
University of Padova

Department of Mathematics “Tullio
Levi-Civita”Master in Mathematics

Master thesis

A derivative-free method for bilevel
optimization

Student Supervisor
Matia Bojovic Francesco Rinaldi
Serial number: 2056746

Co-Supervisor
Damiano Ze�ro

Academic year 2022-2023
15/12/2023

Contents

Contents 1

1 Introduction 2

2 Background and Preliminaries 3

3 The box constrained case 5
3.1 Smooth objective . 5

3.1.1 Convergence Analysis . 9
3.1.2 Stopping Condition . 15

3.2 Nonsmooth objective . 16
3.2.1 Convergence Analysis . 20
3.2.2 A more e�cient algorithm for the nonsmooth case 23

4 The nonsmooth nonlinearly constrained case 25
4.1 Preliminary Results . 25
4.2 The penalty approach . 27

5 Numerical illustration 32

6 Conclusions 37

Bibliography 38

1

A Derivative-free method for Bilevel Optimization

Matia Bojovic

December 2023

Abstract

We address bilevel programming problems when the lower-level problem is
solved inexactly, and it is supposed to have access to an approximation of the
lower-level minimizer up to a bounded numerical error, through a black-box
oracle.
The following thesis represents a first attempt to tackle a mathematical prob-
lem that may be, in general, di�cult to deal with. Even though in literature
there are common assumptions that allow us to work with lower-level minimiz-
ers which may not be unique, we will assume uniqueness just to make reading
a little easier.
Our methods will deal with both smooth and potentially nonsmooth objectives.
Our main goal is to design algorithms that perform optimization at the upper-
level, using derivative-free methods. The analysis will first concern the case
where we have only box constraints. This case may be easy when compared
to nonlinear constraints, but one of the reasons is that a good understanding
of the box-constrained case seems to be necessary to tackle the more general
one. Also, as can be seen from the current thesis, box constraints, together with
the framework we are dealing with, already introduce several nontrivial issues
and a considerable amount of technical details. Further in the thesis, we will
investigate more general constraints. We will show some numerical results to
exhibit the e↵ectiveness of our approaches.

Keywords. Bilevel programming, derivative-free methods, black-box ora-
cle, box and nonlinear constraints.

1

Chapter 1

Introduction

Bilevel optimization has been subject of increasing interest, thanks to its ap-
plications to hyperparameter tuning for machine learning algorithms and meta-
learning together with the development of the computational power of contem-
porary machines, through the use of GPUs in particular.
In this work, we are interested in the following bilevel optimization problem:

min
(x,y)2F⇥G

f(x, y) s.t. y 2 argmin
z2G

g(x, z) (1.1)

where f : Rn
! R is assumed to be at least continuous and g : Rn+p

! R is such
that the lower-level problem has a unique solution y(x) for any given x 2 F ,
where n, p are natural numbers.
Here, we explore derivative-free optimization (DFO) algorithms, which simply
employ the objective value itself instead of derivatives of the upper-level objec-
tive function. The existence of a black-box oracle that can approximate ỹ(x) of
y(x) for every given x 2 F will be a crucial supposition. We are particularly in-
terested in direct-search approaches, which sample the objective at well-selected
places rather than building models of it.

2

Chapter 2

Background and
Preliminaries

The following represents an attempt to introduce the main assumptions we will
consider in the thesis, all along.
Depending on the specific framework we are dealing with, which will depend
on the constraints rather than the amount of regularity assumed, more assump-
tions will be explored.
As we said before, we will assume the unicity of the lower-level minimizer, which
is common and widely adopted in the context of bilevel programming.

Assumption 1. For any x, the minimizer y(x) of the lower problem is unique.

Under Assumption 1, the bilevel optimization problem in (1.1) can then be
rewritten as

min
x2F

F(x) := f(x, y(x)) (2.1)

In practice, however, one must typically use an iterative procedure to compute
y(x), and thus cannot expect to readily have an exact value of y(x), but rather
some approximation. More explicitly, we will use the following assumption.

Assumption 2. For all x 2 F we can compute an approximation ỹ(x) of y(x)
such that

kỹ(x)� y(x)k ✏ (2.2)

The assumption above looks reasonable and not restrictive at all.
In the following, we will seek theoretical guarantees for our algorithms and a
more restrictive assumption on the numerical error allowed will be necessary.
Briefly speaking, the approximation of the lower-level minimizer has to decrease
geometrically to ensure convergence of our algorithms to stationary points of
the problem in (1.1). Later on, in the next chapter, details will be given.

3

Assumption 3. The function f is lower bounded by flow.

Assumption 4. The function f is Lipschitz continuous with respect to y of
Lipschitz constant Lf .

While the remaining assumptions introduced in this section are not always
needed, in the rest of this manuscript we always assume that Assumptions 1, 2,
3, and 4 hold.

Assumption 2 together with Assumption 4 imply that F̃(x) := f(x, ỹ(x)) is
an approximation of F(x) with accuracy Lf✏. Indeed,

kF̃(x)� F (x)k = kf(x, ỹ(x))� f(x, y(x))k Lfkỹ(x)� y(x)k Lf✏ (2.3)

Some regularity on the true objective F will always be necessary for our analysis.
We consider both the di↵erentiable and the potentially nondi↵erentiable setting.

Assumption 5. The function F is Lipschitz continuous with constant LF.

Assumption 6. The function F is continuously di↵erentiable with Lipschitz
continuous gradient of Lipschitz constant L.

4

Chapter 3

The box constrained case

In this chapter, we will first introduce a direct-search approach for bilevel opti-
mization when we deal with box constraints for the upper variable, both in the
smooth and nonsmooth case, i.e. respectively, under Assumptions 6 or 5.
Further in this thesis, nonlinear constraints will be considered in the analysis.
In this section, the feasible set of the problem in (2.1) is given by
F = {x 2 Rn s.t. l x u}, where l, u 2 Rn, with l < u. We allow the
case where some of the variables are possibly unbounded by permitting both
li = �1 and ui = +1 for some i 2 {1, ...n}.

3.1 Smooth objective

In this subsection, we propose a class of derivative-free algorithms for bilevel
optimization in the case where the true function F is a continuously di↵eren-
tiable function, in the case that some of (or all) the variables are bounded. In
particular, we will assume Assumption 6 holds.
It may be wise to first focus on this case, where some regularity is provided, as
we will focus on the nonsmooth case in the following sections.
The main idea behind our approach is performing suitable samplings of the ob-
jective function along the coordinate directions.
We define a stationary point of problem in (2.1) as a feasible point x̄ that satisfies
the following first-order necessary optimality condition:

rF (x̄)T (y � x̄) � 0 8y 2 F (3.1)

meaning there is no feasible descent direction.
We recall that any stationary point x̄ of F (x̄ 2 F), we have that

r
redF (x̄) = 0 (3.2)

5

where the reduced gradient rredF (x) is defined as follows

r
red
i F (x) =

8
>><

>>:

max{riF (x), 0} if xi = ui (3.4)

min{riF (x), 0} if xi = li (3.5)

riF (x) otherwise (3.6)

In this framework, the choice of the coordinate directions as explorable di-
rections in the algorithm we will introduce fits well, as it allows us to cope with
the presence of box constraints. This can be easily derived from the optimality
conditions (3.1). In fact, if x̄, feasible point, is not a stationary point of F ,
then there must exist a feasible point y and an integer h 2 {1, ..., n} such that

rhF (x̄)T (y� x̄)h < 0. If ↵̄ = (y� x̄)h > 0, then, recalling that F is defined by
box constraints, we have

↵̄rF (x̄)T eh < 0, x̄+ ↵̄eh 2 F

The continuity of rF and the convexity of the feasible set F imply that there
exists a positive value ↵̄ such that:

F (x̄+ ↵eh) < F (x̄), x̄+ ↵eh 2 F ,

for all ↵ 2 (0, ↵̄). The case ↵ = (y� x̄)h < 0 ends up with the same conclusions
with eh replaced by �eh . Hence, in correspondence to any feasible point x̄,
either it is a stationary point, or there is a coordinate direction along which (or
along its opposite) there must exist feasible points where the function is strictly
decreased (this property is not guaranteed for di↵erent sets of n linearly inde-
pendent directions). Therefore, the main idea behind the proposed algorithm
will be performing finer and finer samplings of the objective function along the
directions given by the canonical basis in Rn and their opposite.
At the same time, it will be possible either to understand that a point is a good
approximation of a stationary point of F or to determine a specific direction
along which the objective function decreases, which is guaranteed by the previ-
ous considerations.
On this basis, we propose an algorithm model that evaluates the objective func-
tion along the coordinate directions, taking care of the numerical error carried
by the lower-level minimization, with the aim of detecting a feasible direction
where the objective is su�ciently decreased. Once such a direction has been
found, a derivative-free line search technique is adopted in order to explore a
su�ciently large step along it, so as to exploit the descent property of the search
direction as much as possible.
In general, when we deal with continuously di↵erentiable functions, a positive
spanning set for the feasible region near the current iterate is needed to ensure
a decrease in the objective. The canonical basis fits well in this framework as it
allows it to conform to the local geometry of the boundary.
Even though some regularity for the true function F is assumed, we do not have

6

access to the gradient.
The use of the coordinate directions as search directions and the particular sam-
pling technique adopted allow us to overcome the lack of gradient information
and to ensure that every limit point of the sequence produced is a stationary
point for the problem in (2.1). Formally, the algorithm model is described as
follows.

