
Università degli Studi di Padova

FACOLTÀ DI DI INGEGNERIA

Corso di Laurea in in Ingegneria Informatica

Tesi di Laurea Magistrale

On the space complexity of DAG computations

Candidato:

Lorenzo De Stefani

Matricola 621842

Relatore:

Ch.mo Prof. Gianfranco Bilardi

Anno Accademico 2011-2012

Contents

Abstract 1

Introduction 3

1 Problem definition and introductory concepts 5

1.1 Problem description . 5

1.2 Preliminaries . 6

1.2.1 Definitions on DAG theoretical properties 6

1.2.2 Definitions concerning DAG computations 7

1.3 The pebble game . 9

1.4 Goals of the thesis . 11

2 The role of the recalculation in DAG computations 13

2.1 Computations strictly without recalculations 13

2.2 The importance of the recalculation 15

2.3 The marking rule approach . 16

2.3.1 Main theorem . 16

2.3.2 A criterion for identifying DAG that do not benefit form

recalculations . 19

2.3.3 A criterion for composed DAG analysis 20

2.4 Examples of significant DAGs . 21

2.4.1 DAGs that do not benefit from the performance of recalcu-

lations . 21

2.4.2 DAGs that benefit from the performance of recalculations 24

3 An estimation of DAG space complexity through separators anal-

ysis 27

3.1 Separators in graphs and DAGs 27

i

ii CONTENTS

3.1.1 Definitions for undirected graphs 27

3.1.2 Definitions for DAGs . 28

3.2 A divide-and-conquer approach 29

3.3 Buffer space for separator vertices predecessors 31

3.4 First separation level . 32

3.4.1 Main statement . 32

3.4.2 Accuracy of the bound in relation to separator cost and

balance . 36

3.4.3 Time complexity . 36

3.4.4 Standard computations . 38

3.5 A recursive separator application 38

3.5.1 Recursive extension of the separator method 38

3.5.2 A separator hierarchy-based DAG decomposition 42

3.5.3 Time complexity analysis for computations based on DAG

separator-based decompositions 45

3.5.4 Observations on the previous results 45

4 Applications of the separator based approach 49

4.1 Topological separators . 49

4.2 Applications to planar DAGs . 51

4.2.1 The planar separator theorem 52

4.2.2 An upper bound for planar DAGs space complexity 53

4.2.3 Observations and refinements 54

4.3 Applications to DAGs of known genus 56

4.4 Separators and sub-DAGs . 59

5 Conclusions and points of interest for future developments 63

Bibliography 65

List of Figures

1.1 Example of pebble game played on a binary tree DAG 9

1.2 The relationships among complexity classes 11

2.1 Pyramid DAG and 3-pyramid DAG 22

2.2 Diamond DAG . 23

2.3 FFT DAG with 8 inputs . 24

2.4 Snake-like DAG . 24

2.5 DAG Diamond + Array . 25

3.1 Example of DAG-vertex separator 29

3.2 Example of possible blocking situation 31

3.3 First execution phase . 33

3.4 Phases of DAG evaluation . 34

3.5 Extractions of sub-DAGs generated by a DAG-vertex separator . 39

3.6 Separator hierarchy based DAG tree decomposition 42

3.7 Leaf Component - Root path of DAG tree decomposition 44

4.1 Surfaces of bounded genus . 56

4.2 DAG B1 . 60

4.3 Decomposition of DAG B1 using vertex separator 60

iii

iv

Abstract

In this thesis we have studied some issues related to the space complexity of

Directed Acyclic Graphs (DAG) computations and in particular the possibility

of obtaining a reduction of the amount of memory necessary to the evaluation of

a DAG using computations with multiple assessments of the same vertex rather

than strictly without recalculations. In the main result of the thesis, we introduce

a method to obtain a significant upper bound for the space complexity of a DAG,

based on the concept of DAG-vertex separator. By further developing this result

according to the divide and conquer paradigm we obtain a decomposition of the

DAG through which it is possible to observe a relationship between topological

characteristics of the graph and its space complexity.

1

2

Introduction

Since the advent of the digital computer and trough the steady and impressive

growth of its supporting technology, the memory used in the computing system

has accounted for a substantial part of the cost of computing systems. This

fact has motivated the study of space-efficient computations aimed to achieve an

optimal utilization of the registers of a CPU and/or of the random access memory

used in common general-purpose computer.

Even in situations where the cost of memory is negligible, the need for efficient

use of the available memory space in computations still arises from the pursuit

of performance. Although most parameters are still being improved, there is a

general consensus that physical limitations to signal propagation speed and device

size are becoming more and more significant [4]. Therefore, in a scenario where

access time is bound to increase with the size of memory, the utilization of smaller

memory will allow to achieve faster computation thus making space efficiency a

crucial objective.

In this thesis we will focus on the analysis of the memory space needed for

computations done with straight-line programs in a data-independent fashion

which can be modeled by means of a Computational Directed Acyclic Graph

(CDAG). We will attempt in particular to find significant bounds for the space re-

quirement, possibly pointing out relations between them and some graph-theoretic

properties of the DAG.

In Chapter 1 we provide an accurate characterization of the problem under

analysis, together with a series of definitions and concepts repeatedly used in the

thesis, and we establish the main goals of this work.

In Chapter 2 we discuss the approach based on marking rule introduced by

Bilardi, Pietracaprina and D’Alberto [6], as an example of a general framework

for analyzing the space complexity of DAGs.

The main result of the thesis is then presented in Chapter 3, where we intro-

3

4 Introduction

duce a new method to obtain a significant upper bound for the space complexity

of a DAG based on the concept of DAG-vertex separator. By further developing

this result according to the paradigm divide and conquer we obtain a decompo-

sition of the DAG through which it is possible to observe a relationship between

topological characteristics of the graph and its space complexity.

In Chapter 4 we go to apply the previous results to the classes of finite genus

DAGs and planar DAGs, obtaining quantitative bounds on the space complexity

related just to the dimension of the vertices set.

We then conclude in Chapter 5 with remarks on the results obtained with re-

spect to the initial objectives of the thesis accompanied by indications on possible

future developments of the presented work.

Chapter 1

Problem definition and introductory

concepts

In this first chapter we will present an in-depth analysis of the problem to be

explored and lay down the main theoretical definitions and concepts extensively

used in this work. We will also introduce the pebbling game model as to produce

an effective model of the task at hand. We will then conclude stating the goals

for this thesis.

1.1 Problem description

In most computations the memory space available, be it the number of CPU

registers or the RAM size, is not sufficient to hold all the data on which a program

operates. Thus the same memory locations must be reused or the available space

must be increased leading respectively generally to an increase or to a reduction

of the number of the necessary computational steps (time) [19].

This study is focused on computations done with straight-line programs (op-

posed to branching programs) in a data-independent fashion, where the succession

of the operations to be executed is thus not influenced by the specific value of

input values (opposed to data-dependent computations).

Definition 1.1 (Straight-line program). A straight-line program is a set of steps

each of which is an input step, denoted as (s READ x), an output step, denoted (s

OUTPUT i), or a computation step, denoted (s OP i...k). Here s is the number

of a step, x denotes an input variable and the keyword READ, OUTPUT, OP

identify steps where an input is read, an output produced and the operation OP

5

6 Chapter 1. Problem definition and introductory concepts

is performed. In particular at the s-th computation step the arguments to OP

are the results produced at steps i, ..., k. It is required that these steps precede

the sth step, that is s ≥ i, ..., k.

Algorithms for many important problems such as Fast Fourier Transform

(FFT)and matrix multiplication are naturally computed in by straight-line pro-

grams.

The requirement that each computation step operates on results produced

in preceding steps insures that each such program can be modeled as a Directed

Acyclic Graph (DAG), also called Computational Directed Acyclic Graph (CDAG)

or circuit, whose vertices (also called gates) represent operations (of both input

and processing type) and whose arcs represent data dependencies.

The problem we consider is the optimization of the implementation of a com-

putation which has been specified in terms of a DAG assigning to the implementor

essentially two degrees of freedom: the definition of the schedule of execution of

the operations, possibly including recalculations, and the memory management,

that is, the assignment of a memory location to each value produced in the com-

putation during the time between the generation and last use of that value.

In particular we will focus on the study of the minimum memory space re-

quired for the evaluation of a given DAG, called space complexity.

This problem has been extensively developed in literature since the seventies,

typically formulated in terms of the so-called pebble game (see e.g., [7], [11], [14],

[17]) which is presented later.

1.2 Preliminaries

This section provides some basic definitions concerning graph theory and DAG

computations which are widely used in the remainder of the work.

1.2.1 Definitions on DAG theoretical properties

Let
−→
GV (V,

−→
EV) be a DAG where the directed edges in the set

−→
EV represent data

dependencies and the vertices in the set V represent values produced by unit-time

operations requiring unitary memory space. We assume that there is no directed

loop in
−→
GV . Sometimes we will use the lighter notation

−→
G instead of

−→
GV (V,

−→
EV)

1.2 Preliminaries 7

when we are referring to a generic DAG without a specific vertex set V associated

to it.

We say that two vertices u and v in V are adjacent in
−→
GV if there is an

edge connecting them. For every directed edge ⟨u, v⟩ in
−→
EV we say that u is a

predecessor (or immediate predecessor, parent) of v (u ≺ v), and v is a successor

(or immediate successor, child) of u (v ≻ u). We denote the set of all the

predecessor of a vertex v by pa(v) and the set of all its successors by ch(v).

The set pa(v) represents all the operands of the operation that produces v and

the set ch(v) represents all the operation to whom v participates as an operand.

A path l between two distinct vertices u and v in V is a sequence of distinct

vertices in which the first vertex is u, the last one is v and two consecutive vertices

are connected by an edge, that is l = (c0 = u, c1 . . . , cm−1, cm = v) where ⟨ci−1, ci⟩
or ⟨ci, ci−1⟩ are edges in

−→
E for i = 1, . . . ,m and ci ̸= cj for all i ̸= j. We say that

a path ld between two distinct vertices u and v in V is directed if all the directed

edges in the path point at the direction toward v. We say that u is an ancestor

of v (u ≺⋆ v) and v is a descendant (v ≻⋆ u) of u if there is a directed path from

u to v in
−→
G . The set of all ancestors of v will be denoted as an(v).

The in-degree (resp., out-degree) deg−(v) (resp., deg+(v)) of a vertex v in
−→
GV (V,

−→
EV) is the number of its predecessors (resp., successors) deg−(v) = |pa(v)|(resp.,

deg+(v) = |ch(v)|. Vertices of in-degree (resp., out-degree) 0 constitute the set

I ⊂ V of the inputs (resp., O ⊂ V of the outputs) of the DAG.

The total-degree of a vertex v corresponds to the total number of its adjacent

vertices: deg(v) = deg−(v) + deg+(v). We shall refer to the maximum degree of

a DAG
−→
G as Deg(

−→
G) = maxv∈V (deg−(v) + deg+(v)).

Given a DAG
−→
GV (V,

−→
EV) we say that

−→
G is connected if for every couple of

distinct vertices u and v in V there is either a directed path from u to v or vice

versa. If this condition is not verified, but there are still path connecting couple

of distinct vertices u and v,
−→
GV is said to be weakly connected. DAGs that are

not weakly connected are said to be not connected.

The notation G(V,A) is used to refer to the undirected graph defined over the

node set V with the set of undirected arcs A.

1.2.2 Definitions concerning DAG computations

A computation (or schedule) of
−→
G specifies a particular scheduling of the op-

erations associated with its vertices, which satisfies data dependencies, and a

8 Chapter 1. Problem definition and introductory concepts

particular memory management.

In this work we study DAG computations on the RAM model with a memory

of unbounded size whose cells are addressed by the natural numbers starting

from 0 [19]. A standard computation of a DAG
−→
G starts with the values of all

input vertices in memory and must calculate the values of all output vertices

by performing a sequence of vertices evaluations which correspond each to the

execution of the operation associated to a vertex v, provided that all the vertices

in pa(v) are in memory, and the memorization of the value computed for v in

memory.

In general a vertex can be evaluated more than once, however without loss

of generality it is useful to restrict the analysis to parsimonious computations

where output vertices are evaluated exactly one time and between two consecutive

evaluations of the vertex v at least one successor u ∈ ch(v) must be evaluated.

We will thus assume that after the value of vertex v is produced, it remains in

memory until the last time a node u ∈ ch(v) is evaluated before the re-calculation

of v. If v is an output we can safely assume that its value may be removed from

the memory immediately after its unique evaluation.

The space required by a computation corresponds to the maximum number

of values which are stored in memory at any one time during the computation.

The space complexity of a DAG
−→
G , denoted by S(

−→
G) is defined as the minimum

space strictly required by any standard computation for
−→
G .

Since for standard computations all inputs need to be in memory at the start

of the computation for every DAG the following lower bound holds:

S(
−→
G) ≥ |I| .

We will consider also another class of computations, called free-input com-

putations, which start with an initially empty memory, and every time an input

value is needed it can be produced invoking a special load instruction. It is easy

to argue that the space complexity defined over the free-input computations of
−→
G , which will be denoted as Sfree(

−→
G) is never higher than S(

−→
G). I should be

remarked how the Sfree(
−→
G) corresponds to the space measure captured by the

Pebble Game model [6].

On the other side the time required by a computation corresponds to the

number of vertex evaluation performed within it. It is easy to see how for any

n-vertex DAG there are computations which require no more than n steps.

1.3 The pebble game 9

Figure 1.1: Example of pebble game played on a binary tree DAG

1.3 The pebble game

In this section we will briefly present the pebble game (also called black pebble

game [11]) which is a simple yet useful model which allows us to study various

types of computations and enables us to investigate the time and space require-

ments for the evaluation of a DAG, and the relation between them. This method

is also an useful tool to get a better understanding of the problem of the space

complexity estimation for DAG, through a simple yet powerful approach.

