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Abstract

While moving towards the realisation of commercial quantum computers it has

become of paramount importance to be able to implement high fidelity quantum

gates. As of today, this is a technical challenge for all hardware platforms because

of the difficulty to create theoretical models which reach the level of detail required

for designing of high precision gates. To overcome this hurdle, closed-loop quan-

tum optimal control (QOC) provides an excellent tool for the optimization of con-

trol pulses by exploiting experimental feedback which does not require modeling

and characterisation.

In this work we propose a new protocol for the implementation of an experi-

mentally-convenient figure of merit to perform closed-loop QOC for two-qubit

gates. We examine its performances on nitrogen vacancy (NV) centers in dia-

monds, which have raised as one of the most promising hardware proposals for

quantum technologies because of their relatively long decoherence time and their

performances at room temperature. In particular, our approach has been tested nu-

merically for the realization of entangling gates for a 13C-NV− system, with spe-

cial care in the definition of the pulse duration and the control amplitudes accord-

ing to typical experimental parameters. Numerical simulations using the dressed

Chopped RAndom Basis (dCRAB) algorithm suggest the possibility to build high

fidelity CNOT gates within few hundreds of closed-loop optimization iterations,

with a significant reduction in the number of required readout operations compared

to the state-of-the-art.
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Preface

While looking for suitable hardware solutions for the realisation of quantum in-

formation processing (QIP) units, past years have made clear that good quantum

systems must satisfy a specific set of requirements. Aside from the DiVincenzo cri-

teria [1], the quantum bits must be independently addressable and benefit of long

decoherence times in order to allow for controllability and readout. To date, suit-

able systems are recognised to be superconducting (trasmon) qubits [2], trapped

atoms and ions [3, 4], photonic circuits [5] and defect centers in diamonds [6]. In

particular, the latter consist of a family of technologies based on natural or artifi-

cial impurities in Carbon crystals which usually display the aforementioned prop-

erties because of their low electron-phonon coupling and their stability (i.e., lack

of decoherence) over a wide range of thermal conditions, from cryogenic to room

temperature [7]. The choice of diamond as hosting material for the sites allows to

exploit its mechanical properties, such as lattice stability, good electrical insulation

and thermal conductivity. While diamonds are commonly transparent to light at

multiple wavelengths, the presence of these defects can enhance different optical

responses which are immensely useful to have clear readouts. Because of this,

these sites take also the name of colour centers [8].

While the properties of NVs are undoubtedly good for quantum technologies,

concerns about their scalability and their tedious fabrication techniques have kept

them so far as a low-profile alternative for quantum computing [9]. Nevertheless,

promising research is being carried out to try to overcome these limitations and

eventually enable quantum computing with NV centers on a large scale [10]. In

this perspective, a new tool to perform high quality quantum state manipulation on

the spin states of the NVs is required. Since these centers arise as natural defects in

the diamond structure they present individual properties that are different from site

to site. In these conditions, a precise modeling of the system to design controlled

state evolution becomes a non-trivial challenge.

A solution to this problem is offered by closed-loop quantum optimal control:

by performing trial control of the time evolution of the system of interest and prop-

erly scoring the results we can learn the best actions to be performed in an iterative

way [11]. The goal of this project is therefore the definition of a suitable metric (or

ºfigure of meritº) which well combines with the experimental routine to enable and

make efficient the feedback process of a closed-loop optimisation for the specific

case of two-qubit gates. This procedure has the potential to become a standard to
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be applied to all the NVs in the crystal: in this way it will be possible to design

tailored quantum gates for each two-qubit system without the necessity of carefully

modeling each of them.

Our work is organised as follows: in chapter 1 we review the basics of quan-

tum computing (section 1.1), we describe the experimental details of NV centers

(section 1.2) and we introduce the concept of quantum control theory together with

the main optimisation algorithms (sections 1.4.3 and 1.5). Chapter 2 contains the

full description and analysis of the theoretical protocol we propose to enable ef-

ficient control optimisation. In chapter 3 we report simulation details and results

that contribute to the validation of our approach. Finally, chapter 4 summarises

the fundamental results of this work and introduces the remaining steps to take in

order to move to an experimental realisation of the protocol.

This work has been carried out in collaboration with the University of Padova,

Italy, and the PGI-8 Institute for Quantum Control at Forschungszentrum JÈulich,

Germany.
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Chapter 1

Introduction and

theoretical background

1.1. Fundamentals of quantum computing

In our daily life we have grown to think of technology as an omnipresent, silent

partner which accompanies us in every action. From mobile phones to laptops,

from autonomous cars to thermostats, we are surrounded by automatised process-

ing units that collect and manipulate data to ease and better our lives.

Also in the field of research technology and computational power have recently

been used to enlarge the power or analysis and simulations of natural behaviours in

fields ranging from biology to medicine and physics. Focusing on the latter, some-

thing extremely peculiar happens while we try to move towards the ºinfinitesimally

smallº: as discovered by Max Plank over a century ago, the small realm does not

follow the classical rules of physics but requires a new description in terms of

quantum mechanics. This leads scientists to a plethora of fascinating challenges

to be dealt with, including the problem of representing and efficiently studying the

dynamics of quantum many body systems.

In 1982, Richard Feynman showed that to simulate the dynamics of a quantum

system on classical computer it will be necessary to scale it in an exponential way

[12]. This puts an effective bound to the knowledge we can gather of such a system,

according to the computational resources at disposal. Nevertheless, looking for a

solution to this issue he proposed a completely new idea:

1



2 CHAPTER 1. INTRODUCTION AND THEORETICAL BACKGROUND

Nature isn’t classical, dammit, and if you want to make a simulation

of nature, you’d better make it quantum mechanical, and by golly it’s

a wonderful problem, because it doesn’t look so easy.

Richard Feynman

Indeed, Feynman’s idea was the possibility of setting up a ºquantum machineº,

an hardware subject to the laws of quantum mechanics to simulate the behaviour of

quantum systems. Moreover, if we are able to encode in such quantum systems a

non-quantum task, we could in principle exploit the properties of quantum mechan-

ics to enhance the research of a solution. Following this line of thought, in 1992

Lov Grover proposed an algorithm which is able to introduce a quadratic ºquan-

tum advantageº in solving the task of searching for an element in an unstructured

database using quantum superpositions [13]. Three years later, a protocol for the

efficient factorisation of large numbers with exponential speedup was suggested by

Peter Shor, highlighting a possible treat to state-of-the-art cryptographic schemes

[14].

As of today, the importance and the utilities of ºquantum computersº is widely

recognised. In order to build a fully-working machine, some elements need to be

designed:

• Fundamental computational units and conventional operations on them

• An efficient and stable quantum hardware

• Software component for the encoding

• A control mechanism that turns software instructions into physical opera-

tions on the hardware

In the following section 1.1.1 we introduce the concept of quantum bits and

their fundamental representation. Section 1.1.4 describes the requirements for a

sustainable quantum hardware, while in section 1.2 we review the details of the

specific platform we analyse in detail. Generally speaking, there are no stringent

requirements regarding the software: everything reduces to the transpiler module,

which is responsible of decomposing the user instructions into a combination of

fundamental logic operations (i.e. quantum gates, review in section 1.1.3). Finally,

the physical realisation of quantum gates is the deeper focus of this work: the

details of the time evolution of quantum states is reported in section 1.1.5, the

theory of quantum optimal control is described in section 1.4.3 and the specific

proposal for this platform is fully characterised in section 2.

1.1.1. Qubits and state representation

In classical computation theory the fundamental logical units are the bits, i.e. the

smallest possible information blocks. A classical bit can assume only two values, 0
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and 1 (or ºyesº and ºnoº) according to the system’s state. In practical realisations

bits are often seen as switches (e.g. transistors) which allow or do not allow the

flow of electrical current.

As any binary object can in principle represent a classical bit, for analogy we

refer to quantum bits (or qubits) speaking about any two level quantum system

where we can identify a |0⟩ and a |1⟩ state. Examples are the quantum states

associated to fermionic spin states along a direction ẑ (|0⟩ ≡ |↑⟩, |1⟩ ≡ |↓⟩), to

the polarisation of photons (|0⟩ ≡ |H⟩, |1⟩ ≡ |V ⟩) or to an isolated subsystem of

ground and exited energy levels (|0⟩ ≡ |g⟩, |1⟩ ≡ |e⟩).
The fundamental difference between bits and qubits lays in the superposition

principle: while in classical mechanics the state of the system is either 0 or 1 at any

time (and we can only have classical ignorance about it), in quantum mechanics at

a given time t the system’s state is defined by its quantum wavefunction:

|ψ (t)⟩ ≡ α (t) |0⟩+ β (t) |1⟩ ≡ α (t)

(
1
0

)

+ β (t)

(
0
1

)

(1.1)

i.e., a superposition of the states {|0⟩ , |1⟩} that form a basis for the Hilbert space

that hosts the quantum state |ψ⟩. For a single qubit, the Hilbert space is a 2−dimensional

vector space; an n-body state lives in the Hilbert space given by the tensor product

of the single-particle spaces, which means that for n qubits the state |ψ⟩ is a vector

of size 2n (and we observe the exponential scaling in the complexity pointed out

by Feynman).

The system’s state description tells us that the most radical difference between

classical and quantum bits is the possibility for the latter to be in the two basis states

at the same time. The coefficients α, β ∈ C are called amplitude probabilities for

the basis states and for any time t they satisfy the relation:

|α (t)|2 + |β (t)|2 = P0 (t) + P1 (t) = 1 (1.2)

Upon measurement, the system’s state will be found in either the |0⟩ or the |1⟩
state with (classical) probabilities given by Pi, i = 0, 1: this process is known as

the collapse of the quantum wavefunction |ψ⟩. The probability to find the system

in a generic state |ξ⟩ is found by the Born’s rule as the modulus squared of the

projection of the quantum state over |ξ⟩:

P (|ξ⟩) = |⟨ξ|ψ (t)⟩|2 (1.3)

which is consistent with the previous statements since for |ξ⟩ = |0⟩ it holds:

P0 = P (|0⟩) = |⟨0|ψ (t)⟩|2 = |α|2|⟨0|0⟩|
︸ ︷︷ ︸

=1

2 + |β|2|⟨0|1⟩|
︸ ︷︷ ︸

=0

2 = |α|2 (1.4)

and same for P1. The contractions between the |0⟩ and |1⟩ states follow the rules

for an orthonormal basis.
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An alternative representation of the system’s state is given by the density matrix

formalism: to each state |ψ⟩ is associated a quantum operator defined as:

ρ̂ (t) ≡ |ψ (t)⟩⟨ψ (t)| (1.5)

which becomes, for a single qubit:

ρ̂ = |ψ⟩⟨ψ| =
(
|α|2 αβ∗

α∗β |β|2
)

=

(
ρ00 ρ01
ρ10 ρ11

)

(1.6)

In a more general fashion, being |ψ⟩ a vector of size N , ρ̂ has size N × N .

It turns out to be a positive semi-definite, Hermitian operator of trace one acting

on the Hilbert space of the system. The density operator formalism is especially

convenient when dealing with mixed states, i.e. when there is classical uncertainty

regarding the quantum state of the system [15]. In fact, assuming that the system

can be described by a set of states {|ψj (t)⟩}j with classical probabilities {qj}j ,
the density operator will be

ρ̂ (t) =
∑

j

qj |ψj (t)⟩⟨ψj (t)| (1.7)

Fundamental properties of the density matrix representation of the state are [15]:

• The diagonal elements of the density matrix (populations) are the probabili-

ties associated to measure each basis state. As a result, it holds:

Tr (ρ̂ (t)) = 1 ∀t (1.8)

• It holds 0 ≤ Tr
(
ρ̂2
)
≤ 1 and

Tr
(
ρ̂2
)
= 1 ⇐⇒ ρ̂ is a pure state (1.9)

• Non-zero off-diagonal terms of ρ̂ (coherences) indicate the presence of a

quantum behaviour: for a fully mixed state (classical mixture) coherences

are all zero.

• The Born’s rule for density matrices follows from equation (1.7):

P (|ξ⟩) =
∑

j

qj |⟨ξ|ψj⟩|2 =
∑

j

qj ⟨ψj |ξ⟩ ⟨ξ|ψj⟩ = Tr
(

Π̂ξρ̂
)

(1.10)

being Π̂ξ = |ξ⟩⟨ξ|. This is indeed the expectation value of the projector onto

the |ξ⟩ state in a density operator formalism.

Generally speaking, a non-isolated quantum system interacts with the environ-

ment over time. We call this an ºopen quantum systemº. This interaction leads

to a gradual loss of the quantum properties of the system (ºquantum dissipationº)
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and its evolution towards a classical mixture. Since this phenomenon implies the

vanishing of off-diagonal terms in the density operators it takes the name of ºde-

coherenceº.

In this scenario, density matrices are the most suitable tools to investigate the evo-

lution of the quantum system A of interest as a component of the larger, closed

quantum system A + E which includes the environment. In fact, the density ma-

trix of the reduced system can be found simply tracing out the complementary

components as:

ρ̂A = TrE (ρ̂AE) (1.11)

where TrE is defined as:

TrE (|ξu⟩⟨ξv| ⊗ |χu⟩⟨χv|) ≡ |ξu⟩⟨ξv|TrE (|χu⟩⟨χv|) (1.12)

being |ξu,v⟩ arbitrary states for the system A, |χu,v⟩ arbitrary states for the system

E and TrE (|χu⟩⟨χv|) = ⟨χu|χv⟩ the standard trace operator [16]. This description

is extremely convenient since in most real-world cases we deal with open quantum

systems where a detailed description of the environment is either not convenient or

not possible. Hence, we prefer to focus on the system under investigation.

All these properties, including the practical formalism for the time evolution

of an open quantum system described in section 1.1.5, make the density matrix

formalism a natural and convenient choice while studying quantum states for the

sake of quantum computing.

1.1.2. The Bloch sphere

Equation (1.1) displays the basic form a qubit state in terms of a superposition of

the basis states with complex amplitudes subject to the constraint in equation (1.2).

An alternative representation of the state in the computational basis is given by the

following expression:

|ψ⟩ ≡ cos

(
θ

2

)

|0⟩+ eiϕ sin

(
θ

2

)

|1⟩ (1.13)

where it is exploited the fact that quantum states are defined up to a global phase.

Considering now the transformations defined by:

r⃗ =





x
y
z



 =





αβ∗ + α∗β
i (αβ∗ − α∗β)

|α|2 − |β|2



 =





r sin (θ) cos (φ)
r sin (θ) sin (φ)

r cos (θ)



 (1.14)

we find a relation between the complex amplitude probabilities {α, β} and the

three real spherical coordinates (r, θ, φ) which uniquely define a point in a sphere

of unitary radius. This sphere takes the name of Bloch sphere and is the main

visualisation tool for single-qubit states.
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Figure 1.1: Example states on the Bloch sphere, corresponding to the X , Y and Z
basis states, respectively. As a convention the |0⟩ and |1⟩ states are chosen as the

basis states on the Z (vertical) axis. Figure from [17].

Figure 1.1 shows some example states as points on the surface of the Bloch

sphere. As a convention, the basis states are assumed to lay on the ẑ axis. Any pair

of diametrically opposite states forms a basis for the single qubit state. Since:

r =
√

Tr (ρ̂2) (1.15)

points on the surface of the sphere represent pure states, while points inside the

sphere represent mixed states. Finally, the dynamical evolution in time of the qubit

state can be seen as a trajectory over the Bloch sphere (where the unitary evolution

of pure states remains on the surface of the sphere). An example of a single-qubit

state moving from |0⟩ to |1⟩ by means of unitary evolution is reported in figure 1.2.

1.1.3. Quantum gates

In classical computing theory every operation we require our machines to perform

is translated into a sequence of fundamental logical operations that are applied to

classical bits. Example of such operations are the AND, OR, XOR, NAND gates,

and many more. Similarly, in quantum computing we require the possibility to

perform some basic operations on qubits that alter their state in a precise way.

From a mathematical perspective, these gates are defined as operators (matrices).

Quantum gates are divided in two main classes: single- and multi-qubit gates.

Single qubit gates

In analogy with the classical NOT gate, the quantum version of a bit-flip operator

is given by:

X̂ =

[
0 1
1 0

]

= NOT (1.16)
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Figure 1.2: Quantum trajectory of evolution from the |0⟩ to the |1⟩ state on the

surface of the Bloch sphere (π− pulse).

which takes the name ºXº since it corresponds to the σ̂x Pauli matrix. From the

point of view of the Bloch sphere this corresponds to a rotation of an angle π
around the x̂ axis and one can easily verify that:

|0⟩ X̂7−→ |1⟩ and |1⟩ X̂7−→ |0⟩ (1.17)

In a similar fashion, rotation around the ŷ and ẑ axes are given by the corre-

sponding Pauli matrices:

Ŷ =

[
0 −i
i 0

]

Ẑ =

[
1 0
0 −1

]

(1.18)

In particular, the latter operator has the property of flipping the relative phase be-

tween the |0⟩ and |1⟩ states:

α |0⟩+ β |1⟩ Ẑ7−→ α |0⟩ − β |1⟩ (1.19)

These three gates, together with the identity gate:

12 =

[
1 0
0 1

]

(1.20)

define a basis Σ = {12, σ̂x, σ̂y, σ̂z} for any matrix M ∈ C
2×2.

An arbitrary state rotation of an angle ϕ around a direction n̂ in the Bloch

sphere can be written as a composition of rotations along the three axes as:

R (ϕ; n̂) = cos

(
ϕ

2

)

12 − i sin
(
ϕ

2

)

n̂ · σ⃗ (1.21)
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being σ⃗ = (σ̂x, σ̂y, σ̂z)
T

.

