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“It is a truth universally acknowledged, that a single man in possession of a good fortune, 

must be in want of a wife.” 

Jane Austen, Pride and Prejudice 
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Abstract 
 

The literature on assortative mating usually focuses on how individuals cope on the basis of 

their characteristics and on which effects the match has on the two people. This paper tries to 

investigate whether assortative mating is influenced by parental background more than by 

individuals’ peculiarities. Focusing on education we run a cross-countries OLS estimation in 

order to prove the presence of an effect of parents’ education on partner’s and investigate how 

this effect differs from country to country. Later on, we also use IV regression models in order 

to get rid of any endogeneity affecting our independent variables. We found evidence of a strong 

effect of parents’ education on the characteristics of their children’s partners; this effect is 

bigger in countries where social mobility is lower and vice-versa, former USSR countries have 

the lowest coefficients. IV estimation confirms our results and suggests the real effect might be 

even greater than the one estimated by OLS. Because of the lack of data on parents’ 

characteristics, this paper cannot provide a precise estimate of the magnitude of the effect of 

parental background on assortative mating but it can be considered as an initial step toward a 

more consistent explanation of the phenomenon. 
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Introduction 
 

Economists have been investigating assortative mating and the choice of the partner since the 

last decade of the XX century. Despite it could appear as topic closer to sociology than to 

economics, several consequences on social mobility, equality and distribution of income are 

proved to exist. 

Stratification of society in classes is, in fact, a phenomenon which dates back to the origin of 

human civilizations and still persists. Even if we can firmly claim our society to be much more 

mobile than in past, many steps are still to be made in order to get an environment where 

economic background does not matter in determining who you are going to become. 

Marriages have always been a way through which families try to improve or at least maintain 

their status, to the point that very often marriages were more of an economic than a romantic 

issue. For example, Glückel of Hameln made a purpose of her life to marry her sons and 

daughters in the most prominent Jewish families of several European countries in order to get 

insurance against shocks that could affect a region instead of another (Kaufmann, 1896). 

In this kind of world, it is easy to understand how the accumulation of a dowry for his daughter’s 

wedding was one of the most important and difficult purposes of a man. Depending on what a 

father could save for her, a girl’s perspective could radically change. 

For these reasons, we think that the economic literature on assortative mating, though broad 

and widespread, still misses an important aspect: the role of parental background in the choice 

of the partner.  

In fact, even if a great number of authors investigated how individuals pair in terms of personal 

and economic characteristics (i.e. education, income, status, etc …) and returns people get from 

getting married, very few papers deal with the influence of parents in this decision. 

Probably, this is due to the idea of wedding and partners as something regarding the most 

intimate dimension of a person so that it might sound absurd other people’s characteristics can 

matter. On the other hand, if we meditate on how such a great part of who we are is determined 

by factors not depending on us (e.g.: where we were born) it does not seem so strange external 

factor could affect who we choose. 

All of the literature on intergenerational persistence is indeed based on this hypothesis: much 

our scope of action depends on conditions already set before our birth. 
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After these considerations, it appears unreasonable to have plenty of papers on how parental 

background affects education, earnings or occupation but only a few studies considering its 

effect on partner’s characteristics. 

The lack of relevant literature, and the importance we think this aspect has, made us choose this 

topic. Our aim is to put the light on this issue so that other researchers would find interesting to 

inspect the subject deeper in the near future. 

In this paper, we want to show a preliminary investigation on the effects of parental background 

on the choice of the partner. In particular, we want to determine if parents’ education can predict 

partner’s years of schooling. We are focusing on education as it can be considered as an easy 

measurable proxy for many other observable and unobservable. Our analysis will cover 

different countries and try to solve those endogeneity problems which may have stopped 

previous academics from going deep on the subject. 

After this brief introduction, we are going through a review of the literature related to assortative 

mating and intergenerational mobility. Then, we divided the main part of this dissertation into 

four parts we called Chapters containing the description of data, models and results. In Chapter 

1, we present a comparison among seventeen European countries basing our analysis on 

SHARE database through a multivariate OLS regression model. In Chapter 2, we restrict the 

scope of our analysis only on countries once part of the Nazi Reich in order to exploit the 

exposure of individuals to World War II as the instrument in an IV model. Later, in Chapter 3, 

we run the same regressions on a different a database, pairfam, in order to see whether our 

findings can get external validity. In Chapter 4, finally, we put the two databases together to 

exploit an even greater variability. The last part of the paper is dedicated to sum up the findings 

and conclude. 
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Related Literature 
 

This paper relates to the literature on assortative mating and to the one on intergenerational 

persistence too. 

Actually, our paper is quite unique in its aim: identify the effect of parental background on 

partner’s quality. To our knowledge, the only study with a similar focus is the one by Hu (2006) 

investigating the relationship between father’s occupation and spouse’s education in China. He 

finds a strong influence of parents’ characteristics on the choice of the partner. Moreover, he 

finds a high correlation between parents’ characteristics and parents in law’s. 

A much broader literature has instead developed on assortative mating in recent years. The most 

famous study on this topic has been led by Lefgren and McIntyre (2006), they found a strong 

correlation between women’s education and husbands’ income and marital status. Through 

Data obtained by the 2000 Census, they claim that about half of the increase in a woman’s 

available income predicted by higher education is attributable to the marriage market.  

Another interesting research is the one by Kaufmann et al. (2013) where they investigate the 

relationship between education and partner’s quality in Chile. According to their paper returns 

of education in terms of partner’s quality is twice for women than for men.  

In fact, the vast majority of authors looked for a correlation between spouses’ characteristics as 

education or earnings. This is, for example, the case of Quian & Quian (2017) who relates 

marriage outcomes to education and province of origin in China. 

On the other hand, several authors also investigated the effects of marriage on the returns of 

education. E.g. Liu (2011) proved that getting married boost returns of education for women 

with less than two years of college in Sweden. A similar conclusion has been reached by Huang, 

Li et al. (2009) in their paper on cross-productivity between spouses exploiting Chinese twins 

data in order to control for unobserved characteristics. 

Lam & Schoeni (1994) found evidence of an influence of parents’ and parents in law’s 

characteristics on individual’s earnings in both the United States and Brazil. 

As the main channel through which the parental background affects partner’s choice is 

individual’s own characteristics, this paper also relates to the literature on intergenerational 

educational persistence. 

On this topic, a very impressive work is the one by Hertz et al. (2007) where they look for the 

correlation between parents and children’s education in 42 countries in a 50-year long period. 
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They found the presence of a decreasing-in-years predictive power of parents’ education on 

their children’s achievements. 

Daouli, Demoussis, and Giannakopoulos (2010) explore the educational persistence through 

three Greek cohorts finding a quite high rate of social mobility but the presence of little 

educational persistence in women. 

Another interesting contribute comes from Azam (2016) examining the intergenerational 

educational persistence among daughters in India. According to his conclusions, daughters’ 

probability to attend secondary education is highly correlated to father’s schooling and this 

predictive power is not declining in time. 

Dustmann (2004) looked at how parental background influences the choice of the school track 

in Germany and its consequences in terms of occupation and earnings. 

This paper contributes to the literature in the following ways.  

First, as it is very difficult to separate parental background and marriage patterns from country-

specific culture, the great part of the quoted researches focus on only one country. Differently, 

our study aims to make a comparison among 17 European countries. 

Second, besides Lofgren & McIntyre (2006) only DeSilva & Bakthiar (2011) use an 

Instrumental Variable approach to solve the endogeneity of education in assortative mating. 

They chose to use, respectively, the quarter of birth and the order of birth to instrument 

individual’s education. In order to solve the endogeneity of parents’ education, we are using 

the exposure to the World War II as an exogenous variable. 

Finally, to our knowledge, nobody have ever tried to estimate the effect of parental background 

on partner’s quality in Europe. 
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Chapter 1 – Cross-Country OLS Estimation 

Data 

 

To investigate how parental background affect individuals’ chances in the marriage market, we 

need data on individuals’ characteristics, on their partners’ and on their parents’. Unfortunately, 

it is very difficult to find such a database as most of the surveys conducted by research institutes 

usually focus either on the present condition or on lifelong perspective. Which is why in most 

of the publicly accessible databases we can find information either on partners or on parents 

but not both. 

The Survey on Health, Ageing, Retirement and Education (SHARE) is a unique 

multidisciplinary and cross-national panel database of micro data on health, socio-economic 

status and social and family networks of more than 120,000 individuals aged 50 or older. The 

first wave of SHARE has been released in 2004 and since then it improved in the depth of 

analysis and dimension. Through the six waves of data which have been published until now, 

researchers collected information from 27 countries regarding different aspects of interviewed 

households. 

Given the fact that any wave refers to a different survey, not all they contain the same 

information. For this reason, I only referred to information collected in waves 5 and 6, which 

were collected through surveys in 2013 and 2015.  

Inside SHARE database, I was able to get information about education of individuals, their 

partner and their parents. I considered years of education for both individuals and their partners 

while, due to the way in which observations had been collected, I used ISCED 1997 coding for 

their parents. As ISCED is a reclassification of educational attainments through common 

standards, I could compare individuals of different countries despite every country having a 

specific and idiosyncratic educational system. 

 

ISCED 1997 codification is composed of six categories corresponding to: 

 ISCED 0   Pre-primary level of education 

Initial stage of organised instruction, designed primarily to introduce very young 

children to a school-type environment.  
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 ISCED 1   Primary level of education 

Programmes normally designed to give students a sound basic education in reading, 

writing and mathematics.  

 

 ISCED 2   Lower secondary level of education.  

The lower secondary level of education generally continues the basic programmes of 

the primary level, although teaching is typically more subject-focused, often employing 

more specialised teachers who conduct classes in their field of specialisation.  

 

 ISCED 3   Upper secondary level of education  

The final stage of secondary education in most countries. Instruction is often more 

organised along subject-matter lines than at ISCED level 2 and teachers typically need 

to have a higher level, or more subject-specific, qualification that at ISCED 2. There are 

substantial differences in the typical duration of ISCED 3 programmes both across and 

between countries, typically ranging from 2 to 5 years of schooling. 

Therefore, these programmes lead directly to labour market, ISCED 4 programmes or 

other ISCED 3 programmes.  

 

 ISCED 4   Post-secondary, non-tertiary education  

These programmes straddle the boundary between upper secondary and post-secondary 

education from an international point of view, even though they might clearly be 

considered as upper secondary or post-secondary programmes in a national context. 

These programmes are often not significantly more advanced than programmes at 

ISCED 3 but they serve to broaden the knowledge of participants who have already 

completed a programme at level 3. The students are typically older than those in ISCED 

3 programmes. They typically have a full-time equivalent duration of between 6 months 

and 2 years. These programmes lead directly to labour market or other ISCED 4 

programmes.  

 

 ISCED 5   First stage of tertiary education  

Programmes with an educational content more advanced than those offered at levels 3 

and 4. 
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 ISCED 6   Second stage of tertiary education  

This level is reserved for tertiary programmes that lead to the award of an advanced 

research qualification. The programmes are devoted to advanced study and original 

research. 

 

When coming to consider years of education for individuals’ parents I had to impute them, as 

this kind of information is not included in SHARE database. In order to do that I considered the 

average schooling for any ISCED category in each country of the sample. If for example, the 

average schooling for individuals with an ISCED 3 was 12 in Italy, I imputed to fathers and 

mothers with ISCED 3 12 years of education. 

The countries represented in the sample are 17 (Austria, Germany, Sweden, Netherlands, Spain, 

Italy, France, Belgium, Denmark, Switzerland, Greece, Israel, Czech Republic, Luxembourg, 

Slovenia, Estonia and Croatia). Observation for Greece and Croatia are present only in wave 6 

while observations for Netherlands belong exclusively to wave 5. 

