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Abstract

Complex functional brain networks are large networks of brain regions and
functional brain connections. Statistical characterizations of these networks
aim to quantify global and local properties of brain activity with a small
number of network measures. Recently it has been proposed to characterize
brain networks in terms of their “controllability”, drawing on concepts and
methods of control theory. The thesis will review the control theory for
networks and its application in neuroscience. In particular, the study will
highlight important limitations and some warning and caveats in the brain
controllability framework.
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chapter 1

Introduction

 . networks science

Every place we look, we see a world of amazing complexity []. The world
offers a wide variety of complex instances in a number of areas: microbial

communities, gene regulatory networks, bird flocks, ecosystems, cognition,
political systems, stock markets, language, cities, economy, just to name a
few. All these phenomena belong to the wide class of �complex systems�,
characterized by the fact that their behavior cannot be understood simply
from the knowledge of its constitutive parts. In order words, in complex
systems the whole is more than the sum of its parts. [] Even though these
kinds of systems are very different from one another, the aim of physicists
in Complexity Science is to find elegant and simple laws that can be used to
describe and predict their emergent properties and collective behaviours.
The common feature of all complex systems is that they are generally com-
posed of many elements that interact with each other in often complicated
and nonlinear ways. Therefore, it is essential to find the right concepts that
we can use to represent and analyze them: the use of "networks" and network
theory has provided exceptionally powerful tools in this sense.

Practical examples of networks abound in our everyday life: the Internet
(the network of computers physically connected between each other through
optical fiber cables or telephone lines) and the World Wide Web (the network
of information stored in web pages and linked by "hyperlinks") constitute





 chapter  . introduction

some of the most famous cases.

Figure . – A pictorical representation of the Internet network [].

We can find instances of networks also in biological situations: �food
webs�, for example, are the network representation of species in an ecosystem
linked by predator-prey interactions. Other relevant examples of biological
networks are metabolic networks, protein-protein interaction networks and
genetic regulatory networks. Networks find applications also in the scenario
of social sciences: social, friendship and collaboration networks are often
used to represent complex social systems in order to model interaction among
people or groups.

Figure . – An example of one of the first social network analysis: the
beginnings of social network analysis is credited to Jacob Moreno with the
graphical social network of interactions between students. Here two groups
of girls and boys are respectively represented. [].

Since networks are a very general and abstract mathematical tool, they
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can provide a language which can describe extremely different systems with a
certain universality: the structure and the evolution of the networks behind
each system is driven by a common set of fundamental laws and principles.
Therefore, despite the amazing differences in form, size, nature, properties,
and purpose of real networks, most of them are driven by common organizing
principles. []

Figure . – Networks describe very different systems across many spatial
and temporal scales [].

Surely, this universality has contributed to the foundation of the new
discipline of Network Science, but another force that has helped the growing
interest in networks analysis is the recent access to large databases, which
offer accurate maps of networks merging from different disciplines. All these
factors have boosted the interest in the development of this interdisciplinary
science.
Even if Networks Science can be considered as a new science, it sinks its
roots into preexisted disciplines. In fact, the formalism of Network Science
is rooted in Graph Theory, and has borrowed conceptual frameworks to deal
with randomness and seek universal organizing principles from Statistical
Physics and Statistics, which can help extracting information from incomplete
and noisy datasets.
In order to address the basic concepts related to networks, it is therefore use-
ful to investigate the main topics developed from these disciplines, starting
from Graph Theory.
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 . basic introduction to graph theory

.. Historical overview

In , Euler stated the basis of Graph Theory by solving a puzzle known as
the Königsberg seven-bridge problem: Königsberg (now known as Kaliningrad)
was an old city in Eastern Prussia lying on the Pregel River, which forms an
island and then separates into two branches.

In this way, four land areas are created: the island A, two river banks B
and C, and the land D between two branches. Seven bridges connect the four
land areas of the city. The puzzle consists in finding a walk around the city
which crosses each of the seven bridges just once. Begging pardon for spoiling,
there is no solution to the puzzle, but there was no proof until , when one
of the leading mathematicians of that time, Leonhard Euler, published a proof
that no such walk is possible. He not only dealt with this particular problem,
but also gave a general method for other problems of the same type. Euler
constructed a mathematical model for the problem in which each of the four
lands is represented by a point and each of the seven bridges is represented
by a line as follows:

Thus, the problem can now be reformulated by: beginning at one of the
points A, B, C and D, is it possible to draw the figure without traversing the same
edge twice? []
This mathematical model is known as a graph model of the problem. The
points A, B, C and D are called vertices, the line segments are called edges, and
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the whole diagram is called graph.

.. Preliminaries and basic definitions

As seen, a graph is essentially a way to code a relation between the elements
of a system. A graph G is a tuple (V ,E), where the N elements of the system
identify the set of vertices, namely V , and the M relations among those the
set E, i.e. the set of edges. Furthermore, the graph is said to have order N and
size M respectively.
Each edge is an unordered pair of vertices. The two vertices associated with
an edge e are called the end-vertices of e.
Whenever a real number can be attached to an existing edge we have that the
edge is characterized by a weight w. In this case, the graph is said to be a
weighted graph.

Hence, we also denote the set of vertices of a graph G by V (G) and the set
of edges of G by E(G).
A subgraph of G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G), with
the assignment of endpoints to edges in H which is the same as in G. It is
used to write H ⊆ G.
A spanning subgraph of a graph G is a subgraph obtained by edge deletions
only, in other words, a subgraph whose vertex set is the entire vertex set of G.

Denoting by e = (u,v) an edge between two vertices u and v, then the two
vertices u and v are said to be adjacent or neighbour in G and the edge e is said
to be incident to the vertices u and v. Similarly, two edges e and f are said
adjacent if they have an end in common.

Figure . – This graph has six vertices (v1,v2,v3,v4,v5andv6), and ten edges.
Vertices v1 and v2 are the end vertices of edge e1, thus they are adjacent.
Vertices v2, v5 and v6 are the neighbors of the vertex v1.

A loop is an edge whose endpoints are coincident, i.e. e = (u,u). Multiple
edges are the ones having the same pair of endpoints, such as e1 = (u,v) and
e2 = (u,v).
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When in a graph, there are loops neither multiple edges, the graph is said to
be simple. Conversely, a multigraph is characterized by the occurrence of
multiple edges.

a) a loop b) a multiedge c) a simple graph

Ordered sequences of unique edges and intermediate nodes are called
paths. Less formally we can say that a series of consecutive edges forms a
path. The number of edges in a path is called the length of the path.
Whilst sequences of non unique edges are called walks. A graph is connected
if each pair of vertices in G belongs to a walk.

If all the vertices of G are pairwise adjacent, then G is complete. A com-
plete graph on N vertices is denoted by KN . It is easy to note that a complete
graph has M =N (N − 1)/2 edges.

In contrast, a set of vertices is independent if each pair of its elements is
not constituted of adjacent nodes. A graph G is called a bipartite graph if the
vertex set V of G can be partitioned into two disjoint nonempty sets V1 and
V2 , both of which are independent. If for each vertex u ∈ V1 and each vertex
v ∈ V2 , there is an edge (u,v) in G, one has a complete bipartite graph, and it
is denoted by Km,n (whit the two partitioned sets containing m and n vertices,
respectively).

In general, considering vertex degree distributions is an important tech-
nique in graph analysis. The degree of a vertex v, denoted by k(v), is the
number of edges incident to v in G. Thus, the degree distribution shows how
many vertices have degree 0,1,2, ... and so on.
If all the vertices of a graph G have equal degrees, then we call G a k-regular
graph, where k is the common degree.

There is an important further classification of graph, concerning the direc-
tion of the edges.
If the lines of a graph have a direction assigned to them, we have what is
known as a directed graph or digraph.
A digraph consists of a set of points V (D) and a set of ordered pairs of points
E(D), plus two functions I(E → V ) and F(E → V ). The first one assigns to
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every edge e an initial vertex I(e). The second one assigns to every edge e a
final vertex F(e).

Figure . – An undirected graph and a digraph having the same vertices
set.

More simply, every edge e has assigned a direction from one vertex I(e) to
another F(e). Sometimes I(e) and F(e) coincide: in this case e forms a loop.
Given a digraph D, its underlying graph G(D) is obtained by replacing each
directed edge with its undirected counterpart. Conversely, we can transform
any undirected graph G into a directed one, D(G), by associating a direction
with each edge. Such a digraph is also known as an orientation.

The number of edges having v as their second point is called the indegree
of v and is denoted by k−(v) or kin(v). Similarly, the outdegree of point is
the number of lines having v has their first point and is written k+(v) or kout(v).

Theorem . – For any directed graph D the sum of indegrees as well as the
sum of outdegrees is equal to the total number of edges:∑

v∈V (D)

kin(v) =
∑

v∈V (D)

kout(v) = |E(D)|

The concept of indegree and outdegree can sometimes play a surprisingly
important role when devising or analyzing real-world networks. To give an
example, suppose we are devising a communication network in which we
model the case that node u can send a message directly to node v by means of
an edge u→ v. The indegree of node v may then indicate how many messages
v can expect per time unit, also known as the rate of incoming messages. []

... Tools for the characterization of networks

It is useful to investigate which tools have been developed to describe and
represent graphs and their connectivity.
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Let G be a graph with the vertex set V = {v1,v2, ...,vn} and the edge set
E = {e1, e2, ..., em}.
The distance between two nodes is the length of the shortest path linking the
nodes and is often of particular interest. All pairwise distances in a graph
may be represented in the distance matrix: the distance matrix D(G) contains
the element dij which represents the distance between vertices vi and vj , i.e.
the number of edges belonging to the path.

The incidence matrix I(G) of G is an n×m matrix whose entry mij is 1 if the
vertex vi is adjacent to the edge ej , and 0 otherwise.

The adjacency matrix A(G) of G is an n×n symmetric matrix, whose entry
aij is the weights of the edge between the two vertices vi and vj .
The adjacency matrix can have even binary entries:

aij =

1 if the edge j→ i occurs

0 otherwise

In other words, the adjacency matrix defines the topology of the graph by
representing nodes as matrix rows and columns and representing edges as
binary or weighted matrix entries.
For simple graph, all the diagonal elements, representing the loop edges, are
zeroes. Furthermore, the adjacency matrix is symmetric for undirected graph.

Figure . – (a) A graph G, (b) adjacency matrix representation of G, and (c)
incidence matrix representation of G.

The adjacency matrix allows the derivation of the degree: the in-degree
can be obtained by summing the adjacency matrix over rows, while the out-
degree over columns.
In other words, the sum of values in row i is equal to the indegree of vertex vi ,
that is,

∑
j aij = kin(vi) and similarly for the outdegree

∑
j aji = kout(vi).
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In order to generalize these tools for directed graphs, the incidence matrix
can be redefined as:

mij =


1 if the edge ej starts from vertex vi
−1 if the edge ej ends from vertex vi
0 otherwise

Obviously, the adjacency matrix is still not symmetric for digraphs.

