𝚽†. The pseudo-inverse matrix takes one of two
forms, depending upon the relative dimensions of y and 𝜽. If 𝑚 > 𝑛 , Eq. A.1
represents more scalar equations than unknowns, so the inverse solution may
be over-determined. On the other hand, if 𝑚 < 𝑛, the opposite is true, and the
solution for 𝜽 is under-determined.

𝚽 is assumed to be a (𝑚 × 𝑛) full-rank matrix; hence, 𝚽𝑇𝚽 has dimension
(𝑛 × 𝑛), while 𝚽𝚽𝑇 has dimension (𝑚 × 𝑚). If 𝑚 > 𝑛, 𝚽𝑇𝚽 is non-singular,
but 𝚽𝚽𝑇 is singular. Conversely, if 𝑚 < 𝑛, 𝚽𝚽𝑇 is non-singular, but 𝚽𝑇𝚽 is
singular.

The left pseudo-inverse is appropriate for the solution of the over-determined

case. Pre-multiplying both sides of Eq. A.1 by 𝚽𝑇 ,

𝚽𝑇𝚽 · 𝜽 = 𝚽𝑇 · y
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it follows that
𝜽 =

(︂
𝚽𝑇𝚽

)︂−1
𝚽𝑇⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

𝚽†
𝐿

· y (A.2)

Instead, the right pseudo-inverse is appropriate for the solution of the under-

determined case. By noticing that(︂
𝚽𝚽𝑇

)︂
·
(︂
𝚽𝚽𝑇

)︂−1
= 𝐼𝑚×𝑚

Eq. A.1 can be written as 𝚽 · 𝜽 = 𝚽𝚽𝑇 ·
(︂
𝚽𝚽𝑇

)︂−1
· y, therefore

𝜽 = 𝚽𝑇
(︂
𝚽𝚽𝑇

)︂−1⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝚽†
𝑅

· y (A.3)
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B
Singular Value Decomposition

Given a matrix 𝚽 of dimensions (𝑚 × 𝑛), the scalars 𝜎1 ≥ 𝜎2 ≥ . . . ≥ 𝜎𝑛 ≥ 0
are said to be its singular values and they are related to the eigenvalues of matrix
𝚽𝑇𝚽, �1 ≥ �2 ≥ . . . ≥ �𝑛 ≥ 0, as �𝑖 = 𝜎2

𝑖
. The SVD of matrix 𝚽 is given by

𝚽 = USV
𝑇

where U is an (𝑚 × 𝑚) orthogonal matrix U = [ u1 u2 . . . u𝑚 ] and V is an
(𝑛 × 𝑛) orthogonal matrix V = [ v1 v2 . . . v𝑛 ].
Moreover, S is an (𝑚 × 𝑛)matrix

S =

[︄
S𝑘 O

O O

]︄
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎1 0 . . . 0

00 𝜎2 . . . 0
...

...
. . .

...

0 0 . . . 𝜎𝑘

0 0

𝑘

𝑚 − 𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝑘

⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
𝑛 − 𝑘

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

non-null singular values⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟
𝜎1 ≥ 𝜎2 ≥ . . . ≥ 𝜎𝑘 > 0

.
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The number of non-null singular values is equal to the rank 𝑘 of matrix 𝚽 and
𝑘 ≤ min (𝑚, 𝑛). The unit vectors v𝑖 ∈ R𝑛 and u𝑖 ∈ R𝑚 are called right and left

singular vectors of 𝚽 with corresponding singular value 𝜎𝑖 > 0 if

𝚽v𝑖 = 𝜎𝑖u𝑖

𝚽𝑇
ui = 𝜎𝑖v𝑖

The columns of U are the eigenvectors of the matrix 𝚽𝚽𝑇 , whereas the columns
of 𝑽 are the eigenvectors of the matrix 𝚽𝑇𝚽.

The SVD plays an important role when the inverse of the matrix 𝚽 does not
exist, namely if any of the singular values is zero. Indeed, the pseudo-inverse of
𝚽, denoted as 𝚽†, can be exploited:

𝚽† = US
†
V
𝑇

= U

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝜎1

. . .
1
𝜎𝑘

0
. . .

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
V
𝑇

In practical situations, a matrix may have singular values that are very close to
zero and it is not possible to accurately compute them. In such cases, the matrix
is called ill-conditioned, because the division 1

𝜎𝑖
, where 𝜎𝑖 ≈ 0, will result in

numerical errors. Such matrices are theoretically but not practically invertible.
The degree to which ill-conditioning prevents a matrix from being inverted
accurately depends on the ratio of its largest to smallest singular value, a quantity
known as the condition number which, in the literature, is defined as

� (𝚽) = 𝜎1
𝜎𝑘
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