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Chapter 1

Introduction

1.1 Historical aside on epidemics

The history of epidemics is an ever fascinating area; from past to nowadays a
lot of people have been interested in diseases development and their influence
upon human kind because of the difficulty of foreseeing possible conseguences
of the spread of dangerous diseases. The study of epidemic, recently, has
come up with a huge number and variety of models and explanations for the
spread and cause of epidemic outbreaks, and, in this work, we will see and
try to analyze some of them.

The Black Death, in the 14th century, is just the most famous epidemic
historically and we will briefly talk about it some pages forward in (Section
5.2). Moving across the Ataltic Ocean, the first major epidemic in the
U.S.A. was the Yellow Fever epidemic in Philadelphia in 1793 in which about
5’000 people died out of a population of around 50’000, although estimates
suggest that about 20’000 fled the city [6]. Another episode of epidemic
is described by Thucydides, the Plague of Athens (430-428 BC) wich has
exercised classical scholars for very long time; one of the interesting aspects
of this disease is that there is no mention of person-to-person contagion wich
now we accept so freely; this can give an idea of how much our comprehension
of these aspects have greatly improved from time ago, also thanking to the
study of mathematical models.

Only since the end of World War II, public health strategy has focused
on the elimination and control of organism wich causes disease. The advent
of new antibiotics changed the whole ethos of disease control. Another past
scientists conviction was that microbes were biologically stationary targets
and hence would not mutate in resistance to drugs and other biological influ-
ences. This wrong belief started to change after the emergence of microbes
that could swim in a pool of bleach, grow on a bar of swoap, and ignore
doses of penicillin larger than those effective in the 1950’s.

Another aspect in the current spread of diseases is with the modern era
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of transportation, allowing more than a million people a day to cross interna-
tional borders; the threat of a major outbreak of exotic diseases is very real.
Modelling and historians can play an increasingly significant role also in this
side. Models can be extremely useful in giving reasoned estimates for the
level of vaccination for the control of directly transmitted infectious diseases
and their use in immunology and virology is also growing very quickly.

There are four main disease-causing microrganisms: viruses, bacteria,
parasites and fungi. In this work we will see some models for the population
dynamics of disease agents, this does not mean the inclusion of all possible
effects, but rather the incorporation in the model mechanism, in a simple
way as possible, of what appear to be the major components.

The classical theorical papers on epidemic models by Kermack and McK-
endrick (1927, 1932, 1933) have had a major influence in the development
of mathematical models and are still relevant in a surprising number of epi-
demic simulations, as we will see soon in the later chapters.

1.2 Mathematical modeling of infectious diseases

A disease is infectious if the causive agent, whether a virus, bacterium,
protozoa, or toxin, etc., can be passed from one host to another through
modes of transmission such as direct physical contacts, arial droplets, water
or food, disease vectors, mother to newborns, etc, [12].

The objective of a mathematical model of an infectious disease is to
simulate the transmission process of the disease, which can be described
generally as follows: when infectious individuals are introduced into a group
of susceptibles, the disease is passed to other individuals through its modes
of transmission, and the disease spreads in the group. If the number of
infected individuals explodes in a short period of time, an epidemic occurs.
Infected individuals recover from infection, either through treatment or due
to action of the immune system, and gain varios degree of acquired immunity
against the infection. When the pool of susceptible individuals is depleted,
new infections will stop, and the epidemic slows down and stops. If fresh
susceptibles are added to the group, either from birth or migration, or if the
reinfection is easy, then epidemic may last very long, and the infection may
persist in the group over a long period of time. In this case, the disease is
said to be endemic in the group. If the disease spreads to a large geographic
area, far beyond the location of initial occurrence, we say that a pandemic
occurs.

Why is mathematical modeling of infectious diseases useful? Part of
the reason is that traditional methods using experimental and statistical
approaches may not be adequate for various aspetcs:

• Infectious diseases often affect a large population of individuals over
a large geographic area. Experiments conducted in laboratories are



often inadequate simply because of the huge difference in scales.

• For infectious diseases of humans, large scale experiments may be im-
possible or unethical.

• Existing data sets about the disease may not be complete or accurate
for the statistical analysis to be reliable.

By comparing the model outcomes with existing knowledge or data of the
disease, we can use the model to test various hypotheses about the disease.
There are often many issues associate with mathematical modeling:

• Due to our limited knowledge about infectious disease, realistic as-
sumptions about its transmission process are not always possible.

• Model validation using disease data may be difficult or almost impos-
sible.

• Mathematical analysis of the model may be limited by the existing
mathematical theory.

There is always a trade-off in mathematical modeling between more real-
istic models and our ability to analyze mathematically the model and obtain
useful informations. There are three general approaches to model infectious
diseases:

• Statistical models, constructed to deal with a specific set of data.

• Deterministic models, use differential and difference equations of var-
ious forms. These are good for making predictions, but also are not
expect to be valid if the population size can become very small.

• Stochastic models, populations are treated as stochastic processes.
This decision is suitable for small groups, but mathematical analy-
sis is difficult.

In this work we only discuss deterministic models, but take in mind
that the probability that the last few infected individuals will infect another
person is not deterministic and so in these cases this type of models is not
accurate and, as seen above, we would have to use a stochastic model.





Chapter 2

Modeling of epidemics

2.1 Kermack-McKendrick simple model

Almost since the beginning of recorded history there have been epidemics.
An epidemic may be described as a sudden outbreak of a disease that infects
a substantial portion of the population in a region before it disappears. One
of the question that first attrached the attention of scientists interested in
the study of the spread of communicable diseases was why diseases would
suddenly develop in a community and then disappear just as suddenly with-
out infecting the entire community. If a small group of infected is introduced
into a large population, a basic problem is to describe the spread of the in-
fection within the population as a function of time. And this is what this
work briefly tries to explain.

W.O. Kermack and A.G. McKendrick [11] formulated a model with the
population divided into compartments, namely a susceptible class S, who can
catch the disease; an infective class I, who have the disease and can transmitt
it; and a removed class R, those who have either had the disease, or are
recovered, immune or isolated until recovered. The progress of individuals
in this system is schematically represented by (Figure 2.1):

Fig. 2.1:

Transfer dia-
gram for SIR
model.
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Before introducing the equations of this model, we have to make some
assumptions about the transmission process of the infection and incubation
period:

• The mode of transmission is horizontal, through direct contact between
hosts.

• The mixing of individual hosts is homogeneous and thus the Law of
Mass Action holds: the number of contacts between hosts from dif-
ferent compartments depends only on the number of hosts in each
compartment.

• Rates of transfer from a compartment are proportional to the popula-
tion size of the compartment.

• The incubation period is short enough to be negligible, so individuals
become infectious upon infection.

• There is no loss of immunity and no possibility of reinfection.

• No input of new susceptibles and no removal from any compartments.

• The total host population remains a constant.

With these assumptions, we illustrate the transmission progress in a
transfer diagram

S =⇒ I =⇒ R

and the differential equations that describe this model are:

(2.1) dS
dt

= −λIS

(2.2) dI
dt

= λIS − γI

(2.3) dR
dt

= γI,

with initial conditions

S(0) = S0 > 0, I(0) = I0 > 0, R(0) = 0.

Where λ > 0 is the infection rate and γ > 0 the removal rate of infectives.
We are of course interested only in nonnegative solutions for S, I, R. This
is a basic model but, even so, we can make some highly relevant general
comments about epidemics and adequately describe some specific epidemics
with such a model.



Some of these observations are listed above:

• Let
N(t) = S(t) + I(t) +R(t)

denote the total host population; then, by adding (2.1)-(2.3), we have

dN

dt
= 0

and thus N(t) = N0 = S0 + I0 is a constant.

• From (2.1) we have

dS

dt
≤ 0.

Therefore,
S(t)

is always decreasing, in particular S(t) ≤ S0.

• Rewrite equation (2.2) as

(2.4)
dI

dt
= (λS − γ)I.