Figure . – (a) A digraph G, (b) adjacency matrix representation of G, and
(c) incidence matrix representation of G.
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 . controllability framework

Recently, network science has been enhanced using concepts borrowed from
engineering, like control and information theory, allowing us to understand
the control principles of networks.
Indeed, there is a growing interest in understanding whether and how the
design principles of many complex systems, even characterized by self organi-
zation, are determined by the need to control their behaviour.
Thus, the aim is to characterize the networks in terms of their controllability
and to understand which is the impact of topology on the capacity of control
the system.
First of all, it is essential to understand what we mean by �controllability�.
In very general terms, controllability deals with the possibility to control a
dynamical system via external inputs. In other words, it concerns with the
capacity to influence the behaviour of a dynamical system with appropriately
chosen inputs so that the system’s output follows a desired trajectory of final
state.

Hence, given a system withN elements, any state of the system is described
at time t by a state vector x(t) ∈RN , whose entries xi(t) are called state variable.
For a nonlinear system, the equations tuning the dynamics are the state
equation and the ouput equation respectively:

ẋ = f(t,x(t),u(t);Θ) (.)

y(t) = h(t,x(t),u(t);Θ) (.)

where u(t) ∈ R
M represent the M external inputs, the output vector

y(t) ∈ Rk describe the experimental measurable variable and Θ involves all
the system parameters.

However, many nonlinear systems can be
linearized around an equilibrium state. A
simple mechanical instance is the inverted
pendulum: our goal is to balance, and there-
fore to control, the stick in the upright po-
sition using the horizontal position of the
hand as the control input u(t).
Consider a stick of length L whose mass M
is concentrated at the top. Denote the angle
between the stick and the vertical direction
with θ(t). The hand and the top of the stick
have horizontal displacement u(t) and x(t),
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respectively. []

The nonlinear equation of motion for this system is

Lθ̈(t) = gsinθ(t)− ü(t)cosθ(t)

where g is the gravitational and

x(t) = u(t) +Lsinθ(t)

When the stick is nearly at rest in the upright vertical position (θ = 0,
which is an equilibrium point), θ is small; hence we can linearize the equation
of motion

ẍ(t) =
L
g

(x(t)−u(t))

According to the notation used in ., the state vector is x = (x(t),v(t))T

with velocity v(t) = ẋ(t), and assuming y(t) = x(t), it is possible to rewrite the
state and output equations as the system:

ẋ(t) =
[

0 1
g/L 0

]
x(t) +

[
0
−g/L

]
u(t)

y(t) =
[
1 0

]
x(t)

Generalizing this example, the class of time invariant linear (LTI) systems
represents an interesting case. An LTI system describes systems with linear,
or linearized, dynamics, and for them the . and . can be rewritten as:

ẋ = Ax(t) +Bu(t) (.)

y(t) = Cx(t) +Du(t) (.)

where A ∈RN×N is the state matrix which captures the interaction among
the components of the system, B ∈ R

N×M is the input matrix which tunes
the effect of the external inputs, C ∈ Rk×N is the output matrix and finally,
D ∈Rk×M is the feedforward matrix.

One of the most critical issue, previously cited, with the complete knowl-
edge of the dynamical behaviour deals with the non linearity which is typical
in a number of real systems. Most of the developed tools of control theory on
networks concern with LTI systems.
Even if investigating LTI systems is surely a limitation, the linear approach is
a fundamental first approximation: while many complex systems are charac-
terized by nonlinear interactions between their components, the first step in
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any control challenge is to establish the locally controllability of linearized
system. Furthermore, the nontrivial network topology of real-world complex
systems brings a new layer of complexity to controllability. Before we can
explore the fully nonlinear dynamical setting, which is mathematically much
harder, it is useful to investigate the impact of the topological characteris-
tics on linear controllability, serving as a prerequisite for the nonlinear one. []

Dealing with brain networks, which are characterized by deep non lin-
earity, we will show that LTI is compatible with linearization around the
quiescent state, i.e. very low activity.
Hence, the differential equation, describing the evolution of the state is the

ẋ = Ax(t) +Bu(t) (.)

where the state variable xi(t) describes the neural activity; A is a matrix
depending on the network anatomical connectivity and incorporating the
effective interactions in the dynamics between the states, whose entries aij
provide whether the neural element j affects the element i; while the matrix B
provides which brain regions are affected by external inputs and the strength
of that stimulation.
According to Kalman definition, a system is controllable if it can be driven
from any initial state to any desired state in finite time via a suitable choice of
u(t).
In mathematical terms, there exists a useful test to predict whether an LTI is
controllable: the Kalman’s criterion of controllability. []
Defined the N ×NM control matrix C as:

C = [B,AB,A2B, ...,AN−1B] (.)

the system is controllable if C has full rank, i.e. rankC =N
Dealing with the inverted pendulum

A =
[

0 1
g/L 0

]
B =

[
0
−g/L

]

C = [B,AB] =
[

0 −g/L
−g/L 0

]
Hence, C has full rank and the inverted pendulum is controllable, according
to our experience that we can balance a stick on our palm.

To understand the origin of ., the formal solution of the state equation
is:

x(t)
∫ t

0
e[A(t−τ)]Bu(t)dτ
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If e[A(t−τ)] is expanded in series, it is easy to see that x(t) is actually a linear
combination of the columns in the matrices B,AB,A2B, .... Note that for any
N ∗ ≥N , we have rank[B,AB,A2B, ...,AN

∗−1B] = rankC. So if rankC < N , then
even the infinite series of B,AB,A2B, ... will not contain a full basis to span the
entire N -dimensional state space. In other words, we cannot fully explore the
state space, regardless of u(t), indicating that given our inputs the system is
stuck in a particular subspace, unable to reach an arbitrary point in the state
space. If, however, rankC =N , then we can find an appropriate input vector
u(t) to steer the system from x(0) to an arbitrary x(t). Hence, the system is
controllable.

... Structural Controllability

Notwithstanding treating LTI systems is mathematically easier, trying to infer
dynamical predictions from the state and output equations is a hard prob-
lem: it is nearly impossible to be aware of all the system’s parameters, not to
mention that it is needed an accurate wiring diagram and description of the
system.

Fortunately, many control problems can be addressed even without the
simultaneous knowledge of these features thanks to the emerging field of
network science, as it will be shown.

Kalman’s criterion is useful when we are treating small networks, but, it is
impracticable for many networks.
First, because it can be actually hard to know all the entries of the system
matrix and, on the other hand, computing the rank of C can be extremely
laborious.
On the other hand, knowing only whether there is a link or not is a weaker
information that is often available.
Exploiting this kind of information, structural control offers a theoretical
framework to avoid issues related to Kalman’s approach.
An LTI system (A,B) is a structured system if A and B are either fixed zeros or
independent free parameters.
Thus, the system is said to be structurally controllable if we can set the nonzero
elements in A and B such that the resulting system is controllable for almost
all possible parameters realization.
In fact, it may occur that combinations of nonzero parameters are such that
the system is not controllable when these parameters have values in some
proper algebraic variety in the parameter space.
On the other hand, a system is strongly structurally controllable if it remains
controllable for any value of the nonzero elements.
In other words, according to strong structural controllability, a system is
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(strongly) controllable if there is no combination of nonzero link weights that
violates Kalman’s criterion.

Structural control provides a tool to infer if a system is controllable even
if the values of the interactions are not known but only the map of the wiring
diagram, i.e. the only required information is the knowledge of which ele-
ments are interacting with each other.

... Graphical Interpretation of structural controllability

As previously said, according to structural controllability, the topology of the
network, determined by the non zero entries of the matrices, is crucial.
Given an LTI system (A,B), it can be represented as a directed graph, or digraph,
G(A,B) = (V ,E) where V = VS ∪ VI is composed both by the state vertices
VS = (x1...xn) = (v1...vN ), corresponding to the N nodes in the network, and
the input vertices VI = (u1...uM ) = (vN+1...vN+M ), representing the M inputs;
while E involves all the non zero element of the structure matrices A and B:
more precisely E = ES ∪EI with {ES = (xj ,xi)|aij , 0} and {EI = (uj ,xi)|bij , 0}.
Thus, the condition aij , 0 implies that exists a link j → i in the network,
which means that the node-j affects the node-i.
The M input vertices are called origins of the digraph, while the state vertices
directly connected to the origins are known as controlled nodes or actuators.
It may occur that the number of the controlled nodes is greater than the
origins, since a origin can be linked with more state vertices, i.e. the cardi-
nality of the actuators is determined by the number of non zero elements of
B. Therefore, the controlled vertices which don’t share the origin are called
driver nodes, whose number is ND .
Obviously, any system is fully controllable if each node is individually con-
trolled, i.e. M = N , however the aim is to identify the minimum number of
input, and therefore driver nodes, to control the whole system.

In Lin’s work [], a graphical interpretation of structural controllability is
provided. In particular, it is shown that a system is not structurally controllable
if and only if occur dilations either isolated nodes.
A state vertex is inaccessible if there are no directed paths reaching it from
an input vertices.
Given a digraph, it contains a dilation if there is a subset of state nodes S ⊂ V
such that the neighborhood set T (S) of S, i.e. the set of vertices vi for which
there is a directed edge from vi to some other vertex in S, has fewer nodes
than S itself.
Roughly speaking, dilations are subgraphs in which a small subset of nodes
attempts to rule a larger subset of nodes. In other words, there are more
�subordinates�than �superiors�. While an inaccessible node cannot be in-
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fluenced by input signals applied to the driver nodes. Consequently, the
occurrence of one of the two conditions makes the whole network uncontrol-
lable.

Furthermore, Lin provided an alternative graph-theoretical formulation.
Preliminarely, a general graph is covered or spanned by a subgraph if the
subgraph and the graph have the same vertex set. For a digraph, a sequence of
oriented edges v1→ v2→ vk−1→ vk , where the vertices v1,v2..vk are distinct,
is called an elementary path. While, when vk coincides with v1, the sequence
of edges is called an elementary cycle.

Thus, the following subgraphs are defined:[]
n A stem C is an elementary path originating from an input vertex;
n a bud O is an elementary cycle C with an additional edge e that ends,

but does not begin, in a vertex of the cycle;
n a cactus is defined recursively: a stem is a cactus. Let C, O, and e be,

respectively, a cactus, an elementary cycle that is disjoint with C, and a
directed edge that connects C to O in G(A;B). Then C ∪ {e} ∪O is also
a cactus.

Dealing with structural controllability, a cactus is a minimal structure that
contains neither inaccessible nodes nor dilations. Thus, an LTI system (A;B)
is structurally controllable if and only if G(A;B) is spanned by cacti, i.e. if
there exists a set of disjoint cacti that cover all state vertices.

Figure . – (a) Inaccessibility. The red nodes x1 and x2 are inaccessible from
the input (blue) nodes, which can not control the states of x1 and x2. (b)
Dilations. The red nodes in the set S = {x3;x4} cause a dilation. Indeed, their
neighborhood set T (S) = {x5} contains only one node, implying that a single
node in T (S) aims to control two nodes in S. (c) A cactus contains neither
inaccessible nodes nor dilations and it is a minimal structure for structural
controllability. Note that in the cactus structure T (S) = {x2;x5}, hence the
previous dilation has been removed. There is only one stem (highlighted in
green) and multiple buds (highlighted in purple) are allowed in one cactus
[] .
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Summarizing, according to Lin’s Structural Controllability Theorem, the
following statements are equivalent:
. A linear system (A;B) is structurally controllable;
. The digraph G(A;B) contains neither inaccessible nodes nor dilations;
. G(A;B) is spanned by cacti.
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... Examples of structural controllability

Likewise to the inverted pendulum, here we analyze the controllabilty of four
systems, apparently similar to each other. Similarity which is not reflected in
controllability terms.

