
UNIVERSITÀ DEGLI STUDI DI PADOVA
Dipartimento di Fisica e Astronomia “Galileo Galilei”

Corso di Laurea in Fisica

Tesi di Laurea

Optimization of the training of Deep Neural

Networks for signal-background

discrimination at the LHC

Relatore Laureando

Prof. Marco Zanetti Stefano Mancone

Anno Accademico 2017/2018

A B S T R A C T

The latest developments in the field of machine learning (ML) can have
profound consequences on how to process the information recorded
by the fundamental physics experiments like the ones preformed at
the Large Hadron Collider (LHC). The dataset output by the latter are
indeed characterised by a very large size and tremendous complexity,
features which made ML techniques particularly suited for direct
application. As shown in previous works, deep networks can tackle
problems of signal vs background discrimination starting from low
level quantities (e. g. particle four-momenta). The training of such
networks requires though a non negligible computing power, which in
the end turns into the main limitation of such an approach. The smart
usage of computing resources, in particular of clusters of computing
nodes, exploiting modern “big data” architectures could overcome this
limitation. The proposal for this thesis work consists indeed in setting
up, test and benchmark various computing infrastructure options for
the training of a deep neural network aiming at the discrimination
between signal (New Physics) and background (Standard Model) in a
dataset from the CMS experiment at the LHC.

S O M M A R I O

Gli ultimi sviluppi nel campo del machine learning (ML) possono
avere profonde conseguenze in come vengono processate le informa-
zioni ottenute dai più importanti esperimenti di fisica come quelli
che vengono effettuati con il Large Hadron Collider (LHC). I dataset
ottenuti in questo modo sono caratterizzati da un ampio e complesso
insieme di features, il che rende le tecniche del ML particolarmente
adatte ad un’applicazione diretta. Come visto in lavori precedenti,
le deep networks possono affrontare problemi di discriminizzazione
segnale contro rumore partendo da quantità primitive (e. g. i quadri-
momenti delle particelle). L’allenamento di queste reti richiede una
potenza di calcolo non indifferente, il che è la principale limitazione
di questo approccio. L’uso intelligente delle risorse di calcolo, in parti-
colare l’utilizzo di cluster di computer, può essere utilizzato insieme
a moderne tecniche di "big data" per superare queste limitazioni. Lo
scopo di questo lavoro di tesi consiste infatti nello sviluppare, testare
e confrontare diverse infrastrutture di calcolo per l’allenamento di una
deep neural network considerando un problema di discriminizzazione
tra segnale (Nuova Fisica) e rumore (Modello Standard) con un dataset
dall’esperimento CMS all’LHC.

3

C O N T E N T S

1 introduction 7

i background

2 the problem 11

2.1 Deep Neural Networks . 11

2.2 the physics of LHC . 13

2.3 The benchmark dataset HIGGS 15

2.4 The setup . 17

3 neural networks performance analysis 19

3.1 Shallow and deep Neural Networks performance 21

ii results

4 cluster scalability 27

5 conclusion 29

bibliography 31

5

1
I N T R O D U C T I O N

In every day work, high energy physics scientists have to deal with
a lot of data (the big data), the effort required to manage and process
this amount of data is a large data is a important and extensive
part of a physicist’s work. The latest developments in the field of
machine learning showed that the usage of deep neural networks can
help facing signal background discrimination problems. The usage
of these techniques can speed up the research field of high energy
physics in various ways. They can compare multiple theories at the
same tame (New Physics) against the standard model. Taking as
example the CMS experiment, the actual trigger system are built upon
physicists hypothesis, unexpected events are almost certain lost. These
techniques could help solve these problems. The greatest obstacle
to the usage of these methods is the needed effort of computational
resources. These algorithms are slow to train and bring new technical
challenges when it comes to making predictions.

The aim of this thesis is to show that the smart usage of computa-
tional resources with new promising paradigms such as the clustering
computing and GPU architectures can help reduce the time required
in these computations.

