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Chapter 1

Introduction

1.1 Extended Abstract

Nowadays it is increasingly attended that nations become aware of energetic
and environmental impact. In particular politics because of the community
demand, are intended to find solutions that minimize ejection and conse-
quently the greenhouse effect. To reach this aim has its rise the smart
technology, that is, tech provided with intelligent control modules able to
lean performances optimization and a perfect integration with the already
present components. From the environmental point of view, in particular,
it is talked about green technology, that is, smart tech capable to exploit
sustainable source of energy.

One of the most hot topic concerns the electric power grid. Traditional
grids are of great dimensions and controlled by central units. That is because
they are responsible of production and distribution of large geographical ar-
eas. Additionally they are usually placed far away from consumers because
of security and cheapness reasons. The contribution given to the production
by renewable sources of energy is limited and the power flows are one way:
from producer to user. This makes the users subjected to the economic con-
ditions of the dealer.

A Smart grid is an electric grid capable of smartly exploiting alterna-
tive sources of energy. The main aim of smart grids is to spread throughout
the country the electric energy production, in particular of low voltage. The
purpose is to make the consumers totally or partially independent from an
energetic point of view, that is, they should be able to manage their own
requirements. Through the smart interaction between alternative sources
(as windpower, photovoltaic, hydroelectric, etc.) and appropriate storage
devices, the aim would be to let neighborhood micro grids to manage their
energy demand and become self sufficient. Furthermore, users could be able

7



8 CHAPTER 1. INTRODUCTION

to sell their own production. This would make bidirectional the power flows.
As a consequence, consumers would obtain purchasing power and produc-
ers would offer a better service quality. Additionally the quality control of
service would become distributed, making the energetic system robust and
scalable.

To achieve the previously mentioned purpose, the electric grids need a
deep renovation process. In particular, the modernization of the low volt-
age power distribution networks will consist in the deployment of a large
amount of ICT1, which is currently not present, in the form of dispersed
measurement, monitoring, actuation and control devices.

One example in this sense is the coordinated control of the power inverters
of the microgeneration devices connected to the low voltage grid. When
properly controlled, these devices can provide valuable ancillary services like
reactive power compensation, voltage support, automatic generation control,
optimal power flow computation, etc.

One of the main bottleneck in the actuaction of this kind of control strate-
gies in the low voltage power distribution network is the need for accurate
voltage phasor measurements across the grid. Specifically, to achieve the aim
of control is necessary to handle with the voltage phasor at every node2 of
the grid, namely the state of the grid.

Phasor measurement units (PMU) can provide these measurements, but
their cost is generally unacceptable for large scale deployment. In particular,
time synchronization between different PMUs is a major technological issue,
and it is generally tackled via a GPS module that can provide timestamping
of the data.

A first contribution of this thesis lies in evaluating the effects of PMU
measurement errors for measurement-driven control strategies, adopting the
reactive power control proposed in [14] as a prototype. The analysis shows
that the quality of standard PMUs is largely insufficient.

Tackling this issue via a large scale deployment of GPS or of more ad-
vanced measurements technology is very unlikely in the near future, because
of the low end nature of the power distribution networks. The number of
devices is large, reliability is relatively low, and the cost of deployment must
necessarily be limited.

We propose a solution to this problem that exploits the large number of
sensors and their communication capabilities. Specifically, we present two
distributed and scalable estimation algorithms capable of improving the
quality of the voltage measurements via exchange of data with other PMUs

1Information and Communication Technology
2A Node can represent either an household appliance in a domestic microgrid or an

entire house demand in a urban grid.
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and via distributed processing of the raw data.
We assume that the power distribution grid is divided into a number of

areas. The PMUs beloning to each area transmit their voltage measurements
to an area monitor. Area monitors can communicate and they are instructed
to process the collected measurement in a distributed way.

Similar algorithms have already been proposed in the literature, espe-
cially for medium voltage and high voltage power grids, see [5], [6], [7], [9]
[10]. The two solutions proposed, however, exhibit some notable original
features which make them particularly suited for the scenario of low voltage
power distribution grids:

• they can deal effectively with poorly synchronized measurements, in-
troducing time sync errors in the measurement model;

• they only require measurements that can be performed by the devices
at their point of connection, instead of power flow and current mea-
surements on the power lines, which are generally not available in low
voltage grids;

• the computational effort is very limited and remains constant if the
grid grows in size;

• they are completely leader-less (no grid supervisor is present).

In order to present the two proposed distributed algorithms, we first in-
troduce a model for the power grid, which includes a convenient modelling
of the measurement errors in which time sync error are explicitly considered.
Based on this model, we detail the least-square problem that has to be solved
in order to find the maximum-likelyhood estimation of the grid state. For the
solution of such optimization problem, we propose two different approaches.
The first approach is a distributed Jacobi-like algorithm. The algorithm is
completely leader-less, and each monitor has to solve an extremely simple
optimization problem, for which a closed form solution is provided. The
second approach is a distributed implementation of the Alternating Direc-
tion Method of Multipliers ([11]). This contribution is of particular interest
per se: we show how ADMM can be implemented in a scalable way [13], in
which every agent is only required to store a portion of the entire state of the
systems. We show how both these algorithms are effective in improving the
quality of the measurements, providing a consistent and accurate estimate
of the node voltages.

Finally, we consider a power network control application. Specifically,
we take a power losses minimization distributed algorithm. This algorithm
ensures optimal control if no noisy measurements are provided. On the
contrary, using noisy measurements it does not work. We show how, using
the estimated state, it leads to an optimal behavior.
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1.2 State of the Art

Since Power Networks State Estimation represents the starting point to im-
plement a desirable network control, it has been fully treated in literature.
Firstly it has been analyzed through centralized techniques. Afterwards re-
searchers focused on distributed solution since the increasing in network size,
the always more relevant computational effort, the networks topology pri-
vacy and the robustness to failures become strictly urgent.

The main aim of the estimation is to adequately filter the raw measure-
ments with the purpose to achieve a better knowledge of a desire quantity,
namely the state. This is very important due to the fact that measurements
could be very noisy. Therefore, they cannot be straightly used to control the
network. Indeed, presence of outliers, measurement errors and noisy mea-
sures, corrupting the real value of the state, make absolutely unusable the
control. As a byproduct, the estimation could be efficiently used to do fault
detection and bad data detection. This is, respectively, to detect fault of the
network and to identify particularly bad measures (outliers), for instance,
due to instrumentation faults or corruption through the connection lines.

In [1] the authors firstly present the principal electric components to in-
troduce a suitable network model. Secondly, it is fully explained the central-
ized weighted least squares estimation supposing to deal with measurements
affected by gaussian noise.

In [2], [3] e [4] it is firstly developed an exact network model, secondly
an approximated one and finally the authors deal with the implementation
of a centralized static least square estimation modeling the noise as a gaus-
sian random variable. Finally it is suggested how to implement a real-time
version of the algorithm proposed and a bad data detection.

In [5] the authors proposed a multi area distributed two-level estimation.
Firstly the single area, using just inner measures, estimates its own knowl-
edge of the state. Secondly, a central unit deals with the task of coordinate
the single areas estimations via an additional set of pseudo-measurements
take by Phasor Measurement Units (PMUs). Similar method is described
both in [6] and [7].

In [8] it is proposed a technique that, after a preliminary decomposition
of the net in smaller subnetworks, place the measurement units with the aim
of optimizing their number and costs.

In [9], similar to the two-level implementation of [5], [6] and [7], the au-
thor proposes a method to deal with a distributed state estimation via only
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local measures. Thanks to the exchange of borders information between
neighboring areas and a central coordination unit it is finally reached the
wide range estimation.

In [10] a complete leader-less algorithm is proposed. Coordination and
estimation are carried out only via local exchange of information.

In [11] the authors develop a fully distributed mean square algorithm.
This leads a Wireless Sensor Network (WSN), in which the algorithm is
tested, to adaptively reach the state estimation with single-hop neighbors
exchanges of messages. The optimization problem is solved exploiting the
Alternating Direction Method of Multipliers (ADMM).

In [12] an approach able to parallelize optimal power flow is presented.
The proposed distributed scheme can be use to coordinate an heterogeneous
collection of utilities. Three mathematical decomposition coordination meth-
ods are introduced to implement the proposed distributed sheme: the Auxil-
iary Problem Principle (APP); the Predictor-Corrector Proximal Multiplier
Method (PCPM); the Alternating Direction Method (ADM).

In [13] is proposed a modification of the standard Alternating Direction
Multiplier Method formulation in order to obtain a scalable version. The
resulting algorithm is completely distributed and scalable.

In [14] the authors firstly propose an appropriate model for a low volt-
age microgrid, secondly they develop a completely distributed algorithm to
appropriately command a sub set of microgenerators to achieve an optimal
distribution losses minimization.
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1.3 Structure

The thesis is organized as follows:

• Chapter 2 firstly presents a general model for an electric grid. Con-
secutively, is presented a specific low voltage microgrid model more
suitable for the analyzed topic.

• Chapter 3 fully presents the problem to deal with. Specifically the
estimation problem and its importance. A centralized solution to the
problem is developed. Finally one of the main topic about Power Net-
works Control is presented to better motivate the estimation procedure.

• Chapter 4 introduces and develops two completely distributed and scal-
able techniques to achieve the target. Specifically a first Jacobi-like al-
gorithm is proposed. Secondly an ADMM based solution is developed.

• Chapter 5 presents a full set of tests to validate the algorithms pro-
posed.

• Chapter 6 gathers the main features of the algorithms proposed.
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Notations

A. State variables

vi Magnitude of the voltage at the ith node.

θi Phase of the voltage at the ith node.

V Vector containing all voltages’ magnitude.

Θ Vector containing all voltages’ phase.

ii Magnitude of the current at the ith node.

φi Phase of the current at the ith node.

I Vector containing the magnitude of the current.

Φ Vector containing all currents’ phase.

xi Real of the voltage at the ith node.

yi Imaginary of the voltage at the ith node .

X Vector containing all the real parts.

Y Vector containing all the imaginary parts.

X = [X Y ]T Vector of all the state variables.

B. Measures

vmi Magnitude of the voltage at the ith node.

θmi Phase of the voltage at the ith node.

V m Vector containing all the magnitude of the voltages measured.

Θm Vector containing all the phases of the voltages measured.

si Real of the voltage at the ith node.

ri Imaginary of the voltage at the ith node.

S Vector of the real parts of the voltage.

R Vector of the imaginary parts of the voltage.

imi Magnitude of the current at the ith node.

φmi Phase of the current at the ith node.

hi Real of the current at the ith node.
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ki Imaginary of the current at the ith node.

H Vector of the real part.

K Vector of the real part.

C. Standard deviations

σv Standard deviation of the voltage magnitude error.

σθ Standard deviation of the voltage phase error.

σi Standard deviation of the current magnitude error.

σφ Standard deviation of the current phase error.

D. Functions

J(·) Objective Cost Function.

f(·) Current magnitude nonlinear function of the state.

g(·) Current phase nonlinear function of the state.

|·| Both the absolute value of a quantity or the cardinality of a set depending
on the context.

·T Transpose of a vector or matrix.

·̄ Complex conjugate of a complex quantity.

·∗ Both complex conjugate and transpose.

E. Matrixes and Vectors

In Identity matrix ∈ Rnxn.

1 Vector whose element are all equal to one.

1i Canonical vector whose elements are all equal to zero except for that in
position i.



Chapter 2

Grid Modeling

In this chapter we firstly introduce the principal components constituting an
electric grid. Secondly, we describe a general model, commonly adopted, of
an electric grid ([1]). Finally we deal with the specific model ([14]) exploited
in this thesis.

2.1 Components of an Electric Grid

An electric grid consists of a series of electric components such as trans-
mission lines, loads, generators, transformers and capacitors. It is usually
assumed the power system to operate in the steady state under balance con-
ditions. This implies that all bus loads and branch flows will be three phase
and balanced, all transmission lines are fully transposed and all other series
or shut devices are symmetrical in the three phases [1]. These assumptions
allow the use of the single phase positive sequence equivalent circuit for mod-
eling the entire system. The following component models are commonly used
in representing the network.

2.1.1 Transmission Lines

Transmission lines are usually represented by a two-port π-model character-
ized by a series impedance of R + jX and a total line charging susceptance
of j2B corresponding to the equivalent circuit of figure 2.1

2.2 Component Modeling and Assumptions

Power system is assumed to operate in the steady state under balanced
conditions. This implies that all bus loads and branch power flows will
be three phase and balanced, all transmission lines are fully transposed,
and all other series or shunt devices are symmetrical in the three phases.
These assumptions allow the use of single phase positive sequence equivalent
circuit for modeling the entire power system. The solution that will be
obtained by using such a network model, will also be the positive sequence
component of the system state during balanced steady state operation. As
in the case of the power flow, all network data as well as the network
variables, are expressed in the per unit system. The following component
models will thus be used in representing the entire network.

2.2.1 Transmission Lines

Transmission lines are represented by a two-port 7r-model whose parameters
correspond to the positive sequence equivalent circuit of transmission lines.
A transmission line with a positive sequence series impedance of .R+ĵ f and
total line charging susceptance of j23, will be modelled by the equivalent
circuit shown in Figure 2.1.

Figure 2.1. Equivaient circuit for a transmission tine

2.2.2 Shunt Capacitors or Reactors

Shunt capacitors or reactors which may be used for voltage and/or reactive
power control, are represented by their per phase susceptance at the corre-
sponding bus. The sign of the susceptance value will determine the type of
the shunt element. It will be positive or negative corresponding to a shunt
capacitor or reactor respectively.

