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1 Abstract

Magnetic resonance elastography (MRE) is a powerful medical imaging technique that allows

for the non-invasive assessment of the viscoelastic properties of body tissues, with significant

potential as a diagnostic biomarker for various neurological conditions. However, current in-

version methods for estimating stiffness from MRE data face challenges related to accuracy,

resolution, noise sensitivity, and computational efficiency. This thesis investigates the use of

physics-informed neural networks (PINNs) for inverting MRE data to estimate brain stiffness, a

method that combines the benefits of deep learningwith the incorporation of physical knowledge

to enhance accuracy and reduce noise sensitivity.

The proposed method is first applied to a simple phantom dataset (training study) and then to in

vivo human brainMREdata (testing study). The impact of including prior stiffness estimates and

anatomical information from T1-weighted magnetic resonance imaging (MRI) into the PINN

will be evaluated. Additionally, two optimization algorithms, Learning Rate Annealing and

Multiadam, are developed to improve computational efficiency and reduce costs.

Results demonstrate that the novel methods significantly outperform traditional direct and finite

element inversion techniques in terms of accuracy across both studies (MAV = 277.00 for PINN

vs. MAV = 1117.87 and MAV = 561.19 for two other methods). Including anatomical informa-

tion enhances performance, particularly in models assuming heterogeneous tissue properties (R²

= 0.87 when included, R² = 0.62 when not), while incorporating prior stiffness estimates shows

potential for accelerating convergence. MultiAdam reduces the computational time required for

training compared to the commonly adopted Adam (8.6 h vs. 24 h).

However, challenges remain in accurately modeling the complex biomechanics of brain tissue.

While the approach demonstrates promise, this work underscores the need for further research

to develop more suitable physical models for brain MRE and to enhance the efficiency and

reusability of PINN-based inversions for clinical feasibility.
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L’elastografia a risonanza magnetica (MRE) è un’importante tecnica di imaging medicale che

permette di valutare, in modo non invasivo, le proprietà viscoelastiche dei tessuti corporei, con

un buon potenziale come biomarcatore diagnostico per diverse condizioni neurologiche. Tut-

tavia, i metodi di inversione attualmente utilizzati per stimare la rigidità dai dati MRE presen-

tano difficoltà significative legate all’accuratezza, alla risoluzione, alla sensibilità al rumore e

all’efficienza computazionale. Questa tesi testa l’applicazione di physics-informed neural net-

works (PINNs) per l’inversione dei dati MRE e la stima della rigidità cerebrale, un approccio

che combina i vantaggi del deep learning con l’inclusione di conoscenze fisiche per migliorare

l’accuratezza e ridurre la sensibilità al rumore.

Il metodo proposto è stato inizialmente applicato a un semplice dataset di phantom (training

study) e successivamente ai dati MRE del cervello umano in vivo (testing study). È stato va-

lutato l’effetto dell’integrazione in una PINN di stime precedenti di rigidità e di informazioni

anatomiche derivate dalla risonanza magnetica pesata in T1. Inoltre, sono stati sviluppati due

algoritmi di ottimizzazione, Learning Rate Annealing e Multiadam, per migliorare l’efficienza

computazionale e ridurre i costi.

I risultati dimostrano che i nuovi metodi superano in modo significativo le tradizionali tecniche

di inversione diretta e agli elementi finiti in termini di accuratezza in entrambi gli studi

(MAV=277,00 per PINN controMAV=1117,87 eMAV=561,19 per altri metodi). L’inclusione

di informazioni anatomichemigliora le prestazioni, soprattutto nei modelli che assumono propri-

età dei tessuti eterogenee (R² = 0,87 se inclusa, R² = 0,62 se non inclusa), mentre l’inclusione di

stime precedenti di rigidità può potenzialmente favorire una convergenza più rapida. L’algoritmo

MultiAdam riduce il tempo di calcolo necessario per l’addestramento rispetto al comunemente

usato Adam (8,6 ore contro 24 ore).

Tuttavia, sono presenti delle limitazioni nel modellare accuratamente la complessa biomecca-

nica del tessuto cerebrale. Sebbene l’approccio proposto sia promettente, questo lavoro evi-

denzia la necessità di ulteriori ricerche per sviluppare modelli fisici più adeguati per la MRE

cerebrale e per migliorare l’efficienza e il riutilizzo dei metodi di inversione tramite PINN, in

vista di una loro applicabilità clinica.
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2 Introduction and Project Aim

The clinical importance of understanding the stiffness properties of biological tissues has been

recognized historically. Traditionally, these have been assessed qualitatively with palpation,

limited to superficial regions and applicable in late disease stages, or quantitatively with the

low cost and widely available ultrasound (US) technique [1]. Since the late 1990s, Magnetic

resonance elastography (MRE), thanks to its ability to measuring stiffness parameters with a

high sensitivity, has started to see numerous applications, quantifying also viscous behavior, in

deeper tissues and with a larger and movable field of view.

MRE is a powerful medical imaging technique that allows for the non-invasive assessment of

high spatial resolution viscoelastic properties of body tissues, such as storage and loss moduli.

It uses a special sequence of magnetic resonance imaging (MRI) and additional equipment to

generate low frequencymechanical vibrations in the body. The vibrationsmove through stiff and

supple tissues at different rates and with different attenuations: tissue displacement is imaged

through a phase-contrast mechanism, and a map of viscoelastic parameters can be reconstructed

by mathematically solving an inverse problem.

MRE has great potential as a diagnostic biomarker. For instance, mechanical properties mea-

sured by this technique were shown to be significantly altered in neurological diseases such as

Alzheimer’s disease (AD) and Parkinson’s disease (PD) [2] [3]. It also allows accurate assess-

ment of tumors adhesion and their differentiation [4]. Nevertheless, additional equipment, time

consuming estimation of the stiffness maps, ill-posedness and nonuniqueness solution of the

inverse problem, low resolution and noise sensitivity of techniques makes conducting research

in this field particularly challenging.

To estimate the stiffness map, one typically has to either resort to direct inversion (DI) methods

[5] [6], that are fast but require several assumptions to reduce the complexity of wave equations,

such as homogeneity, and use Laplacian operators that amplify noise; or one creates a more ro-

bust model with the use of a finite element model (FEM) with fewer assumptions and proceeds

iteratively with a Nonlinear Inversion (NLI), which is computationally very costly, takes hours

to converge and is not practically suitable in routine clinical MRE [4] [7].

For these reasons, there is a strong need for advanced inversion algorithms to estimate tissues

stiffness, capable of relaxing tissue homogeneity hypothesis while maintaining efficiency, clin-

ical feasibility, good resolution, and numerical stability. Some research groups have recently

started to solve the inversion problem with artificial neural networks (ANNs) [8] [9] [10], and
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have shown it has better accuracy and is more clinically feasible than traditional methods. More-

over, many studies are focusing on understanding how the assumption of material stiffness ho-

mogeneity worsens the spatial accuracy and noise sensitivity of estimates made by ANN [11] .

In this project, the attempt will be to boost the accuracy of a neural network-based inversion

method by training on real brain MRE data, with the addition of imposing physics informed

constraints on the inversion using so called physics informed neural networks (PINNs). Ragoza

andBatmanghelich recently published open-source codewhere they implemented such amethod

for MRE-PINN inversion of the liver, incorporating information from anatomical images and

using a dual-network approach [10]. The inversion method has shown promising results in the

liver tissues: in this thesis, the algorithm provided by Ragoza’s reference study will be first

implemented and adapted in a training study on a MRE phantom, and then applied to a test-

ing study, where the model will be trained on a cohort of brain tissues in an attempt to create

a MRE PINN-based inversion algorithm to retrieve brain tissue stiffness maps. Data for the

testing study are imported from the open - source MRE dataset from Neuroimaging Tools and

Resources Collaboratory (NITRC) site, made by the University of Delaware (UDEL) and will

be indicated as Delaware dataset 1.

In order to invert MRE data, a physics model should be formulated describing waves propa-

gation in the tissue of interest. For the brain, the equation of a harmonic motion with linear,

isotropic stress-strain relation and the assumption of incompressibility will be adopted. In prac-

tice, two partial differential equations (PDE) will be employed in this work: one assuming local

homogeneity of viscoelastic parameters (homogeneous PDE) and one taking into account its

local variations (heterogeneous PDE). Both homogeneous and heterogeneous models will be

tested to validate previous findings related to the potentially adverse effects of assuming homo-

geneity. To assess models performances, a set of standard evaluation metrics will be computed,

and a visual assessment of the results will be performed.

Different PINN configurations will be investigated. In the reference study, including informa-

tion from MRI anatomical images improves reconstruction fidelity: T1 weighted (T1w) brain

MRI images will be also included in this work to improve reconstruction, as they are standard

practice to collect during a MRE exam. PINN can approximate extremely complex functions

and are remarkably robust to noise, but the major PINN drawback is the slow training speed and

1https://www.nitrc.org/frs/?group_id=1390
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the computational cost [12]. An hyperparameter analysis and two existing successful weights-

adaptive algorithms, different from the commonly adopted Adam optimization, will be imple-

mented to deal with this issue. Both of them will be tested to improve this aspect: Multiadam

[13] and Learning Rate annealing [14].

Due to the various limitations and challenges of current state-of-the-art inversion techniques, this

approach is expected to provide better accuracy, more efficiency, stability andmore robustness to

noise than previous ones, since it does not have explicit specification of physical relationships, it

does not amplify the noise, [10] and is a suitable approach for a clinical workflow because, once

validated and generalized on a set of real patients images, it can be applied to any input image

similarly acquired, requiring a simple forward pass through the network. The technique also

holds significant potential thanks to PINN’s flexibility: by simply modifying the differential

equations associated with a body compartment model, this approach can be adapted to invert

data from different tissues.
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3 Background

This section provides an overview to establish a foundational understanding for the subsequent

topics. The section will cover MRE acquisition and processing, followed by a brief overview of

its hardware and clinical applications. The final section is a brief explanation of deep learning

(DL) and supervised models.

3.1 MRE Acquisition and Processing

In this section, all the steps that lead to a map representing viscoelastic properties through MRE

acquisition and processing will be explained, which are illustrated in a flow diagram in Figure

1. Pictures in this diagram are also referenced in Figures 5 and 9. The process begins with

mechanical vibrations applied to patient tissues, which are then scanned using MRI. The initial

output is a raw phase image that captures the wave propagation within the tissues. The raw

phase image is unwrapped, multiple images are acquired at different time offsets along the wave

period, motion encoding and Fast Fourier Transform (FFT) techniques are applied to obtain

wave images in different spatial directions. In the end, different computational techniques can

be used to invert the wave data to compute the viscoelastic properties of the tissues: the result

is a map of the viscoelastic parameters, showing the stiffness and elasticity of the tissues. The

final viscoelastic maps are used to derive clinical biomarkers that can help in diagnosing and

understanding various medical conditions.

3.1.1 Actuation

In MRE acquisitions, mechanical stress is introduced into biological tissues of interest as an

oscillating harmonic vibration through an active driver that represents a dynamic source of mo-

tion, combined with a transducer, which transmits the mechanical waves into the target tissue.

For brain MRE, this is placed underneath the head in the region of interest (ROI) [4] (Figure

2). Hence waves cause tissues to vibrate, which are assumed to experience an harmonic motion

on the orders of microns (typically 5–50 μm [15]). A MRE acquisition does not determine di-

rectly this motion but measures first magnitude and phase of the displacement field caused by

propagating mechanical waves in the tissue.

A specific actuation frequency is set for this harmonic oscillation: for brain scanning, MRE

uses frequencies in the range 20-100 Hz and amplitude up to 1 mm at the skin surface [9]. Most

common frequencies are 50 Hz and 60 Hz, but a standardised frequency still has not been es-
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Figure 1: Diagram flow of MRE acquisition and processing.
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Figure 2: Experimental setup for brain tissue vibration with the Resoundant pneumatic
actuator. The subject’s head rests on a pillow-like passive driver that receives vibrations from
the active driver located in the control room. Adapted from ”Simultaneous, multidirectional
acquisition of displacement fields in magnetic resonance elastography of the in vivo human
brain” by Klatt et al, 2014, John Wiley and Sons.© 2014, Wiley. Used with permission.

tablished.

Higher frequencies waves are attenuated by the brain and for this reason they don’t reach deep

tissues and produce low displacement amplitude images where noise can dominate; they also ne-

cessitate higher amplitudes, which results in greater discomfort for the patient, and can also lead

discretization artifacts [15]. But higher frequencies correspond to shorter wavelengths, which

provide better spatial resolution and are more informative about the local mechanical properties

of the tissues. On the other side, lower frequency vibrations do not attenuate but correspond to

longer wavelength and vibrational exposure limits are imposed on these in clinical applications,

with the EU whole body vibration limit guidelines [16] serving as a well-established, practical

standard.

MRE sequences use traditional MRI ones with addition of motion encoding gradients (MEGs)

and set a synchronization between oscillation transmission and signal readout, to encode tissue

displacement into the measured signal phase. Both spin echo (SE) and gradient echo (GE) echo-

planar imaging (EPI) sequences are commonly applied, thanks to the rapid acquisition of slices

[4]. The most common brain MRE sequence is based on single-shot, spin-echo EPI, which al-

lows for short imaging time for acquiring 3D data [2][17].

Some groups are working on finding an efficient MRE multi-shot sequence, where the acqui-

sition is divided into multiple ”shots” of excitations in order to improve signal to noise ratio
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(SNR) efficiency [18]. In 2013, multi-shot, SE sequence with variable-density spiral readout

gradients was introduced in [19]. One year later, the same group improved by capturing whole-

brain displacement data at high resolution with a 3D multislab, multishot acquisition for MRE

with whole-brain imaging coverage [18]. This sequence is used for Delaware dataset, employed

as a testing set in this study. Recently, a rapid simultaneous multi-slice (SMS) MRE has brought

accelerated data acquisition in the liver [20].

3.1.2 Single raw phase image and unwrapping

Figure 3: Diagram of a spin echo EPI-MRE sequence. Adapted from ”Magnetic Resonance
Elastography: Physical Background And Medical Applications”, by Hirsch et al, 2016. ©

2017 WILEY-VCH Verlag GmbH & Co. KGaA

To first measure a single wave phase image at a single time point, a trigger signal is sent to the

vibration generator (Figure 3) ; the vibration propagates into tissues and after a time delay τ

a MEG is applied and, through an EPI sequence readout, two images are acquired, phase and

magnitude (see diagram in Figure 1). Only the single raw phase image is relevant for processing.

First, a step called phase unwrapping is required to accurate estimate motion [21], because the

amplitude of the applied wave, close to tissue surface, should be set large to compensate wave

attenuation through depth tissues, but large amplitudes cause the actual wave phase ϕ to be out

of the [ - π, π] range. In this case, the true phase values will be automatically and unavoidably

mapped back to this range when measured, resulting in phase wraps: this produces a strongly

discontinuous phase image (Figure 4) where the phase jumps from −π to π (or viceversa) [9].

There are different approaches that can be used to remove these wraps in the raw phase image

[21] and obtain the physically correct values, such as Flynn’s Minimum Discontinuity Algo-

rithm [22][23], Gradient Unwrapping [24] or Laplacian Unwrapping [25].

Signal phase is sensitive to the mechanical vibration applied, but responds also to magnetic field
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Figure 4: Two raws, wrapped phase images ϕ2 and ϕ2 with opposite vibration phase are
shown. After unwrapping, each image is a superposition of the propagating wave and the static

background. Taking the phase difference image removes most of the background while
preserving the wave information. . Adapted from ”Magnetic Resonance Elastography:

Physical Background And Medical Applications”, by Hirsch et al, 2016. © 2017 WILEY-VCH
Verlag GmbH & Co. KGaA

inhomogeneities due to a spatially varying magnetic susceptibility. The detected raw phase sin-

gle image ϕ, in fact, is a superimposition of a static background ϕ0 and the wave-induced ϕWAVE

contribution of interest: wave information should be isolated. This can be accomplished ac-

quiring more than one phase image in one given MEG direction, as explained in subsequent

formulas.