We start defining ρ = γ
λ
, that is sometimes called the realtive removal

rate,then, we have the following two cases:

– If S0 < ρ, then dI
dt

∣

∣

t=0
< 0. Since S(t) ≤ S0 < ρ, we know

I ′(t) < 0 for all t ≥ 0, thus I(t) strictly decreases. As a result,
no epidemics can occur in this case.

– If S0 > ρ, then S(t) > ρ for t ǫ [0, t) for some t > 0. This implies
I ′(t) > 0 and thus I(t) strictly increases for t ǫ [0, t). As a result,
an epidemic happens.

This demostrates the well-known threshold pehenomenon: there is a
threshold value S0 that population size must exceed for an epidemic to
occur. Later, in (Chapter 3), we will deeper discuss this aspect.

An important parameter is



R0 =
S0

ρ

where R0 is the basic reproduction rate of the infection, that is the number
of secondary infections produced by one primary infection in a whole suscep-
tible population. Here 1

γ
is the average infectious period. If more than one

secondary infection is produced from one primary infection, that is, R0 > 1,
clearly an epidemic ensues.

Clearly one way to reduce the reproduction rate is to reduce the number
of suceptibles, S0. Vaccination is the more common method of doing this
and it has been successful in eradicating smallpox. Vaccination not only
provides protection for the individual, it also provides it for the community
at large since it keeps the effective reproduction rate below the level which
would allow an epidemic to start. This is the so-called ”herd immunity” .
The point is that once the threshold herd immunity level of R0 has been
reached and memory of former diseases fades, there is the possibility that
people will not have their children vaccinated but have a free ride instead,
namely, the unvaccinated have effectively the same immunity. However, the
important thing to keep in mind is that an epidemic can start and rise very
quickly if the reproduction rate increases beyond the critical value for an
epidemic.

We can derive some useful analytical results from this simple model.
From (2.1) and (2.2)

(2.5)
dI

dS
= −

(λS − γ)I

λSI
= −1 +

ρ

S
, ρ =

γ

λ
, (I 6= 0).

The singularities all lie on the I = 0 axis. We can obtain from (2.4) the
phase plane trajectories as

(2.6) I + S − ρln(S) = constant = I0 + S0 − ρln(S0).

If an epidemic exists we would like to know how much severe it will be,
though what portion of the population size will catch the disease. From
(2.4) the maximum I, Imax, occurs at S = ρ where dI

dt
= 0. From (2.6), with

S = ρ,

(2.7) Imax = ρlnρ− ρ+ I0 + S0 − ρlnS0 = N − ρ+ ρln ρ
S0
.

It may not necessarily be a severe epidemic as is in the case of I0 close
to Imax.

Since the axis I = 0 is a line of singularities, on all trajectories I → 0 as
t → ∞. From (2.1) and (2.3),



Fig. 2.2: Phase trajecto-
ries in the susceptibles (S)
- infectives (I)

(2.8) dS
dR

= −S
ρ

⇒ S = S0e
−

R
ρ ≥ S0e

−
N
ρ > 0

⇒ 0 < S(∞) ≤ N.

Infact from (Figure 2.2), 0 < S(∞) < ρ. We then get the total number
of susceptibles who catch the disease in the course of the epidemic as

Itotal = I0 + S0 − S(∞).

An important implication of this analysis is that the disease dies out
from a lack of infectives and not from a lack of susceptibles.

The threshold result for an epidemic is directly related to the relative
removal rate, ρ : if S0 > ρ an epidemic ensues, whereas it does not if S0 < ρ.
For a given disease, the relative removal rate varies with the community and
hence determines whether an epidemic may occur in one community and
not in another one. For example, if the density of susceptibles is high and
the removal rate, γ, of infectives is low then an epidemic is likely to occur.

2.2 Real epidemics and simulations comparison

Real epidemics



Now we will see two examples of real past epidemics and then com-
pare their set of data to Matlab R© simulations that describe the Kermack-
McKendrick model.

Bombay Plague Epidemic, 1905-1906

This plague epidemic lasted for almost a year. The number of removed
persons per week, that is dR

dt
, was approximately equal to the number of

deaths per week. The epidemic was not severe (relatively to population
size) because it did not affect a large part of the population.

Influenza Epidemic in an English Boarding School, 1978

This is a case of flu epidemic in a school with 763 boys. It seems that
one infected boy initiated the epidemic, that is one of the requirements of
the model we analyzed in the last section. The epidemic was severe because
it interested almost all the boys of the school, [6].

(a) (b)

Fig. 2.3: (a) Bombay plague epidemic. Comparison between data (•) and
theory (◦), (b) Influenza epidemic data (•) for a boys’ boarding school.



Matlab R© simulations and comments

Using Matlab R© we can implement a program that can solve Kermack-
McKendrick differential equations and plot some graphs about trends of
susceptibles, infectives and recovereds.

Here the code of the program for this simple model:

function [t,S,I,R] =ke_mck()

%Solve SIR equation in Matlab

% to have an epidemy, gamma/lambda must be < S0

lambda=0.002; % infection rate

gamma=0.4; % removal rate

%initial conditions

N=1000; % population size

I0=1; % infectives

S0=N-I0; % susceptibles

tmax=20;

S=S0;

I=I0;

R=N-S-I; % removed, for death or for recovery

tt=[0 tmax];

% The main iteration

[tt,x]=ode45(@diff_SIR,tt,[S I R],[],[lambda gamma]);

S=x(:,1);

I=x(:,2);

R=x(:,3);

% plots the graphs of S,I,R

subplot(2,1,1);

plot(tt,S,’g’,tt,R,’k’);

grid on;

xlabel(’Weeks’);

ylabel(’Persons’);

legend(’Susceptibles’,’Recovered’);

axis([0 tmax 0 N]);

subplot(2,1,2);

plot(tt,I,’r’);

grid on;

xlabel(’Weeks’);

ylabel(’Persons’);

legend(’Infectives’);

axis([0 tmax 0 N]);

%plots the phase plane trajectories of S - I

figure;

plot(S,I);

grid on;

axis([0 N 0 N]);

hold on;

n=[0 N];

y=I0+S0-n;

plot(n,y,’r’);

xlabel(’Susceptibles’);

ylabel(’Infectives’);

legend(’I=f(S)’,’S+I=N’);

axis([0 N 0 N]);



% Calculates the differential rates used in the integration

function dx=diff_SIR(tt,x,parameter)

lambda=parameter(1);

gamma=parameter(2);

S=x(1);

I=x(2);

R=x(3);

dx=zeros(3,1);

dx(1)=-lambda*S*I; % first equation

dx(2)=lambda*S*I-gamma*I; % second equation

dx(3)=gamma*I; % third equation

In which has been used the function ode45 for the resolution of the
differential system and we have started the simulation from initial conditions
where population size was of 1′000 people in which was introduced a first
infected host. Of course we can change these values and parameters, λ and
γ, ones to get different trends and situations.

The graphs we get out from this simulation are:
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Fig. 2.4: Graphs plotted by Matlab R© program: (a) Phase plane trajectory,
(b) S-I-R trends.

From (Figure 2.4) we can notice similarities to (Figure 2.3) and so it
is simple to demonstrate that even if the Kermack-McKendrick is a very
simple model to describe an epidemic, it is quite good in particular cases
that follows the assumptions we made in the beginning of (Chapter 2).

2.3 Demography and routes of transmission

Demography

If a disease is not of short duration, then (2.1), the equation for the
susceptibles, should include birth and death terms. Mortality due to natural



Fig. 2.5:

Transfer di-
agram for
SIR model
with demo-
graphical
factors.

causes should also be included in equation (2.2), for the infectives, and in
(2.3), for the removed class.

To add demographical factors into the Kermack-McKendrick model, we
need to make some assumptions on the birth, death, and growth rates of the
host population; the simplest of wich is the proportional assumption that
the birth or death rate are proportional to the population size. A model
that incorporates these assumptions is depicted in (Figure 2.5) with the
corresponding system of differential equations.

(2.9) dS
dt

= bN(t)− S(t)(λI(t) + d1)

(2.10) dI
dt

= λI(t)S(t)− (γ + d2)I(t)

(2.11) dR
dt

= γI(t)− d3R(t)

(2.12) N(t) = S(t) + I(t) +R(t).