7

Algorithm DSS

Data. Choose x0 2 F , ✓ 2 (0, 1), � > 0, A � 0 stepsize lower bound,
↵̃i
0 2 (A,+1), di = ei i = {1, ..., n}, where ei are the vectors of the

canonical basis in Rn.

Step 0. k = 0, i = 1

Step1. Compute ↵max s.t. xk + ↵maxdi 2 @F and set ↵ = min{↵max, ↵̃i
k}.

If ↵ > A and F̃ (xk + ↵di) F̃ (xk)� �(↵)2, go to Step 3.

Step2. Compute ↵max s.t. xk � ↵maxdi 2 @F and set ↵ = min{↵max, ↵̃i
k}.

If ↵ > A and F̃ (xk � ↵di) F̃ (xk)� �(↵)2, set di = �di and then
go to Step 3, else, set ↵k = 0, ↵̃i

k+1 = max{A, ✓↵̃i
k} and go to Step 4.

Step3. Compute ↵k by the Expansion Step(di,↵,↵max, �) and set
↵̃i
k+1 = ↵k.

Step4. Set xk+1 = xk + ↵kdi, ↵̃
j
k+1 = ↵̃j

k 8j 6= i
Set i = mod (i, n) + 1, k = k + 1 and go to Step 1.

In the following, the Expansion Step is presented.

Expansion Step(di,↵,↵max, �)

� 2 (0, 1).
Step1. Set ↵̃ = min{↵max,

↵
� }

If ↵ = ↵max or F̃ (xk + ↵̃di) > F̃ (xk)� �(↵̃)2 then set ↵k = ↵ and
stop.

Step2. Set ↵ = ↵̃ and go to Step 1.

8

We give a brief explanation of how our algorithm works in the following.

In Step 1 the direction di is examined with the aim of finding (if possible)
a feasible point where the objective function is decreased according to a su�-
cient decrease condition. First, it is computed the maximum feasible steplength
↵max which can be performed along the direction di starting from the point
xk. Then, the trial stepsize ↵ is determined by choosing the minimum between
↵max and ↵̃i

k . The scalar ↵̃i
k has been computed on the basis of the behav-

ior of the objective function along the same direction shown at the previous
iterations. Therefore, ↵̃i

k should take into account the sensitivity of the objec-
tive function with respect to the i-th variable, and hence it should provide a
promising initial stepsize for the direction di. Finally, provided that the step-
size is above the lower bound A, it is verified if the moving of length ↵ along
di produces a feasible point where the function is su�ciently reduced. If such a
point is produced then a linesearch technique is performed along di to provide a
suitable stepsize ↵k (Step 3). Otherwise, the direction -di is considered (Step 2).

Step 2 is similar to Step 1, with di replaced by -di. In this case, if the trial
point xk � ↵di does not produce a su�cient decrease of F then the stepsize ↵k

is set equal to zero and the scalar ↵̃i
k is reduced (observe that the stepsize is

always above the threshold A). In this way, when the directions di and -di will
be considered again by the algorithm, the initial stepsize will be chosen in an
interval containing possibly smaller values.

At Step 3 a suitable large stepsize ↵k is computed by a derivative-free line
search technique. The aim of this step is to exploit the good descent direction
di identified in Step 1 or Step 2. Then, the scalar ↵̃i

k+1 is set equal to ↵k . The
motivation for this choice derives from the fact that the stepsize ↵k produced by
a line search technique should identify promising values for the initial stepsize
when the direction di (or -di) will be investigated.

At Step 4 the new point xk+1 is produced and, for the next iteration, a co-
ordinate direction is selected by following the cyclic order.

3.1.1 Convergence Analysis

In the following, we focus on the theoretical properties of the algorithm model.
In particular, we show that any accumulation point of the sequence generated
by the proposed algorithm is a stationary point of problem in (2.1).
For the convergence analysis, if not specified otherwise, we set our attention on
the case A = 0, when there is no lower bound for the algorithm’ stepsizes.
First of all, we want to remark the algorithm is well-defined, meaning that the
Expansion Step terminates in a finite number of iterations.

Proposition 3.1.1. The line search terminates in a finite number of iterations.

Proof. Recall that f is lower bounded by flow by assumption (see Chapter 2).

9

It follows that F̃ is bounded as well. Indeed, by definition,
F̃ (x) = f(x, ỹ(x)) � flow.
By contradiction, assume that for a given di,
xk + ��j↵di 2 F 8 j and F̃ (xk + ��j↵di) < F̃ (xk)� �(��j↵) 8 j.
This violates the assumption that F̃ is bounded below.

We now report a technical result which is key to proving the main conver-
gence result. The proof can be found in [14].

Proposition 3.1.2. We have that

(i) limk!+1 ↵k = 0

(ii) limk!+1 ↵̃i
k = 0 8i 2 {1, ..., n}

Before proving the main result, let’s state, as anticipated in Chapter 2, an
assumption on the numerical error allowed in the lower-level approximation for
the problem in (1.1).

Assumption 7. Let {xk}k be the sequence generated by the algorithm. At
the k-th iteration of the algorithm, when the black-box oracle is performed, the
maximal numerical error allowed is ✏k, where

✏k :=

(
✏, if k = 0

✓2✏k�1, otherwise
(3.6)

The geometric decrease for the numerical error will make sense soon.
Assumption 7 can be relaxed, setting the multiplying factor as ✓2�l(k) with
l(k) ! 0 as k ! 1.

We are ready for the main convergence result. Briefly speaking, any accumula-
tion point of the sequence generated by the proposed algorithm is a stationary
point, meaning that (3.2) holds.

Proposition 3.1.3. Let {xk}k be the sequence generated by the proposed algo-
rithm.
There exist positive constants c1, c2 > 0 such that

kr
redF (xk)k c1 max

l2{1,...,n}
{↵̃l

k}+
c2Lf ✏k
min

l2{1,...,n}
{↵̃l

k}
8k � n (3.7)

It follows directly from (3.7) that

kr
redF (xk)k ! 0 as k ! +1 (3.8)

.

10

Proof. Fix i 2 {1, ..., n}, let k � n and let i(k) be the biggest index where the
direction ei (and/or -ei) has been explored. By instructions of the algorithm,
k � i(k) n.
We distinguish three cases:

(i) xi
k = ui

(ii) xi
k = li

(iii) li < xi
k < ui

Focus first on (i).
We may have:

(ia) : xi
i(k) = ui

or

(ib) : xi
i(k) < ui

In (ia), we have ↵i(k) = 0, ↵̃i
i(k)+1 = ↵̃i

k and

F
⇣
xi(k) �

↵̃i
k
✓ ei

⌘
> F (xi(k))� �

⇣
↵̃i

k
✓

⌘2
� 2Lf ✏k

By the Mean Value Theorem:

�
↵̃i

k
✓ rF

�
ui(k)

�T
ei > ��

⇣
↵̃i

k
✓

⌘2
� 2Lf ✏k

where ui(k) = xi(k) � �i(k)
↵̃i

k
✓ ei, �i(k) 2 (0, 1).