Other important single-qubit gates are:

Ĥ =
1√
2

[
1 1
1 −1

]

Ŝ =

[
1 0

0 ei
π
2

]

T̂ =

[
1 0

0 ei
π
4

]

(1.22)

where the Hadamard gate Ĥ allows to move from the Z to the X basis:

|0⟩ Ĥ7−→ |+⟩ = |0⟩+ |1⟩√
2

and |1⟩ Ĥ7−→ |−⟩ = |0⟩ − |1⟩√
2

(1.23)

while the Ŝ and T̂ gates play the same role as the Ẑ gate, shifting the relative

phase between the |0⟩ and |1⟩ states of a factor π/2 and π/4, respectively. For

this reason the S gate is also called Phase gate. By convention these gates add a

phase between the basis states. To remove the same phase it is sufficient to apply

the inverse gates S−1 = S† and T−1 = T †.

Multi-qubit gates

To perform quantum computation it is necessary to design a quantum register of

multiple qubits and to exploit in full the properties of quantum mechanics (such

as entanglement) we must be able to introduce quantum correlations among these

quantum logical units. This cannot be done by means of single-qubit, local op-

erations: we need to ba able to act simultaneously on the joint state of two (or

more) qubits to eventually modify the state of one conditionally upon the state of

the other.

The most known example of such a gate is the Controlled-NOT (or CNOT )

gate [18]. In the computational basis of a two-qubit register it takes the form:

CNOT =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







(1.24)

and it operates as:

|0⟩A ⊗ |0⟩B
CNOT7−−−−→ |0⟩A ⊗ |0⟩B

|0⟩A ⊗ |1⟩B
CNOT7−−−−→ |0⟩A ⊗ |1⟩B

|1⟩A ⊗ |0⟩B
CNOT7−−−−→ |1⟩A ⊗ |1⟩B

|1⟩A ⊗ |1⟩B
CNOT7−−−−→ |1⟩A ⊗ |0⟩B

(1.25)

i.e., it always acts as the identity on the first (control) qubitA, while it acts as 12 or

X̂ on the second qubit B whether the state of A is |0⟩A or |1⟩A, respectively. For

this reason the CNOT gate is also known as CX gate.
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In a similar way, we can think of applying any arbitrary gate on the second qubit

B conditioning to the state of a control, reference qubit A. All these gates take the

same form of Controlled-Unitary (CU ) gates:

CU =

[
12 02
02 U

]

(1.26)

where U is an arbitrary single-qubit gate.

Another important gate is the so-called SWAP gate, which inverts the roles of

the two qubits:

SWAP =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1







(1.27)

in particular, we observe that it acts as the identity if |ψ⟩A = |ψ⟩B , else as a bit-flip.

It can be seen as a CNOT gate up to a redefinition of the states.

The concept of ºoperation on qubit B conditioned to the state of qubit Aº can

be generalised to the case of many control qubits. In fact we can condition the

action on B to the state of n qubits A1, . . . , An being all simultaneously 1, i.e.

|ψ⟩Ai
= |1⟩ ∀i. By applying this on the computational basis, this naturally applies

to all the possible many-qubit states by means of the superposition principle.

The most common example is the so-called Toffoli gate, or ºControlled-Controlled-

NOTº gate, which is a three-qubit gate in the form:

Toffoli =















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0















(1.28)

the generalisation to n−controls is straightforward.

A schematic summary of the circuital elements associated to the main quantum

gates is reported in figure 1.3.

Please notice that, as a fundamental requirement, quantum gates must be uni-

tary operators (i.e. any gate V̂ must satisfy V̂ †V̂ = 12). This comes from the

normalisation condition of the states, together with the fact that time evolution

of quantum mechanical states is naturally unitary (as discussed in section 1.1.5)

and therefore quantum gates must reflect this property, being ºevolution operatorº

themselves. All the operators introduced in this section satisfy the aforementioned

requirement.
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Figure 1.3: Quantum gates for circuital representation. Each line represents a qubit

in the register. Input on the left hand-side. In multi-qubit gates control qubits are

marked with a full dot. (a) Hadamard gate (b) X gate (c) Z gate (d) S (Phase)
gate (e) inverse S gate (f) T gate (g) inverse T gate (h) CNOT gate (i) CZ gate

(j) CPhase gate (k) SWAP gate (l) Toffoli gate. Figure from [19]

1.1.4. DiVincenzo criteria

When it comes to quantum computing, a perfectly working quantum machine is

expected to satisfied the so-called DiVincenzo’s criteria, firstly theorised in [1]:

1. The physical system must be scalable with well-characterized qubits;

2. It must be possible to initialize the state of the qubits to a simple fiducial

state;

3. Coherence times must be relevantly long;

4. It must be provided a universal set of quantum gates;

5. Measurements should be able to address single qubits.

Of course, all points 1-5 should be satisfied with high fidelity, i.e. with the smallest

possible error probability.

As we will show in section 1.2, NV centers in diamonds intrinsically provide a

suitable platform that satisfies points number 3 and 5. Moreover, the possibility to

activate optical interaction among different sites would in principle allow to scale

the system to a network of quantum registers (point 1). In section 1.2.1 we point

out how the optical excitation-relaxation cycle allows to re-initialise the qubit state

to the ground level with high fidelity (point 2). As a result, it will be possible to use

NVs as a platform for quantum computing when we will manage to design with

high fidelity a universal set of quantum gates. Such a universal set is constituted by

a collection of single-qubit and two-qubit gates. A popular choice is the so-called

ºClifford + Tº gate set [20], defined as {CNOT, H, S, T} (gates defined in the

previous paragraphs).

As better discussed in sections 1.1.5 and 1.4.3, the dynamics of a quantum

system is determined by its equation of motion. The latter depends on the sys-

tem’s Hamiltonian that we can control by means of external electromagnetic pulses.
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Therefore, to proceed towards the experimental realisation of quantum computers

it is necessary to optimise the system’s controls in such a way that the time evo-

lution operator defined by the Hamiltonian acts on the basis states as the target

gate.

1.1.5. Time evolution operator

In the standard quantum mechanical formalism, the essence of a quantum system

is represented by the quantum wavefunction |ψ (t)⟩ which represents his state and

lives in an Hilbert space H. The dynamics of the quantum state is ruled by the

SchrÈodinger equation:

iℏ
d

dt
|ψ (t)⟩ = Ĥ (t) |ψ (t)⟩ (1.29)

together with some boundary conditions |ψ (t = t0)⟩ = |ψ0⟩, where Ĥ is the

Hamiltonian (hermitian operator) of the system.

As a result, it is straightforward to see that the evolution from a starting time

t = 0 to a final time t can be summarised as the action of a time evolution operator

Û (t) which depends on the time and on the Hamiltonian on the system. In many

occasions the latter can be found to be time-independent and therefore it holds:

|ψ (t)⟩ = Û (t) |ψ0⟩ where Û (t) ≡ exp

(

− i
ℏ
Ĥt

)

(1.30)

If instead the Hamiltonian is time-dependent, the formulation becomes more

complex. Please notice how this will be our case, since we will be dealing with a

control Hamiltonian with time-dependent electromagnetic pulses (details in section

1.3).

The most complete form of the time evolution operator relies on the introduc-

tion of Dyson series and of the time-ordered product of operators T :

T
[

Ĥ (t1) Ĥ (t2) . . . Ĥ (tn)
]

= Ĥ (tn) . . . Ĥ (t2) Ĥ (t1) for t1 ≤ t2 ≤ . . . ≤ tn
(1.31)

which consists of making the operators act on each other in a time-subsequent way,

recollecting that operators act on their right hand-side. In this formalism the time

evolution operator becomes:

Û (t) = T exp

(

− i
ℏ

∫ t

0
Ĥ (t) dt

)

(1.32)

where:

T exp

(

− i
ℏ

∫ t

0
Ĥ (t) dt

)

= 1+

∞∑

n=1

(

− i
ℏ

)n 1

n!

∫ t

0
dt1

∫ t

0
dt2 . . .

∫ t

0
dtnT

[

Ĥ (t1) Ĥ (t2) . . . Ĥ (tn)
] (1.33)
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While this complex formula can be extremely challenging for analytical anal-

ysis, for the sake of numerical simulations some useful tricks can be adopted. First

of all, while implementing computational time evolution from t = 0 to t = T , the

total time is split into N steps of size ∆t = T/N and therefore the Hamiltonian

itself is calculated over a finite-size set of timesteps {tj}j=1,...,N being tj ≡ j∆t.
The time evolution operator has the property that composite and direct time evolu-

tion must return the same final state:

Û (t1, t0) = Û (t1, t2) Û (t2, t0) (1.34)

where we specified the initial ti and final tf times in Û (tf , ti). Therefore, over the

discretisation set it must hold:

Û (T, 0) =

N∏

j=1

Û (tj , tj−1) (1.35)

by paying attention to the fact that the product of operators is build by placing the

j−th term on the right of the (j − 1)−th (i.e. in a time-ordered way).

If the time step ∆t is chosen small enough, the Hamiltonian Ĥ (tj) at each

time can be thought to be locally time-independent. In this case, the time evolution

operator over the small amount of time is given by equation (1.30) and we get:

Û (T, 0) =

N∏

j=1

exp

(

− i
ℏ
Ĥ (tj)∆t

)

(1.36)

Further analysis can prove that if
[

Ĥ (tj) , Ĥ (tk)
]

= 0 ∀j, k then:

Û (T, 0) = exp



− i
ℏ

N∑

j=1

Ĥ (tj)∆t



 (1.37)

which can be rewritten in the continuous case replacing the sum with the inte-

gral from 0 to T . However, since this requirement is not necessarily true and the

computational cost of building the time evolution operator is still manageable for

relatively large values of N , in this work we compute Û using the approach of

equation (1.36). The theory behind this analysis is fully discussed in [21].

In quantum mechanics it is sometimes more convenient to describe the state of

the system by means of the density operator ρ̂ (t), instead of the quantum wave-

function. In this case, the state dynamics follows the Liouville - von Neumann

equation:

iℏ
d

dt
ρ̂ (t) =

[

Ĥ (t) , ρ̂ (t)
]

(1.38)

With similar reasoning to the previous pages, one can retrieve that an initial state

ρ̂0 can be evolved to time T as:

ρ̂ (T ) = Û (T ) ρ̂0 Û
† (T ) (1.39)
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being Û the same time evolution operator as above.

In section 1.1.1 we mentioned the potential of density operator formalism while

studying open quantum systems. In particular, we stressed the useful description

of these systems in the form of reduced density matrices. When the environment

is too difficult or too large to model, it is convenient to study the evolution in time

of the reduced density matrix ρ̂A. In a general perspective, the total density matrix

ρ̂AE evolves according to the Liouville - von Neumann equation. An analog of

equation (1.38) for the reduced matrix of a larger system is given by the Lindblad

master equation (or Lindbladian), whose diagonal form is:

˙̂ρ = − i
ℏ

[

Ĥ, ρ̂
]

+

N2−1∑

i=1

γi

(

L̂iρ̂L̂
†
i −

1

2

{

L̂†
i L̂i, ρ̂

})

≡ Lρ̂ (1.40)

where we set ρ̂ ≡ ρ̂A. N is the size of the A system and Ĥ its Hamiltonian.
{

L̂i

}

i
is the set of Lindblad (or ºjumpº) operators and defines an orthonormal basis for the

Hilbert-Schmidt operators on the system’s Hilbert space. The coefficients {γi}i,
together with the Hamiltonian, define the reduced system dynamics. It is worth

pointing out that for γi = 0 ∀i we retrieve the Liouville - von Neumann equation.

Please notice that, since this is an open system, the dynamics defined by equa-

tion (1.40) can be non-unitary. Nevertheless, the Lindblad equation is Markovian

and time-homogeneous. It most importantly preserves density matrix properties.

1.2. NV centers in diamonds

The most common diamond-based technologies exploit Nitrogen-Vacancy (NV)

pairs, which are created when a Nitrogen impurity substitutes a Carbon atom in

the diamond lattice next to a missing Carbon atom (Vacancy, see figure 1.4). This

configuration offers a natural trap for electrons (NV centre) whose spin state can

be used to encode quantum information [22, 23, 24, 25, 26, 7, 11]. This solution is

especially good since electronic systems interact with photons, which makes them

optically controllable [11]. This also potentially enables long-range interactions

among different sites (both optical and dipole-dipole), a mandatory requirement

for quantum networks [27, 11]. Moreover, the electronic spin of the centre can

be coupled to the neighbour nuclear spins of the Nitrogen and Carbon-13 atoms,

effectively creating a quantum register which can be exploited for QIP.

From a structural point of view, a diamond is a face-centred cubic Bravais-

lattice of Carbon atoms (mainly 12C, spinless nuclei), with a natural abundance of

1.1% 13C isotope (nuclear spin of 1/2). The characteristic distance of two neigh-

bouring lattice sites is 154 pm with a bond angle of 109.5◦. The realisation of

an NV center can be artificially achieved by randomly removing Carbon atoms

via scattering processes and performing Ion implantation [29]. Then, an anneal-

ing procedure is usually exploited to spontaneously move these lattice sites close

together to form the actual NV. Alternatively, Nitrogen sites can be added directly
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Figure 1.4: Structural picture of NV− centers in diamonds. (a) The NV center in

the crystal lattice of the diamond. The NV axis, i.e. the direction defined by the

link between the Nitrogen atom and the vacancy, displays C3v symmetry oriented

along the 111 axis of the crystal. (b) Energetic scheme of the effective electronic

spin S = 1. Transitions can be driven among the ms = 0 and ms = ±1 levels via

microwave (MW) radiation. Green light (λ ≤ 637 nm) can be used to perform off-

resonant excitation from the 3A2 to the 3E level. Spontaneous decay from the latter

level happens in the form of photoluminescence (ZPL at λ = 637 nm. Higher en-

ergy levels can also display preferential decay via the metastable 1A1,
1E singlet

levels. (c) Focus on the MW transitions of the lowest energy triplet states: upon

Zeeman splitting of the ms = ±1 levels, single transitions ω0± can be indepen-

dently addressed to trigger oscillations among the ground and exited states, with

detunings δ±. Picture from [28].
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in the diamond fabrication process via plasma assisted chemical vapour deposition

(CVD, see [30]) or exploiting high-pressure high-temperature techniques (HPHT,

see [31]). By tuning the percentage of impurities in the material one can regulate

the average density of NV sites, which can be observed singularly via confocal mi-

croscopes thanks to the characteristic photoluminescence emission. This centers

come in three energetically stable fashions: NV+, NV0 and NV−.

The implanted Nitrogen atom bonds to three of the surrounding Carbon atoms

by sharing three of its electrons. The remaining two valence electrons of the Ni-

trogen, together with three electrons coming from the remaining Carbon atoms

in correspondence of the vacancy add up to a total five-electrons, neutral charge

state NV 0, with effective spin S = 1/2. If the crystal presents some impurities, a

neighbor atom might act as donor and add a sixth electron to the NV (i.e., NV−):

while generically referring to NV center we will indicate this specific configura-

tion, which is usually the favourite one in QIP protocols because of its optical and

magnetic properties [32, 8, 11]. In the NV− center the effective NV electron and

the donor’s electron form a triplet state with total spin S = 1 and multiplicity

2S + 1 = 3. The quantum number associated to the spin in the ẑ direction can

hence take the value ms = 0 (anti-parallel alignment) or ms = ±1 (parallel align-

ment). If no external magnetic field is applied then the latter levels are degenerate,

otherwise Zeeman splitting occurs (see figure 1.4 (c)). The energy level scheme is

reported in figure 1.4 (b): the characteristic zero-field splitting between ms = 0
and ms = ±1 in the ground level 3A2 triplet state is Dgs = 2.87 GHz, while in

the 3E excited state is Dex = 1.42 GHz at room temperature (see [33]).

As described and derived in [11] (Appendix A), the full Hamiltonian of the

system is:

Ĥ = ℏDgs

[

Ŝ2
z −

2

3

]

+ ℏε
(

Ŝ2
x − Ŝ2

y

)

︸ ︷︷ ︸

zero-field term

+ ℏγnvB⃗ · ˆ⃗S
︸ ︷︷ ︸

magnetic interaction

+ ℏδ∥Ez

[

Ŝ2
z −

2

3

]

− ℏδ⊥

[

Ex

(

ŜxŜy + ŜyŜx

)

+ Ey

(

Ŝ2
x − Ŝ2

y

)]

︸ ︷︷ ︸

electric interaction

+ℏ

n∑

i=1






ˆ⃗
SNi

ˆ⃗
Ii

︸ ︷︷ ︸

hyperfine interactions

+ γiB⃗ · ˆ⃗Ii
︸ ︷︷ ︸

nuclear Zeeman interactions

+ Qi
ˆ⃗
I2z,i

︸ ︷︷ ︸

nuclear quadrupole interactions






(1.41)

where it is assumed the NV axis to be the quantisation axis. Here
ˆ⃗
S =

(

Ŝx, Ŝy, Ŝz

)T

are the spin operators, ε is the non-axial zero-field parameter and γnv = 2π ×
28 GHz/T is the gyromagnetic ratio of the NV. E⃗ = (Ex, Ey, Ez) and B⃗ =
(Bx, By, Bz) are the effective electric and magnetic fields accounting for both ex-

ternal and internal (structural) contributes. δ∥ = O
(
10−1 Hz ·m/V

)
and δ⊥ =

O
(
10−3 Hz ·m/V

)
are the axial and transverse coupling constants, respectively.
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Figure 1.5: Fluorescence spectrum of NV centers in diamonds. (a) Schematic

optical transitions among the 3A2 and 3E levels. Excitation is provided by spin-

preserving off-resonant radiation, which spontaneously leads to population of the

triplet states. Electrons can decay back to the ground state together with fluorescent

emission. (b) Spectrum of fluorescent emission for the NV0 and NV− species. The

zero phonon line (ZPL) is marked at 575 nm and 637 nm, respectively. Figure

from [33].

