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Abstract

We studied the formation of stars from colliding molecular clouds by per-
forming smoothed particle hydrodynamic (SPH) simulations of six head-on
collisions between two molecular clouds with initial velocities of 0, 2, 4, 6, 8
and 10 km s−1 respectively. We identify the formation of stars in our simula-
tions by a satisfaction of four criteria: density, overlap, velocity divergence,
and binding energy criteria. The accuracy of the criteria was checked by
reproducing an initial mass function (IMF) of the formed stars from a single
cloud collapse. We also checked that with an increase of resolution in our
simulations the mass spectrum produced populated more favorably stellar
masses below 2M�. In the collisions with initial velocities > 2 km s−1 we
observe that star formation begins after the centers of each cloud have sig-
nificantly collided. Star formation is initiated earlier as the velocity of the
collision increases, while slightly more stars form at lower collision velocities.
We also identify 24 star clusters in each of the collisions and observe a lin-
ear relationship between the logarithm of the maximum stellar mass in the
cluster and the logarithm of the host cluster mass.
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Chapter 1

Star formation in molecular
clouds

1.1 Introduction

Star formation in molecular clouds is a complex and important process
needed to understand the formation and evolution of our Galaxy along with
understanding the origin of stellar and planetary systems. For the scope of
this research I will draw out and explain the concepts and current practices
behind studying star formation. In this chapter I will give an overview of the
physical processes behind star formation and where stars form. In chapter 2
I will discuss the current numerical methods used to simulate star formation.
In chapter 3 we perform a smoothed particle hydrodynamic simulation of a
single molecular cloud collapse to test our prescription of identifying formed
stars. In chapter 4 we simulate and analyze star formation from colliding
molecular clouds.

1.2 Location of star formation

The interstellar medium (ISM) is the medium that exists between stars and
star systems within a galaxy and is the intermediate region between stellar
and galactic scales. The ISM spans a wide range of densities and temper-
atures; it ranges from cold dense gas (HI or diffuse clouds) with typical
densities of 10 cm−3 and temperatures below 100 K, to a warm sometimes
ionized inter cloud medium with densities of 0.1−10 cm−3 and temperatures
on the order of 103 K, to hot low density regions with densities below 0.01
cm−3 and temperatures above 105 K [11].

Star formation predominantly occurs in regions of the ISM where molec-
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1.3 Molecular Clouds 4

ular hydrogen can form. It is however hard to observe molecular hydrogen
directly through emission, as molecular hydrogen is homo-nuclear and has
no electric dipole moment. This means that the lowest line transition occurs
in the rotational-vibrational J = 2→ 0 transition, which is faint because of
its quadrupole origin [10]. The J = 2 state for molecular hydrogen is 511 K
above the ground state. Since typical temperatures of regions of molecular
hydrogen in the ISM are ≈ 10 K, It is extremely rare to have emission from
molecular hydrogen.

Direct detection of H2 can be observed through ultraviolet absorption,
but due to the opaqueness in the ultraviolet band of the Earth’s atmosphere
these observations must be done from space [36]. A more common indirect
observation of H2 is through radio and sub millimeter emission from dust
grains or other molecules close to H2, which are used as proxies for H2. One
common proxy is observed through the J = 1 → 0 or 2 → 1 rotational
transition of CO [13]. Space and ground based observations have been able
to map out the distribution and structures of molecular clouds in the Galaxy
and other nearby galaxies. This allows us to better understand and study
the process of star formation from molecular clouds.

In this chapter I will outline the location of molecular clouds within the
galaxy and their common physical properties in section 1.3. In section 1.4
I will go through the general concepts behind star formation in molecular
clouds including Jean’s relation, dynamical time, turbulence, and Larson’s
scaling relations. Finally, I will describe the spectrum of stellar masses that
can be formed from molecular clouds in section 1.5. The concepts drawn out
in this chapter are the groundwork for the rest of this paper and are key for
this research.

1.3 Molecular Clouds

Molecular clouds are interstellar clouds of molecular gas which occupy a small
spatial fraction of the ISM, but comprise a large fraction of its mass. Roughly
half of the interstellar mass is confined to discrete clouds occupying only ≈ 1
to 2% of the interstellar volume. Molecular clouds tend to appear near the
galactic plane and in the spiral arms of galaxies which have been shown by
recent surveys of the distribution of CO gas in the Milky Way [13]. Molecular
clouds have also been identified and cataloged from CO observations of Milky
Way [41]. Shown in figure 1.1 is the distribution of CO gas along the galactic
plane. In other spiral galaxies it is observed that molecular clouds trace out
spiral arms and galactic disks [26].
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FIG.  2.–Velocity-integrated CO map of the Milky Way. The angular resolution is 9´ over most
of the map, including the entire Galactic plane, but is lower (15´ or 30´) in some regions out
of the plane (see Fig. 1 & Table 1). The sensitivity varies somewhat from region to region,
since each component survey was integrated individually using moment masking or clipping
in order to display all statistically significant emission but little noise (see §2.2). A dotted line
marks the sampling boundaries, given in more detail in Fig. 1.

Figure 1.1: A spatial map of the CO gas in the Milky Way integrated over
velocity. This shows the large scale distribution of molecular clouds in the
Milky Way. The galactic center is identified by its very high intensity, roughly
four times that of the surrounding regions.

1.3.1 Structure of molecular clouds

Composed mostly of molecular hydrogen and a small amount of heavier el-
ements, molecular clouds can form stars and star clusters depending on the
initial sizes of dense gas clumps within the cloud. Shown in table 1.1 are
typical sizes and physical properties of molecular clouds and the kind of sys-
tems that can form within them. Star clusters can form from dense clumps
within clouds that range from ≈ 0.1− 10 pc with temperatures in the range
of 10− 20 K. Whereas individual protostellar cores can form from dense gas
clumps of spatial ranges < 0.1 pc.

Table 1.1: Table of typical sizes and physical properties of molecular clouds
and cores. The source of this table is adapted from [5] and [22]

Molecular Cluster forming Protostellar
cloud clumps cores

Size (pc) 2− 20 0.1− 10 ≤ 0.1
Density (n(H2)/cm

3) 102 − 104 103 − 105 ≥ 105

Mass (M�) 102 − 104 10− 103 0.1− 10
Temperature (K) 10− 30 10− 20 7− 12
Line width (kms−1) 1− 10 0.3− 3 0.2− 0.5
Column density (gcm−2) 0.03 0.03− 1.0 0.3− 3
Crossing time (Myr) 2− 10 ≤ 1 0.1− 0.5
Free-fall time (Myr) 0.3− 3 0.1− 1 ≤ 0.1
Examples Taurus, Ophiuchus L1641, L1709 B68, L1544

Molecular clouds above 104M� are referred to as giant molecular clouds
(GMC)[49]. The typical size of a GMC in the Galaxy is about 10 parsecs
to several hundred parsecs, and can range in mass from 104M� to 107M�
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[6]. One example of a nearby GMC with active star formation taking place
is the Orion A Cloud [18]. A great image illustrating the formation of a
new star from the Orion Nebula is shown in figure 1.2. Here we are able to
see a new bright star forming in a dense environment in a molecular cloud.
Individual molecular clouds exhibit extremely complex filament structures
caused by super sonic turbulence. Turbulence can be induced by large scale
gravitational motions in the galaxy like spiral density waves, or from more
local objects like the momentum transfer from nearby stellar winds [29]. In
figure 1.2 we can also see shock fronts caused by the stellar winds from the
stars embedded in the cloud.

Figure 1.2: The Orion Nebula is an example of nearby active star formation
in a molecular cloud. This close up shows a newly forming star (LL Orionis)
providing a shock on the surrounding molecular cloud through its stellar
winds. The fast stellar winds with respect to the slow nebular flow create
a shock front that is similar to bow shock produced from a boat moving
through water. Image courtesy of ESA/Hubble

The overall structure of clouds has clumps and filaments on all scales.
Denser clumps of 103 cm−3 can take up roughly 10% of the total space of a
molecular cloud. Even more dense areas of > 105 cm−3 occupy only 0.1% of
the spatial structure. But it is important to understand that star formation
only takes place in the densest regions of the cloud. This means that most of
the molecular cloud material does not form stars and stays at lower densities.

The chemical composition of molecular clouds and the ISM are close to
cosmic chemical composition, which can be inferred from measurements from
the Sun, and other disk stars in the galaxy. Common chemical compositions
are found to be 90.8% hydrogen, 9.1% helium, and 0.12% heavier elements
[43].
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1.3.2 Timescales of molecular clouds

Molecular clouds occupy a large range of sizes and densities which is reflected
by their evolutionary timescales. It is important to understand the typical
timescales that govern molecular clouds in order to understand how molecular
clouds evolve. The most relevant timescale is the dynamical time, which is
the time it will take for a pressure-less sphere of gas to collapse on itself due
to gravity. A more detailed derivation is drawn out in section 1.4.2. This
timescale defines the behavior of a molecular cloud driven by gravity. There
are three important timescales of molecular clouds: the Gas Depletion Time,
the Molecular Cloud Lifetime, and the Lag Time.