The pebble game is a game played on directed acyclic graphs which captures

the dependencies of straight-line programs. In the pebble game pebbles are placed

on vertices of a DAG in a data-independent order to indicate that the value

associated with a certain node is currently stored in memory.

The rules for the pebble game are the following:

• (Initialization) A pebble can be placed on an input vertex at any time

• (Computation step) A pebble can placed on (or slided to) any non-input

vertex only if all its immediate predecessors carry pebbles

• (Pebble deletion) A pebble can be removed at any time

• (Goal) Each output vertex must be pebbled at least once

The placement of a pebble on an input vertex models the loading in memory of the

input data, while the placement of a pebble on a non-input vertex corresponds to

the computation of the value associated with the vertex. The removal of a pebble

models the deletion or the overwriting of the value previously stored in memory

corresponding to the vertex carrying a pebble.

Allowing pebbles to be placed on input vertices at any time reflects the as-

sumption that inputs are readily available; this is the key condition that associates

10 Chapter 1. Problem definition and introductory concepts

the executions of the pebble game to the free-input computations rather than to

the standard computations. This condition creates a certain distance between

the pebble game and most of practical situation in which all input values must

actually reside in memory. The model, however, maintains however a high de-

gree of interest since it provides some kind of lower bound to space complexity

operating with a high degree of freedom.

The condition that all immediate predecessor vertices should carry pebbles

in order to place a pebble on a vertex models the natural requirement that an

operation can be performed only if all arguments of the operation are available

and located in main memory. Moving (or sliding) a pebble to a vertex from

an immediate predecessor reflects the design of CPUs that allow the result of a

computation to be placed in a memory location holding an operand.

The execution of the rules of the pebble game on the vertices of a DAG
−→
G is

called a pebble strategy. It is easy to argue that each pebble strategy corresponds

to a free-input computation for
−→
G . In particular each step of the strategy is

associated to each placement of a pebble, ignoring steps on which pebbles are

removed, and numbered consecutively from 1 to T , where T corresponds to the

time required by the strategy. The space, S, used by a pebbling strategy is the

maximum number of pebbles it uses. The goal of the pebble game is to pebble a

graph with values of space and time that are minimal, that is, the necessary space

cannot be reduced for the given value of time and vice versa. In our analysis we

will focus mainly on the optimal (minimal) space requirements.

It should be remarked that, in general, it is very hard to determine the min-

imum number of pebbles needed to pebble a graph and, in order to achieve the

optimal result, rather than a general approach, specific pebbling strategies tai-

lored on the particular DAG structure are to be devised [19].

In particular, in terms of the traditional hierarchy of complexity classes, the

problem of finding the minimum number of pebbles needed to pebble a DAG

can be modeled as a language consisting of strings each of which contains the

description of a DAG
−→
GV (V,

−→
EV) a vertex v ∈ V and an integer S with the

property that v can be pebbled with S or fewer pebbles. The language of these

strings is PSPACE-complete. PSPACE is the class of decision problems that

are decidable by a Turing machine in space polynomial in the size of the input

and are potentially much more complex of problems in P. The hardest problems

in PSPACE are PSPACE-complete problems, in the sense that any PSPACE

1.4 Goals of the thesis 11

Figure 1.2: The relationships among complexity classes

problem can be reduced to a PSPACE-complete problem in polynomial time by a

Turing machine. These problems are widely suspected to be outside of the more

famous complexity classes P and NP, but that is not known. PSPACE-complete

problems, however, are currently as infeasible as NP-complete problems, since

both are solvable in exponential time and polynomial space [19].

Besides the study of the space complexity of DAGs, variations of the basic

pebble game have been successfully used to analyze problems linked to the access

complexity in two-level and hierarchical memory. In particular the Red-Blue

pebble game by Hong and Kung [12] remains to this date the main point of

departure of most lower bound analysis for hierarchical memory performance.

1.4 Goals of the thesis

As discussed in the first part of this chapter, the optimization of memory space

for programs that can be represented through DAGs is an important but hard

task. This difficulty is mainly related to the need of taking into account the com-

putations available using recalculations. Over the years, several results have been

proposed in literature to show how a clever use of recalculations allows to achieve

minimum space complexity for DAG computations otherwise not reachable with

12 Chapter 1. Problem definition and introductory concepts

single evaluation of each vertex. This observation leads to a trade-off between the

number of operations executed T and the space used S, generally expressed in

the form ST = Ω(f(n)), where f(n) is a function of the input size of the problem

n, related to the specific problem at hand.

On the other hand, the possibility of re-evaluating some values conveniently

during the steps of a computation opens the door to the need of devising specific

strategies to meet the particular features of each DAG in order to meet the

optimal memory requirement.

This approach, however, proves to be very time consuming and leads to very

specific results which can not generally be extended to wider classes of DAGs.

These difficulties lead to the fact that, in general, given a DAG
−→
G it is hard

to give a good estimate of its space complexity and to determine whether the use

of recalculations may prove useful to achieve a better memory usage.

This work is aimed to find a relation between some graph theoretical prop-

erties of a given DAG
−→
G and the fact that

−→
G may or may non benefit, in terms

of minimal space needed for its execution, from the employment of computations

with recalculations. In particular, once these properties are found, we expect to

be able to obtain some new and significant bounds to the space complexity of

DAGs. In addition, this result will allow us to obtain a general criteria to esti-

mate the space complexity founded on the DAG structure and properties rather

than its peculiar possible computations.

Chapter 2

The role of the recalculation in

DAG computations

In this chapter we will discuss some results already known in literature, con-

cerning bounds on the space complexity of DAGs. In particular, we will distinct

observations related to computations in which recalculations are never performed

from those in which they are.

We will then try to get a better understanding of why recalculations may

prove so helpful in some situations and present a technique especially devised to

estimate a lower bound on space complexity of DAGs by capturing the memory

space used by computations with recalculations.

2.1 Computations strictly without recalculations

Given an n-vertex DAG
−→
GV (V,

−→
EV) it is always possible to devise a computation

for which the operations associated to each node are executed exactly one time.

This class of computations is referred as strictly without recalculations and corre-

sponds to non re-pebbling strategies in the pebble game. Any such computation

is particularly useful in all those situations in whom the main priority is given to

achieving the minimum execution time n.

The key observation concerning this class of computations is that every time

the value of a vertex is loaded in memory or calculated it must remain available

until each one it successors has been evaluated, still among these computations

some will provide a better memory usage than others, using a clever ordering of

vertex evaluations.

13

14 Chapter 2. The role of the recalculation in DAG computations

Bilardi and Preparata proposed an approach to estimate the lower bounds

on memory usage achievable using computations strictly without recalculations

based on the notion of dicothomy-width [3]. This results is of particular interest

since it shows an interesting relation between a property of the topological struc-

ture of a DAG and the best minimum memory requirements achievable using

computations strictly without recalculations.

Definition 2.1 (Closed subset). Given a DAG
−→
GV (V,

−→
EV), a subset W ⊆ V is

said to be closed if whenever v ∈ W then an(v) ∈ W .

In the present context it is important to notice that, because of the depen-

dencies between the vertices of a DAG, in each step i of a computation strictly

without recalculations the set of vertices evaluated during the steps 1, . . . i is

always a closed subset of V .

Definition 2.2 (Closed dichotomy). Given a DAG
−→
GV (V,

−→
EV), and a subset

W ⊆ V , let Bout(W) denote the set of vertices in W that have a successor in

V \ W . The closed dichotomy size of
−→
G is the function β of the integer value

w ∈ {0, . . . , |V |} defined as:

β(w) = min{|Bout(W)| : W ⊆ V, W closed, |W | = w}.

The closed dichotomy size, intuitively, indicates that after w values have

already been computed, at least β(m) of them will be reused in further compu-

tational steps ant should therefore be kept in memory. Using this notion we can

thus obtain a lower bound on the memory space necessary for computations in

which recalculations are not allowed Swr(
−→
GV) as:

Swr(
−→
GV) = max

w∈{0,...,|V |}
β(w). (2.1)

The closed dichotomy proves effective since it captures in Bout the presence

of communication vertices which have already been evaluated but that still have

at least one successor which has not yet been computed [5].

The study of this class of computations is of note as the minimum memory

space needed by them marks the border of the optimum performance achievable

without recalculations and is therefore the standard of comparison for computa-

tions with multiple vertex-evaluation.

2.2 The importance of the recalculation 15

Obviously only those schedules that offer better performance than Swr(
−→
GV)

will be considered of interest and their usefulness will be directly related to the

gap from the optimum performance achievable without recalculations.

We can therefore say that Swr(
−→
GV) is actually an upper bound for the space

complexity of
−→
GV :

S(
−→
GV) ≤ Swr(

−→
GV). (2.2)

If for some DAG this bound is tight, it can be concluded that the execution

with recalculations does not lead to any benefit in terms of reduction of memory

space necessary for the calculation of
−→
GV .

2.2 The importance of the recalculation

Through the next sections we will focus on computations which allow recalcula-

tions and we will try to understand how and why they can prove useful for some

DAGs. However, a legitimate doubt concerning the usefulness and the advisabil-

ity of designing computations with a number of steps higher than the minimum

may arise.

In the introduction, we hinted that the optimization of memory utilization

has been strongly motivated by the cost of the memory component in computing

system. This cost should however be intended just in terms of the economic

cost of components. In particular in the context of embedded programming,

situations may arise in which for project needs the physical space for memory

may be strongly restricted, and optimization of memory management becomes

then crucial in order to perform some function, even at the cost of a considerable

increase of execution time.

Another important consideration descends from the fact that although most

parameters are still being improved, there is an emerging consensus that physical

limitations are becoming increasingly significant [?]. In particular, concerning

memory hierarchies, the gap between the access time to memory layers close to

the processing units (register, cache) and to the slower levels (RAM, disc) is

expected to grow larger and larger. In such context, a better management of the

fastest memory levels, even if achieved at the cost of a substantial increase of

the number of computational steps, may still provide better performances than

computation with less operations, but needing to access a wider memory space.

16 Chapter 2. The role of the recalculation in DAG computations

Recalculations may also prove very useful in the context of parallel and dis-

tributed computing. The general approach adopted whenever more than one

computing unit is available, is to divide the workload equally between them and

having them collaborate among themselves. However, in a model in which the

communication time between computation units, due to physical limits, cannot

be considered instantaneous and constitutes a bottleneck for the overall perfor-

mance, it will actually make more sense to repeat some calculations locally, in

order to minimize the communication between different CPUs.

Thus, the execution of recalculations brings a degree of flexibility which may

prove useful in many practical situations and may present a different approach

to many traditional problems.

2.3 The marking rule approach

In this section, we will present a method to obtain a general lower bound for DAG

space complexity based on a framework developed by Bilardi, Pietracaprina and

D’Alberto [6], that allows to model arbitrary executions by suitable permutations

of the vertices, where each operation appears exactly once, while maintaining a

grip on space requirements.

2.3.1 Main theorem

If we rule out multiple executions of the same operation, the computations of

a DAG are in one-to-one correspondence with the topological orderings of its

vertices. In particular, given a specific topological ordering ϕ = ϕ1, . . . , ϕn, con-

sistently with what discussed in section 2.1, after the execution of vertex ϕi at

step i, all the vertices v ∈ {ϕ1, . . . , ϕi} with at last one successor in {ϕi+1, . . . , ϕn}
must be in memory. It may also be noted that pa(ϕi) ⊆ {ϕ1, . . . , ϕi} and that

the subset of vertices {ϕ1, . . . , ϕi} is always closed.

It is interesting to note how for all connected DAGs there will be exactly one

possible topological ordering of its vertices, and thus it will be possible to calcu-

late the exact amount of memory space necessary for schedules strictly without

recalculations in linear time.

The possibility to repeat operations, however, greatly complicates the analysis

with respect to what constitutes a valid schedule and to what must be in memory

at any given step of the schedule.

2.3 The marking rule approach 17

In this method, the authors aim to show a correspondence between each

possible computation of the DAG to a permutation of its nodes, generally not

corresponding to a topological ordering, using a marking rule that is a criterion

to associate to each vertex v ∈ V a family of subsets of it successors.

In particular, a marking rule for a given n-vertex DAG
−→
GV is any function

f : V → 22
V
for which:

• q ∈ f(v) =⇒ q ⊆ ch(v);

• v ∈ O =⇒ f(v) = {∅};

• v ∈ V \O =⇒ ∅ /∈ f(v).

Given a linear arrangement ϕ = ϕ1ϕ2 . . . ϕn of all the vertices in V so that {ϕi :

1 ≤ i ≤ n} = V . ϕ is a f -marking for a marking rule f iff for every 1 ≤ i ≤ n

there exist q ∈ f(ϕi) such that q ⊆ {ϕi : i ≤ j ≤ n}.
The i-boundary of ϕ is defined as the set Bf

ϕ(i) of all the vertices v ∈ V \O
that satisfy the following properties:

• v ∈ v ∈ {ϕ1, . . . , ϕi}M

• there exists q ∈ f(v) such that q ⊆ {ϕi+1, . . . , ϕn}.

Where Bf
ϕ(i) represents the set of vertices v ∈ V \O such that vϕi+1 . . . ϕn is the

suffix of a legal f -marking of
−→
GV .

Is thus possible to shown a relation between the space complexity of the free-

input computations of a DAG
−→
GV and the size of the boundaries of its f -marking.

Let F−→
G

denote the set of marking rules for
−→
GV and Φ(f) the set of f -markings

of
−→
GV .

Theorem 2.1 (Lower bound for space complexity).