{
ˆ⃗
Ii

}

i
are the nuclear spin operators of the neighbouring 13C or 14N and 15N

atoms, while Ni is the hyperfine interaction tensor between the electron and the

i−th nuclear spin.

In absence of external fields, the Hamiltonian is reduced to the zero-field term.

The electric and magnetic interaction terms account for corrections in presence

of these fields. The last line in equation (1.41) accounts for the presence other

spins in the lattice: the hyperfine interaction between these and the NV center

(comprehensive of isotropic, contact Fermi interactions and anisotropic magnetic

dipole interactions which scale as r−3
S,I ), the coupling of the nuclear spin with the

external B⃗ field and the nuclear spin quadrupole splitting represented by Qi.

1.2.1. Optical readout

Transitions among the 3A2 and 3E states can be optically triggered by photons of

energy above the zero phonon line (ZPL), which is 1.945 eV (637 nm, see figure

1.5 (b)) for the system under investigation. Commonly, such transitions are driven

off-resonantly (green light) and are spin preserving because of the selection rules,

leading to a conservation of the spin quantum number ms. Then, the system can

return to the ground state either via fluorescent emission (red light, spectrum in

figure 1.5 (b)) or following the path involving the additional 1A1 and 1E singlet

states (figure 1.4 (b)), which causes a spin-flip. While the first relaxation is much

more probable if the system is in a ms = 0 state (hence called the bright state

of the system), the latter path is strongly favoured when the system is in the 3E,

ms = ±1 states and results in the emission of infrared light which is usually filtered
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Figure 1.6: ODMR spectrum of NV center in absence (a) and presence (b) of ex-

ternal aligned magnetic field (O(0.1mT )). When no Zeeman splitting occurs, the

dip in the spectrum is located at the characteristic frequency of 2.87 GHz. When

the magnetic field is turned on the dip splits in two, highlighting the symmetrically

distributed resonance peaks. Figure from [36].

out (hence the definition of dark state, see [8]). This allows to perform both state

initialisation and readout. The former comes straightforward from the fact that,

following the excitation, the relaxation from the 3E level will bring the system

to the 3A2, ms = 0 state. If such process triggers the emission of red photons

then the original pre-excitation state was in ms = 0, while if not then it was in

ms = ±1. The visibility associated to this readout process, i.e. the maximum

qubit population difference observed, is ∼ 70% (more in [34]). In both cases, the

resulting state of the measurement is a ms = 0 state: optical pumping can hence

be applied to prepare the system in this state.

Assuming now that the system is in the aforementioned state, microwave (MW)

radiation can be used to bring it to the 3A2, ms = ±1 states via Rabi oscillations

(details in section 1.2.2). In principle the resonant frequency of this transition can

be found by performing a sweep over a range of frequencies and looking for a dip

in the fluorescence spectrum. In fact, since the initial state is a bright state, when

the incoming light has off-resonant frequency the system remains in a bright state

and the fluorescence emission in constant. While the frequency approaches the

resonance, the system is more and more likely to move to the dark state, which

relaxes via the infrared path and therefore results in a dip in the red fluorescence

spectrum [35, 36]. This process takes the name of optically detected magnetic

resonance (ODMR, illustration in figure 1.6).

This technique becomes extremely useful in the field of quantum sensing: since

the splitting of thems = ±1 levels is linearly proportional to the external magnetic

field parallel to the ẑ direction as ∆ω = 2γnvBz , being γnv = 2π×28GHz/T the

gyromagnetic ratio of the NV, measuring the spectral gap between the two dips al-

lows to estimate the magnetic field [37]. Moreover, by properly tuning the intensity

of a constant B field is it possible to lift the degeneracy between these levels up to

the point where transitions can be driven between the ms = 0 and ms = −1 being
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completely off-resonance with respect to the ms = 0 to ms = +1 transition. This

allows to effectively define a two level system that can be used as a qubit for com-

putational purposes with minimal information leakage towards the spectator state

ms = +1. Therefore, whenever we refer to the electronic spin in the following

sections we address this two-level subsystem that we treat as an electronic qubit in

the center, with ground state |0⟩e defined by the 3A2, ms = 0 level and exited state

|1⟩e as the 3A2, ms = −1 level, after removing the degeneracy by application of a

constant Bz field.

1.2.2. Rabi oscillations and optically engineered quantum gates

As mentioned above, transitions can be driven across any two levels by means of

proper pulses. More in detail, this is usually achieved by employing an oscillating

electromagnetic field at frequency ω, while the transition frequency between two

energy levels Ea and Eb is defined as

ω0 ≡ |Ea − Eb|/ℏ (1.42)

As reported in [38], if the driving frequency is set on resonance (ω = ω0) and a

continuous external field is applied, perfect oscillations between the |a⟩ and |b⟩ lev-

els can be performed. This phenomenon is known as Rabi oscillations. Assuming

the system to be initially in the |a⟩ state, the probability of measuring the system

in the |b⟩ state after a time t is given by Born’s rule:

Pa 7→b = |⟨ψ (t)|b⟩|2 = sin2
(
Ωt

2

)

(1.43)

Where the Rabi frequency Ω is proportional to the induced dipole and the in-

tensity of the driving field as Ω = dE/ℏ (more details for the specific case of NVs

in section 1.3). It is worth notice that perfect transitions (population inversion) be-

tween the two levels can be achieved for Ωt = π: this case is commonly referred

as a π−pulse and represents an X̂ (or Ŷ , according to the phase) single qubit gate

(details in section 1.1.3). Similarly, one can notice that for Ωt = π/2 balanced

quantum superpositions in the form |ψ (t)⟩ = (|a⟩+ |b⟩) /
√
2 can be prepared

(Hadamard gate). In this case we talk about π/2−pulses. More in general, by fix-

ing the intensity of the external field the oscillation process can be interrupted at

arbitrary time to prepare any superposition of the two states. Moreover, the choice

of the phase and the orientation of the field allow to introduce an arbitrary phase in

the superposition of the basis states, effectively driving rotations along an equato-

rial plane of the Bloch sphere (see figure 1.7). An example of experimental Rabi

oscillations in an NV center is reported in figure 1.8.

While perfect oscillation can be driven by resonant driving, it is more common

to drive slightly off-resonant transitions, for which it holds ω = ω0 + ∆. In this

case the theory forbids perfect transitions from a pure state to the other, as the

system preserves a non-zero probability of remaining in the initial state. Starting

in the |a⟩ state, after a time t it holds:
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θ

φ

x̂

ŷ

|ψ0⟩ = |0⟩

|1⟩

|ψf ⟩

b

Figure 1.7: Arbitrary rotation of a single-qubit state by means of a driving field E⃗

with

∣
∣
∣E⃗
∣
∣
∣ = E cos (ωt) and E⃗/

∣
∣
∣E⃗
∣
∣
∣ = (cos (θ) , sin (θ) , 0). The basis is defined by

the spin states in the ẑ direction.

Figure 1.8: Experimental data of NV center characterisation. (a) Rabi oscillations

of the ms = 0 (|0⟩), ms = −1 (|1⟩) subsystem of the 3A2 energy level of the NV.

After the initialisation the system is in the |0⟩ state. A microwave square pulse of

resonant frequency is then applied for different pulse lengths tp. The data show

the perfect population inversion for the first Rabi cycle and subsequent amplitude

decay due to decoherence while keeping the oscillatory behaviour. (b) Study of the

T2 coherence time of the system via spin echo measurements (see [39]). Figure

from [39].
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Pa 7→a = |⟨ψ (t)|a⟩| = Ω2

Ω2
R

cos2
(
ΩRt

2

)

+
∆2

Ω2
R

Pa 7→b = |⟨ψ (t)|b⟩| = Ω2

Ω2
R

sin2
(
ΩRt

2

) (1.44)

Where now the Rabi frequency ΩR is redefined in a more general fashion:

ΩR ≡
√

Ω2 +∆2 (1.45)

and for the resonant case (∆ = 0) we retrieve ΩR = Ω.

In practical application, instead of tuning the oscillation time it is more conve-

nient to design a variable intensity profile for the driving field while keeping fixed

the total pulse duration. Therefore, quantum gates can be designed for the specific

system by means of tailored driving fields, defining intensity profiles Ω (t) and

frequency fluctuations ∆(t) over a fixed gate time T . Since for electromagnetic

controls the Rabi frequency is proportional to the electric field, according to the

description one wishes to adopt it can take both complex or real values.

The study of the optimal pulse details for gate generation is called Quantum

Optimal Control (QOC) and is better described in section 1.4.3.

1.3. System specifics

As described in section 1.2, NV centers in diamonds allow to define electronic two-

level quantum systems with well established energy schemes. Generally speaking,

when multiple NVs are found in a restricted area then interaction between different

NV spins become possible, generating in fact a multi-qubit system. On the other

hand, two-qubit systems can be generated naturally even for an isolated NV center

because of the presence of Nitrogen atoms with non-zero nuclear spin, as well as

possible neighbour 13C species. In these cases, the nuclear spin of the atom can

couple with the electronic spin (e.g. via dipole-dipole interaction).

The physical system we refer to is fully described in [40] and depicted in figure

1.9. In detail, we consider the hyperfine coupling between the electronic spins of a

NV centre and the nuclear 1/2−spin of a neighbour 13C atom with spin states down

(|0⟩n) and up (|1⟩n).

The complete system Hamiltonian can be expressed as

Ĥ = Ĥd + Ĥc (1.46)

where the drift Hamiltonian defining the self-energy with respect to the ground

state |0⟩en is:

Ĥd = ω01σ̂11 + ω02σ̂22 + ω03σ̂33 (1.47)
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|0⟩e ⊗ |0⟩n ≡ |0⟩en

|1⟩e ⊗ |0⟩n ≡ |2⟩en

|0⟩e ⊗ |1⟩n ≡ |1⟩en

|1⟩e ⊗ |1⟩n ≡ |3⟩en

ω02

ωm

δm

ω03

ωr1

ωr2

δr1

ω01

Figure 1.9: Electron spin - nuclear spin system in NV centre. The transition fre-

quencies ωij are taken from [40] and reported in the text. Controls and detunings

ωk, δk (k = m, r1) are subject to optimisation. The control ωr2 is originally intro-

duced for state initialisation only.

where σ̂pq ≡ |p⟩⟨q| and ω01 ≈ 2MHz ω02 ≈ 2.88 GHz, ω03 ≈ 130MHz.

The control Hamiltonian Ĥc accounts for the external electromagnetic pulses. Con-

sider an oscillating monochromatic field at frequency ω in the form of a plane wave:

E⃗ = E⃗0 (t) e
−iωt + E⃗∗

0 (t) e
iωt (1.48)

where the field intensity can be modulated over time. From the light-matter inter-

action theory within the dipole approximation, it is known that transitions among

two energy levels |p⟩ and |q⟩ can occur with probability proportional to the dipole

matrix element d⃗pq = ⟨p| ˆ⃗d|q⟩, being
ˆ⃗
d the dipole moment of the particle. Being

the latter an hermitian operator and considering that ⟨p| ˆ⃗d|p⟩ = ⟨q| ˆ⃗d|q⟩ = 0, we

can decompose
ˆ⃗
d as:

ˆ⃗
d = d⃗pq |p⟩⟨q|+ d⃗∗pq |q⟩⟨p| (1.49)

Now, the energy associated to the light-matter interaction is the dipole energy that,

applying the definition above, becomes:

Ĥd = − ˆ⃗
d · E⃗

= −ℏ
[(

Ωe−iωt + Ω̃eiωt
)

|p⟩⟨q|+
(

Ω∗e−iωt + Ω̃∗eiωt
)

|q⟩⟨p|
] (1.50)

where Ω = d⃗pq · E⃗0/ℏ is the Rabi frequency and Ω̃ = d⃗pq · E⃗∗
0/ℏ the counter-

rotating frequency. By moving to the interaction picture one finds that the terms

involving Rabi frequencies oscillate at a frequency ∆ω = ω − ω0, being ω0 the

resonance frequency between |p⟩ and |q⟩, while the ones with amplitude Ω̃ oscillate

at ω + ω0. As a result, if ω ≈ ω0, we can neglect the fast oscillating terms in
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Ω̃ treating them as constantly equal to their average value in the interaction time

window: this operation takes the name of rotating wave approximation (RWA).

Alternative approaches suggest the validity of this description also in the case of

Ω ≪ ω0, i.e. the case of weak (or slow) driving which will be the case for this

work (see [41] for reference). As a result, in the interaction picture the two-level

control Hamiltonian can be written as:

ĤI
d = −ℏΩe−i∆ωt |p⟩⟨q| − ℏΩ∗ei∆ωt |q⟩⟨p|
= −ℏΩe−i∆ωt |p⟩⟨q|+ h.c.

(1.51)

which can now be generalised to the full set of pulses which drive transitions among

the states. As a result, the total control Hamiltonian in the SchrÈodinger picture is

given (in units of ℏ for simplity) by:

Ĥc = −
1

2

(
Ωme

iωmtσ̂02 +Ωr1e
iωr1

tσ̂23 + Ωr2e
iωr2

tσ̂13 + h.c.
)

(1.52)

being Ωk the Rabi frequencies controlling the MW transition (k = m) and RF

transitions (k = r1, r2) between the energy levels |p⟩ and |q⟩.
It is convenient to move to the interaction picture defined by:

Û0 (t) = exp
(

−iĤ0t
)

with Ĥ0 = aσ̂22 + bσ̂33 + cσ̂11 + dσ̂00 (1.53)

and with the choice of parameters:







a = ωm − 4
3δm − 1

2δr
b = a− ωr1

c = ω01 + 2δm − γ
d = a− ωm

(1.54)

we obtain an effective Hamiltonian given by Ĥeff = ÛĤÛ † − iÛ † ˙̂U that can be

written as:

Ĥ = −1

2







4
3δm − 2

3δr1 0 Ω02 0
0 γ 0 Ω13

Ω∗
02 0 −2

3δm − 2
3δr1 Ω23

0 Ω∗
13 Ω∗

23 −2
3δm + 4

3δr1







(1.55)

which in the case δm = δr1 = δ simplifies as:

Ĥ = −1

2







2
3δ 0 Ω02 0
0 γ 0 Ω13

Ω∗
02 0 −4

3δ Ω23

0 Ω∗
13 Ω∗

23
2
3δ







(1.56)
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where Ωnm = unme
iθnm is the control performing Rabi oscillations between the

|n⟩ and |m⟩ levels while δ and γ are detuning parameters.

equation (1.56) defines an effective Hamiltonian for the system that will be

used to build the time evolution operator to be optimised for the design of the

quantum gate in the simulation of the model. The definition of the Hamiltonian

has been done following the reasoning illustrated in [40]. Nevertheless, a different

reference frame characterised by a new definition of the a, b, c, d parameters in

equation (1.53) has been introduced to overcome some technical issues, as further

discussed in section 3.2.1.

1.4. Control Theory

In today’s technology most precise high-tech devices exploit some kind of feedback-

based approach to automatically calibrate and respond to external stimuli. This

is indeed a very natural behaviour: from animals to plants, all creatures sponta-

neously learn from the environment by performing certain actions, analysing the

environment’s response and therefore deciding the next action to take. This mental

scheme is therefore translated also to the field of high-precision technology: while

a whole branch of machine learning exploits such methods to develop a sort of

ºconsciousnessº about rules and goals within a specific framework (reinforcement

learning, see [42]), every-day applications such as thermostats in refrigerators or

laser light emitters make use of this feedback-controlled methods to keep a steady

working state [43].

It is important to stress that control theory takes the role of ºsteeringº the dy-

namics of a specific system. In particular, from a classical perspective it could be

defined as the study of the dynamics manipulation given the environment actions

on the system itself. When it comes to quantum, control theory is responsible for

a coherent manipulation of the evolution of a quantum system which is otherwise

subject to the non-coherent action of the environment, which directly affects the

system state by means of external fields and measurements effects on the quan-

tum wavefunction. In this ºbackactionº on the system lays the crucial distinction

between classical and quantum devices. According to our goal, it can be either

an opportunity to encode environmental information in the system of an unwanted

modification that we will want to avoid. Because of all this, a structural theory for

controlling the dynamics of quantum systems is required.

In this section we highlight the main features of classical and quantum control

theory, defining important concepts and describing how this framework can be

useful to enhance the performance of our (quantum) devices. A full description of

classical and quantum control specifics can be found in [43].

1.4.1. Classical Control Theory

Let us try to formalise the theoretical framework we are working in: we shall

assume that at any arbitrary time t the state of the system under investigation is
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defined by a set of variables xxx (t) ∈ C
n, whose values allow to encode all the

information about the system. The domain of xxx (t) defines the state space and the

dynamics of the system will be therefore described by a trajectory in such a space,

defined by the values of xxx (t) : 0 ≤ t ≤ T over a certain period of time T . With

this picture we are implicitly assuming that the system is subject to an equation of

motion (EoM) of the form:

d

dt
xxx (t) = aaa (xxx<t, t) with aaa : Cn × R 7→ C

n (1.57)

i.e., we assume that there exists an EoM for the system state determined by the

presence of a function aaa of the history of the system xxx<t ≡ {xxx (t) : 0 ≤ t < T}
and the current time t.