The Gas Depletion Time is the ratio of mass of the molecular cloud to
the star formation rate. This is the time it would take to convert the entire
mass of the molecular cloud into stars via its star formation rate. The gas
depletion time is around a few hundred Myr and is about 100 times larger
than the dynamical time. This means that the conversion of gas into stars
is inefficient or slow. Only a small fraction of the total mass of a molecular
cloud can be converted to stars per dynamical time [25].

The Molecular Cloud Lifetime is the actual life time of a molecular cloud.
Most of the cloud mass is never converted into stars and remains a part of
the cycle of atomic, molecular, and ionized phases of the ISM. This timescale
can be found by obtaining age estimates of individual young stars in star
forming regions. Since stellar populations older than 0.5× 107 years are not
associated with stellar populations anymore, we expect that the molecular
cloud lifetime is much shorter than 107 years [19].

Finally the Lag Time is the time between the formation of a molecular
cloud and when stars begin to form. This can be estimated by taking the ratio
of star forming clouds to clouds without significant star formation in the solar
neighborhood together with the median age for young stars in these areas.
This yields a lag time of ≈ 1 Myr [38]. This very small lag time compared to
the molecular cloud lifetime means that molecular clouds start forming stars
almost immediately after forming itself.

1.4 Star formation in molecular clouds

Molecular clouds are turbulent self gravitating objects. Understanding the
mechanisms behind the formation and birth of stars is necessary for under-
standing the formation and evolution of our Galaxy. Due to the filamentary
structure and large density contrasts of molecular clouds, star formation can
happen at the same time in multiple different places in the same cloud. In this
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section I will give an outline of concepts needed to understand gravitational
collapse and turbulence and how it influences star formation.

1.4.1 Jeans length and Jeans mass

We can follow a simple sketch to see how molecular clouds collapse. This is
done by assuming that we have a spherical homogeneous dense cloud of gas
that has two forces acting on it: a gravitational force acting on the cloud
pulling it inwards, and a thermal pressure force from the kinetic energy of
the gas particles pushing the cloud outwards. In order to satisfy collapse we
must have the condition that in virial equilibrium the gravitational force is
more powerful than our internal pressure.

|Egrav| ≥ 2Etherm (1.1)

Gas particles in our cloud can be approximated as a monotonic ideal gas
which allows us to write our kinetic energy as

Etherm =
3

2

M

µmH

kBT (1.2)

Here M is the mass of the molecular cloud, µ is the molecular weight of the
gas, mH is the mass of the proton, kB is the Botlzmann constant, and T is
the temperature of the gas. We can write the gravitational energy as

Egrav = −3

5

GM2

R
(1.3)

Where G is the gravitational constant, and R is the radius of the cloud.
Which gives us the condition

GM

5R
≥ kBT

µmH

(1.4)

Using our assumption of a uniform dense cloud we can write the total mass
of our cloud M = 4

3
πρR3, which allows us to write our condition for collapse

in terms of radius.
4

15
πGρR2 ≥ kBT

µmH

(1.5)

R ≥
(

15kBT

4πGρµmH

)1/2

(1.6)
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If the radius of a molecular cloud satisfies this condition it will collapse on
itself. This threshold is called the Jeans radius, which was named after the
scientist who found this relation in 1919.

RJ =

(
15kBT

4πGρµmH

)1/2

(1.7)

We can also rearrange this expression for the threshold of the mass. This is
called the Jeans mass

MJ =

(
3

4πρ

)1/2(
5kBT

GµmH

)3/2

(1.8)

If a molecular cloud has a radius R ≥ RJ or a mass M ≥ MJ the cloud will
collapse under the influence of its own gravity. Notice that both the radius
and the mass depend on the physical attributes of the cloud i.e. temperature,
chemical composition, and the density. This is a somewhat loose derivation
of the Jeans radius and mass. The original derivation follows small pertur-
bations from hydrostatic equilibrium of a spherical cloud of gas [21].

If we do a quick calculation using a molecular cloud with a density of
6.94× 10−22 gcm−3, a molecular weight of µ = 2.46, and a temperature of 10
K we get a Jeans length of ≈ 0.95 pc. This length is well below the radius
of the clouds we use in our simulations (we use clouds with radii of 10 pc).
The density used to calculate this Jeans length also comes from the densities
we use in our simulations, see sections 3 and 4. Using the same cloud as
before we get a Jeans mass of ≈ 37M�. Again this is well below our cloud
mass, which is ≈ 104M�. In both cases our clouds exceed the Jeans mass
and Jeans radius so they will undergo collapse.

1.4.2 Dynamical time

The timescale at which a molecular cloud collapses or parts of a molecular
cloud collapse is called the dynamical time, or free fall time. This is a rel-
atively straight forward concept. We can say that a cloud is in hydrostatic
equilibrium when the internal pressure of the cloud is in balance with the self
gravitation of the cloud. If the internal pressure suddenly turns off we will
have an acceleration at the surface of our cloud due to gravity which can be
written as

d2R

dt2
= −GMcloud

R2(t)
(1.9)
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with the the initial conditions

R(0) = Rcloud,
dR

dt
(0) = 0 (1.10)

Therefore the time it will take for the surface of the cloud to fall to R = 0
will be

tdyn =

(
π2R3

cloud

8GMcloud

)1/2

(1.11)

This is an approximation for the dynamical time. This timescale can be used
to estimate how long it will take for the cloud or parts of the cloud to collapse
on itself due to the influence of gravity.

We can do a similar order of magnitude calculation as we did before with
the Jeans criterion to get an idea of the dynamical time scale. Using a radius
of 10 pc and a mass of 4.34×104M� we get a dynamical time of 2.5 Myr. This
means that the clouds or parts of the clouds that we use in our simulations
will collapse under the influence of gravity in ≈ 2.5 Myr.

1.4.3 Larson’s scaling relations and turbulence

There exist three basic relations between the parent molecular clouds and
the stars that form in them [28]. These relations where found to exist over
many scales from dense clumps within clouds, to individual clouds, to entire
cloud complexes constisting of many clouds. The relations show how global
properties of a cloud are related with turbulence, gravity, and density.

1. Turbulence: Velocity dispersion is proportional to cloud size. There
exists a power law relationship between velocity dispersion and region
size. Regions can range from sizes of entire molecular clouds to smaller
components like dense star forming clumps. The relationship follows

σ = 1.10kms−1(L/pc)0.38 (1.12)

where L is the size of the regions. The power law follows with an
exponent of 0.38. This is close to the prediction of Kolmogrov for
turbulence.

Kolmogorov turbulent flow
Kolmogorov predicted that the velocity field of in-compressible turbu-
lent flows would be self similar on a range of spatial scales [51]. The
similarity on a range of scales results from a dissipation-less cascade of
energy from large scales to small scales. In-compressible means that
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Figure 1.3: The relation between the length of a molecular cloud and its
velocity dispersion. The relation follows a slope of 0.38 in logarithmic space.
The letters refer to the specific cloud that was measured and the location
within the cloud. See [28].

the density of the fluid is homogeneous. Turbulent flows follow the
energy spectrum,

E(k) = 2πk
∑
i,j

Φij(~k). (1.13)

where the energy spectrum tensor,

Φij(~k) =
1

(2π)3

∫
Rij(~r) exp−i~k · ~rd3r (1.14)

gives us how much kinetic energy is contained in eddies with wave-
number k.

The length of largest eddies that exist in a turbulent flow is called the
correlation length,

Λt =
1

R(0)

∫ inf

0

R(r)dr. (1.15)

The smallest eddies exist around the scale called the Kolmogorov or
dissipation scale. Turbulent medium is characterized by the mean rate
of energy dissipation εd and the kinematic viscosity η. The dimension
of εd is energy

time·mass and the dimension of η is length2

time
. We can rearrange

these two quantities to define the Kolmogorov scale,

lK = (
η3

εd
)
1
4 . (1.16)

Eddies smaller than this scale will quickly lose their kinetic energy
through viscous heating. If a turbulent flow is to be in a steady state
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turbulent energy must be added, on large scales, at the same rate that
it is being dissipated on small scales. The Kolmogorov spectrum is
shown in Figure 1.4.

Figure 1.4: The Kolmogorov energy spectrum for an in-compressible turbu-
lent flow. Here we have energy per wave-number k. As the wave-number
increases the spatial scale decreases. The integral scale shown here is similar
to the correlation length Λt.

The power spectrum for representing turbulence in an in-compressible
fluid following the form of E ∝ k−5/3 is generally referred to as the
Kolmogorov spectrum. In terms of Larson’s scaling relation on tur-
bulence understanding the basics of Kolmogorov’s energy spectrum is
important.

2. Gravity: Velocity Dispersion is proportional to cloud mass. Observed
motions show that gravitational collapse in molecular clouds is not a
simple radial inward free-fall. It is observed that collapsed regions have
irregular, filamentary substructures. Most regions in molecular clouds
are in viral equilibrium meaning that they are gravitationaly bound
but also in balance with the internal energy of the cloud. This balance
exists because of turbulent internal velocities that are supporting the
cloud from collapse. Turbulent velocity fields cause these filamentary
structures in collapsed regions. In Figure 1.5 we see a relation between
a molecular cloud’s mass and its velocity dispersion.