[rF (ui(k))�rF (xk) +rF (xk)]T ei < � ↵̃i
k
✓ + 2Lf ✏k✓

↵̃i
k

from which, taking into account the Lipschitz assumption on rF , it follows

rF (xk)
T ei < �

↵̃i
k

✓
+

2Lf ✏k✓

↵̃i
k

+ Lkxk � ui(k)k

 �
↵̃i
k

✓
+

2Lf ✏k✓

↵̃i
k

+ Lkxk � xi(k)k+ L
↵̃i
k

✓
(3.9)

We have

xk = xi(k) +
Pk�i(k)�1

j=0 ↵i(k)+jdi(k)+j

For each j such that ↵i(k)+j 6= 0, recalling instructions of the algorithm, we
have that there exists an index l 2 {1, ..., n} such that
↵̃l
i(k)+j+1 = ↵i(k)+j , and ↵̃l

k = ↵̃l
i(k)+j+1. Therefore, it follows

11

↵̃l
k max{↵̃l

k}

l2{1,...,n}

and we can write

kxk � xi(k)k max{↵̃l
k}

l2{1,...,n}

.

From (3.9) we get

ri
redF (xk) <

(� + L(n+ 1))

✓
max

l2{1,...,n}
{↵̃l

k}+
2Lf ✏k✓

min
l2{1,...,n}

{↵̃l
k}

(3.10)

In case (ib), we have ↵i(k) 6= 0, ↵̃i
i(k)+1 = ↵i(k) = ↵̃i

k and

F
�
xi(k) + ↵̃i

kei
�
 F (xi(k))� �(↵̃i

k)
2
+ 2Lf ✏k F (xi(k)) + �(↵̃i

k)
2
+ 2Lf ✏k

Then, by applying the Mean Value Theorem, we obtain

rF (vi(k))
T ei < �↵̃i

k + 2Lf ✏k
↵̃i

k

where vi(k) = xi(k) + �i(k)↵̃
i
kei, with �i(k) 2 (0, 1). Then by repeating the

previous reasonings we obtain

ri
redF (xk) < (� + L(n+ 1)) max

l2{1,...,n}
{↵̃l

k}+
2Lf ✏k

min
l2{1,...,n}

{↵̃l
k}

(3.11)

Case (ii) is analogous to Case (i), so that conditions (3.10) and (3.11) hold.

Case (iii) splits into two possible subcases:

(iiia) : xi
i(k) = xi

k

or

(iiib) : xi
i(k) 6= xi

k

In case (iiia), from the prescribed instructions, it follows that

F

✓
xi(k) +

↵̃i
k

✓
ei

◆
� F (xi(k))� �

✓
↵̃i
k

✓

◆2

� 2Lf ✏k (3.12)

F

✓
xi(k) �

↵̃i
k

✓
ei

◆
� F (xi(k))� �

✓
↵̃i
k

✓

◆2

� 2Lf ✏k (3.13)

By the Mean Value Theorem, we obtain

rF (ui(k))
T ei � ��

✓
↵̃i
k

✓

◆
�

2Lf ✏k✓

↵̃i
k

(3.14)

12

rF (vi(k))
T ei �

✓
↵̃i
k

✓

◆
+

2Lf ✏k✓

↵̃i
k

(3.15)

where ui(k) = xi(k) + �1
i(k)

↵̃i
k
✓ ei, vi(k) = xi(k) � �2

i(k)
↵̃i

k
✓ ei, with

�1
i(k),�

2
i(k) 2 (0, 1).

From (3.14), taking into account the Lipschitz assumption on rF we get

rF (xk)
T ei � ��

✓
↵̃i
k

✓

◆
�

2Lf ✏k✓

↵̃i
k

� Lkxk � ui(k)k

� rF (xk)
T ei � �

✓
↵̃i
k

✓

◆
�

2Lf ✏k✓

↵̃i
k

� Lkxk � xi(k)k � L
↵̃i
k

✓

� ��

✓
↵̃i
k

✓

◆
�

2Lf ✏k✓

↵̃i
k

� nL max
l2{1,...,n}

{↵̃l
k}�

↵̃i
k

✓

= �(� + L)
↵̃i
k

✓
�

2Lf ✏k✓

↵̃i
k

� nL max
l2{1,...,n}

{↵̃l
k}

Hence, it follows

r
red
i F (xk) � �

(� + L(n+ 1))

✓
max

l2{1,...,n}
{↵̃l

k}�
2Lf ✏k✓

min
l2{1,...,n}

{↵̃l
k}

(3.16)

From (3.15), by repeating the same reasonings, we obtain

r
red
i F (xk)

(� + L(n+ 1))

✓
max

l2{1,...,n}
{↵̃l

k}+
2Lf ✏k✓

min
l2{1,...,n}

{↵̃l
k}

(3.17)

From (3.16) and (3.17) it follows

|ri
redF (xk)|

(� + L(n+ 1))

✓
max

l2{1,...,n}
{↵̃l

k}+
2Lf ✏k✓

min
l2{1,...,n}

{↵̃l
k}

(3.18)

Let’s consider now (iiib). Without loss of generality, we can assume that in

this case we have ↵i(k) 6= 0,↵̃i
i(k)+1 = ↵̃i

k = ↵i(k),

F
�
xi(k) + ↵̃i

kei
�
 F (xi(k))� �(↵̃i

k)
2
+ 2Lf ✏k

and

F
�
xi(k) + ↵̄i

kei
�
> F (xi(k))� �(↵̄i

k)
2
� 2Lf ✏k

with ↵̄i
k = ↵̃i

k
�i(k)

where �i(k) = � if xi(k) +
↵̃i

k
� ei 2 F and �i(k) 2 (�, 1)

otherwise. By applying the Mean Value Theorem, we can write

rF (ui(k))
T ei ��↵̃i

k + 2
Lf ✏k
↵̃i
k

 �↵̃i
k + 2

Lf ✏k
↵i
k

13

and

rF (vi(k))
T ei > ��

↵̃i
k

�i(k)
� 2

Lf ✏k�i(k)
↵̃i
k

where ui(k) = xi(k) + �1
i(k)↵

i
i(k)ei,vi(k) = xi(k) + �2

i(k)↵
i
i(k)ei with

�1
i(k),�

2
i(k) 2 (0, 1).

Taking into account the Lipschitz assumption on rF we can write

rF (xk)
T ei �↵̃i

k +
2Lf ✏k
↵̃i
k

+ Lkxk � ui(k)k

 �↵̃i
k +

2Lf ✏k
↵̃i
k

+ Lkxk � xi(k)k+ L↵̃i
i(k)+1

 (� + L)↵̃i
k +

2Lf ✏k
↵̃i
k

+ nL max
l2{1,...,n

{↵̃l
k}

rF (xk)
T ei � ��

↵̃i
k

�i(k)
�

2Lf ✏k�i(k)
↵̃i
k

� Lkxk � vi(k)k

� ��
↵̃i
k

�
�

2Lf ✏k
↵̃i
k

� Lkxk � xi(k)k � L↵̃i
k

� �(� + L)
↵̃i
k

�
�

2Lf ✏k
↵̃i
k

� nL max
l2{1,...,n

{↵̃l
k}

Then, we have

|r
red
i F (xk)|

(� + L(n+ 1))

�
max

l2{1,...,n}
{↵̃l

k}+
2Lf ✏k

min
l2{1,...,n}

{↵̃l
k}

(3.19)

Finally, from (3.16), (3.17),(3.19), we obtain

kr
redF (xk)k n1/2

0

@ (� + L(n+ 1))

max{✓, �}
max

l2{1,...,n}
{↵̃l

k}+
2Lf ✏k

min
l2{1,...,n}

{↵̃l
k}

1

A 8k � n

and this proves (3.7).

If there is no lower bound for the stepsize, then, by the bound above given
by (3.7), the asymptotic behavior of the algorithm stepsizes given by (3.1.2)
and Assumption 7 concerning the numerical noise produced for our reduced-
upper-level problem, it follows that (3.8) holds true, and this concludes the
proof.

14

3.1.2 Stopping Condition

Now, we describe the stopping criterion employed. In practice, we look for an
algorithm that produces a reasonably optimal solution in finite time.
To this scope, we consider now the case A > 0 and the proposed algorithm stops
if ↵̃j

k = A 8j 2 {1, ..., n}.
We start by proving that our method terminates a finite number of iterations.