While equation (1.57) governs the state evolution, this information is only

known to the system itself. Instead, an external observer can gain information

about the system state only performing a measurement on it. In real life, perfect

continuous monitoring of the system state in impossible to perform (meaning that

we cannot access xxx(t) per se), but the system can be only partially observed return-

ing outputs

yyy (t) = ccc (xxx (t) , t) with ccc : Cn × t 7→ R
m (1.58)

where in the most general case the system description can be complex, while the

measurement outputs yyy (t) take real values. In this framework we are basically

stating that all the information we can retrieve from the system by probing it and

the dynamical evolution of the system itself are described by some (possibly non-

linear) functions.

The description adopted so far is the one of an open system subject to its own

evolution laws that can be only saw by performing a measurement. In a more gen-

eral fashion, we could also introduce the possibility for us external users to control

the dynamics of the system by the means of input (control) signalsuuu (t). This leads

to a modification of the equation of motion for the system in the following form:

d

dt
xxx (t) = aaa (xxx<t, t) + bbb (xxx<t,uuu (< t) , t) with bbb : Cn × R

k × R 7→ C
n (1.59)

while consistently also the measurements could depend on the controls: yyy =
ccc (xxx<t,uuu (< t) , t). This formulation is rather general and covers any possible ex-

pression for the evolution function and the controls. Still, to make these problems

analytically solvable it is common practice to restrict to the case in which the right-

hand terms in equations 1.59 and 1.58 are represented by linear, time-stationary

terms: this is the class of the so-called linear time-invariant (LTI) models (see

[44]), for which it holds:

d

dt
xxx (t) = aaa (xxx<t, t) + bbb (xxx<t,uuu (< t) , t) = AAAxxx (t) +BBBuuu (t)

yyy (t) = ccc (xxx (t) ,uuu (t) , t) = CCCxxx (t) +DDDuuu (t)
(1.60)
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withAAA,BBB,CCC,DDD proper linear operators with consistent sizes and domains.

The controls uuu (t) act as a steer on the evolution of the states, deviating them

from their original trajectory. As a result, they allow to reach points in the state

space which would not be naturally be crossed by the dynamics. We can hence

perform state preparation in this way. In the most general sense, once a specific

target is set, there exist multiple signals {uuui (t)}i which solve the control problem.

According to the situation, one could choose any of this controls or perform further

optimisation, for example minimising the total time or the control norm ∥uuui∥2.

1.4.2. Classification of control models

So far we introduced the presence of control signals and their theoretical action on

the system dynamics. Nevertheless, even if perfect controls exist it might be non

trivial to learn their form. There are two major classes of approaches that allow

to infer the optimal control uuu∗ for a given problem: we review them below, with a

particular focus on the closed-loop approach which has been the main focus of this

work [45, 43].

Open-loop control

If the evolution of the system is known from some theoretical underlying model,

one can proceed to analytically or numerically solve the problem given by:







ẋxx (t) = aaa (xxx<t, t) + bbb (xxx<t,uuu
∗
<t, t)

xxx (0) = xxx0
yyy (0) = ccc (xxx0,000, 0)
yyy (T ) = c (xxx (T ) ,uuu∗T , T ) = yyytarget

(1.61)

This approach is especially powerful because it would in principle return an exact

solution to the problem and therefore find the truly optimal control of the system.

Nevertheless, it presents a major issue: we do not want the system to be too com-

plicated to not be analytically solvable, yet we cannot idealise the system represen-

tation up to the point that the description is too simplistic. In fact, a deterministic

solution would be possible only by neglecting all the random contributions to the

dynamics coming from environmental noise and readout imperfections, which are

assumed small. Moreover, if the theoretical background describing the system is

not accurate, the optimal signal returned by this optimisation will inevitably not

work properly of the real device.

Closed-loop control

To overcome the modeling issues of the open-loop approach, a more trial-and-error

based solution can be exploited. As reported in figure 1.10, the aforementioned

control problem can be saw as finding the right input to a black box which per-

forms state evolution to retrieve the desired output. Therefore, we can implement



26 CHAPTER 1. INTRODUCTION AND THEORETICAL BACKGROUND

 
·x = f(x, u, t)

y = c(x, u, t)
u(t) y(t)

Input


signal

Dynamical


Evolution

Output


signal

Feedback

Figure 1.10: Scheme of optimal control inference process. The system is treated

as a black box which takes in input the trial control signal and evolves the system

via and EoM ruled by f (x, u, t) ≡ a (x, t) + b (x, u, t). The output signal is the

measurement result. If the input control is optimal (uuu (t) = uuu∗ (t)), then the output

signal is the target one. In closed-loop optimisation output signals are used as a

feedback to adjust the input one.

an iterative protocol: we propose an input signal uuu (t), then probe the system re-

trieving some measurements {yyy (ti)} to infer something about the correct action of

the control on the system and ultimately we exploit this information as a feedback

to fine tune the details of the control. While being in most cases more challenging

due to the difficult technical implementation, this approach has better potential than

open-loop control since the real device is directly probed and therefore no precise

modeling has to be done.

The closed-loop control class is quite wide and includes several methods and

procedures, which share the common feature of performing an iterative signal opti-

misation and therefore ºcontrol learningº. Sometimes an excessively fast dynami-

cal evolution or experimental difficulties in performing specific measurements can

prevent the user to exploit the real system for the evolution. In these cases it is

convenient to substitute the real device with a detailed simulation, which differen-

tiates from the open-loop case because now we are taking into account stochastic

processes and noise sources as well. This keeps the fundamental distinction be-

tween open- and closed-loop approaches valid: in the first case we seek numerical

solutions, while in the second case we infer suitable signals via adaptive learning.

1.4.3. Quantum Control

The theory of classical control depicted in the previous section applies to a large

variety of systems, regardless of their size and the physics behind them. However,

when it comes to quantum systems some important differences arise: the first and

main one is the backaction induced by the measurement operation, described by

the projection postulate. This means that we cannot think about retrieving infor-

mation from the system without perturbing it. Moreover, projective measurements
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on the system result in the collapse of the wavefunction onto the respective Hilbert

subspace, introducing a stochastic component in the dynamics that is not funda-

mentally taken into account for the classical case. While trying to interfere as little

as possible with the system, weak measurements can be used instead of projective

ones: this would in principle reduce the information extracted by the user but it

will not make the quantum state fully collapse [46].

Keeping in mind the previous important note, the translation from the classical

state-space control model to the domain of quantum systems is quite straightfor-

ward. In particular, the intrinsic formalism of quantum mechanics (which is usually

described in terms of linear operators and matrices) allows to find direct correspon-

dence with classical LTI models:

• State vector ←→ Density matrix: while for classical systems xxx (t) is the

state encoding all the useful information about the system, in a quantum me-

chanical framework the state is defined by the density operator ρ̂ (t). Fun-

damental differences are the probabilistic nature of the quantum state repre-

sentation and its definition up to a global phase.

• State space←→Hilbert space: a consequent analogy lays in the domain of

the state, which is no longer the vector space ofxxx (t) but becomes the Hilbert

space which hosts the quantum states. For both spaces the dimension might

become infinity.

• System matrixAAA and forcing termBBBuuu (t)←→ Drift and control Hamil-

tonians Ĥ0, Ĥc: while dealing with quantum states, the evolution of the

system is ruled by the Hamiltonian of the system. Therefore, the system ma-

trix describing the free evolution of the system has as counterpart the drift

Hamiltonian Ĥ0 which determines the energy eigenstates, while the addi-

tional term in the EoM which is related to the external controls becomes in

a quantum domain an additional term in the total Hamiltonian:

Ĥ (t) = Ĥ0 (t) +
∑

i

ui (t) Ĥc,i

︸ ︷︷ ︸

≡Ĥc(t)

(1.62)

According to the previous analogies, if we wish to control quantum systems it is

therefore necessary to define a set of controllable actions that contribute to the

definition of the system Hamiltonian at each time. This will ultimately impact the

time evolution and therefore the dynamics of the quantum states.

1.4.4. Fidelity and Figure of Merit

In the previous sections we stated that the goal of control theory is the manipulation

of a system evolution to redirect its trajectories in the state-space and eventually

reach a specific target. In order to quantify the quality of a trial solution, it is
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necessary to introduce a metric or, as it is usually called in the field, a Fidelity

measure F . The latter must satisfy some basic requirements:

• Upper- and lower-bounded (usually in the interval [0, 1])

• Reaches its maximum if and only if the target is perfectly reached (up to

some permitted symmetries, such as a global phase difference in a quantum

state preparation)

Once a quality metric has been defined, the control problem can be revisited

as a maximisation problem, where the quantity to maximise takes the name of

Figure of Merit (FoM). In most cases this coincides with the fidelity, but it can be

eventually defined taking into account some other quantities which might affect the

optimal outcome, such as the control pulse power ∥uuu (t)∥2. Practically speaking,

it is common to translate the optimisation problem into a minimisation task with

loss function J given by 1− FoM , which usually reduces to the simple infidelity

measure 1−F .

For the case of quantum states a natural fidelity exists. Consider the time-

evolved system state |ψ (t)⟩ which satisfies:

iℏ
d

dt
|ψ (t)⟩ = Ĥ (t) |ψ (t)⟩ =

(

Ĥ0 + u (t) Ĥc

)

|ψ (t)⟩
|ψ (t = 0)⟩ = |ψ0⟩

(1.63)

where we restricted to the case of a time-independent drift Hamiltonian and a single

control. Then, a Fidelity measure is given by the quantum overlap between the

target state |ξ⟩ and |ψ (t)⟩:

Fξ (ψ (t)) ≡ |⟨ξ|ψ (t)⟩|2 =
∣
∣
∣Tr
(

Π̂ξ ρ̂ (t)
)∣
∣
∣

2
(1.64)

where Π̂ξ ≡ |ξ⟩⟨ξ| and, for a pure state, ρ̂ (t) ≡ |ψ (t)⟩⟨ψ (t)|. One can verify that

such a metric satisfies the requirements above. Please notice that:

Fξ (ψ (t)) = 1 ⇐⇒ |ψ (t)⟩ = eiϕ |ξ⟩ (1.65)

i.e., maximum fidelity is reached when the time-evolved state is equivalent to the

target (equal up to a global phase φ).

As for the optimisation of quantum gates, the principle of superposition in

quantum mechanics implies that to ensure the correct implementation of the gate

it is sufficient to verify its expected action on the basis states {|ϕi⟩}i, since each

other state can be written as a linear composition of these. Attention should be

paid to the global phase added to each basis state upon evolution: if we require it

to be the same for all the basis states, a suitable candidate for a fidelity metric for

quantum gates is:

F ≡ 1

N2

∣
∣
∣
∣
∣

N∑

i=1

⟨χi|ϕi (t)⟩
∣
∣
∣
∣
∣

2

(1.66)
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where the |χi⟩ states are defined as the theoretical application of the target state V̂
to the basis states:

|χi⟩ ≡ V̂ |ϕi (0)⟩ ∀i (1.67)

In the most general case, the time evolution of the quantum states ruled by the sys-

tem Hamiltonian can be viewed as the action of a time evolution operator Û (uuu (t) , θθθ; t)
from t0 = 0 which depends on the controls uuu (t) = {ui (t)}i, the final time t and

possibly some additional parameters θθθ = {θj}j (see section 1.1.5):

|ϕi (t)⟩ ≡ Û (uuu (t) , θθθ; t) |ϕi (t = 0)⟩ ∀i (1.68)

Therefore, for each basis state it holds:

⟨χi|ϕi (t)⟩ = ⟨ϕi (0)|V̂ †Û |ϕi (0)⟩ (1.69)

which is the i−th entry of the trace of the V̂ †Û operator, i.e. its expectation value

in the |ϕi (0)⟩ state. The quantity in equation (1.69) is a complex number with

modulus bounded in the interval [0, 1] and the normalisation constraint ⟨ϕi|ϕi⟩ = 1
ensures that the maximum of |⟨χi|ϕi (t)⟩| is reached if and only if:

V̂ †Û = eiϕ1N =⇒ Û = eiϕ
(

V̂ †
)−1

= eiϕV̂ (1.70)

i.e., the time evolution operator is equivalent to the (unitary) target gate up to a

global phase. Taking the normalised sum over all the basis states ensures that

maximum gate fidelity can be reached if and only if all states are correctly evolved

to their target, eventually up to the same global phase.

These considerations suggest us the possibility to define gate fidelities on the

basis of the trace of the V̂ †Û operator which take into account the amount of sym-

metries we are willing to accept in out final result. As reported in [45], the control

problem can be in fact claimed as solved when the Û operator is equivalent to the

target V̂ gate, eventually up to some symmetries such as global or local phases and

local operations.

When the goal of the optimisation is to produce Û = V̂ , a suitable fidelity

measure is given by:

FRe =
1

N
Re
[

Tr
(

Û †V̂
)]

(1.71)

which satisfies FRe ∈ [0, 1] and FRe = 1 ⇐⇒ Û = V̂ .

If instead the optimisation can be considered successful when the time evolu-

tion operator is equal to the target gate up to a global phase, it is convenient to

use:

Fsm =
1

N2

∣
∣
∣Tr
(

Û †V̂
)∣
∣
∣

2
(1.72)

and one can observe how this is an equivalent formulation of equation (1.66).
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Finally, if we wish to allow for phase differences among the individual matrix

elements of Û and V̂ a suitable metric is given by:

Fss =
1

N2

N∑

k,l=1

|u∗klvkl|2 (1.73)

For all the aforementioned scenarios, the optimisation problem will be perfectly

solved by F = 1.

As for of our implementation and simulations, in this work we focus on gate

optimisation up to a global phase.

1.5. Optimal control algorithms

In the previous sections we introduced some basic concepts of control theory and

we saw how the goal of optimal control is to find the optimal set of controls that

steer the system dynamics in a desired way. An optimal solution is therefore found

when the state of the system (or the whole basis evolution) is close to the target,

given a specific metric. In this section we investigate the state-of-the-art algorithms

which allow to learn the best set of controls (a recent full review in [47]).

1.5.1. Gradient Ascend Pulse Engineering (GRAPE)

When the gradient of the control objective can be efficiently computed, a large

family of methods are applicable to move in a deterministic and consistent way

towards the global minimum. As the self-explanatory name suggests, the GRadient

Ascend Pulse Engineering (GRAPE) method is a gradient-based algorithm widely

used in the field of optimal control for state preparation or other sectors where the

analytical form of the gradient can be calculated. For the former, let us assume

that a target state ρ̂ (T ) to be prepared from ρ̂ (0) by tuning an Hamiltonian as the

one in equation (1.62). As discussed in section 1.1.5, the dynamics of the state is

ruled by the Liouville-von Neumann equation that, upon discretisation of the total

transfer time T into {ti}i=1,...,M where ti = i ·∆t and ∆t = T/M , becomes:

ρ̂ (T ) = ÛM ÛM−1 . . . Û1ρ̂ (0) Û
†
1 . . . Û

†
M−1Û

†
M (1.74)

where:

Ûk = exp



− i
ℏ



Ĥ0 +
∑

j

uj (k∆t) · Ĥj



∆t



 (1.75)

Since in the discrete case for ∆t sufficiently small it holds:

Û (0;T ) ≃ T
[{

Ûk

}

k=1,...,M

]

= ÛM ÛM−1 . . . Û1 (1.76)
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where T [·] the time ordering operator, we can calculate the variation of a fidelity

measure as the one in equation (1.64) with respect to each operator Ûk and con-

sequently, by chain rule, with respect to uk. The update rule follows then directly

from a standard follow-the-gradient approach as:

ui+1
j (k∆t) = uij (k∆t) + η · δF

δuj (k∆t)
(1.77)

where now i indicates the iteration number and η the learning rate, quantifying the

update momentum.

1.5.2. Krotov’s method

Another popular gradient-based technique is given by Krotov’s algorithm (firstly

introduced in [48], applications to QOC further described in [49], [50]), which

works in a very similar way to GRAPE but implements a slightly different update

routine. In fact, this approach involves the definition of the control objective in a

way that ensures the possibility to sequentially (rather than concurrently) update

the controls in a non-linear fashion. In particular, this can be done by discretisa-

tion of the control pulse into M time steps which are updated one per iteration

according to a prescription rule obtained by derivation of the control objective with

respect to the control steps themselves. While this provides a deterministic and

precise method for optimisation, its drawback is the slow-down of the FoM con-

vergence while approaching the region of the optimum control due to the vanishing

of the gradient.

1.5.3. Chopped random basis (CRAB) algorithm

The chopped random basis (CRAB) algorithm has been firstly introduced in [51]

and more recently enhanced in [52]. As widely described in [45], it has become

one of the most widely used QOC algorithms because of its capability of work

well under experimental constraints, the possibility to access the usually trap-free

landscape (and therefore favour convergence) and the adaptability to both open-

loop and closed-loop optimisation schemes.

The key idea behind this method is based on the expansion of the control field

u (t) into a truncated basis made of of Nc functions fi:

u (t) =

Nc∑

i=1

cifi (t) (1.78)

The optimization functional J [{ci}i] is minimised by means of gradient-free di-

rect search methods (e.g., the Nelder-Mead (NM) algorithm, see [53]) over a sub-

space of reduced dimension, aiming to find the best set of coefficients {ci}i=1,...,Nc
.

This approach allows to optimise of highly non-linear functionals and complex sys-

tems and is especially convenient when gradient-based algorithms are impossible
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to apply, either because of analytic constraints of because of low efficiency. The

main parameter to fix for this optimisation is the amplitude variation (AV), i.e. the

size of the simplex to be investigated at each NM run. Larger AV allows to scan

the parameter space faster, getting closer to the minima in less iterations; a smaller

AV allows to better map the minima surroundings to find detailed solutions.