Here b is the natural birth rate constant, d1, d2 and d3 are death rate
constants for compartments S, I, and R, respectively. Rate d2 may include
both natural and disease-caused death. If we add (2.9)-(2.11), we obtain

dN

dt
= bN(t)− d1S(t)− d2I(t)− d3R(t).

So this implies that N(t) will vary in time. In the particular case that
d1 = d2 = d3, we have

dN

dt
= (b− d)N(t)

and thus

N(t) = N0e
(b−d)t.
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Fig. 2.6: (a)Susceptibles and recovereds, infectives and deads trends ,(b)
Population size trend.

If b > d, N(t) → ∞ exponentially as t → ∞; if b < d, N(t) → 0
exponentially as t → ∞; if b = d, N(t) ≡ N0, a constant.

Using the Matlab R© program of the past section modified properly to
fit this new model that include also demography, we can implement and
simulate this new system of differential equations.

If we compare (Figure 2.6) with (Figure 2.4), differences made by the
implementation of demography in the model are very noticeable. First of
all we see that population size initially increases due to the number of sus-
ceptible newborns, that is bigger than the number of deads; but when the
epidemic ensues the situation changes rapidly and the population size begin
to fluctuate. After a while the situation stabilizes at a particular population
size and susceptibles, infectives value. This is clearly an example of endemic
because there still are some infectives in the population at the end of the
epidemic.

A general consideration we can make, is that from now, all other gener-
alized models using also demography, will be more fluctuating and instable
than the first simple Kermack-McKendrick model; we accept this because
better describes the real behaviour of an epidemic outbreak and the following
recovering stage.

Routes of transmission

In the SIR model, the infection is assumed to be through direct con-
tact of an infectious and a susceptible host. This is often called horizontal
transmission. Other modes of transmissions exist for many diseases. One of
them is vertical transmission in which the pathogens are passed to a new-
born or newly born directly from an infected mother. Example of diseases
that can be transmitted vertically include HIV/AIDS, ”Chargas” disease,



and Hepatitis B. To model vertical transmission, we assume that a fraction
p of the newborns from infected population becomes infected at birth, and
the remaining fraction (1−p) is susceptible. The following diagram, (Figure
2.7), illustrates a case with both horizontal and vertical transmissions.

Fig. 2.7:

Transfer di-
agram for
SIR model
with both
horizontal
and vertical
transmission.

Here, b · N is the total number of newborns with natural birth rate b,
p · b · I is the number of newborns who are infected at birth, (b ·N − p · b · I)
is the number of healthy but susceptible newborns.

2.4 Asymptomatic population and disease latency

Disease latency

Another generalization of the SIR model we are going to study, includes
also an hypothetical disease latency and incubation period. Many diseases
have a latent or incubation period, that means: when a susceptible has be-
come infected, namely some pathogens are introduced in the host organism,
he is not yet infectious, that is when a person could be considered conta-
gious. Measles, for example, has an 8 to 13 day latent period, or AIDS has
an incubation time from a few months to years. Infact, when the pathogens
accumulate in a sufficiently large number and when they have reached the
targeted organs, they begin to cause sufficient damage to the host body so
that the host becomes symptomatic, and the host is capable to transmit the
pathogens to other hosts. The period from the time of the infection to the
time of showing symptoms is called incubation period. Instead the period
from the time of infection to the time of being infectious is called latent
period.

To include these aspects to a mathematical model, the simplest way is to
divide the infected compartment into two compartments: a latent compart-
ment E and an infectious compartment I, and assume the transfer from E to
I satisfies the proportional rate assumption, namely, give by κE, with rate
constant κ. We have a new transfer diagram in (Figure 2.8) that describes
this new model also known as SEIR model.



Fig. 2.8:

Transfer di-
agram for
SEIR model.

Asymptomatic population

Some diseases have also an asymptomatic stage in which there is some
infectivity rather than there are no experienced symptoms. This may be
modeled by assuming infectivity reduced by a factor ǫA during an exposed
stage. The analogue transfer diagram of (Figure 2.8) so becomes like (Figure
2.9) and leads to a system of differential equations:

Fig. 2.9:

Transfer di-
agram for
SIR model
with disease
latency and
asymptomatic
stage, namely
SAIR model.

(2.13) dS
dt

= bN(t)− S(t)(λI(t) + λǫAA(t) + d1)

(2.14) dI
dt

= κA(t) − (γ + d2)I(t)

(2.15) dR
dt

= γI(t)− d3R(t)

(2.16) dA
dt

= S(t)(λI(t) + λǫAA(t))− (κ+ d4)A(t).

Where we have used A(t), for asymptomatic, in place of E(t) as one
of the compartments. In the system we can see the proportionality of the
reducing infectivity factor to the asymptomatic population size, that, as the
other compartments, has a her own death rate d4.

Using the Matlab R© program properly modified to fit this new model,
we can implement these new equations that considers also disease latency
and asymptomatic population. Next page we can see the graphs plotted by
the simulation.
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Fig. 2.10: (a)Susceptibles and recovereds, infectives and asymptomatics
trends ,(b) Population size and deads trends.

Analyzing (Figure 2.10), we can see that there are a lot of asymptomatics,
but indeed only a minor part of them are really infectives; this is not strange,
infact we can explain this looking at (2.13)-(2.16). It’s obvious that only
a fraction κ of the asymptomatic population becomes infective, while the
remaining part is stuck in the A compartment because they were not really
asymptomatic but simple susceptibles.

2.5 Public health: isolation and quarantine

An actual epidemic differs considerably from the idealized models, as was
shown by the SARS epidemic of 2002-2003. Some noticeable differences are:

• Diagnosed infectives may be hospitalized, both for treatment and to
isolate them from the rest of the population.

• Contact tracing of diagnosed infectives may identify people at risk of
becoming infectives, who may be quarantined (instructed to remain
at home and to avoid contacts) and monitored, so that they may be
isolated immediately if and when they become infectives.

• Isolation may be imperfect; in-hospital transmission of infection was a
major problem in the SARS epidemic.

All these generalizations have been considered in studies of the SARS
epidemic of 2002-2003. While these ideas were suggested in SARS mod-
elling, though they are anyway relevant to any epidemic. When no vaccine
is available, isolation and quarantine are the main measures available for
attempting to manage an outbreak of a new disease. We assume that an
epidemic has started, but that the number of infectives is small and almost



all members of the population are still susceptibles, and we formulate a
model to describe the course of an epidemic when management measures
are begun under the following assumptions:

• Asymptomatic members may be infectives with infectivity reduced by
a factor ǫA, 0 ≤ ǫA < 1.

• Asymptomatic members who are not isolated become infectives at rate
κ1.

• We introduce a class Q of quarantined members and a class J of iso-
lated members.

• Asymptomatic members are quarantined at a rate µ1A (in practice,
a quarantine will also be applied to many susceptibles, but we ignore
this in the model). The effect of this assumption is that some suscep-
tibles make fewer contacts than the model assumes. Quarantine is not
perfect, but reduces the contact rate by a factor ǫQ.

• There may be transmission of the disease by isolated members, with
an infectivity factor of ǫJ .

• Infectives are diagnosed and isolated at a rate µ2I. In addition, quar-
antined members are monitored and isolated immediately when they
develop symptoms, at a rate κ2Q.

• Infectives leave the infective class at rate γ1I and isolated members
leave the isolated class at rate γ2J .

• Every compartment has a death rate d1, d2, d3, d4, d5, d6 respectively
for S, I,R,A,Q, J .

These assumptions lead to the SAQIJR model, that may describe in a
quite good way the outbreak of an epidemic with public health management
measures:

(2.17) dS
dt

= bN(t)− S(t)(λI(t) + λǫAǫQQ(t) + λǫAA(t) + λǫJJ(t) + d1)

(2.18) dI
dt

= κ1A(t)− (γ1 + µ2 + d2)I(t)

(2.19) dR
dt

= γ1I(t) + γ2J(t)− d3R(t)

(2.20) dA
dt

= S(t)(λI(t) + λǫAA(t) + λǫAǫQQ(t) + λǫJJ(t))− (κ1 + µ1 + d4)A(t)

(2.21) dQ
dt

= µ1A(t)− (κ2 + d5)Q(t)

(2.22) dJ
dt

= κ2Q(t) + µ2I(t)− (γ2 + d6)J(t).