Example A 
˙x1(t)
˙x2(t)
˙x3(t)

 =


0 0 0
a21 0 0
0 a32 0



x1(t)
x2(t)
x3(t)

+


b1
0
0

u(t)

C = [B,AB,A2B] = b1


1 0 0
0 a21 0
0 0 a32a21


Since rankC = 3 = N , the system is controllable. Note that

the system is always controllable despite the detailed values
of matrices’ entries. This is an example of the so called strong
structural controllability.

Example B
˙x1(t)
˙x2(t)
˙x3(t)

 =


0 0 0
a21 0 0
a31 0 0



x1(t)
x2(t)
x3(t)

+


b1
0
0

u(t)

C = [B,AB,A2B] = b1


1 0 0
0 a21 0
0 a31 0


Since rankC = 2 < N , the system is uncontrol-

lable. Note that this is independent of the detailed
values of a21, a31, and b1. No matter how we tune
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them, the system is uncontrollable. Indeed, the dy-
namics equation suggests that the system will get
stuck in the plane a31x2(t) = a21x3(t) in the state
space.

Example C
˙x1(t)
˙x2(t)
˙x3(t)

 =


0 0 0
a21 0 a23
a31 a32 0



x1(t)
x2(t)
x3(t)

+


b1
0
0

u(t)

C = [B,AB,A2B] = b1


1 0 0
0 a21 a23a31
0 a31 a32a21


In most cases, we have rankC = 3 = N , so the

system will be controllable. In case a32a
2
21 = a23a

2
31,

it turns out that rank(C) = 2 < N and the system
will be uncontrollable. Therefore, this system is not
strongly contollable.

Example D
˙x1(t)
˙x2(t)
˙x3(t)

 =


0 0 0
a21 0 0
a31 0 a33



x1(t)
x2(t)
x3(t)

+


b1
0
0

u(t)

C = [B,AB,A2B] = b1


1 0 0
0 a21 0
0 a31 a33a31


Since rankC = 3 =N , the system is controllable.

In this example, the controllability is independent of
the detailed values of a21, a31 , a33, and b1, as long as
they are non-zero. This is another example of strong
structural controllability.



chapter 2

Complex Brain Networks

 . introduction

One of the most important functions of the brain is to process information
and the primary information processing element is the neuron, which is a

specialized brain cell that puts together many inputs to create a sole output.

A normal brain can be composed of a few neurons as well as more then a
hundred billion. The output of one cell provides for the input of another, in
order to create a neural network that is able of extraordinary achievements of
calculations and decision making.

Indeed, there is a very long history in neuroscience behind the notion that
the nervous system is a network of interconnected neurons.
In the second half of the nineteenth century was born the most important
concept of the organization of the nervous system that came from studies
of anatomical and physiological researches that organized the cellular basis
of the brain function. At that time there was a huge debate regarding two
different views of neural organization. On one side there was the one that
now is synonymous of “neuron doctrine” which affirms that the nerve cell
(neuron) was the anatomical, physiological, genetic and metabolic unit of the
nervous system. On the other side it was denied the concept that neurons
were delimitated structures, and it was suggested that the thin branches of
neuronal fibers formed a continuous nerve network, that favorited neural
activity to spread freely across the brain.[] The debate was established by
the turn of the century when it was stated that the neuron doctrine, was and
still is one of the foundations of modern neuroscience.


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Even after the debate ended, the researchers put a big effort into compre-
hending the way in which discrete cellular elements can fulfill continuity and
collective action. This fact is far from resolved.
Grant that the brain is a complex dynamical system and addressing the prob-
lem with a network-based approach, the intent is to build an exhaustive
understanding of how these networks are structurally organized and how
they generate complex dynamics.

 . mapping the brain

In first approximation, a neuron be considered as a node that receives a certain
number of inputs, produces an output result that is sent to one or more others
neurons. The connections between neurons can be modelled with edges. The
most important thing to realize a graph description of the brain system is
outline the network’s nodes.
Node definition can be inferred from electroencephalography or multielectrode-
array electrodes, or anatomically defined regions of histological MRI or diffu-
sion tensor imaging data.
Cortical parcellation, that consists in the definition of anatomical regions, it
is essentially the division of the continuous cortical sheet into discrete areas.
Parcellation schemes can be informed by the functional connectivity profiles
of different regions or can use prior anatomical criteria. For example, one of
the most famous parcellation scheme is Brodmann’s division of the cortex into
areas defined by their cytoarchitectonic criteria. Consequently parcellation
schemes are not only already defined, and choosing other schemes can alter
the resulting network features.
A different approach implicates defining nodes equivalent to individual
electrodes or sensors, like in most magnetoencephalography and electroen-
cephalography studies.

The second step that corresponds to the definition of edges is to determine
the connectivity among the brain regions. In other terms, connectivity in the
brain can be described as structural, functional or effective.

Structural connectivity is the description of anatomical connections link-
ing a set of neural elements. Speaking at the scale of human brain, these
connections usually relate to white matter projections linking cortical and
subcortical regions. For example, diffusion MRI is capable to measure the
anisotropic diffusion of water along fiber bundles, highlighting the connectiv-
ity between brain regions.
This kind of structural connectivity it is considered to be moderately stable
on shorter time scale, but may fluctuate at longer time scales.
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Functional connectivity is customarily assumed from time series observa-
tions, and describes patterns of statistical dependence among neural elements.
The studies that allow to detect patterns of functional connections between
cortical areas, are based on functional MRI (fMRI), electroencephalography
(EEG), magnetoencephalography (MEG) or multielectrode array (MEA) data.
For example, fMRI detects changes in regional brain activity through their
effects on blood flow and blood oxygenation, which affect magnetic suscep-
tibility and tissue contrast in magnetic resonance images; while EEG is a
technique used to measure neural activity by monitoring electrical signals
from the brain, usually through scalp electrodes.
Time series data can be calculated in different ways, as well as cross-correlation,
mutual information or spectral coherence.
The presence of a statistical relationship between two neural elements is
considered sometimes as a sign of functional coupling. It is necessary to
understand that the presence of such coupling does not imply a causal rela-
tionship.
Because functional connections are repeatedly adjusted by sensory stimuli
and task context, functional connectivity is highly time-dependent.

Effective connectivity is a very important way of representing and analysing
brain networks. It strives to capture a network of directed causal effects be-
tween neural elements. That means that, effective connectivity embody a
generative and mechanistic model that considers the observed data, selected
from a range of possible models using objective criteria.
Most recent studies of brain networks are still accomplished on either struc-
tural or functional connectivity data sets, meanwhile effective connectivity
represents a big promise for the future.

As a matter of fact, to obtain a brain network form, the defined nodes are
coupled according to structural and/or functional brain connectivity data.
The full set of all pairwise couplings can then be aggregated into connection
matrix. To remove inconsistent or weak interactions, connections matrices is
subjected to averaging across imaging runs or individuals, or to thresholding.
A very important point is the choice of threshold used to create an adjancency
matrix from the connection matrix: different threshold will generate graphs
of different sparsity or connection density, and that’s why network properties
are often explored over a range of plausible thresholds.

All these steps are illustrated in .

 . networks measures

The resulting networks can be examined with the tools and methods of net-
work science in order to analyze, and visualize network architecture.
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Figure . – A pictorial representation of the steps leading from data acqui-
sition to a network-based brain model[].

For example, one of the most fundamental network measure is the node
degree, already encountered in Section .:

ki =
∑
j

aij

Indeed, the degree distribution can be highly informative: the degrees of all
nodes together form the degree distribution of the network, which shows
whether the network contains nodes with nearly equal degrees or whether
node degrees vary.

In random networks all connections are equally probable, resulting in a
Gaussian and symmetrically centred degree distribution. In regular graphs,
all the nodes have the same degree. On the other hand, complex networks
generally have non-Gaussian degree distributions, often with a long tail to-
wards high degrees, as we will see.

Furthermore, node degrees are fundamental because they are strongly
related with a number of other network measures. One instance is assortativ-
ity, which represents the correlation between the degrees of connected nodes.
Positive assortativity indicates that high-degree nodes tend to connect to each
other.

The main networks measures can be divided in three categories: segregation
measures, integration measures and influence measures.
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.. Segregation measures

Segregation refers to the degree to which a network’s elements form separate
cliques or clusters.
The clustering coefficient of an individual node measures the density of connec-
tions between the node’s neighbors. Densely interconnected neighbors form a
cluster around the node, contrarily this phenomenon does not emerge with
sparsely interconnected neighbors. The average of the clustering coefficients
for each individual node is the clustering coefficient of the graph.

For example, random networks have low average clustering while complex
networks have high clustering, usually associated with high local efficiency of
communication, i.e. information travelling.

Different local neighborhoods or clusters often engage in different patterns.
According to these patterns, large networks can be decomposed into smaller
"building blocks". The distribution of such subgraphs, known as motifs, in a
network provides information about the types of local interactions that the
network can support.

Networks with high levels of clustering are often composed of local com-
munities or modules of densely interconnected nodes. These modules are
segregated from each other, such that most edges link nodes within modules,
and few edges link nodes between different modules. The relation among
the density of within-module and between modules connections defines a
measure of network modularity.

Clustering, motifs, and modularity capture aspects of the local connectiv-
ity structure of a graph and the segregation of the network into communities.
These measures can be traduced in mathematical terms as follows. []
Introducing the number of triangles around a node i,

ti =
1
2

∑
j,h

ajiahiahj

the clustering coefficient of the network is

C =
1
N

∑
i

Ci =
1
N

∑
i

2ti
ki(ki − 1)

.

Modularity is instead defined as

Q =
1

2k

∑
i,j

(
aij −

kikj
2k

δmi ,mj

)
where mi is the module containing the node i, and δmi ,mj

= 1 if mi =mj , and 0
otherwise.
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.. Integration measures

Integration refers to the capacity of the network as a whole to become inter-
connected and exchange information.

Many of these measures are based on paths and distances between nodes,
such as the path length, i.e. the global average of the graph’s distance matrix.
In other words, it is the average of all the shortest path between each pair of
nodes.
Denoting with Li the average distance between node i and all other nodes,

L =
1
N

∑
i

Li =
1
N

∑
i

∑
j,i dij
N − 1

A short path length indicates that, on average, each node can be reached from
any other node along a path composed of only a few edges. A low path length
usually can be interpreted as short communication distances.

The integration measures capture the capacity of the network to pass
information between its nodes, and they are therefore of significance in a
neurobiological context. For instance, structural paths that are shorter or are
composed of fewer steps generally allow signal transmission with less noise,
or signal degradation. []

Segregation and integration capture opposite features of networks con-
struction, indeed, both segregation and integration turn out to be essential for
structural and functional organization of brain networks.

.. Influence measures

Measures of influence attempt to quantify the “importance” of a given node or
edge for the structural integrity or functional performance of a network.[]
Many of these measures capture the “centrality” of network elements, such as
the betweenness centrality expressed as the number of short communication
paths ρhj(i) that travel through each pair of nodes h and j passing through
the node i:

bi =
1

N − 1
1

N − 2

∑
h,j,h,i,j,i

ρhj(i)

ρhj

Indeed, the idea of betweenness centrality is that a node is central if it has
great control over the flow of information within the network and that this
control results from its participation in many of the network’s short paths.
On the other hand, the closeness centrality of an individual node is the inverse
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of the average path length between that node and all other nodes in the
network.