The variety of countries in our sample it is very important because, even though we could think 

that Europeans share a lot in terms of cultural heritage and social norms, during the period in 

which the individual of our sample and their parents studied and got married Europe was parted 

in two completely different spheres of influence. 

In fact, there is no doubt that whether living in a NATO member state or in a Communist 

country did make a huge different in terms of education, job opportunities and way of life. 

 

Descriptive Patterns 

 

With the aim to describe our sample, in Table 1.1 we see the composition of the sample by 

country of origin and gender. Globally our sample contains 25 452 men and 30 956 women for 

a total of 56 408 individuals aged between 50 and 75. 

Looking at Table 1.2 we see how individuals’ average years of education is slightly higher than 

11 and the value for their partners is very similar but when differentiating by gender we see that 

men have half a year of education more than women on average. The gap between genders is 

bigger than one year in Germany, Greece and Croatia while in Sweden and Estonia women are 

on average more educated than men (Table 1.3). 
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Table 1.4 describes parental education. We reported the percentage of fathers and mothers 

having an ISCED equal or higher than 3 i.e. having completed at least secondary education. Big 

differences can be observed both among countries and gender. North Europe countries have 

generally a higher fraction of high-educated parents but in South Europe countries, we can see 

a smaller difference between men women. In no countries, women are on average more 

educated than men. 

 

Table 1.1 – Composition of the sample by gender 

Country Male Female Total 

Austria 1412 1865 3277 

Germany 2065 2287 4352 

Sweden 151 1795 3305 

Netherlands 1403 1738 3141 

Spain 2103 2398 4501 

Italy 208 2521 4601 

France 1555 1911 3466 

Denmark 1622 1847 3469 

Greece 925 1107 2032 

Switzerland 1031 1249 228 

Belgium 2249 2611 486 

Israel 722 947 1669 

Czech Republic 1844 2526 437 

Luxembourg 774 859 1633 

Slovenia 1471 1774 3245 

Estonia 1723 2371 4094 

Croatia 916 1115 2031 

  

 

This pattern is not surprising because, as we know from Barro and Lee, women caught up in 

education only from the cohorts around 1950. As in our sample individuals were born from 

1940 until 1965 for sure their parents belonged to a generation where boys were expected to be 

more educated than girls (Barro and Lee, 2010). 
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Moreover, as we can see from Table 1.5 and 1.6 for some individuals’ parents we could not 

retrieve information about their education. These individuals will not take part in the sample 

we are using for our regression. 

Finally, we have to state that, as we can see from Table 1.7, people born later in time tend to be 

more educated in every country but Austria and Switzerland. This could easily be explained 

with better access to education due to increasing wealth and welfare systems. 

Table 1.3 – Summary of the variables of interest 

 

Observations Average 
Standard 

Deviation 
Min Max 

Years of 

Education 
56 408 11 570 4 223 0 25 

Partner's 

Education 
44 358 11 584 4 204 0 25 

Father's 

Education 
56 408 1 906 1 547 0 6 

Mother's 

Education 
56 408 1 534 1 312 0 6 
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Table 1.2 – Average schooling by gender and country 

Country Male Female 

Austria 9,427 9,179 

Germany 13,312 12,352 

Sweden 11,713 12,071 

Netherlands 12,512 11,571 

Spain 9,580 9,123 

Italy 9,798 8,944 

France 12,195 11,888 

Denmark 13,809 13,407 

Greece 10,858 9,756 

Switzerland 9,184 8,417 

Belgium 12,949 12,324 

Israel 12,852 12,651 

Czech Republic 12,733 11,894 

Luxembourg 11,114 10,546 

Slovenia 11,263 9,999 

Estonia 9,427 9,179 

Croatia 13,312 12,352 
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Table 1.4 – Percentage of parents with at least secondary education by country 

Country Father Mother 

Austria 60% 29% 

Germany 79% 43% 

Sweden 22% 13% 

Netherlands 21% 10% 

Spain 5% 3% 

Italy 6% 5% 

France 22% 15% 

Denmark 57% 28% 

Greece 13% 5% 

Switzerland 59% 32% 

Belgium 30% 21% 

Israel 38% 33% 

Czech Republic 68% 41% 

Luxembourg 34% 15% 

Slovenia 34% 31% 

Estonia 10% 6% 

Croatia 60% 29% 
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Table 1.5 -  Missing value for father's Education 

Country Refusal 

Don't 

Know 

Still in 

education Other Total 

Austria 3 100 0 3 106 

Germany 5 200 0 5 210 

Sweden 14 108 0 25 147 

Spain 8 46 1 1 56 

Italy 23 52 0 1 76 

France 5 120 0 1 126 

Denmark 1 76 0 3 80 

Greece 2 15 0 2 19 

Switzerland 1 58 0 6 65 

Belgium 1 255 2 18 276 

Israel 25 10 0 1 36 

Czech 

Republic 1 4 0 7 12 

Luxembourg 1 56 0 3 60 

Slovenia 64 134 1 1 200 

Estonia 7 77 0 12 96 

Croatia 6 30 0 0 36 

Total 167 1341 4 89 1601 

 

 

Table 1.6 -  Missing values for mother's Education 

Country Refusal 

Don't 

Know 

Still in 

education Other Total 

Austria 2 31 0 2 35 

Germany 0 81 0 2 83 

Sweden 6 46 0 13 65 

Spain 2 22 0 0 24 

Italy 22 34 0 0 56 

France 3 71 0 1 75 

Denmark 0 22 0 0 22 

Greece 1 8 0 0 9 

Switzerland 2 32 0 3 37 

Belgium 1 155 0 6 162 

Israel 22 7 1 2 32 

Czech 

Republic 1 1 0 2 4 

Luxembourg 0 34 1 1 36 

Slovenia 52 42 0 0 94 

Estonia 0 36 1 1 38 

Croatia 3 11 0 0 14 

Total 117 633 3 33 786 
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Table 1.7 – Average schooling by cohort and country 

Country ’41-‘45 ’46-‘50 ’51-‘55 ’56-‘60 ’61-‘65 

Austria 9.377 9.113 9.414 9.601 9.318 

Germany 12.531 13.026 13.236 13.227 13.359 

Sweden 13.087 11.592 12.297 12.932 12.973 

Netherlands 11.138 12.156 12.489 13.374 13.190 

Spain 8.461 9.091 10.359 11.328 11.849 

Italy 8.099 8.970 10.219 10.810 12.056 

France 11.812 12.047 12.516 12.703 13.471 

Denmark 12.902 13.722 14.021 14.419 14.153 

Greece 8.354 9.348 10.428 11.652 12.116 

Switzerland 8.651 9.109 8.874 8.645 7.724 

Belgium 12.062 12.694 13.022 13.292 13.036 

Israel 12.211 13.009 13.195 13.310 13.643 

Czech Republic 11.999 12.508 12.334 12.600 12.738 

Luxembourg 11.786 12.004 11.735 12.267 13.443 

Slovenia 10.865 11.099 10.978 11.277 11.278 

Estonia 11.839 12.247 12.549 12.846 12.791 

Croatia 9.904 11.057 10.925 11.102 11.685 

 

 

Methodology 

 

The aim of our research is trying to identify the effect of parental background on the choice of 

the partner. In order to do so, we have to define which characteristic of the individuals, their 

parents and their partners we want to take into consideration. The characteristic we selected is 

education. We made this choice for two main reasons: 

- It is a good proxy for many other characteristics as for example earnings and health; 

- It is a variable that can be easily compared across countries. 
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We expect high-educated parents to be correlated with high-educated partners for their children. 

With this hypothesis, we try to link the findings of Lefgren about assortative mating and those 

of Dustmann about effects of parental background on education. In fact, the question driving 

our research is whether parental background affects outcomes in the marriage market. 

It is common in several cultures, both in the past and at present day, for the head of the family 

to choose his children’s spouses on the base of economic convenience. These arrangements 

between families often prevented individuals from marrying up or down and hindered 

intergenerational social mobility. The idea underlying our quest is that, even if arranged 

marriages are not common in Europe since the XIX century, parents can still influence their 

marriage perspective through other channels. 

In the past, when girls entered the marriage market were evaluated on the base of the dowry 

they could bring plus a bunch of other personal characteristics. Men, instead, were ranked on 

the basis of their expected income. Trying to replicate this pattern at the present day we could 

think as female education also as a dowry making girls able to get a better husband. 

Consistent with this thesis are the results obtained by Lefgren and McIntyre (2006) showing 

that a higher education affects women’s well-being boosting both the probability of getting 

married and their expected return on the marriage market. Going on the same the direction, we 

are expecting to find that the effect of parental education on the quality of the partner is higher 

for women than for men. 

Ideally, we would like to run a simple OLS regression of this kind: 

𝑦𝑖
𝑝

= 𝛼0 + 𝛼1𝑚𝑜𝑡ℎ𝑒𝑟𝑖 + 𝛼2𝑓𝑎𝑡ℎ𝑒𝑟𝑖 + 𝜷𝑿𝑖 + 휀𝑖                                                                   (1) 

Where the dependent variable 𝑦𝑖
𝑝
 is years of education of the ith individual’s partner. 𝑓𝑎𝑡ℎ𝑒𝑟 is 

a dummy equal to one if the ISCED code of the ith individual’s father is at least 3 and 𝑚𝑜𝑡ℎ𝑒𝑟𝑖 

is an identical indicator for mother’s education. 𝑿𝑖 is a set of dummy variable controlling for 

which of the five-year cohorts we divide the century the individual was born and his age when 

data had been collected and the wave to which the observation belongs. 

Of course, running this simple model will put us in the same position of Dustmann (2004): 

finding a high and significant effect of parental education on partner’s education but not being 

able to address how much of that coefficient represents the direct effect and how much is instead 

a bias due to other individual’s characteristics correlated with the education of his parents. 
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In fact, there could be many channels through which parental education can affect the choice 

of the partner. E.g: better parents have better children who look for a better partner. 

We think that the main channel through which these two variables are connected is individual’s 

education. Several authors discussed the relation between parents’ education and children’s 

(Chevalier, 2004, Dubow, 2009) and no fewer economists investigated educational assortative 

mating (Eika, 2014, Mare, 1991). 

Taking into consideration this issue, it would come naturally to add a term for individual’s 

education in our model. Thus, it would like: 

𝑦𝑖
𝑝

= 𝛼0 + 𝛼1𝑚𝑜𝑡ℎ𝑒𝑟𝑖 + 𝛼2𝑓𝑎𝑡ℎ𝑒𝑟𝑖 + 𝛼3𝑦𝑖 + 𝜷𝑿𝑖 + 휀𝑖                                                     (2) 

Where 𝑦𝑖  is years of education of the individual i. 

However, this model could be a good starting point if we wanted to estimate 𝛼3
1. As we are 

looking for the value of  𝛼1 and 𝛼2, controlling for the education of the individual will bias our 

estimate. This is because 𝑦𝑖  comes later in time with respect to 𝑚𝑜𝑡ℎ𝑒𝑟𝑖 and 𝑓𝑎𝑡ℎ𝑒𝑟𝑖 and most 

likely it is an outcome of these two variable. We are facing a classical problem of bad control 

(Angrist & Pischke, 2008).  

In this first chapter, we are going to exploit equation (1) using both the dummy and the years 

of the education. 

In the first case, we decide to use a dummy variable of this kind instead of adding a vector for 

the ISCED because we are not interested in the changing of the outcome depending on the level 

of parental education but we want to infer the difference made by having “a certain kind of 

family”. 

We put the threshold at level 3 considering that at the beginning of the XX century only a few 

people could afford secondary education. Putting the threshold at 5 would have restricted the 

sample too much while choosing level 2 would have probably been meaningless for those 

countries where the attendance rate of elementary school was already high. 