Proposition 3.1.4. Let {xk}k be the sequence generated by Algorithm DSS.
The algorithm terminates in finite time.

Proof. {F̃ (xk)}k is non-decreasing. In particular F̃ (xk) = F̃ (xk+1) after an
unsuccessful step and

F̃ (xk+1) F̃ (xk)� �A2

after a successful one. Hence, we have at most
✓
F̃ (x0)� inf

x2F
F̃ (x)

◆

�A2
F̃ (x0)�flow+2Lf ✏

�A2

successful steps.
By the instructions of the algorithm, eventually the stepsizes {↵̃i

k}k will reach
the lower bound A (in finite time, due to the geometric contraction by the factor
✓ and the finiteness of successful steps).
Hence, the algorithm terminates in a finite time.

The result in (3.7) still holds true in the case where A > 0.

One could follow the very same steps of the proof of (3.7), replacing ↵̃i
k
✓ with

↵̃i
i(k), since in this framework, when an iteration fails, the stepsize is reduced,

but a strictly positive lower bound, i.e. A, is active.
Another issue emerges as we consider (iiia) since we should also include the
case where the point xi(k) is too close to the boundary and either ei or -ei are
not explorable. One may observe that this issue can be easily avoided since one
ends up in one of the cases already treated in the original proof.

Proposition 3.1.5. Let A > 0.
Let {xk}k be the sequence generated by the proposed algorithm.
There exist positive constants c1, c2 > 0 such that

kr
redF (xk)k c1 max

l2{1,...,n}
{↵̃l

k}+
c2Lf ✏k
min

l2{1,...,n}
{↵̃l

k}
8k � n (3.20)

As anticipated, in practice we end in finite time, so the following guarantees
us that the point returned by the algorithm is reasonably optimal. Combining
the bound given by Proposition 3.1.4 and Proposition 3.1.5, the following holds
true.

15

Proposition 3.1.6. Algorithm DSS terminates in k̄ iterations, with k̄ � n.
At the last iteration, our model produces an element xk̄ such that

kr
redF (xk̄)k c1A+

c2Lf ✏

A
(3.21)

Corollary 3.1.1. Let A =
q

4c2Lf ✏
c1

. Algorithm DSS terminates in k̄ iterations,

with k̄ � n. At the last iteration, our model produces an element xk̄ such that

kr
redF (xk̄)k

p
c1c2Lf ✏ (3.22)

Proof. Just plug A defined as above in (3.21) and the thesis holds.

3.2 Nonsmooth objective

In the following, we aim to solve the problem in (2.1) when the true function F
(though nonsmooth) is Lipschitz continuous and that first-order information is
unavailable or impractical to obtain. In this subsection, only box constraints are
considered, while more general constraints will be explored in the next chapter.
We will assume, later on, that two di↵erent classes of constraints exist, namely,
di�cult general nonsmooth constraints (h(x) 0) and simple bound constraints
on the problem variables (l x u). The main idea consists of getting rid of
the nonlinear constraints by means of an exact penalty approach, but we will
get back to that.

First of all, we want to highlight that the assumption introduced in the previ-
ous subsection, which concerns the geometrical decrease of the numerical error
allowed in the lower-level, will be needed as well here, so from now on we tacitly
assume that Assumption 7 holds.

We now recall the necessary definitions.
First of all, just to make it easier for the reader, we introduce some notation we
will use further in the thesis.

Definition 3.2.1. Let F be given by box constraints as we mentioned above.
Given problem in (2.1) and any point x 2 F ,
D(x) = {d 2 Rn : di � 0 if xi = li, di 0 if xi = ui, di 2 R if li < xi < ui}

is the cone of feasible directions at x with respect to F .

We also report a technical proposition whose proof can be found in [3].

Proposition 3.2.1. Given problem in (2.1), let {xk}k ⇢ F for all k and
{xk}k ! x̄ for k ! 1. Then, for k su�ciently large,

D(x̄) ✓ D(xk)

Let’s give the definition of Clarke stationarity, which is relevant for uncon-
strained problems.

16

Definition 3.2.2. Given a point x 2 Rn, the Clarke directional derivative of
function F along direction d 2 Rn is given by

FCl(x; d) = lim sup
y!x
t#0

F (y + td)� F (y)

t
(3.23)

Definition 3.2.3. Given the problem minx2Rn F (x), x is a Clarke stationary
point if

FCl(x; d) � 0 8 d 2 Rn (3.24)

The necessary optimality conditions for the problem in (2.1) can be instead
characterized in terms of the Clarke–Jahn generalized directional derivative of
the objective function, which takes into consideration the constraints (see [7]).

Definition 3.2.4. Given a point x 2 F , the Clarke–Jahn generalized directional
derivative of function F along direction d is given by

F �(x; d) = lim sup
y!x,y2F

t#0,y+td2F

F (y + td)� F (y)

t
(3.25)

We recall that every local minimum of problem in (2.1) satisfies the following
definition.

Definition 3.2.5. Given problem in (2.1), x is a Clarke–Jahn stationary point
if

F �(x; d) � 0 8 d 2 D(x) (3.26)

Since the true objective function F is possibly not continuously di↵erentiable
on F , a finite number of search directions is not su�cient to investigate the lo-
cal behavior of F on F . In this framework, it is common and also necessary to
assume density properties on particular subsequences of the search directions.
In this way, we are able to prove convergence to stationary points of problem in
(2.1). To this purpose, here we propose a very simple derivative-free algorithm
for solving the nonsmooth problem in (2.1), namely, Algorithm DSNsimple.
In this algorithm, we use a predefined sequence of search directions {dk}k.
Then, we investigate the behavior of the function F along the direction dk
by means of the line search procedure Projected Continuous Search. Given the
current iterate xk at step k, the latter procedure first evaluates the function at
[xk ± ↵̃kdk][l,u], where[·][l,u] denotes the projection on the box.
In case a su�cient reduction of the function value is obtained, an extrapola-
tion along the search direction is performed, so that a suitable steplength ↵k

is computed, and is used as a tentative steplength for the next iteration, i.e.,
↵̃k+1 = ↵̃k. On the other hand, if at [xk ± ↵̃kdk][l,u] we do not obtain a su�-
cient reduction of the function value, then the tentative steplength at the next

17

iteration is suitably reduced by a scale factor, i.e., ↵̃k+1 = ✓↵̃k, ✓ 2 (0, 1). More
formally, the resulting algorithm and the proposed line search procedure are
summarized in the next schemes.

18

Algorithm DSNsimple

Data. Choose x0 2 F , ✓ 2 (0, 1), A � 0 stepsize lower bound, ↵̃0 2 (A,+1),
{dk}k as above.

Step 0. k = 0.

Step1. Compute ↵k and ↵̃k by the Projected Continuous Search.

Step2. If ↵k = 0 then set ↵̃k+1 = max{A, ✓↵̃k}

Else set ↵̃k+1 = ↵k and xk+1 = [xk + ↵̃kdk][l,u].
Set k = k + 1 and go to Step 1.

In the following, the Projected Continuous Search is presented.

Projected Continuous Search(↵̃, y, p;↵, p+)

� > 0, � 2 (0, 1).

Step0. Set ↵ = ↵̃.

Step1. If F̃
⇣
[y + ↵p][l,u]

⌘
 F̃ (y)� �(↵)2 then set p+ = p and go to

Step 4.

Step2. If F̃
⇣
[y � ↵p][l,u]

⌘
 F̃ (y)� �(↵)2 then set p+ = p and go to

Step 4.

Step3. Set ↵ = 0, return ↵ and p+ = p.

Step4. Let � = ↵/�.

Step5. If F̃
⇣
[y + ↵p+][l,u]

⌘
> F̃ (y)� �(�)2 return ↵, p+.

Step6. Set ↵ = � and go to Step 4.

For clarity, we note that the Projected Continuous Search procedure takes in
input ↵̃, y, and p (that is, the arguments before the semicolon) and gives in
output ↵ and p+ (that is, the arguments after the semicolon).
In the following results, we analyze the global convergence properties of Algo-

19

rithm DSNsimple.

3.2.1 Convergence Analysis

We start by proving in the next proposition that the Projected Continuous
Search cannot cycle.