Fig. 2.11: Transfer
diagram for
SAQIJR model.

The model, before management measures are begun, is (2.13)-(2.16), the
special case, with

µ1 = µ2 = κ2 = γ2 = d5 = d6 = 0, κ1 = κ, γ1 = γ,

of (2.17)-(2.22).

This model is equivalent to the SARS model of [1] except for the lack of
an extension to a general contact rate in place of standard incidence.

Using the Matlab R© program properly modified with these new assump-
tions, we can implement this new model that considers also improvements
made by public health. Here the graph plotted by the simulation:
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Fig. 2.12: (a)Susceptibles and recovereds, infectives and asymptomatics
trends ,(b) Population size and deads, isolateds and quarantineds trends.



So we can understand, as we hoped, that the number of deads and of the
infectives has decreased from the last simulation we did, (Figure 2.10), thus
improvements made by public health management measures are essentials.
Another way to fight against the outbreak of an epidemic is vaccination, but
we will see this particular case in the next section.

2.6 Vaccination and acquired immunity

Vaccination

If a vaccine is available for a disease that threatens an epidemic out-
break, a vaccinated class, that is protected at least partially against infec-
tion, should be included in a model. While this is probably not relevant for
an outbreak of a new disease, it would be an important aspect for modeling
for example an influenza outbreaks or a bioterrorist outbreak of smallpox.
By immunizing a large portion of the susceptible host population before or
at the beginning of the disease outbreak, we can reduce the initial number
S0 of susceptibles to a level that is below the threshold γ

λ
and so no epidemic

will occur.

To model this new situation, we add the assumption that in a unit of
time a fraction ϕ of the susceptible class is vaccinated. The vaccination may
reduce but not completely eliminate susceptibility to infection. We model
this by including a factor σ, 0 ≤ σ ≤ 1, in the infection rate of vaccinated
members, with σ = 0 meaning that the vaccine is perfectly effective and
σ = 1 meaning that the vaccine has no effect. We assume also that the
vaccination loses effect at a proportional rate θ. We describe the new model
by including a vaccinated class V , with a trasfer diagram (Figure 2.13) and
a system of differential equations:

Fig. 2.13:

Transfer di-
agram for a
vaccination
model.



(2.23) dS
dt

= bN(t) + θV (t)− S(t)(λI(t) + ϕ+ d1)

(2.24) dI
dt

= I(t)(λS(t) + λσV (t)− γ − d2)

(2.25) dR
dt

= γI(t)− d3R(t)

(2.26) dV
dt

= ϕS(t)− V (t)(λσI(t) + θ + d4).

There are essentially two different scenarios:

• The first is an outbreak of a new disease for which a vaccine (suppos-
edly developed originally for some other diseases) is available. Then
the population would not have been vaccinated before the beginning
of the disease outbreak and we would take S0 = N0 where N0 is the
whole opulation, and V0 = 0.

• The second scenario is the outbreak of a disease against which the
population has been prevaccinated; in this case we would assume that
the population size has reached the disease-free equilibrium of (2.23)-
(2.26); namely,

S = θ
θ+ϕ

N0, V = ϕ
θ+ϕ

N0.

And these two different initial conditions determine variations on the
reproduction number, that we will analyze in the Threshold analysis chapter,
(Chapter 3).

Using the Matlab R© program properly modified for this particular case,
we can implement this SVIR model with vaccination compartment. Here
the graph plotted by the simulation:
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Fig. 2.14: (a)Susceptibles and recovereds, infectives and vaccinateds trends
,(b) Population size and deads trends.



Now, modifying ϕ, θ and σ values, we can simulate the ideal situation,
that means the below assumptions are respected, and see how does the model
respond.

The assumptions of idealization are:

• Most of population is vaccinated (ϕ → 1).

• The efficacy of the vaccine is very high (θ → 0).

• The probability of vaccinated class members to catch the disease is
very low (σ → 0).

And so the graphs plotted by the simulation result like (Figure 2.15)
instead of (Figure 2.14).
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Fig. 2.15: Same as (2.14) but with an ideal vaccine.

Where we can clearly see that no epidemic occurs due to the susceptible
population size never reaches the threshold value and, even if initially there
is an infective person, an epidemic can not start. This can give an idea of the
importnace of developing good vaccines because, as seen, it could be essential
to avoid the spread of dangerous diseases. The result of including also a
vaccinated class in the model, in the end, permit to resize the dimensions of
an epidemic or, in the better cases, it escludes entirely the possibility that
an epidemic can start.

Acquired immunity

When an infected host recovers from an infection, it usually maintains
a certain degree of immunity against reinfection from the same stain of
pathogens. If the infection has caused an immune response, antibodies pro-
duced by the host usually remain in the body for a period of time and guard
the body from the same antigens.



Without exposure to reinfection, immunity again a specific infection will
wane and eventually disappear. Certain diseases such as measles are known
to cause a permanent immunity in humans so that no reinfection occurs
once recovered. In terms of compartment models, loss of immunity results
in a transfer of recovered individuals to the susceptible compartment, as
depicted in the following (Figure 2.16), in which we assume the constant
rate δ is proportional to the number of recovered individuals.

Fig. 2.16: Transfer
diagram with loss of
immunity.

In this chapter we have seen a lot of generalizations of the first simple
Kermack-McKendrick model and, as shown, they can be simply applied to
real epidemics and help studying their outbreaks and ways to fight against
their spread. An important part of this work is made by the threshold value,
and just for this we will speak about it in the next chapter.





Chapter 3

Threshold phenomenon and

reproduction rate

The threshold phenomenon often described in the past chapter is a main
point of the study of epidemics because it determines if there will be or not
an epidemic outbreak and, if so, how much severe it will be. Once we know
these things, we understand that modyfing that value, we can have different
scenarios, better or worse, and so may be possible to control epidemics or
create a situation where it is difficult that an epidemic will develop.

The basic reproduction number R0, also called the basic reproductive
number or the basic reproductive ratio, is the single most important pa-
rameter in epidemic modeling. It measures the average number of the sec-
ondary infections caused by a single infective in an entirely susceptible pop-
ulation during its whole infectious period,[5]. In the context of Kermack-
McKendrick model, R0 can be expressed as

λ · S0 · γ

wich can be interpreted as (Figure 3.1).

Fig. 3.1:

Interpretation
of R0.

Using R0, the threshold phenomenon previously described can be ex-
pressed as follows:

• If R0 < 1, then epidemics will not occur;

• If R0 > 1, an epidemic will outbreak.
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Fig. 3.2: SEIR
model with constant
demography rates.

We will see that a threshold value in this form occurs in many epidemic
models. In particular, considering the SEIR model, like (Figure 3.2), the
basic reproduction number is given by

(3.1) R0 = λ · ǫ
ǫ+b

· 1
γ+b

,

wich can be interpreted as (Figure 3.3).

Fig. 3.3:

Interpretation
of (3.1).

Note that the mean infectious period 1
γ+b

is understood as the mean
period an individual remains infective and alive. We also note that the
initial susceptible population does not appear in R0. The reason for this is
that, in this model, the total population N(t) = S(t) + E(t) + I(t) + R(t)
remains a constant, [4].

Speaking about the SAQIJR model, (Figure 3.3), we define the control
reproduction number Rc to be the number of secondary infections caused by
a single infective in a population consisting essentially only of susceptibles
with the control measures in place. It is analogous to the basic reproduction
number, but instead of describing the beginning of the disease outbreak, it
describes the beginning of the recognition of the epidemic. We assume that
this occurs soon enough so that the total population size is still approxi-
mately N0, the initial population size. The basic reproduction number is
the value of the control reproduction number before management measures
are implemented.