Later we also ran a regression using a variable mother and one using a variable 𝑝𝑎𝑟𝑒𝑛𝑡 instead 

of 𝑓𝑎𝑡ℎ𝑒𝑟. 𝑚𝑜𝑡ℎ𝑒𝑟 is an indicator built exactly as 𝑓𝑎𝑡ℎ𝑒𝑟 but considering the education of the 

ith individual’s mother. Parent is a dummy for at least one of the parents with ISCED higher 

than 3. 

 

                                                             
1 Actually, 𝑦𝑖 is endogenous too. Thus, we would need a different model even to estimate 𝛼3. 
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In running this kind of regression, we are aware of two main problems. First, the sample is not 

random as the higher the level of education the higher the probability of getting married. 

Second, parental education can affect the education of the partner both directly and through the 

education of the individual. 

These issues can be solved by using other estimation techniques as IV regression, which is what 

we are going to show in the following sections. In this part of the analysis, we prefer to use 

OLS because it gives us more precise estimates, even if biased. In fact, here we are not 

interested in finding the absolute value of father but we want to describe how it varies across 

countries. For this reason, we can assume the error term to be composed of two parts: one 

common to all the countries and country-specific one. 

Assuming the bias to be the same across countries of our sample is not that unrealistic if we 

look at the work of Hajnal (1965) in identifying a common pattern of marriage for Western 

Europe. Major differences in families formation and composition can be found if comparing 

different continents like Europe and Eastern Asia (Lund and Kurosu, 2014). 

Thus, we suppose the error term to have this form: 

휀𝑖 = 𝛿 + 𝜖𝑖                                                                                                                               (3) 

Where 𝛿 is the part of the bias which is equal among the countries and 𝜖𝑖 is instead a term 

such that E[𝜖𝑖|𝑦𝑖 , 𝑓𝑎𝑡ℎ𝑒𝑟𝑖, 𝑋𝑖] = 0. 

Given the assumptions above, we are no more interested in the absolute value of coefficient 𝛼2 

but in: 

�̅�2 =  𝛼2𝑗 −  𝛼2𝑘  , with  𝑗 ≠ 𝑘                                                                                                  (4) 

being 𝑗 , 𝑘 countries of our sample. 

Moreover, as we can notice in Table 1.6 and Table 1.7, for many countries the differences in 

the probability of marriage between those with high-educated parents and those without is not 

even significantly different from zero. Thus, at least for some countries, we could assume that 

education of father is orthogonal to the probability of marriage. 
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Table 1.7 - Differences in Probability of Marriage for Men 

 
Father=1 Father=0 

Difference in 

Probability 

Austria 0,782 0,816 0,033   

Germany 0,842 0,813 -0,028   

Sweden 0,841 0,851 0,010   

Netherlands 0,820 0,848 0,029   

Spain 0,790 0,875 0,085 *** 

Italy 0,874 0,855 -0,019   

France 0,841 0,793 -0,048 *** 

Denmark 0,849 0,823 -0,026   

Greece 0,837 0,863 0,026   

Switzerland 0,831 0,865 0,033   

Belgium 0,779 0,807 0,029   

Israel 0,918 0,899 -0,019   

Czech 

Republic 0,853 0,850 -0,003   

Luxembourg 0,861 0,859 -0,002   

Slovenia 0,856 0,867 0,011   

Estonia 0,847 0,814 -0,033   

Croatia 0,825 0,879 0,053   
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Table 1.8 – Differences in Probabilty of Marriage for Women 

 Father=1 Father=0 
Difference in 

Probability 

Austria 0,619 0,677 -0,058 *** 

Germany 0,813 0,794 0,019  

Sweden 0,716 0,776 -0,059 *** 

Netherlands 0,756 0,811 -0,055 *** 

Spain 0,754 0,827 -0,074 *** 

Italy 0,743 0,763 -0,020  

France 0,714 0,687 0,027  

Denmark 0,792 0,793 -0,001  

Greece 0,605 0,722 -0,118  

Switzerland 0,759 0,763 -0,004  

Belgium 0,692 0,733 -0,041 *** 

Israel 0,789 0,794 -0,005  

Czech 

Republic 
0,660 0,664 -0,004  

Luxembourg 0,779 0,782 -0,004  

Slovenia 0,776 0,779 -0,003  

Estonia 0,652 0,617 0,035  

Croazia 0,726 0,770 -0,044  

 

Results  

 

In this section, we are going to go through the results of the estimation of Equation 1. Taking 

into account the possible problems arising because of the endogeneity of our parameters of 

interest we are going to talk about our estimates in relative terms. 

Before going to estimates of coefficients in Equation 1, we think it would be interesting to show 

results when the dummy states simply if at least one of the parents has secondary education. 

Thus having a model built in this way: 

𝑦𝑖
𝑝

= 𝛼0 + 𝛼1𝑝𝑎𝑟𝑒𝑛𝑡𝑖 + 𝜷𝑿𝑖 + 휀𝑖                                                                                           (5) 
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Where 𝑝𝑎𝑟𝑒𝑛𝑡𝑖 is equal to 1 when at least one of the parents as an ISCED equal or higher than 

3 and 0 otherwise. 

Results of this estimation are shown in Table 1.9. 

In Table 1.10. we can find the estimates of the dummy father and mother in all of the countries 

in our sample for both males and females. Looking at the first two columns, those reporting 

estimates for men, we can see the highest coefficients belongs to Southern European countries 

as Italy, Spain and Greece. One first hypothesis is that these results depend on the lower 

percentage of high-educated parents we can find in these countries. In fact, the advantage of 

having a secondary education is more relevant if the population of high-educated people is 

smaller.  

Anyway, this is not said to be the only possible explanation. If it were, in fact, also Estonia, 

which its percentage of secondary-educated parents is among the lowest, should have a 

relatively high coefficient for both mother and father. An interesting explanation could be the 

belonging of Estonia to the USSR: during Communist Era, especially in the early years, social 

classes were weakly related to education as often people were assigned to schools, jobs or places 

to live by the central government (Fitzpatrick, 2002). 

This hypothesis is strengthened by the low coefficients of Czech Republic, another country 

under the influence of the Soviet Union from 1948 until 1989. 

Thus, we can imagine that the completing of at least secondary education is directly linked to 

the belonging to a high social class. In this case, bigger coefficients in countries with few people 

going to high school could mean that the children of highly educated parents are more likely to 

marry high educated partner, not because of education itself but because only children 

belonging to a certain social class went to high school. Consistent with this high hypothesis is 

the fact that the countries with big coefficients in our model are the those with low 

intergenerational mobility and vice-versa in the literature. (Comi, 2009, Jäntti et al., 2006, 

Blanden, 2005) 

Another thing we can notice in Table 1.8 is that coefficients of  𝑓𝑎𝑡ℎ𝑒𝑟 are higher for women 

than for men in almost all of the countries. This is consistent with our previous hypothesis of 

female education more as an investment in relational capital than in human capital as women 

participation to the labour market, especially in Mediterranean Europe, was quite poor. 
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Comparing the results of this table with those of the previous one, we see that coefficient of 

Table 1.9 are closer to those of 𝑓𝑎𝑡ℎ𝑒𝑟 for women and to those of 𝑚𝑜𝑡ℎ𝑒𝑟 for men. This 

suggests a sort of cross-gender effect we are going to discuss later on in this paper. 

When looking at Table 1.9 we see a similar estimation but using years of education instead of 

a dummy stating whether parents completed at least secondary education. Here the differences 

between countries are smaller and it is not easy to find a pattern as we did for Table 1.8. Ideally, 

we would expect countries on the top of the chart in the previous table to be the same at the top 

here. The reason for this inconsistency could be the fact the education has a similar effect in all 

of the countries but affecting different individuals. In fact, here we are considering the effect of 

one additional year of education irrespective of this being one year of primary, secondary school 

or college.  

 

 

Table 1.9 - OLS estimation of parents’ education on partner’s education 

Country Men Women 

Austria 0,846 *** 1,486 *** 

Germany 1,13 *** 1,72 *** 

Sweden 1,544 *** 1,595 *** 

Netherlands 1,686 *** 2,095 *** 

Spain 3,573 *** 4,952 *** 

Italy 4,166 *** 4,35 *** 

France 1,804 *** 2,317 *** 

Denmark 0,894 *** 1,211 *** 

Greece 2,685 *** 2,585 *** 

Switzerland 1,712 *** 2,082 *** 

Belgium 1,538 *** 2,13 *** 

Israel 2,784 *** 2,496 *** 

Czech Republic 1,345 *** 1,173 *** 

Luxembourg 2,374 *** 3,899 *** 

Slovenia 1,946 *** 1,827 *** 

Estonia 0,984 *** 1,631 *** 

Croatia 2,593 *** 2,453 *** 

  



21 
 

 

 

 

 

 

Table 1. – OLS estimation of parent’s education on partner’s education  

Country Men Women 

  father mother father mother 

Austria 0,067   1,709 *** 0,531   2,001 *** 

Germany 0,546 *** 1,009 *** 1,332 *** 0,906 *** 

Sweden 1,266 *** 0,983 *** 1,230 *** 1,097 *** 

Netherlands 1,304 *** 1,375 *** 1,745 *** 1,437 *** 

Spain 3,015 *** 1,844 *** 4,639 *** 1,947 *** 

Italy 2,963 *** 3,356 *** 3,786 *** 1,939 *** 

France 1,366 *** 1,188 *** 1,590 *** 1,584 *** 

Denmark 0,635 *** 0,850 *** 1,064 *** 0,757 *** 

Greece 1,835 *** 2,591 *** 2,029 *** 1,689 *** 

Switzerland 1,484 *** 0,392   1,629 *** 0,982 *** 

Belgium 1,216 *** 1,027 *** 1,454 *** 1,379 *** 

Israel 1,575 *** 1,829 *** 1,537 *** 1,674 *** 

Czech Republic 0,928 *** 0,928 *** 0,522 *** 1,079 *** 

Luxembourg 1,869 *** 1,442 *** 3,256 *** 2,162 *** 

Slovenia 1,465 *** 1,206 *** 1,316 *** 1,670 *** 

Estonia 0,309   1,003 *** 0,983 *** 1,145 *** 

Croatia 1,731 *** 2,239 *** 2,081 *** 0,697   
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Table 1.9 - OLS estimation of parent’s years of schooling on partner’s education 

Country Men Women 

  father mother father mother 

Austria 0,352 *** 0,163   0,392 *** 0,129   

Germany 0,199 *** 0,295 *** 0,318 *** 0,247 *** 

Sweden 0,191 *** 0,173 *** 0,194 *** 0,196 *** 

Netherlands 0,197 *** 0,366 *** 0,387 *** 0,321 *** 

Spain 0,385 *** 0,384 *** 0,517 *** 0,377 *** 

Italy 0,254 *** 0,518 *** 0,411 *** 0,284 *** 

France 0,300 *** 0,203 *** 0,315 *** 0,336 *** 

Denmark 0,122 *** 0,122 *** 0,169 *** 0,130 *** 

Greece 0,228 *** 0,372 *** 0,207 *** 0,363 *** 

Switzerland 0,128 *** 0,098   0,171 *** 0,190 *** 

Belgium 0,190 *** 0,215 *** 0,221 *** 0,267 *** 

Israel 0,166 *** 0,361 *** 0,262 *** 0,242 *** 

Czech Republic 0,380 *** 0,377 *** 0,270 *** 0,300 *** 

Luxembourg 0,320 *** 0,259 *** 0,514 *** 0,404 *** 

Slovenia 0,303 *** 0,224 *** 0,277 *** 0,297 *** 

Estonia 0,096 *** 0,140 *** 0,156 *** 0,228 *** 

Croatia 0,255 *** 0,171 *** 0,155 *** 0,210 *** 

 

  



23 
 

Chapter 2 – IV Estimation 

 

As already said, assuming parent’s education to be exogenous when estimating individuals’ or 

their partner’s education is not straightforward and several authors take it as endogenous 

(Lefgren, 2006, Havari, 2014). For this reason, besides the OLS estimates we retrieved in the 

previous section we also want to try to solve this possible endogeneity using Instrumental 

Variable estimation. 