Two raw phase images are acquired so that they depict the wave at two different oscillation

phases separated by 180 ◦, such that the second image contains an inverted sign wave:

ϕ1 = ϕ0 + ϕWAVE (1)

ϕ2 = ϕ0 − ϕWAVE (2)

By subtracting Equation 2 to Equation 1:

ϕ1 − ϕ2 = 2ϕWAVE (3)

Phase component ϕWAVE containing only wave information can be isolated and extracted from

the measured ϕ1 and ϕ2 switching to the complex domain:

1

2
angle

(

eiϕ1

eiϕ2

)

=
1

2
angle

(

e2iϕWAVE
)

=
1

2
angle

(

e2iϕWAVE
)

(4)

In practice, more than two raw phase images along the wave period are actually acquired and
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FFT is used to extract only the wave component of interest.

3.1.3 Acquisition of multiple (N) phase images along wave period

Image processing of N different raw phase images (usually N=4 or N=8), also called image off-

sets as they represent phase offset from the zero phase time point, is required to isolate wave

information and to proceed with motion encoding.

Different raw phase images are obtained by changing the synchronization between vibration

actuation and image acquisition, i.e. by applying (N) different time delays τi between the vibra-

tion trigger and the MEG in the MRE sequence (see Figure 3). These capture wave propagation

at different oscillation phases spaced evenly over the period of the applied wave. Delays τi

should be applied N times in steps of ∆τ= 1
(f ·N)

where f is the mechanical frequency, so that

the vibration cycle in equally intermitted in N points (Figure 5).

Subsequently, motion encoding is applied to compute tissue displacements after processing these

images offsets. The additional MEG along a certain direction, peculiar of a MRE sequence, al-

lows in fact to encode and compute the displacement created by the mechanical vibration in that

direction, when wave phases measured at different time points are avaliable. The phases gen-

erated by an harmonically vibrating tissue indeed are directly proportional to its displacements

and this linear relation will be presented in Equation 8. After this MEG step, an image showing

micron-level displacement represents the coherent wave motion of brain tissues along the MEG

direction (see diagram in Figure 1), which is defined as ”wave image” along one given direction.

Coherent motion is a motion that maintains a constant phase over time.

3.1.4 Fast Fourier Transform and motion encoding

These offsets are unwrapped and a temporal FFT is applied to the image series to extract the

first harmonic phase image in the frequency domain (Figure 6). In fact, static inhomogeneity

background of magnetic field is contained in the zero-frequency component, while wave infor-

mation, intrinsically dinamical, falls into the first harmonic frequency image; higher harmonics

contain no information because only the first harmonic frequency was stimulated [9]. The mea-

sured FF-transformed phase will be indicated as ϕ̃i(r) .

Through phase encoding, amplitude and phase of the complex harmonic displacement at each
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Figure 5: Phase unwrapping. (a) EPI magnitude; (b) EPI raw phase (wrapped) image; (c)EPI
raw phase unwrapped image (d) image stack of eight phase offsets unwrapped, for a single

brain slice. The blue crosses show the voxel where the phase displacement can be visualised in
the corresponding graph (e) change in phase offset over the eight time-steps in one specific

voxel, caused by the applied wave propagation. Adapted from ”Magnetic resonance
elastography (MRE) of the human brain: technique, findings and clinical applications”, by
Hiscox et al, 2016, Institute of Physics and Engineering in Medicine.© 2016 Physics in

Medicine & Biology. Used with permission.

point in space, or its real and imaginary part, are computed. This is relevant for this study because

Delaware dataset provides exactly the complex lagrangian displacement components (real and

imaginary) in micron over time along the three orthogonal axes, determined from MRE phase

after spatial and temporal unwrapping.

MEG can be applied on coronal, sagittal, and transverse directions (Figure 7) to detect the cor-

responding harmonic motion. A single MRE acquisition is able to capture displacement in only

one direction; actually, three MRE acquisitions are usually executed to produce three wave im-

ages, indicating the degree of displacement in three orthogonal directions and capturing thus the

full 3D wave displacement field.

In this subsection, calculations required to extract a wave image will be briefly outlined.

In the presence of a magnetic field gradientG(t), a spin with trajectory x(t) accumulates a phase

ϕ(t):

ϕ(t) = ϕ(t0) + γ

∫ t

0

G(t′) · x(t)dt′ (5)

where γ is the giromagnetic ratio characteristic of the nuclear isochromats under investigation.

If the spin is stationary, the product G(t′) · x(t) and the integral of Equation 5 will be zero:

spin will have no net phase shift ϕ(t), because the gradient is balanced. If a spin is moving in
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Figure 6: A stack of images, capturing the wave at different phases of the vibration cycle, is
first subjected to unwrapping and then temporally Fourier-transformed. In the resulting

frequency-resolved representation, the static offset caused by the susceptibility and magnetic
field inhomogeneity background is contained in the zero-frequency component, whereas the

wave information falls into the first harmonic frequency image. The higher harmonic
frequencies contain no information, since only the first harmonic frequency was mechanically
stimulated. Adapted from ”Magnetic Resonance Elastography: Physical Background And
Medical Applications”, by Hirsch et al, 2016. © 2017 WILEY-VCH Verlag GmbH & Co.

KGaA.

Figure 7: Neuroanatomical planes. Image taken from the video ”Title of the Video” by
Brainpsychlopedia, YouTube, January 2022, (accessed on August 2024). Available at

https://www.youtube.com/watch?v=peFn_6t9Kms

synchronization with MEG G(t) switching, the product G(t′) · x(t) will not be null and it will
accumulate a net phase (Figure 8). Two acquisitions are made for each repetition with reversed

MEG polarity to double the sensitivity to small displacements [9].

Assuming now that the net accumulated phase is nonzero, spin motion due to vibration in MRE

is hypothesized to be an harmonic oscillation with pulsationΩ, initial and constant, phase ψ and

initial polarization direction u0:

x(t) = x0 + u0 · sin(Ωt+ ψ) . (6)
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Figure 8: Illustration of phase accumulation for a moving spin in the presence of a MEG in the
x-direction. For the static spin, the effects of the positive and negative lobes of the MEG
compensate each other, so that the net phase after the MEG is zero. The moving spin

experiences the two lobes at different locations, and hence with different strength, so that a net
phase remains. Adapted from ”Magnetic Resonance Elastography: Physical Background And
Medical Applications”, by Hirsch et al, 2016. © 2017 WILEY-VCH Verlag GmbH & Co.

KGaA.

The total accumulated phase ϕ results to be a function of the oscillation phase ψ:

ϕ(ψ) = u0 • Ĝ0

∫ T/2

−T/2

g(t) sin(Ωt+ ψ) dt (7)

Through Equation 7, ϕ(ψ) can be easily computed from all these known parameters and val-

ues: gradient waveform g(t), oscillation frequency through oscillation pulsation Ω, oscillation

amplitude vector u0 and angle between the gradient and the oscillation polarization (û0 • Ĝ0 ).

To understand now how to encode motion in the Fourier-transformed phase, the frequency-

varying Encoding Efficiency ξ quantity must be introduced, defined as the maximum phase

offset caused by the gradient waveform for a vibration with unit amplitude and polarization

parallel to the gradient direction [9]. FF-tranformed oscillation amplitude can be derived from

the measured FF-transformed phase through ξ from:

ũi(r) = ξ(r)ϕ̃i(r) (8)

3.1.5 Wave images for each direction (x,y,z)

Collection of phase images across all vibrational phase offsets and in three physical MEG direc-

tions gives the full 3D displacement field image (wave images in Figure 9d, 9e, 9f). The local

displacement depends on the stress, here represented by the propagating mechanical wave, and

on the material stiffness. Waves travel faster in stiffer materials, while their amplitudes are more

18



attenuated in suppler materials.

Dynamicmeasures of displacements are the basis for dynamic elastography, that uses knowledge

of displacement collected over time to ultimately estimate viscoelastic parameters: these wave

images are usually used as input to inversion algorithms in order to obtain a map of viscoelastic

properties. As explained in the introduction, the inversion of MREwave data is the central focus

of this thesis.

Figure 9: [15] (a) 3D reconstruction T1- weighted brain scan (b) the aforementioned T1 axial
slice, (c) raw phase image, (d)–(f) wave images from three directions read-out (x),

phase-encode (y), through-plane (z) , indicating the degree of displacement between - 5µm
and 5µm, (g) segmented image (h) map of |G*(kPa)| and (i) phase image ϕ1 (rad). Adapted
from ”Magnetic Resonance Elastography: Physical Background And Medical Applications”,

by Hirsch et al, 2016. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA.

In Figure 9 [15], the top three images show displacement fields in three spatial directions af-

ter the curl operator has been performed to remove longitudinal components. A T1w image is

displayed for anatomical reference to the stiffness map of the same brain slice, also called elas-

togram (Figures 9h and 9i), derived from MRE inversion.
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3.1.6 Viscoelastic parameters

In MRE, biological tissues tissues serve as the medium through which waves propagate and

attenuate. Mechanical laws and theories are used tomodel these phenomenons and the following

semplifications and assumptions are usually adopted for brain MRE:

• Viscoelastic tissue behaviour: the response to an external force is described by a combina-

tion of elastic and viscous terms. The first assumes that the medium deforms when a force

is applied but then immediately returns to its original state in a fully reversible process

without energy dissipation. Viscosity hypothesis states that the medium does not imme-

diately return to its original shape when force is removed, and work performed during

deformation is partially dissipated and not available anymore.

• Infinitesimal strain theory and linear viscoelasticity. Deformations and displacements

caused by MRE actuations are small compared to the size of the object. This allows to

use linear mechanics formulations and to apply the first order truncation of Taylor series

to express the deformation in terms of displacement field derivatives. Furthermore, the

mechanical parameters are not dependent on strain or strain rate conditions.

• Isotropy. Mechanical response (i.e., viscoelastic properties) does not depend on the di-

rection along which a force acts. This is considered a reasonable hypothesis for brain

tissues.

• Incompressible media, i.e. mass density ρ constant throughout the brain and equal to 1000

kg/m3. Compression modulusK, indicating howmuch a material permits volume change

for a given pressure, differs little from that of the water (2.2 GPa) [26].

• A fourth-order elasticity tensor C describes the relationship between stress and strain in

a linear elastic material. When deriving wave equations, elastic properties are assumed

constant throughout the tissue by discarding the spatial derivative of the C. It is therefore

assumed that elastic parameters variation is too small to contribute significantly to the

wave equation, making their spatial derivative negligible compared to the variation of

displacement amplitudes.

Before describing main viscoelastic MRE parametres, the following notation is introduced that

will be adopted:

• strain tensor ϵ

• stress tensor σ

20



• shear wave speed (or velocity) νs

• wave attenuation coefficient α

• wavelength λ

• applied mechanical frequency of mechanical oscillation f

• applied angular frequency of mechanical oscillation ω

• mass density ρ

• real-valued shear modulus µ, also called Lamè’s second parameter

• (complex-valued) shear modulus G*

• Poisson’s ratio ν

• Young modulus E

• Lamè’s first parameter λ

• compression modulus K

Two independent constants are sufficient to characterize the elasticity (compliance) tensor of a

linear isotropic medium, which is the assumption made here for brain tissues. Parametrizations

are usually either (E, ν) or (λ,µ). Through mechanical laws, one can find all the constants

defining mechanial behaviour when two of them are known: MRE-scanned tissues are usually

descibed by λ and µ. µ is the real-valued shear modulus that quantifies the stiffness of a material

in response to shear stress and relates to the material’s ability to withstand changes in shape

without a change in volume; Lamè’s first parameter λ indicates how easily a material can be

compressed and relates to volumetric deformation (perfect incompressibility λ = ∞, perfect

compressibility λ = 0).

Through MRE inversion, spatially varying representation of the following viscoelastic parame-

ters are obtained:

• complex shear modulus G*, measured in [kPa]. This parameter encapsulates elastic and

viscoelastic properties of a medium in a single complex number.

One can conveniently switch to Laplace domain [9], where G* (s) represents the ratio of

Laplace-transformed stress to strain tensors: G* (s) = σ(s)
ϵ(s)

. It is possible to obtain a fre-

quency resolved representation with s = jω, where w is the angular frequency (for ω = 0,

properties under static conditions are obtained): G*(jω) indicates that viscoelastic proper-
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ties of a material depend on the frequency w of an oscillating strain. Two parametrization

are used:

1. G*=G’+iG”. The real part of the shear modulus G’ is related to of the mechanical

energy stored in the system (storage modulus, kPa) and can also be indicated as µ;

the imaginary componentG” is related to the energy dissipated (loss modulus, kPa).

2. G = |G*| · eiθ, where tan(θ)= G’
G” . The phase angle θ is a common measure of relative

tissue viscosity; its tangent is referred to as loss tangent and it quantifies the ratio of

viscous to elastic behavior.

For purely elastic materials, there is not energy loss and the complex shear modulus con-

tains only its real component storage modulus: G” and θ are zero. In general, G’ and θ

are considered primarily elasticity-related metric; G” and |G| are viscosity-related.

• damping ratio: attenuation of the wave α measured in [1/m]. After passing trough 1

meter of medium, wave frequency will attenuate by the factor e−α, thus, a new value of

frequency would be equal toωe−α. α is a function of angular frequency (ω) of the external

vibrations through from G* and can be computed as:

α(ω) =
ω
√

ρ(|G*| − G’)√
2G*

(9)

Angular frequency ω can be calculated from actuation frequency f by: ω = 2πf.

• shear wave speed νs measured in [ms ], is function of ω and is affected by both elastic and

viscous properties; it can be retrieved from G* through

ν2s (ω) = 2
|G*|2)

ρ(G’ + |G|) (10)

For details on these viscoelastic constants and laws, please refer to the book [15].

In this neuroimaging-focused work, maps of the complex shear modulus G* will be computed

through MRE inversion, because its real and imaginary part have a closer correlation to clinical

outcomes. Some studies about generical elastography inversion focus on damping ratio and

wave speed estimation, which are easily computable from G*, as illustrated in the previous

laws.
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3.1.7 Physics Equations

To understand how to invert MRE data, which relies on mechanics differential equations, one

should describe physically how waves propagate and attenuate in materials. Considered the

assumptions made in the previous section (section 3.1.6), inserting the linear isotropic stress-

strain relation into motion equation, one can derive the general harmonic motion equation for in

an isotropic linear viscoelastic medium. This equation models waves behaviour in brain tissues,

ignoring spatial derivatives of the material viscoelastic properties:

G*∇2u(f) + (G* + λ)∇(∇ · u(f)) = −ρω2u(f) (11)

formulated also as:

∇ · [G*(∇u(f) + (∇u(f)T )] +∇ · (λ∇ · u(f)) = −ρω2u(f) (12)

to distinguish the compression or pressure component [∇· (λ∇·u(f))] from the incompressible

term [∇ · [G*(∇u(f) + (∇u(f)T ))]. For details on the physical laws used and the calculations

leading to these equations, please refer to the book [15].

Three parameters are contained in these equations: mass density ρ, Lamè’s first parameter λ,

associated with material’s response to volumetric (compressive or tensile) stress, and complex

shear modulus G*, associated with the material’s response to shear, or tranverse, stress. Shear

waves are much slower than longitudinal ones because λ (orders of GPa) is approximately six

orders of magnitude greater than G* (orders of KPa), making λ estimation unnecessary and

considerably challenging. MRE elastography is oriented toward shear waves and these two pa-

rameters can be decoupled [26]. But longitudinal (compressional) wave component must be

necessarily taken into account and removed because it also contributes to the total measured

displacement field, where the wave component of interest is the tranverse one.

One possible method to consider compressional waves is high-pass filtering, since the contri-

bution of the longitudinal component is concentrated at low frequencies [4]. Alternatively, it

can be assumed that displacement due to longitudinal waves is negligible because of the large

differences between longitudinal and shear waves in tissue; this assumption can be formulated

as λ(∇ · u(f)) = 0. Equation 11 becomes:

G*(∇2u(f) +∇(∇ · u(f)) = −ρω2u(f) (13)
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reformulated as (see Equation 12):

∇ · [G*(∇u(f) + (∇u(f)T )] = −ρω2u(f) (14)

Expanding in Equation 17 the first divergence operator, one can finally obtain:

G*∇2u(f) +
(

∇u(f) +∇u(f)T
)

∇G* = −ρω2u(f) (15)

This is a relevant equation for this work and will be referred as heterogeneous wave equation.