L−1
i =

N − 1∑
j dij

Furthermore, important nodes are often more highly or densely connected
to the rest of the network, facilitate global integrative processes, or play a
critical compensatory role when the network is damaged. Such nodes are
often referred to as hubs, a term that is often used notwithstanding impre-
cisely defined. Hubs can be identified on the basis of several different criteria,
including the degree, participation in modular connectivity, or centrality.

Recently studies carried out in humans and other species had suggested a
tendency for hubs to be densely interconnected in a "hub complex": a study
of cat cerebral cortex[] has highlighted for the first time the existence of
"rich club" structure, a set of hub regions that are densely interconnected. The
structural connectivity acquired with MRI shows that even human brain is
organized through rich clubs.

 . random networks architecture

Network science aims to build models that reproduce the properties of real
networks. In most real networks, there is no the emergence of regularity,
as well as a crystal lattice. Rather, they seems to be characterized by a cer-
tain degree of randomness. Random network theory embraces this apparent
randomness by constructing and characterizing networks with a random ar-
chitecture. Some instances are illustrated in Figure .

Figure . – Pictorial representation of the architecture of the networks
according to the way in which they were built.

Generally, there are different ways to generate random networks, whose
topological architecture is tuned by characteristic random parameters, accord-
ing to the generative model taken into account.
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.. Erdös-Rényi

From a modeling perspective a network is a relatively simple object, consisting
of only nodes and links. The real challenge, however, is to decide where to
place the links between the nodes so that we reproduce the complexity of a
real system. A particularly rich source of ideas has been the study of random
graphs, graphs in which the edges are distributed randomly. Networks with a
complex topology and unknown organizing principles often appear random;
thus random-graph theory is regularly used in the study of complex networks.

The theory of random graphs was introduced by Paul Erdös and Alfréd
Rényi, after the first one discovered that probabilistic methods were often
useful in tackling problems in graph theory.

In their classic first article on random graphs [], Erdös and Rényi define
a random graph as N labelled nodes connected by m edges, which are chosen
randomly from the N (N − 1)/2 possible edges.

An alternative and equivalent definition of a random graph is the binomial
model. Here we start with N nodes, every pair of nodes being connected with
probability p, or equivalently all graphs with N nodes and M edges have
equal probability of:

pM(1− p)(
N
2)−M

Each node’s degree is characterized by the a binomial distribution, i.e.
each nodes is the endpoint of x edges with probability:

pk =
(
N − 1
x

)
pk(1− p)N−1−k (.)

From ., it is easy to deduce that

< k >= p(N − 1)

The . is said the degree distribution of the network. Indeed, in a given
realization of a random network, some nodes gain numerous links, while
others acquire only a few or no links. These differences are captured by pk
which is the probability that a randomly chosen node has degree k.

Most real networks are sparse, meaning that for them N �< k >: in this
limit the degree distribution is well approximated by the Poisson distribution

pk = e−<k>
< k >k

k!
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In the mathematical literature the construction of a random graph is of-
ten called an evolution: starting with a set of N isolated vertices, the graph
develops by the successive addition of random edges. The graphs obtained
at different stages of this process correspond to larger and larger connection
probabilities p, eventually obtaining a fully connected graph.

According to the evolving p, or equivalently < k >, a transition occurs
in the Erdös-Rényi networks: the emergence of a giant component, i.e. a
connected subgraph.
We can distinguish four topologically distinct regimes, each with its unique
characteristics:

n Subcritical Regime: p < 1/N
For < k >= 0 the network consists of N isolated nodes. Increasing < k >
means that we are adding N < k >= pN (N − 1)/2 links to the network.
We have only a small number of links in this regime, hence we mainly
observe tiny clusters, without the emergence of a giant component

n Critical Point: p = 1/N1
The critical point separates the regime where there is not yet a giant
component (< k >< 1) from the regime where there is one (< k >>
1). At the critical point most nodes are located in numerous small
components: these numerous small components are mainly trees, while
the giant component may contain loops.

n Supercritical Regime: p > 1/N
This regime has the most relevance to real systems, as for the first time
we have a giant component. The giant component contains a finite
fraction of the nodes. The further we move from the critical point, a
larger fraction of nodes will belong to it. In the supercritical regime nu-
merous isolated components coexist with the giant component. These
small components are trees, while the giant component contains loops
and cycles. The supercritical regime lasts until all nodes are absorbed
by the giant component.

n Connected Regime: p > lnN/N
For sufficiently large p the giant component absorbs all nodes and
components and in the absence of isolated nodes the network becomes
connected.

The random network model predicts that the emergence of a network
is not a smooth, gradual process: The isolated nodes and tiny components
observed for small < k > collapse into a giant component through a phase
transition. As we vary < k > we encounter four topologically distinct regimes.

.. Small world

Ordinarily, the connection topology is assumed to be either completely regular
or completely random. But many biological, technological and social networks
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lie somewhere between these two extremes. Here we explore simple models
of networks that can be tuned through this middle ground: regular networks
‘rewired’ to introduce increasing amounts of disorder. Indeed, in order to
interpolate between regular and random networks, we consider the following
random rewiring procedure. Starting from a ring lattice with n vertices and
k edges per vertex, each edge is rewired at random with probability p. This
construction, illustrates in figure . allows us to ‘tune’ the graph between
regularity (p = 0) and disorder (p = 1), and thereby to probe the intermediate
region 0 ≤ p ≤ 1

Figure . – Rewiring processes that leads from a regular networks to the
random. In the middle there is this small world regime network.

We find that these systems can be highly clustered, like regular lattices,
yet have small characteristic path lengths, like random graphs. We call them
‘small-world’ networks, by analogy with the small-world phenomenon. This
last one, popularly known as the six degrees of separation problem, states that
two individuals, anywhere in the world, can be connected through a chain of
six or fewer acquaintances.
In the language of network science six degrees, also called the small world
property, means that the distance between any two nodes in a network is
unexpectedly small.

We quantify the structural properties of these graphs by their character-
istic path length L(p) and clustering coefficient C(p). Here L(p) measures
the typical separation between two vertices in the graph (a global property),
whereas C(p) measures the cliquishness of a typical neighbourhood (a local
property). The networks of interest to us have many vertices with sparse
connections, but not so sparse that the graph is in danger of becoming discon-
nected. Specifically, we require N � k� ln(N )� 1, where k� ln(N ) entures
that the network is connected.
Under this condition, we find that the regular lattice at p = 0 is a highly
clustered, large world where L grows linearly with N , whereas the random
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network at p = 1 is a poorly clustered, small world where L grows only loga-
rithmically with n. These limiting cases might lead one to suspect that large
C is always associated with large L, and small C with small L.

ON the contrary, the model for 0 < p < 1 interpolates between a regular
lattice, which has high clustering but lacks the small-world phenomenon, and
a random network, which has low clustering, but displays the small-world
property.

Indeed, in [], it is provided that numerical simulations show that there
is a broad interval of p over which L(p) is almost as small as Lrandom yet
C� Crandom. These small-world networks result from the immediate drop in
L(p) caused by the introduction of a few long-range edges. Such ‘short cuts’
connect vertices that would otherwise be much farther apart than Lrandom.
For small p, each short cut has a highly nonlinear effect on L, contracting the
distance not just between the pair of vertices that it connects, but between
their immediate neighbourhoods, neighbourhoods of neighbourhoods and so
on.

In this case, defining f (k,< k >) =min(k− <k>2 , <k>2 ), the degree distribution
follows:

P (k) =
f (k,<k>)∑
n=0

Cn<k>
2

(1− p)np
<k>

2 −n
(p<k>2 )k−

<k>
2 −n

(k − <k>2 −n)!
e−p

<k>
2

and it has a pronounced peak at < k >, decaying exponentially for large k.

.. Scale-free

Networks with power-law degree distribution, such as the Internet one, are
called scale-free networks.

P (k) ∝ k−γ

It is interesting the fact that a number of empirical networks presents
scale-free structure with 2 < γ < 3.
The main difference between a random and a scale-free network comes in
the tail of the degree distribution, representing the high-k region of p(k), as
shown in Figure ..

For small k the power law is above the Poisson function, indicating that a
scale-free network has a large number of small degree nodes, most of which
are absent in a random network. While, for k in the vicinity of < k > the Pois-
son distribution is above the power law, indicating that in a random network
there is an excess of nodes with degree kσ < k >. Again, for large k the power
law is again above the Poisson curve.
Indeed, power-law distribution is heavy tailed, fact that involves the occur-
rence of hubs, which do not compare in random graphs. Hubs represent a
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Figure . – Scale free degree distribution (violet) and a random degree
distribution (green).

signature of a deeper organizing principle that we call the scale-free property.

As the name suggests, scale-free networks lack of an internal scale, a
consequence of the fact that nodes with widely different degrees coexist in
the same network. To best understand the meaning of the scale-free term, we
consider the generating moment function

< kn >=
∫ ∞
kmin

knp(k)dk

Therefore, in the thermodynamics limit, the first moment < k > is finite,
but the second one diverges for 2 < γ3. The divergence of the second moment
involves that the fluctuations around the average can be arbitrary large. This
means that when we randomly choose a node, we do not know what to expect:
the selected node’s degree could be tiny or arbitrarily large. Hence networks
with γ < 3 do not have a meaningful internal scale, but are “scale-free”.

The case 2 < γ < 3 shoes another property: networks are characterize by
ultra-small regime, as the hubs radically reduce the path length through the
linking of a large number of small-degree nodes, creating short distances
between them.



chapter 3

Controllability and

Matching Problems

As previously said, the whole network is controllable if one controls each node
individually. Nevertheless, this is nearly impossible, thus the goal is to develop a
technique to identify the minimum input required to control the system.
Unfortunately, structural controllability only provides conditions to classify
whether a system is controllable, not mentioning the input required.
However, minimum inputs, or equivalently the minimum driver node set, can be
identified by mapping the control problem into a purely graph-theoretical problem
called maximum matching.

 . matching

Given a graph, a matching is a set of non-loop edges with no common
endpoints. In other words, a matching is the set of edges with the prop-

erty that no pair of edges from this set shares a node in common.
The vertices incident to the edges of a matching M are saturated by M; the
others are unsaturated.
A perfect matching in a graph is a matching that saturates every vertex.
For example, a complete graph of odd vertices does not have a perfect match-
ing, but a complete graph of even vertices always has a perfect matching. A
graph may have many perfect matchings: for example, Kn,n has n! perfect
matchings.


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Figure . – (a) the set {(a,e), (b,c), (d,f )} of edges is a matching: vertices a, b,
c, d, e, and f are saturated, whereas the vertex g is unsaturated; (b) a perfect
matching of a graph, indeed all vertices are saturated.

A maximal matching in a graph is a matching that cannot be enlarged
by adding a further edge. A maximummatching is a matching of maximum
size among all matchings in the graph.

It has to be remarked that a matching M is maximal if every edge not in
M is incident to an edge already in M. Thus, every maximum matching is a
maximal matching, but the converse doesn’t need to hold.