To our knowledge, only two paper try to estimate the effect of parents’ education on spousal 

outcomes. In their 1994 work, Lam and Schoeni do not use instrumental variables only 

considering the total effect of parental education on spousal earnings before and after 

controlling for individuals’ own income (Lam & Schoeni 1994). In the same way, also Hu in 

his model estimates the effect of parental background on assortative mating without correcting 

for possible endogeneity of the model (Hu 2016). 

Both of the authors admit they might overestimate or underestimate the effect of parental 

background but they cannot avoid the omitted variable bias because of the lack of the data. Poor 

information about parents’ individuals is actually a problem we faced in our estimation too. 

Anyway, we tried to do our best in order to propose an alternative solution to the problem. 

We chose to use World War II as an instrument in the fashion of Ichino & Winter-Ebmer (2004) 

as the year of birth was the only information we could infer for parents’ individuals in both 

waves 5 and 6 of SHARE dataset. How we imputed the year of birth when missing and the 

assumption of our IV model are going to be discussed in the following paragraph. 

 

Data 

 

Unfortunately, SHARE dataset is not generous when talking of information about parents. In 

fact, the only useful information we can exploit is the age of these people if they are still alive. 

Taking into consideration that our individuals are aged between 50 and 75 the chance their 

parents are both alive is not that high. 

Being our data set made up by more than 56 thousand individuals, we could think about having 

at least 100 thousand observations for parents’ year of birth. Actually we have a little more than 

10 thousand observations, definitely too few for our cross countries analysis. For this reason, 
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we decided to impute the year of birth of parents for those individuals with missing 

observations. 

 

Imputation method 

 

For those individuals with at least one of the parents alive, we decided to ascribe the year of 

birth of the dead one on the base of the age of his significant other. We computed the average 

difference between spouses for each year of birth of the wife and summed to the age of women 

for those whose husband was dead. 

When both of the parents were already dead at the time of the interview we computed the 

average difference between individuals’ age and their parents’ one for those with parents alive. 

In this way, we find the average age of people when becoming fathers or mothers. Summing 

this number to individuals age we have a hypothetical age of parents if they were alive. Our 

imputation method is supported by the fact that the average age at birth we find along the 

cohorts is very close to those reported by statistics (Lappegård, 2000). 

In Table 2.1, we can see the father’s age imputation method in details. On the base of mother’s 

or individual’s age we impute father’s age adding the average difference for every cohort. 

Table 2.1 - Imputated father's age by cohort 

When Mother Alive 

Mother's Age Imputated Age for Father 

Lower than 75 Mother'age + 1 

From 75 to 81 Mother'age + 2 

Higher than 81 Mother'age + 3 

    

When Both Parents Dead 

Individual's Age Imputated Age for Father 

Lower than 52 Individual's Age + 28 

From 52 to 58 Individual's Age + 26 

From 58 to 63 Individual's Age + 25 

Higher than 63 Individual's Age + 24 
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Instrument 

 

Being the charge of the year of birth the only relevant information about parents in our 

possession, we had to fish for a good instrument among those historical events which can affect 

individuals’ education. Given that we are dealing with people born in Europe between the 1916 

and 1946, it comes quite natural to refer to the World War II as the real big thing influencing 

the lives of our sample.  

In their famous paper The long-run educational cost of World War II, Ichino and Winter-Ebmer 

prove that individuals born in Germany and Austria during the ‘30s had fewer years of 

schooling due to a poorer supply of education (Ichino & Winter-Ebmer, 2004). As we are 

looking for an exogenous event able to affect the access to education of our individuals, we 

decide to use a dummy stating whether parents of our individuals were adolescent during 

wartime. 

Of course, not all the countries in our sample took part in World War II and, even among the 

fighting ones, the consequences of war were different. Moreover, we have to consider that some 

of the countries in our sample did not even exist in 1945 i.e. Israel, Croatia, Slovenia and the 

Czech Republic. For this reason, the sample we are going to exploit for our IV estimation is 

reduced to only four countries: Germany, Austria, Czech Republic and Estonia as from 1939 

until 1945 they happened to be part of the same political entity: the German Reich. Thus, our 

sample is now made up by 16 093 individuals: 7 044 men and 9 049 women. 

For what concerns our analysis, being this countries part of the same state is very useful as they 

shared identical institutions and laws. In fact, besides the call to the arms and the lack of schools 

supply due to Ally’s bombing, also Nazi laws against confessional schools played a role in 

limiting the access to education. 

As we can notice in Figure 2.1, the trend in people getting secondary education changes during 

the ’30s and then turns to its original slope. In fact, those are the individuals who were between 

10 and 15 years old during wartime and whose education was most likely to be conditioned by 

the war. Our instrument is thus going to be a dummy equal to one if the father’s individual was 

born from 1927 until 1939. 

 



26 
 

 

Figure 2.1 - Percentage of fathers with secondary education by year 

 

 

Model 

 

Consequently to what we said before the first stage of our 2SLS model is: 

𝑦𝑖
𝑓

= 𝜃 + 𝛾𝑤𝑎𝑟𝑖 + 𝜗𝑖 + 𝜇𝑦𝑒𝑎𝑟𝑖 + 𝛿𝑤𝑎𝑣𝑒𝑖 𝜖𝑖                                                                                  (5) 

Where 𝑦𝑖
𝑓
is the years of education of the father, 𝑤𝑎𝑟𝑖 is the dummy we chose as instrument, 𝜗𝑖 

is a second degree polynomials controlling for individual i’s age and 𝑦𝑒𝑎𝑟 is the year of birth 

of the father. And 𝛿𝑤𝑎𝑣𝑒𝑖 is equal to 1 if the individual belongs to wave 5 and 0 if it belongs 

to wave 6. 

The 𝑤𝑎𝑟𝑖 indicator is equal to 1 when the parent of our individual was born between the 1927 

and the 1939 and equal to 0 otherwise. 𝜗𝑖 is instead constructed in this way: 𝜗𝑖 = 𝛾1𝑎𝑔𝑒𝑖 +

𝛾2𝑎𝑔𝑒𝑖
2 

And the second stage is: 

𝑦𝑖
𝑝

= 𝛼 + 𝛽𝑦𝑖
𝑓

+ 𝜗𝑖 + 𝜇𝑦𝑒𝑎𝑟𝑖 + 𝛿𝑤𝑎𝑣𝑒𝑖 + 휀𝑖                                                                                (6) 

Where 𝑦𝑖
𝑝
 represents the years of education of the partner. 
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We assume all of the conditions for the IV estimation to be respected. In particular, we have a 

strong first stage as the value of F is above 14. In the same way in which Ichino and Winter-

Ebmer consider their exclusion restriction not to be violated, we think our first stage is the only 

way through which the World War II can affect the education of the partner.  

In fact, it is very unlikely that other consequences of the war, as psychological disorders or 

malnutrition of children growing during the war, can affect the schooling outcome of people 

attending classes at least forty years after the end of the war. 

In addition, one might argue that a way in which exclusion restriction could be violated is 

through a possible effect of the instrument on the education of partner’s parents. The optimal 

strategy to get rid of this doubt would be adding a control variable similar to the one stating if 

father reached secondary education.  

Unfortunately, this imply losing about half the observation thus threatening the validity of our 

estimates. Another strategy could be considering only partners with parents born after the end 

of the World War II, however also this is not feasible as it will reduce the size of the sample 

even more than the other method. 

What we could is regressing 𝑤𝑎𝑟𝑖 on a dummy stating whether partner’s fathers has an ISCED 

equal or higher than 3 and check if there a significant effect. 

For this reason, we are running this regression, pretty similar to the First Stage of our IV model: 

𝑓𝑎𝑡ℎ𝑒𝑟𝑖
𝑝

= 𝜃 + 𝛾𝑤𝑎𝑟𝑖 + 𝜗𝑖 + 𝜇𝑦𝑒𝑎𝑟𝑖 + 𝜖𝑖                                                                             (7) 

Where 𝑓𝑎𝑡ℎ𝑒𝑟𝑖
𝑝
is equal to 1 if partner’s father has completed higher education and 0 otherwise. 

As we can see in Figure 2.3, the coefficient of 𝑤𝑎𝑟𝑖 is not significant and the value of the F test 

is very low. For this reasn, we can claim that our instrument has no effect on the dependent 

variable of our IV model and thus our exclusion restriction hypothesis is valid.  

As we did with our previous OLS estimations, we run the model for men and women separately 

and then jointly but adding a dummy for gender.  
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Figure 2.3 - OLS estimation of exposure to World War II on the education of partner's father 

Results 

Looking at the estimates for men only, the first thing we must say is that value of F in the first 

stage equation is much lower than ten. Thus, one of two fundamental assumptions of IV 

estimation is violated. In Figure 2.2 we report the results, none of the coefficients is significant 

both in the first and in the second stage. As we expected the coefficient of 𝑤𝑎𝑟𝑖, even if not 

significant, is negative; the difference between the coefficient of 𝑦𝑖
𝑓
 estimated by OLS and IV 

is quite wide, 0,184 in front of 0,981, and we tried to give an explanation to this fact in the 

following lines. Nothing changes if instead of years of education we use the dummy 𝑓𝑎𝑡ℎ𝑒𝑟 

defined in the first chapter: we have no significant coefficients, a value of F very low and a big 

difference between OLS and IV estimates 

 

  

 

 

 

 

 

 

                                                                              

       _cons     18.43172   10.20264     1.81   0.071    -1.569835    38.43327

       wave5    -.0156518   .0140983    -1.11   0.267    -.0432906    .0119869

       agesq    -.0000698   .0001627    -0.43   0.668    -.0003889    .0002492

         age    -.0047536   .0195903    -0.24   0.808     -.043159    .0336518

        year    -.0089267   .0052271    -1.71   0.088    -.0191741    .0013206

         war    -.0147975   .0234963    -0.63   0.529    -.0608603    .0312653

                                                                              

    father_p        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total     1188.5498     5,099  .233094686   Root MSE        =    .48171

                                                   Adj R-squared   =    0.0045

    Residual    1182.01802     5,094  .232041229   R-squared       =    0.0055

       Model    6.53178339         5  1.30635668   Prob > F        =    0.0000

                                                   F(5, 5094)      =      5.63

      Source         SS           df       MS      Number of obs   =     5,100

                                                                              

       _cons    -2.610603   65.79357    -0.04   0.968    -131.5904    126.3692

         war    -.1078441   .1660824    -0.65   0.516    -.4334271    .2177389

 yedu_father     .1814023   .0174958    10.37   0.000     .1471041    .2157006

       wave5    -.4817202   .0982381    -4.90   0.000    -.6743032   -.2891372

        year     .0113439    .033743     0.34   0.737    -.0548049    .0774927

       agesq     .0014125   .0011587     1.22   0.223    -.0008589    .0036838

         age    -.2347723   .1409255    -1.67   0.096    -.5110384    .0414939

                                                                              

      yedu_p        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    84042.0931     5,844  14.3809194   Root MSE        =     3.727

                                                   Adj R-squared   =    0.0341

    Residual    81094.8163     5,838  13.8908558   R-squared       =    0.0351

       Model    2947.27679         6  491.212798   Prob > F        =    0.0000

                                                   F(6, 5838)      =     35.36

      Source         SS           df       MS      Number of obs   =     5,845

Figure 2.4 - OLS Estimation for Men in Germany, Austria, Czech Republic and Estonia 
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Figure 2.2 - IV Estimation for Men in Germany, Austria, Czech Republic and Estonia 

 

In Figure 2.6 we reported the results for a sample made up of only women. We see the effect 

of being part of the cohort 1926-1939 on years of education is negative. This is exactly what 

we were expecting: individuals get less education because of a lack of supply. The coefficient, 

- 0,315, is not that big but it is actually consistent with the magnitude of the effect found by 

Ichino and Winter-Ebmer. 