7

Part I

B A C K G R O U N D

2
T H E P R O B L E M

The scope of this thesis is considering a classic signal-background
discrimination task by following the path outlined by [2] and [8] to
find a reasonably good machine learning classifier built on top of
a Deep Neural Network model. The intention is to use the results
in the just cited works to fix some hyper-parameters and reduce
our degrees of freedom. Then to develop a program to explore the
time performance in training such models using clustering and GPU
(graphics processing unit) architectures.

2.1 deep neural networks

Machine Learning (ML) is a field of artificial intelligence that uses
statistical techniques to give computer system the ability to learn
from data without being explicitly programmed. [13] One example
of machine learning task is the classification problem. You have, for
instance, a dataset with many records. Each of them composed of
some features that describe it and one label that indicates in which
class among two or more the record belong. Using these information,
in the training phase, the ML model learns to classificate the records
in the correct class. After the training phase, there is a test one when
the classifier performance is been tested with unseen records.

Deep Learning is a sub-field of Machine Learning that deals with
algorithms inspired by the structure and function of the brain called
deep neural networks (DNNs). More concretely a neural network is
a function f : Rn → Rm from the space of the features to the space
of the labels. It is structured in layers and consist of an input layer of
size n, an output layer of size m and several hidden layers of various
sizes. Each element of layers is called neuron and each neuron is
connected with all previous layer neurons and with all those of the
next (Figure 2.1). These connections are mathematically described by
weights, such as the input of a neuron is determined by

yi = wi · x + bi =

q∑
j=1

wijxj + bi

where x is the input values vector or the outcome of the previous layer,
wi is instead the weight vector that corresponds to the i-th neuron. A
function h is then applied to each of the i neurons, it is called layer
activation function and it yields as an output z = {zi = h(yi) : i =

11

12 the problem

Figure 2.1: Neural Network structure

1, . . . ,q}. This process is being repeated through the network until the
output layer is reached. There are some options for initializing weights

• all initialized to a fixed value

• campionated from standard gaussian distribution

• campionated from uniform distribution

• other distributions

• etc.

it has been chosen to campionate them from a standard gaussian
distribution.

The next step is understand how well the model predicts labels from
data. To achieve this we choose a loss function that has the characteristic
to become smaller and smaller as the model learn, e. g. perform better.
Hence, the job is minimizing this function. In order to achieve it several
optimizing algorithms, or optimizers, exist.

Had obtained the neural network model, it is remarkable to note
that there is a theorem that states [10]

Theorem. Feedforward networks are capable of arbitrarily accurate approxi-
mation to any real-valued continuous function over a compact set.

This is clearly excellent for us. Despite the fact that under certain
hypothesis almost every function can be represented by a neural
network, the maximum complexity achievable, however, depend on
the choice of some of the hyperparameters. Such as the number of
layers, the number of neurons for layer and the activation functions. A
bad choice of these hyper-parameters leads to a poor model that can
not generalize well the problem (underfitting) or a too complex model
that does not fit well (overfitting). On the other hand, the learning

2.2 the physics of lhc 13

process itself must be performed taking into account a series of issues
that can lead to underfitting or overfitting. Refer to [7] regarding this
(vast) topic.

2.2 the physics of lhc

The European Organization for Nuclear Research, known as CERN, is
a European research organization that operates the largest particle
physics laboratory in the world. CERN is the host of the Large Hadron
Collider (LHC), the largest particle accelerator in the world. Along its
circumference four detectors are arranged. CMS, ATLAS and LHCb
detect only proton-proton collisions while ALICE is used with col-
lisions between lead ions too. These four experiments carried on at
LHC detect a great number of hadrons collisions per second and for
each event are record various forms of data. The large size, the variety
and the high rate of collisions production at LHC are the reasons are
named big data and these are one of the most suitable dataset for
testing efficiency of Neural Networks techniques. On the other hand,
employing more and more efficient machine learning algorithms to
LHC datasets will let high energy physics community to extract from
data more information. This would reduce the waste of data.