2.2.3 Tap Changing and Phase Shifting Transformers

Transformers with off-nominal but in-phasc taps, can be modeled as series
impedances in scries with ideal transformers as shown in Figure 2.2. The

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Figure 2.1: Equivalent circuit for a transmission line

15



16 CHAPTER 2. GRID MODELING

2.1.2 Shunt Capacitors or Reactors

Shunt devices are represented by their susceptance at the corresponding bus
whose sign determines the type of shunt element. They can be used for volt-
age and/or reactive power control.

Consider an admittance Y = jB characterized the susceptance B

B =

{
ωL
− 1
ωC

the sign of B determines the type of shunt element so a positive value cor-
responds to a capacitor, alternatively a negative one to a reactor.

2.1.3 Transformers

Transformers can be modeled, as shown in figure 2.2, as series impedance
in series with an ideal transformers, where a represents the tap ratio which
can be a real value if the transformer is an in phase device or complex if is a
phase shifting device; m and k are the buses connected to the transformer.two transformer terminal buses m and /c are commonly designated as the

impedance side and the tap side bus respectively.

Figure 2.2. Equivatent circuit for an off-nominat tap transformer

The nodal equations of the two port circuit of Figure 2.2 can be derived
by first expressing the current flows ̂^ and î  at each end of the series
branch R + jJf. Denoting the admittance of this branch ^ — m by y, the
terminal current injections will be given by:

(2.1)

Substituting for ̂rn and

the final form will be obtained as follows:

(2.2)

where a is the in phase tap ratio. Figure 2.3 shows the corresponding two
port equivalent circuit for the above set of nodal equations.

Figure 2.3. Equivatent circuit of an in-phase tap changer

For a phase shifting transformer where the off-nominal tap value a, is
complex, the equations will slightly change as:

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Figure 2.2: Equivalent circuit for a transformers

It is easy to see that the nodal equations of the two-port circuit, for the
more general case of a complex value of a, are

[
ik
im

]
=

[
y
|a|2 −y

ā

−y
a y

] [
vk
vm

]

where ā is the complex conjugate of a and y represents the admittance of
the l −m branch.

2.1.4 Loads and Generators

Loads and Generators are modeled respectively as negative or positive com-
plex power injection and therefore have no effect on the network model.
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2.2 General Network Model

The above component models can be used to build the network model of the
system that is the admittance matrix Y describing the Kirchhoff’s current
law at each bus:

I =

 i1...
iN

 =

Y11 · · · Y1N
...

...
YN1 · · · YNN


 v1

...
vN

 = Y V

where ik and vk are the current injection and voltage phasors at bus k; Ykm is
the (m, k) entry of the Y matrix representing the total admittance between
nodes m and k.

2.3 Smart Grid Exploited Model

For our purpose the model used is a bit different from the general one pro-
posed in the previous section and almost similar to the one described in [14].

We first introduce some preliminaries about graph theory that will turn
out to be useful in the description of our model.

2.3.1 Mathematical Preliminaries

Let G = (V, E , σ, τ) be a directed graph, where V is the set of nodes (|V| = n),
E is the set of edges (|E| = r) and σ, τ : E → V are two functions such that
the edge e ∈ E goes from node σ(e) to node τ(e).
Two edges e, e′ are said to be consecutive if

{σ(e), τ(e)} ∩ {σ(e′), τ(e′)}

is not empty. A path is a sequence of consecutive edges. It is possible to
describe the graph through its incidence matrix A ∈ Rr×n defined as follows:

Aei =


-1 if i = σ(e);
1 if i = τ(e);
0 otherwise.

A graph is connected if exists a path connecting every pair of nodes. If this
is the case the vector 1 is the only one owning to the null space kerA.

2.3.2 Model

Let us firstly define a smart grid (or microgrid depending on its dimensions)
as a portion of the power distribution network, described above, that is
connected to the power transmission network in one point, the PCC (point
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of common coupling), and hosts a number of loads and power generators.
We consider the grid as a directed graph G = (V, E) whose edges E represent
the power lines and nodes V both the loads and generators. Figure 2.3 shows
the correspondence between the electric and graph formulation for the grid.
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Figure 1. Schematic representation of the microgrid model. In the lower panel a circuit representation is given, where black

diamonds are microgenerators, white diamonds are loads, and the left-most element of the circuit represents the PCC. The

middle panel illustrates the adopted graph representation for the same microgrid. Circled nodes represent compensators (i.e.

microgenerators and the PCC). The upper panel shows how the compensators can be divided into overlapping clusters in order

to implement the control algorithm proposed in Section IV. Each cluster is provided with a supervisor with some computational

capability.

number y = |y|ej∠y whose absolute value |y| corresponds to the signal root-mean-square value, and

whose phase ∠y corresponds to the phase of the signal with respect to an arbitrary global reference.

In this notation, the steady state of a microgrid is described by the following system variables (see

Figure 1, lower panel):

• u ∈ Cn, where uv is the grid voltage at node v;

• ι ∈ Cn, where ιv is the current injected by node v;

April 15, 2012 DRAFT

Figure 2.3: Lower Panel: Electric point of view for the grid. Black diamonds rep-
resent loads, while white diamonds represent microgenerators.
Upper panel: graph interpretation of the grid. Circled nodes correspond
to microgenerators.

We limit our study to the steady state behavior of the system, as mention
above. This let us represent all the signal via a complex number y = |y|ej∠y,
since they are sinusoidal wave of the same frequency. The absolute value
|y| represents the signal root mean square and the argument ∠y represents
its phase with respect to an arbitrary global reference (usually that of the
PCC).
The notation introduced above let us define the steady state of the system
as:

• v = V ejΘ ∈ Cn, where viejθi is the complex voltage of the ith node;

• i = IejΦ ∈ Cn, where iiejφi is the complex current of the ith node;

• ξ ∈ Cr, where ξe is the current flowing in the edge e.

It is useful to highlight the electric component specifically considered in our
model clarifying the differences existing between our model and that of sec-
tion 2.1.
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Power lines are commonly described via the π-model characterized by,
see figure 2.4,

• ze = re + jxe = 1
ge+jbe

: line impedance;

• yshe : shunt admittance.

We neglect the shunt devices and consider only the line impedance ze.

Network elements: power lines

The most commonly adopted model for power lines is the π-model.

Power lines are described by their series
impedance

ze = re + jxe =
1

ge + jbe
, re , xe > 0

while we neglect shunt admittances.

σ(e) τ(e)ze

y sh
e y sh

e

Power line equation

ξe =
uσ(e) − uτ(e)

ze

Figure 2.4: Equivalent circuit for a power lines

It is easy to see that the power line is described by the equation

ξe =
vσ(e) − vτ(e)

ze

The PCC (point of common coupling) is modeled as a constant voltage
generator

vPCC = VNe
jθ0 (2.1)

where VN is the nominal voltage and θ0 is an arbitrary reference angle.

Loads are considered to require a given amount of active and reactive
power for example depending on the voltage amplitude vi. Examples of this
are constant impedance loads and constant power loads.

Finally, dealing with a low voltage power distribution network, trans-
formers, both tap changers and phase shifters, are neglected.

To describe in a unique way all different loads considered it is useful
to exploit the exponential model in which each node (except the PCC) is
modeled via a law relating the voltage vi and current ii. Specifically

viīi = si

∣∣∣ vi
VN

∣∣∣ηi (2.2)

where si is the nominal complex power and ηi is a characteristic parameter.
More specifically si is the value of the complex power that the node would
inject into the grid if the voltage at its point of connection is equal to VN .
Its value belongs to the {<(si) < 0} halfplane meaning that positive active
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power is supplied to the device if this is a load; on the contrary belongs to
the {<(si) > 0} halfplane meaning that positive active power is injected into
the grid if the device connected is a generator. The parameter ηi identify the
device typology: for example constant power, constant current and constant
impedance loads are described respectively by ηi = 0, 1, 2.
See that generators fit this model for a parameter ηi = 0.

Once introduced our network elements it can be noted that the mentioned
steady state quantities are characterized by the following constraints

AT ξ + i = 0 (2.3)
Av + Zξ = 0 (2.4)

where A is the incidence matrix introduced above; Z = diag{ze; e ∈ E}
represents the matrix of line impedances.
Equation (2.3) represents the Kirchhoff’s current law at the nodes while
equation (2.4) describes the voltage drop on the edges.
Equation (2.3) and eq.(2.4) yield together to the system of linear equation

i = ATZ−1Av = Lv (2.5)

where L represents the weighted Laplacian matrix in graph theory, the nodal
admittance matrix in power system analysis.

The matrices derived fully describe the grid and individuate our model.

The three equations (2.1), (2.2) and (2.5) individuate a system of non
linear equation to be solved to determine the steady state of the grid starting
from the knowledge of the grid topology (identify by L) and the power de-
mand required by the nodes. This topic is extensively covered in literature
known as Power Flow Analysis. To our purpose is completely indifferent
how the grid is solved and we will assume on the following to exploit some
algorithm that performs it.
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2.4 Testing setup: Ieee test Feeders

It is useful to introduce the specific test setup used through this thesis. All
algorithm presented in the following has been tested on either one or both the
Ieee 37 nodes[15] or 123 nodes[16] Radial Distribution Test Feeder.
More specifically the graphs describing the mentioned test feeder are pre-
sented in figure 2.5.

 

 The Institute of Electrical and Electronics Engineers,  Inc. 

IEEE 37 Node Test Feeder 

 
 
 
 
 

(a) 37 nodes test feeder graph

 

 The Institute of Electrical and Electronics Engineers,  Inc. 

IEEE 123 Node Test Feeder 

 
 (b) 123 nodes test feeder graph

Figure 2.5: Test Feeders graphs
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Chapter 3

Electric grid State Estimation

In this chapter we introduce the problem of interest for this thesis. Specifi-
cally, the estimation of the state of an electric power grid. Firstly, we provide
a rigorous formulation of the problem. Secondly, we review its closed form
solution. Finally, we analyze the importance of the estimation exploiting it
in a Reactive Power Compensation Control (see [14]) specific algorithm.

3.1 Model and Problem Formulation

3.1.1 Measurements Model

Consider a graph G = (V, E) representing the grid, as described in chapter
2, where V is the set of n nodes and E is the set of r edges.
It is assumed that every node can measure its current and voltage divided
into magnitude and phase, i.e.,

vmi = vi + evi ; evi ∼ N (0, σ2
v);

θmi = θi + eθi ; eθi ∼ N (0, σ2
θ);

imi = ii + eii ; eii ∼ N (0, σ2
i );

φmi = φi + eφi ; eφi ∼ N (0, σ2
φ);

where evi , eθi , eii and eφi represent the error introduced by the measure
itself1. All the measurements are assumed to be independent from each
other. Collecting all the measurements in vectors one can write

V m := V + eV ;
Θm := Θ + eΘ;
Im := I + eI ;
Φm := Φ + eΦ

1In a real set up every node of the grid is equipped by a PMU(Phasor Measurement
Unit).

23
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where, we recall, (see notations page 13)

V m =

v
m
1
...
vmN

 ;V =

 v1
...
vN

 ; eV =

ev1...
evN

 ;

and where Θm, Θ, eΘ, Im, I, eI , Φm, Φ and eΦ are defined similarly.
Now let us define the noise vector e = [eV eΘ eI eΦ]T . Then the correlation
matrix R for the noise is

R = E[eeT ] =


σ2
vIn

σ2
θIn

σ2
i In

σ2
φIn


We define the state of the grid as the voltage magnitude and phase at

every node. Then, it is well known that
V m = V + eV ;
Θm = Θ + eΘ;
Im = f(V,Θ) + eI ;
Φm = g(V,Θ) + eΦ

(3.1)

where, generally, f(·) and g(·) represent non linear current’s dependance on
the state.

Synchronization noise

In our setup, there is another kind of noise which is relevant, the synchro-
nization noise esync. We model it as a normal random variable

esync ∼ N (0, σ2
sync)

This noise is due to the fact that different nodes, in general, carry out the
measurement in different time instants because of some unsynchronization.
The noise enters as an additive term in the phase measurement causing a
phase shifting. It is important to underline that the synchronization noise
is the same for measures taken by the same node because it is assumed that
quantities relating the same node are always synchronized.

Formally, we can write, for i ∈ V,

vmi = vi + evi ;

θmi = θi + eθi + esynci ;

imi = ii + eii ;

φmi = φi + eφi + esynci ;
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where the value of esynci is the synchronization error of node i.
Accordingly, we define the noise vector e

e =


eV

eΘ + esync
eI

eΦ + esync


The corresponding correlation matrix R becomes equal to

R = E[eeT ] =


σ2
vIn

(σ2
θ + σ2

sync)In σ2
syncIn

σ2
i In

σ2
syncIn (σ2

φ + σ2
sync)In


where the out-of-diagonal blocks represent the correlation between voltage
and current measurements at the same node due to the synchronization noise.

3.1.2 Problem Formulation

Generally the state estimation problem of an electric grid is posed as a
Weighted Least Squares Problem (see [1],[4]). We follow the same approach.
According to the measurements defined in the previous subsection, we intro-
duce the following cost function

J(V,Θ) =
[
V m Θm Im Φm

]
R−1


V m

Θm

Im

Φm

 (3.2)

In case of absence of synchronization noise the function can be explicitly
written as

J(V,Θ) =

n∑
i=1

{ 1

σ2
v

(vmi − vi)2 +
1

σ2
θ

(θmi − θi)2 +
1

σ2
i

(imi − f(V,Θ))2 +

+
1

σ2
φ

(φmi − g(V,Θ))2
}

Eventually, if measurements of other nature are available, i.e. power (real
and reactive) injected, power flow exc..., they could be added to expression
in (3.2).
As a matter of fact, we want to underline that a novelty of this work stays
just in discarding them and using only current and voltage measures.