Looking at the second stage, we notice the effect of father’s education on husband’s education 

is 1.461 which is way bigger than the effect we found through OLS for any of the countries 

included in this regression. 

                                                                              

       _cons    -86.13733   175.5854    -0.49   0.624    -430.2785    258.0038

       wave5    -.3439925   .2721605    -1.26   0.206    -.8774172    .1894322

        year     .0482432   .0804342     0.60   0.549    -.1094049    .2058913

       agesq     .0014475   .0013383     1.08   0.279    -.0011756    .0040705

         age    -.1845749    .199252    -0.93   0.354    -.5751017     .205952

 yedu_father     .9809178   1.433681     0.68   0.494    -1.829045    3.790881

                                                                              

      yedu_p        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                  Root MSE        =     4.3402

                                                  R-squared       =          .

                                                  Prob > chi2     =     0.0000

                                                  Wald chi2(5)    =      77.19

Instrumental variables (2SLS) regression          Number of obs   =      5,845

                                                                              

       _cons     104.4717   49.19411     2.12   0.034     8.033018    200.9104

         war    -.1348868   .1242158    -1.09   0.278    -.3783958    .1086223

       wave5     -.172264   .0734468    -2.35   0.019    -.3162468   -.0282811

        year    -.0461521   .0252323    -1.83   0.067    -.0956167    .0033126

       agesq    -.0000438   .0008667    -0.05   0.960    -.0017428    .0016552

         age    -.0627848    .105408    -0.60   0.551    -.2694235    .1438539

                                                                              

 yedu_father        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

                                                Root MSE          =     2.7878

                                                Adj R-squared     =     0.0035

                                                R-squared         =     0.0044

                                                Prob > F          =     0.0001

                                                F(   5,   5839)   =       5.11

                                                Number of obs     =      5,845

                       

First-stage regressions
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In order to make a fairer comparison, we also ran this regression with a simple OLS and, as we 

could see in Figure 2.5, the coefficient of the education of the father on husband’s year of 

education is only 0.275. 

Usually, having IV estimate bigger than the OLS makes us wonder whether there is any problem 

with the identification. Actually, it is not that strange IV estimates to be bigger than OLS when 

we are estimating a Local Average Treatment Effect. 

In fact, we can hypothesize that those the war influenced the most were the poorer. The 

shutdown of a nearby school or rise in the cost opportunity of attending classes due to the war 

is likely to be more dramatic for poor families than for rich ones. For this heterogeneity of the 

effect, our LATE is higher than the OLS as it measures the marginal returns of individuals who 

suffered more than the average because of the constraints generated by the war. 

 

  

 

 

 

 

 

 

 

 

 

  

Figure 2.5 – OLS Estimation for women in Germany, Austria, Czech Republic and Estonia. 

                                                                              

       _cons     189.4934   63.37462     2.99   0.003     65.25717    313.7296

         war    -.3906476   .1683325    -2.32   0.020    -.7206375   -.0606576

 yedu_father     .2734593   .0181451    15.07   0.000     .2378886      .30903

       wave5    -.2662408    .099318    -2.68   0.007    -.4609384   -.0715431

        year    -.0937026    .032494    -2.88   0.004    -.1574021   -.0300031

       agesq    -.0022072   .0011687    -1.89   0.059    -.0044983    .0000839

         age      .147658    .139348     1.06   0.289    -.1255124    .4208284

                                                                              

      yedu_p        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    98280.7738     6,210  15.8262116   Root MSE        =    3.8946

                                                   Adj R-squared   =    0.0416

    Residual     94103.048     6,204  15.1681251   R-squared       =    0.0425

       Model    4177.72582         6  696.287636   Prob > F        =    0.0000

                                                   F(6, 6204)      =     45.90

      Source         SS           df       MS      Number of obs   =     6,211
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Figure 2.8 – OLS Estimation of women in Germany, Austria, Estonia and Czech Republic 

                                                                              

       _cons     198.3084   63.29485     3.13   0.002     74.22859    322.3882

         war    -.3812216   .1681295    -2.27   0.023    -.7108136   -.0516296

      father     1.599967   .1024724    15.61   0.000     1.399086    1.800849

       wave5    -.2730542   .0991867    -2.75   0.006    -.4674944   -.0786139

        year    -.0969215   .0324533    -2.99   0.003    -.1605412   -.0333019

       agesq    -.0020765   .0011673    -1.78   0.075    -.0043648    .0002118

         age     .1305631   .1391719     0.94   0.348    -.1422621    .4033884

                                                                              

      yedu_p        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    98280.7738     6,210  15.8262116   Root MSE        =    3.8896

                                                   Adj R-squared   =    0.0441

    Residual    93859.9006     6,204   15.128933   R-squared       =    0.0450

       Model     4420.8732         6  736.812199   Prob > F        =    0.0000

                                                   F(6, 6204)      =     48.70

      Source         SS           df       MS      Number of obs   =     6,211
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This estimated LATE is not the real effect of parental background on partner’s education but it 

is still interesting as it proves us that real effect is likely to be bigger than the one we found 

using OLS. 

We obtain a similar pattern when instrumenting the indicator 𝑓𝑎𝑡ℎ𝑒𝑟 instead of the years of 

schooling. In figure 2.7, we see the result of IV estimation. The first stage is strong as the value 

                                                                              

       _cons      186.642   83.58898     2.23   0.026     22.81057    350.4733

       wave5     -.208194   .1337688    -1.56   0.120    -.4703759     .053988

        year    -.1003792   .0427418    -2.35   0.019    -.1841516   -.0166068

       agesq    -.0018005   .0014827    -1.21   0.225    -.0047065    .0011056

         age      .149824   .1838531     0.81   0.415    -.2105214    .5101695

 yedu_father     1.499804   .6955085     2.16   0.031     .1366326    2.862976

                                                                              

      yedu_p        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                  Root MSE        =      5.129

                                                  R-squared       =          .

                                                  Prob > chi2     =     0.0000

                                                  Wald chi2(5)    =      27.85

Instrumental variables (2SLS) regression          Number of obs   =      6,211

                                                                              

       _cons     2.325147   44.33889     0.05   0.958    -84.59443    89.24472

         war    -.3185462   .1177013    -2.71   0.007    -.5492815   -.0878109

       wave5    -.0473332   .0694834    -0.68   0.496    -.1835447    .0888784

        year     .0054443   .0227337     0.24   0.811    -.0391217    .0500104

       agesq    -.0003316   .0008177    -0.41   0.685    -.0019345    .0012713

         age    -.0017662   .0974923    -0.02   0.986    -.1928849    .1893524

                                                                              

 yedu_father        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

                                                Root MSE          =     2.7248

                                                Adj R-squared     =     0.0063

                                                R-squared         =     0.0071

                                                Prob > F          =     0.0000

                                                F(   5,   6205)   =       8.83

                                                Number of obs     =      6,211

                       

First-stage regressions

Figure 2.6 IV Estimation for women in Germany, Austria, Czech Republic and Estonia 
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of F is similar to the previous one and the exclusion restriction assumption holds just as well as 

for the previous model. 

 

As in the other case, we are estimating a Local Average Treatment Effect of a heterogeneous 

population thus we are not surprised in finding such a big coefficient for 𝑓𝑎𝑡ℎ𝑒𝑟. In fact, in 

both the models the IV estimated coefficient is around five times bigger than the OLS estimated 

one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 - IV Estimation for women in Germany, Austria, Czech Republic and Estonia                                                                               

       _cons     230.6084   81.09526     2.84   0.004     71.66458    389.5522

       wave5    -.2488455   .1261542    -1.97   0.049    -.4961032   -.0015878

        year    -.1155125   .0418977    -2.76   0.006    -.1976305   -.0333946

       agesq    -.0012024   .0014062    -0.86   0.393    -.0039586    .0015537

         age     .0649621   .1702523     0.38   0.703    -.2687262    .3986505

      father     7.918295   3.534434     2.24   0.025     .9909309    14.84566

                                                                              

      yedu_p        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                  Root MSE        =     4.9368

                                                  R-squared       =          .

                                                  Prob > chi2     =     0.0000

                                                  Wald chi2(5)    =      30.06

Instrumental variables (2SLS) regression          Number of obs   =      6,211

                                                                              

       _cons    -5.112105   7.841075    -0.65   0.514    -20.48333    10.25912

         war    -.0603358   .0208148    -2.90   0.004      -.10114   -.0195316

       wave5    -.0038315   .0122877    -0.31   0.755    -.0279197    .0202567

        year     .0029424   .0040203     0.73   0.464    -.0049388    .0108236

       agesq    -.0001383   .0001446    -0.96   0.339    -.0004218    .0001451

         age     .0103827   .0172409     0.60   0.547    -.0234156    .0441809

                                                                              

      father        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

                                                Root MSE          =     0.4819

                                                Adj R-squared     =     0.0081

                                                R-squared         =     0.0089

                                                Prob > F          =     0.0000

                                                F(   5,   6205)   =      11.10

                                                Number of obs     =      6,211

                       

First-stage regressions



34 
 

Finally, we report the results obtained by running the regression over the whole sample and 

inserting a dummy equal to 1 if the individual is female and to 0 if it is male. Thus, the model 

becomes: 

First Stage:       

 𝑦𝑖
𝑓

= 𝜃 + 𝛾𝑤𝑎𝑟𝑖 + 𝜗𝑖 + 𝜇𝑦𝑒𝑎𝑟𝑖 + 𝜏𝑓𝑒𝑚𝑎𝑙𝑒𝑖 + 𝜖𝑖                                                                  (8) 

Second Stage:             

 𝑦𝑖
𝑝

= 𝛼 + 𝛽𝑦𝑖
𝑓

+ 𝜗𝑖 + 𝜇𝑦𝑒𝑎𝑟𝑖 + 𝜏𝑓𝑒𝑚𝑎𝑙𝑒𝑖 + 휀𝑖                                                                            (9) 

As in the previous case, we have a value of F higher than 10 and so our first stage assumption 

is valid. Coefficients are similar to the previous model when we exploited the only-women 

sample. However, the coefficient of father’s years of education is not significant in the second 

stage as the value of p is exactly 0,05. In fact, the only significant coefficient in the second stage 

is the one of the dummy for the gender, being female gets you a more educated partner and this 

is consistent with the findings of the previous chapter where the coefficients for women were 

almost always higher than those for men. 

The OLS estimation with this sample of both men and women gets us result similar to the 

previous model too. All of the coefficients are reported in Figure 2.9 and 2.10 and it is 

interesting to notice that the coefficient of the gender dummy is a little higher than the one for 

father’s years of education. When substituting years of education with the dummy for secondary 

education as we did before, we obtain the exactly the same changing with the absolute 

magnitude of the coefficients of interest rising but keeping the same proportion with the IV 

estimate five times bigger than the OLS one (Appendix).  
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Figure 2.9 -- OLS Estimation for both women and men in Germany, Austria, Czech Republic and Estonia. 