The relation between the mass of a cloud and the velocity dispersion
is found to follow

σ = 0.42kms−1(M/M�)0.2. (1.17)

3. Density: Cloud size is inversely proportional to density. This scaling
law can be thought simply as a result of the first two laws being correct.
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Figure 1.5: The scaling relation between the mass of a molecular cloud and
its velocity dispersion σ. Here we view the relation in logarithm space, with
a trend of the slope ∝ 0.2. The letters refer to the specific cloud that was
measured and the location within the cloud, see [28].

We can see this relation by simply following dimensional analysis of
density. We saw that length is scales with velocity dispersion and
that velocity dispersion scales with mass in both laws one and two,
i.e. σ ∝ L0.38 and σ ∝ M0.2. This can lead us to say L ∝ M0.52 or
M ∝ L1.9. We just use the expression for density ρ = M

L3 to find that
density is inversely related to length as ρ ∝ L−1.1.

Figure 1.6: The relation between the density of a molecular cloud and its size.
The letters refer to the specific cloud that was measured and the location
within the cloud, see [28].

This relation was measured by Larson and will follow more closely the
relation,

< n(H2) >= 3200cm−3(L/pc)−1.1. (1.18)
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We can see the result shown in Figure 1.6. Larson also showed that
when measuring the column density of the molecular cloud there was
no dependence on the size of the cloud. This makes sense since column
density is the density of the cloud times cloud length. So if we return to
dimension analysis we will expect no relation between column density
and cloud length.

1.5 The initial mass function

A common tool for investigating the population of stars that are born from a
molecular cloud is the initial mass function (IMF). An IMF is the spectrum
of masses that stars have when they are born. More precisely the IMF is a
mass spectrum of stars when they enter the zero age main sequence. The
IMF alternatively can also be thought of as a probability function predicting
the mass that a star might have when it forms. The IMF can be a powerful
tool for star formation studies using simulations because it is an observable
that can be reproduced to see if the simulation is physically accurate. The
IMF was introduced in 1955 by E. Salpeter as a power-law and has the form

Φ(logm) = dN/d logm ∝ m−Γ (1.19)

Or more commonly written as

dN ∝ m−Γd(logm). (1.20)

Here m is the mass of an individual star, and N is the total number of
stars within some logarithmic mass range logm+ d logm. It shows that the
number of stars formed decreases as the mass range increases. When first
introduced the IMF followed a single power law with a logarithmic slope
of Γ ≈ 1.35 [42]. Salpeter found a rate of star creation as a function of
stellar mass from observing the luminosity of main sequence stars in the
solar neighborhood. The single power law IMF with a slope of Γ = 1.35 is
commonly referred to as the Salpeter IMF, and will be used throughout this
paper. However, the IMF and its universality are currently debated. It may
vary depending on the environment, but can be more or less invariant.

More recent studies have revealed that the IMF may not be described
by a single power law but might follow a segmented power law. A multi-
segmented power law was later introduced by measuring the distribution of
low mass stars in the Galactic disc. These indicate the slope of the IMF at
lower masses is shallower than value obtained for higher masses [23]. This
segmented power law is commonly referred to as the Kroupa IMF after the
scientist that proposed it.
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The IMF can also be written in terms linear mass units in the context of
a mass spectrum.

dN/dm ∝ m−α (1.21)

This allows us to estimate the number of stars in a given mass range. We
can relate the two versions of the IMF written in logarithmic units and in
linear units by following the logarithmic relation

dN/dm = 1/(m ln 10)Φ(logm) (1.22)

Which allows us to equate our exponents describing the slope of the IMF.

α = Γ + 1 (1.23)

We chose in this paper to follow equation 1.21 to present the initial mass
function. The Salpeter IMF follows a slope of α = 2.35. And the Kroupa
IMF follows a segmented slope of α = 0.3 for m < 0.08M�, α = 1.3 for
0.08M� < m < 0.5M�, and α = 2.3 for 0.5M� < m. In figure 1.7 we see
both mass functions plotted together. The 3rd IMF plotted in figure 1.7 is the
Chabrier mass function, which was discovered by looking the mass spectrum
from various components of the Galactic disk, spheroid, young, and globular
clusters. [8].

There are three main approaches to observe the IMF. The most direct
approach is to measure the mass of the population of stars in a young cluster
where stars are coeval and individual stellar masses can be measured down to
low masses [37]. However, the number of young clusters limits the statistics
of this usually clean measurement. Another method is to measure field stars
in the Solar neighborhood which are no longer in clusters. This will give
us better statistics but will limit us to low mass stars. We cannot use the
high mass stars in the solar neighborhood because the population of high
mass stars close to the Sun is highly determined by the star formation rate
rather than the IMF. This method was the one used by Salpeter. The final
common measurement of the IMF is done through integrating light from
stellar populations [32].

1.6 Cluster mass as an upper limit to stellar

mass

Finding an upper limit to stellar masses is a current topic in stellar evolution.
The first theoretical upper limit on the stellar mass was put forward by
Arthur Eddington who calculated the mass limit that was required to balance
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Figure 1.7: An example of multiple initial mass functions plotted together,
logarithm of number of stars per mass bin dN/dM per logarithm of stellar
masses N(M∗). The solid purple line is the Salpeter IMF, with a slope of
α = −2.35. The dashed light blue line is the Kroupa IMF, with a segmented
slope of α = −0.3 for m < 0.08M�, α = −1.3 for 0.08M� < m < 0.5M�, and
α = −2.3 for 0.5M� < m. The dashed red line is the Chabrier. For m < 1
M� dN/dm = 0.158(1/m) exp− logm− log 0.082/(2 · 0.692). For m > 1M�
α = −2.3. Figure adapted from [12]

the inward gravitational pull with the outward radiation pressure, called
the Eddington limit [14]. In other words hydrostatic equilibrium of a star
would fail if the mass exceeded M ≈ 60M�. However massive stars are not
fully radiative and have convective cores which can lead to masses exceeding
60M�. Stellar masses of 120− 150M� have been found to be possible due to
a damping of their pulsations [45], [3]. Formation models suggest maximum
stellar masses of 40− 100M� due to the feedback of the protostellar system
on the surrounding spherical accretion envelope [50].

However observational limits on an upper limit of the maximum stellar
mass are uncertain. Observing the maximum stellar mass can be difficult
because we can observe only few stars populating the IMF above ≈ 100M�.
IMFs with high masses of this nature can usually exclusively be found in
massive star burst clusters. A survey of the R136 cluster in the Large Mag-
ellenic cloud in 1998 found stellar masses up to 155M� [34]. However they
later explain that this mass limit is due to a statistical limit rather than a
physical one [33]. More recent studies of R136 suggest a physical stellar mass
limit of 150M� [47].

Maximum stellar mass might be limited by its host star cluster mass.
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A pre-cluster gas core with a mass Mcore cannot form stars with masses
m > εMcore, where ε = 0.33 is the star formation efficiency [27]. A recent
literature study of clusters for which the cluster mass and the initial mass of
the heaviest star can be estimated shows that there appears to be a limit of
the maximum stellar mass by the mass of the host cluster [24]. Figure 1.8
shows the dependence of the maximum mass in a cluster versus the mass of
the host cluster.

Figure 1.8: The thick solid line follows the dependence of the mass of the
most massive star in a cluster versus the host cluster mass. The dots with
error bars are observed clusters. The dot dash lines are mass constrained
random sampling results with a physical upper mass limit of 150M� (thick
line) and 106M� (thin line). The thin solid line is the relation when a cluster
only contains a single star. This figure is adapted from [24].

The relationship between cluster mass and maximum stellar mass shown
in figure 1.8 is important for providing an upper limit on stellar mass. In
section 4.2.2 we investigate the relationship between the maximum stellar
mass and the host cluster mass found in our simulations.





Chapter 2

Numerical methods to study
star formation

Star formation is a complex process and accurate numerical tools are needed
to properly incorporate the mass distribution, gravitational collapse, and
super-sonic turbulence involved. We use hydrodynamic numerical simula-
tions to properly include these processes to study star formation. Hydrody-
namics or fluid dynamics are used to describe the flow of fluids or gases. The
fluid dynamics describing molecular gas will of course be governed by gravity
which is represented by Newton’s second law:

~̈r = −G
∑
j 6=i

mj
~ri − ~rj
|~ri − ~rj|3

(2.1)

There are many different numerical recipes for hydrodynamics simula-
tions. In this chapter I explain the methods implemented for this paper. I
will first draw out basic numerical integrators like the Eularian and the leap
frog method. I then introduce some N-body and hydrodynamic techniques.
And finally I will describe the code we used for our simulations.