To estimate the state means to find the value (V̂ , Θ̂) of (V,Θ) that
minimizes the objective cost function, that is, to find the solution of the
optimization problem

minimize
V,Θ

J(V,Θ) (3.3)
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We observed that the nonlinear dependance of I and Φ on V and Θ
casts the above optimization problem into the nonlinear unconditioned class
of problems. To solve it there are lots of iterative solver; for instance, all
methods based on the augmented Lagrangian technique.
However, this kind of algorithm can suffer of:

• non convergence;

• convergence to local ad not global minima;

• long running time to achieve the convergence.

In this work to deal with the optimization problem in (3.3), we pursue an
approach which is based on a suitable model linearization of the electric grid.
Interestingly we will see how the linear model will lead to a convenient closed
form solution.

3.1.3 Model Linearization

Recall the relation between the complex value current and voltage of the
grid, i.e.,

i = Lu (3.4)

where L = ATZ−1A represents the admittance matrix of the grid; being A
and Z, respectively, the incidence and inductance matrix of the grid (see
chapter 2).

The basic idea to obtain a linear model is based on expressing the quan-
tities of interest as function of the real and imaginary part of the voltage
instead of magnitude and phase. Splitting relation (3.4) into real and imag-
inary part leads to, for a single node, recalling the meaning of h, k, s and r
from page 13,

h+ jk = [<(L) + j=(L)] ∗ (s+ jr) = [<(L)s−=(L)r] + j[=(L)s+ <(L)r]

that can be readily rewritten in a matrix form as[
h
k

]
=

[
<(L) −=(L)
=(L) <(L)

] [
s
r

]
Collecting all nodes values, the whole measures model becomes (see notations
page 13) 

S
R
H
K

 =


In 0
0 In
<(L) −=(L)
=(L) <(L)

[XY
]

+


eS
eR
eH
eK

 =⇒ Z = HX + e (3.5)
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where eS , eR, eH and eK denotes the noises of the measures with respect to
the real and imaginary parts; Z denotes the measures vector and H denotes
the model matrix and e the noises vector.

Note that (3.5) represents a linear model for the measures with respect to
the new state variables, i.e., the real and imaginary part of the nodes voltage.

To handle with this writing it is necessary to express the noise in a suit-
able form, starting from the knowledge of the standard deviation of magni-
tude and phase measures. The noise expressed in this new form is in fact
no more uncorrelated because, in general, part of the magnitude and phase
noise will be reprojected into both real and imaginary part.

To better understand this fact consider two generic vectors

x = ρejψ = ρ(cosψ + jsinψ);

x̃ = ρ̃ejψ̃ = (ρ+ δρ)ej(ψ+δψ) = (ρ+ δρ)(cos(ψ + δψ) + jsin(ψ + δψ))

where, clearly, δρ and δψ represent a sort of error affecting the exact values
ρ and ψ. It is possible to rewrite x̃, exploiting some trigonometric relations,
as

x̃ = ρ(cosψ + jsinψ)cosδψ + δρ(cosψ + jsinψ)cosδψ −
−ρ(sinψ − jcosψ)sinδψ − δρ(sinψ − jcosψ)sinδψ

To simplify the expression above we assume δψ small enough and, using
the McLaurin expansion for the sine and cosine functions, we get

x̃ ' ρ(cosψ + jsinψ)
(

1− δψ2

2

)
+ δρ(cosψ + jsinψ)

(
1− δψ2

2

)
−

−ρ(sinψ − jcosψ)δψ − δρ(sinψ − jcosψ)δψ

Finally, taking a first order approximation, we get

x̃ ' ρ(cosψ + jsinψ) + δρ(cosψ + jsinψ)− ρ(sinψ − jcosψ)δψ

' x+ (δρ cosψ − ρ sinψ δψ) + j(δρ sinψ + ρ cosψ δψ)

that can be rewritten in a matrix form as

x̃ ' x+

[
cosψ −sinψ
sinψ cosψ

] [
δρ
ρ δψ

]
(3.6)

Equation (3.6) highlights the approximation exploited to project the error
measured in phase and magnitude into real and imaginary component.
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Figure 3.1 shows an illustrative example: because of the noise, the quan-
tity is distorted in its magnitude and phase values whose reference system
is the green one. A variation in the real and imaginary part is expressed in
the red reference system. The approximation introduced is equivalent to a
rotation of the green reference system over the red one.

Figure 3.1: Distortion introduced by the noisy measures

Let us go back to our specific context. Let ρ, ψ, ρ̃, ψ̃, emag and ephase
be, respectively, the exact values, the measured value and the error value of
magnitude and phase2, then{

eRe = emagcos(ψ)− ephasesin(ψ)ρ
eIm = emagsin(ψ) + ephasecos(ψ)ρ

where eRe and eIm are obviously the error values of the real and imaginary
parts.
Since the exact values are unknown, another approximation is introduced
substituting their values by the measured ones. This leads to{

eRe = emagcos(ψ̃)− ephasesin(ψ̃)ρ̃

eIm = emagsin(ψ̃) + ephasecos(ψ̃)ρ̃

Adding the eventual synchronization error esync, the noise becomes equal
to {

eRe = emagcos(ψ̃)− ephasesin(ψ̃)ψ̃ − esyncsin(ψ̃)ρ̃

eIm = emagsin(ψ̃) + ephasecos(ψ̃)ψ̃ + esynccos(ψ̃)ρ̃

The noise correlation matrix changes due to the correlation between the
real and imaginary part and assumes the form

R =


σ2
<(V )In σ<(V )=(V )In σ<(V )<(I)In σ<(V )=(I)In

σ=(V )<(V )In σ2
=(V )In σ=(V )<(I)In σ=(V )=(I)In

σ<(I)<(V )In σ<(I)=(V )In σ2
<(I)In σ<(I)=(I)In

σ=(I)<(V )In σ=(I)=(V )In σ=(I)<(I)In σ2
=(I)In


2For a better comprehension, to relate this specific case to the one presented in the

example above set δρ = emag and δψ = ephase
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where for all i ∈ {1...n}, the diagonal block are equal to

σ2
<(V ) = σ2

vcos
2θ + σ2

θ(v
m
i )2sin2θ + σ2

sync(v
m
i )2sin2θ;

σ2
=(V ) = σ2

vsin
2θ + σ2

θ(v
m
i )2cos2θ + σ2

sync(v
m
i )2cos2θ;

σ2
<(I) = σ2

i cos
2φ+ σ2

φ(imi )2sin2φ+ σ2
sync(i

m
i )2sin2θ;

σ2
=(I) = σ2

i cos
2φ+ σ2

φ(imi )2cos2φ+ σ2
sync(i

m
i )2cos2θ;

representing the autocorrelation between quantities. The cross correlation
between the real and imaginary part of the voltage is

σ<(V )=(V ) =
(
σ2
v + (σ2

θ + σ2
sync)(v

m
i )2

)
sinθcosθ = σ=(V )<(V ).

Similarly the correlation between real and imaginary part of the current is

σ<(I)=(I) =
(
σ2
i + (σ2

φ + σ2
sync)(i

m
i )2
)
sinφcosφ = σ=(I)<(I).

Finally the correlation due to the synchronization noise is

σ<(V )<(I) = σ2
syncv

m
i i

m
i sinθsinφ = σ<(I)<(V );

σ<(V )=(I) = −σ2
syncv

m
i i

m
i sinθcosφ = σ=(I)<(V );

σ=(V )<(I) = −σ2
syncv

m
i i

m
i cosθsinφ = σ<(I)=(V );

σ=(V )=(I) = σ2
syncv

m
i i

m
i cosθcosφ = σ=(I)=(V ).

3.1.4 Closed Form Solution

Consider the linear model in (3.5), i.e,

Z = HX + e

It is possible to rewrite the objective cost function J(V,Θ) as

J(X) =
[
Z −HX

]T
R−1

[
Z −HX

]
(3.7)

This cost function, being a linear function of the decision variable X, reduces
to the classical linear weighted least squares problem. It is well known that,
if the matrix (HTR−1H) is not singular, then the optimal solution X̂ can be
obtain in a closed form as

X̂ = (HTR−1H)−1HTR−1Z (3.8)

Dealing with Gaussian additive noise this solution coincides with the maxi-
mum likelihood estimation.
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3.2 On the Correlation Matrix R and Non Singu-
larity Condition of (HTR−1H)

To guarantee the application of the algorithm is necessary, as previously said,
that the matrix (HTR−1H) is not singular.

First of all let us consider the correlation matrix R.

3.2.1 Correlation matrix R

Absence of Synchronization Noise

Supposing absence of synchronization noise between nodes the correlation
matrix is definite positive hence invertible. This is true since for every node,
the eigenvalues of its corresponding sub-block

Ri =

[
Ri11

Ri22

]
where

Ri11 =

[
σ2
V cos

2θ + σ2
θ(v

m
i )2sin2θ

(
σ2
V − σ2

θ(v
m
i )2

)
sinθcosθ(

σ2
V − σ2

θ(v
m
i )2

)
sinθcosθ σ2

V cos
2θ + σ2

θ(v
m
i )2sin2θ

]

Ri22 =

[
σ2
I cos

2φ+ σ2
φ(imi )2sin2φ

(
σ2
I − σ2

φ(imi )2
)
sinφcosφ(

σ2
I − σ2

φ(imi )2
)
sinφcosφ σ2

I cos
2φ+ σ2

φ(imi )2sin2φ

]
can be easily computed and are equal to

ΛRi = {σ2
V ; σ2

θ(v
m
i )2 ; σ2

I ; σ2
φ(imi )2 }

Since all these terms are positive then R is positive definite and so invertible.

Presence of Synchronization Noise

Let us now consider the presence of synchronization noise between nodes.
The correlation matrix drastically changes its structure. Indeed every node
is characterized by

Ri =

[
Ri11 Ri12
Ri21 Ri22

]
where

Ri11 =

[
σ2
V cos

2θ + (σ2
θ + σ2

sync)(v
m
i )2sin2θ

(
σ2
V − (σ2

θ + σ2
sync)(v

m
i )2

)
sinθcosθ(

σ2
V − (σ2

θ + σ2
sync)(v

m
i )2

)
sinθcosθ σ2

V cos
2θ + (σ2

θ + σ2
sync)(v

m
i )2sin2θ

]

Ri22 =

[
σ2
I cos

2φ+ (σ2
φ + σ2

sync)(i
m
i )2sin2φ

(
σ2
I − (σ2

φ + σ2
sync)(i

m
i )2
)
sinφcosφ(

σ2
I − (σ2

φ + σ2
sync)(i

m
i )2
)
sinφcosφ σ2

I cos
2φ+ (σ2

φ + σ2
sync)(i

m
i )2sin2φ

]
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Ri12 = Ri21 =

[
σ2
syncv

m
i i

m
i sinθsinφ −σ2

syncv
m
i i

m
i sinθcosφ

−σ2
syncv

m
i i

m
i cosθsinφ σ2

syncv
m
i i

m
i cosθcosφ

]

To study such a matrix is not easy since it is not characterized by a
special structure. A simple condition that guarantees positiveness and so
invertibility, is to have R be diagonal dominant and so |∑j 6=i[R]ij | < [Rii]
∀i. Indeed in this case by Gershgorin theorem, the eigenvalues of R are in
the right half complex plane i.e. < > 0. Actually this is not necessary since
R has to be invertible and not even positive definite. Anyway a simple nu-
merical analysis shows an almost probable invertibility assuring R to be not
singular in most practical conditions.

Assuming R to be invertible, is then necessary to analyze the HR−1H
matrix since if is singular the solving algorithm cannot be implemented.

3.2.2 About HTR−1H
Both in presence and in absence of synchronization noise the matrix does not
assume a suitable form to be study with some algebraic method. Anyway
a deep empirical analysis shows not only its invertibility but its definite
positivity as well. This assure the applicability of the algorithm proposed in
most practical situations.
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3.3 The Importance of State Estimation in Power
Networks Control

To deal with a useful control strategy it is firstly necessary to appropriately
filter the raw measurements. This is due to the fact that raw data are usually
not directly usable by the algorithm, for instance, because:

• they are too inaccurate;

• can collect outliers.

This leads to the use of filter data able to let the control algorithm efficiently
work.
To this point of view, the estimation represents the filtering of the measure-
ments to achieve a better knowledge of the real state of the grid. Therefore
it is the first necessary step to deal with a good control strategy.

To explore the importance of estimation in power networks control we
consider one of its most interesting topic, namely, the minimization of power
distribution losses. To achieve this aim one strategy is to appropriately
control the microgenerators connected to the grid. Specifically, driving the
amount of reactive power injection into the grid[14].
Let us briefly introduce the problem, exploiting what done in [14], to better
understand it.