                                                                              

       _cons     98.76356   45.67313     2.16   0.031     9.236874    188.2902

      female     .2265504   .0700062     3.24   0.001     .0893271    .3637738

         war    -.2470398   .1182254    -2.09   0.037    -.4787805   -.0152991

 yedu_father     .2274155   .0126241    18.01   0.000     .2026701    .2521608

       wave5    -.3616322   .0699601    -5.17   0.000    -.4987653    -.224499

        year    -.0447169    .023418    -1.91   0.056    -.0906199    .0011862

       agesq    -.0007658   .0008155    -0.94   0.348    -.0023643    .0008328

         age     .0015106   .0981256     0.02   0.988    -.1908314    .1938526

                                                                              

      yedu_p        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    182575.429    12,055  15.1452036   Root MSE        =    3.8186

                                                   Adj R-squared   =    0.0372

    Residual    175680.999    12,048  14.5817562   R-squared       =    0.0378

       Model    6894.43068         7  984.918669   Prob > F        =    0.0000

                                                   F(7, 12048)     =     67.54

      Source         SS           df       MS      Number of obs   =    12,056
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Figure 2.10 - IV Estimation for both women and men in Germany, Austria, Czech Republic and Estonia. 

  

 

 

 

 

                                                                              

       _cons     85.12358   55.75485     1.53   0.127    -24.15391    194.4011

      female     .2994269    .091055     3.29   0.001     .1209623    .4778915

       wave5    -.3447987    .083895    -4.11   0.000    -.5092299   -.1803676

        year    -.0379699   .0283025    -1.34   0.180    -.0934418     .017502

       agesq     .0001382   .0009396     0.15   0.883    -.0017033    .0019797

         age    -.0691048   .1122255    -0.62   0.538    -.2890627    .1508532

      father     6.073422   2.806873     2.16   0.030     .5720526    11.57479

                                                                              

      yedu_p        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                  Root MSE        =     4.4771

                                                  R-squared       =          .

                                                  Prob > chi2     =     0.0000

                                                  Wald chi2(6)    =     107.88

Instrumental variables (2SLS) regression          Number of obs   =     12,056

                                                                              

       _cons     4.091198   5.760098     0.71   0.478    -7.199521    15.38192

         war    -.0493684   .0149069    -3.31   0.001    -.0785883   -.0201485

      female    -.0142528   .0088292    -1.61   0.106    -.0315594    .0030538

       wave5    -.0068138   .0088222    -0.77   0.440    -.0241067    .0104792

        year    -.0017856   .0029535    -0.60   0.545     -.007575    .0040037

       agesq    -.0001515   .0001029    -1.47   0.141    -.0003531    .0000501

         age     .0099344   .0123761     0.80   0.422    -.0143247    .0341936

                                                                              

      father        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

                                                Root MSE          =     0.4816

                                                Adj R-squared     =     0.0052

                                                R-squared         =     0.0057

                                                Prob > F          =     0.0000

                                                F(   6,  12049)   =      11.58

                                                Number of obs     =     12,056

                       

First-stage regressions
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Chapter 3 - Pairfam Database 

 

In this third and last section, we try to replicate our model exploiting a different database in 

order to check the external validity of our results. We expect to get similar results using a 

different database so that we could claim our findings to be valid for the whole population of 

European individuals and not only for those similar to ones present in SHARE Database. 

 

Data 

 

The German Family Panel pairfam (“Panel Analysis of Intimate Relationships and Family 

Dynamics”) is a multi-disciplinary, longitudinal study for researching partnership and family 

dynamics launched in 2008 in Germany. Survey data are annually collected from a nationwide 

random sample of more than 12,000 persons of the three birth cohorts 1971-73, 1981-83, 1991-

93 and their partners, parents and children. Thus, it offers unique opportunities for the analysis 

of partner and generational relationships as they develop over the course of multiple life phases. 

At the present day, there are eight waves of data in pairfam database where individuals are 

followed in times. For our research, we exploited the eighth and latest wave as we want the 

highest number of individuals to have completed education and found a partner. In fact, being 

the last cohort made up of people born between the 1991 and 1993 it is likely that a great part 

of this boys and girls is still studying and without a partner. 

 

Descriptive Patterns 

 

Our sample is composed of 5 460 individuals, 2 527 men and 2 933 women. All of the people 

are aged between 21 and 45 and this is a key difference from SHARE Database where all of the 

interviewed were over 50 years old. 

As we can see in Table 3.1, the average years of education are about 13 for both men and 

women and about 12 for their parents. We got similar educational background for German 

people in SHARE. 
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Table 3.1  - Average Years of Education 

 
Average years of education 

 
Individual Father Mother Partner 

Men 13,207 12,732 12,339 13,606 

Women 13,427 12,643 12,213 13,529 

 

In the same fashion of our previous estimations, we are running regressions using both years of 

education of individuals’ parents and a dummy stating whether parents have at least secondary 

education. However, both because of the average high-level education of German people and 

the fact that we are referring to recent cohorts of individuals when compulsory school reforms 

were already in place, the number of people not having an ISCED equal or higher than 3 is very 

low (Table 3.2). 

Table 3.2 - Percentage of Parents with at least Secondary Education 

 
Father Mother 

Men 93% 88% 

Women 94% 87% 

 

Many things we said in the previous section about educational patterns (e.g. men more educated 

than women) are not true anymore. This is because we are observing a population who was 

born on average 25 years later than the other one and the trend in education changed a lot in the 

second half of the XX century (Schofer & Meyer 2004). 

Given that, we can try to create also a similar dummy stating whether parents got tertiary 

education instead of secondary (Table 3.3).  

Table 3.3 - Percentage of Parents with Tertiary Education 

 
Father Mother 

Men 33% 22% 

Women 29% 21% 
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Results 

 

As we are simply applying the same OLS model to another sample, we skip the paragraph on 

methodology and go straight to the presentation of the results. 

In Table 3.4, we see the coefficients when we use years of education for measuring both 

dependent and independent variables. Here numbers are not that different from those we could 

see for Germany in Table. 

Using Pairfam instead SHARE we get slightly smaller coefficients but it is interesting to notice 

that the pattern with father’s education counting the most for girl and mother’s education for 

boys is exactly replicated. 

These small differences can be the consequence of a rise in social mobility from one generation 

to the other or simply due to the composition of the samples. We have no way to verify that. 

When running the regression with the dummy for secondary or tertiary education we get less 

encouraging results. In fact, when using the old dummy for ISCED equal or higher than 3 we 

get no significant coefficient for men’s fathers and mother’s education counting more than 

father’s for girls. This is in open contrast with our previous findings. 

However, this contrast is partly solved when we use a dummy equal to 1 if parents have an 

ISCED of at least 4. Results reported in Table 3.4, in fact, get close to those obtained with 

SHARE. Actually, they are even smaller as it happened for the OLS estimates. Moreover, the 

pattern “father matters for girls, mothers for boys” holds. 

This is consistent with our hypothesis that, given the positive trend in education during the XX 

century, the premium once given by going to high school is now granted only by going to 

college. 

Table 3.4 - OLS Estimation using pairfam Database 

 Men Women 

 Father   Mother   Father   Mother   

Years of 

Education 0,141 *** 0,229 *** 0,245 *** 0,123 *** 

ISCED 3 0,208  1,703 *** 0,857 *** 1,016 *** 

ISCED 4 0,905 *** 1,019 *** 1,082 *** 0,784 *** 
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IV Estimation 

 

At the same way we did for SHARE, we try to get rid of the endogeneity of parental education. 

In this case, besides using the exposure to World War II as an instrument we also a more classic 

instrumental variable as compulsory schooling reforms. 

We have been able to adopt this second technique mainly because the cohorts of parents of 

individuals in pairfam better cover the century than those in SHARE so that we both have 

fathers being adolescent in the '30s and in the ‘60s. 

 

World War II 

 

When using the exposure to World War II as an instrument we did exactly the same steps 

described in the previous chapter. Unluckily, in this case, results are much less significant than 

when using SHARE. 

When exploiting the only women sample or the one containing both the genders, we get a solid 

first stage but non-significant coefficients for the instrumented variable. Moreover, the 

coefficient of father’s education is negative: if it were significant, it would mean that better 

fathers lead to worse partner. (Figure 3.1) 

On the other hand, if we use the sample with only men we get a positive but non-significant 

coefficient for father’s education and very weak first stage. (Figure 3.2 and Figure 3.3) 
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Figure 3.1 - IV estimation for both men and women (pairfam) 

 

 

                                                                              

       _cons     140.1563   32.71479     4.28   0.000     76.03654    204.2762

      female     .0129507   .1152631     0.11   0.911    -.2129608    .2388622

        year    -.0662073   .0145002    -4.57   0.000    -.0946271   -.0377875

        age2    -.0048902   .0012226    -4.00   0.000    -.0072864   -.0024941

         age     .3104173   .0939343     3.30   0.001     .1263094    .4945251

      fyeduc    -.1457621   .3065264    -0.48   0.634    -.7465428    .4550185

                                                                              

      pyeduc        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                  Root MSE        =     3.0205

                                                  R-squared       =          .

                                                  Prob > chi2     =     0.0000

                                                  Wald chi2(5)    =     115.97

Instrumental variables (2SLS) regression          Number of obs   =      3,205

                                                                              

       _cons     127.7499   19.18844     6.66   0.000     90.12702    165.3728

         war    -.6823734   .1936865    -3.52   0.000    -1.062136   -.3026112

      female    -.1401853   .0997542    -1.41   0.160    -.3357739    .0554033

        year    -.0562402    .009703    -5.80   0.000     -.075265   -.0372154

        age2     .0023109    .001023     2.26   0.024     .0003052    .0043167

         age    -.2345459    .068602    -3.42   0.001    -.3690543   -.1000375

                                                                              

      fyeduc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

                                                Root MSE          =     2.7970

                                                Adj R-squared     =     0.0231

                                                R-squared         =     0.0246

                                                Prob > F          =     0.0000

                                                F(   5,   3199)   =      16.15

                                                Number of obs     =      3,205

                       

First-stage regressions
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Figure 3.2 - IV estimation for women (pairfam) 

 

                                                                              

       _cons     186.5596   53.75069     3.47   0.001     81.21013     291.909

        year    -.0853773   .0237633    -3.59   0.000    -.1319526   -.0388021

        age2    -.0016667   .0019987    -0.83   0.404     -.005584    .0022507

         age     .0452496   .1565027     0.29   0.772    -.2614901    .3519892

      fyeduc    -.4538071   .4901503    -0.93   0.355    -1.414484    .5068699

                                                                              

      pyeduc        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                  Root MSE        =     3.5029

                                                  R-squared       =          .

                                                  Prob > chi2     =     0.0000

                                                  Wald chi2(4)    =      34.20

Instrumental variables (2SLS) regression          Number of obs   =      1,817

                                                                              

       _cons     131.7637   25.47974     5.17   0.000     81.79093    181.7364

         war    -.6708932   .2596727    -2.58   0.010    -1.180183   -.1616038

        year    -.0581875   .0129054    -4.51   0.000    -.0834986   -.0328764

        age2     .0025428   .0013372     1.90   0.057    -.0000798    .0051655

         age    -.2533077   .0893926    -2.83   0.005     -.428631   -.0779844

                                                                              

      fyeduc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

                                                Root MSE          =     2.7662

                                                Adj R-squared     =     0.0242

                                                R-squared         =     0.0264

                                                Prob > F          =     0.0000

                                                F(   4,   1812)   =      12.28

                                                Number of obs     =      1,817

                       

First-stage regressions
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Figure 3.3 - IV estimation for men (pairfam) 

 

Compulsory Schooling Reform 

 

As pairfam gets us all the information we need to use compulsory schooling reforms as an 

instrument we wanted to see if using a different instrument for fathers education we could get 

similar results. 