Actually, in [27], it is recommended not to ignore the entire second term of the left-hand side of

Equation 12 ( λ(∇·u(f) = 0)) because the small magnitude of the term∇·u(f) is compensated
by the large magnitude of λ in incompressible materials, which leads to a non-zero pressure

term and errors in the reconstructed stiffness [28], but rather apply the curl operator to both

sides of Equation 12 to get to Helmholtz equation (Equation 19) because the longitudinal com-

ponent of the displacement field is curl-free according to Helmholtz decomposition. According

to Helmholtz decomposition theorem [29], a vector (displacement field) u can be decomposed

into two components, one vanishing curl longitudinal uL and one divergence-free term tranverse

uT , such that:

u = uL + uT (16)

∇ · uT = 0 (17)

∇× uL = 0 (18)

Calculating the vector curl of the measured wave field is a very common approach [30] [9].

Another reasonable possibility is assuming strict tissue incompressibility, i.e. displacement due

to longitudinal waves is absent (∇ · u(f) = 0) in Equation 12, considered the high content of

water in the brain, and get to Helmholtz equation. The Helmholtz equation is a general wave

equation for a monofrequency wave field:

G*∇2u(f) = −ρω2u(f) (19)

Equation 19 directly relates the measured displacements to the complex shear modulus G* by

the angular frequency ω and the material density ρ. This is another core relation for MRE inver-

24



sions developed in this thesis work and will be referred as homogeneous or Helmholtz wave

equation.

In some papers, such as the reference study used in this research [10], the notation µ is used in

place of G*: they both express the same complex quantity, i.e. the shear modulus that provides

a complete understanding of viscoelastic materials’ behaviour by considering both the elastic

and viscous responses over a range of frequencies.

3.1.8 Viscoelastic MRE inversion

A wave equation generally explains how wave propagate into tissues, if the parameter fields

G* (r) , λ(r) and the boundary conditions on the surface of the objects are known[9]. In a typ-

ical forward problem, material parameters, pressure field and boundary conditions are known

and necessary to estimate full displacement field generated by mechanical traction. Solving an

inverse problem, on the other side, means deriving the spatial distribution of mechanical vis-

coelastic parameters from the extracted displacement field u(r), i.e, the wave image. The goal

is to retrieve the complex shear modulus field, also called elastogram, G*(r) : Ω → R
3 , from

the complex vector field tissue displacement u(r) : Ω → C
3 measured by MRE scan, where Ω

is the spatial domain where these physical quantities are defined. The resulting elastogram is

usually of the same resolution as displacement images [31].

Strain characteristics of waves depend on the mechanical properties of the medium they are

propagating and this should allow ideally to estimate mechanical parameters from strain data.

Nevertheless, solution of this inverse problem is inherently ill-posed or nonunique, requiring ei-

ther regularization methods or introduction of a priori knowledge [32]. Various algorithms have

arisen through research: Direct Inversion (DI), Local Frequency Estimation (LFE), Nonlinear

Inversion (NLI) and Multifrequency inversion will be briefly illustrated in section 4.
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3.2 MRE Clinical applications

MRE-derived mechanical properties can be used to detect biological or functional brain changes

from the normative state to the disease state and to characterize diseases. Storage modulus

variation of biological tissues ranges up to four magnitude orders [26] varying as the molecular

and intermolecular constituents change structure [32], while physical properties extracted by

conventional medical imaging techniques vary over a smaller numerical range. The storage

modulus G* ranges from 0.1 to 5 kPa in the brain, varies between 4 and 7.5 kPa in the heart

during different cardiac phases, and can reach up to 600 kPa in the intervertebral disc.

MRE is therefore a powerful imaging technique because it has a high sensitivity: tissues vis-

coelastic properties change significantly in many disease states and tumors are generally iden-

tified and located as areas of different stiffness.

Liver fibrosis is a response to injury resulting in extracellular matrix accumulation including

fibrillar collagen and proteglycans [33]. It is well established that MRE is a valid biomarker

for detection and staging of liver fibrosis with more sensitivity than other modalities because

the disease causes a remarkable stiffness increase, leading the best diagnostic accuracy among

various imaging modalities [34] [35]. MRE measures elasticity correlating well with the degree

of liver fibrosis [36] [37] and discriminates patients with any fibrosis from significant fibrosis ,

advanced fibrosis and cirrhosis [38] . Hepatic fibrosis also leads to reduced viscosity, that can be

measured through dispersion of the complex shear modulus [39]. MRE can also be exploited as

a biomarker to assess portal hyperextension [40] and to detect and categorize [41] non-alcoholic

fatty liver disease (NAFLD) patients, i.e. fat accumulation in the liver associated with alcohol

abuse.

MRE holds also a significant diagnostic value for the prediction of esophageal varices by mea-

suring splenic elasticity [42]. Moreover, kidney stiffness, which is strongly affected by hemo-

dynamic factors, can be measured and provide information about blood circulation [43] [44].

MRE is also a good candidate for imaging the soft and viscous pancreas and staging chronic

pancreatitis or pancreatic cancer monitoring.

Cardiac MRE potentially allows to quantify parameters describing mechanical action of the liv-

ing heart for diagnosis and therapy monitoring in cardiology [45]. Through quantification of

left ventricle (LV) ejection fration (EF) , it can act as an early detector of heart failure and dis-

criminates systolic from diastolic heart failure [46].
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Brain MRE holds significant promise for clinical applications as well. In intracranial tumors

[4], knowledge of stiffness level is important to plan the surgery treatment, as concerns in-

strument selection, tumor resection strategy and postoperative course [47] and MRI does not

allow to accurately grade it. Instead, MRE-measured stiffness can be exploited to predict intra-

operative shift of brain tissues caused by surgical instruments [48]; many works have shown

positive correlations of MRE output with surgeon’s preoperative impressions rated on a 5-point

scale (scores ranging from 1, indicating soft tumors removable with suction, to 5, meaning hard

requiring scissors or ultrasonic aspiration) [49] [50] [51]. In [52], MRE examination for menin-

gioma assessment, the most common primary intracranial tumor arising from meninges, pro-

vides a stronger correlation with the surgical assessment of stiffness compared with traditional

T1w and T2w imaging, particularly for intermediate stiffness meningiomas. Data analysed in

[51] show a tendency for greater storage modulus G’ in firm adenomas compared to soft ade-

nomas which is a valuable information for surgical planning, suggesting that the consistency of

pituitary adenomas depends on the level of fibrosis.

Other possible applications are intra-axial tumor differentiation and grading. Tumors growth

causes nonuniform deformation of brain structures, constrained by stresses of surrounding tis-

sues and described by extremely complex mechanics [48]. Brain tumors are generally distin-

guished as benign, such as meningioma and pituitary adenomas, and malign, such as astro-

cytoma, glioblastoma and metastatic tumors. In [53] it is revealed that MRE biomechanical

properties vary between tumors like benign meningioma, high-grade glioblastoma and oligoas-

trocytoma, while corresponding anatomical MRI images are much similar. In [51], mean and

maximumMREmeasured shear stiffness for meningioma is higher than pituitary adenoma (p<

0.05) and these values significantly correlate with the surgeon’s qualitative assessment of tumor

consistency. However, an important study [54] has shown that magnitude of complex shear

stiffness has large variability among tumors and cannot discriminate tumors grades: this hetero-

geneity of values may be attributed to the fact that rapid tumor growth lacks sufficient nutrition

and leads to a coexistence of solid tumor portions, central necrosis or haemorrhagic transforma-

tion and cystic components [54]. On the other side, relative difference of loss tangent δϕ from

areas not tumor-affected allows to distinguish clearly meningiomas from gliomas and metastatic

brain tumors. This higher dissipative behaviour of meningiomas may be explained by the higher

cellular network density within the tumor compared with other tumor entities [54].

Assessment of brain tumor adhesion can be obtained with a MRE scan by identifying discon-
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tinuities in the displacement field on the tumor - brain boundary which reflects slip interface,

through a technique called slip interface imaging (SII). The concept is: the greater is tumor

adhesion, the more fixed it becomes, the less slipping and motion will occur at its boundary

[55].

It is also possible to investigate non-localized brain biomechanics to understand the correla-

tions of global and regional stiffness measurements in healthy and diseased states throughout

life; many studies confirm that brain stiffness decreases with age but correlations are different

throughout brain regions [56] [57] [58] [59]. Stiffness topography is under investigation, but it

is well established that White Matter (WM) is stiffer and more viscous than Gray matter (GM)

[60], the stiffest brain region is the deep GM and deep WM, and cerebellum is the most soft re-

gion [58]. WM contains oligodendrocytes which form the myelin sheath, astrocytes, microglia

and has fiber bundles of aligned myelinated axons [61]; GM contains neurons, astrocytes and

microglia and is less organized, lacking network support: topography stiffness differences agree

with some research works which have shown tissue stiffness increases with myelination during

development in WM [62] and negatively correlates with the density of cell nuclei [63]. Another

work leveraged this technique and combined a nonmagnetic motion source with multifrequency

dual elasto-visco inversion (MDEV)reconstructions [64], to provide the first normalized map of

brain viscoelasticity at high spatial resolution to use as background data for clinical applications

of cerebral MRE.

Diagnosis and management of patients with neurodegenerative disorders is another important

field of application.

Normal pressure hydrocephalus (NPH) is a disease characterized by an abnormal accumulation

of cerebrospinal fluid (CSF) in the brain’s ventricles leading to an increase in intracranial pres-

sure (ICP). Lots of research have pointed out that it causes a mechanical tissue damage that alters

brain stiffness, but there are inconsistencies: some studies [65] have reported global reduction

in shear elasticity µ on the order of 20% or [66] significant decrease of viscoelastic parame-

ters µ and α compared to age-matched controls (p < 0.001). Other studies instead have shown

increased stiffness in NPH patients[67], most in periventricular WM. A research [68] found

significantly increased stiffness in NPH patients in cerebrum, occipital , and parietal ROIs and

significantly decreased stiffness in periventricular ROIs (areas located around the ventricles in

the brain). NPH pathophisiology is still under investigation: what is known is that increased

intracranial pressure, which has been detected in patients with NPH, might play a role in brain
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stiffening occurring because it causes ventricular dilation that compresses interstitial and in-

tracellular fluids out of parenchymal pores. The tissue compression would lead to a nonlinear

elastic response, causing stiffening.

Ventricular dilatation is not the only physiological cause of this disease. Corresponding cellular

changes contribute to this stiffening: there is a reported increase in the ratio of cytoskeletal ma-

trix to interstitial and intracellular fluids in NPH patients [69]: the cytoskeleton, composed of

microtubules, provides structural support to the cell and a higher proportion of these elements

and cytoskeletal proteins increases the cell’s rigidity, while less fluid means less ability for the

cell to deform easily under stress, as fluids can readily flow and redistribute. The study [70]

suggests also that less densely packed axonal fibers and less compact myelin sheaths (demyeli-

nation) might be the cause of reduced WM stiffness in early-onset hydrocephalus. Moreover, a

reduction of blood flow and of capillary density was observed in NPHWM: the chronic pressure

exerted by CSF accumulation and ventricular dilatation might bring to prolonged compression

and to these ischemia phenomenons. This may result in a breakdown of cellular structures and

extracellular matrix (ECM) that further co-contribute to stiffness changes.

There is also an implication from inflammatory processes, which are common in hydrocephalus,

that might lead to the degradation of ECM components and the disruption of normal tissue ar-

chitecture.

Multiple sclerosis (MS) causes some structural modifications detectable by MRE: in [71], stor-

agemodulusµ and viscoelastic attenuationα results significantly reduced in patients with chronic

progressive MS compared to healthy controls, while the relapsing-remitting disease shows only

alteration of viscous effects ant not shear elasticity reduction. These alterations are caused by

parenchimal degradation occuring in MS, which impacts both mechanical matrix brain and its

volume (brain atrophy). Factors determining this parenchimal loss of integritymight be demyali-

nation, the hallmark MS feature, degeneration of neurons and axons, incomplete remyelination

(the process of restoring the myelin sheath), reduction of Mature Oligodendrocytes and reac-

tive astrogliosis, a process where astrocytes become hypertrophic and proliferate in response to

injury or disease.

Patients with Alzheimer’s Disease (AD), a progressive disease that causes cognitive decline,

show a significant stiffness decrease compared to age-matched healthy controls [15] [2]. Stiff-

ness changes occur mostly in the frontal, parietal and temporal lobes. these regions viscoelastic

properties are strongly affected by the disease and show great potential for detecting AD patients

Possible reasons for this loss might be a significant reduction of neuroprotective perineuronal
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nets (PNNs) that makes neurons withouth PPNs more susceptible to degeneration [72]; PNNs

are unique ECM structures that wrap around the cell body of many neurons [73]. Cell body

density correlates with tissue stiffness and cell numbers are reduced in AD patients compared to

control which might me another cause of AD softness. Moreover, formation of Amyloid plaques

is peculiar of AD, which are compounds stiffer than surrounding brain tissues that cause a loss of

neuronal stiffness, induces oxidative stresses and alters membrane properties through mechan-

otransduction events.

Another analysis [74] revealed that brain stiffness is significantly and positively correlated with

default mode network connectivity.

Another effort that led to significant discoveries was[3]: differential diagnosis of Parkinson’s

disease (PD) and Progressive supranuclear palsy (PSP) is still a challenge and it was found that

viscoelasticity parameters are differenty affected by PSP and PD degenerations. In PSP all MRE

constants are reduced, in PD changes of brain elasticity predominate viscosity ones. [75] sup-

ported this conclusions stating that reduced mesencephalic |G∗| discriminates PSP from PD (p<

0.05) and that neurodegeneration is more pronounced in PSP patients (p< 0.05 vs PD). Biolog-

ical underpinnings and correlations of these viscoelastic changes are consistent with MS ones:

it was suggested axonal degradation, demyelination and degradation of the extracellular matrix

can lead to a drop in G* . The study [3] mentions that a drop in |G∗| and µ without a change

in α might suggest the presence of inflammatory processes. Varying degrees of extraneuronal

involvement (glial cells, astrocytes) in PSP and PD might contribute to the differences in vis-

coelastic changes. In PD, there is also presynaptic accumulation of α-synuclein, which starts

focally and affects axonal integrity only later in the degeneration process, and might explain

why viscoelastic parameters remain largely unchanged in PD compared to PSP.

The complex mechanics of neurodegenerative diseases is still an open field of research that

requires an understanding of the relationship between cell body density, cell type and tissue

stiffness in different brain regions but presents some common denominators such as brain cells

degenerations with cytoskeletal perturbations, ECM composition change, neuroinflammation

and intervention of pathological proteins and peptides, such as amyloid plaques, which alter the

mechanical properties of neurons and glia. [72].

Future perspectives include imaging the neuronal activity biomechanics response of tissue vis-

coelasticity to functional processes [4].
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3.3 MRE Hardware

Figure 10: MRE hardware components. Adapted from ” Harnessing brain waves: a review of
brain magnetic resonance elastography for clinicians and scientists entering the field”, by

Arani et al, 2021, The British Journal of Radiology. @ 2021, Br J Radiol.

In MRE scanners, an active driver is combined with a transducer, which transmits the mechan-

ical waves into the target tissue. MRE transducers can be either pillow-type passive devices or

head cradle passive drivers. Active drivers are the source of motion and are externally power-

supplied by either pneumatic vibrations, requiringwaveguide ducts, piezoelectric or electromag-

netic signals. Transducers cause tissues to experience a motion and are usually placed inside the

scanner,while electrical and control units are outside the MRE room (Figure 10) . Connections

through the MRI room can be nonconductive (e.g., plastic tubes for air or hydraulic fluid) or

fitted with electronic filters.

Nonmetallic drivers are preferred to avoid interactions between actuators and MRE magnetic

field. The device applies shear acoustic waves into the tissue of interest with a set frequency

and transmits acoustic energy through the brain. The frequency is set according to attenuation,

sensitivity and exposure constraints.

It is well known that wave delivery methodology can influence MRE brain displacement fields

and lead errors in mechanical properties estimation. In [76], FEM based modal analysis and har-

monic simulations have shown that displacement vector magnitudes depend on wave delivery

method, which can lead to different resonance peaks at the natural frequency of the skull (deter-

mined by the anatomical components and boundary conditions); different loading methods of

the skull also bring to different displacement amplitudes. The study pointed out that waves pat-

tern reconstruction varies a lot between vibration frequencies of 50 Hz and 90 Hz for the same

wave delivery method and that head-cradle and acoustic pillow delivery methods give the lower

inversion error. To ensure consistency between studies and reproducible measures of these low

brain mechanics variations, it’s therefore important to use a common stable methodology [76].