2.1 Nbody

We will be solving Newton’s second law of motion, equation 2.1, to describe
the motion of gas particles. Since we are dealing with N particle systems,
the gravitational force between each particle the system must be calculated.
The resulting equations of motion of our system shown in equations 2.2 and
2.3.

v̇i = −
∑ Gmj

r3
ij

xij (2.2)
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ẋi = vi (2.3)

The indices i & j denote the individual particles. However it becomes
very difficult to solve such a system of equations analytically as the number
of our particles increases. This is a system of 2 × N × Ndim equations,
where N is the number of particles in our system and Ndim is the number of
dimensions. Very few solutions are known for the general N body problem.
Current analytic solutions are known only for systems with N ≤ 3 particles.
In the case of N = 3 results have been found for special restricted cases,
where one or more of the masses are infinitesimal. Analytic solutions for
systems with more that N > 3 particles are very rare and is a current topic
in mathematics. In our study we are dealing with systems of N = 106

particles so we will need to rely numerical methods to solve the equations of
motion. In the following section I will draw out two common methods used
to solve systems of differential equations numerically.

2.1.1 Integration of ordinary differential equations

One of the most basic numerical approaches is performing a Taylor expansion
on the equations of motion, and stepping the equations through time. A
common method is the Euler method which uses the 1st order terms of the
Taylor expansion.

xi(t+ ∆t) = xi(t) +
dxi(t)

dt
∆t+O(∆t2) (2.4)

vi(t+ ∆t) = vi(t) +
dvi(t)

dt
∆t+O(∆t2) (2.5)

The Euler method steps equations 2.4 and 2.5 through a time interval
∆t. This method of integration is a 1st order integrator, since the numerical
precision of this method is 1st order with the numerical error O(∆t2). This
is also an explicit method where it only depends on quantities we know at
time t, xi(t), ẋi(t), ẍi(t). An improvment on the Euler method is the leapfrog
method, where the equations are evaluated at 1/2∆t and is used to step or
leap our system through the entire time step ∆t. The standard leap frog
method is 2nd order accurate as its numerical error is O(∆t3).

The leapfrog method shown in figure 2.1 calculates the velocity at half
the time step and uses that velocity to step the position and acceleration a
full time step. After position and acceleration are stepped a full time step
the velocity is stepped from half the time set to the full time step, bringing
all the equations to the full time step. The method is shown chronologically
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Figure 2.1: Diagram of a 2nd order leapfrog integration method.

with equations 2.6, 2.7, and 2.8, where v0,v1/2 and v1 is the velocity at the
beginning, middle, and end of the time step ∆t.

v1/2 = v0 +
∆t

2
a0(x0) (2.6)

x1 = x0 + ∆tv1/2 (2.7)

v1/2 = v1/2 +
∆t

2
a1(x1) (2.8)

The benefit of a leap frog integrator is that it is time reversible. You can
integrate the equations of motion in time n steps and then reverse the same
n steps back in time and end up in the exact same place. This means that
the leapfrog method is a symplectic integrator. A more precise explanation
of symplectic integration is above the scope of this paper, for more reading
please refer to [40].

As the number of particles increases, the numerical complexity of the
system also increases as N(N − 1). If we have a system of N = 3 particles
we will have to calculate 6 forces. For N = 4 we have 12 forces, for N = 10
we have 90, for N = 30 we have 870 forces. It is easy to see that when
we increase the number of particles the numerical complexity of the N-body
problem rapidly increases. The number of particles used in this paper is on
the order of N = 106. We will need numerical and computational methods
to solve the motions of particles in our molecular clouds efficiently.

2.1.2 Gravitational softening

In N-body simulations particles can sometimes approach each too closely and
the force felt between the two can be nonphysical. Since we are integrating
through discrete time steps particles can find themselves too close with too
big of a step. A way to prevent these spurious events is introducing a soft-
ening of the gravitational potential of a particle. The softening is defined as
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the radius at which the gravitational force is smoothed to a smaller value. In
practice, this can be easily illustrated by substituting the force from a point
potential

Fij = −Gmimj
~ri − ~rj
|~ri − ~rj|3

(2.9)

to a simple spherical plummer model [39] on small scales [1].

Fij = −Gmimj
~ri − ~rj

(|~ri − ~rj|2 + ε2)3/2
(2.10)

The softening parameter is ε in equation 2.10. The value is a sort of a
rule of thumb of each simulation, it can be taken as the average distance
between particles. For astrophysical systems we can estimate it using the
virial radius Rvir and the number of particles in a simulation N .

ε = (
4πR3

vir

3
)1/3N−1/3 (2.11)

2.1.3 Barnes-Hut Tree Method

Direct N-body integration calculates every single force between all of the
particles in a simulation. Systems that require direct N-body methods are
systems that have strong gravitational interactions between single particles.
Interactions between single particles can influence the overall evolution of
the system. The numerical integration in direct N-body methods requires
≈ N2/2 calculations to evaluate the potential energy generated by all particle
pairs. This proves to be very computationally expensive.

The numerical integration of gas clouds does not need to be studied with
direct N-body as the gravitational interaction between single particles do
not change the evolution of the entire cloud. The simulation of a gas cloud
evolves smoothly and can be treated as a fluid. We can rely on indirect
N-body methods in order to solve high N problems.

The Barnes-hut Tree method is an approximation algorithm used to re-
duce the numerical complexity of a N-body system to the order ofO(N logN)
rather than that of the direct method, O(N2). We do not need to calculate
each individual force on each particle. The cumulative force of a group of
particles can be estimated if the group of particles is sufficiently far. A group
of particles that is far enough can be estimated as a single particle, with the
location at the center of mass, and the total mass of the group as the mass.

The Barnes-Hut tree method recursively divides up the simulation space
into cells. Each cell is divided into further cells, which are further divided
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Figure 2.2: Diagram of a Barnes-Hut tree method showing the simulation
space divided into cells. Here the father node has more than one particle and
is further divided into daughter cells until it contains one or no particles.

up until each cell has a single or no particle inside of it. This is called a tree
method because the largest cell can be thought of as the main root of the tree,
where the sub cells are the branches and the smallest sub cells containing
the particles are the leaves. A diagram of this method is shown in figure 2.2.

θ =
s

d
(2.12)

A quantity called the opening angle, equation 2.12, determines when a
particle will be treated as a single particle or when it will be treated with a
group of particles (in other words how far a particle needs to be in order to
avoid direct calculation). The opening angle θ is dependent on s the width
of the region represented by the considered cell and d the distance between
the particle and the center of mass of the cell. The opening angle is defined
before running the simulation. θ = 0.5 is common in practice. When θ = 0
the Tree algorithm will degenerate into the direct N-body method.

In the figure 2.2 we see that particles close by each other will have their
direct mutual gravity calculated, particles E and F for example. Where as
particles far away from each other will have their mutual gravity approxi-
mated by using the total mass and center of mass of a cell. As an example
the force felt by particle D by particles E, F, and G. Particles E, F, and G
will have their masses summed and the location of their summed mass will
be at the center of mass of E, F, and G.
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2.2 Hydrodynamics

When trying to simulate the motions of gas particles we are not only gov-
erned by Newton’s equation (equation 2.1). We are also governed by fluid
mechanics which are given by Euler’s equations 2.13, 2.14, 2.15, and 2.16.

∂ρ

∂t
+∇ · (ρ~u) = 0 (2.13)

∂ρ~u

∂t
+∇ · (~u× (ρ~u)) +∇p = 0 (2.14)

∂E

∂t
+∇ · (~u(E + p)) = 0 (2.15)

E = ρ(U +
~u2

2
) (2.16)

With the mass density ρ, fluid velocity ~u, thermal pressure p, total volume
energy density E, and internal energy U . There are in general two meth-
ods used to solve these fluid equations numerically namely Eularian and
Lagrangian. A popular method used in the Eularian scheme is called Adap-
tive Mesh Refinement (AMR), which uses a mesh grid in Cartesian space to
resolve the physics of a fluid to some specified scale. A popular method in
the Lagrangian scheme is smoothed particle hydrodynamics (SPH), where
the coordinates of the simulation move with the fluid. Both methods are
currently used in astrophysical simulations.

2.2.1 Smoothed particle hydrodynamics (SPH)

Smoothed particle hydrodynamics is a computational method used to simu-
late fluids by dividing up the fluid into discrete particles. The coordinates
of the simulation move with the fluid (Lagrangian) and the resolution of
the simulation can be adjusted to the physical properties of the fluid. The
physical elements of the fluid are smoothed over the discrete particles using
a smoothing kernel. The discrete particles have a physical radius called the
smoothing length h, and over this length the physical properties of the fluid
are smoothed. The smoothing length is defined as the distance at which a
simulation particle has N neighbors, which is typically chosen to be N = 32
or N = 64. This is similar to the gravitational softening length, but in this
case the gas properties (pressure, density, temperature) are smoothed. The
contributions of each of particle to a physical quantity A will be weighted
according to their distance r to another particle and their density ρ:
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~A(~r) =
∑
i

mi

~Ai
ρi
~W (|~r − ~ri|, h) (2.17)

As an example we can express the density of particle i as

ρi = ρ(~ri) =
∑
i

mi
ρi
ρi
~W (|~r − ~ri|, h)ρi =

∑
i

mi
~W (|~r − ~ri|, h) (2.18)

It is important to choose the smoothing length close to the gravitational
softening length. If the smoothing length is greater than the softening length
(h > ε) then the gravity is stronger than the pressure of the gas and we will
have spurious collapse. Also if the smoothing length is less than the softening
length h < ε gas pressure will dominate and we will have spurious expansion.
It is important for the correct resolution of our simulations to have h ≈ ε [2].