Figure 2.2: LHC complex

The LHC accelerator itself consists of a 27-kilometer ring of super-
conducting magnets with a number of accelerating cavities to make
beams focused in order to maximize the cross section. Also for curve

14 the problem

the trajectory and increase the energy of the particles circulating inside
its rings. The preparatory phase pf acceleration begin at the Linac 2

where the protons from hydrogen are accelerated to 50 MeV. The beam
is then get injected into the Proton Synchrotron Booster (PSB) where
the proton bunches are formed and accelerated further to 1.4 GeV. The
next accelerator is called the Proton Synchrotron (PS) which forms the
final shape of the beam bunches and kicks the beam up to 25 GeV. The
particles are later sent to the Super Proton Synchrotron (SPS) where
they are accelerated to 450 Gev, from which they are injected into two
pipes of the LHC. This is where the beams go in opposite directions
to be collided at the experimental sites with up to a center-of-mass
energy of

√
s = 14 TeV.

Taking the CMS detector as an example it is formed by a series of
cylindrical sub-detectors able to detect different interactions. This for
the purpose of study many aspects of the high energy interactions
between protons, from the Standard model parameters to the New
Physics theories and their associated particles. Different technologies
are used to observe different features of the particles going across
them. The closest one is a vertex detector of silicon pixels and strips
used to track charged particles near to the point of interaction. Then
there is the charged particle tracking chamber which distinguishes
positive and negative charges measuring the curvature of the particles
in a magnetic field. Next layer consists in two calorimeters: one absorb-
ing the electromagnetic-showers and the other the hadronic-showers.
Finally, the muon chambers which absorb the heaviest particles called
muons. All these components together are able to absorb all the en-
ergy issued by the collision except that carried out by neutrinos. From
the pieces of information collected by each layer of the detector, high
energy physicists are able to go back to the nature of the particles
produced by the collision and study the laws which regulate these
processes.

Figure 2.3: A transverse section of the CMS detector

2.3 the benchmark dataset higgs 15

2.3 the benchmark dataset higgs

The dataset subject of this work involves a signal process where new
Higgs bosons are produced and a background process with identical
decay products but distinct kinematic features. The signal process is
the fusion of two gluons into a heavy electrically-neutral Higgs boson
(gg→ H0), which decays to a heavy electrically-charged Higgs boson
(H±) and a W boson. The H± subsequently decays to a second W
boson and in a light Higgs boson, h0. The light Higgs boson then
decays predominantly to a pair of bottom quarks. The entire process
is then:

gg→ H0 →W∓H± →W∓W±h0 →W∓W±bb̄ (2.1)

which leads to W∓W±bb̄. The background process, which mimics
W∓W±bb̄ without the Higgs boson intermediate state is the produc-
tion of a pair of top quarks, each of which decays to Wb (see figure
1.):

gg→ g→ tt̄→W∓W±bb̄ (2.2)

(a) (b)

Figure 2.4: (a) Diagram describing the signal process involving new exotic
Higgs bosons H0 and H±. (b) Diagram describing the background
process involving top-quarks (t). In both cases, the resulting
particles are two W bosons and two b-quarks.

accordingly, to [2] the events are simulated assuming 8 TeV collisions
of protons at LHC. For the benchmark case here, mh0 = 125 GeV,
mH0 = 425 GeV and mH± = 325 GeV has been assumed. In order to
simulate events for this dataset the semi-leptonic decay mode has been
chosen, which is one W boson decaying to a lepton and a neutrino(lν)
and the other W boson in a pair of jets (which correspond to a couple
of up-type and down-type quarks). Thus, the final products of our
decays are lνbjjb. In [2] has been considered events which satisfy (and
we do accordingly):

• exactly one electron or muon, with pT > 20 GeV and |η|< 2.5

• at least four jets, each with pT > 20 GeV and |η|< 2.5

16 the problem

• b-tags on at least two of the jets, indicating that they are likely
due to b-quarks rather than gluons or lighter quarks

where pT is the momentum transverse to the beam direction and
(referred to a polar coordinate system) the polar angle θ is substituted
by

η = − ln tg
θ

2

there is then the azimuthal angle φ. The above requirements are then
summed up by 21 low-level features:

• 4 jets, each of them described through 4 variables: pT , η, φ and
the b-tag.