MRE systems should respect some requirements to provide sufficient phase to noise ratio (PNR).
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In fact, an homogeneous magnetic field to avoid phase wraps, high precision delivery gradients

to guarantee a linear relationship displacement-phase (Equation 8) and good connection between

generator and MRI computer to guarantee time synchronization sequence-motion are necessary

to produce a fast and robust MRE signal.
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3.4 Deep Learning

Deep learning is a type of machine learning based on artificial neurons connected into a net-

work that form an artificial neural networks. Several layers and of different types (e.g. dense,

convolutional) are included: one input layer, hidden layers and one output layer (Figure 12).

Figure 11: ANN include several layers.

DL methods are representation-learning methods that can be fed with raw data. A model, the

neural network, is composed of multiple simple non-linear modules, the network layers, that

progressively transform data representations at a higher and higher level in order to learn very

complex nonlinear functions [77]. These layers do not require engineering by hand but learn

directly from raw data; this makes DL techniques inherently based on data and very good at

discovering patterns in high-dimensional data.

3.4.1 Artificial Neural Network

Within the network, each artificial neuron computes the weighted sum of the received input,

adds a bias, and mediates the output with a nonlinear activation function that recalls the fir-

ing mechanism of biological neurons (Figure 12): this last step introduces non-linearity in the

model and maps neuron outputs to a specific range, avoiding saturation (which can bring to

vanishing/ exploding gradients, [78]). The number of layers and number of neurons per layer

are the first relevant network parameters: the network used in this work has 5 layers with 128

neurons per layers (see Table 2 in section 5.1). Examples of common activation functions are the

logistic function, hyperbolic tangent, sin function (used in this work’s ANN), Rectified linear

unit (ReLu) and Maxout[79]. Feedforward networks contain only fully-connected (or dense)
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layers, in which each neuron is connected to every neuron of the previous layer. Another type

of network is the convolutional neural network (CNN), based on convolution and developed to

process data in the form of arrays, such as 2D images.

Figure 12: Each artificial neuron output is the sum of inputs received and a bias term, followed
by an activation function. Adapted from ”Backpropagation with Andrej Karpathy: Part 2”,

Kavishka Abeywardana, The Deep Hub, Medium

The neural network implemented in this work is an example of supervised deep learning. Su-

pervised learning builds DL models from labeled training examples: an error function defines a

cost function that quantifies the distance between the model predictions and the desired ground

truth targets. The cost function, called loss function, should be minimized: network parameters,

i.e. weights and biases of each neuron, are random initialized and iteratively modified to reduce

it with a backpropagation algorithm. An example of cost function is Mean Squared Error loss

(MSE), presented in Equation 39 (Section 5.2.1).

The learning algorithm computes a gradient vector that indicates for each parameter how fast the

loss changes with respect to a change in that parameter and parameters are then adjusted in the

opposite direction of the gradient, i.e. in the decreasing loss direction. To improve the efficiency

and computation of the gradient descent, Stochastic Gradient Descent (SGD) optimization can be

implemented, in which the gradient is calculated only on a random subset of training examples,

called minibatch, and weights are adjusted accordingly; this increases the frequency of weight

updates for each epoch. The number of samples for a minibatch is called batch-size and is an

hyperparameter to be set also according to available computational resources. An epoch is one

complete pass through the entire training dataset. SGD optimization can be further improved

with momentum hyperparameter damping, such as in the method used in the reference study of

this work for PINN development: AdaptiveMoment Estimation (Adam)[80]. Adam is a method

for efficient stochastic optimization that adjusts individual adaptive learning rates for different
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parameters based on first and second gradients moments and presents various advantages, such

as the magnitudes of parameter updates are invariant to gradient rescaling and that it works with

sparse gradients [80].

The speed at which the network learns from data is determined by the hyperparameter Learning

Rate (LR) that multiplies the weight update. LR has to be set carefully because it strongly affects

the training phase: if the learner is too slow, it might never get to a loss minimum, if too fast,

it might overshoot the minimum. For PINNs it is usally set to 1e-3 or 1e-4; the second option

is chosen for this work’s PINN. Other algorithmic parameters are weights initialization design,

and for multiloss problems, such as PINNs, loss relative weights [81].

After training, the model is evaluated on a separate set of examples called test set, to assess

its performances and its generalizability, namely, how it performs on new, unseen data.

35



4 State of The Art

When measuring MRE, it is fundamental to understand the extent at which the phase measured

is accumulated because of spin motion scattered by the vibration, or it is due to noise, which in

MRE is usually supposed gaussian and its effect depends:

• on the processing algorithm, because derivative tends to amplify it

• on the actuation frequency, because attenuation increases when this becomes high

• on the actual stiffness, because the stiffer the material, the longer the wavelength and the

more the noise influence due to smaller derivatives

Noise limits MRE resolution because a high-resolution image leads to many pixels per wave-

length and noise signal dominating over oscillating waves signal. This is is the main drawback

of inverting MRE data with DI methods.

Discretization artifacts, on the other side, occur with calculation of the derivative of a discrete

displacement field, as happens in many algorithms: a finite voxel spacing can impact subsequent

mathematical operations. These failures are common for FEM inversions.

Discretization artifacts are dominant for low resolutions and cause overestimation of wave speed

and viscoelastic moduli, noise occurs at higher resolutions and causes their underestimation.

Various algorithms have arisen through research to inverting MRE data: Direct Inversion (DI),

Local Frequency Estimation (LFE), Nonlinear Inversion (NLI). Each technique relies on some

assumptions and implementation choices [8] with varying robustness, accuracy, computation

time and ease of use [1]. Time consuming estimation of the stiffness maps, ill-posedness and

nonuniqueness solution of the inverse problem, low resolution and noise sensitivity make it

challenging to extract accurate and high-resolution results. In this section, DI and FEM inver-

sion methods will be detailed, serving as benchmarks against the innovative MRE inversion

introduced in this study. LFE and Multifrequency inversion will be also briefly explained.

For these reasons, there is a strong need for developing advanced inversion algorithms capable

of relaxing tissues homogeneity assumption, while maintaining efficiency, clinical feasibility,

good resolution and numerical stability. Some research groups have recently started to solve the

inversion problem with Artificial Neural Network inversion (Section 4.5).
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4.1 Direct inversion (single frequency)

DI directly solves the Helmholtz equations of motion in a locally homogeneous, linear and vis-

coelastic material and produces a fast estimate of the complex shear modulus. The Helmholtz

equation (Equation 19) relates directly displacement field to the complex shear modulus G*

and is formally obtained applying the general wave equation to a monofrequency wave field

[33]. Only shear displacement field is accounted in computation. It is derivable from the wave

equation (left) by applying FFT (right):

∆u(x, t) =
1

c2
ü(x, t) → ∆ũ(x,w) = −w

2

c2
ũ(x,w) . (20)

DI can handle both isotropic and anisotropic models: in the first case, the estimate of each vector

component ui of the tridimensional wave field yields the same value, while in anisotropic media

the components ui should accordingly yield different values.

Spatial distribution of G∗ can be inferred:

G∗

i = −ρω2 ũi

∆ũi
. (21)

Wave fields are a superposition of shear and longitudinal waves, described by different wave

speeds and complex shear moduli. DI can handle this superposition, either via multiparameters

inversion, solving Equation 13 to calculate both moduli G∗ and λ with matrix inversion, or via

Helmholtz Decomposition, decoupling Equation 13 through the divergence and curl operators

(Section 3.1.7) [9]. With the same calculations, through Equation 21 one can derive also the

local wave number k from k= ω
νs
, where νs is the phase speed of the shear wave.

The main drawback of this approach is the high noise sensitivity because DI algorithm con-

tains Laplacian operation causing small noise fluctuations in the wave field to potentially be

dramatically amplified with the double derivative contained in it. This numerical instability at

the voxel-level can be solved by either decreasing spatial resolution or by additional smoothing.

Estimation of spatial derivatives from noisy displacement data can be effectively computed [5]

with Savitsky and Golay filter [82]. Moreover, to solve the equation, DI assumes local homo-

geneity of viscoelastic parameters which can negatively impact the final estimation’s accuracy

and sensitivity to noise.
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Also data discreteness, not taking into account boundary conditions diffraction, transducer near

field and reflections complicate the relationship local wave number - complex stiffness, assumed

straightforward in the ideal case (Equation 21), leading only apparent phase speed estimates.

This wave speed inversion-intrinsic dispersion can be minimized adopting an optimal spatial

resolution, expressed as wavelenghts per pixel size λ
a .

A novel DI application with a variational formulation was presented in [32] where the DI prob-

lem is defined in an equivalent variational (or weak) form, from which a solution for material

parameters can be obtained in a practical and computationally efficient way. Results in [32]

show that local inversion is applicable but presents some issues, with inversion breaking down

at the interface, high sensitivity to noise in the numerical calculation of the displacement data

and lack of spatial variation in predicted displacements.

4.2 Nonlinear inversion (Finite Element Model)

Finite Element Models (FEM) are a numerical method of solving partial differential equations

to achieve approximate solutions in a discretized form of the problem’s spatial domain. FEM

methods are used for forward modeling; elastography in contrast is an inverse problem, where

the displacement field is given to determine the viscoelastic parameters distribution. This can

be solved with FEM in an iterative way with nonlinear inversion by minimising the error be-

tween the FEMmodel and the acquired displacement field; iterations continue until themeasured

displacement is sufficiently closed to the FEM current displacement predicted by the forward

model.

This approach has the advantages of being able to incorporate the full motion equation (Equation

12), and can release the assumptions of linear elasticity [83][84], it is more flexible and more

robust than DI [4]. However, this method is computationally costly and has reconstruction times

of the orders of hours, compared to seconds-minutes for DI, so it’s not practically suitable for

clinical workflows [4]. Moreover, most algorithms proposed [9] assume that the measured dis-

placement field is purely transverse without any compression waves and this is not always the

case (see Section 3.1.7).

In FEM modeling [85], the problem domain is divided into geometric units called finite ele-

ments. For example, in MRE data, a subzone-based technique has been proposed [86]. Within

each finite element, a set of basis functions is used to interpolate the problem’s parameters based

on the values at the nodes. To reduce computational complexity, each basis function is designed
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to have a small support, confined to the specific finite element it is associated with. The PDEs

are then transformed into algebraic equations that apply to each finite element, known as element

stiffness equations. These equations are assembled into a system of global stiffness equations.

Finally, boundary conditions are applied before solving the global stiffness equations to deter-

mine the unknown nodal parameters.

4.3 Local Frequency Estimation

In the earliest approach [87], the local wavelength of the propagating wave was exploited, which

depends on the material’s real-valued shear modulus via

µ = ρν2s = ρ(λf)2. (22)

LFE estimates the wave number k by applying a pair of band-pass filters to the wave image and

extracting k from the ratio of the filtered images, from which the shear wave speed and shear

modulus can be computed.

This method is less noise-sensitive than DI as it does not require the second derivative operation.

Nevertheless, the filter width determines the LFE spatial resolution, and consequently one big

disadvantage of this approach is the limited spatial resolution: LFE accuracy is affected by tissue

heterogeneities, tissue boundaries, where LFE estimates are blurred, small inclusions, and the

presence of noise in the measured data [9].

LFE and DI have been tested on different simulations [26]: DI results sharper and more sensi-

tive to noise and more affected by amplitude nulls while LFE estimate results to be smoother,

with lower resolution and fewer artifacts. Additionally, LFE can trade off noise sensitivity and

resolution by altering the local filter window size.

4.4 Multifrequency MRE

In high-noise regions, or deeper tissues where induced vibration amplitude is reduced, DI es-

timation process can become very unstable and this effect is greatly enhanced in the presence

of standing waves. These occur when incoming and reflected waves within tissues interfere

constructively or destructively, resulting in regions where the displacement oscillates with min-

imal or maximal amplitude (nodes and antinodes). Multifrequency approaches allow to deal

with them and potentially introduce nodes with zero displacement, i.e. no deformation, but con-

versely require longer scanning times. One possible solution is averaging over several different
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frequencies to make parameters estimation more stable, if it is assumed that viscoelastic prop-

erties are not dependent on the vibration frequency. However, absence of dispersion (different

shear wave speeds at different frequencies) is true only for purely elastic material.

Another alternative could be apply an algebraic least-squares solution based on the springpot

model, a technique proposed in [88], that provides a significant better resolution than single

DI and less artifacts because it mitigates amplitude nulls due to standing waves and takes into

account dispersion in the inversion procedure.
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4.5 Inversion with Deep Learning

Some research groups have recently started to solve the MRE inversion problem with artificial

neural network inversion.

Thanks to its high learning capabilities, DL targets high - dimensional nonlinear mapping prob-

lems, such as capturing the hidden relations between displacement field and elasticity field from

MRE data [89]. Indeed, deep learning methodologies are increasingly becoming the preeminent

choice for addressing the inverse problem of elasticity reconstruction: they are data-driven,

straightforward, predictions are necessarily bounded by training data and this provides stability

[8]. DL techniques are appealing because they relax many constraints of previous inversion

methods, such as initial guesses, need for filtering, strong biomechanics assumptions, actuation

frequency limitations on mechanical models [90]. It was demonstrated in different works the

efficiency of DL in achieving high resolution and high accuracy elastograms, also when training

over a limited portion of representative samples [89] [8] [91] [90] [8] [68].

DL methodologies can also diminish susceptibility to noise and offer a real-time and high-

throughput solutions that is suitable in a clinical workflow.

One of the first work [8] pointed out that neural network inversions (NNI) can accurately com-

pute stiffness from MRE simulated data, without and with the addition of Gaussian noise: NNI

performs always better than DI on simulated data, by explaining twice the variance explained

by DI estimates. The same NNI was tested on real brain data: a strong correlation between

NNI and DI estimates of stiffness was found and both inversions detected biologically relevant

signals, such as significant decreases in cerebral stiffness with increasing age. The study also

found that repeteability error was lower in NNI than in DI and voxel-wise analysis suggested that

NNI is more sensitive than DI at a given resolution. The study was constrained by a model that

assumed tissue homogeneity within each patch and lack of information on attenuation. Despite

these limitations, it highlighted the significant potential of NNI inversion for solving elasticity

inverse problem.

In the same year another team [90] furthered the previous effort proposing a ANN that maps

displacements to elastograms by directly including convolutional layers in order to skip the pre-

processing steps of partitioning data that were present in Murphy’s work [8]. In addition to

the fitting data loss, there is an extra loss term which contributes to the overall loss function

motivated by MRE mechanical models to ensures the generated images respected the mechan-

ical relationship between displacement u and stiffness µ. The secondary loss was derived by
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Navier’s equation assuming the absence of longitudinal waves ( expressed by |µ∇2u + ω2ρu|).
The results showed NNI inversion is able to recover high stiffness variations and performs better

than NLI and showed the potential of CNN to retrieve tissues elasticity maps.

Two years later the first work [8], this NNI inversion was applied by the same group with some

changes: first, a model was introduced to provide a viscoelastic material description (to pro-

duce both stiffness and damping ratio maps); secondly, mask patches were applied to data to

test the inversion accuracy in the presence of missing data; finally, a convolutional framework

was chosen to better leverage spatial information [68]. This ANN produced accurate estimates

with missing data, proved to be less susceptible to partial volume effects than DI in simulated

data, and reduced bias and variance, compared to DI. The work supported the feasibility and

demonstrated flexibility of the NNI framework in MRE.

A recent retrospective study [91] proposed a CNN that predicts voxel-level stiffness in patients

with nonalcoholic fatty disease, with only standard MRI sequences clinical data as inputs. The

model was not applied to brain images but reached promising results and showed that both MRI

images and clinical information contain necessary information for prediction of hepatic stiffness.

4.5.1 Physics-informed neural network

Physics-Based Deep Learning (PBDL) denotes the combination of physical modeling, or classi-

cal numerical techniques, with DL-based methods: both the benefits of accurate and robust NNs

[92] are leveraged, and it is possible to incorporate domain knowledge, formulated as physical

models. The data-driven approach is reconciled with the theory-driven method that relies on a

priori models and assumptions [93]: on one side, mathematical and physical models formulated

are always an idealized approximation of reality and most inversion techniques for parameters

identification are applied to simplified models: DL methods can bridge the gap towards reality

by fitting a ANN model to data [93]. On the other side, purely supervised DL frameworks yield

good results when a large amount of data is available and their success depends on the quality

and amount of data: the introduction of prior knowledge enhances the applicability of these

black-box approximators.