3.3.1 Problem Formulation

Consider a grid modeled as in chapter 2. As a metric for optimality of
reactive power flows, active power losses on lines are chosen. The total
active power losses on the edges are then equal to

J tot ,
∑
e∈E
|ξe|2<(ze) = ūT<(L)u

It is assumed to be possible to command only a subset C ⊂ V of nodes of
the grid, i.e. the set of microgenerators, supposing that only a part of them
are equipped with some sort of intelligence, as shown in figure 3.2 (upper
panel). In addition to this, let us assume be possible to decide only the
amount of reactive power injected, as the decision on the amount of active
power follows imperative economic criteria.
The resulting problem is then

minimize
qv ,v∈C

J tot

where qv represents the reactive power injected at nodes v ∈ C. To appropri-
ately drive the microgenerators, the algorithm provided in [14] implements
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Figure 1. Schematic representation of the microgrid model. In the lower panel a circuit representation is given, where black

diamonds are microgenerators, white diamonds are loads, and the left-most element of the circuit represents the PCC. The

middle panel illustrates the adopted graph representation for the same microgrid. Circled nodes represent compensators (i.e.

microgenerators and the PCC). The upper panel shows how the compensators can be divided into overlapping clusters in order

to implement the control algorithm proposed in Section IV. Each cluster is provided with a supervisor with some computational

capability.

number y = |y|ej∠y whose absolute value |y| corresponds to the signal root-mean-square value, and

whose phase ∠y corresponds to the phase of the signal with respect to an arbitrary global reference.

In this notation, the steady state of a microgrid is described by the following system variables (see

Figure 1, lower panel):

• u ∈ Cn, where uv is the grid voltage at node v;

• ι ∈ Cn, where ιv is the current injected by node v;

April 15, 2012 DRAFT

Figure 3.2: Different schematic view of the grid. upper panel: division of mi-
crogenerators into overlapping clusters to implement the distributed
algorithm. middle panel: graph representation. Circled nodes rep-
resent microgenerators. lower panel: circuit representation. Black
diamonds are microgenerators and white are loads.

a distributed optimal reactive power compensation. Specifically the micro-
generators are assumed to be organized into overlapping groups, namely
clusters, each of which coordinated by a cluster header equipped with some
intelligence unit (see figure 3.2).

3.3.2 Algorithm and Estimation

To our purpose, we are not directly interested on how to control the micro-
generators. Indeed, we want to analyze how the use of filtered data instead
of raw data affect the control algorithm. To this end let us assume to deal
with a sort of black box algorithm that, receiving in input the grid state both
exact, measured or estimated, is able to compute the optimal compensation
to achieve losses minimization.
We will show later in chapter 5, that the algorithm performances using the
estimated state are comparable to those obtained using the grid real state
even in situation in which raw measurements completely corrupt the algo-
rithm efficiency.
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Chapter 4

Distributed and Scalable
Estimation Solutions

We now propose two completely distributed and scalable algorithms for
solving the estimation problem. We will refer to the first one as The Dis-
tributed Estimator and to the second one as The ADMM Estimator.

Let us firstly introduce a suitable decomposition of the grid into ap-
propriate subareas. Afterwards, we specifically deal with the two solution
proposed.

Let us briefly recall what moves the choice of implementing this kind of
algorithms. Dealing with a central elaboration unit which collect all the mea-
surements and coordinate the estimation leads to huge communication and
computational effort growing in size with the grid size. Moreover if commu-
nication faults occur, the entire grid state will not be computed. Distributed
and scalable solution improve computability as well as robustness.

4.1 Multi Area Decomposition

Let us divide the grid into a subset of m non overlapping microgrid. Suppose
adjacent areas being connected through tie lines called border lines, as shown
in figure 4.1.

Every area a ∈ [1, ...,m], with its subset of adjacent areas b ∈ Ωa ⊂
[1, ...,m], will be then characterized by:

Xa internal state;

Za internal measures;

La internal inductance matrix (describing the internal topology);

Zab measures of the nodes of area b that direct communicate with some
node of area a;

35
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Figure 4.1: Grid divided into non overlapping areas

Lab inductance matrix between area a and b ∈ Ωa (describes the communi-
cation topology).

Figure 4.2 well explain the quantities introduced.

Figure 4.2: Information relating two adjacent areas

Let us explicitly consider the components relating every area in the cost
function in (3.7). The introduced decomposition let us rewrite the cost
function as

J(X) =
[
Z −HX

]T
R−1

[
Z −HX

]
=

m∑
a=1

Ja(Xa) +
m∑
a=1

∑
b∈Ωa

Jab(Xa,Xb) (4.1)

where Ja(Xa) is the part of the cost function concerning with the inner state
of area a and Jab(Xa,Xb) with the border state.
The minimization problem of function in (4.1) is now divided into smaller
multiple subproblems. Anyway, it could still not be solved in a distributed
way. Indeed, the optimal solution needs a flow of information concerning the
entire grid to be computed.
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It is necessary to separate the subproblems to let every area to solve its
inner estimation independently.

4.2 The Distributed Estimator

Let us firstly recall some preliminaries about the Jacobi iterative method
for solving linear systems. This will turn to be useful in our first solution
proposed.

4.2.1 Jacobi Method

Let us consider an invertible matrix A ∈ Rn×n and a vector b ∈ Rn. Consider
the system of linear equation

Ax = b

where x ∈ Rn is unknown and to be determined. The ith equation can be
explicitly written as

n∑
j=1

aijxj = bi

where aij = [A]ij are the entries of the matrix, xj and bi are respectively the
jth and ith component of the corresponding vectors. Assuming aii 6= 0 and
solving for the ith component of x we obtain

xi = − 1

aii

[∑
j 6=i

aijxj − bi
]

(4.2)

If all components xj , j 6= i, are known, then the remaining component xi can
be determined by equation (4.2). The procedure can be done simultaneously
for every component leading to an iterative distributed algorithm of the form:

Starting from x(0) for t = 1,2,... evaluate x(t) using the iterative step

xi(t+ 1) = − 1

aii

[∑
j 6=i

aijxj(t)− bi
]

(4.3)

The algorithm produces an infinite sequence {x(t)} that, if converges, tends
to a limit that is a solution of the considered linear system as can be easily
seen taking the limit of both side of equation (4.3)

Let us now consider a multivariable linear system of the formA11 A12 . . . A1n
...
. . . Ann



x1

x2
...
xn

 =


b1
b2
...
bn





38CHAPTER 4. DISTRIBUTED AND SCALABLE ESTIMATION SOLUTIONS

Similarly, this can be managed with the Jacobi procedure, which for the ith

block of x leads to

xi(t+ 1) = −A−1
ii

[(∑
j 6=i

[
A− diag(A)

]
ij

)
xj(t)− bi

]
(4.4)

Note, from expression (4.4), that the ith component, xi, of the “state” is
computed only using its respective “measurements” bi and the component
of the state xj that directly “talk” to it, i.e. its adjacent component of the
state. This is because if Aik = 0, the state xk do not intervene in computing
xi.

4.2.2 Local Informations

At the beginning of the chapter was underlined how to implement a dis-
tributed algorithm it is necessary to separate the cost function in (3.2) into
pieces concerning only local informations. However, because of the pres-
ence of border lines between adjacent areas, every area depends on at least
its neighbor states. Nevertheless, the Jacobi procedure of subsection 4.2.1,
highlights that, from the knowledge of neighbor states it is possible to recur-
sively compute the inner state by equation (4.4).

It is then necessary to let the ith area to know its jth, j ∈ Ωi, neighbor
states. Specifically, only the state of the nodes j ∈ Ωi that directly commu-
nicate with it, i.e. the border nodes.
Since neighbor states are not known a priori what done is simply to let adja-
cent areas to send to each other their border state, estimated at the current
time instant. This is equal to consider the border estimated state as pseudo
optimal measures from which every area starts to compute its inner optimal
state.

Thanks to the exchange of the border states it is possible to consider
fixed their values, Xb ≡ X̂b, so that the global estimation problem

minimize
Xa...Xm

m∑
a=1

Ja(Xa) +

m∑
a=1

∑
b∈Ωa

Jab(Xa,Xb)

can be separated into a collection of problems of the form

minimize
Xa

Ja(Xa) +
∑
b∈Ωa

Jab(Xa, X̂b)

each of which concerning only a single area. This is just what is needed to
implement a completely distributed algorithm.
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4.2.3 Distributed Algorithm

It is now presented the first solution proposed. Let us firstly describe the
specific model considered for every area.

Sub-model description

Consider a linear model of the grid similar of that introduced in subsection
3.1.3. Suppose the grid divided into m areas according with section 4.1. It is
possible to suitably sort the state vector, composed of the real and imaginary
part of the voltage nodes, as

X =


X1

X2
...

Xm

 =
[
X1 Y1 | X2 Y2 | · · · | Xm Ym

]T

This lets to highlight the single area state. Accordingly, the inductance
matrix L becomes

L =


L11 L12 · · · L1m

L21 L22 · · · L2m
...

Lm1 Lm2 Lmm


where Lij represents the part of L concerning area i and j; it identifies the
communication edges as well as the admittance line values.
Similarly, we have that the measures Z and noise e can be expressed as

Z =


Z1

Z2
...
Zm

 =



S1

R1

H1

K1

−−
...
−−
Sm
Rm
Hm

Km



; e =


e1

e2
...
em

 =



eS1

eR1

eH1

eK1

−−
...
−−
eSm

eRm

eHm

eKm


It follows a correlation matrix R, for the noise vector e, equal to

R = E[eeT ] =


R1

R2

. . .
Rm


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Ri has a structure similar to that seen in section 3.1.3 but it concernes only
measurements taken from the same area.

Accordingly to the state sorting, the matrix of model (3.5) will be char-
acterized by a similar structure. Specifically

H =

H1
...
Hm


Thanks to this sorting it is then possible to outline a specific linear model
for every area i ∈ [1, . . . ,m] of the form

Zi = HiX + ei = HiiXi +
∑
j 6=i
HijXj + ei;

Note that the matrix model is equal to

Hi =
[
Hi1 · · · Hii · · · Him

]

=


0 0
0 0

<(Li1) −=(Li1)
=(Li1) <(Li1)

· · ·
Ini 0
0 Ini

<(Lii) −=(Lii)
=(Lii) <(Lii)

· · ·
0 0
0 0

<(Lim) −=(Lim)
=(Lim) <(Lim)


whose block Hii is relative to the inner state and blocks Hij to other areas
state.

Distributed Solution

In section 3.1.4 it has been shown that the optimal global solution to the
centralized problem is equal to

X̂ =
(
HTR−1H

)−1
HTR−1Z

Let us recall the sorting introduced in the previous subsection

H =
[
H1 · · · Hm

]T
Exploiting the Jacobi procedure of subsection 4.2.1, the closed form solution,
in a Jacobi point of view, can be rewritten as

X̂i(t+ 1) =
(
HTiiR−1

ii Hii
)−1
HTiiR−1

ii

(
Zi −

∑
j 6=i
HijX̂j(t)

)
(4.5)
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This expression can be easily managed to obtain

X̂i(t+ 1) =
(
HTiiR−1

ii Hii
)−1
HTiiR−1

ii

(
Zi −

∑
j 6=i
HijX̂j(t)−HiiX̂i(t) +HiiX̂i(t)

)
=

(
HTiiR−1

ii Hii
)−1
HTiiR−1

ii

(
Zi −

m∑
j=1

HijX̂j(t) +HiiX̂i(t)
)

= X̂i(t) +
(
HTiiR−1

ii Hii
)−1
HTiiR−1

ii

(
Zi −

m∑
j=1

HijX̂j(t)
)

= X̂i(t) +Dii

(
Zi −

m∑
j=1

HijX̂j(t)
)

(4.6)

The iterative step described by equation (4.6) shows how the single area state
estimation depends on its inner measures and its border nodes estimation.

This let us handling only with local informations and to implement a
completely distributed algorithm:

1. each area i receive the border estimated state form adjacent areas
j ∈ Ωi;

2. estimates its inner state using equation 4.6;

3. sends to area j the estimated value of node i ∈ Ωj .

Collecting all areas state it is then possible to write the iteration step in
a compact way as

X(t+ 1) =
(
I −DH

)
X(t) +DZ = MX(t) +DZ (4.7)

where

I =

In1

. . .
Inm

 ;D =

D11

. . .
Dmm

 ;

being ni the number of state variables of area i.

Note that expression (4.7) allows to compute the states of all areas to-
gether. Obviously in a real implementation in which every area is responsible
of its own computation the compact form does not make sense. The script is
useful in a simulation environment.

As mention above, for the ith area, X̂j, j ∈ Ωi represent the current
estimation of border nodes. So exchanging only local informations at every
iteration step, the algorithm implemented become completely distributed.
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To avoid misunderstanding, is important to notice that the algorithm
described does not represent an exactly Jacobi version of the centralized al-
gorithm since to implement a Jacobi algorithm is, in general, necessary, for
every area, a two-ops knowledge. This means that every area should receive
information from its neighbor and from the neighbor of its neighbor. The
algorithm implemented concerns more with considering the border state as
pseudo-measures and solving the local sub problem in a centralized way. It
could be seen as an approximation of a Jacobi algorithm.

4.2.4 Convergence analysis

Consider equation (4.7). Note that the evolution of the system is equal to

X(1) = MX(0) +DZ

X(2) = MX(1) +DZ = M2X(0) +MDZ +DZ

X(3) = MX(2) +DZ = M3X(0) +M2DZ +MDZ +DZ

... (4.8)

X(k) = MX(k) +DZ = MkX(0) +
( k∑
i=0

M i
)
DZ

that, if the “iteration” matrix M is stable, i.e. ρ(M) < 1, being

Mk −→
k→∞

0

leads to, supposing (I −M) invertible,

X(∞) = M∞X(0) +
( ∞∑
i=0

M i
)
DZ =

(
I −M

)−1
DZ; ∀ X(0); (4.9)

This is the limit of a geometric series of ratio M .
Consequently, a necessary and sufficient convergence condition is

ρ(M) < 1

An alternative only sufficient and more practical condition follows ob-
serving the matrix M. This, from its definition, is equal to

M = I −DH =

1
. . .