Figure 2.3: Diagram showing the softening length over N neighbors. The
properties of the gas will be smoothed over the discrete simulation particles,
light pink circles, that fall within the smoothing length h.

A diagram of the smoothing length is shown in figure 2.3. The smoothing
kernel must be a function that is normalized to one and easy to interpolate
at high precision. It must also be a function that is spherically symmetric so
it will conserve angular momentum in the simulation.

The benefit of SPH is that is relatively simple compared to AMR methods.
You are able to choose the gravitational softening length, smoothing length,
and the number of particles in your simulation to set the resolution of the
simulation. The SPH method refines the resolution automatically as the
simulation progresses through time. If a region of gas collapses in on itself
the SPH method will adjust the density in the region automatically as needed.
One drawback of the SPH method is that it does not resolve strong shocks.
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2.3 ChaNga

When we deal with systems under the influence of gravity we have to calculate
the force between every particle in the simulation. As the number of particles
exceeds 105 this becomes too computationally expensive to calculate with
just a single processor. We require parallel computational methods since the
systems we are interested in solving have ≈ 106 particles. Most basically
when we use multiple processors the particles N are distributed between the
number of processors p. The simplest way to split the particles up is N/p,
but there exists more complicated algorithms. Each processor calculates a
portion of the forces between particles at each time step and the information
from all processors at each time step is collected and the system is stepped
forward.

The code used in this paper is ChaNga (Charm N-body GrAvity solver)
which includes most of the numerical and computational methods mentioned
above [35]. It is a SPH parallelized code written in the CHARM++ run time
system, with good run time work-load balance where integration and particles
are well distributed between processors. It uses a Barnes-Hut tree algorithm
where each leaf can contain more than a single particle. It uses a cubic spline
for gravitational softening.

Figure 2.4: Example of gas physics simulation using ChaNGa (top panel)
compared to another SPH hydrodynamic code GADGET-2 (bottom panel).
The simulation is of a high dense region of gas under the influence of an
external wind. The ChaNGa code shows better treatment of instabilities
rapidly mixing the high density region with the surrounding medium. Time
is shown in units of the Kelvin-Helmholz growth time.

In figure 2.4 we see an example of the capabilities of handling gas physics
with ChaNGa. Here is a two panel image comparing ChaNGa to older SPH
code GADGET-2 [44] simulating a high density cloud in pressure equilibrium
in a wind. Figure 2.4 shows how artificial surface tension and instabilities
rapidly mix the high density region with the surrounding medium. Gadget-
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2 in the lower panel shows how poor handling of contact instabilities will
preserve the high density region. ChaNGa gives similar results to alternative
hydrodynamic codes like ENZO, which uses Adaptive Mesh refinement [9].





Chapter 3

SPH simulation of a single
molecular cloud collapse

In this chapter I test the performance of my new star identification algorithm
which identifies newly formed stars from our gas simulations. Simulations
cannot follow the collapse of gas till the formation of a new star, because the
involved density range is computationally prohibited. Thus, sink particles
are created to replace a clump of collapsing gas particles. These can be
very useful for modeling forming stars within a hydrodynamic simulation if
the proper recipe is used. In section 3.1 I describe my new sink identifying
algorithm and how it can be used to create sink particles. In section 3.2 I
simulated the collapse of a single molecular cloud. Finally in section 3.3 I
test the my sink finding algorithm by producing a mass function close to the
Salpeter IMF.

3.1 Sink identifying algorithm

Tracking star formation within our simulations was done following recipes
of [20] and [15]. Star candidates need to satisfy 4 criteria to be classified
as a formed star. In our simulations we did not implement a sink creating
algorithm, rather we ran our simulations until significant clumpiness was
achieved and analyzed the stellar candidates postmortem. This was done
to keep from spurious sink creation during our simulations. An example of
a spurious sink would be identified by a density criterion while not having
a diverging velocity field. The sink may be falsely created too early. The
region maybe dense enough, but it could later in the simulation be destroyed
by a transient velocity field. Our final identified stars will satisfy density
criterion, non-overlapping criterion, velocity divergence criterion, and total

29
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energy criterion. If a candidate satisfies all four of these criteria, in order,
we identify it as a formed star.

1: Density The first criterion is the density criterion. A candidate is
identified first if its density exceeds our threshold density. This threshold
density is chosen as ρsink = 10−12gcm−3 as this is well into the Kelvin-
Helmholtz contraction phase.

2: Overlap The second criterion is that sinks do not overlap each other
when they are created.

|ri − rs′| ≤ Rs +Rs′ (3.1)

On the left hand side of equation 3.1 we have the modulus of the distance
between the centers of the two particles. On the right hand side we have
the physical radius Rs = Xsinkhi of our candidate star particle and Rs′ the
physical radius of an existing candidate star particle. The physical radius is
given by its smoothing length hi, multiplied by a user provided parameter
Xsink = 2.0 following current sink implementation recipes [20]. In the case
when multiple SPH particles exist within the physical radii of a candidate
particle we chose the particle which was most dense. In the rare occasion
that particles have the same density we chose the one that is closest to the
center of mass of the local clump.

3: Velocity Divergence Once the first and second criterion are satisfied
we check whether the divergence of the velocity field at our particle i is
negative i.e.

(∇· v)i < 0 (3.2)

The divergence was calculated over a selection radius centered on the particle
i. This selection radius was taken as 0.015 times our initial softening length.
This was found by taking multiple different radii each with a different factor
of our softening length and seeing which radius gave us the best fit to the
Salpeter initial mass function. This selection radius was also used in our
energy criterion.

4: Total Energy The final criterion a star candidate particle has to obey
is whether its energy is negative (i.e. where the gas clump is bound). This
was done by calculating the total energy, consisting of its potential energy
Egrav =

G·mi·mj

rij
and the kinetic energy, Ekin = 1

2
miv

2
i . Each of the energies

were calculated in the center of mass frame in order to eliminate contribu-
tions due to global motions of the cloud.
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Table 3.1: Star creation criteria

Creation Criterion Equation
Density ρi > ρsink
Overlap |ri − rs′ | ≤ Rs +Rs′

Velocity Divergence (∇· v)i < 0
Energy Bound Egrav + Ekin < 0

It is important to note that we take the local velocity divergence because
we are interested local convergences rather than global convergences. If we
calculate the global divergence we might ignore local convergences and miss
star formation sites. Globally our entire cloud is marginally bound in energy
by construction. After a candidate has successfully fulfilled all four criterion
we classify the candidate as a formed star.

3.2 Initial conditions and cloud collapse

To test the sinkfinder algorithm, I simulated the collapse of a single turbulence-
supported molecular cloud with an initial radius and mass of Rcloud = 10 pc
and Mcloud = 4.3 × 104M�. The cloud has an initial uniform density of
ρ0 = 6.94 × 10−22 gcm−3 and is given a molecular wight of µ = 2.46. The
initial temperature of the cloud is 10K.

Table 3.2: Single cloud conditions

Cloud N/105 r0 [pc] v0 [kms−1] turbulence seed T [K] µ
A 1.0 (0, 0, 0) (0, 0, 0) 72299 10.0 2.46

Interstellar turbulence in the cloud was generated from a velocity field
with an imposed power spectrum of P (k) with the power varying as k−4.
The velocity field was created by first generating a grid of velocities using a
divergence free Gaussian field, which was randomly distributed using a Monte
Carlo method. The Monte Carlo method was seeded from an random integer
which was given by personal choice. The final velocities were interpolated
from this grid onto the gas particles. The resulting velocity field follows a
velocity dispersion σ, which falls off as l1/2. This was chosen to agree with the
Larson’s scaling relations which was covered in section 1.4.3. The velocity
field is supersonic. The gas cloud is also marginally bound i.e. initially
Ekin ' Egrav.
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Figure 3.1: Snapshot of the single molecular cloud which has collapsed under
its own gravity. Here the extremely bright regions on the filaments are regions
where the gas of the cloud is dense enough to form stars and star clusters.
The snap shot is 1.5 pc to a side. The bright regions have a density of
ρ ≈ 10−12gcm−3 and will be considered in our criteria for forming stars.
This image was produced using SPH viewer [4] where the density of each
simulation particle was smoothed over 64 of its neighbors. The smoothing
length of each particle was included to produce this image.

The snapshot of the collapsed single cloud shown in figure 3.1 shows many
dense clumps along with filament structures. The clumps are regions where
the gas cloud has collapsed enough to start forming stars. The filament
structures are produced by the initial turbulent velocity field and by the in-
falling gas. This dense area is located in the central region of the simulated
molecular cloud. The initial cloud had a radius of 10pc, where the filaments
and the denser star forming regions occur on scales of ≈ 1 pc after the cloud
has significantly collapsed in on itself.
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Figure 3.2: The central region of a collapsed single molecular cloud. The
regions shown in each panel are 1pc to a side. The right panel is a contour
map illustrating the density of the clump and filament regions. In the most
dense clumps the density exceeds densities of 10−12gcm−3.