The space complexity of the free-input computations of
−→
GV is:

Sfree(
−→
GV) ≥ max

f∈F−→
G

min
ϕ∈Φ(f)

max
1≤i≤n

∣∣∣Bf
ϕ(i)

∣∣∣ . (2.3)

Proof. Consider an arbitrary marking function f ∈ F−→
G

and a T -step free-input

parsimonious computation C for
−→
GV . Let vt be the vertex evaluated at step t

of C, for 1 ≤ t ≤ T . It is possible to obtain the corresponding f -marking of C

ϕ = ϕ1ϕ2 . . . ϕn by sweeping backward the steps of the computations using the

following loop:

18 Chapter 2. The role of the recalculation in DAG computations

j = n;

for t = T down-to 1 do

if (vt /∈ {ϕj+1, . . . ϕn}) and (∃q ∈ f(vt) : q ⊆ {ϕj+1, . . . ϕn})
then ϕj = vt; j = j − 1;

It can be easily verified that the sequence ϕ obtained at the end of the loop

is indeed a f -marking for
−→
GV . In order to prove the accuracy of the bound, it

must be shown that, fixed an index i,1 ≤ i ≤ n with ϕi = vt for some t, the

value of the vertex in Bf
ϕ(i) must actually be in memory at the end of step t of

the computation C. Let v ∈ Bf
ϕ(i). The definition of Bf

ϕ(i) and the fact that the

computation C being used is parsimonious, implies that there exist two indices

t1 and t2, with 1 ≤ t1 ≤ t ≤ t2 ≤ n, such that vt1 = v, vt2 ∈ ch(v), and vj ̸= v for

every t1 ≤ j ≤ t2. As a consequence, the value of v computed at step t1 of C is

used to compute vt2 and therefore it must reside in memory at the end of step t.

Since i was chosen arbitrarily, it is possible to conclude that the space required

by C is not less than max1≤i≤n

∣∣∣Bf
ϕ(i)

∣∣∣. The theorem follows by minimizing over

all possible ϕ ∈ Φ(f) and by maximizing over all possible f ∈ FG.

Note that the lower bound obtained is generally not tight. In fact, as ex-

plained in the demonstration, while considering the vertex ϕi of a given f -marking

it can be said that all the nodes that belong to the boundary Bf
ϕ(i) must be lo-

cated in memory immediately after the evaluation of ϕi, is not yet possible to

conclude that all the nodes that are in memory at that step of the computation

will actually appear in the boundary Bf
ϕ(i).

Another circumstance, which can lead to the lower bound being non-strict

is given by the fact that the instants of computation in which the vertices are

marked, and that are actually used to build the f-marking, do not correspond to

the points of the computation for which it has the greatest need for space.

This means that all possible computations C for
−→
GV will require memory space

satisfying the lower bound obtained by 2.3, but it will not always be possible to

produce a schedule that matches exactly the value given by 2.3.

Please note that the fundamental difference between topological permutations

and the generic f -marking obtained from a certain computation C using a specific

marking rule f is that, while in the first each node must appear before all of his

successors, in the second the only constraint that arises on the occurrence of a

node in the permutation is that this appears before at least one of its successors.

One disadvantage of this approach is given by the high number of possible

2.3 The marking rule approach 19

marking rule to be analyzed
∣∣∣∣F−→G

∣∣∣∣. Among these, however, one of particular

importance is the singleton marking rule f (sing) defined as:

f (sing)(v) =

 {{u}|u ∈ ch(v)} ∀v ∈ V \O
{∅} ∀v ∈ O

The application of the conversion from computations into f (sing)-makings

allows to find all f -markings obtainable using any other marking rule f ∈ F−→
G

and for any f -marking ϕ ∈ Φ(f) will be:

max
1≤i≤n

∣∣∣∣Bf (sing)

ϕ (i)
∣∣∣∣ ≥ max

1≤i≤n
|Bϕ(i)|.

2.3.2 A criterion for identifying DAG that do not benefit

form recalculations

The computations used for the evaluation of a CDAG
−→
GV without recalculations

correspond each to the possible topological orderings of the vertices in V , indi-

cated as ΦV . It will therefore be possible to evaluate the memory space required

for the evaluation of
−→
GV without recalculations Swr(

−→
GV) as:

S(
−→
GV) ≤ min

ϕ∈ΦV

max
1≤i≤n

|Bϕ(i)| = Swr(
−→
GV), (2.4)

where Bϕ(i) will be consisting of all the vertices in the prefix ϕ1ϕ2 . . . ϕi which

have at least one successor in the suffix ϕi+1 . . . ϕn .

As discussed before, the minimum memory space necessary for computations

strictly without recalculations constitutes a demarcation point to determine if

the execution of recalculations can be effectively useful for lowering the minimum

memory space necessary. From 2.3 and 2.4 we can obtain:

max
f∈F−→

G

min
ϕ∈Φ(f)

max
1≤i≤n

∣∣∣Bf
ϕ(i)

∣∣∣ ≤ min
ϕ∈ΦV

max
1≤i≤n

|Bϕ(i)|.

Proposition 2.2.

Given a DAG
−→
GV (V,

−→
EV), if it is verified:

max
f∈F−→

G

min
ϕ∈Φ(f)

max
1≤i≤n

∣∣∣Bf
ϕ(i)

∣∣∣ = min
ϕ∈ΦV

max
1≤i≤n

|Bϕ(i)|, (2.5)

this implies that the optimal space complexity can be achieved by computations

without recalculations.

20 Chapter 2. The role of the recalculation in DAG computations

Proof. The demonstration of this proposition is obtained directly from the prop-

erties of the lower bound identified in Theorem 2.1.

In particular, the previous proposition implies that if there is a marking

function f ∈ F−→
G

for which it is:

min
ϕ∈Φ(f)

max
1≤i≤n

∣∣∣Bf
ϕ(i)

∣∣∣ = min
ϕ∈ΦV

max
1≤i≤n

|Bϕ(i)|

then again this implies that the optimal space complexity can be achieved by

computations without recalculations.

The lower bound 2.3 can also be used in order to obtain an estimate of the

order of magnitude of the maximum obtainable reduction in terms of necessary

memory space for computations using recalculation with respect to those strictly

without recalculation, indicated as ζ(
−→
GV):

ζ(
−→
GV) = O

maxf∈F−→
G

minϕ∈Φ(f) max1≤i≤n

∣∣∣Bf
ϕ(i)

∣∣∣
minϕ∈ΦV

max1≤i≤n |Bϕ(i)|

 . (2.6)

2.3.3 A criterion for composed DAG analysis

The result of Theorem 2.1 provides also the means to assess the space complexity

of a DAG through the analysis of its sub-DAGs. In particular, let
−→
GV (V,

−→
EV) be a

DAG and
−−→
GV ′(V ′,

−−→
EV ′) a sub-DAG of

−→
GV , where V

′ ⊆ V and |V | = n ≥ m = |V ′|.
Any free-input computation of

−→
GV includes (at least) one free-input computation

of
−−→
GV ′ , hence Sfree(

−→
GV) ≥ Sfree(

−−→
GV ′).

In terms of marking rules, it is easy to see that every marking rule f−−→
GV ′

for
−−→
GV ′ can be extended to a corresponding marking rule f−→

GV
for

−→
GV such that

f−→
GV

(v) = f−−→
GV ′

(v) for every v ∈ V ′. This leads to:

max
f∈F−→

GV

min
ϕ∈Φ(f−→

GV

)
max
1≤i≤n

∣∣∣∣∣∣B
f−→
GV

ϕ (i)

∣∣∣∣∣∣ ≥ max
f∈F−−→

GV ′

min
ϕ∈Φ(f−−→

GV ′
)
max
1≤i≤n

∣∣∣∣∣∣B
f−−→
GV ′

ϕ (i)

∣∣∣∣∣∣ . (2.7)

The above considerations somehow suggest that meaningful lower bounds on

the space complexity of a DAG are provided by marking rules that are carefully

tailored to the DAG structure and, in particular, that bring forward the presence

of space demanding sub-DAGs [6].

2.4 Examples of significant DAGs 21

In Chapter 3 we will see how the proposed method based on the concept of

separation provides a general framework for analyzing the space complexity of

DAGs, referring only to their underlying undirected graph.

2.4 Examples of significant DAGs

In this section we will propose some DAGs particularly significant in order to

show whether or not the execution of recalculations allows to obtain benefits in

terms of reduction of the minimum memory space required for their evaluation.

2.4.1 DAGs that do not benefit from the performance of

recalculations

Tree DAG

Tree DAGs are a particular class of planar DAGs for which every vertex v ∈ V

has deg−(v) = 1, except one output vertex u (the root) for which deg−(u) = 0,

and all the edges are oriented from each vertex to its only successor. The input

vertices of a tree DAG, also called leaves, are those for which deg+ = 0.

In the study of the marking rule approach we pointed out that the main dif-

ference between topological orderings and the general f -markings is that, while in

the first each vertex should occur before all its successors, for general f -markings

a vertex must occur before at least one of its successors. However, since all ver-

tices have just one successor, all possible f -markings will actually be topological

orderings.

Thus the condition of Proposition 2.2 is verified and it is possible to conclude

that tree DAGs will never benefit of a reduction of the minimum necessary mem-

ory space by using computations with multiple evaluations of the same vertices.

In particular, through the marking rule approach, it can be shown that the

space complexity of complete balanced binary tree DAG (see Figure 1.2)
−→
GV with

m leaves will be Sfree

(−→
GV

)
≥ log2 m+ 1, which is tight as shown in [16].

Pyramid

A pyramid DAG can be obtained by taking the half of a m×m mesh graph above,

including the nodes on the main diagonal, and directing all the edges toward the

upper-right corner of the mesh. The DAG will have |V | = n vertices with m

22 Chapter 2. The role of the recalculation in DAG computations

Figure 2.1: Pyramid DAG and 3-pyramid DAG

inputs (the vertices of the mesh diagonal) and one output vertex (the node on

the upper-right corner of the mesh) (see Figure 2.1a).

The space complexity of a pyramid DAG
−→
GV can be evaluated by reformu-

lating the argument in [7], using the marking rule approach and in particular the

singleton marking rule f
(sing)−→
GV

. Let ϕ = ϕ1ϕ2 . . . ϕn be an arbitrary f (sing)-marking

for
−→
GV and let ϕ1ϕ2 . . . ϕj be the smallest prefix that contains all inputs (hence

ϕj must be an input). Among the possible directed paths from ϕj to the output,

there will be at least one path π whose vertices must all be included in the suffix

ϕj+1 . . . ϕn, and regardless of how π was chosen there will be at most m paths

that go from the leaves to vertices in π and intersect only in π. Since any such

path starts from a leave in the prefix and ends with a vertex in the suffix, it must

contain a vertex in B

f
(sing)−→
GV

ϕ (j) Theorem 2.1 leads to obtain:

Sfree(
−→
GV) ≥ m.

Since it will be possible to produce computations without recalculations that

evaluate
−→
GV using memory space m (e.g., the bottom up execution by levels

starting from the leaves), we can therefore conclude that the bound previously

shown is tight and that the execution of recalculations does not grant a reduction

in the amount of minimum memory space necessary for the assessment of pyramid

DAGs.

The previous considerations can be extended to the class of r-pyramid DAGs

with respect to which the case discussed above is a 2-pyramid (see Figure 2.1b for

an example of 3-pyramid) [18]. In particular, using the same procedure based on

the analysis of f (sing)-marking, it is possible to conclude that the space complexity

is always equal to the number m of the leaves, and that therefore there are never

benefits obtainable using recalculations.

2.4 Examples of significant DAGs 23

Figure 2.2: Diamond DAG

Diamond

Diamond DAGs are an example of composed DAG which can be obtained by

gluing together two m (m+ 1) /2-vertex pyramids coalescing the corresponding

inputs in one node. The diamond DAG will have one input vertex (the former

output of the lower pyramid) and one output (the output of the upper pyramid)

and all the direction of the edges of the lower pyramid will be reversed. Since one

such DAG
−→
GV will have an m−based pyramid as a sub-DAG rule 2.7 combined

with Theorem 2.1 implies Sfree(
−→
GV) ≥ m.

Again, since it is possible to find computations without recalculations which

require exactly m memory spaces, it is possible to conclude that the previous

bound is tight and the optimal space complexity is achievable without the need

to employ recalculations.

This case can be further generalized to r×c directed mesh, for which it can be

shown that the space complexity min (r, c) can again be achieved by computations

without recalculations.

24 Chapter 2. The role of the recalculation in DAG computations

Figure 2.3: FFT DAG with 8 inputs

Figure 2.4: Snake-like DAG

2.4.2 DAGs that benefit from the performance of

recalculations

FFT

An FFT DAG with m inputs (see Figure 2.3) and m outputs has the property

that the set of directed paths from input vertices to an output vertex forms a

complete balanced binary tree with m leaves. Thus, any such DAG
−→
GV contains

m copies of a complete balanced binary tree withm leaves as a sub-DAG. Relation

2.7, combined with the previous result obtained for binary tree space complexity,

allows to conclude Sfree

(−→
GV

)
≥ log2 m+ 1.

It is possible to show a computation which actually matches the bound above

by evaluating each of the binary tree sub-DAGs one at a time. This strategy,

however, employs the use of recalculations: in particular, besides output vertices

which are evaluated just one time, a vertex v for which the shortest directed path

to an output vertex has length i will be evaluated 2i−1 times [19].

On the other hand, sticking to computations without recalculations, the min-

imum memory space required will be Swr
(−→
GV

)
≥ m.