Figure . – (a) The matching {(b,c)} is a maximal matching but not a max-
imum matching, (b) since there is a larger matching {(a,b), (c,d)} of this
graph.

In order to determine the existence of a matching, it is useful introduce
the concepts of alternating path and augmenting path.
Given a matching M, an alternating path is a path that alternates between
edges in M and edges not in M. If the endpoints of the M-alternating path
are unsaturated the path is said augmenting path.

Given an M-augmenting path P , we can replace the edges of M in P with
the other edges of P to obtain a new matching M ′ with one more edge. Thus
when M is a maximum matching, there is no M-augmenting path. In fact,
we prove in Appendix A that maximum matchings are characterized by the
absence of augmenting paths as follows:
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Theorem . (Berge Theorem) – A matching M in a graph G is a maximum
matching in G if and only if G has no M-augmenting path.

In other words, the algorithmic problem of finding such matchings turns
into the one of finding augmenting paths, which is an accessible algorithmic
problem, specially in bipartite cases.
Matching in bipartite graphs is a well known problem with a number of
real-world applications.
Furthermore, it will be shown that the bipartite case is related to directed
graphs, therefore it is useful to deepen the framework of matching in graphs
with a bipartition.

 . characterization of matching in bipartite graphs

Within a set of people, some pairs are compatible as roommates: under what
conditions can we pair them all up?
Alternatively, a company has received applications for its job vacancies. As-
sume that the company has a set J of job vacancies and has received a set A
of applicants. An applicant in A may have applied for several jobs, but each
applicant will be given at most one job. The number of applicants is larger
than the number of jobs. But does it ensure that every vacancy will be filled
out?
These are some of real-world problems that can be modelled with a bipartite
graph and which require matching tools for an optimized resolution.

Figure . – A representation of the job and applicants problem.

Figure . – A matching indicating a feasible solution for job vacancy fill
out.
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Thus, let define a biparite graph, with partition {A,B}, thus the vertices
labelled with ai belong to the partition A and the ones labelled with bi to B

Let U be a set such that U ⊆ V and every edge of G is incident with a
vertex in U , than U is a cover of G.

Figure . – The vertex cover U .

Our first theorem characterizes the maximal cardinality of a matching in
G by a kind of duality condition:

Theorem . (König’s Theorem) – The maximum cardinality of a matching in
G is equal to the minimum cardinality of a vertex cover of its edges.

A condition clearly necessary for the existence of a matching of A is that
every subset of A has enough neighbours in B, i.e. that:

Theorem . (Hall’s Theorem) – A bipartite graph G has a matching which
covers every vertex in A if and only if

|N (S)| ≥ |S | ∀S ⊆ A

where N(S) is the set of all neighbours of the vertices in S

For example, in the graph in ., the vertex set S = {j1, j4} has only one
neighbor, and hence it does not satisfy the condition of Hall’s Theorem.

The generalization of Hall’s theorem deals with bipartite graphs whose
partition has the same size, i.e. cardinality.
The marriage theorem offers a sufficient and necessary condition to have a
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perfect matching:

Theorem . (Marriage Theorem) – A bipartite graph G has a perfect matching
if and only if |X | = |Y | and |N (S)| ≥ |S | for all S ⊆ X.

Summarizing, Frobenius’ theorem characterizes those bipartite graphs
which have a perfect matching. Hall’s Theorem characterizes those bipartite
graphs which have a matching of A into B . König’s Theorem gives a formula
for the matching number of a bigraph.

.. Maximum matching in digraph and algorithm perspective

The aim is to generalize the tools of maximum matching theory for oriented
graphs.
For a digraph D, an edge subset M is a matching if no two edges in M share a
common starting vertex or a common ending vertex.
A vertex is matched if it is an ending vertex of an edge in the matching. Oth-
erwise, it is unmatched.
Similarly to the undirected case, a matching of maximum cardinality is called
a maximum matching. A maximum matching is called perfect if all vertices
are matched. For example, in a directed elementary cycle, all vertices are
matched.

Figure . – A perfect matching (red nodes) in a elementary directed cycle.

The maximum matching for a digraph can be identified by mapping the
digraph to its bipartite representations H(D).
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More precisely, H(D) = {V +
G ∪V

−
G ,Γ }, where V +

G = {x+
1 ...x

+
N } are the starting ver-

tices of the directed edges, conversely V −G = {x−1 ...x
−
N } are the end ones. While

the edge set is defined from adjacency matrix as Γ = {(x+
j ,x
−
i )|aij , 0}.

In other words, we split each node xi of the original digraph into two “nodes”
x+
i and xi . We then place an edge (x+

j ,x
−
i ) in the bipartite graph if there is a

directed edge x+
j → x−i in the original digraph, as shown in ..

Figure . – A digraph and its bipartite representations.

From a numerical point of view, the bipartite representation is powerful
because the maximum matching problem in a digraph is not NP hard, but can
be solved in polynomial time.
A maximum matching of a bipartite graph can be found efficiently using
the Hopcroft-Karp algorithm, which runs in O(

√
VE) time, as illustrated in

Appendix B

 . controllability and matching problems

The usefulness of matching in network control comes from a theorem that
provides the minimum number of inputs required to control the entire net-
work.
Indeed, for an LTI system described by the digraph G(A), the problem of
finding the minimum number of driver nodes is related to matching theory as
follow:

Theorem . (Minimum Input Theorem) – The minimum number of inputs
Ninput or equivalently the minimum number of driver nodes ND needed to
fully control a network G(A) is the number of unmatched nodes with respect
to any maximum matching M. Whether the maximum matching is perfect,
the system is controllable through a single driver node, independently of
which one.
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In mathematical terms:

Ninput =ND =max{1;N − |M |}

According to the interpretation of structural controllability, related to
the occurrence of dilations or isolated nodes, in order to fully control the
network through suitable inputs to the system, each node has to have its own
“superior”. The minimum inputs needed is determined by the maximum
matching of the network. Indeed the idea of this theorem is that a matched
node has already been controlled by its “superior”, i.e. the node pointing to it.
But unmatched node has to be controlled directly by an external “superior”
or input. Thus, they are the driver nodes for the whole system. Therefore, in-
jecting inputs into all the driver nodes, then each node has its own “superior”
and the system is fully controllable.

Furthermore, the extended definition of matching on a digraph connects
more naturally to the cactus structure. Indeed, a matching of a digraph can
be decomposed into a set of directed paths and/or directed cycles, which are
the basic elements of the cactus structure.
Hence, matching in digraphs connects naturally to the cactus structure.

Figure . – (a) A directed network. (b) The maximum matching. All
maximum matchings can be decomposed into a set of vertex-disjoint directed
paths and directed cycles, shown in red. If a node is the head of a matching
edge, then this node is matched (green nodes). Otherwise, it is unmatched
(white nodes). The unmatched nodes must be directly controlled to control
the whole network, hence they are the driver nodes. (c) By injecting signals
into driver nodes, we get a set of directed paths whose starting points are the
input nodes. The resulting digraph is a cactus. (d) According to the structural
controllability theorem, since there is a cacti structure (highlighted in yellow)
underlying the controlled network, the system is structurally controllable.
Maximum matching identifies the minimal cacti, i.e., the cacti structure with
the minimum number of roots. The minimal cacti structure serves as the
control skeleton that maintains the structural controllability of the system.
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.. Analytical framework

While the maximum matching allows to efficiently identify the minimal driver
nodes set, the algorithmic approach provides no physical insights about the
impact of the network topology on ND .
For a random digraph ensemble with a given degree distribution P (kin, kout),
it is possible to analytically calculate nD =ND /N , representing the fraction of
driver nodes averaged over all network realizations of the ensemble.
Given a matching M in a digraph G = {V (G),E(G)}, it can be described in-
troducing a binary variable sa = s(i→j) ∈ {0,1} assigned to each edge a = (i→
j) ∈ E(G) with sa = 1 if a belongs to the matching M and sa = 0 otherwise.
According to the definition of matching in a digraph, one has two constraints
on each vertex i ∈ V (G): ∑

j∈∂+i

s(i→j) ≤ 1

∑
k∈∂−i

s(k→i) ≤ 1

with ∂−i and ∂+i indicating the sets of nodes which point to i or are
pointed by i, respectively.

The quantity εi({s}) = 1 −
∑
k∈∂−i s(k→i) tells us the state of each vertex:

vertex i is matched if εi({s}) = 0 and unmatched if εi({s}) = 1.
Consequently, introducing the cost (or energy) function which gives, for each
matching M = {s}:

εG({s}) =
∑
i∈V (G)

εi({s}) =N − |M |

it is possible to define the Boltzmann probability in the space of matching

PG({s}) =
e−βεG({s})

ZG(β)

where, as usual, β is the inverse of the temperature and ZG is the partition
function

ZG =
∑
{s}

= e−βεG({s})

Following the statistical physics description, it is possible to deduce from
the partition function both the internal energy εG(β) and the entropy function
SG(β).
In the zero temperature limit, i.e. β → ∞, the internal energy and the en-
tropy provide the ground state properties, i.e., the properties of the maximum
matchings. In particular, εG(β) represents the number of unmatched vertices
(with respect to any maximum matching), and the entropy SG(β) yields the
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logarithm of the number of maximum matchings.
In [], it is provided an analytical expression for the ratio nD of driver nodes,
through the use of the cavity method, a versatile tool of statistical physics.

In the zero temperature limit, the minimum density of unmatched nodes
can be derived from the average energy density.

Introducing the out- and in-degree distributions of node i when one selects
uniformly at random a directed edge i→ j from the digraph:

Q(kout) =
koutP (kout)
〈kout〉

Q̂(kin) =
kout P̂ (kin)
〈kin〉

Thus, defining the generative function as follow:

G(x) =
∞∑

kout=0

P (kout)x
kout

Ĝ(x) =
∞∑

kin=0

P̂ (kin)xkin

H(x) =
∞∑

kout=0

Q(kout + 1)xkout

Ĥ(x) =
∞∑

kin=0

Q̂(kin + 1)xkin

It turns out that the minimum density of driver nodes is given by:

nD =
1
2

{
[G(ŵ2)+G(1−ŵ1)−1]+[Ĝ(w2)+Ĝ(1−w1)−1]+

< k >
2

[ŵ3 +w3]
}

(.)

where < k > is the average degree of the network and w1,w2,w3, ŵ1, ŵ2, ŵ3
satisfy the set of self-consistent equations:

w1 =H(ŵ2) w2 = 1−H(1− ŵ1) w3 = w1(1− ŵ2)

ŵ1 = Ĥ(2) ŵ2 = 1− Ĥ(1−w1) ŵ3 = ŵ1(1−w2)

Therefore, it is possible to characterize the distribution of the driver nodes
as function of the average degree < k >=< kin > + < kout >, according to
P (kin, kout) which defines the architecture of the networks belonging to the
same ensemble.
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 . characterization of nodes and edges

As previously said, the maximum matching can be not uniquely determined.
Consequently, a system can be controlled by multiple driver node configura-
tions, each corresponding to a different maximum matching.
Some nodes or edges may appear more often in a maximum matching than
other elements.
Therefore, one can characterize the nodes and the edges in terms of their role
with respect to the possible configurations of maximum matching.