In figure 3.2 we focus on a region close to the center of mass of the cloud.
In the left panel we see dense star forming regions located on a backdrop of
multiple connecting filaments. The right panel contour map illustrates the
density of each of the structures.

Figure 3.3: The densest regions (approximately 10−3 pc) are areas in which
the gas is collapsed to form stars. The image illustrates the location of many
stellar systems. This snapshot is 0.8pc to a side.

Figure 3.3 is an even closer look into the different regions of high density.
The size of each dense clump is approximately 10−3pc which is close to the
spatial resolution of our simulations. Remember we are using a softening
length of 0.5×10−5kpc. The current understood size of proto-planetary disks
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is approximately 100AU [48] which corresponds to a length of≈ 4.84×10−4pc.
In figure 3.3 we are able to see the neighborhood of individual stars or star
systems being formed. We stress that magnetic fields were not included in
our simulations. Thus, we cannot statistically reproduce the evolution of
protoplanetary disks.

Figure 3.4: A contour plot of the region shown in figure 3.3 colors the most
dense and compact regions in the simulation. Each compact region which
will likely form single to multiple stars exceeds densities of 10−12gcm−3.

In figure 3.4 we see the zoomed in region of figure 3.3 illustrated using
a contour map colored off of density. Note that in section 3.1 the initial
criteria we use to identify formed stars in our simulations is that a simulation
particle’s density must be greater than 10−12gcm−3. Figure 3.4 shows that
there are many regions exceeding this threshold.

3.3 Testing the sinkfinder

Our simulation was run until the cloud exhibited sufficient clumpiness by
eye, and the time steps of our simulation slowed down significantly due to
the clumpiness. We checked snapshots of the simulations for formed stars.
We also calculated at each snapshot the amount of cloud mass that satisfied
the four criteria, because we will stop the simulation when 10% of the cloud
mass has converted into stars. We expect star formation to happen around
t ≈ 2.3× 106yr because the dynamical time of our cloud is tdyn = 2.5 Myr.

The number of stars that satisfy the four criteria is plotted in figure 3.5.
The number of stars that satisfy the density criterion is many times greater
than the number of stars that satisfy the other three criteria. The overlap
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Figure 3.5: Number of star particles found by our 4 criteria as a function of
time, in cloud A. This is the main test of the algorithm

criterion significantly reduces the candidacy of stellar particles because many
of the particles which satisfy the density criterion lie within the interaction
radius of another dense particle.

Figure 3.6: A wide view snapshot of a dense star forming region in cloud
A. The particles are colored off of the criteria they satisfy; density criterion
faded (blue), overlap criterion (green), velocity divergence criterion (red),
and energy criterion (yellow).

Figure 3.6 is a zoom in on multiple dense regions in the cloud. We are
able to see approximately six locations where the simulated particles satisfy
our star identification criterion. We also see a large spider leg like structure
in the location of X ≈ 0.35 pc & Y ≈ 0.05 pc. This structure is likely part
of a larger filament which is caused by super sonic turbulence. At the end
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of this leg structure we find a very dense region where multiple particles are
satisfying our star identification criteria.

Figure 3.7: A snapshot of individual clusters of particles in part of a larger
dense complex in the cloud. The particles are colored off of the criteria they
satisfy; density criterion (blue), overlap criterion (green), velocity divergence
criterion (red), and energy criterion (yellow).

Well over hundreds of particles in this region, shown in figure 3.7, satisfy
our density threshold criteria, colored in blue. In green we have stars that
satisfy overlap criteria. In red particles that satisfy velocity divergence crite-
ria, meaning that the velocity field around that particle is converging. And
finally we have our final identified stars in yellow, that is candidates which
satisfy even the energy criterion. We can see that even in this snapshot exists
tight groups of stars.

Finally we can look at one of these clusters in detail shown in figure 3.8
which illustrates multiple stars in a single cluster. Here around 20 stars exist
in single and binary systems. Note that the particles shown in Figures 3.6,
3.7, and 3.8 do not illustrate the physical picture of what is happening well in
the simulation snapshot. It is important to refer to figures 3.1 and 4.1 for a
more complete illustration since they use each particle’s mass and individual
smoothing length to convey density. The snapshots in this section are used
merely to show location of candidates which satisfy the stellar candidate
criteria.

3.3.1 Reproducing the initial mass function

In order to test the accuracy of the star finding criteria we attempt to re-
produce an IMF from the identified stars. We choose to compare the IMFs
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Figure 3.8: Individual stars as a part of a larger new star cluster. The
particles are colored off of the criteria they satisfy; density criterion (blue),
overlap criterion (green), velocity divergence criterion (red), and energy cri-
terion (yellow).

Figure 3.9: Stars found from the four criteria plotted on a zoomed in region of
the cloud. This region appears to have a flattened disc due to the conservation
of angular momentum added by in falling gas.

produced by our simulations to the mass spectrum predicted by the Salpeter
IMF. Again the Salpeter IMF is a single power law with a slope of m−2.35.
The mass of the final star is determined by the radius at which calculate the
3rd and 4th criteria, the velocity convergence and the energy criteria. The
total mass is the amount of simulation particles that will accreate to our star
particle. The final mass of the star will be made up of all the simulation
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particles which will collapse, flow onto, and are bound to the star particle.
We first populate a mass spectrum from a single turbulence supported

cloud collapsing in on itself, the same cloud used in section 3.2. The cloud
was evolved for 0.247 Myr. At this time ≈ 10% of the cloud mass was
converted into stars. We find that in the order of magnitude range of 10−2

of our softening length we start to produce a reasonable mass spectrum.
The radius that we used to produce the mass spectrum is 0.015 times our
softening length. The softening length is a good choice because it is the scale
on which the pressure and the gravitation of our simulation is resolved.

Figure 3.10: Shown here is an IMF, in semi log space, generated from the
collapse of a single cloud. Stellar mass M∗ on the x-axis and the logarithm
of stars per mass bin N(M∗) on the y-axis. We compare our result to the
Salpeter IMF dN/dm ∝ m−2.35, dashed red line.

In figure 3.10 is the mass spectrum in linear-log space, with the logarithm
of number of stars in each linear mass bin. We expect to see much more stars
populate the lower mass range around 0 to 5M�. And we also expect that the
number of stars to decrease with increasing mass. The mass spectrum pro-
duced from cloud A seems to follow this trend while being slightly insufficient
in masses below 5M�.

We are able to see how the mass spectrum from cloud A matches the
Salpeter in the higher mass range. Stars with masses ≥ 20M� follow the
slope of m−2.35 pretty well. However the lower mass of the spectrum still is
insufficient. This seems to be because of the limit of the mass resolution in our
simulations. Since the cloud is 4.3× 104M� and composed of NcloudA = 106

SPH particles the mass of each individual particle is ≈ 0.04M�.
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3.3.2 Producing IMF through other radii

In order to test the accuracy of our choice in radius we produce multiple
mass spectra by taking multiple radii to calculate the divergence and energy
criteria. We take a larger 0.02 and a smaller 0.01 radius than what was used
to produce figure 3.10, which is 0.015 times the softening length.

Figure 3.11: The IMF produced in semi log space. Logarithm of the number
of stars on the y-axis per mass bin (solar masses) on the x-axis. Each colored
histogram corresponds to a different radius taken to define stellar mass. Each
is a factor of the gravitational softening length (ε), red (0.02), blue (0.015),
and yellow (0.01).

The larger radius produces a mass spectrum which is over abundant in
the higher mass range. While the 0.01 softening length radius produces less
in the higher mass range. All three radii are compared to each other in semi
log space in figure 3.11. The difference in the higher mass range is more
evident in the log log space, figure 3.12.

It seems that the choice 0.015×ε is the best at the current resolution. We
are limited in populating the lower mass range due to the mass resolution of
our simulations.

High resolution check

We ran another single cloud with the same initial conditions used in section
3 but in this case we increased the mass resolution by increasing the number
of particles the simulation. Previously our single cloud collapse consisted of
N = 106 SPH particles. Now we have increase the number of particles by a
factor of 5 which will increase the mass resolution. With a total number of
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Figure 3.12: The mass functions in log log space. Logarithm of the number of
stars on the y-axis versus the logarithm of solar masses on the x-axis. Each
colored histogram corresponds to the different radii taken to define stellar
mass. Each is a factor of the gravitational softening length (ε), red (0.02),
blue (0.015), and yellow (0.01). The Salpeter mass spectrum is shown with
the dashed red line.

particles of N = 106 the mass of each SPH particle is ≈ 0.04M�. When we
increased the number of particles to N = 5 × 106 the mass of each particle
is ≈ 0.0086M�. We observe the impact of this resolution with the IMFs
produced in figures 3.13 and 3.14. We see in both semi log and log spaces
that the population of stars formed is much more on the lower mass end of
the spectrum when compared to the N = 106 case. We also see that the we
are producing less stars in the high mass range. Again, we see that different
radii influence the spectrum of masses produced.