1

−
D11

. . .
Dmm


H11 · · · H1m

...
Hm1 · · · Hmm


where Dii =

(
HTiiR−1

ii Hii
)−1
HTiiR−1

ii . It is easy to note that

DH =

I ? · · ·
. . .

? · · · I


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and consequently

M = I −DH =

0 ? · · ·
. . .

? · · · 0


It is well known, for the Gershgorin theorem, that the eigenvalues of a ma-
trix A are confined in an area of the complex plane resulting by the union
of circles centered, ∀i, in [A]ii with a radius of

∑
j 6=i[A]ij . As M has a zero

diagonal, to accomplish convergence it is sufficient but not necessary that∑
j 6=i[M ]ij < 1.

Note that this is a sufficient condition so even if the sum of out of diagonal
elements for each row is not < 1 it is still possible to have convergence.
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4.3 The ADMM Estimator

Let us now introduce the second solution proposed: The ADMM Estimator.
The algorithm is based on the Alternating Direction Multiplier Method.
This represent an optimization technique based on the iterative solution of
an augmented Lagrangian problem.

It is well known how the classical ADMM, because of its nature, can be
implemented in a distributed way. However, the flow of informations through
different areas do not concern local informations but global informations.
This does not make the algorithm to be scalable.

The novelty of our solution is based on [13]. We will show how to imple-
ment a local and scalable ADMM algorithm to solve the estimation problem.
Tests results show how the iterative procedure converges to the optimal solu-
tion of equation (3.8). Specifically, the convergence has not been rigorously
demonstrated but the tests carried out suggest a good behavior of the algo-
rithm.

Let us firstly introduce the classical ADMM procedure. Afterwards we
present the scalable solution proposed.

4.3.1 Classical ADMM Algorithm

Consider a system of matrixes of the form

Y =

 y1
...
yN

 ;A =

A11 · · · A1N
...

...
AN1 · · · ANN

 ;X =

x1
...
xN

 ;R =

R1

. . .
RN


It is possible, for each row or block of rows, to write the quadratic function

fi(X) =
(
yi −

N∑
j=1

Aijxj
)T
R−1
i

(
yi −

N∑
j=1

Aijxj
)

To link this formulation with our topic note that it can be thought that quan-
tities owing to the same ith block correspond to quantities owing to different
area of a grid. Specifically, consider a multiareas division of the grid as
that shown above. The introduced matrixes and vectors, recalling the above
notation, can then be thought to be equal to

Y ≡ Z; A ≡ H; X ≡ X; R ≡ R

Collecting all function fi, ∀i, is easy to get

F (X) =

N∑
i=1

fi(X) =
(
Y −AX

)T
R−1

(
Y −AX

)
(4.10)
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whose optimal solution, X̂, is the well known

X̂ =
(
ATR−1A

)−1
ATR−1Y

Let us define X(i), i ∈ [1, . . . , N ], as the ith copy of the vector X, owning
to area i. Thanks to this it is possible to rewrite the minimization problem
referred to equation in (4.10) as

minimize
X(1)···X(N)

N∑
i=1

fi
(
X(i)

)
s.t. X(i) = X(j) ∀j ∈ Ni

where Ni represents the subset of indices of areas adjacent to area i, com-
prising area i itself.

It is then possible to solve the minimization problem through the aug-
mented Lagrangian technique, introducing some redundant bonds that allow
us to manage the solution with the ADMM algorithm, as

minimize
X(1)···X(N)

N∑
i=1

fi
(
X(i)

)
s.t. X(i) = zij ; X

(i) = zji ∀j ∈ Ni

which leads to a Lagrangian function equal to

L =
N∑
i=1

fi
(
X(i)

)
+

N∑
i=1

∑
j∈Ni

λTij
(
X(i) − zij

)
+ µTij

(
X(i) − zji

)
+

+
c

2

N∑
i=1

∑
j∈Ni

||X(i) − zij ||2 + ||X(i) − zji||2

This function can be solved through ADMM algorithm which consist of
three main updating steps:

1. {
λij(t) = λij(t− 1) + c

(
X(i)(t)− zij(t)

)
µij(t) = µij(t− 1) + c

(
X(i)(t)− zji(t)

) (4.11)

2.
X(i)(t+ 1) = argmin

X(i)

L(X, z(t), λ(t), µ(t)) (4.12)

3.
zij(t+ 1) = argmin

zij
L(X(t+ 1), z, λ(t), µ(t)) (4.13)

Considering some suitable manipulations of the updating step, see[11] and
appendix A.1, it is possible to rewrite the algorithm in a simpler way con-
sisting of only two updating step:
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1.
λij(t) = λij(t− 1) +

c

2

(
X(i)(t)−X(j)(t)

)
(4.14)

2.
X(i)(t+ 1) = argmin

X(i)

L(X,λ(t)) (4.15)

The state update, exploiting a first order optimal condition (see appendix
A.2), can finally be rewritten, for our specific quadratic problem, in a closed
form, as

X(i)(t+ 1) = argmin
X(i)

L(X,λ(t)) (4.16)

=
[
A(i)TR−1

i A(i) + c|Ni|In
]−1

A(i)TR−1
i yi(t) +

+
1

2

[
A(i)TR−1

i A(i) + c|Ni|In
]−1(

c
∑
j∈Ni

X(i)(t) +X(j)(t)
)
−

− 1

2

[
A(i)TR−1

i A(i) + c|Ni|In
]−1(

c
∑
j∈Ni

λij(t)− λji(t)
)

where A(i) =
[
Ai1 . . . AiN

]
indicates the ith row block of matrix A.

Since every area estimates the entire grid state, the flow of informations
between areas is global and not local.

On the contrary, we are interested in appropriately exploit the ADMM
algorithm to let every area compute its inner state X(i)in a distributed and
local fashion, i.e. only from the knowledge of its adjacent areas state.

4.3.2 Scalable ADMM Algorithm

Let us start from the usual state of the art formulation of ADMM minimiza-
tion problem

minimize
X(1)···X(N)

N∑
i=1

fi
(
X(i)

)
s.t. X(i) = zij ; X

(i) = zji ∀j ∈ Ni (4.17)

We remind that X(1), . . . , X(N) are local copies of X

X =

x1
...
xN


where xi represents the inner state of area i.
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To force the exchange of only local information between adjacent areas
we introduce the projector matrix Pi (see [13])

Pi =


On1

. . .
Ini

. . .
OnN


which is a diagonal matrix with the ith block equal to an identity matrix of
dimension ni and zeros elsewhere. ni represents the dimension of the state
of area i. The matrix Pi lets to extract only the component xi from vector
X, indeed,

PiX =


0
...
xi
...
0


Similarly it is possible to define the joint projector

Pij =

{
Pi i = j

Pi + Pj i 6= j

Note that, using the projector matrixes, it is possible to rewrite the initial
problem as

minimize
X(1)···X(N)

N∑
i=1

fi
(
X(i)

)
(4.18)

s.t. PijX
(i) = Pijzij ; PijX

(i) = Pijzji ∀j ∈ Ni

where the P matrixes let to involve only local information between adjacent
areas.

What to do is to apply the ADMM procedure to the problem in (4.18).
This lets, see appendix A.3, to write the updating step for the local copy of
X(i) as

X(i)(t+ 1) = argmin
X(i)

f
(
X(i)

)
+X(i)TMiX

(i) −X(i)TBi(t+ 1) (4.19)
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where

Bi(t+ 1) = 2MiX
(i)(t) + Ui(t) + Λi(t) (4.20)

Mi = c
∑
j∈Ni

Pij (4.21)

Ui(t) = c
∑
j∈Ni

Pij
(
X(i)(t)−X(j)(t)

)
(4.22)

Λi(t) =

{
0 t = 0

Λi(t− 1) + Ui(t) t ≥ 1
(4.23)

and c is an arbitrary constant setting the convergence rate.

In our specific quadratic problem, equation (4.19) leads, exploiting the
first order optimality conditions, to a closed form solution equals to

X(i)(t+ 1) =
[
2
(
ATi R

−1
i Ai +Mi

)]−1 [
2ATi R

−1
i Yi +Bi(t+ 1)

]
(4.24)

Similarly to what seen in the classical formulation, this represents our spe-
cific update step.

Note that if Pi = I ∀i, the algorithm turn to be equal to the state of the
art formulation (4.17).

What we now want to do is to underline the locality of this particular
formulation. Indeed, since in Mi, Ui, Λi and so, in Bi are considered only
local information, i.e. j ∈ Ni, the remaining parts of the vector could be
neglected in the computation. This makes the algorithm fully scalable and
local.

Scalability Property

Let us introduce the following notation to stress out the scalability property.
Let X(i)

j be the jth component of the ith local copy X(i) of X. Namely

X
(i)
j = xj ∈ area i

The update equation in (4.19) can be rewritten as

X
(i)
k∈Ni

(t+ 1) = argmin
{xk,k∈Ni}

fi
(
{xk, k ∈ Ni}

)
+ xTi

(
cNixi −

[
Bi(t+ 1)

]
i

)
+

c
∑

k∈Ni/i

xTk
(
xk −

[
Bi(t+ 1)

]
k

)
(4.25)



4.3. THE ADMM ESTIMATOR 49

where
[
Bi(t)

]
k
are set according to

[
MiX

(i)(t)
]
k

=

{
cNiX(i)

i k = i

cX
(i)
k k ∈ Ni/i

(4.26)

[
Ui(t)

]
k

=

{
c
∑

j∈Ni/i

(
X

(j)
i (t)−X(i)

i (t)
)

k = i

c
(
X(j)i(t)−X(i)

i (t)
)

k ∈ Ni/i

Note that in both equations (4.25) and (4.26) are used only local informa-
tions.

This makes the algorithm distributed and scalable. Indeed, since only
local informations are used if the grid grows in size only areas adjacent to
added areas will update their information exchange.
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Chapter 5

Testing Results

We are going to test the proposed algorithms through several simulations
executed over the IEEE Test Feeders [15], [16], whose graphs are shown in
figure 5.1.

Figure 5.1: IEEE test Feeders graphs

Note that both the grids have been divided into four non overlapping
areas according with section 4.1.

All tests have been carried out using MATLAB R2011b on a MAC OS
X based Computer with core2duo processor clocking at 2.53GHz and 4GB
of RAM.
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5.1 Noise sizing

Let us assumed to measure both voltage and current, divided into amplitude
and phase, at every node1. Such measurements are generated from a solution
of the power flow problem, i.e. the complex voltage and current at every
node, corrupting it with gaussian additive noise. This lets every node to be
characterized by a collection of values equal to:

vm = v + ev; ev ∼ N (0, σ2
V );

θm = θ + eθ + esync; eθ ∼ N (0, σ2
Θ), esync = N (0, σ2

sync);

im = i+ ei; ei ∼ N (0, σ2
I );

φm = φ+ eφ + esync; eφ ∼ N (0, σ2
Φ), esync = N (0, σ2

sync);

More specifically, as default standard deviation values, it is assumed that:

• σV = 10−2PCCV oltageAmplitue[V olt]: it means to let the measures to
have a standard deviation equal to 1% the PCC voltage amplitude. To
better understand it for a PCC voltage amplitude of 4.16KV it means
to have a measurement error of ' 10V on average;

• σI = 10−2imax[Ampere]: as seen for the voltage measures, it means
to let the current amplitude measurement being equal to 1% of the
maximum current on average;

• σθ = σφ = 10−2[rad]: for a 50Hz signal it means to measure a phase
with an almost maximum error of ' 100µs.

The value of the synchronization noise standard deviation depends on what
kind of synchronization unit is assumed to be in use. For example, if a
GPS unit is considered a reasonable value for the synchronization standard
deviation is represented by σsync = 10−4 ÷ 10−5[rad] that corresponds to a
maximum error of' 1÷0.1µs. On the contrary if just a basic synchronization
algorithm is considered then, a value of σsync = 10−2 ÷ 10−1[rad] could be
reasonable, corresponding to a maximum error of ' 100µs÷ 1ms.

Note that these values represent the default testing values. It implies
that smaller values lead to equal or better but absolutely not worse perfor-
mances of the algorithms. The tests are carried out over several values of
the standard deviation to highlight the algorithms performances in different
setup.

However, to avoid misunderstanding, each test will specify the corre-
sponding values used.

In addition to this we assume to test all estimation algorithm (section
5.2÷5.5) over the 123 nodes test feeder [16] and the Power Losses Minimiza-
tion Algorithm (section 5.6) over the 37 nodes test feeder [15].

1In a real implementation every node is equipped with a PMU which takes the mea-
surements.
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5.2 Centralized Estimator

The centralized estimation is the starting point of our study representing the
optimal global solution to the estimation problem. It is then first analyze
its performance over different noise standard deviation.

Note that this estimator assumes the presence of a central unit over the
entire network, able to collect and process all nodes measurements.

5.2.1 Performance for default values of noise standard devi-
ation

It is first presented the performance of the centralized estimation algorithm
subject to default values for the noise standard deviation, assuming absence
of synchronization error. Figure 5.2 shows the distance of measurements and
estimated state from the exact state value in p.u.2 Note that the estimation
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Figure 5.2: Distances of the measures and of the centralize solution from the ex-
act state value (σV = 10−2PCCV oltageAmplitude[V olt]; σI = 10−2imax;
σθ = σφ = 10−2[rad]; σsync = 0[rad]).

greatly improve the knowledge of the state. In particular, table 5.1 reports
a collection of quantities to quantify the improvement.