Among the various methodology, the Loss-term based PBLD can be used to solve inverse prob-

lems, where certain measurements are avaliable for which a Partial Differential Equation (PDE)

solution has to be solved. This class of PBDL is also called Physics-Informed Neural Network

(PINN). The integration of DL and physics is made via PDEs: physical laws are incorporated

into the loss function through an additional term that quantifies the adherence of data to the PDE
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that models them.

A PINN model is made of two components that enter its loss term:

• Deep Learning and Neural Networks: the goal is to approximate with a NN f(x,θ) an

unknown function that explains data

f(x; θ) = y (23)

The minimization problem can be set as:

argmin
θ

|f(x; θ)− y∗|22 (24)

where y* indicates ground truth.

• Physical models. PDEwill be denoted as P*. Their solution is usually defined on a spatial

domain Ω ⊂ R
d with d ∈ {1,2,3} and on a finite time interval t ⊂ R

+. The network

inputs are space and time variables i.e, (x,t). The corresponding fields are for instance,

displacement vector fields u: Rd × R
+ → R

d or stiffness field µ: Rd × R
+ → R. Given

a PDE for u (x,t), it can be expressed as function F of u derivatives as:

ut = F(ux, uxx, uxx...x) (25)

where the ux and ut subscripts indicate spatial and temporal derivatives. If the unknown

u is well approximated with a NN by ũ, the PDE residual R should be naturally satisfied.

R = ut − F(ux, uxx, uxx...x) = 0 (26)

The minimization problem (Equation 25) and the PDE residual (Equation 27) are integrated and

the model is trained to minimize the combination of residual and data-driven loss.

argmin
θ
α0

∑n

i=1
|f(xi; θ)− yi|22 + α1R(xi) (27)

where hyperparameters α0 and α1 denote the contribution of the supervised and the residual

term. Both objectives are simultaneously optimized such that the network learns to fit training

data and capturing the PDE knowledge: after training , the network model should be able to

provide a solution approximant the underlying PDE systems and to match data [94].
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Figure 13: A supervised loss is combined with a set of derivatives from the NN. Adapted from
”Physics-based deep learning”, by Nils et al, 2021, eprint arXiv:2109.05237. @2021, eprint

arXiv:2109.05237.

A PINN example is presented in Figure 13: in addition to the supervised loss term, a Residual

term is formulated which collects additional evaluation of θ and its derivatives. Backpropaga-

tion algorithm can be leveraged to compute derivatives of the model with respect to learning

parameters.

Many works have shown that this integration can substantially improve the training process of a

purely DL based method for problems related to fluid dynamics, acustic, heat transfer, solid me-

chanics and elastodynamics [95] and is more easy to implement than the challenging numerical

simulations, particularly with high dimension domain. The success of PINN in different physics

problems relies on leveraging the capability of ANNs to become universal approximators and

on ensuring the learning of the governing phyics [92]. Supervised DL typically yields inferior

results to approaches that tightly couple with physics first because honoring physics, embed-

ding some properties in the DL algorithm that would be almost impossible to inherit, leads to

improved robustness and accuracy. Secondly, thanks to use to additional constraints, it is pos-

sible to utilize physical knowledge for solving these problems [92] and the training converges

even on sparse, insufficient or low resolution datasets [81] [96].

The success of this method can be attributed to 1) the choice of the set of ANN inputs and out-

puts that allow impose governing equations to the correct solutions 2) algorithmic advances for

accurate ANN differentiation 3) advanced ML software like Tensorflow and pytorch [81].

PINN methodologies also have some drawbacks. First, the accuracy of the derivatives relies on

how well the representations are learned. Secondly, the training is often computationally expen-

sive and incredibly slow as it requires backpropagation of possibly high-order derivatives; as a

consequence, some examples in [93] show that because of the high reconstruction cost, it is not

possible to capture a wide range of solution as in the supervised method. There is not yet much
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knowledge on hyperparameters performance and the best training configuration [12] and these

models tend to yield inaccurate results especially for nonlinear PDEs [94]. Last, it is difficult to

control the gradient flow and to balance in an optimal way the different loss terms.

Considering the ideas put forth in [93], the introduction of a PDE loss term can be consid-

ered a physical soft constraint and not a physical contrainst machine learning because the final

performance and generalizability of the model is not evaluated on a different unknown test set,

as explained in Section 3.4.1, but instead a single solution in a known and given space-time

region is produced. Samples from the test domain follow the same distribution of training set

and there is little hope that the PINN generalises optimally on a sample out of the training set.

With these soft constraints, there is no guarantees that the non-linear optimization will make the

additional loss term R actually reach zero during training and large residual contributions could

remain [93]. Such an approach, even with large training data, does not guarantee that the NN

obeys the govering equations with convergence to reliable solutions [92].

The capability of PINN of solving inverse identification elasticity problems in nonhomogeneous

materials was shown in [97] where, to deal with spatial dependency of mechanical properties,

two independent neural networks were defined (respectively, displacement and stiffness pre-

dictions from spatial coordinates). The model described an hyperelastic material, adopting a

slightly different model from the viscoelastic assumption of this work, but results still showed

an overall error of 1 % in stiffness identification and this demonstrated PINN feasibility to solve

elastography problems in spatially varying material parameters.

Figure 14: Two possible network structures: two outputs (ux and uy ) from a single network
(left) and from two separate networks (right). Adapted from ”A physics-informed deep

learning framework for inversion and surrogate modeling in solid mechanics” by Haghighat et
al, 2021, Computer Methods in Applied Mechanics and Engineering. @2021 Comp Methods

in App Mechanics and Engineering
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A PINN was then proposed in [81] to solve inversion of a simple two-dimensional linear elas-

ticity problem in solid mechanics. Two different architectures were proposed: one densely

connected network with two outputs (ux, uy) or two densely connected independent networks

with one output each associated with ux and uy (Figure 14) . As a result, defining a separate

networks for each solution variable outperforms and is more effective for two reasons. First,

the structure of the single feed-forward neural network leads to have the same last layer input

for all outputs, thus making more challenging for the single - network to accurately represent

all variables, unless solutions are linearly correlated. Secondly, weights and biases, which can

be seen as Degrees Of Freedom (DOF) in a FE or meshfree model where each solution variable

should employ a separate set of DOF, are accordingly not shared between solution variables in

the separate networks model. PINN was validated on synthetic data (generated from low-order

and high-order FEM) and on analytical data (Isogeometric Analysis (IGA)) and the importance

of using high-order numerical methods or analytical methods for pretraining the network was

shown. Incorporating physics into the network architecture enhanced its robustness, as shown

by the correct identification of parameters even with a low availability of training data (despite

requiring more epochs), and by the accuracy of predictions on new parameters, different from

the training parameters. Another important contribution was the relevance of Transfer Learn-

ing (TL) applicability, which led to accelerated convergence: performing re-training on new

datasets setting as starting parameters a previously trained network (on another dataset) led to

lower initial losses and took far less time than training from scratch the model .

Ragoza and Batmanghelich [98] recently published open-source code where they implemented

a PINNMRE inversion of simulated data and, for the first time not artificial, of in vivo data from

patients with NAFLD. The network presented is dual in order to learn simultaneously represen-

tations of the measured displacement field and of the latent elasticity field and the solving of a

PDE is incorporated in the learning process. Anatomical information is also included through

T1w and T2w scans. Results reveal less sensitivity to various levels of Gaussian noise in simu-

lations and more accuracy on real data compared to FEM and DI inversion; improved stiffness

reconstructions thanks to the introduction of anatomical information in the model. This algo-

rithm serves as a reference for the development of the brain PINN of this thesis work and is

carefully presented in Section 5.1.
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4.5.2 Homogeneity Assumption

Lots of research have tried to assess the negative impact of assuming homogeneity of viscoelastic

properties on the accuracy and noise sensitivity of the final MRE brain stiffness estimates [99].

The PINN inversion introduced in [8] also explored how the homogeneity assumption changes

the physics equation and consequently the final estimates: in elasticity reconstructions of sim-

ulated data with no noise, the PINN containing homogeneity assumptions showed textural arti-

facts and lower resolution than PINN associated to heterogeneous equation; on in vivo liver data

the first one was overcome by the second in terms of Person’s correlation with ground truth elas-

tograms (R2 = 0.76 andR2 = 0.84). Another work [11] adopted the aforementioned assumptions

but pointed out the restriction and tried to accounts for local inhomogeneity by training param-

eters on wave data generated by a Coupled Harmonic Oscillator (CHO). This neural network

inversion, called Inhomogeneous Learned Inversion (ILI), was compared with Homogeneous

Learned Inversion (HLI) and DI: ILI was more accurate than HLI and DI in predicting inclu-

sion stiffness in case of high-noise phantom data, and Dice coefficient was significantly higher

for ILI than DI; Dice coefficient is a measure of similarity ranging from 0 to 1 that quantifies

the agreement between a model result and a ground truth; ILI offered also sharper transition at

tumor edges than HLI and DI. The study confirmed that NNI algorithms for MRE can improve

stiffness estimates in materials with spatially varying stiffness and showed advantages of inho-

mogeneous inversions in case of large stiffness gradient, but the model was trained on simulated

data which may not have captured the full complexity and variability of real-world data. In fact,

CHO simulations do not reproduce mode waves conversion at interfaces because they do not

contain longitudinal waves.

Some years later, the same group evaluated the impact of homogeneity assumptions on stiff-

ness gray matter estimates training two varieties of NNIs on homogeneous and inhomogeneous

media of generated data. Instead of CHO, a new Finite Difference Model which incorporates

the full physics of wave propagation was used for simulations [99]. ILI proved to be a more

sensitive inversion as it showed significantly larger changes of stiffness in response to changes

of both volume and stiffness ROI changes. Moreover, in vivo ILI produced stiffness maps with

lower apparent spatial variance. This work demonstrated that inhomogeneous inversions offers

advantages even when there are not large stiffness gradients, simulated on purposes.

Another study tried to overcome the limitation of homogeneity assumption by taking into ac-

count the first order spatial derivatives of the storage modulus [27]. Two equations were tested
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in an in vivo liver cancer case study: when using Helmholtz equation, necrotic tissue was not

visible and biases were present in areas where spatial derivative of G* was not neglectable,

when applying one equation containing a linear derivative of G’, anatomical correspondence

was definitely improved and the complex architecture of the lesion was revealed.
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5 Training study: MRE Phantom

5.1 Reference Study

Ragoza and Batmanghelich [10] recently presented at 2023MICCAI conferences the implemen-

tation of MRE PINN inversion for in vivo liver data, and published open-source code for this

algorithm.

Figure 15: Github repository avaliable from Ragoza [10] work on PINN.

A GitHub repository is available from the work 2 by the BatmanLab team (2023) and the refer-

ence algorithm for this work is contained in a notebook within this GitHub folder (Figure 15)
3. The notebook downloads the BIOphysical Quantitative Imaging Towards Clinical Diagnosis

(BIOQIC) FEM box simulation and trains PINNs to reconstruct a map of shear stiffness from

the displacement field. The BIOQIC simulation was provided through a collaboration with the

Clinical Research Imaging Centre, University of Edinburgh [100].

The algorithm provided by this reference study will be first implemented and adapted in a train-

ing study on a MRE phantom, as illustrated in this section (section Training Study:MRE Phan-

tom), and then applied in a testing study, as explained in the next one, where the model will be

trained on a cohort of brain tissues in the attempt to create a MRE PINN-based inversion algo-

rithm to retrieve brain tissue stiffness maps (section Testing Study:Delaware Dataset). Data for

2https://github.com/batman
3https://github.com/batmanlab/MRE-PINN/blob/main/MICCAI-2023/

MICCAI-2023-simulation-training.ipynb
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the testing study are imported from the open - source MRE dataset from Neuroimaging Tools

and Resources Collaboratory (NITRC) site, made by the University of Delaware (UDEL) 4.

5.1.1 Reference study: BIOQIC simulation download and PINN inversion

In this section, the simulation code and the algorithm developed from Ragoza [10] in the Github

notebook will be briefly presented .

The notebook downloads BIOQIC simulation, creates, trains and tests a PINN for MRE liver

inversion. It takes roughly 2.5 h to train for 100,000 iterations on an RTX 5000 and uses 2.5

GiB of GPU memory.

BIOQIC simulation consists of a FEM box phantom made of a viscoelastic box with four tar-

gets of decreasing size (backgroundmaterial with storage modulus of 3 KPa, targets with storage

modulus of 10 kPa). The waves are actuated by a traction force on the top xz plane and displace-

ment is predominantly in the z direction (Figure 16).

Figure 16: Simulated viscoelastic stiffness box with four targets of increasing size (Pa).

Harmonic MRE introduces a single frequency wave to generate harmonic motion: this phe-

nomenon is modeled by an equation that implicitly contains the mechanical assumptions of

linear and isotropic stress and strain behaviour of the medium. Physics equation used to define

the PDE loss term included in the PINN are shown in Table 1. A complex scalar field

µ(x) : Ω→R
3 defines elasticity, while the complex vector field tissue displacement is expressed

as u(x) : Ω → C
3. Mass density ρ is assumed equal to 1000 kg/m3, actuator frequency ω de-

4https://www.nitrc.org/frs/?group_id=1390
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Table 1: Physical equations relating the displacement field
u to the complex shear modulus of elasticity µ during a steady-state harmonic motion
from the theory of linear elasticity. Adapted from ”Physics-Informed Neural Networks

for Tissue Elasticity Reconstruction in Magnetic Resonance Elastography”
from Ragoza et al, 2023 Springer eBook.

@2023, Springer Nature. Used with permission.
.

pends on the vibration purposely introduced. The general motion equation previously presented

in Equation 12, is indicated as general form PDE (Table 1). Please note that hereG* is notated as

µ: they both express the same complex quantity, i.e. the shear modulus that provides a complete

understanding of viscoelastic materials’ behaviour by considering both the elastic and viscous

responses over a range of frequencies.

In section 3.1.7 it is explained how from this equation, by assuming pressure component is neg-

ligible (∇ · u = 0), PDE is reduced to its heterogeneous form; by assuming local homogeneity

of the complex shear modulus (∇µ = 0), Helmholtz equation emerges (Table 1).

Figure 17: One PINN learns to map from spatial coordinates to displacement vectors by fitting
to the wave image, while another learns to recover the shear elasticity at the corresponding

position by minimizing a PDE residual. The elasticity model can also predict anatomical MRI
features that are correlated with elasticity. Adapted from ”Physics-Informed Neural Networks
for Tissue Elasticity Reconstruction in Magnetic Resonance Elastography” from Ragoza et al,

2023 Springer eBook. @2023, Springer Nature. Used with permission.

PINN structure is presented in Figure 17. Two independent networks are effectively used, each

one separately approximating a field variable to obtain accurate solutions [92]. One first NN
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û(x, θu) maps spatial coordinates x to displacement field u and forces the model to fit displace-

ment provided data minimizing the loss function Lwave. The second NN µ̂(x, θµ) maps spatial

coordinates x to stiffness field µ: output heads µ̂ and û are then combined to minimize the resid-

ual of a PDE, defined as a differential operator D in Figure 17, minimized as a loss function

LPDE. It ensures that the model adheres to the associated PDE: the lower it is, the better the PDE

fit (see Table 1). T1w MRI is introduced with an additional output head â(x, θµ) on the second

NN and another optional loss function Lanat takes into account anatomical features forcing the

model to fit and gain information from anatomical data.

Each network has five layers with 128 neurons; initialization is based on SIREN architecture

and activation functions for both networks are sine to better represent high spatial frequencies

[101] (Table 2).

The overall PINN loss function is composed of multiple terms: Lwave, LPDE and Lanat.

L(θu, θµ) = λwaveLwave(θ
u) + λPDELPDE(θ

µ) + λanatLanat(θ
µ) (28)

Lwave =
1

n

n
∑

i=1

|û(xi, θ
u)− ui|2 (29)

LPDE(θ
µ) =

n
∑

i=1

|D(û, µ̂, xi, θ
µ)|2 (30)

Lanat(θ
µ) =

1

n

n
∑

i=1

|â(xi, θ
µ)− ai|2 (31)

Each one is multiplied by its relative weight: λwave, λPDE, and λanat represent the contribution

of each loss term to the total cost function and to the training process. They will be denoted

as loss weights and should be minimised simultaneosuly within a multiobjective optimization

structure: it is necessary to properly balance loss terms with effective solvers that deal with

imbalance between PDE and data losses and with the discrepancy between loss function and

actual performance [13]. Algorithms that iteratively adapts these weights can be developed to

balance efficiently the different objectives, on which a section of this work focuses (Section

6.2.1).