 

 

                                                                              

       _cons     85.68517   40.60036     2.11   0.035      6.10993    165.2604

        year    -.0438356   .0180802    -2.42   0.015    -.0792722   -.0083991

        age2    -.0088492   .0015452    -5.73   0.000    -.0118777   -.0058207

         age     .6363059   .1153436     5.52   0.000     .4102366    .8623752

      fyeduc      .210787    .395923     0.53   0.594    -.5652079    .9867819

                                                                              

      pyeduc        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                  Root MSE        =     2.6655

                                                  R-squared       =     0.1475

                                                  Prob > chi2     =     0.0000

                                                  Wald chi2(4)    =     117.29

Instrumental variables (2SLS) regression          Number of obs   =      1,388

                                                                              

       _cons     122.0527   29.27267     4.17   0.000     64.62905    179.4763

         war    -.6940685   .2928471    -2.37   0.018    -1.268541    -.119596

        year    -.0535698   .0147708    -3.63   0.000    -.0825454   -.0245943

        age2     .0019925    .001593     1.25   0.211    -.0011325    .0051176

         age     -.208772   .1072124    -1.95   0.052    -.4190885    .0015446

                                                                              

      fyeduc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

                                                Root MSE          =     2.8406

                                                Adj R-squared     =     0.0185

                                                R-squared         =     0.0214

                                                Prob > F          =     0.0000

                                                F(   4,   1383)   =       7.55

                                                Number of obs     =      1,388

                       

First-stage regressions



44 
 

Table 3.5 - Compulsory Schooling Reform Introduction by Federal State 

Federal State 

First Birth Cohort 

Affected 

Hamburg 1934 

Schleswig-Holstein 1941 

Bremen 1943 

Lower Saxony 1947 

Saarland 1949 

North Rhine - Westfalia 1953 

Hesse 1953 

Rhineland - Palatinate 1953 

Baden - Wuerttemberg 1953 

Bavaria 1953 

 

 

Compulsory schooling reforms have been introduced in Germany at different times depending 

on the federal state. In all of the states, the reformed modified the minimum level of education 

stating that pupils must attend no less than 9 years of education instead of 8. We retrieved 

information on reforms and their enforcement from Kemptner, Jurges & Reinhold (2010). In 

Table 3.5, we can see when reforms have been introduced in the different states and which 

cohorts were affected. In the next lines we are briefly describing the model: 

First Stage: 

𝑦𝑖
𝑓

= 𝛼 + 𝛽𝑠𝑐ℎ𝑜𝑜𝑙𝑖 + 𝜇𝑦𝑒𝑎𝑟𝑖 + 𝛾𝑠𝑡𝑎𝑡𝑒𝑖 + 𝜖𝑖                                                                       (10) 

Where 𝑦𝑖
𝑓

, 𝑦𝑖
𝑝

 and 𝑦𝑒𝑎𝑟𝑖 are the same as in Chapter 2, 𝑠𝑐ℎ𝑜𝑜𝑙𝑖 is a dummy equal to 1 if the 

individual is born after the schooling reform. To build the dummy variable we controlled for 

the year of birth and the state of residence, as we do not have the state where people attended 

school we assumed they spent the whole life in the same state. 𝑠𝑡𝑎𝑡𝑒𝑖 is indeed a control for 

state fixed effect. 

Second Stage: 

𝑦𝑖
𝑝

= 𝛼 + 𝜃𝑦𝑖
𝑓

+ 𝜇𝑦𝑒𝑎𝑟𝑖 + 𝛾𝑠𝑡𝑎𝑡𝑒𝑖 + 𝜖𝑖                                                                               (11) 

In Figure 3.4, we see the estimates for both first and second stages. As we immediately notice, 

even in this case we have a strong first stage but no significance for the instrumented variable. 

Actually, this result is not that stunning as something similar has been found by Pischke & 

Watcher (2006). They found that compulsory schooling reforms had no effects on returns of 



45 
 

education for Germans; at the same time, it could be possible that they do not have effects on 

returns of marriage. 

 

Figure 3.4 - IV estimation using compulsory schooling reform as instrument 
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To conclude, we can say that running the same model exploiting a different database allowed 

us to raise the consistency of our OLS estimates, especially those made using years of education 

for both dependent and independent variables. Unluckily, our IV estimates did not find any 

confirmation despite both of the instruments we chose respected exclusion restriction and first 

stage assumptions.  

According to us, this could be explained by having the two samples a different target 

population: over 50 for SHARE and under 50 for pairfam. Having the trend in education 

changed widely during the last century, using historical events or modifications in the school 

law allows us to identify effects affecting only a very specific number of individuals in time. 

Pairfam database has been very useful especially to confirm the validity of our imputation 

method. In fact, one of the flaws of our estimates with SHARE was the absence of the variables 

“years of education” and “year of birth” and the consequent imputation we had to do on our 

own. As pairfam contains this information and gives us similar results, we can be reassured 

about the validity of our imputations. 
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Chapter 4 – Combined Dataset 
 

Finally, we decided to put together the two datasets in order to exploit a bigger sample. Thus, 

combining the observations we worked with in the two previous sections, we now have a very 

broad sample made up of 18 843 individuals, 8 223 men and 10 620 women. 

As we can see from Table 4.1, individuals in this sample are 58 years old on average, their 

partners have about 12 years of education while their fathers have 11. As we could expect, 

average years of education are higher than in SHARE and lower than in pairfam for both fathers 

and partners. This is perfectly consistent with the rising trend in education, in fact, now we have 

both individuals over and under 50. 

Table 4.1 – Average Age, Father’s and Partmer’s Eduction by gender 

 
Age Partner's 

Education 
Father's 

Education 

Men 58,715 12,252 11,710 

Women 58,215 12,498 11,638 

 

What we want to do now is to run again the IV estimation using the exposure to World War II 

as an instrument. The 𝑤𝑎𝑟𝑖 instrument is built exactly in the same way we did before and so the 

all the other variables are. 

Thus, once again we have a First Stage: 

𝑦𝑖
𝑓

= 𝜃 + 𝛾𝑤𝑎𝑟𝑖 + 𝜗𝑖 + 𝜇𝑦𝑒𝑎𝑟𝑖 + 𝜖𝑖                                                                                     (12) 

And a Second Stage: 

𝑦𝑖
𝑝

= 𝛼 + 𝛽𝑦𝑖
𝑓

+ 𝜗𝑖 + 𝜇𝑦𝑒𝑎𝑟𝑖 + 휀𝑖.                                                                                       (13) 

As in the previous sections, we chose to run the model splitting the sample by gender and then 

exploiting the whole sample but adding a dummy stating whether the individual is male or 

female. 

In Figure 4.1, we see the results when using the only male sample. First, we notice the value of 

F is extremely high so we can be sure about our First Stage assumption. 𝑤𝑎𝑟𝑖 is significant and 

negative as we expected. On the other hand, 𝑦𝑖
𝑓
 is not significant, as always happened for only-

men sample in the previous scenarios. 

More interesting are results for the only-women sample (Figure 4.2), here in fact we have a 

strong first stage e significant coefficient for the instrumented variable in the second stage. In 

addition, just like in Chapter 2, the IV coefficient (1.017) is almost five times bigger than the 

OLS coefficient (.281). The coefficient is high but still realistic because as we explained before 
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we are considering a subpopulation who is likely to be affected by the war more than the 

average. 

Everything we said is confirmed in Figure 4.3; here we see the results when keeping men and 

women and adding a gender dummy variable: value of F above 100, negative and significant 

effect for the instrument and positive effect for the instrumented variable. Moreover, as we 

expected the coefficient of the gender dummy is positive consistent with the hypothesis that, 

inside a couple, men are more educated than women. 

  

 

Figure 4.1 – IV Estimation for Men  (pairfam and SHARE) 

                                                                              

       _cons     5.466531   77.31519     0.07   0.944    -146.0685    157.0015

     pairfam     1.359524   .5633052     2.41   0.016     .2554665    2.463582

        year     -.005806   .0340366    -0.17   0.865    -.0725165    .0609045

       agesq    -.0024815   .0003691    -6.72   0.000     -.003205    -.001758

         age     .2681912   .0823733     3.26   0.001     .1067424    .4296399

 yedu_father     .9463367   .7936664     1.19   0.233    -.6092209    2.501894

                                                                              

      yedu_p        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                  Root MSE        =     4.1201

                                                  R-squared       =          .

                                                  Prob > chi2     =     0.0000

                                                  Wald chi2(5)    =     345.75

Instrumental variables (2SLS) regression          Number of obs   =      7,233

                                                                              

       _cons     96.28283   21.95315     4.39   0.000     53.24823    139.3174

         war    -.2045035   .1102602    -1.85   0.064    -.4206458    .0116387

     pairfam     .4203352   .2088614     2.01   0.044     .0109058    .8297646

        year    -.0416886   .0110724    -3.77   0.000    -.0633937   -.0199835

       agesq      .000078   .0002228     0.35   0.726    -.0003587    .0005147

         age    -.0780194   .0243643    -3.20   0.001    -.1257806   -.0302582

                                                                              

 yedu_father        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

                                                Root MSE          =     2.7989

                                                Adj R-squared     =     0.0499

                                                R-squared         =     0.0506

                                                Prob > F          =     0.0000

                                                F(   5,   7227)   =      76.98

                                                Number of obs     =      7,233

                       

First-stage regressions
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Figure 4.2 – IV Estimation for women  (pairfam and SHARE) 

                                                                              

       _cons     55.41139   55.01978     1.01   0.314     -52.4254    163.2482

     pairfam     1.017617   .3326665     3.06   0.002     .3656028    1.669632

        year    -.0309771   .0245399    -1.26   0.207    -.0790743    .0171202

       agesq     -.001318   .0002838    -4.64   0.000    -.0018743   -.0007617

         age     .1373691   .0582139     2.36   0.018     .0232719    .2514662

 yedu_father     1.161654   .5664255     2.05   0.040     .0514802    2.271827

                                                                              

      yedu_p        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                  Root MSE        =     4.3976

                                                  R-squared       =          .

                                                  Prob > chi2     =     0.0000

                                                  Wald chi2(5)    =     250.66

Instrumental variables (2SLS) regression          Number of obs   =      8,028

                                                                              

       _cons     92.76906   19.21139     4.83   0.000     55.10975    130.4284

         war    -.2923891   .1030152    -2.84   0.005    -.4943256   -.0904526

     pairfam     .0984479   .1845834     0.53   0.594    -.2633834    .4602792

        year    -.0399074   .0096942    -4.12   0.000    -.0589106   -.0209043

       agesq     -.000129   .0002009    -0.64   0.521     -.000523    .0002649

         age    -.0636788   .0211952    -3.00   0.003    -.1052268   -.0221308

                                                                              

 yedu_father        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

                                                Root MSE          =     2.7354

                                                Adj R-squared     =     0.0538

                                                R-squared         =     0.0544

                                                Prob > F          =     0.0000

                                                F(   5,   8022)   =      92.35

                                                Number of obs     =      8,028

                       

First-stage regressions
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Figure 4.3 – IV Estimation for both Men and Women (pairfam and SHARE) 

                                                                              

       _cons     33.58848   45.03597     0.75   0.456     -54.6804    121.8573

      female     .2598401   .0772451     3.36   0.001     .1084425    .4112377

     pairfam     1.143936   .2927164     3.91   0.000     .5702229     1.71765

        year    -.0199832    .019942    -1.00   0.316    -.0590688    .0191025

       agesq    -.0018745   .0002222    -8.44   0.000    -.0023099   -.0014391

         age     .1974327   .0479205     4.12   0.000     .1035101    .2913552

 yedu_father     1.054798   .4633075     2.28   0.023     .1467317    1.962864

                                                                              

      yedu_p        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                  Root MSE        =      4.264

                                                  R-squared       =          .