Proposition 3.2.2. The line search cannot infinitely cycle between Step 4 and
Step 6.

Proof. Let us consider the Projected Continuous Search. We proceed by contra-
diction assuming that an infinite monotonically increasing sequence of positive
numbers {�j}j exists such that

F̃ ([y + �jp+][l,u]) F̃ (y)� �(�j)
2

By Assumption 3 in Chapter 2, f is lower bounded, hence F̃ is lower bounded as
well, so the above relation contradicts the boundness of F̃ and we conclude.

Now, as in the smooth case, from now on we focus on the case A = 0, and in
the following proposition we state that the stepsizes computed by the Projected
Continuous Search procedure eventually go to zero. The reader can find the
proof in [1].

Proposition 3.2.3. We have that

(i) lim k!+1 ↵k = 0

(ii) limk!+1 ↵̃k = 0

Using the latter result we can provide the next technical lemma, which will be
necessary to prove the main global convergence result for Algorithm DSNsimple.
This lemma shows that the projection operator does not sensibly deteriorate
the asymptotic properties of the directions dk. More precisely, performing a
steplength ⌘k along dk and assuming that ⌘k goes to zero, it results that even-
tually the new point [xk + ⌘kdk][l,u] di↵ers from xk and the scaled actual step
([xk + ⌘kdk][l,u] � xk)/⌘k enjoys the same asymptotic properties of dk.
The reader may refer to the proof provided in [1].

Proposition 3.2.4. Let {xk}k be the sequence produced by Algorithm DSNsimple,
let {dk}k be the sequence of search directions used by the proposed model, and
let {⌘k}k be a sequence such that ⌘k > 0 for all k. Further, let K be a subset of
indices such that

lim
k!+1,k2K

xk = x̄ (3.27)

lim
k!+1,k2K

dk = d̄ (3.28)

lim
k!+1,k2K

⌘k = 0 (3.29)

with x̄ 2 F and d̄ feasible direction for F in x̄, d̄ 6= 0. Then,

20

(i) for all k 2 K su�ciently large, [xk + ⌘kdk][l,u] 6= xk

(ii) lim k!+1

k2K

⇣
[xk+⌘kdk][l,u]�xk

⌘k

⌘
= d̄

Finally, we are now ready to prove the main convergence result for Algorithm
DSNsimple. We highlight that according to the following proposition, every limit
point of the sequence of iterates {xk}k, produced by Algorithm DSNsimple, is a
stationary point for the problem in (2.1).

Proposition 3.2.5. Let {xk}k be the sequence produced by Algorithm DSNsimple.
Let x̄ be any accumulation point of {xk}k and K be a subset of indices such that

lim
k!+1,k2K

xk = x̄

If the subsequence {dk}k2K is dense in the unit sphere, then x̄ is Clarke–Jahn
stationary for problem in (2.1).

Proof. By contradiction, let d̄ 2 Sn�1 feasible direction such that

F �(x̄, d̄) < 0 (3.30)

where we denote with Sn�1 the unit sphere in Rn.
By recalling the instructions of the Projected Continuous Search, if the condition
at Step 1 is satisfied, we have ↵k > 0 and

F̃

✓h
xk +

⇣↵k

�

⌘
dk
i

[l,u]

◆
> F̃ (xk)� �

⇣↵k

�

⌘2
(3.31)

otherwise, we have

F̃
⇣
[xk + ↵̃kdk][l,u]

⌘
> F̃ (xk)� �↵̃2

k (3.32)

Now, for every index k 2 K, let us set

⌘k =

(
↵k/� if (3.30) holds

↵̃k if (3.31) holds

and let vk be defined as in Proposition (3.2.4), that is,

vk =
[xk+⌘kdk][l,u]�xk

⌘k

The instructions of Algorithm DSNsimple and the definition of ⌘k guarantee that
⌘k > 0 for all k 2 K. Moreover, by Proposition (3.2.3),

lim
k!+1

⌘k = 0 (3.33)

21

Up to subsequences, it follows that

lim
k!+1,k2K

xk = x̄ (3.34)

lim
k!+1,k2K

dk = d̄ (3.35)

Hence, by (3.33), (3.34) and (3.35), hypothesis of the technical result given in
(3.2.4) are satisfied.
Therefore, we have that vk 6= 0 for k 2 K and su�ciently large, so that relations
in (3.31) and (3.32) can be equivalently expressed as

F̃ (xk + ⌘kvk) > F̃ (xk)� �(⌘k)
2 (3.36)

and, hence, it follows that

F (xk + ⌘kvk) > F (xk)� �(⌘k)
2
� 2Lf ✏k (3.37)

that is, recalling that ⌘k > 0,

F (xk + ⌘kvk)� F (xk)

⌘k
> ��⌘k �

2Lf ✏k
⌘k

(3.38)

for k 2 K and su�ciently large. Then we can write

lim sup
xk!x,xk2F
t#0,xk+td̄2F

F (xk + td̄)� F (xk)

t
� lim sup

k!+1,k2K

F (xk + ⌘kd̄)� F (xk)

⌘k

= lim sup
k!+1,k2K

F (xk + ⌘kd̄) + F (xk + ⌘kvk)� F (xk + ⌘kvk)� F (xk)

⌘k

� lim sup
k!+1,k2K

✓
F (xk + ⌘kvk)� F (xk)

⌘k
� Lkd̄� vkk

◆

� lim sup
k!+1,k2K

✓
��⌘k �

2Lf ✏k
⌘k

� Lkd̄� vkk

◆
= 0

where the last equality follows by Assumption 7 together with Proposition
(3.2.4). This contradicts (3.30) and concludes the proof.

22

3.2.2 A more e�cient algorithm for the nonsmooth case

A possible way to improve the e�ciency of Algorithm DSNsimple is to take
advantage of the experience in the smooth case. We can draw inspiration from
Algorithm DSS, where the objective function is repeatedly investigated along the
directions ±e1, . . . ,±en in order to capture the local behavior of the objective
function. In fact, the use of a set of search directions, which is constant with
iterations, allows us to store the actual and tentative steplengths, i.e., ↵i and ↵̃i,
respectively, that roughly summarize the sensitivity of the function along those
directions. Thus, when the function is further investigated along such search
directions, we can exploit information gathered in the previous searches along
them.

In the following, we propose a new algorithm, where we first explore the
coordinate directions, and then a further direction dk is explored. In partic-
ular, the sampling along the coordinate directions is performed by means of
the continuous search procedure used for Algorithm DSS. Concerning the above
definition of the new version of Algorithm DSNsimple, we remark that we will
focus on its asymptotic convergence properties.

Algorithm CS-DSN

Data. Choose x0 2 F , ✓ 2 (0, 1), A � 0 stepsize lower bound, ↵̃0 > A,
↵̃i
0 > A, di0 = ei for i = 1, . . . , n, and a sequence {dk}k of search

directions as for Algorithm DSNsimple.

Step 0. k = 0.

Step1. Set y1k = xk.

For i = 1, . . . , n:

Compute ↵ and dik+1 by the Expansion Step
�
↵̃i
k, y

i
k, d

i
k;↵, d

i
k+1

�
.

If (↵ = 0), then set ↵i
k = 0 and ↵̃i

k+1 = ✓↵̃i
k;

else, set ↵i
k = ↵ and ↵̃i

k+1 = ↵.

Set xi
k = yik + ↵i

kd
i
k+1.

Step2. Compute ↵k and ↵̃k by the Projected Continuous Search.

Step3. If ↵k = 0 then set ↵̃k+1 = max{A, ✓↵̃k}

Else set ↵̃k+1 = ↵k and xk+1 = [xk + ↵̃kdk][l,u].
Set k = k + 1 and go to Step 1.

23

where the Expansion Step and the Projected Continuous Search are the very
same presented, respectively, in Algorithm DSS and Algorithm DSNsimple.

The following three propositions concern the convergence analysis of Algorithm
CS-DSN. The proofs are omitted since one has just to follow the very same steps
adopted to prove the same results in the previous sections.

Proposition 3.2.6. Both the Expansion Step and Projected Continuous Search
cannot infinitely cycle between Step 6 and Step 8.

The proposition that follows concerns the convergence to zero of the steplengths
in Algorithm CS-DSN.