It is a current problem in numerical studies of star formation to be able
to produce the full initial mass function. We use the high resolution case as
a confirmation that the star identifying algorithm discussed in section 3.1 is
working. As we increase the mass resolution of our simulations we start to
produce lower mass stars and begin to lack in high mass stars. A comparison
of the N = 106 mass spectrum with the N = 5 × 106 high resolution mass
spectrum is shown in figure 3.15.
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Figure 3.13: The high resolution run of the single cloud collapse. On the
y-axis is the logarithm of the number of stars per mass bin (solar masses) on
the x-axis. Each colored histogram corresponds to a different radius taken
to define stellar mass. Each is a factor of the gravitational softening length
(ε), red (0.02), blue (0.015), and yellow (0.01).

Figure 3.14: The mass functions in log log space of the high resolution run
of the single cloud collapse. Logarithm of the number of stars on the y-axis
versus the logarithm of solar masses on the x-axis. Each colored histogram
corresponds to the different radii taken to define stellar mass. Each is a factor
of the gravitational softening length (ε), red (0.02), blue (0.015), and yellow
(0.01).
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Figure 3.15: The mass function in log log space of the high resolution run
(N = 5× 106), shown in magenta, compared with the normal resolution run
(N = 106), shown in cyan. Logarithm of the number of stars on the y-axis
versus the logarithm of solar masses on the x-axis. The radius taken to define
the stellar mass is a factor of 0.015 of the gravitational softening length ε in
both cases.





Chapter 4

Star formation from molecular
cloud collisions

In this chapter we investigate the star formation induced from two molecular
clouds colliding at different velocities. We are aiming to see how the velocity
of the collision of the two clouds will affect star formation, when stars form
during the collision, and how that depends on the velocity of the two clouds.
We set up six simulations of the colliding clouds. Each simulation is given
initial velocities of 0, 2, 4, 6, 8 and 10 km s−1. The simulations are run until
10% of the total mass of each collision is converted into stars. We track the
time stars begin to form in each collision, until the end of the simulation.
We produce density contour maps of each collision to see where the stars are
forming. And we check that the mass spectrum of the formed stars follows
the Salpeter IMF in each simulation.

4.1 Initial conditions

First our two clouds, named A & B, consisting of NA = NB = 106 particles
each were simulated independently in absence of any collision. A detailed
analysis of these single clouds can be found in chapter 3. This was done
as a baseline to see how many stars were formed out of the two respective
clouds if they were to collapse by them selves. Our clouds initially have a
radius and mass Rcloud = 10 pc and Mcloud = 4.3 × 104M�. Which gives us
an overall density of ρ0 = 6.94 × 10−22 gcm−3. The initial temperature of
both clouds are T = 10K and of a molecular weight of µ = 2.46. All of our
simulations are nearly isothermal with a γ = 1.001. We give a gravitational
softening length of 0.5 × 10−5 kpc to the SPH gas particles. Both clouds
are supported by supersonic turbulence and marginally bound, described in
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detail in section 1.4.3. To reproduce interstellar turbulence within the cloud,
the velocity field of each cloud was generated from a grid using a divergence-
free Gaussian random field with an imposed power spectrum P (k), varying as
k4. Each Gaussian random field was generated through Monte-Carlo method
that was seeded with an integer of our choosing.

Table 4.1: Initial Cloud conditions

Cloud N/106 (x0, y0, z0) [pc] turbulence seed T [K] µ
A 1.0 (0, 0, 0) 72299 10.0 2.46
B 1.0 (22, 0, 0) 34213 10.0 2.46

In table 4.1 we see the initial conditions of each cloud. Here cloud A
and cloud B have the same radius, mass, molecular weight, temperature,
but they differ in the initial seed from which the turbulent velocity field is
populated. The seed is a personal choice and only serves as the seed to build
the velocity distribution via Monte-Carlo method. The clouds will have the
same overall physical attributes but they will differ in the spatial structure
of their supersonic turbulence fields. Both cloud A and B are kept the same
in every collision.

In each collision we set cloud A at rest at the origin, i.e. (x0, y0, z0) =
(0, 0, 0) pc and (vx0, vy0, vz0) = (0, 0, 0) kms−1. We collide this cloud with
cloud B, which is placed at a position just outside the radius of cloud A, so
that the clouds are close but not touching. Since the radius of each cloud is
10 pc we set cloud B at (x0, y0, z0) = (22.0, 0, 0) pc with an initial velocity
(vx0, vy0, vz0) = (v0, 0, 0) kms−1. We vary v0 in each of our collisions, see table
4.2. This range of velocities was selected to reflect typical relative velocities
of collisions between molecular clouds in the disk of a barred galaxy [16].

Table 4.2: Initial conditions

Run N/106 Velocity of cloud B vx0 [km/s] E.O.S.
1 2.0 −2.0 Isothermal
2 2.0 −4.0 Isothermal
3 2.0 −6.0 Isothermal
4 2.0 −8.0 Isothermal
5 2.0 −10.0 Isothermal
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4.2 The collisions

Star formation in each collision usually begins after the clouds have signif-
icantly collided with each other. We cannot say for sure when the centers
collide, since the clouds begin to deform due to the gravitational influence
each cloud has on its partner before the centers reach each other. In the
collision at 2 kms−1 we observe that star formation occurs much earlier than
the collision between the two centers. In contrast, in the 10 kms−1 case the
clouds significantly collide before star formation takes place. In general we
find that star formation is induced earlier as collision velocity increases, as
shown in figure 4.3.

A good schematic view of the 10 kms−1 collision is shown in the four
panel figure 4.1. This is the highest velocity collision and shows that each
cloud hasn’t had enough time to collapse enough before the colliding. In this
case, the collision induces the star formation. The collisions 4, 6, 8 and 10
km s−1 follow this trend while in the 0 and 2 kms−1 cases the clouds deform
significantly as they fall into each other.

The star identifying algorithm shows no significant change through each
collision. The four identification criteria are satisfied generally the same at
each velocity, as shown in figure 4.2.

We can compare the star formation vs time for each collision, as shown in
figure 4.3. Star formation begins and finishes earlier as the velocity increases.
Detailed information regarding star formation beginning and ending times
with respect to each collision is displayed in table 4.3.

Table 4.3: Star Formation Times

Run vx0 [km s−1] Star formation begins [Myr] Star formation ends [Myr]

1 −2.0 0.24 0.25
2 −4.0 0.20 0.21
3 −6.0 0.18 0.20
4 −8.0 0.18 0.18
5 −10.0 0.17 0.18

It is important to note that we do not mean that the total time it takes
to form stars is shorter depending on the velocity, as it is roughly the same
time for each cloud from beginning to end of star formation. We mean that
the 10 km s−1 simulation will be done forming stars well before the 6 km s−1

cloud will begin. And well before the 0, 2 and 4 km s−1 clouds will begin
their star formation.

We choose not to show a snapshot or a contour map of the 0 km s−1

collision since the same information can be shown with the 2 km s−1 collision.
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Figure 4.1: Snapshot in the center-of-mass frame of a head-on collision at
10 km s−1. Here we highlight the low density environments with ρ ≈ 10−20

gcm−3 to show the shape of the clouds. The frames are at 0.1, 0.8, 1.2 and
1.84 Myr. The final frame is when the simulation was stopped, i.e. 10% of
the cloud mass formed stars.
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Figure 4.2: The four panels show our stellar candidate identification criteria
across increasing collision speeds, with initial velocities of 2, 4, 6 and 8 km/s.
If only the density criterion (Purple Boxes) is applied, we find many more
stars than by applying also the other criteria, as each system evolves with
time.
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In both cases, the clouds collapse onto themselves and form stars significantly
before colliding.

Figure 4.3: Number of formed stars at increasing collision speeds. Star
formation begins earlier as the speed of the incoming cloud is increased.
Each simulation is stopped when 10% of the cloud mass formed stars. At
low velocities, 0 and 2 km s−1, the total number of stars formed is greater
and formed much later than at higher velocities.

A snapshot of the 2 km s−1 collision is shown in figure 4.4. The left panel
shows the total zoomed out simulation as viewed perpendicular from the col-
lision. We observe significant star formation in the center of each cloud along
with a large filament structure falling from each cloud towards the center of
mass of the system. Stars form along this global filament preferentially closer
to the centers of each cloud. Each cloud still has most of its original spherical
shape when star formation begins, and has its own filament complex due to
the in fall of gas with the initial super sonic turbulence.

We can look in detail of the density of these regions and where the stars
are forming in the clouds by producing contour maps. Shown in figure 4.5
are four contour maps each highlighting a different scale and region in the 2
km s−1 collision. Since this collision did not result in a significant collision
plan we focused on showing all contour maps from the side view of the
collision.