                                                  Prob > chi2     =     0.0000

                                                  Wald chi2(6)    =     594.29

Instrumental variables (2SLS) regression          Number of obs   =     15,261

                                                                              

       _cons     94.56813   14.46297     6.54   0.000     66.21899    122.9173

         war    -.2505129   .0752728    -3.33   0.001    -.3980565   -.1029694

      female    -.0741579   .0450709    -1.65   0.100    -.1625022    .0141863

     pairfam     .2442235   .1382464     1.77   0.077    -.0267561     .515203

        year    -.0407921   .0072967    -5.59   0.000    -.0550946   -.0264896

       agesq    -.0000274    .000149    -0.18   0.854    -.0003195    .0002647

         age    -.0709191   .0159816    -4.44   0.000    -.1022448   -.0395933

                                                                              

 yedu_father        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

                                                Root MSE          =     2.7654

                                                Adj R-squared     =     0.0520

                                                R-squared         =     0.0524

                                                Prob > F          =     0.0000

                                                F(   6,  15254)   =     140.64

                                                Number of obs     =     15,261

                       

First-stage regressions
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Figure 4.4 - OLS Estimation for Men (pairfam and SHARE) 

 

 

Figure 4.5  - OLS Estimation for Women (pairfam and SHARE) 

                                                                              

       _cons     71.33293   27.48622     2.60   0.009      17.4519     125.214

 yedu_father     .2047012   .0149611    13.68   0.000     .1753731    .2340293

     pairfam     1.827408   .2232357     8.19   0.000     1.389801    2.265015

        year    -.0338726   .0138485    -2.45   0.014    -.0610198   -.0067255

       agesq    -.0022357   .0002239    -9.99   0.000    -.0026746   -.0017968

         age     .1977677   .0287711     6.87   0.000     .1413679    .2541676

                                                                              

      yedu_p        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    99843.5581     7,232  13.8058017   Root MSE        =    3.5606

                                                   Adj R-squared   =    0.0817

    Residual    91625.2424     7,227  12.6781849   R-squared       =    0.0823

       Model    8218.31575         5  1643.66315   Prob > F        =    0.0000

                                                   F(5, 7227)      =    129.64

      Source         SS           df       MS      Number of obs   =     7,233

                                                                              

       _cons     126.9297   25.29077     5.02   0.000     77.35319    176.5061

 yedu_father     .2810233   .0150147    18.72   0.000     .2515905    .3104561

     pairfam      1.37608   .2007872     6.85   0.000     .9824847    1.769675

        year    -.0609051   .0127478    -4.78   0.000    -.0858942   -.0359161

       agesq    -.0011217   .0002128    -5.27   0.000    -.0015388   -.0007046

         age     .0613187   .0264452     2.32   0.020     .0094793    .1131581

                                                                              

      yedu_p        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    118171.741     8,027  14.7217816   Root MSE        =    3.6804

                                                   Adj R-squared   =    0.0799

    Residual    108660.451     8,022  13.5453068   R-squared       =    0.0805

       Model    9511.28967         5  1902.25793   Prob > F        =    0.0000

                                                   F(5, 8022)      =    140.44

      Source         SS           df       MS      Number of obs   =     8,028



52 
 

 

 

Figure 4.6 - OLS Estimation for both Men and Women (pairfam and SHARE) 

Conclusions 
 

The evidence in this paper suggests that the effect of parental background on partner’s 

characteristics is significant and it varies across countries.  Thanks to our OLS regression we 

found out that the predictability of partner’s education on the base of parents’ differs 

substantially among European countries. 

In fact, having at least one parent with secondary education is definitely more important in 

countries of Southern Europe (i.e. Spain, Italy and Greece) than in the North (i.e. Denmark, 

Germany, Netherlands). Matching this information with those about intergenerational mobility, 

we can see that the correlation between the effect of parents’ education and the intergenerational 

mobility in a country is strongly negative. 

Our hypothesis is that in countries where social mobility and average education are low, élites 

fight harder to maintain their status and privileges avoiding to get too close to lower social 

classes. 

Another interesting finding is that, in several countries, women’s choices seem to be more 

affected by father’s education while men’s seem to be influenced by mother’s. We think this is 

because of the different role that education had for boys and girls in the past century. This 

hypothesis is consistent with the fact that on average parents’ education has higher coefficients 

for women than for men. 

                                                                              

       _cons     102.5177   18.61292     5.51   0.000     66.03412    139.0012

      female     .2008009   .0591194     3.40   0.001     .0849198     .316682

 yedu_father     .2437938   .0106161    22.96   0.000      .222985    .2646027

     pairfam     1.554259   .1492309    10.42   0.000     1.261748    1.846769

        year    -.0490792   .0093803    -5.23   0.000    -.0674657   -.0306926

       agesq    -.0016489   .0001539   -10.71   0.000    -.0019506   -.0013471

         age     .1236807   .0194444     6.36   0.000     .0855673     .161794

                                                                              

      yedu_p        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    218341.477    15,260  14.3080915   Root MSE        =    3.6272

                                                   Adj R-squared   =    0.0805

    Residual    200691.907    15,254  13.1566741   R-squared       =    0.0808

       Model      17649.57         6    2941.595   Prob > F        =    0.0000

                                                   F(6, 15254)     =    223.58

      Source         SS           df       MS      Number of obs   =    15,261
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Besides the cross-country OLS regressions, we also tried to get rid of the endogeneity in father’s 

education exploiting the exposure to the World War II as an instrument in former Nazi Reich 

countries. The estimate of our LATE is way bigger than the OLS coefficient thus suggesting 

that the effect of father’s education is even bigger than what reported in Chapter 1.  

To be honest, our LATE can be just be taken as an evidence of a bigger effect and not as an 

absolute value valid for the whole population. In fact, due to the heterogeneity of our sample, 

we think our LATE captures the marginal effect on a subset of people affected by the war more 

than the average. For this reason, the real effect of father’s education on partner’s is probably 

higher than our OLS but lower than our LATE. 

Finally, the simple robustness test we took exploiting a different database has been useful to 

confirm the accuracy of our imputation method. Unfortunately, because of the substantial 

differences in the choices of the sample and the changes in educational trends happened in the 

past century, we could not find any confirmation but only evidence suggesting our quest was 

developed in the right direction. 

Still, some questions remained unsolved:  

 Is there a predictivity not only in education and earnings but also in the occupation?  

 Which is the precise and absolute magnitude of the effect of parent’s background on 

partner’s characteristics? And how does it changes through generation? 

We hope this paper to be a starting point for further investigation in this subject exploiting 

richer samples and more complex econometric techniques.  

It is indeed that economic science can limit itself no more to the traditional fields of application 

but need to be contaminated by other social sciences. It is, in fact, absolutely important to better 

understand those mechanism pushing people to take decisions in order to design a fairer system 

of scarce resources distribution. 
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Appendix 
 

 

Figure A.1 – IV Estimation for men in Germany, Austria, Czech Republic and Estonia. 

                                                                              

       _cons     1.462139    65.7183     0.02   0.982    -127.3701    130.2943

        year     .0101702   .0337264     0.30   0.763     -.055946    .0762864

       agesq     .0016616    .001142     1.45   0.146    -.0005772    .0039003

         age    -.2609393   .1398566    -1.87   0.062      -.53511    .0132313

      father     .8607059   .1018518     8.45   0.000     .6610386    1.060373

                                                                              

      yedu_p        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    84042.0931     5,844  14.3809194   Root MSE        =    3.7465

                                                   Adj R-squared   =    0.0239

    Residual    81973.6636     5,840  14.0365862   R-squared       =    0.0246

       Model    2068.42943         4  517.107358   Prob > F        =    0.0000

                                                   F(4, 5840)      =     36.84

      Source         SS           df       MS      Number of obs   =     5,845

. reg yedu_p father age agesq year if gender==1

Instruments:   age agesq year war

Instrumented:  father

                                                                              

       _cons    -44.68224   106.7948    -0.42   0.676    -253.9963    164.6318

        year     .0333269   .0541152     0.62   0.538    -.0727369    .1393907

       agesq     .0021957    .001532     1.43   0.152     -.000807    .0051985

         age    -.2991502     .16296    -1.84   0.066    -.6185459    .0202456

      father     3.664028   4.910464     0.75   0.456    -5.960304    13.28836

                                                                              

      yedu_p        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                  Root MSE        =     3.9804

                                                  R-squared       =          .

                                                  Prob > chi2     =     0.0000

                                                  Wald chi2(4)    =      67.84

Instrumental variables (2SLS) regression          Number of obs   =      5,845
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Figure A.2  - OLS Estimation for men in Germany, Austria, Czech Republic and Estonia. 

 

                                                                              

       _cons     1.462139    65.7183     0.02   0.982    -127.3701    130.2943

        year     .0101702   .0337264     0.30   0.763     -.055946    .0762864

       agesq     .0016616    .001142     1.45   0.146    -.0005772    .0039003

         age    -.2609393   .1398566    -1.87   0.062      -.53511    .0132313

      father     .8607059   .1018518     8.45   0.000     .6610386    1.060373

                                                                              

      yedu_p        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    84042.0931     5,844  14.3809194   Root MSE        =    3.7465

                                                   Adj R-squared   =    0.0239

    Residual    81973.6636     5,840  14.0365862   R-squared       =    0.0246

       Model    2068.42943         4  517.107358   Prob > F        =    0.0000

                                                   F(4, 5840)      =     36.84

      Source         SS           df       MS      Number of obs   =     5,845
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Figure A.3  – IV Estimation for both women and men in Germany, Austria, Czech Republic and Estonia. 

Instruments:   age agesq year female war

Instrumented:  father

                                                                              

       _cons     79.04734     55.067     1.44   0.151    -28.88199    186.9767

      female     .3029154   .0900329     3.36   0.001     .1264542    .4793765

        year    -.0349508   .0279608    -1.25   0.211    -.0897531    .0198514

       agesq     .0001227   .0009301     0.13   0.895    -.0017002    .0019456

         age    -.0650464   .1110733    -0.59   0.558    -.2827461    .1526532

      father     5.873501   2.788609     2.11   0.035     .4079292    11.33907

                                                                              

      yedu_p        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                  Root MSE        =     4.4311

                                                  R-squared       =          .

                                                  Prob > chi2     =     0.0000

                                                  Wald chi2(5)    =      87.49

Instrumental variables (2SLS) regression          Number of obs   =     12,056

                                                                              

       _cons     3.955495   5.757322     0.69   0.492    -7.329781    15.24077

         war    -.0491741   .0149045    -3.30   0.001    -.0783894   -.0199589

      female     -.014128   .0088275    -1.60   0.110    -.0314314    .0031754

        year    -.0017192   .0029522    -0.58   0.560     -.007506    .0040676

       agesq    -.0001512   .0001029    -1.47   0.142    -.0003528    .0000504

         age     .0099752   .0123758     0.81   0.420    -.0142833    .0342338

                                                                              

      father        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

                                                Root MSE          =     0.4816

                                                Adj R-squared     =     0.0053

                                                R-squared         =     0.0057

                                                Prob > F          =     0.0000

                                                F(   5,  12050)   =      13.78

                                                Number of obs     =     12,056

                       

First-stage regressions
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Figure A.4  - OLS Estimation for both women and men in Germany, Austria, Czech Republic and Estonia. 

  

                                                                              

       _cons     105.2795   45.58593     2.31   0.021     15.92375    194.6353

      female     .2383435    .070182     3.40   0.001     .1007755    .3759116

        year    -.0465701   .0233929    -1.99   0.047    -.0924239   -.0007163

       agesq    -.0001676   .0007893    -0.21   0.832    -.0017148    .0013796

         age    -.0606727    .095947    -0.63   0.527    -.2487443    .1273989

      father     1.239658    .072387    17.13   0.000     1.097768    1.381548

                                                                              

      yedu_p        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    182575.429    12,055  15.1452036   Root MSE        =    3.8288

                                                   Adj R-squared   =    0.0321

    Residual    176645.303    12,050  14.6593612   R-squared       =    0.0325

       Model    5930.12665         5  1186.02533   Prob > F        =    0.0000

                                                   F(5, 12050)     =     80.91

      Source         SS           df       MS      Number of obs   =    12,056
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