Proposition 3.2.7. Let {↵i
k}k, {↵̃

i
k}k, {↵k}k, and {↵̃k} be the sequences pro-

duced by Algorithm CS-DSN; then all the sequences converge to 0 as k ! 1.

Proposition 3.2.8. Let {xk}k be the sequence produced by Algorithm CS-DSN.
Let x̄ be any accumulation point of {xk}k and K be a subset of indices such that

lim
k!+1,k2K

xk = x̄

If the subsequence {dk}k2K is dense in the unit sphere, then x̄ is Clarke–Jahn
stationary for problem in (2.1).

24

Chapter 4

The nonsmooth nonlinearly
constrained case

In the following chapter, we consider constrained problems when F is given by
both bound and nonlinear constraints.
In particular F = {x 2 Rn s.t. l x u, h(x) 0}, where the vectors l and u
correspond respectively to lower and upper bounds on the variables x 2 Rn and
satisfy the additional condition l < u. We also assume throughout the thesis
that f : Rn

! R and h : Rn
! Rm are Lipschitz continuous functions, though

they may be possibly non-di↵erentiable.
It is convenient to introduce the two following sets and the reason will be clear
soon.
We denote with X = {x 2 Rn s.t. l x u} the set of bound constraints,
while we denote with H = {x 2 Rn s.t. h(x) 0} the set given by nonlinear
constraints, so that F = X \ H. Hence, the reduced-upper problem has the
form

min
x2X\H

F(x) (4.1)

As in the previous chapters, Assumption 2 and Assumption 4 hold, so that we
do not have access to the true evaluations of the function, but the numerical
error is bounded. The same notation is used in the following.
In [1], the very same problem is treated, assuming to have access to the true
evaluations of F .
In the following, we see the main results in [1] for this framework.

4.1 Preliminary Results

The nonlinearly constrained problem we are considering can be handled by parti-
tioning the constraints into two di↵erent sets, the first one defined by general in-
equality constraints, and the second one consisting of simple bound constraints.

25

Then, for this kind of problem, we can state necessary optimality conditions
that explicitly take into account the presence of these two di↵erent sets of con-
straints. The following propositions extend the results in [4] to the case where
inequality constraints and an additional convex set of constraints are present.
This preliminary part concerns the optimality condition considered for the prob-
lem in (4.1), rather than the methods adopted.
These results do not rely on the employment of true function’s evalutations,
hence we can borrow the proofs provided in [1]. In the following, the i-th com-
ponent of h will go by hi.

Proposition 4.1.1. Let x⇤
2 H be a local minimum of problem in (4.1).

Then, there exist not all zero multipliers �0
⇤,�1

⇤, ...,�m
⇤
2 R with

�0
⇤
� 0, �i

⇤
� 0 and �i

⇤hi(x⇤) = 0 8 i = 1, ...,m

s.t. for every d 2 D(x⇤)

max

(
⇣T d : ⇣ 2 �0

⇤@F (x⇤) +
mX

i=1

�i
⇤@hi(x

⇤)

)
� 0 (4.2)

During the proof of Proposition (4.1.1), in particular, it is proven that an
element ⇠ 2 �0@F (x⇤)+

P
i2I0(x⇤) �i@gi(x⇤) such that ⇣T d � 0 for all d 2 D(x⇤)

exists.
Hence, the following result follows.

Lemma 4.1.1. Let x⇤
2 H be a local minimum of the problem in (4.1). Then,

multipliers �0
⇤,�1

⇤, ...,�m
⇤
2 R with

�0
⇤
� 0, �i

⇤
� 0 and �i

⇤hi(x⇤) = 0 8 i = 1, ...,m,

and a vector ⇠̄ 2 �0
⇤@F (x⇤) +

Pm
i=1 �i

⇤@hi(x⇤) exists such that

⇠̄T d � 0

for every d 2 D(x⇤).

As usual, by adding a version of the Mangasarian–Fromowitz constraint
qualification condition for nonsmooth problems, we can prove KKT’s necessary
optimality conditions.

Corollary 4.1.1. Let x⇤
2 H be a local minimum of problem (4.1) and assume

that a direction d 2 D(x⇤) exists such that for all i 2 {1, ...,m : hi(x⇤) = 0},

(⇠hi)T d < 0 8 ⇠hi 2 @hi(x
⇤). (4.3)

Then, there exist multipliers �1
⇤, ...,�m

⇤
2 R with

26

�i
⇤
� 0 and �i

⇤hi(x⇤) = 0 8 i = 1, ...,m

such that for every d 2 D(x⇤)

max

(
⇠T d : ⇠ 2 @F (x⇤) +

mX

i=1

�i
⇤@hi(x

⇤)

)
� 0 (4.4)

As regards the stationarity conditions for problem (4.1), taking into account
the above results, we can now give the following definition.

Definition 4.1.1. Given problem (4.1), the feasible point x̄ is a stationary
point of (4.1) if multipliers �̄1, ..., �̄m 2 R exist, with

�̄i � 0 and �̄ihi(x̄) = 0 8 i = 1, ...,m

such that for every d 2 D(x̄)

max

(
⇠T d : ⇠ 2 @F (x̄) +

mX

i=1

�̄i@hi(x̄)

)
� 0 (4.5)

4.2 The penalty approach

Given problem (4.1), we introduce the penalty function

Z"(x) = F (x) +
1

"

mX

i=1

max{0, hi(x)}

and define the penalized problem

min
x2X

Z"(x) (4.6)

Remark 4.2.1. Observe that since F and hi, i = 1, ...,m, are Lipschitz continu-
ous, with Lipschitz constants LF and Lgi , i = 1, ...,m, the penalty function Z"

is Lipschitz continuous too, with Lipschitz constant

L LF +
1

"

mX

i=1

Lhi

where we denote with Lhi the Lipschitz constant of hi.

Remark 4.2.2. Note that problem (4.6), for any " > 0, has the same structure
and properties as problem (2.1).

We further note that our penalty approach di↵ers from the ones previously
proposed in the literature (see, e.g., [12] and references therein), since only the
general nonlinear constraints are penalized. The minimization of the penalty
function is then carried out on the set defined by the bound constraints. We

27

report in the following proposition the equivalence between problem (4.6) and
the nonlinearly constrained problem (4.1).
In order to carry out the theoretical analysis, we use an extended version of
the Mangasarian–Fromowitz constraint qualification condition for nonsmooth
problems.

Assumption 8. Given problem (4.1), for any x 2 X \ H a direction d 2 D(x)
exists such that

(⇠hi)T d < 0

for all ⇠hi 2 @hi(x), i 2 {1, ...,m : hi(x) � 0}.

We are ready for a crucial result in our convergence analysis.

Proposition 4.2.1. Let Assumption 8 hold. Given problem (4.1) and consider-
ing problem (4.6), a threshold value "⇤ > 0 exists such that for every " 2 (0, "⇤],
every Clarke–Jahn stationary point x̄ of problem (4.6) is stationary (according
to Definition 4.1.1) for problem (4.1).

We will get back soon with the proof of the result stated above.

Now we report the algorithm adopted for solving problem (4.6), which is ob-
tained from Algorithm DSNsimple by replacing F with Z" for given " > 0.

Algorithm DSNcon

Data. Choose x0 2 X , ✓ 2 (0, 1), A � 0 stepsize lower bound,
↵̃0 2 (A,+1), {dk}k as in Algorithm DSNsimple.

Step 0. k = 0.

Step1. Compute ↵k and ↵̃k by the Projected Continuous Search.

Step2. If ↵k = 0 then set ↵̃k+1 = max{A, ↵̃k}

Else set ↵̃k+1 = ↵k and xk+1 = [xk + ↵̃kdk][l,u].
Set k = k + 1 and go to Step 1.

In the following, the Projected Continuous Search is presented, which basi-
cally coincides with the one presented in the box-constrained framework, but F
is substituted by Z".
Following the same spirit adopted in the previous chapters, we denote

Z̃"(x) = F̃ (x) +
1

"

mX

i=1

max{0, hi(x)}

28

Projected Continuous Search(↵̃, y, p;↵, p+)

� > 0, � 2 (0, 1).

Step0. Set ↵ = ↵̃.