As the velocity increases we begin to see piling up of gas with densities
exceeding ρ > 10−19.5 gcm−3 along the plane of collision (Y-Z plane). This
plane grows along the X-axis and in density as collision speed increases. The
4 km s−1 plane has a thickness of 0.5 pc spanning from X = −0.1 pc to
X = 0.4 parsec. The 6 km s−1 plane grows to a thickness of 1 pc which spans
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Figure 4.4: The two panels show different regions of the 2 km s−1 collision,
viewed from the side. The left panel is 10 pc to a side where we are able to
see a long filament of dense gas connecting the two clouds. The right panel
is a more detailed view, 3 pc to a side, showing the dense clumps in which
star formation may occur. The right panel also highlights the filaments in
cloud A (left cloud) which are produced by the supersonic turbulent velocity
field that are present.

Figure 4.5: Contour maps of the 2 km s−1 collision. The Panel goes from
most overall view top left to a star cluster view in the bottom right. All
panels are in the point of view from the side of the collision (X-Y plane).
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Figure 4.6: Contour maps of the 4 km s−1 collision. The two left panels
illustrate the overall view of the collision from the X-Y and Y-Z planes. The
right two panels highlight specific star clusters, 0.005 pc to a side.

from X = −0.5 pc to X = 0.5 pc. The 8 km s−1 extends to a thickness of
about 1.5 pc, from X = −0.75 pc to X = 0.75 pc. And finally the 10 km s−1

has a thickness of 2 pc starting at X = −1.0 pc and finishing at X = 1.0
pc. Stars form in the densest regions on the plane occurring in areas where
density exceed ρ = 10−12 gcm−3.

The contour maps highlighting the density of the star forming regions in
the collisions are shown in figures 4.6, 4.7, 4.8, 4.9. The left two panels of
each of the figures show an overall view of the collisions in both the X-Y,
and Y-Z planes. The right two panels show specific star clusters formed in
each of the collisions, also viewed in the X-Y and Y-Z planes.

4.2.1 Mass spectrum from the collisions

We compare the mass spectrum produced by each collision to see if there is
any influence that the initial velocity has on the spectrum of formed stars.
There seems to be a difference between the 2 km s−1 collision and the higher
velocity collisions, shown in figure 4.11. This may be because the collisions
involving velocities greater than 2 km s−1 star formation happens after the
collision, while in the 2 km s−1 case star formation begins before the collision.

To confirm this we performed a two sample Kolmogorov-Smirnov (K-S)
test to check the difference in the mass spectrum produced from the low
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Figure 4.7: Same as figure 4.6, but for the 6 km s−1 collision.

Figure 4.8: Same as figure 4.6, but for the 8 km s−1 collision.
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Figure 4.9: Same as figure 4.6, but for the 10 km s−1 collision.

Figure 4.10: A contour map of a star cluster formed from the 10 km s−1

collision. In the left panel we view the cluster in the X-Y plane, and in the
right panel in the Y-Z plane. The black points are the location of formed
stars.
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Figure 4.11: In the left panel we see a comparison of mass spectrum between
the 2 km s−1 collision shown in grey and the 4 km s−1 shown in red. In the
right panel we see the comparison between 2 km s−1 in grey and 10 km s−1

shown in red.

velocity collision (2 km s−1) with each of the higher velocity (4, 6, 8 and 10
km s−1) mass spectra. The results of the test show a p value of 0, which
confirms that there is no similarity between the IMF created from the 2
km s−1 collision and IMFs created by the 4, 6, 8 and 10 km s−1 collisions.
Full results of this test are shown in table 4.4.

We also performed a two sample K-S test to check the similarity between
each of the higher velocity cases (4, 6, 8 and 10 km s−1). The result shows
that there is no similarity between the higher velocity cases. We do not
observe an overall trend in the mass spectra as collision speed increases. We
conclude that this result is due to the stochastic nature of star formation
within molecular clouds.

Table 4.4: Results of the 2 sample K-S test. The mass spectrum of the 2
km s−1 collision was compared with itself and the higher velocity collisions.
The K-S statistic D, is the maximum difference between the two distribu-
tions.

Collision [km s−1] D statistic p value
2 0.0 1.0
4 0.62 0.0
6 0.48 0.0
8 0.56 0.0
10 0.46 0.0
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4.2.2 Star clusters

We identified and measured the masses of 24 clusters within the all of the
collisions. Each cluster was picked by eye where there exists a separate clump
of gas with densities ρ > 10−13 gcm−3 with an obvious compact population
of stars. A good example of clusters we identified can be seen in two right
panels of figures 4.6, 4.7, 4.8, 4.9. And another example is the cluster in
figure 4.10.

Figure 4.12: The green points are the logarithm of maximum stellar mass in
a cluster versus the logarithm the host cluster mass. The red line is a fitted
power law with an exponent of 1.

The number of stars in the identified clusters range from ≈ 10 members
to 600, with the total cluster mass ranging from ≈ 10M� to 6200M�. In each
of the clusters we measured the total mass of the cluster and the maximum
stellar mass in each cluster. We notice that there is a linear trend between
the logarithm of maximum stellar mass and the logarithm of total cluster
mass. Shown in figure 4.12 is fitted a power law with a slope of 1 to our
data, which was done through a linear regression that minimized the least
squares criterion. We also performed a chi-squared goodness of fit test of the
fitted line to our data, that confirms the line is a good fit with a p value of
p = 0.99. This confirms the trend shown in figure 1.8 which may provide
more insight into the upper limit on the maximum possible stellar mass.





Chapter 5

Summary and future work

5.1 Summary

In this thesis we studied the formation of stars from colliding molecular clouds
by performing smoothed particle hydrodynamic simulations of six head-on
collisions between two molecular clouds. The collisions were given an initial
velocity of 0, 2, 4, 6, 8 and 10 km s−1 respectively. Each cloud is turbulence
supported and marginally bound with radii of R = 10 pc and masses of
M = 4.35 × 104M�. The two clouds are identical except in their initial
supersonic turbulent velocity fields. Each velocity field was populated from
a Monte Carlo method which was seeded differently for each cloud. The
initial conditions of each cloud were kept the same in each simulation.

We identify the formation of stars in our simulations by a satisfaction
of four criteria: density, overlap, velocity divergence, and binding energy
criteria. We did not implement a sink creating algorithm during our runs,
rather we ran our simulations until significant clumpiness was achieved and
analyzed the stellar candidates as the system evolved. This was done to avoid
spurious sink creation. The accuracy of the criteria was checked, in chapter
3, by reproducing an initial mass function (IMF) of the formed stars from
a single cloud collapse and comparing to the IMF predicted by Saltpeter.
We also tested how an increase of mass resolution would populate a mass
spectrum with a build up of masses below 2M�, and a lack in masses above
10M�.

In section 4.2, we find that in collisions involving initial velocities > 2
km s−1 star formation begins after the centers of each cloud have significantly
collided. Star formation is initiated earlier as the velocity of the collision
increases, while slightly more stars form at lower collision velocities. We
observe, in section 4.2.1, a difference in the mass spectra produced from the
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2 km s−1 collision and the higher velocity collisions (4, 6, 8 and 10 km s−1).
This is confirmed by performing a 2 sample Kolmogrov-Smirnov test on the
mass spectra from the 2 km s−1 collision with each of the higher velocity
collisions.

Finally in section 4.2.2 we identify 24 star clusters in all of our simulations
of colliding molecular clouds. The number of stars in the clusters range from
≈ 10 members to 600, with the total cluster mass ranging from ≈ 10M�
to 6200M�. We observed a linear relationship between the logarithm of the
maximum stellar mass in the cluster and the logarithm of the host cluster
mass.

5.2 Future Work

There are three areas where this research can be developed in the future. The
first would be to implement the sink finding algorithm described in chapter
3 into the ChaNGa code. This would allow future SPH simulations of star
formation in molecular clouds using ChaNGa to correctly identify and use
sinks while the simulation runs. In order to adapt this method we need to
implement a correct recipe for accretion of SPH particles onto existing sinks.
This would allow the forming stellar systems, identified as sinks, to better
evolve with time. These methods are not new to hydrodynamic simulations
of star formation, but the implementation of a sink creation and accretion
model in into code with better gas treatment like ChaNGa will improve
numerical studies of star formation.

Second, we need to give a more robust investigation of the linear trend
between the logarithm of maximum stellar mass in a cluster verses the log-
arithm cluster mass, which was observed in section 4.2.2. This can be done
by including current recipes for radiative cooling of planetary systems in our
simulations. In each of the simulations in this thesis the evolution of star
formation was assumed to be isothermal. This does not properly treat the
local variations of the equations of state that might occur between the bal-
ance of heating and cooling mechanisms of forming protostellar systems. We
can follow the prescriptions used in the research of Boley et al. [7].

Finally we can focus this research on the star formation from molecular
cloud collisions in the center of the Milky Way. The origin of young massive
stars within the central parsec of the Galactic Center is an open question [17],
[30]. Current numerical studies have been put forth to study the phenomenon
of star formation in molecular clouds orbiting the Milky Way’s central black
hole [31]. Also recent observations have confirmed collisions of molecular
clouds in the Galactic center involving velocities of ≈ 50 km s−1 [46]. We can
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study star formation by introducing a super-massive black hole particle into
our simulations through a collisionless particle of Mbh = 3.5 × 106M� and
putting the clouds into orbit around it.
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