In addition, there is a time-dependent effective reproduction number R∗,
or also running reproduction number, that continues to track the number of
secondary infections caused by a single infective as the epidemic continues
with management measures (quarantine of asymptomatics and isolation of
symptomatics) in place. It is not diffcult to show that if the inflow into
the population from travellers and new births is small (for example, if the
epidemiological time scale is much faster than the demographic time scale),
our model implies that R∗ will become and remain less than unity, so that



the epidemic will always die out. Even if Rc > 1, the epidemic will abate
eventually when the effective reproduction number becomes less than unity.
However, it should be remembered that if the epidemic takes so long to die
out that there are enough new births and immigrants to keep R∗ > 1, there
will be an endemic equilibrium, meaning that the disease will establish itself
and remain in the population.

We may calculate Rc in the same way as we have calculated R0 but
using the full model with quarantined and isolated classes. Though the
running reproduction numberR∗ is the control reproduction number withN0

replaced by N(t) to reflect the change in total population size and multiplied
by S

N
to reflect the fact that the fraction of contacts by an infected member,

wich are with a scusceptible and thus can produce a new infection, is S
N
.

When models get more complicated, R0 may be harder to derive directly
from the transfer diagram. Other methods for deriving R0 exists and most
of them are based on the stability analysis of the disease-free equilibrium.





Chapter 4

Modeling of veneral diseases

4.1 Introduction

The incidence of sexually transmitted diseases (STDs), such as gonorrhea,
chlamydia, syphilis and, of course, AIDS, is a major health problem in both
developed and developing countries. In the U.S.A., for example, as reported
by the Centers for Disease Control, in 1996 there were over 300’000 cases
of gonorrhea reported and over 11’000 cases of syphilis and nearly 500’000
cases of chlamydia.

STDs have certain characteristics which are different from other infec-
tions. One difference is that they are mainly restricted to the sexually active
community, so the assumption of uniform mixing in the whole population is
not really justified. Another one is that often the carrier is asymptomatic
(that is, the carrier shows no symptoms) until quite late in the development
of the infection. A third crucial difference is that STDs induce little or no
acquired immunity following an infection.

The vertical transmission of STDs from mother to newborn children is
another of the threats and tragedies of many STDs. Another problem is the
appearance of new strains: in connection with AIDS, HIV-1 is the common
virus but a relatively new one, HIV-2 has now been found.

In this chapter we present some simple classical epidemic models which
incorporates some of the basic elements in both heterosexual and homosexual
spread of venereal diseases.

For the model here, a general one for STDs, we assume there is uniformly
promiscuous behaviour in the population we are considering. As a simplifi-
cation, we consider only heterosexual encounters. The population consists
of two interacting classes, males and females, and infection is passed from
a member of one class to one of the other class. It is a criss-cross type of
disease in which each class is the disease host for the other.

Since the incubation period for venereal diseases is usually quite short,
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in gonorrhea, for example, it is 3 to 7 days, when compared to the infectious
period. We divide the promiscuous male population into susceptibles, S,
infectives, I , and a removed class, R; we denote the similar female groups by
S∗, I∗ and R∗. If we do not include any transition from the removed class to
the susceptible group, the infection dynamics are schematically represented
in (Figure 4.1).

Fig. 4.1:

General tran-
fer diagram
for STDs,
where I∗ in-
fects S and I
infects S∗.

In the next section we will talk in particular about the HIV virus, how
to modelize its development among a homosexual population and how to
contrast it using a drug combination therapy.

4.2 HIV: background, basic epidemic model and

drug therapy

Background

The major horror of the AIDS (autoimmune deficiency syndrome) epi-
demic is in Africa where around 70% of the total AIDS deaths in the world
have occurred and half of all newborn babies in Africa are HIV positive.

AIDS, unlike its early image as a homosexual disease, is now very much
a heterosexual disease. In an United Nations AIDS (UNAIDS) report for
World AIDS Day, it says that of the 22.3 million adults in sub-Saharan
Africa with HIV, 55% of them are women.

The lack of knowledge about HIV creates enormous difficulties in design-
ing effective control programs, not to mention those for health care facilities.
Education programs about how AIDS can spread are the minimum require-
ment to limit its development. Those that have been pursued, have had
some success but even their use and new ones have often been blocked by
the religious establishments. There are an estimated 16’000 new cases a day
and that around 27 million people are HIV-positive but do not know it.



AIDS is arguably the major epidemic of the 20th century and perhaps
of all time. Its progression has exceeded the gloomy view expressed in [3]
and now in the 21st century can only give pessimists cause for optimism.

The human immunodeficiency virus, HIV, leads to acquired immune de-
ficiency syndrome, AIDS. HIV is a retrovirus and like most of the viruses in
this family of viruses, the Retroviridae, only replicates in dividing cells.

Infection by the virus HIV-1, the most common variety, has many highly
complex characteristics, most of which are still not understood. The fact
that the disease progression can last more than 10 years from the first day
of infection is just one of them.

Since the mid 1980’s, numerous models, deterministic and stochastic,
have been developed to describe the immune system and its interaction with
HIV. It is a highly controversial area. Stochastic models aim to account for
the early events in the disease when there are few infected cells and a small
number of viruses. But most models have been deterministic; deterministic
models, which attempt to reflect the dynamic changes in mean cell numbers,
are more applicable to later stages of the process when the population is
large.

(Figure 4.2) shows a typical course of HIV infection. Immediately after
infection the amount of virus detected in the blood, V , increases rapidly.
After a few weeks to months the symptoms disappear and the virus concen-
tration falls to a lower level. An immune response to the virus occurs and
antibodies against the virus can be detected in the blood. A test, now highly
refined, to detect these antibodies determines if a person has been exposed
to HIV. If the antibodies are detected, a person is said to be HIV-positive
or seropositive.

Fig. 4.2:

Schematic
time course of
a typical HIV
infection.

In 1994, David Ho (Aaron Diamond AIDS Research Center) ran an ex-
periment which examined the response of 20 patients infected with HIV to
a protease inhibitor. The results were dramatic. (Figure 4.3) shows the
amount of virus measured in blood plasma that fell rapidly once the drug



was given.

Fig. 4.3:

HIV-1 rapid
declines with
protease
inhibitor
treatment
started at t =
0.

Basic epidemic model

Here we are interested in the development of an AIDS epidemic in a
homosexual population. Let us assume there is a constant immigration rate
B of susceptible males into a population of size N(t). Let X(t), Y (t), A(t)
and Z(t) denote respectively the number of susceptibles, infectious males,
AIDS patients and HIV-positive men who are noninfectious. We assume
susceptibles die naturally at a rate µ; if there were no AIDS, the steady
state population would then be N∗ = B

µ
. We assume AIDS patients to die

at a rate d: 1
d
, the average life expectancy of an AIDS patient, is of the order

of months to years, more often the latter. (Figure 4.4) is a flow diagram that
describes our model.

As in previous models, we consider uniform mixing. A reasonable first
model system, based on the flow diagram in (Figure 4.4), is then

(4.1) dX
dt

= B − µX(t)− λcX(t), λ = βY (t)
N(t)

(4.2) dY
dt

= λcX(t)− (υ + µ)Y (t)

(4.3) dA
dt

= pυY (t)− (d+ µ)A(t)

(4.4) dZ
dt

= (1− p)υY (t)− µZ(t)

(4.5) N(t) = X(t) + Y (t) +A(t) + Z(t).



Fig. 4.4:

Transfer dia-
gram of the
disease as
modeled by
the system
(4.1)-(4.5).

Here B is the recruitment rate of susceptibles, µ is the natural (non-
AIDS-related) death rate, λ is the probability of acquiring infection from a

randomly chosen partner (λ = βY (t)
N(t) , where β is the transmission probabil-

ity), c is the number of sexual partners, d is the AIDS-related death rate,
p is the proportion of HIV-positives who are infectious and υ is the rate of
conversion from infection to AIDS, here taken to be constant. 1

υ
, equal to

D, is then the average incubation time of the disease.
Note that in this model the total population N(t) is not constant, as

was the case in the epidemic model in (Section 2.1). If we add equations
(4.1)-(4.4) we get

(4.6)
dN

dt
= B − µN(t)− dA(t).