Step1. If Z̃"

⇣
[y + ↵p][l,u]

⌘
 Z̃"(y)��(↵)2 then set p+ = p and go to Step 4.

Step2. If Z̃"

⇣
[y � ↵p][l,u]

⌘
 Z̃"(y)��(↵)2 then set p+ = p and go to Step 4.

Step3. Set ↵ = 0, return ↵ and p+ = p.

Step4. Let � = ↵/�.

Step5. If Z̃"

⇣
[y + ↵p+][l,u]

⌘
> Z̃"(y)� �(�)2 return ↵, p+.

Step6. Set ↵ = � and go to Step 4.

Remark 4.2.3. Observe that Algorithm DSNcon can be used to solve the con-
strained problem (4.1) provided that the penalty parameter " is su�ciently
small, as the following proposition states.

Proposition 4.2.2. Let Assumption 8 hold and let {xk}k be the sequence pro-
duced by Algorithm DSNcon. Let x̄ be any limit point of {xk}k and K be the
subset of indices such that

lim
k!+1,k2K

xk = x̄

If the subsequence {dk}k2K is dense in the unit sphere, then a threshold value
"⇤ exists such that for all " 2 (0, "⇤], x̄ is stationary for problem (4.1).

Proof. The proof follows from Propositions 3.2.5 and 4.2.1.

We saw that Proposition 4.2.1 was crucial for the convergence analysis of
the proposed algorithm.
In the following, we first introduce some technical results and then we will
proceed to prove Proposition 4.2.1.
We first prove that any Clarke stationary point of problem (4.6) is stationary
for problem (4.1). Then we give the proof of Proposition 3.6.

29

We begin by recalling, from [7], the definition of Clarke stationary point for a
bound constrained problem, namely, a point x̄ 2 X such that

Z
Cl
" (x̄, d) � 0 8 d 2 D(x̄)

Furthermore, we assume throughout this section that Assumption 8 holds.
In the following, a first key result is stated, whose proof can be found in [1].

Proposition 4.2.3. Given problem (4.1) and considering problem (4.6), a
threshold value "⇤ > 0 exists such that, for every " 2 (0, "⇤], the function Z" has
no Clarke stationary points in X \ H.

Now we report three further results concerning the exactness of Z"(x) from
[12].

Proposition 4.2.4. A threshold value "⇤ > 0 exists such that for any " 2 (0, "⇤],
every local minimum point of problem (4.6) is also a local minimum point of
problem (4.1).

Proposition 4.2.5. A threshold value "⇤ > 0 exists such that for any " 2 (0, "⇤],
every global minimum point of problem (4.6) is also a global minimum point of
problem (4.1), and conversely.

In order to give stationarity results for problem (4.6), we have the following
proposition.

Proposition 4.2.6. For any " > 0, every Clarke stationary point x̄ of problem
(4.6), such that x̄ 2 H, is also a stationary point of problem (4.1).

Proof. Since x̄ is, by assumption, a Clarke stationary point of problem (4.6),
then, by definition of Clarke stationarity, we know that for all d 2 D(x̄),

max
�
⇠T d : ⇠ 2 @Z"(x̄)

� 0

that is, for all d 2 D(x̄) there exists ⇠d 2 @Z"(x̄) such that (⇠d)T d � 0. Now,
we recall that

@Z"(x) ✓ @F (x) +
1

"

X

i2I(x)

�i@hi(x)

for some �i, i 2 I(x), such that
P

i2I(x)�i = 1 and �i � 0 for all i 2 I(x).
Hence, we have that ⇠d 2 @F (x̄) + 1

"

P
i2I(x̄)�i@hi(x̄). Then, denoting �i =

�i/", i 2 I(x̄), we can write for all d 2 D(x̄),

max

(
⇠T d : ⇠ 2 @F (x̄) +

mX

i=1

�̄i@hi(x̄)

)
� 0

Finally, we can prove Proposition 4.2.1.

30

Proof of Proposition 4.2.1. Since x̄ is Clarke-Jahn stationary for problem (4.6),
we have, by definition,

Z
�

" (x̄, d) � 0 8 d 2 D(x̄). (4.7)

Then, we have that

lim sup
y!x̄

Z"(y + td)� Z"(y)

t
= Z

Cl
" � Z

�

" 8 d 2 D(x̄),

which, by (4.7), gives,

Z
Cl
" (x̄, d) � 0 8 d 2 D(x̄).

Now, the proof follows by considering Proposition 4.2.3 and Proposition 4.2.4.

31

Chapter 5

Numerical illustration

In this section, we evaluate the performance of the proposed algorithms on a
collection of nonlinear bilevel optimization problems. The proposed algorithms
were implemented in Python.
In our implementation, the lower-level problem is solved using the command
minimize from the library scipy.optimize. For the lower-level problem, the
tolerance ✏ was set to 10�3. The solvers were evaluated using groups of small-
scale bilevel optimization problems which were built from scratch. In particular,
quadratic strictly convex functions (in the variable (x, y)) were chosen for both
upper and lower-levels for the first group of 30 problems. The dimensionality
of the tested instances for the first collection of problems, with respect to the
upper-level problem, did not exceed 3 variables.
Later on, the performance of the proposed algorithms will be tested on another
stack of 15 problems, where quadratic strictly convex functions are used for both
upper and lower-levels, but here it is explored a higher dimensionality, namely
4, 5, 6, with respect to the upper-level variable.

Algorithm DSS, Algorithm DSNsimple, and Algorithm CS-DSN were com-
pared with MADS, a Mesh Adaptive direct-search method, in particular with
the Orthomads version which uses a modified variant of MADS with orthogonal
search directions. This variant di↵ers from the classic version as the polling
directions are chosen deterministically, ensuring that the results of a given run
are repeatable and it only performs poll steps.
Since both Algorithm DSNcon and Orthomads rely on the same penalization
approach and the same convergence theory (i.e the notion of stationarity in
terms of the Clarke-Jahn directional derivatives), Algorithm DSNcon was not
compared in the process as we could expect the same results we will obtain
comparing Algorithm DSNsimple and Orthomads.

The computational analysis is carried out by using well-known tools from
the literature, that is data and performance profiles (see, e.g., [8] for further
details). We briefly recall their definitions. Given a set S of algorithms and

32

a set P of problems, for s 2 S and p 2 P , let tp,s be the number of function
evaluations required by algorithm s on problem p to satisfy the condition

F̃ (xk) F̃low + ↵(F̃ (x0)� F̃low),

where ↵ 2 (0, 1) and F̃low is the best objective function value achieved by
any solver on problem p.

Then, the performance and data profiles of solver s are defined as follows:

⇢s(�) =
1

|P |

����

⇢
p 2 P :

tp,s
min{tp,s0 : s0 2 S}

 �

����� ,

and

ds() =
1

|P |
|{p 2 P : tp,s (np + 1)}| ,

where np is the dimension of problem p. We used a budget of 1000 upper-
level function evaluations in our experiments.
In the following, we compare separately our algorithms with Orthomads.
The parameters during the optimization were set as follows:

• ✓ = 1
2 , � = 1

2 , � = 10�3,

• ↵̃i
0 = min

�
1, |xi

0|

where x0 is the upper-level starting point for Algorithm

DSS and with xi
0 we denote the i-th component,

• ↵̃0 = min
n
1,min

i
{|xi

0|}

o
for Algorithm DSNsimple, Algorithm CS-DSN,

• The parameter ↵ that rules the reasonable optimality of the solver on a
given problem in (5) is set to 10�3,

• In Algorithm DSNsimple, Algorithm CS-DSN we implemented a mapping
based on the Sobol sequence, which is a pseudorandom generator widely
used in practice.

Figure 5.1: Performance and Data Profiles when Algorithm DSS and Orthomads
are compared on the first 30 problems, where n is at most 3.