Table 2: Table of PINN parameters
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Loss optimization is carried out through Adam algorithm, with learning rate set to 1e-4 and

batch size to 1024. All networks parameters of interest are reported in Table 2. Loss weights

do not adapt during training but are fixed on initial values. In this table, they are expressed

as a list of four values, because one of the PINN configurations tested in this work includes a

further optional loss Lstiff designed to fit a pre-computed stiffness map. This will be thoroughly

explained in section 5.2.3.

Displacement data to train the network are computed from the simulated stiffness box (Figure

18) by directly applying viscoelastic equations (forward problem). Once extracted, displace-

ment maps are the only input data for the PINN, because spatial coordinates are automatically

computed once provided the resolution numerical value and T1w MRI anatomical data are not

avaliable for this viscoelastic box (see Figure 17).

Figure 18: Stiffness maps can be retrieved from displacement with different inversion methods
(ground truth stiffness in Figure 16)

.
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Table 3: Evaluation metrics for three methods of MRE inversion.

The estimated stiffness map with FEM, Direct and PINN methods, once training is completed,

are shown in Figure 18 and 19 (ground truth stiffness in Figure 16) and some evaluation metrics

are reported in Table 3. It’s evident that PINN inversion reconstructs more accurately the simu-

lations and outperforms DI and FEM for all performance metrics. To have a detailed explanation

of metrics computed, see section 5.2.1.

Figure 19: stiffness estimates (above) and residuals (below) for FEM, DI and PINN inversions

To compute parameters gradients when training neural networks, PyTorch has a built-in dif-

ferentiation engine [102] called torch.autograd that supports automatic computation of gradient

for any computational graph 5: the continuous displacement representation of these data allow

to use this autodifferentiation engine in Pytorch v1.12.1. and DeepXDE v1.5.1. DeepXDE is

library for scientific and physics-informed learning [103] 6

5https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html
6https://deepxde.readthedocs.io/en/latest/user/cite_deepxde.html
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Before this reference study, most reconstruction techniques were primarily validated against in

silico or in vitro phantoms [31]. In contrast, the novel approach introduced in this study was

rigorously evaluated on both simulated phantoms, such as the viscoelastic stiffness box from

BIOQIC, and real in vivo liver data. This dual validation enhances the credibility and appli-

cability of the results, demonstrating a significant advancement over previous methodologies.

In simulations, robustness to noise was tested and PINN demonstrated superior performance

compared to both FEM and Direct inversions, maintaining higher reconstruction quality even

with the addition of varying levels of Gaussian noise. For in vivo liver data, abdominal MRE

was obtained from a study at the University of Pittsburgh including patients with NAFLD and

they found that anatomical information from other MRI sequences can be leveraged to improve

significantly reconstruction fidelity.

Figure 19 shows results of three stiffness reconstruction for one slice of this viscoelastic box

(above) and correspondent residuals (below). The first images on the left (below and above)

represent the reference standard.
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5.1.2 Reference study: Direct Inversion

In order to compare PINN predictions and performances with state-of-the art inversion ap-

proaches, the reference study [10] also provides a code to apply Direct and Finite Element In-

version to the same displacement data used to train the PINN and, from this, estimate stiffness.

The same algorithms and the same comparisons will be applied in the training and testing study

of the current work.

DI method discussed in [5] is implemented: the central hypothesis of this work is that mechan-

ical properties can be obtained by direct local inversion of a differential motion equation using

local polynomial fits, with estimates of derivatives based on finite-window filters. The method

transforms harmonic motion equation for isotropic materials into an algebraic equation that can

be inverted to obtain an estimate of Lamè coefficients (λ and μ) for each position and frequency.

Estimates of derivatives of noisy displacement data are carried out with a least-square fitting

procedure by Saviitsky and Golay (Savgol) that fits data to 2nd or 3rd order polynomials in a

local window, and computes derivatives of the best-fit polynomials [104]. Due to the inherent

challenges in estimating reliably both Lamé coefficients, as detailed in Section 3.1.7, full in-

compressibility is assumed. Results from simulations and experimental displacement data show

accurate quantification of wave parameters.

In Ragoza’s code, data are also preprocessed before this DI implementation [5] using a De-

speckle filter, which smoothes areas in which noise is noticeable while leaving complex areas

untouched 7. A DI-inverted complex stiffness field is returned, with polar complex represen-

tation. Since the DI approach involves ultimately a division with a denominator possibly near

zero to estimate Lamè coefficients, an arbitrary low numerical value ϵ is introduced to avoid

zero division.

5.1.3 Reference study: FEM Inversion

The notebook implements also themore accurate and efficient FEM inversion presented in [105].

The paper presents a novel flexible and general method to create arbitrary degree-of-freedom

(DOF) maps for finite element spaces on various cell shapes, such as polygons, polyhedra or

mixed cell. To ensure that the DOF maps are consistent across cells, which is crucial for ac-

curately solving mathematical problems when using FEM, the authors propose a new method

where neighboring cells of a FEM space agree on the layout of DOFs, such as vector orienta-

7https://www.websupergoo.com/helpie/default.htm?page=source\%2F2-effects\
%2Fdespeckle.htm
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tions on shared edges or faces. Overall, the paper introduces a more efficient and versatile way

to manage DOFs in FEM analysis, making it easier to apply this method to complex geometries

and higher-order problems. The method has been implemented in the open-source FEniCSx

libraries 8, specifically in DOLFINx and Basix, which are tools used for finite element analysis.

Ragoza’s code uses the same packages [10] and implements the same method to evaluate a

FEM baseline for MRE data inversion, which will be used for comparison with other methods..

The function processes a wave field (potentially 3D) slice by slice along the z-axis. For each

z-slice, it solves the FEM problem using the specified frequenc, evaluates the solution on the

domain interior and combines the result of the whole volume. The FEM type implemented to

efficiently handle heterogeneous materials has CG-3 elements for displacement, DG-1 elements

for material property [106], node alignment with data points and no mesh scaling [105].

8https://github.com/FEniCS
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5.2 Training study: methods

Before testing the network on patients brain data, data of a MRE phantom acquisition from

Charité-Universitätsmedizin Berlin Germany will be used to pretrain the PINN. TheMRE phan-

tom data are reported in [88] and [107], and briefly descripted here.

Figure 20: Pixel coordinates for MRE phantom acquisition

Table 4: Table of matrix and inclusions storage modulus

The phantom ismade from agar-basedWirogel (Bego Inc., Germany), has a size of 0.135 x 0.135

x 0.1 m3 and contains four parallel cylindrical inclusions of a diameter of 12 mm. Gel/water

ratios are 1:3, 1:1, 1:4, 1:3.5 and 1:2 in the matrix and inclusion 1 to 4, respectively. Viscoelastic

parameters of inclusions and phantom matrix are reported in Table 4. The data were acquired

in a 1.5 T scanner using a single-shot spin-echo EPI sequence with a sinusoidal MEG. Seven

harmonic actuation frequencies were tested between 30 Hz and 100 Hz. Training data for this

work were acquired with 60 Hz. For a complete description of MRE phantom data and imaging

parameters, see Downloads section of BIOQIC site. 9.
9https://bioqic-apps.charite.de/downloads
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Figure 21: Storage Modulus (in Pa) measured in one MRE phantom slice with 60 Hz actuation
frequency

.

The same PINN structure and assumptions presented in the reference work will be adopted for

this training study: Adam optimization scheme will be followed and training will be stopped

manually when the total loss and each single loss term do not improve and are stable with little

oscilation.

Both Helmholtz and heterogeneous equations will be used in the model PDE term (see Table

1). Results of this step will be compared with algorithms of FEM and direct methods, presented

in sections 5.1.2 and 5.1.3 and implemented in the reference study. A set of evaluation metrics

presented in the next section will be adopted (section Evaluation metrics). First-PDE strategy

will be used (section First-PDE training) for all the PINN configurations investigated in this

training study. In addition, PINN structure will be adapted to include a further optional loss

Lstiff designed to fit precomputed stiffness (section Including prior Direct Inversion)

5.2.1 Evaluation metrics

In these training study and subsequent testing study, performances of PINN, FEM and DI stiff-

ness reconstructions will be compared evaluating difference and correlation with a ground truth.

Stiffness values in Figure 21 will be taken as reference standard for these MRE phantom inver-

sions. For each network configuration tested, the following evaluation metrics will be reported:

MAE (Mean Absolute Error), MSE (Mean Square Error) , rMSE (root Mean Square Error),

mERR (maximum Error) , SSIM (Structural Similarity Index), PSNR (Peak Signal to Noise

Ratio).

59



MAE =
1

n

n
∑

i=1

|yi − y′i| (32)

MSE =
1

n

n
∑

i=1

(yi − y′i)
2 (33)

rMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − y′i)
2 (34)

mERR = max
i

|yi − y′i| (35)

SSIM(y, y′) =
(2µyµy′ + C1)(2σyy′ + C2)

(µ2
y + µ2

y′ + C1)(σ2
y + σ2

y′ + C2)
(36)

PSNR = 20 log10

(

ymax√
MSE

)

(37)
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where:

yi = the voxel value of the ground truth image

y′i = the voxel value of the model image

n = total number of voxels

µy = mean of y

µy′ = mean of y′

σ2
y = variance of y

σ2
y′ = variance of y′

σyy′ = covariance of y and y′

C1 = (K1L)
2, K1 = 0.01 by default

C2 = (K2L)
2, K2 = 0.03 by default

L = the dynamic range of the pixel-values (typically this is2 num bits for voxel − 1)

ymax = the maximum value of the evaluated image

SSIM [108] and PSNR [109] are two widely used metrics for assessing the images quality used

to compare the similarity between an original image and an estimated image.

SSIM is designed to measure the perceived quality of images by considering changes in struc-

tural information, which is more aligned with human visual perception than simple pixel-by-

pixel differences. SSIM values range from − 1 −1 to 1 1, where: 1 indicates perfect similarity

(i.e., the images are identical). 0 indicates no structural similarity. Negative values can occur

but are rare and typically indicate structural dissimilarity.

SSIM is more sensitive to changes that are perceptually important (like structure and texture)

than simple metrics like MSE.

PSNR is an engineering term that quantifies howmuch noise or distortion is present in the image

relative to the original. PSNR is based on the MSE and is expressed in decibels (dB): higher

PSNR values indicate better quality, with less distortion, lower PSNR values indicate more noise

or distortion. Typical ranges are [20 dB-50 dB], meaning good quality for most applications,

and [0-15 dB], indicating poor quality and noticeable degradation. PSNR is simple to compute

and widely used, making it easy to compare results across studies.

They both will be computed for each slice and averaged for the whole volume to assess similarity
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between reconstructed and true stiffness. Two loss functions will be considered: MSE loss and
L2RE (L2) Relative Error (L2RE) loss.

L2RE =

√

∑

i(yi − y′i)
2

∑

i(y
′

i)
2

(38)

LMSE =
1

n

n
∑

i=1

(yi − y′i)
2 (39)

Computational training time will be also reported. For relevant results, images of loss decays,

stiffness reconstructions and ground truth, PDE loss gradient and histogram of MAV volumes

will be shown.

5.2.2 First-PDE training

In some empirical trials, starting the training procedure immediately with all the loss terms

simultaneously causes the PDE loss to struggle with convergence. To solve this pathology,

a strategy will be adopted for all the PINN configurations tested: start with training only PDE

loss term for few epochs to force the network to fit physics equations and subsequently introduce

additional loss terms in a multiobjective optimization. Pseudocode for this strategy, that will be

indicated as ”first-PDE training”, is avaliable in Figure 22.
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Figure 22: Pseudocode for first-PDE training strategy
.

The algorithm fromRagoza [10] adopted an alternative approachwhere the first iterations, called

”warmup phase” do not account for PDE loss term to let the network learn a good solution ap-

proximation, and subsequently the physics-based constraint is incorporated at the end of warmup

phase. With the new datasets (MRE phantom and Delaware datasets) the previous strategy led

to faster convergence and stabilized training.

In fact, in some training studies, PINN was first trained immediately with two loss terms (loss

weights fixed: [1,0,0,1]) and secondly starting with training only PDE (starting loss weights

[0,0,0,1], later loss weights [1,0,0,1]). After 300000 epochs, total training and test losses values

reached with Ragoza’s strategy were respectively 2.22 e+12, 2.19 e+12, with first-PDE strategy

they were one order of magnitude lower, 1.49e+11 and 1.38e+11.

5.2.3 Including prior Direct Inversions

Applying DI to displacement data is clinically feasible because it does not require any com-

putational effort and has a guaranteed existence and uniqueness of solution. In this work, it is

proposed a slightly modified PINN structure based on Figure 17, along with an adjusted loss
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formulation derived from Equation 29. An additional MSE loss term is defined as Lstiff and

included in order to fit DI inversion computed before building the model, which should guide

training to prior stiffness values provided to the model.

Lµ(θ
µ) =

1

n

n
∑

i=1

|µ̂(xi, θ
µ)− µi| (40)

Total loss becomes:

L(θu, θµ) = λwaveLwave(θ
u) + λPDELPDE(θ

µ) + λanatLanat(θ
µ) + λµLµ(θ

µ) (41)
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5.3 Training Study: results

5.3.1 PINN on MRE Phantom

Figure 23: Loss decay for heterogeneous PINN for the whole training (above) and the last
70000 epochs.

Figure 24: Displacement (below) and PDE (above) loss terms decays for heterogeneous PINN
for some epochs

In Figure 23 (above), the loss drops fast to a lower value from random weights inizialization

and starts to oscillate. Exactly as the PINN implemented in [81] for a mechanical problem in-

version, all terms in the loss, i.e., data-driven and physics informed, show oscillations during

the optimization: there is not one single loss responsible for total loss instability. These oscilla-
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tions are attributable to the stochastic nature of SGD optimization that Adam executes, because

minibatch gradients are noisier than whole-dataset batch but much more time-efficient and on

average make good progress.

Table 5: Evaluation metrics for various inversion methods.

Table 6: Computational time required for the inversion methods.
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Table 5 shows evaluationmetrics for Direct, FEM, PINNwith homogeneous PDE (PINN (homo))

and PINN with heteregeneous PDE (PINN (het)). This last outperforms FEM and Direct inver-

sions for all the performance metrics, as well as homogeneous PINN, for magnitude, real and

imaginary parts. Image similarity of PINN heterogeneous inversion with ground truth is the

highest and correlates well (0.62) with it. On the other side, Table 6 shows computational times

required for computing direct inversion, for extraction FEM stiffness prediction and for training

the network: PINN learning takes far much time, but once trained the network, prediction of a

new volume should take just a forward pass through the network (~1min). Figure 25 shows

Figure 25: Histograms of |G*| differences between prediction and ground truth: DI (left), FEM
(right above), PINN (right below)

histograms of MAVs of the magnitude of the complex shear modulus |G*| for the three inversion

methods, while Figure 26 shows |G*| predictions and residuals. From these predictions one can

realize the challenges of handling noisy data and capturing the hidden mapping between the two

fields for all the methods proposed, even when applied to a relatively simple phantom model

with four inclusions. All these predictions are prone to fail when strong stiffness discontinuities

are present.
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Figure 26: |G*| stiffness estimates (above) and residuals (below) for FEM,DI and PINN
heterogeneous inversions

Figure 27: Histograms of differences between prediction and ground truth from heterogeneous
PINN: magnitude (left above), angle (left below), imaginary and real part(right above and right

below) of complex shear modulus G*.

The following Figures refer to PINN heterogeneous predictions of the MRE phantom.
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Figure 28: Magnitude and angle of complex shear modulus G* estimates from PINN
heterogeneous inversion: prediction (left), ground truth (middle) and residuals (right).

Figure 29: Real and imaginary parts of G* estimates from PINN heterogeneous inversion:
prediction (left), ground truth (middle) and residuals (right).
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Figures 28 and 29 illustrate the performance of this inversion method in predicting all com-

ponents of the complex shear modulus. While the technique shows potential in predicting the

magnitude and real part, it fails significantly in accurately capturing the imaginar.

Figure 30: Spatial distribution of PDE loss gradient, difference between estimated and ground
truth |G*| and relative difference between them.