Snake-like DAG

The n-vertex Snake DAG has been obtained by taking an n
2
×2 directed mesh and

reversing the direction of the arcs in the second horizontal line. This modifications

makes the DAG connected and thus it is possible to evaluate the minimum space

needed for computations strictly without recalculations through the analysis of

2.4 Examples of significant DAGs 25

Figure 2.5: DAG Diamond + Array

the total topological ordering of the vertices as Swr

(−−→
GB1

)
≥ n

2
.

It is possible, however, to find a computational strategy for which at most two

results reside in memory at the same time in any of the steps of the computation.

With reference to the pebbling game model, we can see that any vertex in

the first row can be pebbled using just one pebble, by discarding the predecessor

value as soon as it has been used, while the vertices of the second column will need

both of their predecessors to be pebbled in order to be evaluated. In particular,

the vertex v in the upper right corner (the first vertex of the upper row) will

need just the vertex in the bottom left corner, and will thus be evaluable using

at most one pebble. To proceed further in the computation of v successor u, the

value associated with v should be kept in memory, while the other predecessor

of u in the first row shall be evaluated using one more pebble, this way u will be

evaluated using just two pebbles as well. By repeating this pattern, it is easy to

see that it will be possible to evaluate the entire DAG using just two pebbles.

Since it is clearly not possible to evaluate the DAG using just one pebble, we

can conclude that the bound Sfree

(−−→
GB1

)
≥ 2 is tight.

This is a nice example of a situation in which the employment of recalcula-

tions allows to obtain a consistent reduction of the memory space needed from

O(n) to O(1). It is also interesting to observe ho in this case the number of oper-

ations needed for the re-pebbling strategy is O(n2) while the execution without

recalculations requires just n vertex evaluations.

Diamond + Array

Let
−→
GV (V,

−→
EV) be a n = 2m vertex DAG formed by an m-vertex diamond

−→
GD(D,

−→
ED) and anm-vertex array

−→
GL(L,

−→
EL) connected as follows. Let v1v2 . . . vm

26 Chapter 2. The role of the recalculation in DAG computations

be a topological ordering of
−→
GD and u1u2 . . . um be the unique topological order-

ing of
−→
GL. The set of directed edges

−→
EV will be constituted by

−→
ED ∪ −→

EL plus

the edges ⟨vi, um−i+1⟩. The resulting DAG will have one input vertex (the input

vertex of the diamond DAG) and one output (the output of the array DAG).

Is easy to see that the space complexity of
−→
GV is determined by the diamond

component, and using rule 2.7 one can show Sfree

(−→
GV

)
≥

√
m, which is tight.

However, if we consider computations strictly without recalculations, we see that

each of them will have a suffix corresponding to the topological ordering of the

vertices of L. Since there will be one edge directed to a vertex in the suffix from

a vertex in the prefix ⟨vi, um−i+1⟩, B
f
(sing)−→
GV

ϕ (m) = m2 and thus Swr
(−→
GV

)
≥ m.

Once again the use of recalculation allows to obtain a reduction of order

(O
√
m) in terms of the memory space required for the evaluation of the DAG.

Chapter 3

An estimation of DAG space

complexity through separators

analysis

In this chapter the main result of this work is presented. We will describe a

divide-and-conquer technique which allows to find significant upper bounds for

the space complexity of generic computations of DAGs. In order to achieve this

result, we will exploit the concept of separator and tree decomposition for the

undirected graph extractable from a DAG.

3.1 Separators in graphs and DAGs

In literature, the concept of the separator for graphs, and the many definitions

connected to it, are usually introduced with reference to undirected graphs with

weights assigned to nodes and arcs. In our presentation, we will however refer to

the basic model provided by the pebble game, in which the operations associated

with each vertex of the DAG produce a value which takes up unit memory space.

Thus, without loss of generality, we will assign unitary weight to each vertex and

each edge of the graph.

3.1.1 Definitions for undirected graphs

The basic idea behind the separator concept is to remove few vertices or edges

and separate the original graph in pieces whose size is balanced with respect to

27

28 Chapter 3. An estimation of DAG space complexity through separators analysis

the original graph, in that the number of vertices for each of the pieces obtained

is at most a fraction of the original graph.

Definition 3.1 (Node Separator). Given a graph GV (V,AV), we define a node

separator for G a subset X ⊆ V which splits the graph in two parts L and R such

that there are no edges in E which join a vertex in L with a vertex in R. The

separator X generates a partition (L,X,R) for V . The cost of a node separator

c(X) is given by the number of nodes removed in X (c(X) = |X|).

Definition 3.2 (Separator Balance). Consider a node separatorX that generates

the partition (L,X,R) for V . The balance of X with respect to G is given by:

b(XG) =
min {|L| , |R|}

|V |
.

b(XG) can assume values in the interval
[
0, 1

2

(
1− |X|

|V |

)]
.

A node separator X for G is b-balanced if it achieves a balance of b.

Note that if the removal of a separator splits the graph in more than two

connected components, these pieces can be partitioned in two classes so as to

achieve a desirable balance.

Definition 3.3 (Node Cut Ratio of a Separator). Consider a separator X that

generates the partition (L,X,R) for V . The node cut ratio of X with respect to

G is given by:

r(XG) =
|X|

min (|L ∪X| , |X ∪R|)
.

The sparsest node cut ratio of a graph R(XG) is the lower cut ratio achiev-

able by any node separator of the graph.

We will now try to state similar definitions for DAGs.

3.1.2 Definitions for DAGs

While considering DAGs, the orientation of the edges makes necessary to specify

some new definitions concerning separators.

Definition 3.4 (DAG-vertex separator). Given a DAG
−→
GV (V,

−→
EV), we define a

DAG-vertex separator for
−→
GV a subset X ⊆ V which splits the graph in two parts

L and R, such that there are no edges in EV which join a vertex in L with a vertex

in R. The separator X generates therefore a partition (L,X,R) for V . The cost

of a DAG-vertex separator c(X) is given by the number of nodes removed in X

(c(X) = |X|).

3.2 A divide-and-conquer approach 29

Figure 3.1: Example of DAG-vertex separator

In Figure 3.1 it is proposed an example of DAG-vertex separator for a DAG.

The definitions of balance and b-balanced separator previously stated for undi-

rected graphs can still be used for DAG-vertex separators. Observing a partition

generated by a DAG-node separator, we can see that there will generally be

vertices in L (R) which are head of edges whose tail is in X, and vice versa.

We will denote the set of all DAG-vertex separators for
−→
GV as Ξ(

−→
GV).

Later in Chapter 4 we will introduce a particular sub-class of DAG-vertex sep-

arators, called topological separators, which exhibits a regularity in the direction

of the edges connecting X to R and L.

As of now, and in the following paragraphs, we will consider all DAG-vertex

separators according to the previous definition.

3.2 A divide-and-conquer approach

In computer science, divide and conquer (D&C) is an important algorithm design

paradigm, based on multi-branched recursion. The main idea behind it is to

recursively break down a problem into two or more sub-problems of the same

(or related) type, until these become simple enough to be solved directly. The

solutions to the sub-problems are then combined to give a solution to the original

30 Chapter 3. An estimation of DAG space complexity through separators analysis

problem [8].

This technique is the basis of efficient algorithms for all kinds of problems,

such as sorting (e.g., quicksort, merge sort), multiplying large numbers (e.g.

Karatsuba), syntactic analysis (e.g., top-down parsers), and computing the dis-

crete Fourier transform (FFTs).

In particular, we will show how to decompose a DAG according to the divide

and conquer approach in order to obtain problems of smaller size and thus man-

ageable with possibly smaller memory space. In order to achieve this result we

will exploit the concept of DAG-separator previously proposed, and the freedom

concerning the schedule construction, obtainable through recalculations.

Definition 3.5 (Undirected Intrinsic Graph of a DAG). Given an input n-vertex

DAG
−→
GV (V,

−→
EV) we can extract its undirected intrinsic graph GV (V,AV) whose

nodes set corresponds to the vertices set V of the DAG and whose arcs set AV

can be obtained simply ignoring the orientation of the edges in
−→
EV .

It is interesting to see how, according to this definition, different DAGs may

have the same undirected intrinsic graph.

A graph GV can be decomposed in smaller parts through the extraction of a

b-balanced node separator X, obtaining the partition (L,X,R). Since the set of

vertices for whom the undirected graph G has been defined corresponds exactly

with the set of vertices for
−→
GV , we can easily see how any separator X in GV

corresponds to a DAG-node separator in
−→
GV which will be constituted by the

same vertices.

The idea behind the use of the separator is to try to execute the DAG holding

just one of the two parts in memory at each time. This way, whenever we are

able to find a separator which splits
−→
G in two balanced components, the required

memory will decrease accordingly. Generally, the first time we consider each

part, only a limited subset of their vertices will be evaluable, specifically just

those whose predecessors have already been computed and are presently stored

in memory. Once all the possible evaluations have been performed, in order to

proceed in the computation we shall switch to the evaluation of the other part.

However, in doing so, great attention needs to be used in order not to lose any of

the useful information accumulated in the previous computational steps and still

necessary for the remainder of the DAG evaluation.

This is where the properties of the separator X come into play. Since there

are no edges connecting vertices in L to vertices in R, for each vertex v ∈ L (resp.,

3.3 Buffer space for separator vertices predecessors 31

Figure 3.2: Example of possible blocking situation

v ∈ R) all its predecessors u ∈ pa(v) will be u ∈ L∪X (resp., v ∈ R∪X). Thus,

while switching between the evaluation of L∪X and X ∪R (and vice versa) the

only vertices that should be kept in memories are those in separator X. We can

safely discard all the other vertices (except for the input nodes), since whenever

they will be needed again in the prosecution of the schedule, it will always be

possible to recalculate them form the inputs and the vertices in X. This way,

recalculations grant a high level of freedom in memory management.

Intuitively, proceeding in the alternate execution of L∪X and R∪X will allow

the evaluation of an increasing number of vertices at each iteration, ultimately

enabling the computation of all the output values of
−→
G .

In the next section we will accurately demonstrate the correctness of this ap-

proach, showing how is possible to obtain a computational schedule which evalu-

ates
−→
G in a finite number of steps using memory space O(max(|L ∪X| , |R ∪X|)),

without erroneous deadlocks.

3.3 Buffer space for separator vertices

predecessors

The construction of a DAG-node separator, as presented in the previous section,

may give rise to a situation which may lead to a block of the computation.

This situation occurs whenever in the separator X chosen for
−→
GV there is a

vertex v which has at least one predecessor in L and at least one predecessor in

R. Since the vertices of L and R will never be present simultaneously in memory,

32 Chapter 3. An estimation of DAG space complexity through separators analysis

v predecessors will never be available at the same time, and thus v the operation

associated with vertex v will never be executable (an example is proposed in

Figure 3.2a).

To overcome this problem, additional memory space should be allocated to

hold the value of the predecessors of the vertices in the separator. This way,

whenever one of these values is available, it is stored in a buffer memory and is

not affected by the switching between zones currently being executed.

In particular the additional space to be allocated is O(Deg−(
−→
GV) |X|), where

Deg−(
−→
G) = maxv∈V deg−(v) is the maximum in degree of all the vertices in V .

This correction may be visualized on the DAG by replacing each directed

edge ⟨u, v⟩ ,where u ∈ L ∪ R and v ∈ V , with a buffer vertex uv ∈ X, and the

directed edges ⟨u, uv⟩ and ⟨uv, v⟩ as shown in Figure 3.2b .

3.4 First separation level

We will then proceed to formalize the procedure previously described and to

prove the correctness of proposed technique by showing computations which using

bounded memory space allow to successfully evaluate the output vertices of the

DAG. We also show an upper bound on the number of operations needed by such

computations.

3.4.1 Main statement

We will now proceed to prove the following theorem:

Theorem 3.1 (DAG-separators Execution Theorem).

Given an n-vertex DAG
−→
GV (V,

−→
EV) and DAG-node separator X which generates

the partition (L,X,R) of V . The space complexity Sfree(
−→
G) satisfies the following

constraint:

Sfree(
−→
G) ≤ Deg−(

−→
G) |X|+max (|L| , |R|) . (3.1)

Proof. In order to prove the correctness of the statement, we show how given

a DAG
−→
GV and a DAG-vertex separator X it is possible to find a free-input

computation C which computes
−→
GV without erroneous blocking, using memory

space at most Deg−(
−→
G) |X| +max (|L| , |R|). In order to do so we will consider

a topological ordering of the vertices of
−→
GV . Without loss of generality we will

3.4 First separation level 33

Figure 3.3: First execution phase

arbitrarily assume to the first vertex of this topological ordering is in L∪X. This

choice is made just for the sake of simplicity; an equivalent proof may be attained

starting from X ∪R, replacing all occurrences of “R” with “L” in the remainder

of the proof.

We then keep evaluating the vertices in topological order, this is particularly

important since it ensures that all the predecessors of the vertex considered in the

i-th step will have already been evaluated in the previous i − 1 steps. It should

be remarked that, since the available space is enough to hold the whole L ∪ X,

in this phase the vertices will be evaluated without recalculations.

However, after the evaluation of 1 ≤ ι ≤ |L ∪X| vertices (highlighted in

green in Figure 3.3), it will not be possible to proceed in the computation, since

the next vertex w to be evaluated according to the topological ordering is in R

(highlighted in red in Figure 3.3).

The limit situation i = |L ∪X| may otherwise be verified in the further

steps of the computation, and indicates that all the vertices in L ∪X have been

evaluated and it will not be necessary to return to L ∪X in future calculations.

In the prosecution, we will assume that during the first execution of L ∪ X

34 Chapter 3. An estimation of DAG space complexity through separators analysis

Figure 3.4: Phases of DAG evaluation

1 ≤ ι < |L ∪X| vertices have been evaluated.

After the end of first phase, all vertices evaluated in L will be discarded, while

the values in X shall remain in memory, and we will switch to the evaluation of

the vertices in X ∪R.