Observe how the estimated state is one and two orders of magnitude
closer to the real state value, respectively in correspondence with the smallest
and the greatest measured quantity. In addition to this the estimated state
present only one order of magnitude variation between the worst and best

21p.u. voltage amplitude value = PCCV oltageAmplitude; 1p.u phase value = 1rad.



54 CHAPTER 5. TESTING RESULTS

Measures Estimation

min Amplitude Distance 6.765 · 10−5 7.103 · 10−6

Max Amplitude Distance 2.447 · 10−2 4.051 · 10−4

min Phase Distance 3.350 · 10−4 2.154 · 10−5

Max Phase Distance 2.337 · 10−2 4.474 · 10−4

Table 5.1: Maximum and minimum (p.u) amplitude and phase value of measures
and estimated state from exact state.

distance from the real state. Instead, the measurements present a variation
of three orders.

5.2.2 Performance for σV = PCCV oltageAmplitude[V olt]

We now present the performances of the centralize estimation algorithm
in correspondence of an increase of two order of magnitude of the voltage
amplitude noise standard deviation. This leads to a maximum error equal
to 4.16KV in a network with a PCC of 4.16KV . Such an error could be
considered more as a fault than as a real measure. Anyway the estimation
algorithm works well as can be seen in figure 5.3.
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Figure 5.3: Distances of the measures and of the centralize solution from the exact
state value (σV = PCCV oltageAmplitude[V olt]; σI = 10−2imax; σθ =
σφ = 10−2[rad]; σsync = 0[rad]).

As previously, table 5.2 reports the maximum and minimum distance of
amplitude and phase for the measures and the estimation. This time the
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Measures Estimation

min Amplitude Distance 6.878 · 10−3 6.369 · 10−5

Max Amplitude Distance 2.820 4.445 · 10−3

min Phase Distance 6.183 · 10−5 5.422 · 10−7

Max Phase Distance 2.809 · 10−2 7.074 · 10−3

Table 5.2: Maximum and minimum (p.u) amplitude and phase value of measures
and estimated state from exact state.

estimation improves the knowledge of the state of three order of magnitude
correspondingly to the maximum voltage amplitude value. Of course the es-
timation corresponding to this set of measures is worse than the previous one
presenting an average distance from the exact state one order of magnitude
greater. This is outlined comparing table 5.1 with table 5.2.

5.2.3 Performance for σθ = σφ = 10−1[rad]

This set of measures present default values for the standard deviations ex-
cepting for phase measurements. This is fixed equal to σθ = σφ = 10−1[rad].
As previously mentioned, this corresponds to a maximum error of 1ms for a
50Hz signal.

Note from figure 5.4 the estimation improvements.
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Figure 5.4: Distances of the measures and of the centralize solution from the ex-
act state value (σV = 10−2PCCV oltageAmplitude[V olt]; σI = 10−2imax;
σθ = σφ = 10−1[rad]; σsync = 0[rad]).
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5.2.4 Performance for σsync = 10−1[rad]

It is finally reported the performance of the algorithm corresponding to a
synchronization noise standard deviation equal to σsync = 10−1[rad]. This
means to handle with a poorly synchronized measurement units that specif-
ically cannot synchronize the measure under ' 1ms. Figure 5.5 shows the
comparison between the distance of the measures and of the estimated state
from the exact state.
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Figure 5.5: Distances of the measures and of the centralize solution from the ex-
act state value (σV = 10−2PCCV oltageAmplitude[V olt]; σI = 10−2imax;
σθ = σφ = 10−2[rad]; σsync = 10−1[rad]).

Table 5.3 collects the maximum and minimum distance from it.

Measures Estimation

min Amplitude Distance 1.549 · 10−5 7.464 · 10−7

Max Amplitude Distance 2.472 · 10−2 2.346 · 10−4

min Phase Distance 1.145 · 10−3 6.113 · 10−3

Max Phase Distance 3.254 · 10−1 6.409 · 10−3

Table 5.3: Maximum and minimum (p.u) amplitude and phase value of measures
and estimated state from exact state.

Note, comparing table 5.3 with table 5.1 how the improvement due to the
estimation is similar even in presence of a poor synchronization. Of course
the performance in absence of synchronization noise are more accurate but
a synchronization error of 1ms is absolutely not negligible.



5.2. CENTRALIZED ESTIMATOR 57

5.2.5 Computational Effort

All tests shown how the centralize estimator works well in a wide range of
different noise standard deviation values. Tests carried out with greater val-
ues show that the estimation becomes not significant to an useful usage with
respect to the measurements. However greater noise values, being grossly
inaccurate, could be less significant in a real environment.

In addition to its wide range of usage, is important to remark that thanks
to its closed form solution the algorithm requires very low computational
effort and is solved only in one iteration. The average time required to solve
the 123 nodes test feeder is equal to

TAverageCentralEstimation ' 10−2[s]

Anyway representing a centralize and not distributed nor local estimation
solution, the algorithm needs the knowledge of the entire grid topology, is
absolutely not scalable and requiring a flow of information through all the
network is not robust to failure.
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5.3 The Distributed Estimator

In this section we report the testing results of the first distributed and local
algorithm proposed. To test it, the grid has been divided in four sub areas
as shown in figure 5.1. The communications lines, which are bidirectional,
are established between: areas 1 and 2; 1 and 3; 3 and 4.
The default noise standard deviation values are the same of those seen for
the centralized estimatot, equal to:

• σV = 10−2PCCV oltageAmplitue[V olt];

• σI = 10−2imax[Ampere];

• σθ = σφ = 10−2[rad];

• σsync = 0[rad]

The tests highlights the algorithm performances showing its response to dif-
ferent noise standard deviation values. The results are compared with both
the real state value and the central estimated value.

5.3.1 Performance for default values of noise standard devi-
ation

The performance of the algorithm for default values of the standard deviation
is shown in figure 5.6 in which is reported the distance from the real state.
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Figure 5.6: Distances of the measures and of the distributed solution from the exact
state value. (σV = 10−2PCCV oltageAmplitude[V olt]; σI = 10−2imax;
σθ = σφ = 10−2[rad]; σsync = 0[rad])
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As can be seen the estimation largely improves the knowledge of the state
with respect to the measurements. In addition to this, figure 5.7 shows a
comparison between the central and the distributed estimations respectively
obtained with the estimator proposed. Remind that the distributed algo-
rithm converges to an approximate solution and because of this will never
be exactly equal to the centralize optimal solution. Anyway the order of
magnitude of their distance from the real state value is comparable.
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Figure 5.7: Distances of the centralize and of the distributed solution from the exact
state value. (σV = 10−2PCCV oltageAmplitude[V olt]; σI = 10−2imax;
σθ = σφ = 10−2[rad]; σsync = 0[rad])

Note how the difference of the two estimation is relatively small com-
pared with the measurements. Table 5.4 sums up some results that help the
comparison between the algorithms with respect to the real state value and
the measurements.

Measures Central Distributed

min Amplitude Distance 1.582 · 10−4 3.309 · 10−6 1.727 · 10−6

Max Amplitude Distance 3.005 · 10−2 3.988 · 10−4 5.315 · 10−4

min Phase Distance 3.123 · 10−6 1.007 · 10−5 4.222 · 10−5

Max Phase Distance 2.974 · 10−2 9.572 · 10−4 1.183 · 10−3

Table 5.4: Maximum and minimum (p.u) amplitude and phase value of measures
and estimated state from exact state.

Note how, comparing their maximum and minimum distance from the
real state, the performances of the two algorithms are very similar.
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5.3.2 Performance for σV = 10−1PCCV oltageAmplitude[V olt]

For a variation in the value of the voltage amplitude standard deviation noise
fixed equal to σV = 10−1PCCV oltageAmplitude[V olt], the performance of the
distributed algorithm is reported in figure 5.8. Remind that such a standard
deviation value correspond to an average error equal to almost the 10% of
the PCC voltage amplitude value, one order of magnitude greater than the
default value early analyzed.
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Figure 5.8: Distances of the measures and of the distributed solution from the exact
state value. (σV = 10−1PCCV oltageAmplitude[V olt]; σI = 10−2imax;
σθ = σφ = 10−2[rad]; σsync = 0[rad])

Again, figure 5.9 shows the comparison of the central and distributed
algorithms. Differently to figure 5.7, note how the relative distance, mainly
of the estimated phase, between the two solutions increase. This is obviously
due to the greater noise that makes harder the estimation for the distributed
approximate algorithm.
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Figure 5.9: Distances of the centralize and of the distributed solution from the exact
state value. (σV = 10−1PCCV oltageAmplitude[V olt]; σI = 10−2imax;
σθ = σφ = 10−2[rad]; σsync = 0[rad])

Anyway the minimum and maximum distance from the real state of the
algorithms remains of the same order of magnitude as shown in table 5.5.
This suggests that even if the distance from the optimal solution is lightly
worse the overall performance of the distributed algorithm is still remarkable.

Measures Central Distributed

min Amplitude Distance 9.786 · 10−4 3.809 · 10−7 1.275 · 10−7

Max Amplitude Distance 2.434 · 10−1 1.456 · 10−4 1.445 · 10−4

min Phase Distance 2847 · 10−6 2.714 · 10−7 5.675 · 10−7

Max Phase Distance 2.480 · 10−2 1.608 · 10−4 2.797 · 10−4

Table 5.5: Maximum and minimum (p.u) amplitude and phase value of measures
and estimated state from exact state.

5.3.3 Performance for σθ = σφ = 10−1[rad]

The algorithm was tested in presence of a greater phase noise as well. Its per-
formances are shown in figure 5.10 in which is easy to see that the algorithm
works well.
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Figure 5.10: Distances of the measures and of the distributed solution from the
exact state value. (σV = 10−2PCCV oltageAmplitude[V olt]; σI =
10−2imax; σθ = σφ = 10−1[rad]; σsync = 0[rad])

Its distance from the optimal central solution does not appreciably change
with respect to other standard deviation values and is not reported.

5.3.4 Presence of Synchronization noise

Let us analyze the presence of synchronization noise. The centralize estima-
tor is able to work even with poor synchronized measurements, see section
5.2. In particular section 5.2.4 shows its performance with a noise charac-
terized by a standard deviation value of σsync = 10−1[rad] that correspond
to an error of ' 1ms for a 50Hz signal. This means that algorithm could
work with basic synchronization algorithm as well.

On the contrary, the behavior of the distributed estimation is deeply
different. The algorithm becomes unstable in presence of a relatively small
synchronization noise, i.e. with a standard deviation of σsync = 10−3[rad]
corresponding to an error of ' 10µs. Such a behavior leads to an employ-
ment of the distributed algorithm only if at least a GPS synchronization unit
is present. Indeed, a GPS unit leads to an error of ' 0.1µs that corresponds
to a standard deviation of σsync = 10−5[rad].

Anyway, up to a value of σsync = 10−4[rad], the distributed estimator
works well as shown in figure 5.11 and figure 5.12 in which are shown the
distances from the real state value with respect to the measurements and to
the centralize estimation respectively.
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Figure 5.11: Distances of the measures and of the distributed solution from the
exact state value. (σV = 10−2PCCV oltageAmplitude[V olt]; σI =
10−2imax; σθ = σφ = 10−2[rad]; σsync = 10−4[rad])
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Figure 5.12: Distances of the centralize and of the distributed solution from the
exact state value. (σV = 10−2PCCV oltageAmplitude[V olt]; σI =
10−2imax; σθ = σφ = 10−2[rad]; σsync = 10−4[rad])
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To better understand the behavior of the algorithm to an increase of the
synchronization standard deviation, table 5.6 reports the values of the ampli-
tude and phase sample standard deviation of the centralize and distributed
estimated state from the real state value. This is computed as

Stdsample =

√√√√ 1

N

N∑
i=1

(Estimated Statei − Exact Statei)2

where N is the number of nodes and Estimated Statei, Exact Statei rep-
resent the estimated and exact state value of node i.

Amplitude Sample Std Phase Sample Std

σsync[rad]

10−5

10−4

10−3

10−2

10−1

Central Distributed

2.089 · 10−4 2.899 · 10−4

1.753 · 10−4 2.953 · 10−4

1.809 · 10−4 7.549 · 10−4

2.109 · 10−4 2.684 · 10143

6.032 · 10−3 ∞

Central Distributed

2.116 · 10−4 4.016 · 10−4

2.212 · 10−4 6.945 · 10−4

5.732 · 10−4 1.045 · 10−2

1.111 · 10−3 7.119 · 10−1

2.460 · 10−2 1.143

Table 5.6: Amplitude and Phase sample standard deviation (p.u.) of the estima-
tion from the real state corresponding to different sync noise standard
deviation values.

It can be seen how for a value of σsync = 10−3[rad] the sample stan-
dard deviation value of the phase begin to increase. For a value of σsync =
10−2[rad] and above, the amplitude sample standard deviation highlights
the instability of the distributed algorithm.

5.3.5 Computational Effort

The tests show how the distributed approximated estimator works well in a
wide range of different noise standard deviation. Its performances are com-
parable with those of the optimal central estimation except for the case of
presence of synchronization noise. The distributed algorithm requires more
synchronization.

Excepting this case, the performance and the computational effort of the
distributed solution is almost similar to the central one. Differently from the
centralized algorithm it takes different iterations to converge but its running
time remains almost constant since the algorithm is local and so scalable.
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Table 5.7 reports the average number of iteration to convergence and the
average running time for an execution on a 123 nodes test feeder divided in
4 areas almost of the same inner state dimension.