• 1 lepton described through 3 variables: pT , η, φ

• 1 neutrino indirectly described by: missing energy magnitude
and missing energy φ

Theoretical considerations allow constructing new high level fea-
tures which better highlight the differences between these two pro-
cesses. The features are the invariant masses of the metastable particles.
In particular, for signal processes the following resonant decays have
been theorized and the related invariant masses have been computed:

• W → lν: the invariant mass mlν should show in the known
mass of the W boson mW

• W → jj: the invariant mass mjj should show a peak at the
known mass of the W boson mW

• h0 → bb̄: mbb̄ should show a peak at mh0

• H± →W±h0: mWbb should show a peak at mH±

• H0 →WH±: mWWbb̄ should show a peak at mH0

there represent 5 high-level features. On the other hand, regarding tt̄
background, it is expected that:

• W → lν shows a peak in mlν at mW

• W → jj shows a peak in mjj at mW

• t→Wb shows a peak in mjlν and mjbb̄ at mt

thus two more invariant masses mlνb and mjjb have been computed.
In total there are 7 high-level features. Before being passed to the
neural networks the dataset had been standardized removing mean
and standard deviation from features. The just described sample with
11 million events is available in the UCI machine learning repository.1

1 https://archive.ics.uci.edu/ml/datasets/HIGGS

2.4 the setup 17

2.4 the setup

The used hardware is composed by a six nodes (computers) cluster
hosted by Cloudveneto2 and a GPU machine under the same domain.
In a cluster, one node is called cluster manager or master, while the
others workers or slaves. In this case, the master is a computer with
2 cores and 4GB of RAM while the 5 nodes are computers with 8
cores and 16GB of RAM, for a total of 40 cores and 80GB of RAM
for the slaves. The master role is to dispatch individual small tasks
to the slaves that send back the processed results. This paradigm is
carried out by Apache Spark[14] which is a unified analytics engine
for large-scale data processing3. Spark applications run as independent
sets of processes coordinated by the SparkContext object in the main
program (driver program). Specifically, to run on a cluster, the Spark-
Context connect to a cluster manager which allocate resources across
applications. Once connected, Spark acquires executors on nodes in the
cluster, which are the processes that run computations and store data
to process. Next, it sends the application code to the executors. Finally,
SparkContext sends tasks to the executors to run.

Figure 2.5: The Spark architecture

The driver program has been written in Python4 which is a high
level programming language widely used nowadays for data science
topics. In the program, through Spark application program interface
(API), instructions are sent to workers. Spark use as backend Java,
meaning that the execution of the Spark code is committed to a Java
interpreter which is a lower level programming language. This is a
common programming paradigm, the code is written in a higher level
language while the actual execution is performed by a lower one.
Python itself is written in C++ which is one of the oldest and still very
used low level programming language.

2 https://cloudveneto.ict.unipd.it/
3 https://spark.apache.org/
4 https://www.python.org/

18 the problem

While the framework used is Spark, the utilized library for imple-
menting the distributed Deep Neural Network models is BigDL [4]
from Intel Corporation. Instead, for the standalone and the GPU
version has been used Keras [3] with Tensoflow [1] backend.

The work done in [8] and [2] has been used for fix some hyperpa-
rameters:

• Number of layers: 3

• Neuron for layer: 300

• Dropout: 0

• Layer activation function: tanh

• Output activation function: sigmoid

• Learning Rate: Default value of the optimizer

For what concern the hidden layers activation function the tanh
function has been chosen. Instead, for the output neuron a sigmoid
has been taken.

tanh(x) =
ex − e−x

ex + e−x

sig(x) =
1

1+ e−x

Figure 2.6: tanh and sigmoid functions comparison

The sigmoid function has the property of returning an output in
the interval (0, 1) it can be seen as the confidence the network has
regarding the 0 or the 1 classification. It means that the closer to 1 is the
output the more confident the network is about the event classification
as a signal, vice versa a result near 0 means a background event. It is
a very common choice for an output function for a Machine Learning
classifier.