.. Edges classification

It is natural to wonder how the removal or addition of a link can impact the
controllability of the network.
According to this criterion, an edge can be:

. critical if in its absence we must increase the number of driver nodes
to maintain full control over the system. In this case the link is part of
all maximum matchings of the network;

. redundant if it can be removed without affecting the current set of
driver nodes (i.e., it does not appear in any maximum matching);

. ordinary if it is neither critical nor redundant (it appears in some but
not all maximum matchings).

It turns out that most real networks have few or no critical links. Most links
are ordinary, meaning that they play a role in some control configurations,
but the network can be still controlled in their absence.
It is easy to understand that the occurrence of critical link is related to the
network’s architecture: for example, meanwhile < k > is small all the edges
are important in order to control the entire system, and therefore the ratio of
critical edges tends to 1

.. Nodes classification

Given the existence of multiple driver node configurations, we can classify
nodes based on their role with respect to the minimum driver nodes set,
namely MDNS.
A node is:

. critical if that node must always be controlled to control the system,
implying that it is part of all MDNSs;

. redundant if it is never required for control, implying that it never
participates in an MDNS;

. intermittent if it is a driver node in some control configurations, but
not in others.
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Similarly to the edges classification, one can classify a node with respect
to the impact of its removal on controllability.

. A node is deletion critical if in its absence we have to control more
driver nodes;

. A node is deletion redundant if in its absence the driver nodes are less
to control the network;

. A node is deletion ordinary if in its absence the number of minimum
driver nodes required does not change.

For example, moving a node in the middle of a directed path will increase
ND , removing a leaf node in a star will decrease ND by 1 and the central hub
in a star is a deletion ordinary node.

A further classification can be applied on driver nodes themself.
The MDNS can divided into three groups:

. source nodes (Ns) that have no incoming links,hence they must be
directly controlled, being always driver nodes;

. external dilations (Ne) arise due to a surplus of sink nodes that have
no outgoing links;

. internal dilations (Ni) occur when a path must branch into two or more
paths in order to reach all nodes (or equivalently a subgraph has more
outgoing links than incoming links).





chapter 4

Structural

Controllability in

Complex Brain Networks

The only animal whose connectome has been completely visualized, is the
Caenorhabditis elegans, a nematode worm about mm in lenght.
Thus, it is a good test case to apply the developed tools of controllability. Further-
more, it will be investigate some null model networks, in order to compare the
found results.

 . why caenorhabditis elegans?

Around the world thousands of scientists are investigating the biology
of Caenorhabditis elegans. This nematode is evolutionary rudimentary,

nevertheless shares many of the essential biological characteristics that are
central problems of human biology.
The microscopic roundworm Caenorhabditis elegans lives in the soil of tem-
perate climates. Millions of individuals can be found underneath a single
square meter of moist vegetated ground. The worm’s tube-like body reaches a
length of about millimeter, and lacking vision or hearing, its neural struc-
tures provide a series of sense organs in the head, which mediate responses to
chemical, thermal, and tactile stimulation. Feeding mostly on bacteria in the
ground, its behavioral repertoire ranges from relatively simple activities like
locomotion or swimming to complex activities involving reproduction and
even rudimentary forms of social interactions.


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It has a nervous system with a "mind", composed of nearly  neurons
connected through chemical synapses and gap junctions. The neurons are
divided into various sub-types and are classified based on their functional
roles and location within the body of the animal. According to functional
roles, neurons are primarily of three types: sensory neurons, motor neurons
and inter neurons.
Due to the richness of biological functions, for many years, C. elegans has
been a favored model organism for developmental biologists, in part due to
the ease with which it is grown in the laboratory and the relative simplicity of
its body structure.
Due to all these reasons, C. elegans offers a great compromise between com-
plexity and tractability and lines of research occur in a number of fields,
even working on experiments finalized to the construction of ever larger data
sets, in order to achieve a better understanding of the worm organism and
function.
An example of the results of studies carried on this nematode, C. elegans
is also among the very first organisms whose genome was sequenced and
mapped in its entirety.
Thanks to the work of White [] on Caenorhabditis elegans, the structure and
connectivity of the complete nervous system was investigated and published
in  in Philosophical Transactions B, marking a critical milestone in the
worldwide effort to study this nervous system.
An important feature of the worm’s nervous system has helped the study of
the nervous wiring diagram: the spatial position, number, and connectivity of
its neurons are largely constant across individuals.
To this day, it remains the only nervous system of any organism whose con-
nectivity structure is completely mapped at the level of individual cells and
synapses.

.. A simple brain

The mapping of nervous system of C. elegans was accomplished by painstak-
ing reconstruction of the three-dimensional wiring pattern from electron
micrographs (EMs) of a complete stack of serial sections. The reconstruction
work was performed largely by hand and took more than ten years to com-
plete. The invariance of the structure of the nervous system across individuals,
as well as the relatively simple morphology of many of its neurons aided in
the reconstruction effort.
For example, recently works are finalized to generate a more complete recon-
struction of the brain of C. elegans, such as the determination of a ever more
precisely connection matrix.
A unique feature of the data set about this worm is that the spatial position
of each neuron and hence the length of all synaptic connections are known.
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These data on the spatial layout of the worm’s nervous system allowed a
detailed analysis of wiring length, providing important insights into spatial
embedding and wiring minimization as possible constraints on neuronal
placement and connectivity.

Although the availability of the complete map of all cells and connections
in the nervous system of C. elegans, a full-scale computational model of the
worm’s nervous system lacks, as well as a complete description of its func-
tional behaviors.
This situation reminds us that the complete wiring diagram is insufficient
for reconstructing functional dynamics of a neural system in the absence
of complementary information about the biophysical properties of neurons
and synapses. These biophysical properties have a large role in determining
the dynamic characteristics of neuronal activations, neural transmission, and
synaptic plasticity.

From a network perspective, the connection pattern of the nematode is
strongly nonrandom. Connections between neurons predominantly occur
within local neighborhoods, involving high clustering feature.
Indeed, as first noticed in [], the worm brain is can be described as a small-
world network.
According to its small-world nature, in [], it is highlighted the occurrence
of a small number of highly connected neurons as a rich club interconnected
with high efficiency and high connection distance. The rich club neurons are
connector hubs, with high betweenness centrality, and many intermodular
connections to nodes in different modules. Finally, another important aspect
is the emergence of a large number of densely connected three-nodes motifs.
Furthermore, the motifs that are found most frequently traverse the rich club.
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 . real network

As it said, branches of graph theory and network science have entered into
the domain of neuroscience, and are bringing with them novel quantitative
perspectives on the complexity of nervous systems.
According to the formalism provided by these disciplinary, the worm brain
can be visualized as a network, where the nodes represent the neurons and
the edges model both synapses.
Approaching a real-world data set, it has been investigated a local subnetwork
of neurons within C. elegans rostral ganglia (anterior, dorsal, lateral, and
ring). []

The network is composed of  neurons with  directed connections.
Connections includes both chemical and electrical synapses. In chemical
synapses, an electrical signal is transformed to a chemical signal (release of
a neurotransmitter) and then transformed back to an electrical signal in the
responding cell (neuron or muscle) through postsynaptic neurotransmitter
receptors that are ion channels. While electrical synapses, or gap junctions,
are channels by which electrical current can flow between coupled cells. In
principle, current can flow in either direction through the electrical synapse,
however at any given time it can only flow in one direction, determined by
the relative membrane potentials of the coupled cells.

Neuronal connectivity is largely based on the dataset of White [] in
which connections were identified by electron microscope reconstructions, as
previously mentioned.

Figure . – Graphical representation of the network of frontal ganglia
neurons of C. elegans.

The dataset is available at https://www.dynamic-connectome.org. []
[] []

https://www.dynamic-connectome.org
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.. Network analysis and controllability results

The aim is to apply control principles on the real-world network examined.
The problem of identifying the minimum driver nodes set has been addressed
through the algorithmic approach discussed about maximum matching in
digraphs, determined with the Hopcroft-Karp algorithm, illustrated in Ap-
pendix B

Preliminary, the network has been analyzed and the main features can be
summarized in the following way.
The network is weakly connected, i.e. if the underlying network is connected.
While it presents a giant strongly-connected component, with 109 nodes and
637 edges.

Number of nodes: 
Number of edges: 
Nodes of giant weakly-connected component 
Edges of giant weakly-connected component 
Nodes of giant strongly-connected component 
Edges of giant strongly-connected component 
Average in-degree: .
Average out-degree: .
Cluster coefficient: .
Path lenght: .

In order to fully control the network, maximum matching provides the
minimum driver nodes set.
In ., it is shown a pictorial representation of the found results:

Figure . – The saturated nodes belonging to the maximum matching are
those in blue; the unmatched nodes, i.e. the driver nodes required to control
the whole network, are highlighted in crimson.
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In this context, it is found that 12 neurons are needed in order to control
the system.
In particular, the driver nodes highlighted in . are the following ones:

Neuron Type
AFDL sensory neuron (thermosensory and CO- sensory)
AVL Polymodal (interneuron, motor neuron)

RMEL Motor neuron
RMER Motor neuron
SIADL Interneuron, (sublateral) motor neuron
SIADR Interneuron, (sublateral) motor neuron
SIAVL Interneuron, (sublateral) motor neuron
SIAVR Interneuron, (sublateral) motor neuron
SIBDL Interneuron, (sublateral) motor neuron
SIBDR Interneuron, (sublateral) motor neuron
SIBVL Interneuron, (sublateral) motor neuron
SIBVR Interneuron, (sublateral) motor neuron
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 . random networks analysis

In general, a random graph is a model network in which some specic set of
parameters take fixed values, but the network is random in other respects, as
seen in Chapter .
An important part of any graph-theoretical analysis is the comparison of
measures obtained from empirical networks to networks representing a “null
hypothesis.” A commonly used random null model is generated by random-
izing the global topology of a network while preserving local node statistics,
most importantly the graph’s degree sequence.
The following analysis aims to investigate how the architecture of the network
impacts on the controllability, comparing the results of random networks
with the biological network of C. elegans, previously illustrated.

.. Erdös-Rényi

First, we generated an ensemble of directed networks, whose architecture is
typical of Erdös-Rényi graphs with variable parameter p, i.e. the probability to
create an edge between nodes.
According to p, the measures characterizing the network change, such as the
average degree, while the number of nodes is fixed to 131, as well as C. elegans
frontal ganglia neurons.
For example, in ., it is provided a graphical representation of two networks
with different p, and therefore different distribution of edges.
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Figure . – Two networks belonging to the same ensemble of Erdös-Rényi
digraphs. On the left the case p = 0.02, on the right p = 0.04.

As seen in .., the equation . tell us the distribution of the density nD
with respect to the average degree of the networks belonging to the ensemble.
For directed Erdös-Rényi networks, both P (kin) and P (kout) follow a Poisson
distribution, in the thermodynamic limit:

P (kin) = P (kout) = e−<kin>
< kin >

k

k!
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In this case, it holds:

G(x) =H(x) = Ĝ(x) = Ĥ(x) = e−<kin>(1−x)

From the equations which relates w1 to w2:

w1 = e−<kin>(1−w2) w2 = 1− e−<kin>w1

and the self-consistent equation for w1

w1 = e−<kin>e
−<kin>w1

it turns out the expression of . for Erdös-Rényi digraphs:

nD = w1 −w2+ < kin > w1(1−w2) (.)