In principle, truncating the basis forces a constraint in the search space of the

controls that can lead to sub-optimal (local) minima, named false-traps. These are

represented by the actual minima of the reduced control problem that might in prin-

ciple not coincide with the global minima of the original formulation. Therefore, a

first step to overcome this phenomenon is the randomisation of the basis functions

While the choice of the basis is in principle arbitrary, a common choice is

represented by the (truncated) Fourier basis, for which the randomisation procedure

consists of a new random choice of frequencies and phases in the Fourier space. In

this case, exploiting trigonometric function equation (1.78) becomes:

u (t) =

Nc/2∑

i=1

ci
cos (ωit)

Λ (t)
+

Nc∑

i=(Nc/2)+1

ci
sin (ωit)

Λ (t)
(1.79)

where ωi = ω̃i + δωi ∀i, being {ω̃i}i the principal harmonics and δωi is randomly

chosen in [−ωmax, ωmax].

Each random set of basis functions allows to explore a Nc dimensional subset

of C ⊂ L2, the set of admissible controls (eventually infinite). The latter is usually

defined by the experimental constrains, such as limited bandwidth or power. By

iterative randomisation of the basis set we can therefore investigate the more and

more regions of C at a lower computational cost.

The randomisation procedure has been properly formalised in an efficient way

in the so-called dressed CRAB (dCRAB) algorithm (see [52]), aiming to overcome

at the best the false trap problem. The key idea in here is to proceed with a control

expansion on a first set of basis states
{
f0i
}

as in equation (1.78), perform an

optimisation in the span
({
f0i
})

subspace of C and then ºdressº the resulting pulse

(which will be either a global or a local optimal control) with new search directions

given by a new basis set. The optimisation procedure within the same basis choice

takes the name of super-iteration (SI). For the j−th SI it holds:

uj (t) = cj0u
j−1 (t) +

Nc∑

i=1

cjif
j
i (t) (1.80)

where
{

f ji (t)
}

is the new set of basis functions and uj−1 (t) is the optimised

control pulse returned by the (j − 1)−th super-iteration. The coefficient cj0 allows

to move the optimisation on the same direction of the previous pulse, while
{

cji

}

i
allow to explore new directions.

For each dCRAB search the following parameters must be specified:



1.5. OPTIMAL CONTROL ALGORITHMS 33

• Nature of the basis (e.g. Fourier)

• Dimension of the truncated basis Nc

• Number of super iterations

• Nature of the optimisation (search) algorithm to minimise the control objec-

tive (e.g. NM algorithm)

• Number of optimisation iterations within one SI

• Convergence criteria (threshold value for J or minimal slope for local min-

ima recognition)

In this work dCRAB has been chosen as optimisation algorithm because of its

great performances while working in a gradient-free framework under the direct

conditioning of the experiment. The NM algorithm has been tested to be the one

suggesting best overall optimisation results in a noiseless scenario, while upon

introduction of stochastic noise CMA-ES could be preferred [54]. As shown in

section 3.2, dCRAB allows to reach good figure of merit results over simulations

of the setup in various configurations. This makes the approach promising while

moving towards experimental applications.

1.5.4. The QuOCS library

Specifically, for the numerical validation of this work we made use of the Quantum

Optimal Control Suite (QuOCS) available for Python [55]. This tool has been

designed to favour the implementation of QOC both in numerical, model-based

approaches and real experimental optimisation.

QuOCS provides tool for both open-loop and closed-loop QOC, including op-

timisers as GRAPE and dCRAB as well as multiple search algorithms like Nelder

Mead and CMA-ES. It also includes built-in classes for single-qubit simulations

that allow to optimise gates in different conditions. As for our case, we indepen-

dently built a class for two-qubit simulations using the standard of QuOCS and the

instructions given in section 3.1. Then, we interface our simulation module with

the built-in dCRAB optimiser of the Suite, adjusting the parameters for each run.

Default functions have also been used to provide visualisation of the results.
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Chapter 2

Efficient gate fidelity protocol

In section 1.4 we introduced the field of control theory and highlighted why it

is relevant for (quantum) technologies. Moreover, in 1.4.4 we reported the main

fidelity measures that can be exploited to define control objectives for the optimi-

sation of quantum states preparation and quantum gates. Nevertheless, even if the

metrics reported in equations 1.71-1.73 provide accurate tools for gate preparation,

the experimental estimation of such quantities can be challenging for many-body

quantum systems and would require a lot of effort in determining the full set of

matrix elements of Û to compute the fidelity. Therefore, we can exploit alternative

fidelity measures which are more experimentally accessible for the gate prepara-

tion, while keeping the aforementioned quantities for reference. In this section we

describe the theoretical details of the tomography protocol we propose to compute

a figure of merit which enables closed-loop QOC starting from experimental data.

With the term tomography we indicate the characterisation of the quantum gate

by means of preparation, evolution and measurement of some well-designed probe

states.

A recent work showed how analysing the time evolution of just three well-

designed states can suffice to perform open-loop optimisation of quantum gates

regardless of the Hilbert space dimension [56]. In detail, the proposed fidelity is

presented as follows:

FJ =
n∑

i=1

wi

Tr
[
ρ̂2i (0)

] Re
{

Tr
[

V̂ ρ̂i (0) V̂
†ρ̂i (T )

]}

(2.1)

where n = 3 can be reduced to n = 2 if the time evolution is unitary and preserves

the population in the optimisation subspace (e.g., absence of decoherence). Re-

stricting to the latter case, the definition of the two states to evolve must take into

account the following: the first state fixes a basis {φi}i and verifies the gate action

on the basis vectors. It must satisfy:

ρ̂1 (0) =
d−1∑

i=0

λiP̂i with λi ̸= λj for i ̸= j and λi ≥ 0 ∀i (2.2)

35
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where P̂i = |φi⟩⟨φi| and d is the basis size. The second one is a totally rotated pure

state used to detect phase errors:

ρ̂2 (0) = P̂tr with P̂tr = |ϕ⟩⟨ϕ| such that ⟨ϕ|φi⟩ ≠ 0 ∀i (2.3)

The additional third state to check population conservation in the subspace can be

simply taken proportional to the identity in the subspace.

Please notice how the quantity in equation (2.1) reaches 1 when:

ρ̂i (T ) = V̂ ρ̂i (0) V̂
† ∀i (2.4)

where the left-hand side term represents the realisation of the evolved quantum

states under the controls:

ρ̂i (T ) ≡ Û ρ̂i (0) Û † (2.5)

and the second defining the theoretical, expected action of the gate:

ρ̂′i ≡ V̂ ρ̂i (0) V̂ † (2.6)

It is important to underline that the results achieved in [56], including the def-

inition of equation (2.1), have been developed within the framework of numerical

optimisation. In this work we analysed and proposed how to turn this computa-

tional tools into experimental routines for closed-loop QOC. In this regard, we

recognise the real-part operator in equation (2.1) being a tool for numerical repre-

sentation of an experimental result, which is indeed always a real number per se.

Since this is the direction we aim to inspect, we ignore it in the following pages.

2.1. Application to CNOT and SWAP gates

In this section we discuss how to estimate the quantity in equation (2.1) with the ex-

perimental realisation, evolution and measurement of specific quantum states. The

latter are chosen following the instructions in equations 2.2 and 2.3 in a compati-

ble way with the experiment. Assuming a well defined characterisation of the four

basis states and the possibility to perform the control within the decoherence time,

we do not investigate information leakage and therefore presume unitary evolution.

In this regime, just two quantum states are sufficient to estimate the gate fidelity.

While a full analysis of the preparation and readout processes for our system is

carried out in sections 3.1.1 and 3.1.3, respectively, here we give a more general

definition of the figure of merit based on only three requirements: the possibility

of initialising the system in |0⟩en, performing Rabi oscillations between states and

accessing the populations of the basis states independently, all with high fidelity.

A suitable choice for the ρ̂1 (0) and ρ̂2 (0) states is:

ρ̂1 (0) =
1

10

(
2 0 0 0
0 3 0 0
0 0 4 0
0 0 0 1

)

ρ̂2 (0) =
1

4

(
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

)

(2.7)
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We focus on the real-case task of optimising a Controlled-NOT gate which

flips the nuclear spin conditioned to the NV state. Setting the target gate to V̂ =
CNOT , its action on the initial states is:

ρ̂1 (0)
CNOT7−−−−→ ρ̂′1 ≡ V̂ ρ̂1 (0) V̂ † =

1

10

(
2 0 0 0
0 3 0 0
0 0 1 0
0 0 0 4

)

ρ̂2 (0)
CNOT7−−−−→ ρ̂′2 ≡ V̂ ρ̂2 (0) V̂ † =

1

4

(
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

)

= ρ̂2 (0)

(2.8)

i.e., the CNOT gate inverts the population of states |2⟩ and |3⟩ while applied to ρ̂1
while acts as the identity on ρ̂2.

2.1.1. Definition of the best ρ̂1 form

The preparation of ρ̂1 (0) as in equation (2.7) has been chosen as a better alternative

with respect to the more natural ˆ̃ρ1 (0) = diag (0.1, 0.2, 0.3, 0.4) because of the

difficulties of the algorithm in discriminating between CNOT and Identity gates.

Let us quantify this effect. Consider V̂ = CNOT and the theoretical case

of ρ̂1 being a classical mixture. If the time evolution is perfect then the operator

which represents it (which depends on the controls) acts on the state as the target

gate:

ρ̂ (T ) = Û ρ̂ (0) Û † = V̂ ρ̂ (0) V̂ † (2.9)

and therefore:

Tr
[

V̂ ˆ̃ρ1 (0) V̂
† ˆ̃ρ1 (T )

]

Tr
(

ˆ̃ρ21 (0)
) =

1

0.3
Tr

[(
0.1 0 0 0
0 0.2 0 0
0 0 0.4 0
0 0 0 0.3

)(
0.1 0 0 0
0 0.2 0 0
0 0 0.4 0
0 0 0 0.3

)]

= 100%

(2.10)

This applies to both versions of the state:

Tr
[

V̂ ρ̂1 (0) V̂
†ρ̂1 (T )

]

Tr
(
ρ̂21 (0)

) =
1

0.3
Tr

[(
0.2 0 0 0
0 0.3 0 0
0 0 0.1 0
0 0 0 0.4

)(
0.2 0 0 0
0 0.3 0 0
0 0 0.1 0
0 0 0 0.4

)]

= 100%

(2.11)

since

Tr
(
ρ̂21 (0)

)
= Tr

(

ˆ̃ρ21 (0)
)

= (0.1)2 + (0.2)2 + (0.3)2 + (0.4)2 = 0.3 (2.12)

But what would we measure for the quantity above if we were to mistakenly

find controls that make the time evolution act as the Identity on the system? In this

case we would have:

ρ̂ (T ) = 1ρ̂ (0)1† = ρ̂ (0) (2.13)

so that:

Tr
[

V̂ ˆ̃ρ1 (0) V̂
† ˆ̃ρ1 (T )

]

Tr
(

ˆ̃ρ21 (0)
) =

1

0.3
Tr

[(
0.1 0 0 0
0 0.2 0 0
0 0 0.4 0
0 0 0 0.3

)(
0.1 0 0 0
0 0.2 0 0
0 0 0.3 0
0 0 0 0.4

)]

= 96.7%

(2.14)
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while:

Tr
[

V̂ ρ̂1 (0) V̂
†ρ̂1 (T )

]

Tr
(
ρ̂21 (0)

) =
1

0.3
Tr

[(
0.2 0 0 0
0 0.3 0 0
0 0 0.1 0
0 0 0 0.4

)(
0.2 0 0 0
0 0.3 0 0
0 0 0.4 0
0 0 0 0.1

)]

= 93%

(2.15)

It is immediate to verify that the (relative) difference between the CNOT evo-

lution and the Identity evolution is 3.3% in the case of ˆ̃ρ1, while it grows to 7% for

ρ̂1. Hence, we can conclude that the latter form displays better sensitivity while

discerning between these gates. This is important in our case: as illustrated in

chapter 3, in many simulations we start from a blind guess for the controls corre-

sponding to turning off the whole control apparatus and in this regime the unitary

evolution coincides with the identity. Therefore, it is important to distinguish be-

tween the action of CNOT and Identity gates to escape the initial, local minimum

of the fidelity. In principle, the populations of the states subject to flip can be se-

lected to be maximally different to enhance this effect under the non-degenerate

populations requirement.

2.1.2. Experimental optimisation of the action on the basis

Fixing to n = 2 the number of states, the fidelity proposed in equation (2.1) is a

weighted sum of two terms, each one checking correspondence between the time

evolution and the quantum gates under a specific perspective. The first one involves

the preparation, evolution and measure of ρ̂1, analysing the action of time evolution

on all the basis states at once. For the initial state proposed in equation (2.7) the

theoretical, expected evolution reported in equation (2.8) is a diagonal, mixed state.

This allows to simplify the term for ρ̂1 in the fidelity measure since:

Tr
[

V̂ ρ̂1 (0) V̂
†ρ̂1 (T )

]

= Tr
[
ρ̂′1ρ̂1 (T )

]

=

3∑

i=0

⟨i|ρ̂′1ρ̂1 (T )|i⟩

=

3∑

i=0

(
ρ̂′1
)

ii
⟨i|ρ̂1 (T )|i⟩

=
3∑

i=0

(
ρ̂′1
)

ii
(ρ̂1 (T ))ii (2.16)

which holds because ⟨i| ρ̂′1 = (ρ̂′1)ii ⟨i| for i = 0, . . . , 3 since ρ̂′1 is a diagonal

matrix. It is important to highlight that this is true as we consider in here the evo-

lution of the theoretical mixed initial state ρ̂1 (0), which is perfectly diagonal. As

we will soon discuss, this is usually not the case for ρ̂1 (T ), that represents in this

picture the time-evolved (experimental) state of the system. Therefore, equation

(2.16) suggests that we can perform a closed-loop estimate of the contribute to

the gate fidelity related to ρ̂1 by preparing the system in the initial state, letting it
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evolve under the controls action, measure the population of each basis state (i.e.,

{(ρ̂1 (T ))ii}i=0,...,3) and then multiply these experimental values by the theoretical

ones (
{
(ρ̂′1)ii

}

i
).

For the experimental setup under investigation the realisation of the state ρ̂1 (0)
cannot be done with ease due to the mixed nature of the state itself. In fact, assum-

ing a default starting state ρ̂0 = |0e0n⟩⟨0e0n| for the two-qubit system, there is no

way to reach ρ̂1 (0) by means of unitary transformations. Hence, we propose an ap-

proach based on random-phase pulses which turns out to produce our desired state

as an average of multiple realisations. For the sake of simplicity, we schematize

the protocol in a single-qubit case.

Consider an initial and a final state given by:

ρ̂ (t0) = ( 1 0
0 0 ) = |0⟩⟨0| ρ̂ (tf ) =

(
λ0 0
0 λ1

)

(2.17)

Generally speaking, we can move from the initial |ψ0⟩ = |0⟩ towards the |1⟩ state

by applying a tailored pulse P̂ϕ (θ) of given length which has the effect of rotat-

ing the pure state to a configuration with the desired diagonal terms and non-zero

coherences:

ρ̂ (t0) = ( 1 0
0 0 ) = |0⟩⟨0|

P̂ϕ(θ)7−−−→ ρ̂θ (tf ) =
(

λ0 κ
κ∗ λ1

)

(2.18)

where cos (φ) = 2λ0−1 and κ = sin (φ) cos (θ)−i sin (φ) sin (θ) = sin (φ) e−iθ,

with reference to the notation in figure 2.1 (a). We recall that φ is the altitude

coordinate and θ is the pulse phase which determines the azimuth coordinate on the

Bloch sphere surface. The approach here is the same underlying Rabi oscillations,

fully described in section 1.2.2.

What happens if we consider multiple realisations of the state by starting from

|0⟩ and applying pulses P̂ϕ (θ) with the same value of φ but random θ? In section

1.1.2 we introduced the Bloch sphere visualisation tool for single qubit states. In

particular, a direct result from equation (1.14) is:

λ0 =
1 + z

2
and λ1 =

1− z
2

(2.19)

being λ0 and λ1 the probabilities associated to the measurement of the |0⟩ or |1⟩
states (diagonal terms of the density matrix), and z is the third component of the

Bloch vector r⃗, i.e. the state projection onto the vertical axis Z. As a result, since

all the states laying on the sameXY horizontal plane of the Bloch sphere share the

same z coordinate, they also have identical probabilities for |0⟩ and |1⟩. In other

words, they are states with the same diagonal.

Starting from |0⟩, i.e. the north pole of the Bloch sphere, the angle φ = Ωt
is uniquely determined by the pulse amplitude and duration (see equation (1.43)

for reference). This is the only parameter responsible for changing the value of z.

Hence, adopting the same φ for all the realisations we ensure to be in the previous

scenario.
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θ

φ

x̂

ŷ

|ψ0⟩ = |0⟩

|1⟩

|ψf ⟩

Figure 2.1: (a) State representation on the Bloch sphere. (b) Visualisation of the

random realisation of single qubit states sharing the same diagonal on the Bloch

sphere. Initial state is |0⟩ (green). Upon evolution with a pulse of tailored intensity

and duration, the state is rotated to reach a specific value of z (here z = −0.5,

orange state). The random phase of the pulse results in a random state position

on the horizontal circumference at z (blue dots, here N = 100 samples). The

average of many uniformly distributed realisations results in a mixed state with

Block vector r⃗ = (0, 0, z)T (blue).

If we now consider Nθ realisations of the state obtained by sampling as many

random values for the control field phase (θ ∼ U [0; 2π]), we obtain a collection of

pure states uniformly distributed on the same horizontal plane of the Bloch sphere.