An epidemic ensues if the basic reproductive rate R0 > 1: that is,
the number of secondary infections which arise from a primary infection
is greater than 1. In (4.5) if, at t = 0, an infected individual is introduced
into an otherwise infection-free population of susceptibles, we have initially
X ≈ N and so near t = 0,

dY

dt
≈ (βc− υ − µ)Y (t) ≈ υ(R0 − 1)Y (t).

since the average incubation time, 1
υ
, from infection to development of

the disease, is very much shorter than the average life expectancy, 1
µ
, of a



susceptible; that is, υ ≫ µ. Thus the approximate threshold condition for
an epidemic to start is, from the last equation,

R0 ≈
βc

υ
> 1.

Here the basic reproductive rate R0 is given in terms of the number of
sexual partners c, the transmission probability β and the average incubation
time of the disease 1

υ
.

Numerical simulations of the model by the system of equations (4.1)-
(4.4) give a clear picture of the epidemic development after the introduction
of HIV virus into a susceptible homosexual population. (Figure 4.5) shows
one such simulation obtained by a Matlab R© program based on the model
we wrote and started from an intial population of 10’000 homosexuals: the
model predicts that HIV incidence reaches a maximum around 15 to 18 years
after the introduction of the virus into the population.
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Fig. 4.5: (a) Susceptibles, Infectives, AIDS and Seropositive trends,(b)
Seropositive and AIDS trends in proportion to total population size.

The model here is for a homosexual population. Now that the epidemic is
very much heterosexual other models are required. The approach described
here is a reasonable starting point. The models we now discuss take a very
different approach to HIV infection, infact we deal with the actual viral
population and not human population.

Drug combination therapy

Protease inhibitors are drugs which target the protease enzymes in the
cell and cause newly produced viruses to be noninfectious. There is no



single drug (nor even a combination of them) which completely kills the
HIV infection because of the ability of the virus to mutate into a drug
resistant form. It takes time, however, for a new form to evolve. The idea
behind combination drug treatment is: when the infection is treated with
two quite different antiviral drugs, the time the virus takes much longer for
a mutiple-drug resistant strain to emerge than if the virus had to contend
with only one toxic drug.

We consider each drug to be less then perfect, which thus allows for
viral mutation to a resistant form if administered independently. Let np

be a measure of the effectiveness of a protease inhibitor or combination of
protease inhibitors in blocking production of infectious viruses, so this will
affect the viral dynamics directly and the T-cells indirectly. Other commonly
used drugs are reverse transcriptase inhibitors, of which AZT is perhaps the
best known. After the development of the protease inhibitors, a combi-
nation, or cocktail, therapy which included multiple drugs was prescribed.
For instance, patients would take a combination of three drugs made of
up of a protease inhibitor and two reverse transcriptase inhibitors. This
combination was dramatic initially in reducing the number of viral peptides
detectable in the patient and it was thought that this might be the cure for
the AIDS virus. Unfortunately, with a virus as complex as the HIV, it was
only a matter of time before the emergency of resistant viruses ensued.

We develop a four-species model which includes an equation for unin-
fected T-cells, T , productively infected T-cells, T ∗ (not all infected T-cells
produce the virus), infectious viruses, VI and noninfectious viruses, VNI .
The model consists of the following equations which we motivate below.

(4.7) dT
dt

= s+ pT (t)(1− T (t)
Tmax

)− dTT (t)− kVI(t)T (t)

(4.8) dT ∗

dt
= (1− nrt)kVI(t)T (t)− δT ∗(t)

(4.9) dVI

dt
= (1− np)N(t)δT ∗(t)− cVI

(4.10) dVNI

dt
= npNδT ∗ − cVNI .

In the T-cell equation we consider the cells to be destroyed proportionally
to the number of infected viruses and cells with clearance parameter k. With
the reverse transcriptase (RT) drug like AZT, the RT-inhibitor acts on the
source term for productively infected T-cells with 0 ≤ nrt ≤ 1 the measure
of its efficacy; if nrt = 1 it is completely effective and prevents all production
of infected T-cells while if nrt = 0 it implies no RT-inhibitor is given. In the
T ∗ equation the effect of the RT-inhibitor is to reduce the production of the
infected cells. These cells also have natural death with a rate parameter, δ.
The protease inhibitor acts on the source of the virus and so appears in the



VI equation with np a measure of its efficacy. The specific appearance in the
equations for the effects of the drugs is due to the cellular mechanisms of
each drug and the stage at which they aim to target during infection. When
a drug is completely effective we set np = 1 or nrt = 1. In the infected virus
VI equation there is a factor N which is the bursting parameter for the viral
production after lysis.

The infected viruses are considered to die naturally at a rate c. Finally
the non-infectious viruses are produced with a rate dependent on the pro-
tease drug and we assume they die off at the same rate as the infected ones.
This model lets us explore the effect of the drugs on the HIV by varying,
in particular, the parameters nrt and np. For example, if np = 0 we are
using only the reverse transcriptase, or RT-inhibitors. We now analyse this
system in several ways and compare the results with the patient data.

Implementing this model in a Matlab R© program like in the paragraph
before, we can have an idea how viruses reacts to the drug therapy, for
example see (Figure 4.6) that is a simulation in wich initial conditions are:

T ∼ 180 cells/mm3, T ∗ ∼ 2% T − cells,
VI ∼ 134 · 103 virions/ml, VNI = 0 virions/ml.
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Fig. 4.6: (a) Infected, uninfected T-cells and viruses trends ,(b) total num-
ber of viruses trend .

So, in the end, we have seen in wich way the HIV virus develops and
affects a population of homosexual persons, and in wich way initially this
problem seemed to be solved by the combination drug therapy. Unfortu-
nately as we said this therapy is no longer effective because of the ability of
the HIV-1 virus to resist drugs and so another way to heal AIDS affected
patients has to be found.



4.3 Gonorrhea and other STDs

Back to some argoments we mentioned in (Section 4.1), gonorrhea is a criss-
cross type of disease and its development could be described by (Figure
4.1), in particular the contraction of gonorrhea does not confer immunity
and so an individual removed for treatment becomes susceptible again after
recovery. In this case a better dynamics flow diagram for gonorrhea is shown
in (Figure 4.7).

Fig. 4.7:

Transfer di-
agram for
a criss-cross
disease with
no immunity.

An even simpler version involving only susceptible and infective com-
partments is described in (Figure 4.8).

Fig. 4.8: Transfer di-
agram for the simpler
model we analyze for
gonorrhea.



It is a criss-cross SI model. We take the total number of males and
females to be constant and equal to N and N∗ respectively. Then, for
(Figure 4.8),

(4.11) S(t) + I(t) = N, S∗(t) + I∗(t) = N∗.

As before we now take the rate of decrease of male susceptibles to be
proportional to the male susceptibles and to the infectious female population
with a similar form for the female rate. We assume that once infectives have
recovered they rejoin the susceptible class. A model for (Figure 4.8) is then
(4.11) together with

(4.12) dS
dt

= −rS(t)I∗(t) + aI(t)

(4.13) dI
dt

= rS(t)I∗(t)− aI(t)

(4.14) dS∗

dt
= −r∗S∗(t)I(t) + a∗I∗(t)

(4.15) dI∗

dt
= r∗S∗(t)I(t)− a∗I∗(t).

where r, a, r∗ and a∗ are positive parameters. We are interested in the
progress of the disease given initial conditions

S(0) = S0, I(0) = I0, S∗(0) = S∗

0 , I∗(0) = I∗0 .

Although (4.12)-(4.15) is a 4th-order system, with (4.11) we reduce it to
a 2nd-order system in either S and S∗ or I and I∗. In the latter case we get

(4.16) dI
dt

= rI∗(t)(N − I(t))− aI(t)

(4.17) dI∗

dt
= r∗I(t)(N∗ − I∗(t))− a∗I∗(t),

which can be analysed in the (I, I∗) phase plane in the standard way
(as in Chapter 2). The equilibrium points, that is, the steady states of
(4.16)-(4.17), are I(t) = 0 = I∗(t) and

Is =
NN∗

−ρρ∗

ρ+N∗
, I∗s = NN∗

−ρρ∗

ρ∗+N
, ρ = a

r
, ρ∗ = a∗

r∗
.