In [], it has been estimated the asymptotic behaviour of nD .
Indeed, as < k >� 1, it turns out:

w1 ∼ e−<kin> w2 = 1− e−<kin>w1

nD ∼ e−<kin>− < kin >2 e−2<kin> (.)

Thus, it has been compared the analitycal results with the ensemble of
simulated networks. We compared the distribution of nD with respect to
< kin > of the simulated networks with both the asymptotic behavior deduced
in . and the numerical solution of .. These comparisons are illustrated in
Figure . and in Figure ..
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Figure . – The distribution of the ratio nD = ND /N of the simulated
networks (blue dots) has been compared with the asymptotic solution .,
that well fits the data in the < kin >� 1 regime.
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Figure . – The distribution of nD of the simulated networks (blue dots) has
been compared with the numerical solution of ., with the self-consistent
system of equations.
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Figure . – Both the numerical solution and the asymptotic behavior are
compared with the ensemble of simulated networks.

In order to compare more precisely the controllability of Erdös-Rényi
networks, with the one of C. elegans, another ensemble has been simulated as
follow.
The parameter p has been generated according to a Gaussian distribution,
centered in p̄ = <kin>

N−1 . This sample aims to reproduce Erdös-Rényi networks
with average degree compatible with the one of the nematode.
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In Figure . is presented the behavior of ND with respect to the average in-
degree, while in . it is provided a graphical representation of the incidence
of networks in the sample which are controllable with a certain number of
driver nodes.
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Figure . – The distribution of ND with respect to the Gaussian distibuted
average degree.
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Figure . – The occurrence of the cardinality of the minimum set of driver
nodes among the sample of Erdös-Rényi networks.

Taking into consideration other network measures, the trend of the driver
nodes required to control the entire network is visualized in Figure . and
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in Figure ., with respect to the clustering coefficient and the path length,
respectively.
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Figure . – The distribution of ND with respect to the clustering coefficient.
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Figure . – The distribution of ND with respect to the path length.
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In [], it is provided another way to generate Erdös-Rényi networks:
instead of the parameter p, it is possible generate networks tuned by the
parameter m, which quantifies the number of edges in the networks.
Setting m = 764, the sample of simulated network is characterized by average
degree equal to the one of C. elegans.
Similarly to the ensamble tuned by the Gaussian distributed p, in . is repre-
sented the frequency (normalized among the sample) of networks controllable
with a precise number of driver nodes, in . and . the behavior of ND as
function of the clustering coefficient and the path length, respectively.
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Figure . – The occurrence of the cardinality of the minimum set of driver
nodes among the sample of Erdös-Rényi networks with fixed average degree.
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Figure . – Fixed the average degree, the distribution of ND with respect
to the clustering coefficient.
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Figure . – Fixed the average degree, the distribution of ND with respect
to the path length.
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.. Scale free networks

As seen in Chapter , the scale free networks are those characterized by power-
law degree distribution.
The static model is one of the used model to generate scale free networks
through a control parameter, according to which the degree exponent is deter-
mined. In this case, it has been chosen the same control parameter in order to
determine the in-degree and the out-degree distributions, i.e. αin = αout = α
There are N vertices in the system from the beginning, which are labelled
by an integer i = (1, ...,N ). An expected weight pi = i−α is assigned to each
node, with α the control parameter in the range [0,1). Next, we select two
different vertices (i, j) with probabilities equal to normalized weights pi/

∑
k pk

and pj /
∑
k pk, respectively, and add an edge between them unless one exists

already. This process is repeated until m edges are made in the system. Then
the mean degree is < kout >=< kin >=m/N .
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Average out degree:   6.1069
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Figure . – Artificial networks with scale-free architecture. The number
of nodes is fixed to 131 and random parameters are γ and M (the number of
edges).

Since edges are connected to a vertex with frequency proportional to the
weight of that vertex, the degree at that vertex is given as

kini
< kin >

∼ 1−α
N1−αiα

Defining γ = 1+α
α , it follows that the degree distribution follows the power-

law:[]

P (kin) = k−γin (.)

Actually, . is not normalized, and it can not be a distribution. However,
introducing a constant of normalization ζ and the exponential cutoff e−k/κ

P (kin) = ζk−γin e
−kin/κ (.)
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the . is normalizable for any γ
It is useful to remark that the case α→ 0 is equivalent to the Erdös-Rényi

random model.

Once the degree distribution is defined, it is possible to particularized the
distribution of nD .

Indeed, for κ→∞, the generating functions and the self-consistent equa-
tions are then given by:

G(x) = G̃(x) =
1
α
E1+ 1

α
[(1− x) < kin > (1−α)]

H(x) = H̃(x) =
1−α
α

E 1
α

[(1− x) < kin > (1−α)]

w1 =H(ŵ2) = H̃(x) =
1−α
α

E 1
α

[(1− ŵ2) < kin > (1−α)]

ŵ2 = 1− H̃(1−w1) = 1− G̃(x) =
1
α
E1+ 1

α
[w1 < kin > (1−α)]

where En =
∫∞

1 e−xyy−ndy is the exponential integral.
In [], it is provided the asymptotic behavior for nD(< kin >,γ):

nD = G(ŵ2) + G̃(1−w1)− 1+ < kin > w1(1− ŵ2) ∼ e−<kin>(1− 1
γ−1 ) (.)

Following the same strategy used for the Erdös-Rényi case, we generated
an ensamble of artificial networks, tuning the power-law exponent γ and the
number of edges.
The parameter γ has been estimated through a linear fit of the the degree
distribution in logarithmic scale.

We compare the distribution of the driver nodes density produced by the
artificial networks with the asymptotic behavior described by ..
In order to find the nD distribution, first we simulated a sample of scale-free
digraphs with γ = 2.38± 0.02 and the number of edges as free parameter, as
shown in Figure ..
As previously mentioned, for great γ the behavior of the ensemble coincides
with the one of Erdös-Rényi, as illustrated in figure Figure ., where the
power-law exponent generating the networks is γ = 4.5± 0.9.
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Figure . – The distribution of nD for the sample of the networks with
fixed γ (blue dots) and the expected asymptotic behavior provided by . .
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Figure . – The distribution of nD for the sample of the networks with
fixed high γ (blue dots) is compared with the expected analytical behavior
of both asymptotic scale-free networks (fuchsia) and Erdös-Rényi ones (red
lines).
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In order to investigate the nD distribution with respect to γ , we simulated
a sample of digraphs with 131 nodes and 764 edges, as the C. elegans network,
while γ is a free parameter.
However, there is a significantly discrepancy between the simulated result
and the analytical one, as shown in figure .. That fact can be explained as
follow: the equation . has been deduced with the hypothesis of thermody-
namics limit. With this assumption, a critical exponent occurs, i.e. for γc = 2
all the nodes are required to control the entire systems.
Indeed, simulating a sample of digraphs with N = 100000 nodes, in figures
. the effect of finite size starts to vanish.
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Figure . – The distribution of nD for the sample of the networks with
fixed average degree (blue dots) compared with the expected asymptotic
behavior provided by .. Here we have strong effect of finite size.
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Figure . – A sample of scale-free networks with  nodes and fixed
average degree, here the finite size effect starts to be less important on the
system.
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It is interesting to analyze the cluster coefficient and the shortest path
length as function of γ and fixed average degree.
For each gamma, we simulated a sub-sample of scale-free networks and we
deduced the mean value and variance of both measures among each sub-
sample. These results are shown in Figure . and in Figure .
The aim is to deuce a γ which could reproduce digraphs comparable with the
empirical network.
In figures . and ., it is illustrated the the distribution ofND with respect
to the clustering coefficient and the path length, respectively.
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Figure . – Averaged clustering coefficients with respect to γ .
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Figure . – Averaged path lengths with respect to γ .
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Figure . – The distribution ofND with respect to the clustering coefficient.
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Figure . – The distribution of ND with respect to the path length.
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Similarly, for the Erdös-Rényi networks, we aim to compare the controlla-
bility of scale-free networks with the one of the worm brain.
Therefore, we generated a sample of scale-free digraphs tuned by a Gaussian
distributed γ and fixed average degree (equal to the one of C. elegans).
Figure . shows the trend of driver nodes with respect to γ . On the other
hand, . provides a graphical representation of the normalized occurrence
of the cardinality of MSDN among all the networks.
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Figure . – The distribution of ND according to the Gaussian distributed
γ .

Figure . – Normalized frequency of the number of driver nodes required
to control the network among the sample.
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 . the importance of direction

As previously illustrated in Section ., once we have an LTI system described
by the structured matrices A and B it is possible to apply the tools provided
by structural controllability. According to this last one, the structured system
can be represented as a digraph G(A,B), whose directed edges correspond to
the non zero entries of A and B, and its controllability is related to the absence
of dilations and inaccessible nodes.
Furthermore, as seen in Section ., we are interested in the topology of the
digraph G(A), the one representing the internal interaction of the system
without external inputs. Indeed, the maximum matching of the directed
graph G(A) provides a powerful tool in order to identify the minimum set
of nodes needed to fully control the system: those are the ones that are not
saturated by the maximum matching.

All these tools involve directed interaction among the elements. A natural
question is whether the directionality of the edges impacts the system in terms
of its controllability.
To construct a network equivalent to an undirected graph starting from a
digraph, the simplest way is adding to each edge of the digraph its counterpart,
i.e. a new edge with the same end-vertices of the original link but with
opposite direction, an example is provided in figure ..
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Figure . – On the left a random directed network, on the right its undi-
rected analog network with the further inverse connectivity, i.e. all edges are
bidirected.

For example, the controllability of the two networks illustrated in . is
shown in .

Therefore, in order to investigate the direction related issue, we have
simulated a sample of random digraphs and its nD distribution has been
compared with the one derived from a sample of equivalently-undirected
networks, generated as previously explained.
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Figure . – Red dots are the driver nodes required to fully control the
network. the networks are the same represented in . .

Figure . – Original networks (blue dots) and networks whose edges are
the ones of the original networks, but having bioriented directions (red todt).
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We noticed two regimes: for great average degree of the networks having
directed interaction or not does not impact on controllability, for small aver-
age degree the controllability is sensitive of directionallity.
In the following table, are reported some representative points of directed
networks and their counterpart equivalently-undirected ones.

Original Network Bidirected connectivity
ND kin ND kin ∆(ND )
 .  . 
 .  . 
 .  . 
 .  . 
 .  . 
 .  . 
 .  . 
 .  . 
 .  . 
 .  . 
 .  . 
 .  . 
 .  . 





chapter 5

Conclusion

Control theory has a long and vibrating history in engineering and mathe-
matics. It addresses a fundamental and ambitious question: how to control a
system’s behaviour, i.e. how and whether it’s possible to push the output of a
dynamical system to a desired final state through suitable external inputs.
Tools of control and controllability have been recently applied in the study of
complex networks. The aim is to characterize networks, representing a certain
complex system (brain system for example), in terms of their controllability.
In this work, we investigate, it has been investigated the problem concerning
the identification of a minimum set of nodes required to control the entire
networks, known as minimum input problem.
Graph theory, in particular maximum matching, provides a powerful ap-
proach to address the minimum input problem when the systems are charac-
terized by linear and time-invariant dynamics.
Indeed, the minimum set of nodes required to control the system, namely
the driver nodes, is identified by the maximum matching of the network: the
nodes which are not saturated by the maximum matching M are the driver
nodes. Eventually, if the maximum matching is a perfect one, i.e. all the
nodes are saturated, it is necessary at least one node to perform the fully
controllability of the network.
Using a numerical approach, the results have been compared with analytical
results, provided by literature, mainly from [].