Then, considering an average over all these states:

〈(
λ0 κ
κ∗ λ1

)〉

θ
=
(

⟨λ0⟩θ ⟨κ⟩θ
⟨κ∗⟩θ ⟨λ1⟩θ

)

=

=

(
λ0 sin(ϕ)⟨e−iθ⟩

θ

sin(ϕ)⟨eiθ⟩
θ

λ1

)

=
(

λ0 0
0 λ1

)

(2.20)

since the diagonal terms do not depend on θ and
〈
e±iθ

〉

θ
= 0 for θ uniformly

distributed in [0; 2π). As a result, one can obtain an equivalent description of the

dynamics of the mixed state as an average of the evolved versions of many pure

states with randomised coherences. A visualisation of these concepts is proposed

in figure 2.1.

The generalisation of this idea to the multi-qubit case is straightforward. Con-

sider the control Hamiltonian in the interaction picture defined in 1.56: assuming

that upon initialisation the system is in the ρ̂0 = |0e0n⟩⟨0e0n| ≡ |0⟩⟨0| state, it is

sufficient to consider sequentially two-states subsystems and apply tailored pulses

in the aforementioned way, turning everything off but the desired control. Details

of the pulse sequence and initialisation process are described in section 3.1.1. Such
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procedure allows us to obtain a two-qubit state

ρ̂θ1 (0) =







λ0 κ1 κ2 κ3
κ∗1 λ1 κ4 κ5
κ∗2 κ∗4 λ2 κ6
κ∗3 κ∗5 κ∗6 λ3







(2.21)

with {κi}i=1...6 being the coherences with random phases in the set θ ≡ {θi}i=1...6.

Again, the average of infinitely many of such realisations results in the desired

ρ̂1 (0) state: in practical conditions, the number Nsamples of realisations required

for the off-diagonal terms to average to zero over a finite number of samples will

be one of the tunable parameters of the algorithm.

The previous approach allows to experimentally determine the quantity in equa-

tion (2.16) simply by averaging the estimation over the whole set of phases θ used

in the preparation step. In fact, considering the previously introduced state ρ̂θ1
which satisfies

〈
ρ̂θ1 (0)

〉

θ
= ρ̂1 (0) it holds:

〈

Tr
[

V̂ ρ̂1 (0) V̂
†ρ̂θ1 (T )

]〉

θ
=
〈

Tr
[

ρ̂′1ρ̂
θ
1 (T )

]〉

θ

= Tr
[

ρ̂′1

〈

ρ̂θ1 (T )
〉

θ

]

= Tr
[

ρ̂′1

〈

Uρ̂θ1(0)U
†
〉

θ

]

= Tr
[

ρ̂′1U
〈

ρ̂θ1(0)
〉

θ
U †
]

= Tr
[

ρ̂′1Uρ̂1(0)U
†
]

= Tr
[
ρ̂′1ρ̂1 (T )

]

= Tr
[

V̂ ρ̂1 (0) V̂
†ρ̂1 (T )

]

(2.22)

Again, this holds since the ρ̂′1 term above represents the action of the gate on the

theoretical state with exact 0 on the off-diagonal terms which is θ−independent

and we are dealing with linear operations only.

We can finally combine the results of equations 2.16 and 2.22 to obtain a

theoretically-driven experimental routine:

Tr
[

V̂ ρ̂1 (0) V̂
†ρ̂1 (T )

]
(2.22)
=

〈

Tr
[

V̂ ρ̂1 (0) V̂
†ρ̂θ1 (T )

]〉

θ

(2.16)
=

〈
3∑

i=0

(
ρ̂′1
)

ii

(

ρ̂θ1 (T )
)

ii

〉

θ

≃ 1

Nθ

∑

θ

3∑

i=0

(
ρ̂′1
)

ii

(

ρ̂θ1 (T )
)

ii
(2.23)

Equation (2.23) summarises the experimental protocol we suggest for the gate

fidelity measure over the basis state:
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• Define a suitable set of diagonal terms, in accordance with equation (2.2)

• Define a sequence of pulses starting from |0⟩en which prepares pure states

with the desired populations on the diagonal but uses random phases θi

• Prepare Nθ several realisations of such states with random coherences and

for each of them perform the time evolution and readout the populations at

the final time

• Multiply each experimental population with the theoretical value and aver-

age over all the Nθ results

This routine allows to access the quantity Tr [ρ̂′1ρ̂1 (T )], which shall be normalised

in the interval [0, 1] by diving it by a factor Tr
(
ρ̂21 (0)

)
(theoretical value).

A final remark: not only this approach allows to experimentally access the

quantity of interest, but it also does it in an efficient way. In fact, the output of

a qubit measurement is a random variable and to extract any reliable information

from the system multiple realisations and measures (at leastNrep = O
(
104
)

in our

case) are required. Since Nθ = Nrep realisations of ρ̂θ1 are in most cases more than

enough for a reliable representation of ρ̂1 (0), the random-phase approach has the

exact same complexity as the preparation and measure of the mixed ρ̂1 (0) state,

which is extremely convenient because it only requires to work with unitary evolu-

tion and pure states. This is potentially a great experimental advantage.

While it would be possible to study the action of the control gate on theNbasis indi-

vidual basis states (process tomography, more on this in section 2.1.3), this would

requireNrep realisations and measures for each of them, for a total ofNbasis×Nrep

measures, which can become expensive for large systems. In this respect, the pro-

tocol illustrated in this section would allow to save a factor Nbasis of operations.

2.1.3. Alternative approaches: process tomography and the two-ρ̂1
variant

As underlined in [56], the analytical form of ρ̂1 (0) allows to set the computa-

tional basis and verify at once the action of the controlled gate over the basis states

{|φi⟩}i. Of course, the same can be achieved by preparing, evolving and measuring

the pure basis states directly. This approach resembles the one adopted in Quantum

Process Tomography (QPT): since we can linearly decompose any quantum state

in the superposition of basis states, it is sufficient to verify the correct action of

the control gate over these and the validation transfers to any quantum state. This

approach can be more or less convenient than the preparation and measure of the

ρ̂1 state according to the situation. For example, tomography is more suitable for

small systems where the basis states can be prepared with ease and the state to-

mography for the readout is efficient. On the other hand, for many-qubit systems

this procedure becomes expansive due to the exponential scaling of the number of

basis states.

For the four-states system under investigation both the ρ̂1 state propagation and

basis evolution analysis present some important drawbacks, such as the necessity
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of adopting a randomised scheme or a large number of measurements for statistics.

In here we propose an intermediate approach involving the decomposition of ρ̂1 (0)
as the linear combination of two mixed states:

ρ̂1 (0) = caρ̂
a
1 (0) + cbρ̂

b
1 (0)

= ca

(
α 0 0 0
0 0 0 0
0 0 1−α 0
0 0 0 0

)

+ cb

(
0 0 0 0
0 β 0 0
0 0 0 0
0 0 0 1−β

)

(2.24)

where ca + cb = 1 ensures Tr (ρ̂1 (0)) = 1 and we can relate this notation to the

one in equation (2.2) by setting.

ca · α = λ0 cb · β = λ1 ca · (1− α) = λ2 cb · (1− β) = λ3 (2.25)

With respect to the ρ̂1 method described in section 2.1.2, this approach requires

a larger experimental effort in the realisation and measurement of an additional

state but it reduces the number of samples needed for randomized cancellation of

off-diagonal terms of orders of magnitude. In fact, while the preparation of ρ̂1 (0)
requires the use of three random-phase pulses which imply the creation of non-zero

coherences in the whole density matrix (equation (2.21)), a pure state with diagonal

terms as ρ̂a1 (0) can be prepared by the means of an unique tuned random-phased

pulse starting from |0⟩⟨0| (and similarly for ρ̂b1 (0) starting from |1⟩⟨1|). As a result:

ρ̂0
Û20
tα

(θ)
7−−−−→

(
α 0 |κ|e−iθ 0
0 0 0 0

|κ|eiθ 0 1−α 0
0 0 0 0

)

(2.26)

where now ten out of twelve off-diagonal terms are exactly zero. The only θ−dependent

terms average at zero with few samples: Nθ = O
(
101
)

is enough to reach the same

value of reference fidelityFsm as the original algorithm withNθ = O
(
102+

)
, over

similar time and in the same optimisation conditions. While this ensures a smaller

computational effort, the number of iterations required for convergence of the pulse

optimisation might be larger and eventually the choice of the most convenient ap-

proach should be investigated for each method in the specific use-case.

2.1.4. Experimental optimisation of the relative phases

As for the second term in equation (2.1), we found that a particularly efficient pro-

tocol can be designed for entangling gates on two-qubit systems such as Controlled-

NOT (CNOT) and SWAP:

CNOT =

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)

SWAP =

(
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)

(2.27)

In fact, for all the gates that conditionally invert the populations of two basis states

the phase-preservation qualities of the proposed Û operator can be estimated in
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a single measure (up to repetitions for statistics). This also applies to the multi-

qubit version of such gates, such as the Toffoli gate, while the efficiency for phase-

shifting gates is yet to be studied.

In detail, being ρ̂2(0) a pure state it exists a unitary operator M̂ such that,

starting in the initialized ρ̂0 ≡ |0e0n⟩⟨0e0n| = |0⟩⟨0| state:

ρ̂2(0) = M̂ρ̂0M̂
† (2.28)

For example, a suitable form for M̂ is a chain pulses among states such as:

M̂ = U13
π/4

(
3
2π
)
U23
π/3

(
π
2

)
U02
π/2

(
3
2π
)

(2.29)

where

Unm
φ (θ) = exp (−iHnmtnm)

Hnm = unme
iθ |n⟩⟨m|+ unme

−iθ |m⟩⟨n| (2.30)

and tnm = ϕ u−1
nm.

Therefore, recollecting that V̂ ρ̂2(0)V̂
† = ρ̂2(0) (equation (2.8)), it holds:

Tr
[

V̂ ρ̂2 (0) V̂
†ρ̂2 (T )

]

= Tr [ρ̂2 (0) ρ̂2 (T )]

= Tr
[

M̂ρ̂0M̂
†ρ̂2 (T )

]

= Tr
[

ρ̂0M̂
†ρ̂2 (T ) M̂

]

=
(

M̂ †ρ̂2 (T ) M̂
)

00
(2.31)

where we exploited the cyclic property of the Trace and recognised that the only

non-zero element of ρ̂0 is (ρ̂0)00 = 1. Ideally, this corresponds to prepare the ρ̂2(0)

state, evolve it with the trial controlled Û operator and bring it back to the initial

condition: since the action of a CNOT gate leaves ρ̂2 untouched, we measure

the fidelity as the overlap between the final state and the initial one. It is worth

remarking how this works since we are targeting gates that do not introduce phase

shifts among states, but just flips. On the other hand, this works for gates in this

form on arbitrarily large qubit systems.

To summarise, to verify that the optimisation proposal preserves relative phases

between states it is enough to:

• Define a sequence of pulses to move from |0⟩⟨0| to ρ̂2 (0) (e.g., M̂ operator

in equation (2.29))

• Perform time evolution for the ρ̂2 state

• Return to the initial basis (by the means of inverse transformation M̂−1)

• Measure the population of the |0⟩⟨0| state
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and this will allow to access the quantity Tr [ρ̂′2ρ̂2 (T )] to be used for the computa-

tion of FJ .

To sum up, contributions coming from the two states combine as follows: the

second state verifies that no local phases are added between states, allowing only

for population swaps; the first one checks whether the population rearrangement

caused by the controls matches the one expected from the target gate. Fixing the

weights wi in equation (2.1) allows to balance between these contributions (quan-

titative analysis in section 3.2.4).
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Chapter 3

Numerical validation:

simulations

In order to verify numerically the claims above, we create a digital twin of the

quantum system and interface it with a Quantum Optimal Control (QOC) algo-

rithm. In particular, we exploit the dCRAB algorithm (details in section 1.5.3)

available in the Quantum Optimal Control Suite (QuOCS) library in Python (sec-

tion 1.5.4, [55]). The following pages describe out approach and the technical

details of the code. The control objective is simply set to be 1−F .

To understand whether dCRAB can be considered a good optimiser for our

task, we test it on our system model with fidelity measure given by equation (1.72):

over few hundreds numerical closed-loop optimisation iterations with mild con-

verging requirements, a final infidelity of O
(
10−10

)
has been achieved.

Coming to the real closed-loop simulation, the whole procedure described in

the previous sections has been summarised in algorithm 1. Our investigation cov-

ered:

• Different choices for ρ̂1 populations {λ0, . . . , λ3};

• Various sets of weights {wi}i=1,2;

• Changing numbers of dCRAB Super-Iterations (SIs) and stopping criteria;

• Tuning the NM algorithm amplitude variation to change speed and accuracy

of the investigation of the parameters space;

• Setting the number Nθ of random-phase realisations of ρ̂1.

As we observed, all these affect greatly the performance of the optimisation pro-

cess. Therefore, a cautious tuning of these parameters is required in order to reach

the best convergence and avoid local minima. Details of the study of {λi}i are re-

ported in section 2.1.1 while an analysis of all the other hyper-parameters is carried

out in section 3.2.4.

47
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3.1. Simulation design

As mentioned, this work relies on the QuOCS open-source library in Python for

the optimisation component [55]. The two-qubit framework has been designed

specifically for this purpose, as well as the details of the time evolution operators,

the controls and the proposed figure of merit.

3.1.1. States initialisation

Here we review the numerical procedure that enables the preparation of ρ̂1 and

ρ̂1 following the instructions in sections 2.1.2 and 2.1.4, respectively. The simu-

lation module assumes that the experiment can be reset to the initial |0e0n⟩⟨0e0n|
state with relative ease and high fidelity (which is true for the system under inves-

tigation). Starting from here, to obtain the ρ̂θ1 (0) term in equation (2.21) a total

of three pulses with random phases {θi}i is required. Therefore, the simulation

draws random values from a uniform distribution θi ∼ U (0; 2π) and prepares a

randomised state with fixed diagonal terms (0.2, 0.3, 0.4, 0.1) (whose choice has

been discussed in section 2.1.1). This can be done in different ways, depending on

the possibility to distinguish between transitions |0⟩ ←→ |2⟩ and |1⟩ ←→ |3⟩. Fol-

lowing the formalism introduced in equation (2.1.4), in the first case it is sufficient

to apply three tailored pulses:

U02
φ1

(θ1) , U
23
φ2

(θ2) , U
13
φ3

(θ3)

where ϕ1 = 0.8 · π, ϕ2 = 0.375 · π, ϕ3 = 0.8 · π (3.1)

where the application order is left to right. In practice, we can tune the product

ϕ ≡ ΩRt between the Rabi frequency and the pulse duration in equation (1.44) for

each pulse so to transport the right amount of population among states.

It might be the case that the NV transition is non-selective, i.e. no discrimina-

tion can be done between transitions |0⟩ ←→ |2⟩ and |1⟩ ←→ |3⟩. Here, instead

of pulses U02
φ (θ), U13

φ (θ), we can only apply a single pulse UNV
φ (θ) between

the |0⟩e and |1⟩e states of the electrons. Hence, an alternative strategy for ρ̂1 (0)
preparation can be:

UNV
φ1

(θ1) , U
23
φ2

(θ2) , U
NV
φ3

(θ3) , U
23
φ2

(θ4) (3.2)

where now we would need four random-phase pulses and the values of {ϕi}i are

to be estimated so to match the required state populations. An alternative solution

could be to exploit a surrounding ancillary qubit. Anyways, for the sake of our

simulations we assume to be in the first scenario and created controls to move from

|0⟩⟨0| to ρ̂θ1 (0) on a timescale of O(100 µs) and pulse amplitude of O(10 kHz).
Intuitively, if instead of ρ̂1 for the standard protocol the goal would be the

preparation of ρ̂a1, ρ̂b1 for the two-ρ̂1 variant the reasoning is the very same. As for

ρ̂a1 it is sufficient to



3.1. SIMULATION DESIGN 49

As for the preparation of ρ̂2 (0), a similar scenario arises: in case of selective

MW transitions a possible pulse sequence to be applied to |0⟩⟨0| is the one reported

in equation (2.29) (M̂ operator)

U02
π/2

(
3
2π
)
, U23

π/3

(
π
2

)
, U13

π/4

(
3
2π
)

(3.3)

while if only non-selective transitions are applicable then we can perform:

UNV
π (0) , U23

π/2 (0) , U
NV
π/2 (0) (3.4)

Please notice how in this case no randomised phases are required. Also in this case

the error due to imperfect pulses and readout is summarised as a random variable

in the final measurement. Nevertheless, the error propagation is actually different

in this case (no need to consider average over several phase-randomised states and

single measurement for the output).

3.1.2. Time evolution operator and controls

The initialisation procedure described above allows to simulate the preparation

of the required states for the control optimisation. Once these are prepared, it

is necessary to make them evolve in time to compare the actual evolution with

the target gate’s one. Therefore, we build the time evolution operator Û as fully

described in section 1.1.5.

Once the time grid {tj}j=1,...,N is designed, the optimisation module returns

the best set of controls and parameters as a vector of size N . By plugging these

values in the system’s Hamiltonian (equation (1.56)), we can build a vector of

Hamiltonians computed at each timestep {H (tj)}j . Then, by performing iterative

exponentialisation and multiplication following the time ordering of the operators,

we can create the ∆t time evolution operators and ultimately the full time operator

Û (T ) as described in equation (1.36).

As mentioned, such approach works if and only if the timestep width ∆t is

chosen small enough, i.e. if the local approximation of constant controls is valid.

In our case, tests have been run to verify this constrain: the approximation works

for ∆t = O
(
10−3

)
(a.u.). For the simulations in section 3.2, the total pulse

duration is set to T = 10−3 s while N = O
(
102
)

allows for both small time steps

and sustainable computational duration.