33

The plots above bring with them remarkable information about how Algo-
rithm DSS performs.
The data profile plot highlights that Algorithm DSS performs better than Or-
thomads, as it is able to solve most of the problems in the sense of (5). Algorithm
DSS looks quite e�cient in small dimensions but we should not expect such ef-
fectiveness on higher dimensions, because it is a method whose performances
are strongly related to the smoothness of the objective F . On the contrary, Or-
thomads instead relies on the notion of Clarke directional derivatives, and the
convergence to a stationary point is guaranteed in a generic nonsmooth frame-
work.
In a generic nonsmooth framework, we should not expect Algorithm DSS to
perform well. Indeed, the possibility of reducing the objective function along at
least a coordinate direction at each iteration relies completely on the smooth-
ness of F .
In small dimensions, however, even in a nonsmooth context, the explorable space
is not wide at all, hence the directions ±e1, ...,±en s capture the local behavior
of the objective function.
Moreover, most of the first 30 problems have in the lower-level a quadratic
function which is strictly convex in the variable y, and the Implicit Function
Theorem ensures that the true solution of the lower-level y(x) is regular, at the
least locally. This combined with the choice of smooth upper-level functions
lends us the regularity required for the function F of the reduced-upper-level
formulation necessary from a theoretical point of view from Algorithm DSS.
The performance profile plot shows that Algorithm DSS performs better than
Orthomads overall on the first 30 problems.

The following plot compares Algorithm DSNsimple and Orthomads on the same
collection of 30 problems.

Figure 5.2: Performance and Data Profiles when Algorithm DSNsimple and
Orthomads are compared on the first 30 problems, where n is at most 3.

In small dimensions, Algorithm DSNsimple performs better the Orthomads.
In higher dimensions, we should not expect a drop in performance.
Indeed, we derived our explorable direction from a Sobol sequence, inheriting
all the suitable properties.

34

In particular, Sobol sequences are an example of quasi-random low-discrepancy
sequences, meaning that they cover the space uniformly.
As a consequence, Algorithm DSNsimple does not leave large feasible cones un-
explored.
Orthomads relies as well on a dense sequence in the unit sphere as search direc-
tions, and it uses at each iteration an orthogonal positive spanning set of polling
directions in order to avoid large angles between the 2n directions.

As anticipated, we built another collection where the dimension n of the upper-
level gets higher, namely 5 problems where n = 4, 5 problems where n = 5,
and 5 problems where n = 6. At least theoretically, we should expect a drop in
performance from the first algorithm in favor of Orthomads. In the following,
we compare Algorithm DSS with Orthomads.

Figure 5.3: Data Profiles when Algorithm DSS and Orthomads are compared
on the new collection of problems.

As we could expect, Algorithm DSS is not a good candidate to solve these
kind of problems. Now we test the performance of Algorithm DSNsimple on the
new stack of problems.

Figure 5.4: Performance and Data Profiles when Algorithm DSNsimple and
Orthomads are compared on the new collection of problems.

The line search-based approach in Algorithm DSNsimple is able to guarantee
convergence toward stationary points of the nonsmooth problem, provided that

35

suitable sequences of search directions {dk} are dense in the unit sphere.
In the second algorithm, a Sobol sequence was considered, opportunely scaled,
and translated to ensure the explorable directions lie on the unit sphere.

Algorithm CS-DSN works like Algorithm DSNsimple, but before exploring
a direction of the dense prescribed sequence, it performs a line search on the
coordinate direction.
The search is performed on the positive spanning set ±e1, ...,±en and for a
general predefined set of directions, we should expect the algorithm to leave less
feasible convex cones unexplored, and hence, to perform better.
However, here we are considering a set of explorable directions that allows us
to cover uniformly the space, so a better performance from Algorithm CS-DSN
is not expected at all.

Figure 5.5: Performance and Data Profiles when Algorithm CS-DSN and Or-
thomads are compared on the new collection of problems.

The plots confirm our intuition, as it is shown Algorithm CS-DSN performs
well but does not achieve better results than Orthomads on our 15 problems.

36

Chapter 6

Conclusions

In this work, we proposed a direct-search approach for bilevel optimization,
under the assumption that we have access to the lower-level minimizer up to
a bounded numerical error. In particular, we adopted a line search approach
based on a su�cient decrease condition.
In the first part of the thesis, we considered problems with only bound con-
straints on the upper-level variables and we proposed three di↵erent algorithms
for their solution. Both smooth and nonsmooth frameworks were considered
when no first-order information was available.
The main e↵ort was proving that every accumulation point of the sequence of
iterates produced by the algorithms is stationary according either to a gradient-
related condition or the Clarke–Jahn one.
In the second part of the thesis, we also allowed the presence of nonlinear in-
equality constraints. We introduced, motivated by the previous case treated,
the use of an exact penalty function to transform the given problem into a
bound-constrained one, which is solved by adapting the method proposed for
the bound-constrained case. Similarly to the bound-constrained case, we were
able to prove again that every accumulation point of the generated sequence of
iterates is Clarke stationary for the original constrained problem.
Finally, we compared the proposed methods with MADS on two test sets of
bound-constrained and nonlinearly constrained nonsmooth problems. The pro-
posed algorithms are parameter-free, hence there is no need to properly set them
to ensure convergence of the methods. However, a di↵erent choice of these pa-
rameters might boost the e�ciency of our methods. During the thesis, the main
e↵ort was to bring some algorithms that fit in di↵erent frameworks, together
with a convergence guarantee, so we did not focus on the optimal choice of the
predefined parameters that appear in the proposed methods. Future develop-
ments will target the choice of the parameters. Also numerical comparisons
with recent zeroth order smoothing-based approaches will be considered.

37

Bibliography

[1] Fasano, Giovanni & Liuzzi, Giampaolo & Lucidi, Stefano & Rinaldi,
Francesco. (2014). A Linesearch-based Derivative-free Approach for Nons-

mooth Constrained Optimization. SIAM Journal on Optimization. 24. 959-
992. 10.1137/130940037.

[2] A. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free

Optimization, MPS/SIAM Ser. Optim., SIAM, Philadelphia, 2009.

[3] C. J. Lin, S. Lucidi, L. Palagi, A. Risi, and M. Sciandrone, Decomposition

algorithm model for singly linearly-constrained problems subject to lower and

upper bounds, J. Optim.Theory Appl., 141 (2009), pp. 107-126.

[4] J. B. Hiriart-Urruty, On optimality conditions in nondi↵erentiable program-

ming, Math. Program., 14 (1978), pp. 73–86.

[5] O. L. Mangasarian, Nonlinear Programming, Classics in Applied Mathemat-

ics, SIAM, Philadelphia, 1994.

[6] Michael I Jordan, Guy Kornowski, Tianyi Lin, Ohad Shamir, and Mano-
lis Zampetakis. Deterministic nonsmooth nonconvex optimization. arXiv
preprint arXiv:2302.08300, 2023.

[7] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons,
New York, 1983.

[8] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algo-

rithms. 20:172–191, 2009.

[9] K. Shimizu, Y. Yshizuka, and J. F. Bard, Nondi↵erentiable and Two-Level

Mathematical Programming, Kluwer Academic Publishers, Norwell, MA,
1997.

[10] Y. Yshizuka and K. Shimizu, Necessary and su�cient conditions for the

e�cient solutions of nondi↵erentiable multi-objective problems, IEEE Trans.
Systems Man Cybernet., 14 (1984), pp. 624–629.

[11] O. L. Mangasarian, Nonlinear Programming, Classics in Applied Mathe-

matics, SIAM, Philadelphia, 1994.

38

[12] G. Di Pillo and F. Facchinei, Exact barrier function methods for Lipschitz

programs, Appl. Math. Optim., 32 (1995), pp. 1–31.

[13] Abramson, Mark & Audet, Charles & Dennis, J. & Le Digabel, Sébastien.
(2009). OrthoMADS: a deterministic MADS instance with orthogonal direc-

tions. SIAM Journal on Optimization.

[14] Lucidi, S., Sciandrone, M. A Derivative-Free Algorithm for Bound Con-

strained Optimization. Computational Optimization and Applications 21,
119–142 (2002).

[15] Charles Audet. A survey on direct-search methods for blackbox optimiza-

tion and their applications. Springer, 2014.

[16] Kolda, Tamara & Lewis, Robert & Torczon, Virginia. (2003). T.G. Kolda,
R.M. Lewis, V. Torczon: Optimization by direct-search: New perspectives

on some classical and modern methods. SIAM Review 45, 385-482. SIAM
Review. 45. 385-482. 10.1137/S003614450242889.

[17] Lin, Tianyi & Zheng, Zeyu & Jordan, Michael. (2022). Gradient-Free Meth-

ods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization.
10.48550/arXiv.2209.05045.

39