The computation will then resume in topological order from the vertex w of

X∪R, using as “input data” not only the input vertices in R, but also the vertices

in X evaluated in the previous step. It is important to understand that, since

L∪X and X∪R communicate only through the vertices in X, all the information

generated by the previous evaluation of one of the two parts which is relevant for

the evaluation of the vertices of the other, is completely contained by the vertices

of the separator.

In particular since the computation has proceeded evaluating vertices in a

topological order is safe to assume that either w ∈ I , and therefore obviously

immediately evaluable, or pa(w) ⊆ X. Since the values of vertices in X are

kept in memory since their first evaluation and the calculation of the vertices in

topological order guarantees that all vertices pa(w) have already been evaluated,

3.4 First separation level 35

we can conclude that all predecessors of w will be available in memory and thus

w will be evaluable.

The computation will thus continue on the vertices in X ∪ R until the next

vertex u to be evaluated in the topological ordering is in L (note that the vertex

u could immediately follow w). The computation will then return to L∪X, after

discarding the vertices in L and keeping in memory all vertices in X evaluated

that far.

In particular, pa(u) can be partitioned in the two subsets paL(u), the set of

predecessors of u in L, and paX(u), the set of predecessors of u in X.

• Since the computation has proceeded in topological order, all vertices in

paL(u) have already been evaluated in previous executions of L ∪ X, and

thus, using recalculation, they can be computed again;

• The fact that u is next to be evaluated assures that all its predecessors in X

have already been calculated. Therefore, since the values of vertices in X

are kept in memory since their first evaluation, all paX(u) will be available.

We can thus conclude that u will actually be evaluable. The same reasoning can

be applied to all subsequent vertices of the topological order, and this allows us

to conclude that the entire DAG can be evaluated using at most Deg−(
−→
G) |X|+

max (|L| , |R|) memory space. The desired C will thus be composed by the finite

succession of the vertex evaluations performed in each phase (see Figure 3.4 for

an example).

The previous result allows us to obtain the following corollary:

Corollary 3.2.

Given an n-vertex DAG
−→
GV (V,

−→
EV), its space complexity Sfree

(−→
GV

)
will satisfy

the bound:

Sfree(
−→
G) ≤ min

X∈Ξ(
−→
GV)

(
Deg−(

−→
G) |X|+max (|L| , |R|)

)
. (3.2)

where X is a DAG-node separator for
−→
GV which generates the partition (L,X,R)

of V .

36 Chapter 3. An estimation of DAG space complexity through separators analysis

3.4.2 Accuracy of the bound in relation to separator cost

and balance

The previous results allows us to find an upper bound on space complexity achiev-

able by using recalculations. In particular, if for an n-vertex DAG
−→
G(V,

−→
E) a

separator X is used, it is possible to express the memory space required in terms

of its balance b:

SX
free(

−→
G) ≤ Deg−(

−→
G) |X|+ (1− b) (3.3)

While the term |X| (the cost of the separator X) depends just on the size

of the chosen separator, it is easy to see that the more balanced the division

operated by X, the less space will be required by the term (1−b)n. In particular,

for every separatorX ′ which achieves the best balanced separation with b(X ′−→
G
) =

1
2

(
1− |X′|

|V |

)
, the 3.3 will become:

SX′

free(
−→
G) ≤ 1

2
n+ |X ′|

(
Deg−(

−→
G)− 1

2

)
.

Thus, in order to minimize the memory space used by a computation obtained

via the separator X, the trade-off between the size of the separator X and the

balance of the DAG division achievable by using it should be carefully analyzed.

A possible improvement of the tightness of the bound 3.1 is achievable through

a more detailed analysis of the in-degrees of the vertices that constitute the

separator X. In particular, the 3.1 can be rewrited as:

SX
free(

−→
G) ≤

∑
v∈X

deg−(v) + max (|L| , |R|) ,

where the term
∑

v∈X deg−(v) represents the exact memory space which should

be reserved in order to prevent problems that may arise from the circumstances

discussed in Section 3.3.

Despite the fact that the last bound is more precise, the ones given in 3.1and

3.2 remain of interest because they relate the space complexity of
−→
G to the size

of the separator.

3.4.3 Time complexity

In describing the way to build a computation γ which satisfies the bound 3.1,

the possibility of re-evaluating some vertex was strongly exploited. Following

3.4 First separation level 37

the phase execution scheme described in Theorem 3.1, is possible to obtain an

upper bound for the number of vertex evaluations composing any computation γ

generated with reference to the separator X, used for the decomposition of
−→
G .

It has been seen that, following the topological order, it will be necessary to

switch the part of the DAG being evaluated at each step. Thus, the maximum

number of times each part may be considered is min (|L| , |R|), since when all

vertices in one of two parts have been calculated it will no longer be necessary

to return to that part. In the worst case, during each evaluation only one new

vertex is computed, but it may be necessary to recalculate all the other vertices.

Vertices in X are evaluated just one time.

The previous considerations lead to:

TX(
−→
G) ≤ |X|+

min(|L|,|R|)∑
i=1

i+
min(|L|,|R|)∑

i=1

(max (|L| , |R|)− i)

TX(
−→
G) ≤ |X|+ (max (|L| , |R|)min (|L| , |R|)) . (3.4)

In order to sharpen the previous upper bound, it is necessary to observe

carefully the number of times each part is evaluated. This quantity is closely

related to the topological ordering according to which the vertices are evaluated

in
−→
GV .

Of particular interest is the topological ordering ϕ⋆ = ϕ1ϕ2 . . . ϕn for which,

whenever the part L ∪ X (resp. X ∪ R), all vertices that are evaluable (that is

those for which all predecessors are available or evaluable), are actually evaluated

according to the topological ordering ϕ⋆ before switching to X ∪R (resp. L∪X).

It can be argued that ϕ⋆ is indeed a topological ordering since, for each 1 ≤ i ≤ n,

pa(ϕi) ⊆ {ϕ1, . . . , ϕi−1} and {ϕ1, . . . , ϕi} is a closed subset of V .

As shown in the proof of Theorem 3.1, following the proposed topological

ordering ϕ⋆ it will be possible to evaluate the entire DAG. Let w be a vertex in the

topological ordering for which it will be necessary to switch from the evaluation

of the current part of the DAG
−→
G (i.e. L ∪X) to the other (i.e. X ∪ R). In the

proof of Theorem 3.1, it has been shown that w is actually always evaluable.

However, since the vertices are being considered following the topological

order ϕ⋆, it is particularly important to notice that the vertex w must have at

least one predecessor in X which was not available during the last execution of

L ∪ X. In fact, if this was not the case the vertex w could have been already

38 Chapter 3. An estimation of DAG space complexity through separators analysis

evaluated in a previous execution of L ∪ X. Following the same reasoning will

lead to conclude that this circumstance is also verified in all subsequent phases.

This observation is of particular significance, since it implies that during each

computation of L∪X or X ∪R (except for the last) at least one vertex of X will

be evaluated for the first time.

Since once a vertex in X is calculated it is stored in memory, it is safe to

conclude that after at most |X| phases, all the vertices on X will have been

evaluated and thus the two parts L ∪X and X ∪R will be calculated altogether

no more than |X| times.

This considerations allows to obtain the following upper bound, achievable

by computations whose space requirement satisfy the bound in 3.1:

TX(
−→
G) ≤ |X|+ |X| (max (|L| , |R|)) (3.5)

which will be tighter than 3.4 whenever |X| ≤ min (|L| , |R|).

3.4.4 Standard computations

The computation C, used in the proof of the main statement, is a free-input

computation. It is however possible to achieve a similar result for a standard

computation for which all input values reside in memory from the beginning of

the computation until their last utilization. The 3.1 should thus be changed into:

S(
−→
G) ≤ |X|+max (|L| , |R|) + |I| − |I ∩X| (3.6)

where I is the set of input vertices of
−→
G .

3.5 A recursive separator application

In this section we will show how to use the previous result in a divide and conquer

recursive approach, aimed to achieve a stronger upper bound on space complexity

for DAGs.

3.5.1 Recursive extension of the separator method

In the previous section we were able to obtain an upper bound for space com-

plexity by using a vertex-separator for the DAG
−→
G extracted from the undirected

3.5 A recursive separator application 39

Figure 3.5: Extractions of sub-DAGs generated by a DAG-vertex separator

intrinsic graph G. However, concerning the computations of the two parts gen-

erated, L ∪ X and X ∪ R, enough memory space had been set aside to hold

the bigger one of them entirely in memory during each phase without further

optimizations.

In order to obtain a reduction of the overall space requirement, we would like

to apply recursively in the evaluation of L∪X and X∪R the same decomposition

method (based on a vertex separator) used in the first level for the whole DAG
−→
G . To do so, it will be necessary to carefully individuate the sub-DAGs generated

by a DAG-vertex separator X.

Definition 3.6 (Sub-DAGs generated by a DAG-vertex separator X). Given an

n-vertex DAG
−→
GV , letX be a DAG-vertex separator which generates the partition

(L,X,R).
−−−→
GL∪X(V

′,
−→
E ′) (resp.,

−−−→
GX∪R(V

′′,
−→
E ′′)), it is a sub-DAG of

−→
GV (shown in

Figure 3.5) defined as follows:

• the vertices set V ′ (resp., V ′′) will be composed by all vertices in L (resp.,

R) and the vertices in X which are adjacent to at least one vertex in V ′.

• the directed edges set
−→
E ′ = {⟨u, v⟩ | ⟨u, v⟩ ∈ E ∧ u, v ∈ V ′} .

The inputs of this sub-DAG will be constituted of both the input vertices in

I ∩ (L∪X) and the vertices in X ∩V ′ with at least one predecessor in R; among

these there may be however vertices w with predecessors in V ′ which will thus not

be considered proper input vertices for
−−−→
GL∪X . For these vertices we can consider

40 Chapter 3. An estimation of DAG space complexity through separators analysis

as inputs the vertices pa(w) ∩ R, which according to the matter presented in

section 3.3 will be stored in memory as buffer space.

The outputs of this sub-DAG will be constituted of both the output vertices

in O ∩ (L ∪X) and the vertices in X ∩ V ′ with no successors in V ′.

Obviously
−−−→
GX∪R(V

′′,
−→
E ′′) will be defined exactly as

−−−→
GL∪X(V

′,
−→
E ′), by replacing

V ′ with V ′′,
−→
E ′ with

−→
E ′′, L with R and R with L.

In Figure 3.5, we show the sub-DAGs extracted from the DAG
−→
GV presented

in Figure 3.1, by means of the DAG-vertex separator X.

Following this approach it will be possible to rewrite the 3.1 as a recursion.

Theorem 3.3 (Separator Space Complexity).

Given an n-vertex DAG
−→
GV (V,

−→
EV), its space complexity Sfree

(−→
GV

)
satisfies the

following bound:

Sfree(
−→
GV) ≤ Deg−(

−→
GV) |X|+max

(
Sfree(

−−−→
GL∪X), Sfree(

−−−→
GX∪R)

)
(3.7)

where X is a DAG-node separator for
−→
GV , which generates the partition (L,X,R)

of V .

Proof. In order to prove the correctness of the statement, we show how given

a DAG
−→
GV and a DAG-node separator X, it is possible to find a free-input

computation C which evaluates
−→
GV , without erroneous locks, using memory space

at most Deg−(
−→
GV) |X|+max

(
Sfree(

−−−→
GL∪X), Sfree(

−−−→
GX∪R)

)
.

In the same way as in the proof of Theorem 3.1, we will consider a topological

ordering of the vertices in
−→
GV , for the sake of simplicity we will assume that the

first vertex of the ordering will be in L ∪X.

The computation will proceed in topological order, and for the construction

of the sub-DAG previously discussed each evaluation of a vertex in L∪X (resp.,

X∪R) in the proof of Theorem 3.1 corresponds here to a computation of a vertex

in the sub-DAG
−−−→
GL∪X (resp.,

−−−→
GX∪R). Therefore, for the same reasons discussed

in the demonstration of Theorem 3.1, here too it will be possible to evaluate

the vertices in the topological order by exploiting the structure of the separator

without the risk of erroneous blockings in the computation.

By definition of space complexity, Sfree(
−−−→
GL∪X) (resp., Sfree(

−−−→
GX∪R)) is the

minimum memory size sufficient to compute all nodes in the DAG
−−−→
GL∪X (resp.,

−−−→
GX∪R). Therefore, we can reduce the space reserved for the evaluation of two

3.5 A recursive separator application 41

parts from |L|to Sfree(
−−−→
GL∪X) (resp., from |R|to Sfree(

−−−→
GX∪R)), without compro-

mising the ability to calculate the whole DAG. Since only one of the two sub-

DAGs will be evaluated in a certain instant of the computation, it will be sufficient

to reserve memory space equal to the maximum space complexity between the

two, in addition to the space already reserved for the separator X.

Therefore, we can conclude that it is possible to find a free-input computation

C composed by the sequence of all vertex evaluations, which calculates
−→
GV using

at most Sfree(
−→
GV) ≤ Deg−(

−→
GV) |X| + max

(
Sfree(

−−−→
GL∪X), Sfree(

−−−→
GX∪R)

)
memory

space.

Observation 3.5.1.

If the analysis is restricted only to standard computations, the previous bound

must be rewritten as:

S(
−→
GV) ≤ Deg−(

−→
GV) |X|+max

(
Sfree(

−−−→
GL∪X), Sfree(

−−−→
GX∪R)

)
+|I|−|I ∩X| . (3.8)

Observation 3.5.2.