After its computation, the Û operator has to be applied to the test states.

3.1.3. Measurement

Technical considerations and readout alternatives

The most challenging part of the protocol, together with the state preparation, is

represented by the measurement procedure. Generally speaking, for NV centers

in diamond the most common measure operation would be given by optical read-

out, as fully described in section 1.2.1. However, this can lead to some issues
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when trying to access the nuclear spin states, given the fact that in principle we are

optically blind to them and therefore population measurements can be performed

only by swapping the state of the electronic and nuclear spin before readout, via a

combination of optical readouts and MW/RF π−pulses.

Experimentally, in order to do this we must be able to address selective tran-

sitions between states |0⟩ ←→ |2⟩ and |1⟩ ←→ |3⟩ during the readout phase. In

detail, this is possible under specific requirements for the NV center we are dealing

with. In section 1.2.1 we described how ODMR can be used to characterise differ-

ent resonance frequencies (example in figure 1.6). We might exploit this technique

to analyse ms = 0 - ms = −1 transition frequencies in the 3A2 and 3E levels. If

these are spaced in the spectrum enough to be distinguished but not enough not to

be able to drive both levels altogether with a wide bandwidth pulse, then we could

perform selective π−pulses with a fine-tuned, short bandwidth pulse. In this sense,

a weak microwave pulse can flip the NVs spin state selectively on the nuclear spin

state, which is experimentally easy to do in the case of large couplings.

The previous method allows the use of optical readout to access the four pop-

ulations of the basis states, but it also imposes to find a suitable NV candidate.

An alternative to optical readout is given by measurements via charge state [57].

In particular, this would allow the user to access directly the single-state popula-

tion of |0⟩en and, upon population inversion among the basis states. Nevertheless,

also charge state readout is possible only for some systems and in particular it is

especially efficient for experiments at cryogenic temperatures.

The choice of the best readout process in the experiment is then to be decided

according to the apparatus specifics. In our simulation we assume to be dealing

with an NV center which allows to readout the whole set of populations via optical

readout. Indeed, we propose a measurement routine which enables to infer the four

diagonal terms of the density matrix in a single run, with a factor 3 speedup with

respect to schemes which address each term individually.

Modeling of the readout scheme

Formally, the full system’s state before the measurement is given by the 4 × 4
density matrix:

ρ̂ =







ρ00 ρ01 ρ02 ρ03
ρ10 ρ11 ρ12 ρ13
ρ20 ρ21 ρ22 ρ23
ρ30 ρ31 ρ32 ρ33







(3.5)

and we remember that for the sake of our protocol we must learn the diagonal terms

of ρ̂ individually.

The reduced density matrix of the electronic spin is given by:

ρ̂e = Trn (ρ̂) =

(
ρ00 + ρ11 ρ02 + ρ13
ρ20 + ρ31 ρ22 + ρ33

)

(3.6)
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and the nuclear spin one is given by:

ρ̂n = Tre (ρ̂) =

(
ρ00 + ρ22 ρ01 + ρ23
ρ10 + ρ32 ρ11 + ρ33

)

(3.7)

Performing optical readout on the electronic subsystem allows to access the diag-

onal values of its reduced density matrix:

α ≡ ρ00 + ρ11

β ≡ ρ22 + ρ33
(3.8)

After the measurement and the consequent reset of the electronic component, its

state collapses into:

ρ̂e =

(
1 0
0 0

)

(3.9)

while the nuclear component remains the same. The full quantum state is now:

ρ̂ =

(
M 02
02 02

)

(3.10)

where:

M =

(
ρ00 + ρ22 ρ01 + ρ23
ρ10 + ρ32 ρ11 + ρ33

)

≡
(
m00 m01

m10 m11

)

(3.11)

Now, by applying aCNOT gate with control qubit the nuclear one and target qubit

the electronic one:

CnNOTe =







1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0







(3.12)

the resulting state would be:

ρ̂′ =







m00 0 0 m01

0 0 0 0
0 0 0 0
m10 0 0 m11







(3.13)

leading to reduced density matrices:

ρ̂′e =

(
m00 0
0 m11

)

= ρ̂′n (3.14)

As a result, performing again optical readout on the electronic spin allows to ac-

cess:

γ ≡ m00 = ρ00 + ρ22

δ ≡ m11 = ρ11 + ρ33
(3.15)
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Figure 3.1: Scheme of the routine to access the population of the four basis states

via Optical Readout (OR) on the NV spin. First, OR is performed to measure the

populations of the NV states and simultaneously reset it to the |0⟩n state (green

pulse on the left-hand side). Then, a selective π−pulse on the NV conditioned to

state of the nuclear spin (effective CnNOTe gate) transfers information regarding

the 13C spin state to the NV (orange pulse). Finally, another OR reads again the

populations of the NV (second green pulse). Combining the four measurement

outcomes allows to reconstruct the density matrix diagonal.

Now, within the formalism of density matrices, in case of unitary evolution of the

system (i.e., no decoherence) it must hold:

Tr (ρ̂) =
3∑

i=0

ρii = 1 (3.16)

Given this information, after some algebraic combination of α, β, γ, δ we can

therefore extrapolate the original diagonal values of the full state density matrix,

which are the ones we are interested in for our protocol:






ρ00 = (+α− β − δ + 1) /2
ρ11 = (+α+ β + δ − 1) /2
ρ22 = (−α+ β − δ + 1) /2
ρ33 = (−α− β + δ + 1) /2

(3.17)

The aforementioned procedure is schematised in figure 3.1. In our simulations

we implement it together with the statistics required by the average over random-

phase states for ρ̂1.

Once the measurement takes place, we are in possess of the information regard-

ing the populations of the evolved states and we can therefore proceed to compute

the fidelity following equation (2.1) to rate the quality of the proposed controls and

then proceed with the optimisation.
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The full protocol is therefore summarised in algorithm 1.

Algorithm 1 CNOT FoM estimation protocol

Select 3 ·Nθ ▷ 3 values of θ required for each ρ̂θ1 preparation

Draw [θ1, . . . , θ3Nθ
], θi ∼ U (0, 2π) ∀i

Decide populations of ρ̂1(0) (and of ρ̂′1 accordingly)

Define M̂ operator (e.g. equation (2.29))

Collect trial controls ΩΩΩ and parameters θθθ

for k = 0, . . . , 3 do ▷ ρ̂1 contribute to the FoM

i = 1
while i < Nθ do

Prepare ρ̂ = |0⟩⟨0|
Apply U02 (θi) for a suitable time(∗)

Apply U23 (θi+1) for a suitable time(∗)

Apply Û13 (θi+2) for a suitable time(∗)

Apply controlled operator Û (ΩΩΩ)
Measure ⟨k|ρ̂|k⟩ and storage

i += 3

end while

Average previous measurements

Multiply for ⟨k|ρ̂′1|k⟩ and storage

end for

Sum contributes of k, normalise and multiply for w1

(∗) to be selected according to equation (1.44) and ρ̂1 populations

Prepare ρ̂ = |0⟩⟨0| ▷ ρ̂2 contribute to the FoM

Apply M̂ to move to ρ̂2 (0)
Apply controlled operator Û (ΩΩΩ)
Apply M̂ † to come back to initial basis

Measure ⟨0|ρ̂|0⟩, normalise and multiply for w2

return Sum of the two contributions

3.1.4. Error propagation

To build a simulation which represents the experiment with high precision we must

design a full, detailed model which includes stochastic errors for each pulse. As-

suming to be able to start in the reset state |0e0n⟩⟨0e0n| with negligible error, the

uncertainty concerning each applied pulse will eventually propagate, leading to

a cumulative error on the ρ̂i (0) states and, ultimately, on their evolution ρ̂θ1 (T ).
After this, measurement errors are to be taken into account. Finally, since mul-
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tiple realisations of ρ̂i are required to gather statistics for the computation of the

FoM, the total uncertainty on the fidelity estimation will be given by further error

propagation.

For the sake of our implementation, we summarised this behaviour considering

only a Gaussian random error on the average fidelity outcome with tunable standard

deviation, to verify to which extent our solution can be considered robust. Of

course, uncertainties will affect the optimisation algorithm: components and details

of the protocol will have to be selected so to have a global error below the working

threshold of the protocol.

As for the readout uncertainty, assuming that the estimates of κ = α, β, δ come

together with experimental errors σk, one can retrieve that the error associated to

the estimates of {ρii}i by simple error propagation. The result is σρ =
√
∑

k σ
2
k/2.

While readout error is included in the code, for most simulations this has been

tuned to a minimum to verify the correct evolution of the protocol.
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3.2. Results

Here we present a report of the most interesting numerical tests that have been

carried out. For the sake of completeness, we highlight both the working and non-

working features of the simulations. As for the optimisation procedure, results

in sections 3.2.1 - 3.2.2 have been achieved minimising directly the theoretical

infidelity 1 − Fsm (equation (1.72)), while in sections 3.2.3 - 3.2.6 we use our

protocol for the optimisation (details in algorithm 1) and we report 1 − Fsm just

for reference.

3.2.1. Definition of controls and Hamiltonian

Before proceeding to the optimisation of the quantum gate it is necessary to iden-

tify the pulses we are willing to develop in order to perform quantum control of

the system. In principle this breaks down to the definition of the Hamiltonian and

the classification of controls between parameters (i.e., constant values) and actual

pulses in the form of time series. While our ultimate goal is the definition of a pro-

tocol that allows for efficient closed-loop optimisation, at this stage we care about

proving that the system is actually controllable and individuate the best set of con-

trols. For this reason, first optimisations have been performed aiming to minimise

Fsm (equation (1.72)), the theoretical FoM which is not directly accessible in the

experiment but provides mathematical validation of the model.

Of course, having many controls to optimise implies the necessity to investigate

a large parameter space: hence, we wish to reduce the complexity of the control

mechanism to a minimum without sacrificing the quality of the solution. The first

question arises naturally: is there a straightforward way to create a CNOT gate

by the means of a constant pulse over time? As a matter of fact, looking at fig-

ure 1.9 we observe that an intuitive way to flip the nuclear spin according to the

electron spin state as in a CNOT gate is given by driving resonant transitions

between the states |2⟩ and |3⟩ with the r1 radio-frequency pulse. In fact, since

ω01 ≪ ω23 = ω03 − ω02, a system prepared in the |0⟩ state will not be affected

by EM radiation oscillating at ω23, while a system in |2⟩ will be subject to Rabi

oscillations and eventually move to state |3⟩ after a time Tπ = π |Ω23|−1
(with Ω23

the complex Rabi frequency of the transition). While this is in practice a selec-

tive flip on the nuclear spin, this does not correspond to a precise CNOT gate: in

fact, the aforementioned transition introduces a local phase difference between the

{|0⟩ , |1⟩} and {|2⟩ , |3⟩} subsets of the basis. More in detail a single, constant pulse

of intensity Ω23 = eiϕα with fixed phase φ = 0 will lead to a time-independent

system Hamiltonian in the interaction picture in the form:

Ĥ =







0 0 0 0
0 0 0 0
0 0 0 α
0 0 α 0







(3.18)
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from which we can retrieve the time evolution operator:

Ûα (t) = exp
(

−iĤt
)

=







1 0 0 0
0 1 0 0
0 0 cos (αt) −i sin (αt)
0 0 −i sin (αt) cos (αt)







(3.19)

Hence, by tuning the intensity and the pulse duration such that αt = π/2 it is pos-

sible to set to zero the matrix elements related to the |2⟩ and |3⟩ states preservation:

⟨2|Ûα

(
π
2α

)
|2⟩ = ⟨3|Ûα

(
π
2α

)
|3⟩ = 0 (3.20)

but we cannot remove the π/2−phase difference introduced between the first and

last two states. As a result, we shall conclude that a single constant pulse is not

sufficient to obtain a CNOT gate which is exact up to global phase differences

and therefore we must include higher complexity optimisation.

Of course, while trying to add controls to our model we aim to be minimally

intrusive and to increase the complexity gradually: hence, we propose to drive

slightly off-resonant RF and MW transitions to introduce detuning parameters and

to let the optimiser manipulate the phases of the Rabi frequencies Ωij . In the orig-

inal paper which describes the system under investigation (see [40]), the two-qubit

effective Hamiltonian is defined with different choice of the a, b, c, d terms while

moving to interaction picture (see section 1.3 for reference). This will eventually

result in a different representation of the Hamiltonian Ĥ ′ which completely de-

couples the level |1⟩ of the system from the others, leading to an effective 3−state

subsystem:

Ĥ ′ = −1

2







2
3δ 0 Ω02 0
0 0 0 0

Ω∗
02 0 −4

3δ Ω23

0 0 Ω∗
23

2
3δ







(3.21)

where δ = δr1 = δm. The introduction of the detunings could in principle help

adjusting the local phase induced by the constant Ω23 drive. Nevertheless, equation

3.21 shows how the unperturbed state |1⟩ fixes the global gate phase to 0: as a

result, there is still no direct way to fix the phase difference between the state |1⟩
and the states |2⟩ and |3⟩.

To reach this conclusion, multiple variations have been investigated: changing

the total time scale of the pulse, reducing the time-step size and ultimately adding

new controls. In detail, simulations have been done with constant Ω02 and Ω23

Rabi frequencies (where in the syntax of QOC constant controls take the name of

parameters), with constant Rabi frequencies and detunings, then with fixed detun-

ings and time-dependent intensity of the pulses Ω (t) and ultimately time-varying

control amplitudes and relative phases (for a total of 4 pulses) with detunings as

parameters. In all these scenarios repetitive analysis with different dCRAB set-

tings has been carried out to look for the global minimum. Nevertheless, even over



3.2. RESULTS 57

O
(
104
)

iterations, 5 super-iterations with strong convergence requirements (aver-

age FoM slope smaller than 10−4 over 400 iterations) and large amplitude variation

parameter to investigate a larger simplex, the minimum infidelity reaches an unsat-

isfactory bound at 1 − Fsm = 0.1875, for all simulations. The robustness of this

result suggests a fundamental limit which we believe to be due to the local phase

difference induced by optimisation in the aforementioned picture. Therefore, we

feel the necessity to rethink the problem and to overcome some possible issues in

the design of the model, making sure to have the possibility to operate over all the

four basis states.

Please note that it is also possible that an optimised gate with constant pulses

can be combined with local operations on the states to rectify the phase imbalance

and eventually lead to a perfect CNOT gate. Nevertheless, this analysis would

require higher level considerations regarding the single-state addressability of the

controls and would inevitably lead to longer gate preparation due to the additional

local operations.

To be able to manipulate the evolution of all the basis states, we concluded to

be convenient a change of framework and therefore move to a different interaction

picture defined by a new set of a, b, c, d values (namely, the set of parameters re-

ported in equation (1.54)). The result is the one in equation (1.56): the introduction

of the γ term allows to both set the picture and fix a reference phase for the optimi-

sation. This action combines with the relaxation of the detuning constraint (so that

δm ̸= δr1) to allow for a multi-parametric optimisation of the gate. In the end, the

full control Hamiltonian we use to build the time evolution operator is (reporting

from equation (1.55)):

Ĥ = −1

2







4
3δm − 2

3δr1 0 Ω02 0
0 γ 0 Ω13

Ω∗
02 0 −2

3δm − 2
3δr1 Ω23

0 Ω∗
13 Ω∗

23 −2
3δm + 4

3δr1







(3.22)

Unless explicitly said, we perform optimisations assuming the possibility to drive

selective NV transitions using only the MW control Ω02 (t) = Ωm (t) = um (t) eiθm(t),

which means that we set Ω13 = 0 in equation (3.22). The other control is given

by the RF pulse on the nuclear spin: Ω23 (t) = Ωr (t) = ur (t) e
iθr(t). For all

the quantities subject to optimisation it is necessary to specify boundaries within

which the search takes place. Defaults settings have been chosen to be:

• um, ur ∈ [−15 kHz, 15kHz]
• θm, θr ∈ [0, 2π]

• δm, δr, γ ∈ [−2 kHz, 2 kHz]

Where thresholds have been chosen performing various trials and following the

results proposed in [40]. It is worth mentioning that the 15 kHz threshold for the

pulse amplitudes seems to be problematic for some particular cases: in these cases,

usually a saturation effect becomes visible (see figure 3.5 for an example). When
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this happens the pulses can generally be smoothed to make their implementation

easier.

3.2.2. Reducing the complexity

Two pulses, five parameters

Studying the system Hamiltonian in the new picture, the optimisation finally works

properly and the theoretical fidelity can reach values ≥ 99%. For the first trials,

we leave complete freedom to the algorithm to optimise all the details of the con-

trols, namely two time-varying pulses (the real amplitudes um (t), ur (t) of the mi-

crowave and the radio-frequency pulses between the |0⟩ , |2⟩ and the |2⟩ , |3⟩ states,

respectively) and the five parameters defined by the two independent detunings δm
and δr ≡ δr1 , the two constant pulse phases θm and θr and reference coefficient

for the |1⟩ state γ. The results are reported in figure 3.2: overO
(
103
)

optimisation

iterations the theoretical infidelity for the gate reaches O
(
10−6

)
.