3
N E U R A L N E T W O R K S P E R F O R M A N C E A N A LY S I S

Different variety of Neural Networks exist. The used one in this thesis,
and the description that was given, is about Feedforward Networks.
Depending on the number of hidden layers they are called Shallow
Neural Networks (1) and Deep Neural Networks (> 1).

The main focus of [2] and [8] is to demonstrate that performance
of the two kinds is comparable when using high level features for the
shallow one and low level features for the deep one. To achieve this it
is need a metric, a measure of how well the classificator is performing.
Evaluating the metrics over the training, validation and test sets is
the primary technique for point out how the training process is going.
Therefore, is crucial to use the most significant ones.

The default metric provided by Keras [3] is the binary accuracy.
Given an event if the output is greater than 0.5 then it is classified as
signal, background otherwise. The right label is then compared and the
prediction correctness is determined. Done it for the entire considered
subset and found the right prediction percentage the (binary) accuracy
is obtained. Another metric widely used in Machine Learning is the
result loss function considered as a mean over a subset of events. This
is the number that the optimizer itself is trying to minimize so is a
direct performing rate. Despite this, it is significant in the training
process only. It can not be used in the final classifier rating not having
a statistical meaning.

A more statistically significant approach is to find the AUC score,
i. e. the Area Under the ROC Curve, by drawing and integrating the ROC
Curve that stands for Receiver Operating Characteristic. Drawing the ROC
curve is a graphical method to observe binary classifiers efficiency. It
is done by plotting percentage successfully signal prediction (signal
efficiency) versus the percentage successfully background discovery
#(classification?) (background rejection). The various points of the
graph are obtained by varying the threshold in the interval [0, 1]

19

20 neural networks performance analysis

Figure 3.1: loss function during training

beyond which the Neural Network output it considered signal, note
that the binary accuracy is essentially the ROC point which threshold
is 0.5.

Figure 3.2: auc score during training Figure 3.3: test set auc score

One more quantity that highlights the model behavior is called
Figure Of Merit (FOM). It is defined as FOM = S√

B
where S is the

right classified signal events total number and B is right classified
background events total number. The term

√
B represents the error

on the number of background events assuming they follow a Poisson
distribution. More precisely, to state whenever signal events S are
actually a resonance or only statistical fluctuations, the effective error
should take into account also the error on the number of signal events,
that is

√
S, as signal follow poissonian distribution too. So the correct

expression for the error would be σ =
√
B+ S. Nonetheless since

S� B the error can be approximated as σ ≈
√
B.

The data were simulated as described in Section 2.3 and they were
built such that signal and background would have the same probabil-
ity. The consequence is that the number of signals predicted events
should be quite the same of background predicted. In data collected
by experiments, a signal of new physics is usually a rare phenomenon
which competes with lots of standard processes included in back-
ground. Thus, the real cross section of signal events may be so small

3.1 shallow and deep neural networks performance 21

Figure 3.4: Figure of merit of the test set

that it may be confused with background. FOM computation allows
finding the optimal cut point to put in evidence the presence of signals.
In fact, maximize this quantity considered as a function of the classi-
fier acceptance threshold means maximizing signal and background
distribution over the phase space expected by the theoretical model.
A good cut point choice allows physicists to determine whenever a
difference in experimental distributions can be identified as a new
signal or not.

The last performance indicator that has been considered is the
histogram of the predicted events over the possible model outcomes.
The network discriminates well if the predicted signal distribution
present a peak towards 1 and the predicted background distribution
towards 0.