The estimated number of operations that must be performed by a schedule C,

generated with reference to the separator X used for the decomposition of
−→
G ,

can be expressed in a recursive form based on 3.5:

TX(
−→
G) ≤ |X|

(
max

(
T (

−−−→
GL∪X), T (

−−−→
GX∪R)

))
. (3.9)

From the result of Theorem 3.3 follows immediately:

Corollary 3.4.

Given an n-vertex DAG
−→
GV (V,

−→
EV), its space complexity Sfree

(−→
GV

)
will satisfy

the bound:

Sfree(
−→
G) ≤ min

X∈Ξ(
−→
GV)

(
Deg−(

−→
G) |X|+

(
Sfree(

−−−→
GL∪X), Sfree(

−−−→
GX∪R)

))
. (3.10)

where X is a DAG-node separator for
−→
GV which generates the partition (L,X,R)

of V .

42 Chapter 3. An estimation of DAG space complexity through separators analysis

Figure 3.6: Separator hierarchy based DAG tree decomposition

3.5.2 A separator hierarchy-based DAG decomposition

In order to estimate the values Sfree(
−−−→
GL∪X) and Sfree(

−−−→
GX∪R), it will be possible

to resort again to the separator approach, obtaining:

Sfree(
−−−→
GL∪X) ≤ Deg−(

−−−→
GL∪X) |X ′|+max

(
Sfree(

−−−→
GL′∪X), Sfree(

−−−−→
GX′∪R′)

)
,

where X ′ is a node separator for
−−−→
GL∪X which generates the partition (L′, X ′, R′)

of L ∪X.

For example, in the case in which Sfree(
−−−→
GL∪X) ≥ Sfree(

−−−→
GX∪R), it is possible

to expand the first recursion level for 3.7 and obtain:

Sfree(
−→
GV) ≤ Deg−(

−→
GV) |X|+Deg−(

−−−→
GL∪X) |X ′|+max

(
Sfree(

−−−→
GL′∪X), Sfree(

−−−−→
GX′∪R′)

)
.

It is interesting to observe how both the separators defined for
−→
GV and

−−−→
GL∪X

appear in the recursion followed by the recursive term. However, since just one

between
−−−→
GL∪X and

−−−→
GX∪R will be executed at each time, just the separator defined

for the sub-DAG being executed should be kept in memory.

Proceeding in the application of this approach, the DAG
−→
GV can be further

decomposed in smaller and smaller sub-DAGs through a recursive extraction of

a separator from the components obtained at the previous step, according to 3.7.

The set of separators thus obtained constitutes a separator hierarchy.

3.5 A recursive separator application 43

We can use a separator hierarchy of this kind to develop a tree decomposition

of
−→
GV (shown in Figure 3.6). The root node will be associated to the vertices

of a separator X, generating the partition (L,X,R) for V . The children of the

root will then be used as the root of the recursively built decomposition of the

sub-DAGs
−−−→
GL∪X and

−−−→
GX∪R.

The decomposition will cease when the size of the components extracted by

a separator will be at most mL, and this components will constitute the leaf

nodes of the tree decomposition, and we will refer to them as leaf components.

Obviously, for any leaf components li, Sfree(l
i) ≤ |li| = mL.

It should be noted that the arbitrary choice of the maximum size of the

leaf components mL will constitute a lower bound of the space usage achievable

through the recursive separation, and will determine the number of decomposi-

tion levels (number of recursive levels) d of
−→
GV . In particular, if b ∈

[
1
2
, 1
)
is

the maximum acceptable value of balance for a separator chosen for any of the

possible sub-DAG obtained in the decomposition, the number of levels d will be

the minimum integer value for which mL ≥ bdn, and thus:

d = logb

(
n

mL

)
.

In the tree decomposition thus obtained, each path Pli from a leaf component

li to the root is constituted by the vertices in the union of all the separators

extracted in each recursive level. We shall refer to the width of a path in the tree

decomposition generated by a separator hierarchy as its cardinality |Pli|. A pecu-

liar feature of the tree-decomposition thus obtained is that each vertex associated

with a leaf node li will be adjacent only to vertices in the same leaf component

and to vertices in the path |Pli| from the root to the leaf component itself. Thus,

we can conclude that vertices in a certain leaf component communicate with the

rest of the DAG vertices only through Pli . In particular, vertices in a certain

leaf component li communicate with vertices in another leaf component lj only

through the vertices in Pli ∩ Plj .

Therefore it will possible to calculate the whole
−→
GV by evaluating just one

leaf component in each phase, while keeping in memory just the vertices in the

corresponding path to the root of the tree decomposition (highlighted in red in

Figure 3.7).

These considerations allow us to obtain the following result.

Proposition 3.5 (Upper bound based on separator hierarchy).

44 Chapter 3. An estimation of DAG space complexity through separators analysis

Figure 3.7: Leaf Component - Root path of DAG tree decomposition

Given an n-vertex DAG
−→
GV (V,

−→
EV), its space complexity Sfree(

−→
GV)satisfies the

bound:

Sfree(
−→
GV) ≤ Deg−(

−→
GV) max

1≤i≤2d
|Pli|+mL, (3.11)

where Pli are the paths connecting each of the 2d leaf component of size at most

mL of a tree separator decomposition of
−→
GV with d levels.

Proof. In the previous part of this section, we discussed how the tree structure

is generated and why it is sufficient to keep in memory at any step of the com-

putation just the vertices of the widest path from leaf to root. Since 3.11 is built

by further developing the recursion in 3.7, it will still be possible to actually find

a free-input computation C which evaluates
−→
GV using at most the memory space

given by 3.11.

In particular, to highlight the separators identified at each level, the 3.11 can

be rewritten as:

Sfree(
−→
GV) ≤ Deg−(

−→
GV) max

1≤i≤2d

(
d∑

i=1

∣∣∣X i
∣∣∣)+mL.

3.5 A recursive separator application 45

The bound proposed in the main statement is referred to free-input computa-

tions. It is however possible to achieve a similar result for standard computations:

S(
−→
G) ≤ Deg−(

−→
GV) max

1≤i≤2d
|Pli|+mL + |I| .

where I is the set of input vertices of
−→
GV .

3.5.3 Time complexity analysis for computations based on

DAG separator-based decompositions

Following the same approach used in Section 3.4.3, it is possible to obtain an

estimation on the actual number of vertex evaluations executed by a computation

for which the memory space used satisfies the bound given by 3.11. The basic

bound given in 3.4 will be rewritten as the following recursion:

T (
−→
GV) ≤ |X|

(
max

(
T (

−−−→
GL∪X), T (

−−−→
GX∪R)

))
. (3.12)

Supposing T (
−−−→
GL∪X) ≥ T (

−−−→
GX∪R), the second level of the recursion will be:

T (
−→
GV) ≤ |X| |X ′|

(
max

(
T (

−−−−→
GL′∪X′), T (

−−−−→
GX′∪R′)

))
,

where X ′ is a DAG-vertex separator for
−−−→
GL∪X which generates the partition

(L′, X ′, R′) of L ∪X.

Following the subsequent recursive steps, according to the decomposition re-

alized using a separator hierarchy (as explained in detail in the previous section),

the previous recursion can be further developed:

T (
−→
GV) ≤ 2mL

d∏
i=1

∣∣∣X i
∣∣∣ , (3.13)

where X i is the separator defined at each of the d recursive level of the tree path

P = max1≤i≤2d |Pli|.

3.5.4 Observations on the previous results

In this chapter we have shown how to find an upper bound for the space com-

plexity of DAGs, based on a divide and conquer approach.

This result allows us to find a relation between the space complexity of DAGs

and the separator hierarchies which may be used to decompose the underlying

46 Chapter 3. An estimation of DAG space complexity through separators analysis

undirected intrinsic graph. The fewer vertex will be necessary to extract the

separator at each level, the fewer memory locations will be necessary for the

complete evaluation of the DAG in analysis using free-input computations.

In particular, Proposition 3.5 allows us to conclude that the space complexity

of a generic DAG
−→
G is related to the separator decomposition by the relation

O
(
Deg−(

−→
GV)P

)
, where the term P represents the total weight of the separator

structure.

All the bounds obtained are thus directly related to the topological structure

of the DAG in analysis, and not to its peculiar computations. This allows to

use the separator decomposition method as a general framework which can be

effectively employed to study the space complexity of any given DAG trough a

standard approach constituted by the separator individuation.

It is very interesting to notice how the property of the DAG used to obtain the

bound is actually obtained by its undirected intrinsic graph, while the orientation

of the edges will have an impact only on the number of times that the parts of the

graph will actually be computed and thus on the number of vertex evaluations

performed.

This upper bound can be successfully used to achieve a worst-case estimate

of the benefits obtainable in terms of reduction of the required memory space by

using the recalculation, with respect to computations in which the vertices are

assessed a single time.

In particular let, SX(
−→
GV) be an upper bound obtained from one of the previ-

ous results (3.1,3.7,3.11) and Swr(
−→
GV) the minimum space necessary to evaluate

−→
GV using computations which do not resort to vertex re-evaluations (calculated

as closed dichotomy or using the marking rule as discussed in Chapter 2).

The order of magnitude of the minimum obtainable reduction in terms of

necessary memory space for computations using recalculation, with respect to

those strictly without recalculations, indicated as ζ(
−→
GV), is:

ζ(
−→
GV) = Ω

 SX(
−→
GV)

Swr(
−→
GV)

 . (3.14)

Therefore, the fact that SX(
−→
GV) < Swr(

−→
GV) is a sufficient condition to con-

clude that using recalculations for the evaluation of
−→
GV , a benefit at least of order

3.14 can be achieved in terms of necessary memory space. It should however be

remarked that the condition is not necessary as well.

3.5 A recursive separator application 47

In the next chapter we will show how to use this results to obtain significant

estimations of the space complexity of some important classes of DAGs.

48

Chapter 4

Applications of the separator based

approach

In this chapter we go on to discuss some applications of the results presented in

Chapter 3. In the first part we will revisit the concept of topological separator of

a DAG and some known results concerning its relation with space requirements

for computations stricly without recalculations. We will then show how to use the

method based on the separator to obtain a quantitative estimate of the potential

significant benefits to be gained by using the recalculation for some classes of

DAGs.

4.1 Topological separators

A vertex v of a DAG
−→
GV (V,

−→
EV) can be executed only if the set pa(v) of its

immediate predecessor has been executed. Generalizing this observation, a set

U ⊆ V can be executed only after the execution of its preboundary Γin(U) =

∪v∈Upa(v)\U.
The following definition captures the conditions under which the execution

of U can be decomposed into the successive executions of subsets U1, U2, . . . , Uq.

Definition 4.1 (Topological partition). An ordered partition (U1, U2, . . . , Uq) of

U ⊆ V is said to be a topological partition of U if, for r = 1, 2, . . . , q

Γin(Ur) ⊆ Γin(U) ∪
(
∪r−1
i=1Ui

)
.

It can be seen that a topological partition of U can be refined into a topological

49

50 Chapter 4. Applications of the separator based approach

sorting of U , and thus into a computation without recalculations, and that sets

Ui’s are convex in the following sense.

Definition 4.2 (Convex subset). A subset U ⊆ V is said to be convex if, when-

ever u and v are in U , so is any path from u to v.

It is thus possible to formulate a simple strategy to execute the vertices in U

by exploiting its topological partitioning.

Proposition 4.1 (thm). Let S(
−→
GU) be the space required by the execution of the

DAG whose vertex set will be a convex set U ⊆ V with Γin(U) initially stored in

memory. If U1, U2, . . . , Uq is a topological partition of U , then:

S(
−→
GU) ≤

q
max
i=1

S(
−−→
GUi

) + φ(U), (4.1)

where φ(U) =
∑q

i=1 |Γin(Ui)|.

Proof. We assume Γin(U) is initially in memory; note that if U = V then

Γin(V) = ∅. To execute U for i = 1, 2, . . . , q do:

• Evaluate
−−→
GUi

; this can surely be possible, since |Γin(Ui)| will be in memory,

and will require at most maxqi=1 S(
−−→
GUi

) memory space

• Keep in memory the values correspondig to vertices Ui ∩ Γin

(
∪q

j=1+1Uj

)
,

while deleting the other vertex of U1. The values kept in memory this way

will be at most φ(U).

The bound on S(
−→
GU) thus descends from those of the individual steps of the

above procedure [4].

In particular, we can see how the set of the vertices Γin

(
∪q

j=1+1Uj

)
= X is ac-

tually a vertex separator for
−→
GU which generates the partition ∪i

j=1Uj\X, X, ∪q
j=1+1Uj

of the vertices in U . A peculiar characteristic of one such partition is that all the

edges from X and ∪q
j=1+1Uj are directed from X to ∪q

j=1+1Uj. We shall refer to

these separators as topological separators.

It is important to remark that the calculations considered here through topo-

logical partitions are strictly without recalculations. In the proof of Proposition

4.1, the computation proceeds form a convex subset to the other without the

possibility of returning to vertices already evaluated.

This is particularly interesting because it indicates that between Swr(
−→
GV)

and topological separators (which are defined with attention to the orientation of

4.2 Applications to planar DAGs 51

the edges of the DAG), there exists the same relation that has been previously

analyzed between the DAG-vertex separators (which on the contrary are defined

on the intrinsic undirected graph obtained by ignoring the orientations of the

edges) and the space complexity S(
−→
GV).

The aim is to identify topological partitions of a convex set U whose compo-

nents, although not necessarily geometrically similar to U , share its decompos-

ability properties. This feature is captured by the notion of topological separator.

Definition 4.3 ((g(x), δ)-topological separator). Let 0 < δ < 1, let q > 1 be

an integer, and let g(x) be a real function. A convex set U ⊆ V has a (g(x), δ)-

topological separator if either |U | = 1 or:

• |Γin(Ui)| ≤ g (|U |);

• U has a topological partition (U1, U2, . . . , Uq)where for each i = 1, 2, . . . , q,

|Ui| ≤ δ |U |;

• for each i = 1, 2, . . . , q, Ui has a (g(x), δ)-topological separator.