To generate Figure 30, three components are calculated for one specific slice:

1. PDE loss gradient: pde_grad = −(ftrac + fbody) ·∆µ · 2, where fbody = ρω2u

and ftrac = G*∇2u+ (∇u+∇uT )∇G* for PINN (het), ftrac = G*∇2u for PINN (homo)

2. stiffness difference: µdiff = µtrue − µpred

3. difference between 1 and 2: pde_grad− µdiff

The purpose of computing these components is to assess the agreement between the PDE so-

lution and errors in stiffness prediction. A zero gradient for the PDE loss should indicate that

the PINN has found a solution that satisfies the PDE constraints across the entire domain. But

this might also mean that PDE loss has a negligible effect on the overall loss term and doesn’t

significantly alter the stiffness prediction or the residuals: the model might not be sensitive to

the PDE constraints, which means these are not strongly enforced during training.

Figure 32 presents estimates of magnitude and angle of G* obtained from the PINN homo-

geneous inversion. It is evident that this prediction is more degraded compared to Figure 28,

especially along the borders in areas of spatially varying stiffness.

PINNwith heterogeneous equation has remarkably higher correlation and lower mean and max-

imum error values compared with the corresponding homogeneous model (Table 5).

The heterogeneous model shows clearer structures and better-defined boundaries between dif-

70



Figure 31: Histograms of differences between prediction and ground truth from homogeneous
PINN: magnitude (left above), angle (left below), imaginary and real part(right above and right

below) of complex shear modulus G*

Figure 32: Magnitude and angle of G* estimates from PINN homogeneous inversion:
prediction (left), ground truth (middle) and residuals (right).
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ferent regions. The magnitude prediction in Figure 27 shows more distinct regions and better

corresponds to the ground truth.

5.3.2 Including prior Direct Inversions

Table 7: PINN Evaluation metrics with homogeneous and heterogeneous PDE, when including
prior DI stiffness to guide training.
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Figure 33: Loss decay (first epochs) when including (above) and not including (below) pre
computed DI stiffness
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Figure 34: Histograms of differences between prediction and ground truth from heterogeneous
PINN with DI prior inversion: magnitude (left above), angle (left below), imaginary and real

part right above and right below) of complex shear modulus G*

Figure 35: Magnitude and angle of G* estimates from PINN heterogeneous inversion
including DI as prior stiffness: prediction (left), ground truth (middle) and residuals (right).

Table 7 shows evaluation metrics for all the inversion methods when including DI pre computed
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stiffness to guide the training process. As for homogeneous inversion, including an additional

stiffness loss does not improve its performancemetrics. For heterogeneous PINN, these presents

a slight improvement but qualitatively the prediction (Figure 35) is almost unchanged compared

to the PINN without DI inversion.
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6 Testing study: Delaware Dataset

6.1 Dataset

The dataset used to test the model is publicly avaliable and provided by University of Delaware.

Detailed acquisition of raw data can be found in [110], a project that collected and dissiminated

multiple brain datasets describing brain mechanical properties in order to provide a complete

guide to develop computational Traumatic Brain Injury (TBI) brain models. Data collections

made avaliable by the project should improve accuracy and utility of TBI prediction models and

for this reason they also include a dataset acquired at US of whole-brain MRE displacement

data obtained through a high-resolution sequence and spatially resolved maps of complex shear

modulus, stiffness and damping ratio through NLI methods. MRE acquisitions allow to catch

frequency-dependent behaviour of these properties in biomechanics map, that can be used to

enhance subject -specific TBI models [110]. Image resolution is 1.5 mm and brain is whole

covered ( 240x240x120mm3 ). Images are acquired on a Siemens 3T Prisma scanner with a

64-channel head/neck coil. Vibration is introduced into brain tissues with a pneumatic actuator

system and a soft pillow driver. The MRE protocol includes three actuation frequencies (30, 50,

70 Hz) but for this work only 50Hz dataset will be studies, which is standard in clinical practice.

Figure 36: Proposed multiband, multishot spiral MRE pulse sequence. Adapted from ”Brain
MR elastography with multiband excitation and nonlinear motion-induced phase error

correction” by Johnson et al, 2016, Proc. Intl. Soc. Mag. Reson. Med. 24. @2016 Proc. Intl.
Soc. Mag. Reson. Med
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MRE is carried out through a 3Dmultislab, multishot acquisition for fast, whole-brain imaging at

high resolution with the protocol described in [111]. The whole volume is divided into multislice

slabs, each of which is excited sequentially (a single k-space shot in a single TR) and multishot

k-space sampling is accomplished through multiple TRs. This sequence grants to reach a high

SNR efficiency [18], a metric that trades off repetition time TR and the number of excitations

Nex.

Features of the Delaware dataset MR sequence (Figure 36) are accurately explained in [111] and

here briefly explained:

• multiband excitation and refocusing pulses (orange) that result in a reduced number of

imaging volume and allows to reach a short TR and high SNR efficiency.

• flow-compensatedmotion encoding compensated for phase error correction (dashed blue).

MREmultishot 3D k-space encoding need correction for motion-induced phase error aris-

ing from shot-to-shot variations in the acquired phase and causing artifacts when shots are

combined; these acquisition need an appropriate navigator acquisition to correct for tra-

jectory shifts in kx, ky, and kz.

• blipped spiral-in 3D navigator to perform nonlinear phase correction not handled by linear

correction, like cardiac pulsation.

• multishot in-plane spiral readout describing k-space trajectory : in-plane kz -blips fol-

lowed by a 3D constant density stack-of-spirals.

Delaware dataset also provides, for each subject, a volume of computed storage modulus G’

and loss modulus G”. These will be used in this work as the ground truth complex stiffness

for all the networks tested. The viscoleastic parameters were estimated from the acquired MRE

displacement data using NLI methods implemented in [112]. This work implements and eval-

uates a subzone based multiresolution FE that provides a flexible and robust framework where

each estimated mechanical parameter can have its own resolution and stiffness estimates are

extremely stable to noisy displacement data.

Hence for both the training phantom and the testing patient datasets, MRE displacement acqui-

sition data are available as well as a reliably estimated stiffness map, adopted as ground truth to

compute evaluation metrics and visually assess estimates. The results obtained from the training

study on a simple phantom with four inclusions are expected to be reproducible for brain slices

with a much more complex stiffness distribution. Only for Delaware dataset, conventional MRI

anatomical images are also available and this allows to introduce in the model this information
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in the training study.

In Figure 37, a comparison of displacements and stiffness data of the two studies of this work is

shown.

Figure 37: Comparison of training (left) and testing data (right). Displacement data(above) in
mm and storage modulus ground truth (below) in kPa.

Table 8: Table of first-order statistics of MRE data.

In all data-driven approaches it’s important to get to know the data one is dealing with to identify

bad samples in the dataset or track down outliers. In Table 8, first-order statical indices are

presented for each variable:

• wave: complex displacement wave field. Each component indicated the direction of en-

coded displacement (three volumes 3D)
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• mre: complex ground truth stiffness field (3D)

• mre mask: anatomical segmentation mask (3D)

• anat: T1w anatomical image (3D)

• bin mask: binary mask used during training to choose adequate training points not in the

background (3D).
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6.2 Testing Study: Methods

The same PINN structure and assumptions presented in the reference work will be adopted for

this testing study. Training will be stopped manually when the total loss and each single loss

term do not improve and are stable with little oscillation.

Both Helmholtz and heterogeneous equations will be used in the model PDE term (see Table

1). Results of this step will be compared with algorithms of FEM and direct methods, presented

in sections 5.1.2 and 5.1.3 and implemented in the reference study. The same set of evaluation

metrics presented for the previous step will be adopted. First-PDE strategy will be used (sec-

tion 5.2.2) for all the PINN configurations investigated in this testing study. In addition, PINN

structure will be adapted to include a further optional loss Lstiff designed to fit pre computed

stiffness.

Conventional MRI anatomical images are also available for the testing dataset and this will al-

low to introduce them in the model in the testing study (section Anatomical Imaging) and assess

the effect of including anatomical information through T1w MRI images. Moreover, two op-

timization algorithms different from original work Adam will be used in order to balance the

different loss terms (section Optimization algorithms).

This work is a preliminary study to assess PINN feasibility to invert MRE data from brain tis-

sues. An important simplification will be done when assuming incompressibility and linear

isotropic relation to model brain biomechanics, which is also adopted in many related works

[113] [63] [114], despite its limitations. Brain mechanical response is indeed exceptionally com-

plex, characterized by nonlinearity, compression-tension asymmetry, conditioning effects and

the measured modulus might depends on the loading mode, strain regime and rate, and length

scale [61].

6.2.1 Optimization algorithms

The reference study adopts Adam optimization to train the model. But PINN is a multiobjective

optimization problem with multiple loss terms that pose additional challenges to NN conver-

gence due to unbalanced back propagated gradients during network training: in terms of com-

putational cost, as observed also in the training study, PINN still cannot outperform DI and FEM

methods. Using the same weight for each term leads to disparate rate of convergence among

them [81], while more refined weighting approach could enhance the overall convergence.

In [96] it is shown that adopting a multi-task learning approach, which weights differently the

loss objectives , improves significantly PINN performances with accelerated convergence by
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introducing only a small number of additional learnable parameters, consistent with the number

of loss terms. The same strategy will be applied in this work by developing and testing two

existing successful weight-adaptive algorithms: Multiadam [13] and Learning Rate annealing

to mitigate gradients pathologies [14].

1) Multiadam

The recent work implemented in [13] addresses the challenges of training PINNs when dealing

with imbalanced loss terms. PDE and data loss functions might differ by several orders of mag-

ntitude and discrepancy is observed between the PINN’s loss fucntion and actual performance:

these issues arise from the inherent differences in scales between PDEs and boundary condi-

tions. After a theoritical analysis on the effect of domain scaling on loss balancing, the authors

propose a new scale-invariant optimizer, MultiAdam.

This optimizer leverages the observation that the second momentum of Adam is an excellent

indicator of gradient scale, and adjusts the scale of gradients by maintaining separate second

momentum terms for different scales of losses. This adjustment balances better the training

process across different loss scales. Pseudocode for this algorithm is shown in Figure 38: PINN

losses are divided into several groups partitioning the PDE loss into a separate group; the first

and the second momentum are computed independently for each group (mt,i and vt,i in Figure

38) and updates are averaged separately for each group (m̂t,i and v̂t,i in Figure 38).

Figure 38: Pseudocode for Multiadam optimization. Adapted from ”Multiadam:
Parameter-wise scale-invariant optimizer for multiscale training of physics-informed neural
networks” Jiachen et al., International Conference on Machine Learning, PMLR, 2023.

Extensive experiments across various PDE problems demonstrate that MultiAdam significantly

81



improves the predictive accuracy of PINNs, outperforming traditional optimizers by 1-2 orders

of magnitude, exhibits remarkable stability and high convergence rates.

The code where this optimizer is constructed is released and available on Github 10. In this work,

an instance of the MultiAdam optimizer with the parameters of the PINN model is created and

the only optimizer-specific options specified is a list of loss group indices indicating how to

group them.

2) Learning rate annealing to mitigate gradients pathologies

The study [14] identified and analyzed a fundamental mode of failure in the effectiveness of

PINN in discovering hidden patterns from noisy data. They related this problem to numeri-

cal stiffness leading to unstable magnitude of back-propagated gradients during model training

when using gradient descent. They presented a learning rate annealing algorithm that utilizes

gradient statistics during model training to balance the interplay between different terms in com-

posite loss functions and trades off data fitting and equations satisfaction. The basic idea behind

Adam to keep track of the first- and second-order moments of the back-propagated gradients

is reproposed in a similar spirit and can be read in Figure 39 (Pseudocode) : an adaptive rule

is derived for automatically λi weights online during training by utilizing mean and maximum

values of loss gradients.

10https://github.com/i207M/MultiAdam
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Figure 39: Pseudocode for Learning Rate annealing algorithm. Adapted from Wang, Sifan,
Yujun Teng, and Paris Perdikaris. ”Understanding and mitigating gradient pathologies in

physics-informed neural networks.” arXiv preprint arXiv:2001.04536 (2020).

The proposed method was tested on various benchmark problems in computational physics,

showing a substantial improvement in predictive accuracy (by a factor of 50-100x) over con-

ventional PINNs and suggesting that addressing gradient pathologies is crucial for improving

the reliability and accuracy of these models.
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6.2.2 Anatomical Imaging

In Ragoza’s study [10], liver anatomical information is incorporated in the PINN prediction

model of hepatic complex shear modulus. Prior work had demonstrated a great potential of tis-

sue elasticity prediction from anatomical MRI. In [91], a DL algorithm was developed to gen-

erate entire 3D-reconstructed images of hepatic stiffness using only MRI derived inputs when

MRE hardware and software is not available, in patients with NAFLD. Nine conventional MRI

sequences, clinical and demographic data were used to train a CNN to reconstruct stiffness im-

ages at voxel-level and, after testing various configurations, the model that achieved the best

predictive performance was the one informed solely by four standard MRI image sequences and

clinical features, yielding a voxel-level correlation of 0.34 ± 0.03. The structure of themodel tak-

ing in input MRI data and predicting stiffness values showed relevant differences with Ragoza’s

implemented PINN: first, a convolutional neural network was implemented instead of a feed-

forward one; secondly, the combination of more MRI sequences was used as it outperformed

individual ones providing a more complete set of necessary information. In the end, the model

integrated also radiomic, US, and clinical data to improve its capability. Despite this was just a

preliminary study presenting the aforementioned limitations, the proposed CNN model showed

feasibility of generation of DL-automated virtual elastographic images from MRI sequences.

Another similar research work [115] implemented a Support Vector Machine (SVM) machine

learning model that incorporates clinical and nonelastographic MRI T2-weighted radiomic fea-

tures, for categorization of liver disease through liver stiffness cutoff values. The model was

trained on pediatric and young adult patients and was successful (accuracy 75 %, AUC 0.80),

but needs further investigations and more robust external validation. These preliminary studies

support Ragoza’s study discoveries, where the introduction of MRI anatomical features into the

PINN model improves its performances.

Same considerations were applied to MRI-derived bone porosity index (PI) [116], a non inva-

sive biomarker that is used to assess disease variations of bone porosity and relative treatment

responses. In fact, data analysis from this study showed porosity index alone accounts for 63 %

of stiffness variability, making it a moderate predictor of bone stiffness. PI derived from skull

tissue MR imaging could then provide relevant information for characterizing its stiffness.

A recent work developed a feedforward DL model to estimate myocardial stiffness properties

from hemodynamic measures and heart geometric and fiber-orientation features derived from

routinetly avaliable MR cardiac imaging [115]. The model showed excellent performances and

encouraged the idea of using neural networks to output stiffness values from MRI-derived fea-
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tures.

Similar findings emerged in brain studies. A group in [117] investigated pairing of high-resolution

maps of both cerebrospinal fluid (CBF) measured in vivo in MRI acquisitions and MRE vis-

coelasticity measures, which likely integrate both solid and vascular properties because they

reflect medium properties. A linear regression analysis found a strong correlation between CBF

measured by MRI perfusion and viscoelastic brain constants (|G*|) in deep GM tissues.

Another group tried to understand the complex link between changes in microstructural com-

ponents and the corresponding mechanical response of human brain tissue combining in a DL

model results from tension, compression experiments and enzyme assays[61]. They found a

high relevance of extracellular matrix protein fibronectin for elastic behaviour in almost all

brain regions; cellular components resulted to be the most relevant components for viscoelastic

response, remarking the idea that tissues anatomical microconstituents are relevant for charac-

terizing tissues mechanics.

A recently published study has thoroughly examined the effectiveness of conventional MRI in

pre-operatively in predicting the consistency of meningiomas (also referred to as firmness or

texture of a tumor) reviewing all the related works. Despite it is still not a validated method by

multicenter imaging studies, there have been multiple articles showing the promise of T2wMRI

images to predict consistency, valuable biomarker for neurosurgical planning.

All these results provide an exhaustive rationale for including anatomical information in the

PINN model of the current work.

This will be incorporated adding as model inputs T1w anatomical MR images (see Figure 17),

which are standard to collect in clinical practice when MR elastography is performed. Delaware

dataset provides T1w anatomical data, registered rigidly and downsampled to the MRE space.