Figure 3.5: Signal versus background in test set

3.1 shallow and deep neural networks performance

In [8] some experiments have been done varying the number of layers,
neurons for layer and using various regularization techniques. The
most interesting result obtained is that the Deep Neural Networks
trained and tested with low level features perform the same (or better)
than the Shallow Neural Networks with high level features, which is

22 neural networks performance analysis

(a) SN performance in [2] (b) DN performance in [2]

(c) SN performance in [8] (d) DN performance in [8]

Figure 3.6

excellent given the not negligible work needed to develop high level
features. The same results are also found in [2]. In Fig. 3.6 and in
Tab. 3.1 are shown a comparison of the performance with shallow
neural networks (SNN) and deep neural networks (DNN) in [2] and [8]
for three sets of input of features: low level features, high level features
and the complete set of features. As can be seen, a shallow NN trained
using only the low level features performs significantly worse than one
trained with only the high level features. This is a well-known problem
with shallow learning methods, and motivates the calculation of high
level features. Methods trained with only the high level features,
however, have a weaker performance than those trained with the full
set of features, which suggests that despite the insight represented
by the high level features, they do not capture all the information
contained in the low level features. The deep learning techniques
show close performance using the low level features and the complete
features, suggesting that they are automatically discovering the insight
contained in the high level features. The slightly different performance
in [2] and [8] are explainable due to the fact in [8] the algorithms
can handle the training for about 40-60 epochs before overfitting,
instead [2] are able to train for 200-1000 which is a great difference.

3.1 shallow and deep neural networks performance 23

Technique Low level High level Complete

SNNauc 0.733 0.777 0.816
DNNauc 0.880 0.800 0.885
SNNDS 2.5σ 3.1σ 3.7σ
DNNDS 4.9σ 3.6σ 5.0σ

(a) AUC and discovery significance in [2]

Technique Low level High level Complete

SNNauc 0.675 0.763 0.812
DNNauc 0.846 0.796 0.858
SNNDS 3.34σ 3.69σ 4.11σ
DNNDS 4.44σ 3.85σ 4.66σ

(b) AUC and discovery significance in [8]

Table 3.1

Even if the quantitative results differ, the qualitative ones are the same.

To understand if the obtained results can help to discriminate new
signals assumption was made that for 100 signals events were 1000
background events as can be seen in Fig.3.7. In order to simulate the
physical reality prediction histograms were re-normalized. The Tab.3.1
show then that the discovery significance, which is a standard metric
in high-energy physics, can significantly improve even with small
increases in AUC.

Figure 3.7: Figure of merit obtained after normalization in [8]

Part II

R E S U LT S

4
C L U S T E R S C A L A B I L I T Y

In the thesis early stages, experiments have been done with the Dis-
tributed Keras framework [11] developed at CERN but BigDL seemed
more promising so we continued with this library. Initially training
was performed with a cluster formed of an 8 cores master node and
16GB (xlarge) and 5 slaves with 2 cores each and 4GB (medium). Then
it became clear that, for the task, it was better an architecture with a
medium master and 5 xlarge slaves due to the fact that all the heavy
lift is performed by workers. On the GPU architecture side we had
available an Nvidia Titan Xp1 and an Nvidia RTX 2080 FE2 graphics
cards.

We tested our model with several optimizers implemented by
BigDL and Keras libraries. The standard optimizer SGD, Adam[12],
Adamax[12], Adadelta[15] and Adagrad[5]. Cluster performance is
evaluated between different numbers of nodes and available GPUs.
Results are shown in Fig. 4.1 and Fig. 4.2.

Figure 4.1: Number of nodes versus execution time for 1 epoch

1 https://www.nvidia.com/en-us/titan/titan-xp/
2 https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080/

27

28 cluster scalability

Figure 4.2: Relative time regard execution with one node

As shown in the Fig. 4.1 the performances improve by adding
nodes, as intended. The improvement is not linear, the difference
in time performance between optimizers decrease with increasing
number of nodes. A simple interpretation could be that with more
nodes the training bottleneck is on the network side so the difference
in time performance between optimizers become less significant. To
support this hypothesis in Fig. 4.2 it can be seen that performance
increase approximately by 30% - 40% for each added node but relative
improvement shrink with the increment of the nodes. This may be
due to the fact that the increase in the number of nodes is limited by
the time required for their communication with the master.

The graphs also show that latest Nvidia consumer-grade GPUs
have comparable performance with multi-cores CPUs. Remembering
that every node has 8 it can be seen that in this test the Titan Xp
can compete with an 8 - 16 cores cluster, depending on the chosen
optimizer. The rtx 2080 gets better results and is comparable with the
performance of a 16 - 32 cores cluster. This difference could be related
to the different GPUs Pascal [9] and Turing [6] architectures. It could be
also noted that in this case the performances are strongly influenced
by the chosen optimizer. Not easily explainable this aspect should be
further explored.