Thus nonzero positive steady state levels of the infective populations
exist only if NN∗

ρρ∗
> 1: this is the threshold condition, somewhat analogous

to that found in (Chapter 3).
Also this model could be simulated with a Matlab R© program and here

in (Figure 4.9) we have the graphs plotted.
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Fig. 4.9: (a) Male and female susceptibles and infectives respectively ,(b)
Phase trajectory in the male infectives (I) - female infectives (I∗).

Although the SI model in this section is a particularly simple one, it is
not too unrealistic. In the case of gonorrheal infections, however, it neglects
many relevant factors. For example, as already mentioned a large propor-
tion of females, although infected and infectious, show no obvious symp-
toms; that is, they form an asymptomatic group. There are, infact, various
population subgroups. For example, we could reasonably have susceptible,
symptomatic, treated infective and untreated infective groups.





Chapter 5

Outlines of geographic

spread

5.1 Spatial models

The geographic spread of epidemics is less well understood and much less
studied than the temporal development and control of diseases and epi-
demics. The usefulness of realistic models for the geotemporal development
of epidemics like infectious disease, drug abuse fads or rumours or misinfor-
mation, is clear. The key question is how to include and quantify spatial
effects. In this section we describe a diffusion model for the geographic
spread of a general epidemic which we then apply to a well-known historical
epidemic, namely, the ever fascinating mediaeval Black Death of 1347-1350.

We consider here a simpler version of the epidemic model discussed in
detail in (Chapter 2). We assume the population consists of only two popu-
lations, infectives I(x, t) and susceptibles S(x, t) which interact. Now, how-
ever, I and S are functions of the space variable x as well as the time t, like
in [7]. We model the spatial dispersion of I and S by simple diffusion and
initially consider the infectives and susceptibles to have the same diffusion
coefficient D. As before we consider the transition from susceptibles to in-
fectives to be proportional to r ·S · I, where r is a constant parameter. This
form means that r · S is the number of susceptibles who catch the disease
from each infective. The parameter r is a measure of the transmission ef-
ficiency of the disease from infectives to susceptibles. We assume that the
infectives have a disease-induced mortality rate a ·I; 1

a
is the life expectancy

of an infective. With these assumptions the basic model mechanism for the
development and spatial spread of the disease is then
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(5.1) ∂S
∂t

= −rI(x, t)S(x, t) +D∇2S(x, t)

(5.2) ∂I
∂t

= rI(x, t)S(x, t) − aI(x, t) +D∇2I(x, t).

where a, r and D are positive constants. The problem we are now in-
terested in, consists of introducing a number of infectives into a uniform
population with initial homogeneous susceptible density S0 and determin-
ing the geotemporal spread of the disease.

Here we consider only the one-dimensional problem. We nondimension-
alise the system by writing

I∗ = I
S0
, S∗ = S

S0
, x∗ =

(

rS0

D

)

1

2 x,

t∗ = rS0t, λ = a
rS0

,

and so the model becomes:

(5.1) ∂S
∂t

= −IS + ∂2S
∂x2

(5.2) ∂I
∂t

= IS − λI + ∂2I
∂x2 .

The three parameters r, a and D in the dimensional model (5.1)-(5.2)
have been reduced to only one dimensionless grouping, λ. The basic repro-
duction rate (see Chapter 3) of the infection is 1

λ
; it has several equivalent

meanings. For example, is the number of secondary infections produced by
one primary infective in a susceptible population. It is also a measure of the
two relevant timescales, namely, that associated with the contagious time of
the disease, 1

rS0
, and the life expectancy, 1

a
, of an infective.

The specific problem we investigate here is the spatial spread of an epi-
demic wave of infectiousness into a uniform population of susceptibles. We
want to determine the conditions for the existence of such a travelling wave
and, when it exists, its speed of propagation.

We look for travelling wave solutions in the usual way (see Chapter 2)
by setting

I(x, t) = I(z), S(x, t) = S(z), z = x− ct.

where c is the wavespeed, which we have to determine. This represents
a wave of constant shape travelling in the positive x-direction.

If λ > 1 no wave solution exists so this is the necessary threshold con-
dition for the propagation of an epidemic wave. In dimensional terms the
threshold condition is (5.3).



Fig. 5.1:

Travelling
epidemic wave
of constant
shape, cal-
culated from
the partial
differential
equations
system (5.1)-
(5.2).

(5.3) λ = a
rS0

< 1.

This is the same threshold condition found in (Chapter 2) for an epidemic
to exist in the spatially homogeneous situation.

The threshold result (5.3) has some important implications. For exam-
ple, we see that there is a minimum critical population density Sc = a

r
for

an epidemic wave to occur. On the other hand for a given population S0

and mortality rate a, there is a critical transmission coefficient rc = a
S0

which, if not exceeded, prevents the spread of the infection. With a given
transmission coefficient and susceptible population we also get a threshold
mortality rate, ac = rS0, which, if exceeded, prevents an epidemic. So,
the more rapidly fatal the disease is, the less chance there is of an epidemic
wave moving through a population. All of these have implications for control
strategies. The susceptible population can be reduced through vaccination
or culling. For a given mortality and population density S0, if we can, by
isolation, medical intervention and so on, reduce the transmission factor r
of the disease, it may be possible to violate condition (5.3) and hence again
prevent the spread of the epidemic. Finally with λ < 1 as the threshold
criterion, we note that a sudden influx of susceptible population can raise
S0 above Sc and hence initiate an epidemic.

5.2 The Black Death: 1347-1350

The fascination with the Black Death, the catastrophic plague pandemic
that swept through Europe in the mid-14th century, has not abated with the
passage of time. The Black Death, principally bubonic plague, was caused
by an organism (Bacillus pestis) and was transmitted by fleas, mainly from
black rats, to man. It was generally fatal.

The plague was introduced to Italy in December 1347, brought there by
ship from the East where it had been raging for years. During the next few
years it spread up through Europe at approximately 200-400 miles a year.



About a quarter to a third of the population died and approximately 80% of
those who contracted the disease died within 2-3 days. (Figure 5.2) shows
the geotemporal spread of the wavefront of the disease.

Fig. 5.2:

Chronological
spread of the
Black Death
in Europe
from 1347 to
1350.

After the Black Death had passed, around 1350, a second major outbreak
of plague appeared in Germany in 1356. From then on periodic outbreaks
seemed to occur every few years although none of them were in the same
class as regards severity as the Black Death epidemic of 1347.

The disease, of which there are three kinds, bubonic, pneumonic and
septicemic, is caused by a bacillus carried primarily by fleas which are in turn
carried by rats, mice and a host of other animals. Septicemic plague involves
the bacilli multiplying extremely rapidly in the victim’ s blood and is almost
invariably fatal (even now), whether treated or not; the victim usually dies
very quickly and often suddenly. Septicemic plague often develops from the
pneumonic form which is extremely contagious.

There is a widely held belief that plague more or less ceased to be a
problem after the Great Plague of London. This is far from the case. The last
plague pandemic started in Yunnan in China about 1850 and only finished
officially, according to the World Health Organisation, in 1959: more than
13 million deaths have been attributed to it, and it affected most parts of the
world. The reported cases (and through ignorance or political expediency
the figures must clearly be considered lower bounds) since 1959 makes it
clear that plague epidemics are still with us.

The disease is carried by a large number of native wild animals. Rats



are by no means the sole carrier: it has been found in nearly 30 different
mammals including, for example, squirrels, chipmunks, coyotes, prairie dogs,
mice, voles, domestic pets and bats. The present complacency about the
relatively small annual number of plague deaths is hardly justified.