Motivated by the aim of applying the control principles on a real- world
network, we investigated the Caenorhabditis elegans brain. By a biological
point of view, this nematode represents an interesting animal due to the rich-


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ness of its biological functions with a relative simplicity of its body structure,
offering a great compromise between complexity and tractability.
For all these reasons, a number of studies on C. elegans have been carried out.
For example, C. elegans is the only animal whose complete connectome of
nearly  neurons has been mapped. This fact makes Caenorhabditis elegans
the proper test bench in order to apply control tools on its brain network.
We have analyzed and characterized with respect to its controllability the
sub-network, representing frontal ganglia neurons of C. elegans. Indeed,
the minimum set of driver nodes (MSDN) needed to control the system is
constituted by  neurons.

This work aims to investigate how the topology of the networks can impact
their controllability.
Indeed, we investigate two typologies of random networks. The first one is
represented by Erdös-Rényi networks, which randomness is modelled through
the probability p of creating an edge between two vertices or through the num-
ber of edges M. The second one describes static scale-free networks, whose
degree distribution follows a power-law. The random parameters of these
networks are the number of edges of the graph and the power-law exponent
γ .
Both the typology of random networks present that controllability depends
from the average degree of the networks.

A sample of Erdös-Rényi digraphs has been simulated and compared with
the analytical expected result: in ., . and . it is provided a graphical
representation of the density of driver nodes (both simulated and analytically
expected) distributions.
In order to compare the random topology with the real-world one, we ana-
lyzed another sample of Erdös-Rényi digraphs having similar, or even equal,
average degree of the nematode’s brain network.
The surprisingly result is that in the almost case the system is fully control-
lable with the smallest possible MSDN: indeed, from figures . and ., it
is clear that almost all networks of the sample require just one driver node to
achieve the fully controllability.
Figure . and . show how, fixing the number of edges equal to the
C.elegans case, the number of driver nodes changes with respect to two typi-
cal measures characterizing networks: the cluster coefficient and the shortest
path length.
We found that that Erös-Rényi digraphs with fixed average degree < k >
present that both the shortest path length and the cluster coefficient are
smaller than the real world system.

The second type of network topology that we investigated is the one with
power-law degree distribution, known as scale-free.





In this case, there occur two random parameters performing the network
architecture: the number of edges and the power-law exponent γ . In ?? and
., it was compared the simulated result with the analytic expected curve.
In . [it] is interesting to note that there is a significant discrepancy be-
tween simulated networks controllability and analytical expectation. This
phenomenon is motivated by the fact that all the analytical results are found
under the thermodynamic limit hypothesis: indeed, simulating a sample of
scale-free networks with N = 100000 nodes, the effect of finite size starts to
vanishes, as shown in ..
Therefore, we found that the effect of finite size has a great impact on control-
lability, making the system strongly easier to control.

Fixed the number of edges, equal to the biological case, in order to de-
termine which γ can describe networks similar to the one of C. elegans, we
investigated the shortest path length and cluster coefficient behavior with
respect to γ .
Figure . provides a visual representation of networks which are simulated
according to a Gaussian distributed γ .
The occurrence of the driver nodes within the sample is represented in .:
the distribution is peaked in ND = 12, equal to the real-world case.

It is interesting that the empirical network requires a greater number of
driver nodes to control the whole system than random networks Erdös-Rényi.
On the other hand, the scenario provided by the scale-free is more variable:
indeed, a further development can be represented by a more precisely estima-
tion of gamma describing the nematode’s brain system, for example using the
entire worm brain network and using other measures which characterize the
network topology.

The harder controllability of empirical digraph, than the one of random
digraphs, is certainly related with its architecture: this analysis suggest that
small-world features and modularity of a real brain system affect the control-
lability of the system itself, i.e. the fact that biological systems have a topology
which presents a great complexity makes controllability more difficult than
the case of networks characterized by randomness.

The last aspect investigated is the role of directed edges.
Indeed, the tool of maximum matching in order to characterize the controlla-
bility has been developed for directed graphs. A natural question is whether
the directionality can affect the controllability.
A simple way to yield an undirected graph starting from a digraph is to add to
the edges their inverse, i.e. the same edge with opposite direction. With a great
average degree, the directionality doesn’t influence the resulting controllabil-
ity, but, with small average degree, having directed edges or bidirected ones
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has a great impact in terms of controlling the system, as we show in Section .

However, having a system with directed interactions is a consequence of a
further upstream assumption: as illustrated in Chapter , the controllability
framework is developed for linear systems, as well for systems linearized
around a fixed point. Under the linearized hypothesis the systems are linear
and time-invariant, namely LTI systems, and the relation between controlla-
bility and maximum matching occurs only whit this type of systems.

Indeed, the current idea of applying network control theory to neuro-
science is based on the hypothesis that the dynamics of neuronal activity
at brain resting state can be described via a set of differential equations lin-
earized around the resting state. The linearization assumption is crucial and
actually strong because brain networks are characterized by deeply non linear
dynamics and furthermore it only provides information about controllability
in the neighborhood of that state.
Therefore, in order to deeply understand brain networks and the further de-
velopment, it is fundamental to approach the problems in terms of non-linear
dynamics, and to enlarge the controllability framework from both analytical
and numerical point of view, looking for new paradigms and techniques.



appendix A

Maximum matching and

Augmenting Path

Given a matching M in a graph G, an M-alternating path is a path that
alternates between edges in M and edges not in M. An M-alternating path
is an M-augmenting path if the two endpoints of the path are unsaturated
by M. If G has an M-augmenting path P , one can obtain a new matching M ′

with one more edge by replacing the edges of M in P with the other edges of
P . Thus the following fact holds.

Theorem A. –M is not a maximum matching in G if G has anM-augmenting
path.

On the other hand, as shown in [], it can be proved that if M is not a
maximum matching in G then G has an M-augmenting path. Let M and M ′

be two matchings in G = (V ,E). The symmetric difference of two matchings
M∆M ′ is the graph with the vertex set V and the edge set consisting of all
edges appearing exactly one of M and M ′. Let S be the set of edges which is
contained in M but not in M ′ and let S ′ be the set of edges which is contained
in M ′ but not in M. Then M∆M ′ = S ∪ S ′


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Lemma A. – Every connected component of the symmetric difference of two
matchings is a path or an even cycle.

Proof Let M and M ′ be two matchings in a graph G and let H =M∆M ′ . We
first claim that the maximum degree of H , (i.e. the maximum value among
the degrees of all the vertices of H , denoted by ∆(H)), ∆H ≤ 2. At most
one edge from a matching is incident to a vertex of G. Since M and M ′ are
both matchings, at most two edges can be incident to a vertex of H . Hence
∆(H) ≤ 2. Since ∆(H) ≤ 2, every connected component of H is either a path or
a cycle. Therefore, it is remained to show that if a connected component of
H is a cycle C, then C is an even cycle. One can observe that the edges on C
alternate between edges of M and M ′ . Then to close the cycle C, it must have
equal number of edges from M and M ′ , and hence C is an even cycle.

Lemma A. – A matching M in a graph G has an M-augmenting path if M is
not a maximum matching in G.

Proof Let M ′ be a matching in G larger than M. We will prove that G has an
M-augmenting path. We give a constructive proof. Let H = M∆M ′ . Every
connected component ofH is either a path or a cycle. If every component ofH
is a cycle then |M | = |M ′ |, a contradiction. Since |M ′ | > |M |, H has a connected
component which is a path P containing more edges of M ′ than of M. Then P
starts with an edge of M ′ and also ends with an edge of M ′ . Since P contains
edges from M and M ′ alternately, P is an M-augmenting path.

From A., A. and A., it naturally turns out:

Theorem A. (Berge Theorem) – A matching M in a graph G is a maximum
matching in G if and only if G has no M-augmenting path.
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Hopcroft-Karp Algorithm

It is now presented the Hopcroft-Karp Algorithm to find a maximum matching
in a bipartite graph with |V | = n and |E| =m, such as the one in B..

Figure B. – a bipartite graph with two sets: on the left the nodes labelled
with letters, on the right the ones labelled with numbers.

The basic idea of the algorithm is:
. Initialize Maximal Matching M as empty.
. While there exists an augmenting path p, remove matching edges of p

from M and add not-matching edges of p to M.
. Return M.
We need to find an augmenting path (A path that alternates between

matching and not matching edges, and has free vertices as starting and ending
points). Once we find alternating path, we need to add the found path to


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existing Matching. Here adding path means, making previous matching edges
on this path as not-matching and previous not-matching edges as matching.
The idea is to use the Breadth First Search strategy to find augmenting paths:
according to BFS algorithm, it stars from a vertex and explores all of the
neighbor nodes, "marking" them as visited.
Since BFS traverses level by level, it is used to divide the graph in layers of
matching and not matching edges, building the alternating level graph rooted
at unmatched vertices in the left side of B..
Then, it is used a Depth Fist Search Algorithm, or DFS, to find maximal set of
vertex disjoint shortest-length paths joining auxiliar vertices S and T .
DFS is similar to BFS, but it explores as far as possible along each branch
before backtracking.

For example, we can initialize a first initial matching such as:

Figure B. – an initial matching: red nodes are unmatched, yellow nodes are
matched.

The multilayer tree is built with BFS and DFS as follow:
S: The unmatched nodes on the left side are the roots of the tree;
S: The second layer is added with the adjacent nodes of the unmatched

ones in the initial bipartite graph;
S: The firth layer is linked with the second one through the edges occurred

in the matching;
S: The fourth layer is linked with the previous one through the edges not

occurred in the matching;
S: Auxiliary nodes S and T are linked to the layers of unmatched nodes;
S: Find the shorter paths linking S and T ;





S S

S S

S S

Figure B. – Breadth First Search and Depth First Search strategy.
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Founded the shorter paths, between them and the initial matching is ap-
plied the symmetric difference in order to find a new larger matching.
The algorithm is reiterated till it is not possible to find an augmenting path.

Dashed edges are the removed The resulting maximum
ones from the initial matching, matching: in this case

purple edges are the new all the nodes are matched,
edges added to the matching. thus it is a perfect matching

Time Complexity

Both BFS and DFS has complexity O(m) where m is the number of the edges.

Lemma B. – After N iterations augmenting path must be at least length N

Lemma B. – Given M and M ′, the current and the maximum matching
respectively, and l the length of the shortest augmenting path, it holds

|M ′ | − |M | ≤ |V |
l

Using B. and B., we can say that after
√
n iterations augmenting path

must be at least length
√
n and the number of th remaing augmenting path

after
√
n iteration is n/

√
n =
√
n.

While, after
√
n iterations, the algorithm can be iterate for a maximum of

√
n

times before to not have more augmenting paths.
Thus, at most 2

√
n iterations can occur, for a time complexity of O(

√
n).

Therefore, the time complexity of Hopcroft-Karp algorith, is overall ofO(m
√
n).
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