# iterations Time[s]

' 103 ' 3 · 10−3

Table 5.7: Number of iteration and running time of the distributed estimator tested
on the 123 nodes test feeder

Thanks to the scalability, the computational time, for each area, remains
constant adding different areas to the grid. The central estimator, on the
contrary, increase its computational effort almost linearly with an increasing
in size.
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5.4 The ADMM Estimator

The setup used for testing the second algorithm proposed is equivalent to
that used for testing the distributed algorithm shown in section 5.3. So
the grid in considered divided into four sub areas. There is only one main
difference to that setup:

• in the Admm classical (global) algorithm, every area estimates the
entire network state. This means that even if every area communicates
only with adjacent areas (distributed property), adjacent areas send to
each other information belonging all network areas (globality);

• in the Admm scalable (local) solution proposed, on the contrary, ad-
jacent areas estimate only neighbor areas state and so exchange only
local information.

This does not affect the communication lines but only the type of informa-
tion exchanged.

Finally, the noise default standard deviation values are equal to those
seen above equal to:

• σV = 10−2PCCV oltageAmplitue[V olt];

• σI = 10−2imax[Ampere];

• σθ = σφ = 10−2[rad];

• σsync = 0[rad]

5.4.1 Convergence between global and local Admm algorithms

Before testing the scalable local algorithm proposed, a simple convergence
analysis between the two algorithm is performed. Obviously, only the inner
state of single areas are compared since the same area estimates different
states in the global and local version.

In particular figure 5.13 reports the distance between the entire network
estimated state3 obtained from the global Admm algorithm and from the
local one. Note that the order of magnitude of the difference is 10−8. This
can be considered almost as a computational error.

3The entire state is obtain appending different areas state.
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Figure 5.13: Distances between global and local Admm estimate state (σV =
10−2PCCV oltageAmplitude[V olt]; σI = 10−2imax; σθ = σφ = 10−2[rad];
σsync = 0[rad])

In addition to this is important to underline that the Admm algorithm
converges to the central optimal solution. Figure 5.14 shows the distance of
both Admm algorithms, global and local, from the optimal solution obtain
with the centralize estimator of section 5.2.
Finally, figure 5.15 shows, in a logarithmic scale, the difference between the
cost function in (3.2), computed in the Admm and Optimal estimated state.

As can be seen the distance from the optimal solution is characterized by
10−9 order of magnitude that can be considered computational error again.
At the same time the difference between the cost functions are of the same
order of magnitude being expressed in a logarithmic scale.
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Figure 5.14: Distances of global and local Admm estimate state from the optimal
solution. (σV = 10−2PCCV oltageAmplitude[V olt]; σI = 10−2imax; σθ =
σφ = 10−2[rad]; σsync = 0[rad])

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−15

−10

−5

0

5

10

number of iteration

lo
g
(J

)

Comparison of cost funciton J

 

 

log(Jglobal−Jopt)

log(Jlocal−Jopt)

Figure 5.15: Comparison of cost function computed in Admm and Optimal esti-
mated state. (σV = 10−2PCCV oltageAmplitude[V olt]; σI = 10−2imax;
σθ = σφ = 10−2[rad]; σsync = 0[rad])
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Global - Local Centralize - Local

min Amplitude Distance 1.505 · 10−9 1.280 · 10−9

Max Amplitude Distance 1.107 · 10−8 9.584 · 10−9

min Phase Distance 4.845 · 10−10 3.724 · 10−10

Max Phase Distance 9.163 · 10−9 7.242 · 10−9

Table 5.8: Maximum and minimum (p.u.) distance between estimations.

For the sake of clarity table 5.8 collects the amplitude and phase maxi-
mum and minimum distance between the global and local and between the
centralize and the local solutions.

5.4.2 Performance of Admm scalable (local) algorithm

Once understood the behavior of the Admm algorithm with respect to the
optimal centralize solution, is tested no more the performance of the algo-
rithm over a variation of all noise standard deviation values, but only over
a variation of the synchronization noise standard deviation value. This is
because, as seen in section 5.3, the distributed estimator is not robust in
presence of such kind of noise and requires at least GPS synchronization
units to work well.

The tests in the following want to highlight the robustness of the scalable
Admm algorithm in presence of synchronization noise and to analyze its
convergence number of iterations and time.

Performance for σsync = 10−2[rad]

Fixing the value of σsync = 10−2[rad], corresponding to a maximum error of
' 100µs, the scalable algorithm shows a good behavior. Figure 5.16 shows
an appreciable improvement with respect to the measures.

Figure 5.17 shows the comparison between the distance of the Admm
and of the centralize optimal solutions from the exact state. It easy to note
that the two distance cannot be distinguish because they almost coincide.
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Figure 5.16: Distance of measures and local Admm estimate state from the exact
state. (σV = 10−2PCCV oltageAmplitude[V olt]; σI = 10−2imax; σθ =
σφ = 10−2[rad]; σsync = 10−2[rad])
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Figure 5.17: Comparison between the distance of local Admm and
Optimal estimated state from the exact state. (σV =
10−2PCCV oltageAmplitude[V olt]; σI = 10−2imax; σθ = σφ = 10−2[rad];
σsync = 10−2[rad])
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Performance for σsync = 10−1[rad]

The value of σsync = 10−1[rad], which corresponds to a maximum error of
' 1ms, is the maximum value for the synchronization noise standard devia-
tion that leads to a useful central estimation as told in section 5.2.

The behavior of the Admm algorithm, once again, is to tend to the opti-
mal solution. However, because of the huge synchronization error, the rate of
convergence is slower than before. This simply means the algorithm requires
more iterations to converge.

Figure 5.18 shows that, with respect to the measures, the improvement
in the state knowledge is still good. Anyway the distance from the optimal
solution, after 104 iterations, is still not negligible.
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Figure 5.18: Distance of measures and local Admm estimated state from the exact
state after 104 iterations. (σV = 10−2PCCV oltageAmplitude[V olt]; σI =
10−2imax; σθ = σφ = 10−2[rad]; σsync = 10−1[rad])

To better understand it, the performances of the algorithm after 104 and
after 2 · 104 iterations are compared in the following.

Figure 5.19 and figure 5.20 show the distance of the admm state and
of the centralize state from the exact one. Consecutively table 5.9 reports
the maximum and minimum values of that distances and the running time
required.
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Figure 5.19: Distance of the local Admm and the centralize estimated
state from the exact state after 104 iterations. (σV =
10−2PCCV oltageAmplitude[V olt]; σI = 10−2imax; σθ = σφ = 10−2[rad];
σsync = 10−1[rad])
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Figure 5.20: Distance of the local Admm and centralize estimated state from the ex-
act state after 2·104 iterations. (σV = 10−2PCCV oltageAmplitude[V olt];
σI = 10−2imax; σθ = σφ = 10−2[rad]; σsync = 10−1[rad])
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Central - Local Central - Local

# iterations 104 2 · 104

min Amplitude Distance 5.612 · 10−4 8.186 · 10−5

Max Amplitude Distance 6.388 · 10−5 9.461 · 10−5

min Phase Distance 5.845 · 10−3 8.504 · 10−4

Max Phase Distance 5.853 · 10−3 8.534 · 10−4

Running Time[s] 1.074 · 102 2.168 · 102

Table 5.9: Comparison of performance for different number of iterations: Maximum
and minimum (p.u.) distance between admm and central estimations.

Note that, comparing the images, the relative distance between the admm
and the central state gets smaller increasing the number of iterations.

From table 5.9 the order of magnitude decrease of one unit doubling the
number of iterations. Anyway comparing table 5.9 with table 5.8 the dis-
tance between the two solution are still not negligible meaning that it should
wait more iteration to reach a complete convergence.

The same behavior is pointed out by the cost functions progress as can
be seen comparing figure 5.21 and figure 5.22.
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Figure 5.21: Comparison of cost function computed in Admm and
Optimal estimated state after 104 iterations. (σV =
10−2PCCV oltageAmplitude[V olt]; σI = 10−2imax; σθ = σφ = 10−2[rad];
σsync = 0[rad])
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Figure 5.22: Comparison of cost function computed in Admm and Op-
timal estimated state after 2 · 104 iterations. (σV =
10−2PCCV oltageAmplitude[V olt]; σI = 10−2imax; σθ = σφ = 10−2[rad];
σsync = 0[rad])

5.4.3 Computational Effort

The scalable Admm algorithm is mainly characterized by:

• the capacity to converge to the optimal central solution after an ade-
quate number of iteration;

• appreciable performance with a low number of iteration as well;

• convergence in presence of non trivial synchronization noise;

• being completely distributed and scalable, is robust to failures and to
an increase of the grid topology.

However, it has to be underlined that the running time required is much
greater than both of the central and the distributed solution proposed. Table
5.10 sum up it for different number of iteration. Note how it can influence
the usability of the algorithm.

# iteration 103 104 2 · 104 105

time[s] 9.296 1.074 · 102 2.168 · 102 9.483 · 102

Table 5.10: Scalable Admm algorithm running time (s) for different number of it-
eration values.
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5.5 Comparison between Distributed Estimator and
Admm (scalable) Estimator

Once described the performances of both the algorithm proposed with re-
spect to the central optimal estimation, it is useful to compare both solutions
between each other.
To carry out these tests, the following values for the noise standard deviation
are taken:

• σV = 10−2PCCV oltageAmplitue[V olt];

• σI = 10−2imax[Ampere];

• σθ = σφ = 10−2[rad];

• σsync = 0[rad]

No synchronization noise is assumed since the distributed estimator works
only in presence of trivial values.
In particular is make a comparison for two different values of iteration for
the Admm algorithm, which represents the bottleneck to its usability.

5.5.1 Comparison for 103 iterations

After 103 iterations the admm estimator is still not in convergence but its
performance is appreciable with respect to the measurements. Figure 5.23
shows the distance of the two local estimator from the central optimal so-
lution. Note that the algorithms are still comparable even if the admm is
already lightly more accurate.

In addition to this, figure 5.24 shows the performance of the all the al-
gorithm (the central estimator too) in comparison with the measurements
value. Note how, with respect to the measures, all the algorithms works well.

Table 5.11 and table 5.12 sum up, respectively, the maximum and mini-
mum distance from the real state and from the central optimal solution of the
different quatities. In particular from table 5.12 is clear how both solutions
are still comparable.

5.5.2 Comparison for 104 iterations

After 104 iterations the performance can only improve. The main difference
between the first case shown is that the Admm is now almost in convergence
how it can be seen in figure 5.25.

The figure shows how the Admm estimated state is much closer to the
optimal central one with respect to the Distributed estimated state.
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Figure 5.23: Distance of Distributed and Admm estimation from Optimal value
after 103 iterations. (σV = 10−2PCCV oltageAmplitude[V olt]; σI =
10−2imax; σθ = σφ = 10−2[rad]; σsync = 0[rad])
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Figure 5.24: Distance of Measures, Central, Distributed and Admm estima-
tors from exact state value after 103 iterations. (σV =
10−2PCCV oltageAmplitude[V olt]; σI = 10−2imax; σθ = σφ = 10−2[rad];
σsync = 0[rad])
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Measures Central Distributed Admm

min Amplitude distance 4.567 · 10−5 7.477 · 10−5 7.244 · 10−5 7.127 · 10−5

Max Amplitude distance 3.191 · 10−2 4.427 · 10−4 4.162 · 10−4 3.931 · 10−4

min Phase distance 1.588 · 10−4 8.697 · 10−7 2.568 · 10−7 3.611 · 10−6

Max Phase distance 2.430 · 10−2 4.468 · 10−4 4.532 · 10−4 4.074 · 10−4

Table 5.11: Distance (p.u.) from real state value after 103 iterations.

Distributed Admm

min Amplitude distance 2.325 · 10−4 3.493 · 10−6

Max Amplitude distance 3.740 · 10−5 7.422 · 10−5

min Phase distance 4.873 · 10−8 9.925 · 10−7

Max Phase distance 1.086 · 10−5 4.374 · 10−5

Table 5.12: Distance (p.u.) from optimal central state after 103 iterations.
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Figure 5.25: Distance of Distributed and Admm estimation from Optimal value
after 104 iterations. (σV = 10−2PCCV oltageAmplitude[V olt]; σI =
10−2imax; σθ = σφ = 10−2[rad]; σsync = 0[rad])
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Again table 5.13 and table 5.14 report the maximum and minimum dis-
tance of the quantities from the real state and from the optimal estimated
state respectively.
Note from table 5.14, that the admm algorithm is almost in convergence.

Measures Central Distributed Admm

min Amplitude distance 1.613 · 10−5 1.129 · 10−6 2.296 · 10−6 1.129 · 10−6

Max Amplitude distance 3.482 · 10−2 1.220 · 10−4 8.162 · 10−4 1.219 · 10−4

min Phase distance 1.580 · 10−4 3.303 · 10−5 6.608 · 10−5 3.303 · 10−5

Max Phase distance 3.022 · 10−2 5.562 · 10−4 1.574 · 10−3 5.563 · 10−4

Table 5.13: Distance (p.u.) from real state value after 104 iterations.

Distributed Admm

min Amplitude distance 2.792 · 10−5 7.459 · 10−11

Max Amplitude distance 8.924 · 10−4 1.724 · 10−8

min Phase distance 3.305 · 10−5 1.863 · 10−11

Max Phase distance 1.111 · 10−3 1.568 · 10−8

Table 5.14: Distance (p.u.) from optimal central state after 104 iterations.
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5.6 Power Losses Reduction via Reactive Power Con-
trol

In this section we will show the importance of estimation in a specific control
algorithm. Specifically, the algorithm deals with reactive power control to
reduce power losses through the network. Our purpose is to show how the
estimation improves the algorithm efficiency with respect to the use of row
data.