To return now to our modelling, let us apply our simple epidemic model
to the spread of the Black Death. We first have to estimate the relevant
parameters, not a simple task with the paucity of hard facts about the
social conditions of the time. There were about 85’000’000 people in Europe
in 1347 which gives a population density S0 ≈ 50/mile2. It is particularly
difficult to estimate the transmission coefficient r and the diffusion coefficient
D. Let us suppose that the spread of news is governed by diffusion with
a diffusion coefficient D; this gives a value of D ≈ 104miles2/year. To
transmit the disease, the fleas have to jump from rats to humans and humans
have to be close enough to infect other humans; this is reflected in the value
of r . These give λ = a

rS0
≈ 0.75. With the wavespeed given by (Figure 5.1)

in terms of the model parameters.

Of course, such a model is extremely simple and does not take into ac-
count a number of factors, such as the nonuniformity in population density,
the stochastic element and so on. Nevertheless it does indicate certain global
features of the geographic spread of an epidemic. Plague is a zoonosis (a dis-
ease which spreads from animals to humans) and in many areas where it is
prevalent rats are clearly implicated. So a more complicated model crucially
incorporates the rat, as well as human, populations and includes stochas-
ticity. This could show that the disease can reside in rat subpopulations
thereby letting the disease persist for many years.

5.3 Rabies: brief history and spatial spread among

foxes

Brief history

Rabies is arguably the most horrifying disease; the patient undergoes
the most frightening nightmarish experiences before dying in prolonged and
terrifying agony. In spite of the fact that an effective rabies vaccination is
now available, even totally reliable if given soon after being in contact with
a rabid animal, the horror of rabies is almost as rampant today as it ever
was. If a person reaches the actual rabid stage, that is, displays the clinical
symptoms, there is no cure, nor has there ever been a reliably recorded case
of a cure.

Some myths about rabies also mention vampires, and they were widely
believed in transmitting this disease, during the last quarter of the 17th
century. They were thought to be reanimated corpses which rose from their
graves, seeking nourishment by sucking the blood of sleeping persons. Ra-



bies is also zoononis, like plague, that is, a disease that can be transmitted
from vertebrates to humans, and in the rabid stage can cause unpredictable
violent and aggressive behaviour.

Let us now consider some of the symptoms of human rabies. Most hu-
mans develop the ”furious” form of the disease, rather than the paralytic
form, and insomnia, uncontrolled agitation, hydrophobia (the former name
for the disease), muscular spasms, fear of seeing themselves in a mirror and
other extremely ghastly and bizarre manifestations.

Rabies can be transmitted person-to-person in a variety of ways such as
animal (or human) bites, genital mucosae and so on. Numerous theories have
been put forward for the legend from simple superstition to schizophrenia.
During times of epidemics bodies were sometimes buried in shallow graves
and dug up by dogs and wolves, thus giving rise to the idea that vampires
rose from their graves.

In England in the 19th century there were several outbreaks (the numbers
were in fact very small) which wreaked havoc and spawned some hilarious
laws and views. Rabies is still a very serious disease that exists with vary-
ing degrees of severity in practically all countries of the world except for
Britain, Ireland, Sweden, Australia, New Zealand and a few others. Vacci-
nation has been a major control strategy for rabies in parts of Europe. With
such widespread global movement of people and animals it is inevitable that
rabies will continue to be introduced into countries hitherto free of the dis-
ease. Britain’ s paranoia about rabies has not been helped with the Channel
Tunnel and the fact that bats can carry the disease. The vampire bat is an
important reservoir for rabies in, for example, Mexico and Latin America
where it has been the origin of rabies outbreaks in cattle. In Asia, Latin
America and Africa it is mainly enzootic dog rabies that is the serious prob-
lem. Most humans contract the disease through direct bite or scratch from
a rabid animal although aerosol transmission in caves with infected bats is
also possible. Although rabies is rare in the U.S., when it occurs, it is almost
always from a bite from an infected bat.

Human-to-human transmission can also occur.

Spatial spread among foxes

Rabies, as mentioned in the last paragraph, is widespread throughout the
world and epidemics are quite common. During the past few hundred years,
Europe has been repeatedly subjected to rabies epidemics. Rabies, a viral
infection of the central nervous system, is transmitted by direct contact, and
the dog is the principal transmitter of the disease to man.

(Figure 5.3) shows the advance of the rabies epidemic in France obtained
from data from the French Centre National d’ Etudes sur la Rage every two
years between 1969 and 1977 on the northeastern part of the country. A



Fig. 5.3: Spatial advance
of the rabies epizootic in
France from 1969 to 1977.

rabies epidemic was also moving a few years ago rapidly up the east coast
of America: the main vector there was the racoon.

The spatial spread of epidemics is usually a very complex process, and
rabies is no exception. Although many animals are involved, a basic, and
reasonable, assumption is that the ecology of foxes, the principal vectors,
determines the dynamics of the spread of rabies. We further assume that
the spatial spread of the epizootic is due primarily to the random erratic
migration of rabid foxes.

We can use a model similar to the one presented in the (Section 5.1) and
obtain the travelling wave of this epidemic in (Figure 5.4):

Fig. 5.4: Epidemic wavefront solu-
tion for the susceptible (S) and in-
fected (I) fox population.



Fig. 5.5: Fluctuations in the susceptible fox population density as a func-
tion of the passage of the rabies epizootic obtained from data from Centre
National d’ Etudes sur la Rage, 1977.

Let us now compare the qualitative form of the susceptible fox population
in the epidemic of (Figure 5.4) with that obtained from data of continental
Europe as illustrated in (Figure 5.5). There is a clear schematic difference in
the behaviour behind the front in the two figures. Clearly after the passage
of the wavefront the susceptible population will start to increase again since
the foxes find themselves in an environment which admits a larger carrying
capacity. In other words, the timescale of the model we used, is considerably
shorter than that associated with the oscillations in (Figure 5.5).

Let us now return to the observation in (Section 5.2) about the subse-
quent outbreaks of plague which followed the initial Black Death epidemic.
If we modify the susceptible equation in the model (5.1)-(5.2) to take into
account the recovery of the population we again get subsequent periodic out-
breaks of the disease following the initial epidemic similar to those shown
in (Figure 5.5). This is just a bit too facile an explanation since it was the
interaction of populations which governed the Black Death, people, fleas,
rats and so on. In spite of the simplicity of the model discussed here the
results qualitatively capture some of the major phenomena observed. As
with so many of the models we have discussed, even such a simple approach
can elicit relevant questions.



Chapter 6

Conclusion

We have established that general epidemic models behave in the same way
asymptotically, in the sense that there is a basic reproduction number which
determines whether there will be an epidemic or an epidemic wave and
that an epidemic will pass through a population leaving some members un-
touched. We conjecture that this would remain true for more complicated
models with more compartments and more stages, including models with
heterogeneity of mixing. Of course, our first Kermack-McKendrick model
assumes that the course of the epidemic is rapid enough that demographic
effects may be ignored. If this is not true, then it would be possible for a
disease to become endemic, as seen in (Section 2.3) and later sections.

The underlying assumptions in all the models we have described are that
the size of the compartments is big enough that deterministic models are
appropriate, and that the mixing of members is homogeneous. While these
assumptions are probably reasonable once an epidemic is well underway,
events at the beginning of an epidemic may be quite different. To model
events with a small number of infectives in a population of susceptibles, we
should use a branching process stochastic model because of its peculiarities,
it can describe the beginning of an epidemic better than deterministic models
we have seen.

Another thing we have to consider is that our models treated an epidemic
in a single location, ignoring travel of individuals who may be infective be-
tween locations. Modern transportation has permitted the rapid transfer of
infectious diseases over great distances, and an aspect of epidemic manage-
ment that has become important is the screening of travellers who may be
infective. Epidemic models which include some movement into and out of
populations are a natural extension of the models considered in this work.

However we have seen in wich way teorically we can limit or even prevent
the outbreak of an epidemic, and this will always be an important topic for
the future of human kind because every day new viruses are discovered and
the probability that one of these could be dangerous enough to cause a
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severe and deadly epidemic is not trascurable. So, studying the dynamcs of
infectious diseases is very useful to real world because we can understand
how the spread of a disease works and react properly to save thousands or
million of life all around the world.
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