These images allow for a one-to-one correspondence between the voxels in theMRE data and the

anatomical segmentations. The rigid transformation from the fixed image to the moving image

is provided in a Matlab file, which is generated from Advanced Normalization Tools (ANTs).

The T1w images are then transformed using 5th order B-spline interpolation. For a detailed

description of MR images processing, please consult Delaware Datasets documentation 11.

This term will be included also with an additional output head â(x, θµ) on the second NN and

another optional loss function Lanat that takes into account anatomical features and forces the

model to fit and gain information from anatomical data, exactly as in [10]. This term ismultiplied

11https://www.nitrc.org/frs/?group_id=1390.
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by its relative anatomical weight λanat and its inclusion in the model is set simply by adjusting

the anatomical weight to be different from zero. .

This work will compare both heterogeneous and Helmholtz PDE models, with and without the

anatomical loss term, to determine whether the T1-w MRI anatomical image enhances stiffness

prediction also in the brain, as expected.

6.2.3 PINN on Delaware dataset

Table 9: Evaluation metrics for Direct, FEM, PINN with heterogeneous and homogeneous
PDE, including the anatomical loss
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Table 9 shows evaluation metrics of with included anatomical loss. PINN (het) shows a slightly

improved correlation of R2 = 0.87 versus R2 = 0.83 for compared to PINN (homo) but for all

the other metrics there is no enhancement of stiffness prediction when changing PDE associated

with the model.

Table 10: Computational time required for the inversion methods.

Table 10 shows evaluation computational times required for computing direct inversion, for

extraction of FEM stiffness and for training the network. As expected and as in the phantom,

PINN training is the most time-consuming operation.

Figure 40: Magnitude and angle of G* estimates from PINN heterogeneous inversion:
prediction (left), ground truth (middle) and residuals(right).
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Figure 41: Real and imaginary part of G* estimates from PINN heterogeneous inversion:
prediction (left), ground truth (middle) and residuals(right).

Figures 40 and 41 illustrate the performance of this inversion method in predicting all compo-

nents of the complex shear modulus for one brain slice. Similarly to the phantom, only the real

part and magnitude components show reasonable stiffness estimates.

Figure 42: Stiffness heterogeneous PINN |G*| prediction and ground truth (above) for slice 16
(out of 80) when including the anatomical term; correspondent anatomical slice (left below).

Gradient of PDE loss and relative diffences (right below).
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Figure 43: Stiffness heterogeneous PINN |G*| prediction and ground truth (above) for slice 36
(out of 80) when including the anatomical term; correspondent anatomical slice (left below).

Gradient of PDE loss and relative diffences (right below).

Figure 44: Stiffness heterogeneous PINN |G*| prediction and ground truth (above) for slice 70
(out of 80) when including the anatomical term; correspondent anatomical slice (left below).

Gradient of PDE loss and relative diffences (right below).
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Figures 42,43,44 show PINN |G*| prediction and Ground truth (above), the referred anatomical

slice (below, left) and three pictures representing PDE loss gradient, stiffness difference and

relative difference between these two terms (below, right). to assess the agreement between the

PDE solution and the actual data. Each figure refers to one slice. For each of them, gradient of

the PDE loss indicates that the PINN was not able not find a stiffness solution that satisfies the

PDE constraints across the entire domain.

6.2.4 Anatomical Imaging

Table 11: PINN evaluation metrics with heterogeneous and homogeneous PDE, excluding the
anatomical loss
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Table 11 shows performance metrics of PINNwith heterogeneous and homogeneous PDE, with-

out anatomical term (Table 9). Without this information, PINN (het) is even less accurate than

PINN (homo).

Figure 45: Stiffness PINN |G*| prediction and ground truth for slice 16 (out of 80) without
including the anatomical term.

Figure 46: Stiffness PINN |G*| prediction and ground truth for slice 36 (out of 80) without
including the anatomical term.
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Figure 47: Stiffness PINN |G*| prediction and ground truth for slice 70 (out of 80) without
including the anatomical term.

Figures 45,46 and 47 display |G*| predictions and reference standard for three brain slices when

inversion is performed not including the anatomical loss.

6.2.5 Including prior Direct Inversions

Figure 48: Loss decay (first epochs) when including (above) and not including (below) pre
computed DI stiffness
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Table 12: PINN evaluation metrics when including prior DI stiffness to guide training
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The benefit of including a precomputed stiffness was more evident for the MRE phantom: nei-

ther the loss accelerates convergence (Figure 48) nor performance metrics of Table 12 are better

than the model without this term (Table 9).

6.2.6 Optimization algorithms

Table 13: PINN evaluation metrics with different optimization algorithms
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Table 14: Computational time required for PINN training with different optimization
algorithms.

Table 13 shows that no optimization algorithm is able to enhance PINN performances. On the

other side, PINN convergence shows acceleration when learning rate annealing optimization is

adopted (Figure 49).
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7 Discussion

Figure 49: Elasticity reconstructions examples from liver images of three patients, from the
reference study [10] from ”Physics-Informed Neural Networks for Tissue Elasticity

Reconstruction in Magnetic Resonance Elastography” from Ragoza et al, 2023 Springer
eBook. @2023 Springer Nature. Used with permission.

Despite for both the studies PINN outperforms two state-of-the art inversion methods (Tables 5

and 9) for all the components of the complex shear modulus, results are different between the

MRE phantom and the human dataset. For the phantom, magnitudes of stiffness estimates from

PINN (het) and PINN (homo) (Figure 28 and 32) and corresponding histograms (Figures 27 and

31) visibly show that the first one better captures the complex structure of the phantom, providing

more accurate and detailed stiffness estimates in both magnitude and angle, which is consistent

because homogeneous PINN does not allow local variations of stiffness properties. This agrees

with results from Ragoza’s liver study (Figure 49) where PINN (het) has the highest correlations

with gold standard elasticity, and with Murphy’s ANN inversion [11]. For phantom and liver

mediums, the homogeneity assumption degradates estimates, as expected. On the other side, for

Delaware data, PINN (het) and PINN (homo) do not differ significantly in performance metrics

evaluation. This might suggest that the fundamental equation used to derive both heterogeneous

and homogeneous models is inconsistent with the actual laws governing wave propagation in

the brain. This discrepancy suggests that the theoretical framework could be misaligned with

the brain’s real wave propagation dynamics.

It is also important to consider the differing reliability of the reference standards used to com-

pute metrics for the phantom and the brain. The phantom’s reference standard benefits from the

known true stiffness parameters, while the Delaware dataset relies on an NLI inversion method

for multiresolution elastography [112], which has several limitations. For instance, estimates of

the loss modulus are less accurate and challenging than the storage modulus, possibly because
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the loss modulus does not reflect the tissue’s physical properties as accurately. Another lim-

itation is the traded-off resolution: while subsampling can stabilize estimates for challenging

parameters like the loss modulus, it reduces resolution, potentially obscuring small-scale vari-

ations in mechanical properties. Additionally, in some cases, discretization errors can become

significant, degrading the accuracy of the inversion.

However, this novel method shows great promise, because it significantly outperforms two no-

table state-of-the-art inversion algorithms in both studies, as shown for liver data (Figure 49).

The main challenge remains the computational time for PINN training (Tables 6 and 10), but

once the network is trained, predicting a new volume only requires a forward pass through the

network (approximately 1 minute). Moreover, the proposed strategy of including a DI prior

estimate in PINN inversion does not improve significantly performances but accelerates train-

ing remarkably in the phantom (Figure 48). Future research on this inversion method should

focus on two goals; first, improving the speed and efficiency of the inversion process, secondly,

increase the model generalization and reusability across different subjects and scanners, provid-

ing techniques of transfer learning and statistical equalization of input data such that the model

does not have to be retrained but just predicted. Ideally, evaluation in an actual clinical setting

could be performed in a standard desktop personal computer [91], without requiring the high

processing units used for PINN training.

The magnitude and real part of the complex shear modulus G* are clearly the best-performing

components for both the phantom (Figures 27, 28, 29) and the brain (Figures 40, 41). The

real part of G*, representing elasticity, generally has a stronger effect on the behavior of the

system than the imaginary part, representing viscosity: waves are more sensitive to changes in

the real part of G* than in the imaginary part, making it easier for the neural network to learn

and estimate the real part. Moreover, the MSE stiffness loss Lµ minimizes the magnitude of

G*, making the training parameters directed toward this objective. It is also important to note

that the real component is more reliably estimated than the imaginary component because the

real component is orders of magnitude higher than the imaginary component, making it more

similar to the overall modulus.

For Delaware dataset, in a few slices the stiffness reconstruction presents some lines where the

model does not provide an estimate (Figures 42,43,45,46,47). From the corresponding anatom-

ical image, one can notice these blue lines often appear at the boundaries of different regions

within the tissue. This could be due to the model struggling with smoothly transition between

areas of different stiffness.
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Comparing tables 9 and 10, the improvement seen when incorporating anatomical information

is only apparent when the model assumes heterogeneous stiffness. This suggests that the model

is flexible enough to represent local discontinuities of tissue properties and anatomical features

correspond to real variations in tissue stiffness. Furthermore, it is essential to explore how to

transfer effectively a PINN model trained on one subject to other subjects and datasets, in order

to leverage this high-performing technique. Visually observing in the images, the anatomically-

informed slices (Figures 42,43,44) present less lines where the model does not provides esti-

mate and show more distinct internal structures and boundaries, compared to the slices with no

anatomical features (Figures 45,46,47).

The image of PDE loss gradient (pde grad, left) for the phantom is nearly uniform, suggesting

that the PINN has learned to satisfy the governing equations well across the domain (Figure 30).

Stiffness difference (mu diff, middle) variations indicate areas where the prediction deviates

from the ground truth, with some localized regions of higher difference. The third image (pde

grad-mu diff, right) is very similar to the stiffness difference, indicating that the errors in stiff-

ness prediction are not correlated with the PDE loss gradient. For the three slices of brain results

with the anatomical term (Figures 42,43,44), PDE loss gradients show high values and vary a lot

across one slice, indicating that the PINN is struggling to satisfy the governing equations uni-

formly across the complex biological tissue. Stiffness difference images show larger and more

widespread differences between predicted and true stiffness and a stronger correlation between

areas where the PDE is not well-satisfied and areas of stiffness prediction errors. This means

that improving the PINN’s ability to satisfy the governing equations could lead to better stiffness

predictions and enforces the previous hypothesis that that brain data are not described by these

physics equation, which characterize more appropriately phantom physics laws. Complex brain

distribution of heterogeneity cannot be expected to behave like a phantom and more complex

training data or more elaborated phantoms should be necessary before applying to human data

the PINN model.

Finding a suitable modulus distribution that generates the observed deformation relies on cap-

turing the hidden mapping between the two fields and DL has unique potential in handling

inverse problem of elasticity in a data-driven way [89]. But with these physics soft constraints,

there is no guarantees that the non-linear optimization will make the additional loss term R ac-

tually reach zero during training, with convergence to reliable solutions. The benefits of this

method depends in fact on the physical information available from differential equations, and

an important simplification was done in this work when assuming incompressibility and linear
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isotropic relation to model wave propagation in brain tissues. A theoretical extension to cases of

anisotropic or tranversely isotropic solids incompressiblematerials might be amore suitable way

of modeling wave propagation in brain tissues; but in the brain nerve fibers follow curved paths

and additional information about fiber directions [33] should be necessary to apply the method

to the displacement field. A reasonable possibility that could help the training of anisotropic

models is to use features extracted from Diffusion Tensor Imaging (DTI), as tissue stiffness was

shown to correlate negatively with the fractional anisotropy (FA) parameter. In [90], a poroe-

lastic mechanical model is adopted instead of a viscoelastic one to simulate MRE data, i.e. a

model describing a behaviour of a biphasic media composed of both a fluid and a solid phase

that interact, which might be more suitable to characterize brain tissues. Nevertheless, in [118]

it is stated that viscoelastic inversions, simpler with fewer unknown properties, are sufficient

to capture mechanical behaviour of brain tissues. Additionally, performance assessment of dif-

ferent inversion methods should be made more robust and clinically relevant, for example by

comparing biological effects detected by stiffness maps, instead of stiffness images similarity

or correlation. For example, one can test PINN ability to classify fibrosis stage for liver data, or

differentiate cerebral tumors, or detecting age effects.

As explained in [81], the use of the standard multi-layer neural network architecture could also

be the reason for the observed lack of accuracy in capturing the hidden mapping. Different

architectures and hyperparameters can yield vastly different solutions [12], which may result

in insufficient accuracy even with optimal configurations and long training times and this is

still an open field of research. An hyperparameter search methodology in [12] revealed that

PINNs are much sensitive to network architecture, i.e. the depth of hidden layers and number of

parameters, but generally a shallow network with ~5 layers and ~neurons per layer is chosen to

obtain fast backpropagation [12] and good accuracy [92]. Sampling techniques of collocation

points and suitable activation functions can also impact on training: in [92], it is suggested

ReLu is an optimal choice for solving elasticity problems and advancing sampling procedure

may vary drastically PINNs performances. Finally, convolutional architectures might be more

suitable to invert MRE data thanks to their ability of learning efficiently large and small-scale

images features. This choice is adopted in [90], where a CNN model with a encoder-decoder

architecture generates elastograms from displacement data comparable with those from NLI

methods, and in [91], where generation of elastographic images through the CNN DeepLabv3+

improves expert-assessment of hepatic stiffness.

Along with MRI features, clinical information contains predictive power that is not contained in
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an anatomical image alone and further improves evaluation metrics of stiffness predictions [91].

An additional input-output head and clinical loss term could force the PINN model to learn and

incorporate also this knowledge.

The unbalanced back-propagated gradients during network training pose a big challenge to PINN

convergence [96]. In some studies, the choice of advanced optimization algorithms improves the

performance of multiobjective PINNs [96] [13] [14]. In this work, the attempts to optimize the

training steps do not enhance significantly final performance metrics (Table 13), but accelerates

PINN convergence (Table 14), showing higher efficiency because these optimization choices

provide the same performances with faster convergence by introducing only a small number of

additional learnable parameters. In particular, Multiadam greatly outperforms two other opti-

mization techniques in computational time required to reach a stable performance, taking only

8 hours to reach good estimates. Despite a lack of accuracy, it’s promising that good stability

was observed on the numerical values of inferred parameters with different configurations.

The difficulty of reducing the PINN loss to a sufficiently low value, even with optimal algo-

rithms, underscores the PINN difficulty to satisfy simultaneously both the displacement data fit

and the physics constraints..

Despite the limitations of this work, the PINN method still is a favorable option compared to

traditional methods and the strategies of incorporating in it a prior DI estimate to improve com-

putational time, or to choose proper weight-adaptive algorithms, is promising to address the

growing demand for real-time solutions to inverse elasticity problems and their numerous clin-

ical applications. As concluded in [92] which similarly tests the same technique in solid me-

chanics problems, future research should prioritize quantifying the computational gains of the

PINNs approach compared to conventional numerical methods. This analysis will be crucial for

fully understanding the efficiency and potential advantages of PINNs, guiding their application

in MRE elastography problems.
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8 Conclusion

In this work, a PINN method is employed to invert MRE brain data with the objective of ob-

taining in fast times accurate and high resolution maps of viscoelastic properties, a diagnostic

biomarker applicable to multiple clinical applications.

This inversion method and PINN structure have shown great potential in the liver data (previ-

ous study) [10] and in a MRE phantom (current study), but, even optimizing its configuration, it

struggles more to accurately estimate brain parameters and there is inconsistency with previous

studies as concerns the homogeneity stiffness assumption. The most plausible assumption is

that a more suitable model to describe wave propagation in brain mechanics should be defined

to match with displacement data provided by aMRE acquisition and more appropriate phantoms

reflecting the complex nature of the brain should be used to pre-train these models. Another op-

tion is that the network architecture, parameters, and sampling techniques should be varied in

order to suit this particular brain MRE inversion problem.

Despite this, results on MRE phantom and on in vivo brain data show that this method still

outperforms remarkably traditional techniques like DI or FEM inversions, although training is

extremely time-consuming. Moreover, the inclusion of brain anatomical information improves

significantly the model containing a heterogeneous PDE that admits local stiffness gradients,

which encourages including always anatomical images, when available in such models.

Research in this field should prioritize improving computational efficiency and addressing time-

related challenges. Additionally, it is essential to explore how to effectively transfer a PINN

model trained on one subject to other subjects and datasets in order to leverage this high-

performing techniques.
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