Let us introduce the following setup (see [14]): consider a smart low
voltage microgrid in which a certain number nodes are equipped by micro-
generators. The microgenerators are equipped with some sort of intelligence
and they are divided into overlapping groups, namely clusters. In each clus-
ter, one microgenerator is considered the header, that is, it can communicate
and control the remaining microgenerators in the cluster and can communi-
cate with other cluster headers as well. Figure 5.26 shows a schematic view
of the setup. 5
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Figure 1. Schematic representation of the microgrid model. In the lower panel a circuit representation is given, where black

diamonds are microgenerators, white diamonds are loads, and the left-most element of the circuit represents the PCC. The

middle panel illustrates the adopted graph representation for the same microgrid. Circled nodes represent compensators (i.e.

microgenerators and the PCC). The upper panel shows how the compensators can be divided into overlapping clusters in order

to implement the control algorithm proposed in Section IV. Each cluster is provided with a supervisor with some computational

capability.

number y = |y|ej∠y whose absolute value |y| corresponds to the signal root-mean-square value, and

whose phase ∠y corresponds to the phase of the signal with respect to an arbitrary global reference.

In this notation, the steady state of a microgrid is described by the following system variables (see

Figure 1, lower panel):

• u ∈ Cn, where uv is the grid voltage at node v;

• ι ∈ Cn, where ιv is the current injected by node v;

April 15, 2012 DRAFT

Figure 5.26: Schematic with of the microgrid setup. The circled nodes represent
the microgenerators. The computer represent the cluster headers the
overstand a certain number of microgenerators: they can communicate
between each other.

The algorithm exploited to control the microgenerators is assumed to
be a black box algorithm. It receives in input the state of the network
and computes, as output, the amount of reactive power to correctly drive
the microgenerators. Note that, to its purpose, any kind of network state
can be considered, both measured or estimated. We want to show that the
use of filtered data, instead of simple raw data, considerably improves its
performance.

Let us consider the following default values for the noise standard devi-
ation:

• σV = 10−4PCCV oltageAmplitude[V olt];
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• σI = 10−4imax[Ampere];

• σθ = σφ = 10−4[rad];

• σsync = 10−4[rad]

These values of standard deviation are considerably smaller with respect
to those considered in the previous section tests. This is due to the fact that
the measurements corresponding to these values are already bad enough to
abruptly corrupt the algorithm functioning.

In addition to this two more assumption have been taken into account:

1. because the algorithm is more affected by synchronization errors, the
following tests carry out an analysis only above different synchroniza-
tion noise standard deviation values;

2. since the previous section had shown the comparable performance of
the Distributed Estimator and the Admm Estimator4, the control al-
gorithm will be tested only using the Admm Estimator.

5.6.1 Performance for default values of standard deviation

The analysis shows that the measurements corresponding to default standard
deviation values are still good enough to let the control algorithm work. In-
deed figure 5.27 shows5 that the performances of the algorithm using noisy
measurements, filter data (estimated state) or the real state do not consid-
erably differ.
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Figure 5.27: Performance of Reactive Power Control Algorithm for default values
of standard deviation error.

4The performance corresponding to 103 iterations.
5The image reports the Average trend of the optimization algorithm over 500 runs.



5.6. POWER LOSSES REDUCTION VIA REACTIVE POWER CONTROL81

Table 5.15 reports the losses before and after the algorithm optimization
corresponding to the different set of data used.

Real State Estimated State Measurements

Losses before optimization[KW] 86.878 86.878 86.878

Losses after optimization[KW] 74.560 74.559 76.486

Losses reduction after opt. [%] 14.17 14.18 11.96

Table 5.15: Losses before and after optimization for different data set.

5.6.2 Performance for σsync = 10−3[rad]

The performances of the algorithm highlights the improvement in using fil-
tered data instead of raw data. Figure 5.28 shows that if the algorithm
runs over the raw data it can still achieve some sort of optimization but the
amount of losses is appreciably higher.
Table 5.16 shows that the losses reduction due to optimization over the noisy
measurements is still approximately of 14%. Meanwhile the amount of losses
is 2KW greater.
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Figure 5.28: Performance of Reactive Power Control Algorithm for σsync =
10−3[rad].

Real State Estimated State Measurements

Losses before optimization[KW] 86.878 86.878 86.878

Losses after optimization[KW] 74.560 75.603 76.221

Losses reduction after opt. [%] 14.18 12.97 12.26

Table 5.16: Losses before and after optimization for different data set.
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5.6.3 Performance for σsync = 10−2[rad]

The performances of the algorithm, increasing the synchronization noise,
worsen with respect to the raw data but do not with respect to the filtered
data as can be seen in figure 5.29.
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Figure 5.29: Performance of Reactive Power Control Algorithm for σsync =
10−2[rad].

This time the losses reductions drastically change their values as reported
in table 5.17.
Note that not only the losses corresponding to the noisy measurements in-
crease but the reduction decrease as well.

Real State Estimated State Measurements

Losses before optimization[KW] 86.878 86.878 86.878

Losses after optimization[KW] 74.560 74.578 113.831

Losses reduction after opt. [%] 14.18 14.15 -31.02

Table 5.17: Losses before and after optimization for different data set.
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5.6.4 Performance in using the Estimated State for greater
value of standard deviation values

Finally is reported the algorithm performance using the estimated state for:

• σV = 10−2PCCV oltageAmplitude[V olt];

• σI = 10−2imax[Ampere];

• σθ = σφ = 10−2[rad];

• σsync = 10−2[rad]

This values, corresponding to those seen in the previous test section, sim-
ulate the presence of relevant measurements error. Figure 5.30 shows the
performances.
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Figure 5.30: Performance of Reactive Power Control Algorithm for σV =
10−2PCCV oltageAmplitude, σI = 10−2imax, σθ = σφ = σsync =
10−2[rad].

Table 5.18 shows the losses and the losses reduction for the measurements
as well. Note that the algorithm is completely unusable with raw data set.
On the contrary the performance with the filtered data are still desirable.

Real State Estimated State Measurements

Losses before optimization[KW] 86.878 86.878 86.878

Losses after optimization[KW] 74.560 74.565 259.551

Losses reduction after opt. [%] 14.18 14.17 -198

Table 5.18: Losses before and after optimization for different data set.
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Chapter 6

Conclusion

We deal with the problem of estimation in low voltage power networks. This
is well known to be the starting point for controlling a network since raw
measurements are too inaccurate to work with. Specifically, we proposed
two separate distributed and scalable solutions. Both of them are based
on a suitable linearized model, of the measurements errors at every node.
PMUs only measurements of voltage and current at every node of the grid
are exploited.

After providing the maximum likelihood solution to the estimation prob-
lem we exploit it as element of comparison for the algorithms’ solutions. We
note that both the algorithms lead to appreciable performance improving
greatly the knowledge of the grid state. However, the two solutions differ
from each other substantially since:

• the first one:

Pros:

1. requires a very low computational effort and time to converge;
2. is completely scalable and distributed;

Cons:

1. is based on a Jacobi like approximate procedure. This leads
only to an approximate solution of the estimation problem
that does not converge to the maximum likelihood solution;

2. is able to manage wide errors ranges but do not deal with
synchronization noise. This forces the use of at least a basic
GPS synchronization unit.

• the second one:

Pros:

1. is based on a ADMM procedure that converges to the maxi-
mum likelihood solution;
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2. deals with synchronization noise as well, requiring to be equipped
with only simple PMUs;

Cons:

1. to reach the convergence needs considerable number of itera-
tions and computational effort.

We provide a wide set of simulations, carried out on the Ieee 37 and
123 nodes test feeder ([15], [16]), to ensure the behavior and perfor-
mances of the algorithms over a remarkable range of different noise standard
deviations values. The results point out the algorithms limits as well.

In addition to this, a specific power network control algorithm has been
tested to underline the importance of estimation. Specifically, a power losses
reduction through reactive power compensation algorithm, [14], has been
chosen as prototype. The simulations show how using the estimated state
with respect to the raw measurements improve much more the performances.
In particular, the estimated state leads to performances comparable with
those obtained using the exact state value. The measurements on the con-
trary leads to an undesirable behavior.



Appendix A

Proofs about ADMM

A.1 Proof of equation (4.14)

Starting from (4.13), that is step 3. of the updating law, it can be written

zij(t+ 1) = argmin
zij

L(X(t), z, λ(t), µ(t))

= argmin
zij

{
−(λTij(t) + µTji(t))zij +

c

2

[
||X(i)(t)− zij ||2 + ||X(j)(t)− zij ||2

]}
considering the minimize only the ith and jth indexes and so, discarding what
does not depend on them.

Through the first order optimality condition we have that

−λij(t)− µji(t)− c
(
X(i)(t)− zij

)
− c
(
X(j)(t)− zij

)
= 0

and so

zij(t+ 1) =
1

2c

(
λij(t) + µji(t) + c

(
X(i)(t) +X(j)(t)

))
(A.1)

Note from (A.1) and (4.11) that, by a simple inductive proof, if

λij(−1) = −µji(−1) =⇒ λij(t) = −µji(t) ∀t

This lets to discard one of the Lagrangian multiplier introduced.

In addition to this substituting (A.1) in (4.11) we lead, for λij , to

λij(t) = λij(t− 1) +
c

2

(
X(i)(t)−X(j)(t)

)
that is just equation (4.14). In this way it is possible to eliminate both zij
and µij , concluding the proof.
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A.2 Proof of equation (4.16)

To write equation (4.16) starting from equation (4.15) is necessary to explic-
itly solve the first order optimality condition.

Rewriting (4.15), we get

X(i)(t+ 1) = argmin
X(i)

{ N∑
i=1

(
yi(t)−A(i)X(i)

)T
R−1
i

(
yi(t)−A(i)X(i)

)
+

+
N∑
i=1

∑
j∈Ni

λTij(t)
(
X(i) − zij(t)

)
+ µTij(t)

(
X(i) − zji(t)

)
+

+
c

2

N∑
i=1

∑
j∈Ni

||X(i) − zij(t)||2 + ||X(i) − zji(t)||2
}

Considering only the terms depending on X(i) (the other ones being constant
are irrelevant to minimization so, can be discarded) we get

X(i)(t+ 1) = argmin
X(i)

{ (
yi(t)−A(i)X(i)

)T
R−1
i

(
yi(t)−A(i)X(i)

)
+

+
∑
j∈Ni

λTij(t)
(
X(i) − zij(t)

)
+ µTij(t)

(
X(i) − zji(t)

)
+

+
c

2

∑
j∈Ni

||X(i) − zij(t)||2 + ||X(i) − zji(t)||2
}

The first order optimality condition is then equal to

0 = −2A(i)TR−1
i

(
yi(t)−A(i)X(i)

)
+
∑
j∈Ni

(
λij(t)− λji(t)

)
+

+2c
∑
j∈Ni

(
X(i) − c

2

(
X(i)(t)−X(j)(t)

))

Solving with respect to X(i) is easy to get exactly equation (4.16).

N.B. Note in the previous equations that quantities y, λ and X depend-
ing on time instants are considered as fixed values and when deriving, only
quantities independent on time are to be considered as variables.
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A.3 Proof of equation (4.19)

The augmented Lagrangian associated to problem (4.18) is equal to

L(X, z, λ, µ) =
∑
i

fi
(
X(i)

)
+
∑
i

∑
j∈Ni

λTijPij
(
X(i) − zij

)
+ µTijPij

(
X(i) − zji +

c

2

∑
i

∑
j∈Ni

(X(i) − zij)Pij(X(i) − zij) + (X(i) − zji)Pij(X(i) − zji)

Thanks to the proof of appendix A.1 is known that λij(t) = −µji(t) and,
initializing λij(−1) = λji(−1) = 0 is easy to see that

λij = −λji
In addition to this is known to be zij = zji and so is possible to rewrite the
Lagrangian as

L(X, z, λ) =
∑
i

fi
(
X(i)

)
+
∑
i

∑
j∈Ni

2λTijPij
(
X(i)−zij

)
+c(X(i)−zij)Pij(X(i)−zij)

The ADMM procedure provides the sequential updates

X(i)(t+ 1) = argmin
X(i)

L(X(i), z(t), λ(t)) (A.2)

zij(t+ 1) = argmin
zij : Pijzij=Pijzji

L(X(i)(t+ 1), z, λ(t))

λij(t+ 1) = λij(t) + c
(
X(i)(t+ 1)− zij(t+ 1)

)
In a similar way of appendix A.1 is possible to get, for zij ,

Pijzij(t+ 1) = Pij
X(i)(t+ 1) +X(j)(t+ 1)

2
(A.3)

Exploiting (A.3) in the first of (A.2) and eliminating the constant term,
unused in the first order optimality condition, we get

X(i)(t+ 1) = argmin
X(i)

fi(X
(i)) +

∑
j∈Ni

X(i)TPij
(
2λij(t) + cX(i) − 2czij(t)

)
(A.4)

Finally, defining

Mi = c
∑
j∈Ni

Pij (A.5)

Λi(t) = −2
∑
j∈Ni

Pijλij(t)

Ui(t) = 2c
∑
j∈Ni

Pijzij(t)− 2MiX
(i)(t)

is easy, after substituting equation (A.3) in the third of (A.5) and the third
of (A.2) in the expression of Λi(t) in (A.5), to get equations (4.19)÷(4.23)
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