5
C O N C L U S I O N

In this thesis work new computational paradigms have been explored.
The results with cluster architecture seems promising. They show
that this technique has a good capability to scale as the number of
nodes and computational resources increases. This characteristic can
be exploit for develop large scale system.

Results with GPUs show that them can compete with cluster com-
puting but seems less encouraging than expected. This can be related
with a number of factors such as, for example, the kind of problem,
the implementation or the hyperparameters choice.

Nevertheless, the results are promising, clustering and GPUs are
definitely good ways to improve performance of deep neural networks
for solve a discrimination signal background problem.

29

B I B L I O G R A P H Y

[1] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. https://www.tensorflow.org/. Software
available from tensorflow.org. 2015.

[2] P. Baldi, P. Sadowski, and D. Whiteson. “Searching for exotic
particles in high-energy physics with deep learning”. In: Na-
ture Communications 5, 4308 (July 2014), p. 4308. doi: 10.1038/
ncomms5308. arXiv: 1402.4735 [hep-ph].

[3] François Chollet et al. Keras. https://keras.io. 2015.

[4] Jason Dai et al. “BigDL: A Distributed Deep Learning Frame-
work for Big Data”. In: CoRR abs/1804.05839 (2018). arXiv:
1804.05839.

[5] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradi-
ent Methods for Online Learning and Stochastic Optimization”.
In: Journal of Machine Learning Research. 12. 2121-2159. (2011).
eprint: 12.2121-2159..

[6] Nick Stam Emmett Kilgariff Henry Moreton and Brandon Bell.
NVIDIA Turing GPU Architecture. https://www.nvidia.com/
content / dam / en - zz / Solutions / design - visualization /
technologies/turing-architecture/NVIDIA-Turing-Architecture-
Whitepaper.pdf. 2018.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. 2016.

[8] Gaia Grosso. “Deep Learning techniques to search for New
Physics at LHC”. Thesis. University of Padua, 2017.

[9] Mark Harris. GP100 Pascal Whitepaper. https://nvidia.com/
content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.
pdf. 2018.

[10] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Mul-
tilayer feedforward networks are universal approximators. Vol. 2. 5.
1989, pp. 359 –366. doi: https://doi.org/10.1016/0893-
6080(89)90020-8.

[11] CERN IT-DB Joeri R. Hermans. Distributed Keras: Distributed
Deep Learning with Apache Spark and Keras. https://github.com/
JoeriHermans/dist-keras/. 2016.

[12] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for
Stochastic Optimization”. In: CoRR abs/1412.6980 (2014). arXiv:
1412.6980.

31

https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
http://arxiv.org/abs/1402.4735
https://keras.io
http://arxiv.org/abs/1804.05839
12. 2121-2159.
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://github.com/JoeriHermans/dist-keras/
https://github.com/JoeriHermans/dist-keras/
http://arxiv.org/abs/1412.6980

32 bibliography

[13] Arthur L. Samuel. “Some studies in machine learning using the
game of Checkers”. In: IBM journal of research and development
(1959), pp. 71–105.

[14] Matei Zaharia et al. “Spark: Cluster Computing with Working
Sets”. In: HotCloud’10 (2010), pp. 10–10.

[15] Matthew D. Zeiler. “ADADELTA: An Adaptive Learning Rate
Method”. In: CoRR abs/1212.5701 (2012). arXiv: 1212.5701.

http://arxiv.org/abs/1212.5701

	Abstract
	Sommario
	Contents
	1 Introduction
	 Background
	2 The Problem
	2.1 Deep Neural Networks
	2.2 the physics of LHC
	2.3 The benchmark dataset HIGGS
	2.4 The setup

	3 Neural Networks performance analysis
	3.1 Shallow and deep Neural Networks performance

	 Results
	4 Cluster scalability
	5 Conclusion
	 Bibliography