We can now consider the worst case space to execute a set U of size |U | = k

when U has a topological separator; the bound in Proposition 4.1 can thus be

rewritten as:

σ (|U |) ≤ σ (δ |U |) + qg (δ |U |) .

where bounding φ we assumed that g (x) is monotone non decreasing.

The idea behind the use of general vertex separator, presented in Chapter

3, instead of topological ones, aims to introduce a greater degree of freedom by

partitioning the DAG in zones which may not constitute a topological partition,

and which may be evaluated multiple times thanks to the possibility of executing

recalculations.

4.2 Applications to planar DAGs

We now attempt to use Theorem 3.3 in order to obtain a significant upper bound

on the space complexity of planar DAGs by exploiting some known results con-

cerning the property of separators for this class.

52 Chapter 4. Applications of the separator based approach

4.2.1 The planar separator theorem

Definition 4.4 (Planar DAG). ADAG
−→
GV (V,

−→
EV) or an undirected graphGV (V,AV)

is said to be planar if it can be embedded in the plane, i.e., it can be drawn on

the plane in such a way that its edges intersect only at their endpoints. In other

words, it can be drawn in such a way that no edges cross each other.

Since for a DAG
−→
GV its associated undirected intrinsic graph GV is obtained

just by ignoring the direction on the edges, it safe to assume that
−→
GV is planar if

and only if GV is planar.

In graph theory, an important property related to the existence of separators

for this class of graphs is given by the Planar Separator Theorem, proposed by

Lipton and Tarjan [15], which is a form of isoperimetrical inequality for planar

graphs, that states that any planar graph can be split into smaller pieces by

removing a small number of vertices.

Theorem 4.2 (Planar Separator Theorem).

Let GV be any n-vertex planar graph. The vertices in GV can be partitioned into

three sets L, X, R such that no edge joins a vertex in L with a vertex in R,

neither L nor R contains more than 2n/3 vertices, and X contains no more than
√
8
√
n vertices.

For the proof see [15].

The theorem does not require L and R to be connected. In particular, it is

important to notice that the sub-GraphsGL∪X (resp., GL∪X) ofGV (V,EV), whose

vertices set will be constituted by L ∪ X (resp., X ∪ R) and whose undirected

edges set will be constituted by {(u, v)|
(
⟨u, v⟩ ∈ −→

EV ∨ ⟨v, u⟩ ∈ −→
EV

)
∧ u, v ∈ L ∪

X}(resp., {. . . u, v ∈ X∪R}), will still be planar and therefore they will maintain

the same separator properties of GV .

It is interesting to note how the constant 2
3
in the statement of the separator

theorem is arbitrary, and it is still possible to find a b-balanced separator of size

O(
√
n) for any value b ∈

(
1
2
, 1
)
. In fact, a partition into more equal subsets

may be obtained from a less-even partition by repeatedly splitting the larger sets

in the uneven partition and regrouping the resulting connected components [9].

This may however cause the term
√
8 to change.

Lipton and Tarjan provide also an algorithm which, given a graph G, deter-

mines a partition (L,X,R) of the nodes in V which satisfies the requirements

expressed in Theorem 4.2 within linear time O(n).

4.2 Applications to planar DAGs 53

The planar separation theorem discussed this far has been defined with re-

gards to an undirected graph such as the undirected intrinsic graph G(V,E)

extracted from
−→
G (V,

−→
E). However, since the set of vertices and edges, with the

exception of the directions, are the same in G and
−→
G , we can safely state that

every partition (L,X,R) defined in G by means of a vertex separator X corre-

sponds to a partition (L,X,R) in
−→
G generated by a DAG-vertex separator X,

constituted by the same vertices, which achieves the same balance. In the same

way, the sub-graphs GL∪X and GL∪X defined above correspond to the sub-DAGs
−−−→
GL∪X and

−−−→
GL∪X , constructed as described in Chapter 3. In particular, each

sub-DAG will have the same number of vertices of the corresponding sub-graphs

with at most Deg−(
−→
G) |X| additional vertices, and will maintain the planarity

property.

We will now proceed to exploit this result in order to demonstrate how any

n-vertex planar dag
−→
GV (V,

−→
EV) can surely be calculated using a memory space

whose size is at most O(
√
n), using the tools obtained in Chapter 3.

4.2.2 An upper bound for planar DAGs space complexity

Theorem 4.3 (Upper bound for planar DAG space complexity).

Let
−→
GV be any n-vertex planar graph. Sfree(

−→
GV) ∈ O(

√
n).

Proof. The planar separator theorem allows us to assume that it is possible to

find a b-balanced DAG-vertex separator X whose size will be c
√
n ∈ O (

√
n) and

that, following from the previous considerations, the sub-DAGs generated by the

separator will have a size of at most bn vertices, where c is a constant linked to

the separator. For the sake of simplicity and without loss of generality [9], we

will assume that b = 1/2.

The space complexity of n-vertex planar DAG
−→
GV can be estimated according to

Theorem 3.3 as:

Sfree(
−→
GV) = c

√
n+max

(
Sfree(

−−−→
GL∪X), Sfree(

−−−→
GX∪R)

)
.

The previous result can be further developed by applying the method based

on the separator extraction to the sub-DAGs (which have been defined in Section

3.3), whose size will be at most n/2, in order to estimate the space complexity.

Subsequent applications of this method will lead to obtain a separator hierarchy

54 Chapter 4. Applications of the separator based approach

which will induce a tree decomposition of
−→
GV , as discussed in Proposition 3.5:

Sfree(
−→
GV) ≤ Deg−(

−→
GV) max

1≤i≤2d
|Pli|+mL

where each path Pli form a leaf component li to the root is constituted by the

vertices of all the separators extracted in each recursive level.

The application of the planar separator theorem at each level of the proposed

tree-decomposition leads to the fact that the sizes of the sub-DAGs go down

by a constant factor at each level and it will therefore be possible to observe a

corresponding lowering of the upper bound on the number of nodes required to

identify a DAG-vertex separator. In particular, at the i-th depth level of the tree

decomposition there will be at most 2i sub-DAGs composed by at most O
(

n
2i

)
vertices and for whom a 1

2
-balanced separator of size O

(
2−

i
2
√
n
)
may be found.

The decomposition will cease when the size of the sub-DAGs extracted by a

separator will be at most mL ∈ O(
√
n), and thus each of the leaf components will

surely be evaluable usingO(
√
n) memory space. It should be noted that the choice

of the maximum size of the leaf components mL is arbitrary. The demonstration

of the existence of a valid computation for any planar DAG which requires at

most O (
√
n) memory space will still be achievable for any mL ∈ O (

√
n). A

particular choice for mL will determine the number of decomposition levels of
−→
GV and the upper bound of the time complexity for a computation achieving the

bound O (
√
n) on space complexity.

The depth d of the tree decomposition can be estimated as the smallest in-

teger value for which 2d
√
n ≥ n, and thus d = ⌈log2 (

√
n)⌉. According to these

observations, the size of each path Pli can be estimated as:

|Pli| ≤
log2

√
n∑

i=0

c

√
n

2i
≤ c

√
n

∞∑
i=0

2−i/2 ≤ c2
(
1 +

√
2
)√

n ∈ O
(√

n
)

(4.2)

Therefore, Proposition 3.5 leads to the following bound for the space com-

plexity of
−→
GV :

Sfree(
−→
GV) ≤ Deg−(

−→
GV)O

(√
n
)
+O

(√
n
)
∈ O

(√
n
)
.

4.2.3 Observations and refinements

The hypothesis according to which the separators are 1
2
-balanced can be general-

ized to the case in which separators extracted at each level are at least b-balanced.

4.2 Applications to planar DAGs 55

This will influence the depth d of the decomposition, as d will be the smallest

integer for which mL ≥ bdn, and thus:

d =
⌈
log 1

b

n

mL

⌉
=

⌈
log2

n
mL

log2
1
b

⌉
=

⌈
log2 n− log2mL

log2
1
b

⌉

Therefore in the case for whichmL ∈ O(
√
n), it will be d =

⌈
log2

√
n

log2
1
b

⌉
∈ O(log2

√
n).

The considerations used in the proof of Theorem 4.3, together with the results

presented in Chapter 3, can be used to obtain an estimate of the time complexity

T (n) associated with a computation that allows to evaluate a n-vertex planar

DAG using at most O(
√
n) memory space. These considerations allows us to

write:

T (n) ≤ c
√
nT (

n

2
) = cdmL

√
n
d

d∏
i=0

2−
i
2 = cdmL

√
n
d
2−

d(d+1)
4 ,

where c is a constant associated with the size of the separators defined at each of

the d levels. In particular, if d ∈ O (log2
√
n), it will be T (n) ≤ mL

√
n
2 log2

√
n
.

The usefulness of the result given by Theorem 4.2 consists in the fact that,

given a DAG
−→
GV , it is possible to identify a quantitative bound to the space com-

plexity only related to the property of planarity, without the need to evaluate the

possible decompositions obtainable with separators. Therefore, if it is known the

memory space Swr(
−→
GV) needed for the evaluation of a DAG

−→
GV using computa-

tions using strictly no recalculations it will be possible to obtain immediately a

first estimate of the possible benefits achievable with computations with multiple

assessments of some vertices. In particular, if Swr(
−→
GV) <

√
n, there will be a

benefit of a reduction of the necessary memory space at least of order Swr(
−→
GV)√
n

. It should however be emphasized that this fact does not allow to conclude in

itself that a DAG does not benefit from the recalculation, since a more detailed

analysis of the hierarchies of separators connected to the particular structure of

the intrinsic undirected graph can help identify the most significant bound.

Among planar DAGs, the Tree class consists of all connected DAGs for which

all vertices have at most one successor. Possibly the earliest known separator

theorem is a result of Jordan [13] which states that any tree can be partitioned

into sub-trees of at most 2n/3 vertices each, by the removal of a single vertex.

In particular, the vertex that minimizes the maximum component size has this

property, for if it did not, then its neighbor in the unique large sub-tree would

form an even better partition.

56 Chapter 4. Applications of the separator based approach

Figure 4.1: Surfaces of bounded genus

This result can be used in the same framework used in the proof of Theorem

2.2. In particular, using mL = 1 will lead to obtain d =
⌈
log2 n

log2
2
3

⌉
∈ O (log2 n). The

space complexity of a tree DAG
−→
GT can be estimated as:

Sfree

(−→
GT

)
≤

c log2 n∑
i=1

1 + 1 = c log2 n+ 1 ∈ O (log2 n) ,

which corresponds to other results in the literature.

4.3 Applications to DAGs of known genus

We will now to now propose a similar result for non-planar graphs based on the

concept of genus of a DAG.

Definition 4.5 (Genus of a graph). The genus of a graph GV is the minimal

integer g(GV) such that the graph can be drawn without crossing itself on a

sphere with g(GV) handles, or equivalently, g(GV) holes, (i.e. an oriented surface

of genus g(GV)).

Planar graph have genus 0 since a graph that can be drawn on the plane can

be drawn on the sphere without self-crossing as well. Every graph has a genus, in

fact a graph of size m can be surely embedded on a surface of genus m, therefore

all graphs can be partitioned in classes whose elements share the same value of

genus.

There are certain classes of graphs of particular interest for which it is possible

to easily estimate the genus value of their elements:

• The genus of the complete graph is given by g(Kn) =
⌈
(n−3)(n−4)

12

⌉
, for n ≥ 3,

• The genus of the complete bipartite graph is given by g(Kr,s) =
(r−2)(s−2)

4
,

for r, s ≥ 2,

4.3 Applications to DAGs of known genus 57

• The genus of the n-cube is given by g(Qn) = (n− 4)2n−3 + 1, for n ≥ 2.

Among these, it is interesting to note that the graphs K5 and K3,3, used in

Wagner’s theorem as forbidden minors for the class of planar graphs [20], have

genus 1 and thus can be drawn without edge-crossings on a toroidal surface.

The same definition can be applied for DAGs, and obviously a directed DAG
−→
GV will have the same genus of its corresponding undirected intrinsic graph.

A result of particular relevance for our analysis has been proven by Gilbert,

Hutchinson and Tarjan in 1984 [10], by using a similar approach to that used in

the demonstration of the Planar Separator Theorem by Lipton and Tarjan.

Theorem 4.4 (Vertex separator for bounded genus graph).

A graph with genus g with n vertices has a set of at most 6
√
gn + 2

√
2n + 1

vertices whose removal leaves no component with more than 2n/3 vertices.

For the purposes of our analysis, this result allows us to assume that for

a generic graph GV of genus g it is possible to find a 2
3
-balanced DAG-vertex

separator X whose size will be c
√
gn ∈ O

(√
gn
)
which generates the partition

(L,X,R) of the vertices of V . Furthermore, the sub-graphs GL∪X and GX∪R,

defined in the same way already described for the planar case, will have at most

2n/3 vertices each, and will still have at most genus g, and therefore they will

maintain the same separator properties of GV . The authors provide also an

algorithm to identify such separator in time O(gn).

As seen for the planar case, is possible to transfer these considerations on

graphs to DAGs, by relying on the relation between a DAG
−→
GV and its associated

undirected intrinsic graph GV . A partition (L,X,R) defined in GV by means of

a vertex separator X, corresponds to a partition (L,X,R) in
−→
GV generated by

a DAG-vertex separator X, constituted by the same vertices, which achieves the

same balance and the sub-graphs GL∪X and GL∪X defined above correspond to

the sub-DAGs
−−−→
GL∪X and

−−−→
GL∪X which will have the same number of vertices of

the corresponding sub-graphs, with at most Deg−(
−→
G) |X| additional vertices.

Following the same line of reasoning described for the case of planar graphs

we arrive at the following theorem:

Theorem 4.5 (Upper bound on space complexity for DAGs of bounded genus).

Let
−→
GV be any n-vertex planar graph of genus g(

−→
GV) = g ≥ 1, Sfree(

−→
GV) ∈

O(
√
gn).

58 Chapter 4. Applications of the separator based approach

Proof. The demonstration procedure will be very similar to the proof of Theorem

4.3. Theorem 3.3 leads to:

Sfree(
−→
GV) ≤ c

√
gn+max

(
Sfree(

−−−→
GL∪X), Sfree(

−−−→
GX∪R)

)
.

The previous result can be further developed by applying the method based

on the separator extraction to the sub-DAG with maximum space complexity

between
−−−→
GL∪X and

−−−→
GX∪R, whose size will be at most 2n

3
. Subsequent applications

of this method will lead to obtain a tree separators decomposition of
−→
GV where

the application of Theorem 5.3 guarantees that the sizes of the sub-DAGs go down

by a constant factor at each level, and there will therefore be a corresponding

lowering of the upper bound on the number of nodes required to identify a the

DAG-vertex separator. In particular, at the i-th depth level there will be at

most 2i sub-DAGs composed by at most O
((

2
3

)i
n
)
vertices and for whom a 2

3
-

balanced separator of size O
((

2
3

)− i
2 √gn

)
may be found. The decomposition will

cease when the size of the sub-DAGs extracted by a separator will be at most

mL ∈ O
(√

gn
)
, and thus each of the leaf components will surely be evaluable

using O
(√

gn
)
memory space.

The maximum number of levels d of the tree decomposition can be estimated

as the smallest integer value for which
(
2
3

)−d√
gn ≥ n:

d =

⌈
log2

n
mL

log2
3
2

⌉
≤
⌈
log2

n√
gn

0.6

⌉
∈ O

(
log2

√
n
)
.

The size of a path on the tree separator decomposition can thus be estimated

as:

|Pli| ≤
log2

√
n∑

i=0

c

√(
2

3

)i

gn ≤ c
√
gn

∞∑
i=0

(
2

3

)i/2

≤ c3

1 +
√
2

3

√
gn ∈ O (

√
gn) .

Resorting to Proposition 3.5, we can thus conclude that:

Sfree(
−→
GV) ≤ Deg−(

−→
GV)O (

√
gn) +O (

√
gn) ∈ O (

√
gn) .

4.4 Separators and sub-DAGs 59

Observations

Theorem 4.5 allows to obtain a significant quantitative bound to the space com-

plexity of any non-planar DAG whose genus is known.

Moreover, this result together with Theorem 4.3 highlights an interesting

connection between space complexity and genus of a DAG, providing a criterion

to approximate an upper bound of space complexity of any DAG as a function of

just its genus.

Graphs of bounded genus constitutes an example of a family of graphs closed

under the operation of taking minors, where an undirected graph H is called

a minor of the graph G if H is isomorphic to a graph that can be obtained

by zero or more edge contractions on a sub-graph of G. Among the separator

theorems applying to arbitrary minor-closed graph families that were presented in

literature, for our analysis it is of particular interest the result according to which

if a graph family has a forbidden minor with h vertices, then it has a separator

with O (h
√
n) vertices [2].

Following the same approach used in Theorem 4.3 and 4.5, it will thus be

possible to conclude that a DAG belonging to a family which has a forbidden

minor with h vertices will surely be evaluable using at most O (h
√
n) memory

space.

4.4 Separators and sub-DAGs

In Chapter 2 we have seen how, within the marking rule approach, accurate lower

bounds for the space complexity can be achieved by detecting space demanding

sub-DAGs. We would like to resort to a similar approach while using the separa-

tors method to achieve tighter upper bounds.

The separator makes it possible to go to split the DAG in several parts for

each of which it will then be possible to estimate the space complexity. Therefore,

the greater the accuracy of the estimate of the space complexity of the sub-DAG,

the higher the overall quality of the bound identified.

Thus, it may prove useful to select expressly vertex separators that make it

possible to identify significant sub-DAGs whose space complexity is known.

Again, without affecting the generality of the method, it is evident how the

more is known of the peculiar characteristics of a DAG, and in particular of its

space demanding components, the more one can obtain an accurate estimate of

60 Chapter 4. Applications of the separator based approach

Figure 4.2: DAG B1

Figure 4.3: Decomposition of DAG B1 using vertex separator

the space complexity.

We can show an example of applying this approach by considering the B1

DAG (see Figure 4.2).

We can show an example of applying this approach by considering the n-

vertex B1 DAG
−→
G which has been obtained by taking an n

2
×2 directed mesh and

adding a directed edge from the upper-left corner to the lower-right corner. This

modifications makes the DAG connected, and thus it is possible to evaluate the

minimum space needed for computations strictly without recalculations through

the analysis of the total topological ordering of the vertices, as Swr

(−−→
GB1

)
≥ n

2
.

Since the DAG is planar, Theorem 4.2 allows us to conclude that, by using

recalculations, a computational strategy may be devised which will require at

most
√
n memory space, thus with a reduction of at least of a factor O(

√
n),

compared to strictly non re-pebbling computations.

4.4 Separators and sub-DAGs 61

However an even better result can be achieved by using the separator ap-

proach to analyze sub-DAGS. In Figure 4.3, we propose a decomposition of the

B1 DAG by finding a vertex-separator (highlighted in blue in Figure 4.3a) and

identifying the sub-DAGs
−−−→
GL∪X in Figure 4.3b and

−−−→
GX∪R in Figure 4.3c.

It is easy to see that both the sub-DAGs are slight variations of the n
4
× 2

directed mesh which, as discussed in Chapter 2 with reference to the pebble

game, will be evaluable using at most 2 pebbles. Thus Theorem, 3.4 leads to

S(
−→
G ≤ 3 + 2. Beyond the quantitative value, the previous result highlights the

fact that the memory space required for the evaluation of B1 is not related to the

size of the DAG, and thus it is possible to conclude S(
−→
G ∈ O(1).

62

Chapter 5

Conclusions and points of interest

for future developments

In this thesis we have studied some issues related to the space complexity of Di-

rected Acyclic Graphs computations. In particular, the main objective, as set out

in Chapter 1, was to find a relationship between the properties of a DAG and its

space complexity, through which it is possible to get indications on the possibility

of obtaining benefits, in terms of reducing the amount of memory necessary to

the evaluation of the DAG, using computations with multiple assessments of the

same vertex rather than computations strictly without recalculations.

In Chapter 2 we have seen, through the marking rule approach, how the

necessity of taking into account the possible execution of recalculations greatly

complicates the analysis of space complexity, especially if it is focused on the

analysis of the possible computations.

The main result of this thesis was obtained in Chapter 3. Given a DAG
−→
G ,

it is shown that a relationship exists between the space complexity S(
−→
G) and

the size of the vertex separators, defined with regard to its undirected intrinsic

graph G. This is even more interesting in light of the analogous relationship be-

tween the minimum memory space required using computations strictly without

recalculations Swr(
−→
G) and the size and topological separators which are defined,

instead, with respect to the directed graph.

This result may be used in the divide and conquer paradigm to obtain a tree

decomposition of the starting DAG, based on the subsequent identification of

separators at each level. The upper bound thus obtained can be confronted with

the value Swr(
−→
G), providing a sufficient but not necessary condition to determine

63

64 Chapter 5. Conclusions and points of interest for future developments

whether there actually are benefits associated with the use of computations with

recalculations.

These results constitute a novelty compared to other upper bounds for space

complexity known in the literature, for the use of the concept of separator and

for the focus being put on the undirected intrinsic structure of the DAG.

Through the obtained results we managed to achieve most of the original

Goals of the thesis while leaving the door open for further developments and fu-

ture refinements. Among these, of particular interest it would be the possibility

of formulating an algorithm that, given a DAG
−→
G , finds, in polynomial (or poly-

logarithmic) time, a tree separator decomposition by using which it is possible to

estimate the space complexity of
−→
G within a certain range of precision. This argu-

ment seems very promising, as it is encouraged by a similar result in which using

topological separators it is possible to obtain, in polynomial time, a computation

without recalculation using memory space at most O(log2 n) times the optimum

memory space achievable using only computations without recalculations [1].

An important goal going further would be the formulation of a sufficient

condition that determines, in relation to the properties of the separator, if a

DAG obtains benefits from the use of computations with recalculations.

Another direction worth exploring concerns the analysis of weighted DAGs

which can be employed in order to study the trade-off between the balance

achieved by a separator and the number of vertices which constitute it, or to

represents programs for which the memory space required to store the values

produced by the operations corresponding to the vertices is not the same.

The results seen in this thesis point out that there is a relationship between

space complexity and a measure of the bandwidth of DAGs. It seems appropriate

to further investigate this notion, in particular by exploiting the wealth of known

results in graph theory.

In this sense, the concepts that express decomposition properties similar to

those discussed for vertex separators are to be considered of interest, among

them we cite edge separators (also called separations), tree decomposition, path

decomposition and branch decomposition.

However, the issue of greatest interest that emerges from the work presented

in this thesis concerns the relation between the space complexity of a DAG, its

undirected intrinsic graph structure and the actual orientation of the edges of the

DAGs. The results presented in this paper seem to suggest that the space com-

65

plexity is strongly linked to the characteristics of decomposition of the undirected

intrinsic graph, while it substantially ignores the orientation of the edges. The

observations presented here can not be considered conclusive, and further work

should be dedicated to the study of this property, which, if it actually occurred,

would constitute a major achievement in the study of DAGs.

66

Bibliography

[1] Ajit Agrawal, Philip Klein, and R. Ravi. Ordering problems approximated:

Register sufficiency, single-processor scheduling and interval graph. Technical

report, Providence, RI, USA, 1991.

[2] N. Alon, P. Seymour, and R. Thomas. A separator theorem for graphs with

an excluded minor and its applications. In Proceedings of the twenty-second

annual ACM symposium on Theory of computing, STOC ’90, pages 293–299,

New York, NY, USA, 1990. ACM.

[3] G. Bilardi and F. P. Preparata. Area-time lower-bound techniques with

applications to sorting. Algorithmica, 1(1):65–91, January 1986.

[4] G. Bilardi and F. P. Preparata. Processor time tradeoffs under bounded-

speed message propagation: Part i, upper bounds. Theory of Computing

Systems, 30:523–546, 1997. 10.1007/s002240000066.

[5] G. Bilardi and F. P. Preparata. Processor time tradeoffs under bounded-

speed message propagation: Part ii, lower bounds. Theory of Computing

Systems, 32:531–559, 1999. 10.1007/s002240000131.

[6] Gianfranco Bilardi, Andrea Pietracaprina, and Paolo D’Alberto. On the

space and access complexity of computation dags. In Ulrik Brandes and

Dorothea Wagner, editors, Graph-Theoretic Concepts in Computer Science,

volume 1928 of Lecture Notes in Computer Science, pages 81–92. Springer

Berlin / Heidelberg, 2000. 10.1007/3-540-40064-8-6.

[7] Stephen A. Cook. An observation on time-storage trade off. In Proceedings of

the fifth annual ACM symposium on Theory of computing, STOC ’73, pages

29–33, New York, NY, USA, 1973. ACM.

67

68 BIBLIOGRAPHY

[8] Thomas T. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-

tion to algorithms. MIT Press, Cambridge, MA, USA, 1990.

[9] Hristo Nicolov Djidjev. On the problem of partitioning planar graphs. SIAM

Journal on Algebraic and Discrete Methods, 3(2):229–240, 1982.

[10] John R. Gilbert, Joan P. Hutchinson, and Robert Endre Tarjan. A sepa-

rator theorem for graphs of bounded genus. J. Algorithms, 5(3):391–407,

September 1984.

[11] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. J.

ACM, 24(2):332–337, April 1977.

[12] Hong Jia-Wei and H. T. Kung. I/o complexity: The red-blue pebble game.

In Proceedings of the thirteenth annual ACM symposium on Theory of com-

puting, STOC ’81, pages 326–333, New York, NY, USA, 1981. ACM.

[13] C. Jordan. Sur les assemblages de lignes. J. Reine Angew Math, 70:185–190,

1869.

[14] Thomas Lengauer and Robert E. Tarjan. Asymptotically tight bounds on

time-space trade-offs in a pebble game. J. ACM, 29(4):1087–1130, October

1982.

[15] Richard J. Lipton and Robert E. Tarjan. A separator theorem for planar

graphs. SIAM Journal on Applied Mathematics, 36(2):177–189, 1979.

[16] Michael S. Paterson and Carl E. Hewitt. Record of the project mac confer-

ence on concurrent systems and parallel computation. chapter Comparative

schematology, pages 119–127. ACM, New York, NY, USA, 1970.

[17] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds

for a game on graphs. In Proceedings of the eighth annual ACM symposium

on Theory of computing, STOC ’76, pages 149–160, New York, NY, USA,

1976. ACM.

[18] Desh Ranjan, John Savage, and Mohammad Zubair. Upper and lower i/o

bounds for pebbling r-pyramids. In Proceedings of the 21st international

conference on Combinatorial algorithms, IWOCA’10, pages 107–120, Berlin,

Heidelberg, 2011. Springer-Verlag.

BIBLIOGRAPHY 69

[19] John E. Savage. Models of Computation: Exploring the Power of Comput-

ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st

edition, 1997.

[20] K. Wagner. Ãber eine eigenschaft der ebenen komplexe. Mathematische

Annalen, 114:570–590, 1937. 10.1007/BF01594196.