The best parameters found by the optimiser are:







θm = 0.029735
θr = 0.005620
δm = 0.551751 kHz
δr = 0.009098 kHz
γ = −0.349105 kHz

(3.23)

while instructions for dCRAB are as follow (section 1.5.3 for reference):

• Max number of SIs: 5

• Target infidelity: 10−7

• Search algorithm: Nelder-Mead

• Number of Fourier basis vectors: 4

• Stopping criteria for SI: linear fit slope below 10−4 over 400 iterations

• Initial guess: blind (0 for all values)

• Time bins: 300

• Amplitude variation: ∼ 3% of max pulse intensity

Looking at the results in figure 3.2 we observe that the convergence towards the

minimum of the FoM is approximately linear in semi-log scale (top panel). The

trend is repeated for all SIs: with this target of FoM which is reached with relative

ease, 5 super-iterations are more than what it is necessary. The control amplitudes

um (t), ur (t) oscillate in the range [−3, 5] kHz (bottom panel). These corre-

sponds to oscillations of the electromagnetic fields in the direction of the induce

dipoles in the spins.
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Figure 3.2: Simulation results for a run with two controls (um (t), ur (t)) and

five parameters (θm, θr, δm, δr, γ). Top panel: infidelity measure for each function

evaluation. Bottom panel: best set of controls returned by dCRAB.
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Two pulses, five parameters - fine tuning

By reducing the amplitude variation parameter (i.e., sampling a smaller simplex

size with the NM algorithm) for a better focus over this rough pulse estimate we

can see that dCRAB reaches very low FoM values within a single super-iteration.

Figure 3.3 displays results in these conditions: using the best solution of a previous

run (figure 3.2) as initial guess, the figure of merit starts at a lower value and

continuous minimisation is persistent through the whole optimisation process. The

best parameters found by the optimiser are:







θm = 0.078384
θr = 0.006862
δm = 0.552352 kHz
δr = 0.009237 kHz
γ = −0.349066 kHz

(3.24)

which are a fine tuning of the ones in equation (3.23), as we would expect. Also,

the control shapes reported in figure 3.3 (bottom panel) are similar in shape to their

analogue in figure 3.2.

The time evolution operator build with the optimal controls and parameters of

this second optimisation is finally:

Û = eiθ







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







(3.25)

with θ = π/3. All the terms in Û with

∣
∣
∣Ûij

∣
∣
∣ ≤ 10−6 have been set to 0.
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Figure 3.3: Simulation results for a run with two controls (um (t), ur (t)) and five

parameters (θm, θr, δm, δr, γ) as a fine search over the results of figure 3.2. Top

panel: infidelity measure for each function evaluation. Bottom panel: best set of

controls returned by dCRAB.
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Two pulses, three parameters

The previous analysis confirms that very good CNOT approximations can be ob-

tained with just two controls and a set of parameters. The next question to answer

is: are there parameters which are superfluous and that can be fixed directly in the

implementation? To work in this direction, we first remove the optimisation over

the pulse phases θm and θr, effectively reducing to two pulses and three parameters

to find. This corresponds to fix θm = θr = 0 in the experimental design. An ap-

proach similar to the previous case has been followed, with a fine-tuning run built

on the top of the results of figure 3.2 as initial guess. Results are reported in figure

3.4.

The best parameters found by the optimiser are:







δm = 0.547087 kHz
δr = 0.006443 kHz
γ = −0.349065 kHz

(3.26)

while the initial instruction for dCRAB are as follow:

• Max number of SIs: 5

• Target infidelity: 10−10

• Search algorithm: Nelder-Mead

• Number of Fourier basis vectors: 4

• Stopping criteria for SI: linear fit slope below 10−4 over 1000 iterations

• Initial guess: best of pre-optimisation

• Time bins: 300

• Amplitude variation: ∼ 1% of max pulse intensity

The time evolution operator returned by the analysis is indeed very similar to

the one in equation (3.25):

Û = eiθ







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







(3.27)

with θ = π/3. All the terms in Û with

∣
∣
∣Ûij

∣
∣
∣ ≤ 106 have been set to 0. This is

indeed to be expected since between the best parameters found for the previous

case it holds θm ≈ 0 ≈ θr.
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Figure 3.4: Simulation results for a run with two controls (um (t), ur (t)) and

three parameters (δm, δr, γ) as a fine search over the results of figure 3.2. Top

panel: infidelity measure for each function evaluation. Bottom panel: best set of

controls returned by dCRAB. Both the control shape and the infidelity trend are

very similar to the case of two controls and five parameters (figure 3.3), showing

how the complexity reduction does not affect the quality of the optimisation.
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Two pulses, two parameters

Ultimately, we investigate the optimisation performances in the case δm = δr = δ
as proposed in the paper introducing the original control Hamiltonian [40]. We

modify the setup accordingly and run an optimisation with the same approach of

the previous section. In figure 3.5 we report the results of a fine-tuning run which

follows a more wide search in he parameter space: as we can notice, very small

FoM values can be reached also in this configuration. It is worth mentioning that

in this case the threshold on the controls amplitude is reached and in figure 3.5,

bottom panel we can observe this behaviour at ∼ 1.6 ms for the RF pulse: in this

case it would be up to the lab team to verify if this is an hard constraint (and hence

an alternative, more regular pulse shape must be found) or if it can be relaxed.

The best parameters found by the optimiser are:

{
δ = 1.397678 kHz
γ = −0.349066 kHz (3.28)

and the optimised gate is:

Û = eiθ







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







(3.29)

with θ = π/3.

Regardless of the fidelity values, these tests allow us to conclude that optimal

control can be efficiently applied to our system by considering the optimisation of

two pulses and two parameters. In the next stage of the work, we hence implement

the figure of merit estimation described in section 3.1 and aim to retrieve similar

results for a CNOT gate design with closed-loop optimisation.
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Figure 3.5: Simulation results for a run with two controls (um (t), ur (t)) and two

parameters (δm = δr = δ, γ). Top panel: infidelity measure for each function

evaluation. Bottom panel: best set of controls returned by dCRAB.
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3.2.3. The new Figure of Merit

What we have done so far is a calibration of the optimisation module, which allows

us to verify that the system is controllable, that optimal solutions (in principle) exist

and that the time evolution operator is well designed. Nevertheless, the ultimate

goal of this work is to prove the efficiency of an experiment-friendly FoM, since

the quantity Fsm is not directly relatable to measurements. Therefore, at this stage

we proceed to implement the protocol described in section 2. It is actually fair

to say that the multiple issues faced during the code implementation helped in the

development of the procedure we previously described. We report here some of

the most fundamental observations taken from the simulations.

General discussion

The initial proposal for the ρ̂1 state comes from the work of C. Koch et al. ([56]):

ρ̂1 = diag (0.1, 0.2, 0.3, 0.4). In this case, while performing optimisation for a

CNOT gate starting from a blind guess (all controls set to 0), the solution returned

by CRAB has consistently been an identity gate 1, rather than the target gate.

The analysis we conducted to solve this problem is fully summarised in section

2.1.1 and it led to the redefinition of the state as ρ̂1 = (0.2, 0.3, 0.4, 0.1). After

this update in the protocol the optimiser did not mistake the identity as a global

minimum anymore.

At this level the optimisation works as predicted: the convergence with the

new FoM is reached and the final output is indeed close to a CNOT gate. Still,

by comparing the results of the new fidelity measure FJ with the reference one

Fsm (computed on the numerical model at each iteration with the new proposal

controls) we observe that the two share the same trends but reach convergence at

different values. An example is reported in figure 3.6: as we observe, the blue

curve (the optimised one) and the red one (the reference) are about one order of

magnitude different but their trends are very similar.

Figure 3.6 confirms that proceeding to minimise FJ we are indeed performing

a minimisation of Fsm as well. From the data we can notice how in the final part of

each SI the two curves diverge: as the FoM subject to minimisation reaches lower

values, the convergence of the reference one slows down. This could be a signal of

overfitting over the realisations
{
ρ̂θ1
}

θ
(or other specifics of the single run). This

view is supported also by the noticeable fluctuations close to the minimum. Prac-

tically speaking this is not a problem: first of all, in a real experiment we cannot

measure the reference gate fidelity in real-time, but we can perform full process to-

mography over the optimised pulses to get a single reference measurement Fsm of

the final result. This translates into using FJ for optimisation and Fsm for quality

certification. Secondly, we observe that the divergence between the red and blue

curves in figure 3.6 begins to be substantial for values of Fsm ≤ 10−3 which are

of the same order of magnitude of state-of-the-art solutions [58]. This means that

even if after some time the fine-tuning minimisation of FJ does not improve the
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Figure 3.6: Simulation results for a run with two controls (um (t), ur (t)) and two

parameters (δm = δr = δ, γ). Top panel: reference (Fsm) and actually minimised

FJ infidelity measures for each function evaluation. Bottom panel: best set of

controls returned by dCRAB.
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reference fidelity this is not a problem: with this approach we can still push Fsm

to very high values within few hundreds of optimisation iterations. Of course, the

discrepancy between the two curves could be better studied to figure out a scaling

parameter which might lead to a longer-term accordance of the trends. In any case,

we believe the compatibility of the FoM estimation with the readout process is a

strong point this proposal, since it allows to reduce the total number of readout op-

erations required (details in section 2.1.2). As a result, we estimate the total time

required by the optimisation of a two-qubit gate to be of the order of hours, given

the typical number of dCRAB iterations required for convergence and assuming a

single measurement to last for a time of the order of the minute. This means our ap-

proach is well suited for applications where multiple NV sites are to be optimised

in a reasonable time, such as quantum computers and quantum networks.

A final consideration: it is worth mentioning that the randomised coherences

in the ρ̂θ1 states have been produced with a constant, random set of phases to be

used for each iteration (meaning that the i−th realisation of ρ̂θ1 is the same at each

optimisation step). As a matter of fact, the initial choice was the generation of com-

pletely random phases at each run, to simulate the behaviour of real lasers without

additional constraints. Nevertheless, this has turned out to affect the estimate of the

FoM in a non negligible way: close to the optimum the fluctuations of the fidelity

are extremely small and therefore the effect on the final estimate of changing the

phases might be comparable to the one of the controls update proposed by dCRAB,

mining the optimisation process. Because of this, we feel it is more wise to sam-

ple a set of pulse phases to be used for each SI. This operation does not affect

the experimental feasibility since phases can be stored and applied as preferred in

modern devices.

Simulation results

Coming to the details of the simulation, figure 3.6 displays the trends of the figures

of merit together with the optimiser outputs for the control amplitudes for a 5−SIs

optimisation run. The best parameters found by the optimiser are:

{
δ = 1.016831 kHz
γ = −0.357037 kHz (3.30)

while the initial settings are:

• Max number of SIs: 5

• Target infidelity: 10−15

• Search algorithm: Nelder-Mead

• Number of Fourier basis vectors: 5

• Stopping criteria for SI: max 400 iterations per SI

• Initial guess: blind (0 for all values)
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• Time bins: 300

• Amplitude variation: ∼ 10% of max pulse intensity

• Number of random samples for ρ̂1: Nθ = 100

• Weights for FJ : w⃗ = [0.75, 0.25, 0.00]

The best controls allow to build the time evolution operator Û =







0.537 + 0.843j 0.+ 0.j 0.011 + 0.032j −0.012 + 0.020j
0.+ 0.j 0.479 + 0.878j 0.+ 0.j 0.+ 0.j

−0.023 + 0.001j 0.+ 0.j 0.001− 0.016j 0.493 + 0.869j
−0.023− 0.025j 0.+ 0.j 0.468 + 0.883j 0.014 + 0.007j







(3.31)

where we observe that the operator in (3.31) has similar terms with non-zero phase

in correspondence of the 1 terms in a CNOT while other matrix elements have

small absolute value in comparison.
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3.2.4. Tuning the algorithm parameters

We already mentioned how several setting must be adjusted for each run to work:

the number of iterations and the convergence requirements impact the minimum

reachable FoM, the amplitude variation affects the convergence speed and the fluc-

tuation intensities, a reasoned initial guess can save about 100 iterations to break

the Fsm = 1% threshold.

At this point we ask ourselves: is there any other parameter which has a large

impact on the performances?

Indeed, the definition of FJ requires the choice of the two weights to balance

the contributes of the gate action on the basis (ρ̂1 optimisation) and the respect of

relative phases (ρ̂2 optimisation). As mentioned, the third weight is simply set to

w3 = 0 since we focus of the no information leakage case. Investigation of the best

ratio among them, together with the considerations about their role held in section

2, answers that an initial choice of w1 > w2 is preferable. An example of the im-

portance of good weights is reported in figure 3.7, while trying to better the fidelity

of the run depicted in figure 3.6 which we use as initial guess. Blue and yellow

dots show the output infidelities reached over three SIs for FJ , Fsm respectively

(again, FJ is the quantity actually subject to minimisation while Fsm is computed

for reference). Green dots report the overall best Fsm fidelity reached during the

whole optimisation process, which might not be in correspondence of the minimum

control objective found (i.e., generally argmin (Fsm) ̸= argmin (FJ), where the

minimisation is over the controls). It is clear how the best performances on the

reference level can be achieved for w1 ≪ w2 (in contrast with the initial run) or

with w1 ≈ w2.

By performing a similar study starting from a blind guess, we realise it is in-

stead more convenient to give larger weight to the optimisation of the gate action

first, rather than focusing on the cleaning of the local phases that the controls might

induce. To summarise, we believe the best approach would need to be run over

multiple SIs in an adaptive way such that:

AV1 < AV2 < . . . < AVn

(w1)1 > (w1)2 < . . . > (w1)n
(3.32)

i.e., successive super-iterations should use reduced amplitude variation for a better

investigation of the neighborhood of the previously-found minimum and alternate

the major importance of the two components of FJ , eventually performing the last

optimisation with w1 = w2 = 50%. This has turned out to enhance the conver-

gence in the first stages while keeping it close to the minimum and improving it in

the following steps. A successful example of this approach is shown in figure 3.9.
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weights w1,2 which rule the contributes of the ρ̂1 and ρ̂2 states evolution. Ini-

tial guesses are pre-optimised pulses favouring the ρ̂1 component. Optimisation

settings aside the weights are left the same for all simulations. Blue and yellow

dots represent the minimum value of FJ and Fsm returned after for the controls

minimising Fsm over the whole optimisation. Green dots represent the overall

minimum value of FJ reached at some point during the search.
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Figure 3.8: Analysis of the protocol performance by changing the number of θ
samples used for mixed state preparation of ρ̂1 in fixed optimisation conditions.

Another factor that impacts heavily the computation and the results is the num-

ber Nθ of random-phase realisation of the state ρ̂1. Both from an experimental and

a numerical perspective, it is convenient to find a value of Nθ such that:

1

Nθ

Nθ∑

i=1

ρ̂θ1 ≃ ρ̂1 (3.33)

with good approximation but limited workload.

Figure 3.8 reports optimisation runs carried out with identical settings and vary-

ing Nθ. Details are:

• Max number of SIs: 3

• Target infidelity: 10−15

• Search algorithm: Nelder-Mead

• Number of Fourier basis vectors: 5

• Stopping criteria for SI: linear fit slope below 10−5 over 100 iterations

• Initial guess: blind (0 for all values)

• Time bins: 300

• Amplitude variation: ∼ 10% of max pulse intensity

• Weights for FJ : w⃗ = [0.75, 0.25, 0.00]

Looking at figure 3.8 we can observe how O(10) random phases are not enough

to grant the requirement given by equation (3.33) and as a result both fidelities fail

to reach good values. Moreover, it is noticeable how noisy FJ is, compared with

the other plots. On the other hand, exaggerating the number of phases (O
(
103
)
)

brings limited advantages compared to the computational cost. We conclude that

an average number of realisations Nθ = O
(
102
)

is the best solution.
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Finally, part of the settings for the optimiser is the number of Fourier basis

vectors (namely Nc in equation (1.79)). This tuning does not affect heavily the

complexity of the algorithm, since a single SI over 4 basis vectors is in practice

equivalent to two SIs over 2 basis vectors, as for the sample space investigated.

Hence, we must tune Nc together with the number of SIs we plan on performing,

eventually taking care of adaptive AV and w⃗ parameters, as mentioned above. Over

a single SI for the same case under study mentioned above we find the following

results:

• Nc = 2: max Fsm < 80%

• Nc = 4: max Fsm = 95%

• Nc = 5: max Fsm = 99.8%

which suggest that a single SI with a large enough number of basis vectors is suf-

ficient to reach high quality solutions.
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3.2.5. Comparison with the two-ρ̂1 variant

In section 2.1.3 we introduced an alternative idea for the study of the action of the

time evolution operator on the basis states. Here, we perform numerical validation

of the aforementioned two-ρ̂1 variant designing the code and running simulations

similar to the standard ρ̂1 case. The dCRAB settings are:

• Max number of SIs: 5

• Target infidelity: 10−15

• Search algorithm: Nelder-Mead

• Number of Fourier basis vectors: 5

• Stopping criteria for SI: linear fit slope below 10−5 over 100 iterations

• Initial guess: adaptive (SI1: blind, SI2: best of SI1, SI3−5: best of SI1)

• Time bins: 300

• Amplitude variation: adaptive (SI1: 10%, SI2: 0.5%, SI3−5: 0.05%)

• Weights for FJ : adaptive (SI1: w1 = 75%, SI2: w1 = 10%, SI3−5: w1 =
50%)

Figure 3.9 reports results for the two-ρ̂1 variant build as follows: first, a single

SI with large amplitude variation (to favour the ρ̂1 contribute), then a single SI

with medium amplitude variation favouring the ρ̂2 contribute and finally three SIs

with balanced weights and small amplitude variation. The number of random-

phase realisation is reduced to Nθ = 10. It is noticeable how at the beginning of

each SI the trends of the two figures of merit are quite similar. With respect to

the standard case, the number of FoM evaluation increases largely, but the number

of realisations and measurements to be performed for each of them decreases of

orders of magnitude. Overall, the convergence of the infidelity is reached atFsm =
99.95%, best overall for the simulations so far. The best parameters are found to

be: {
δ = 1.041042 kHz
γ = −0.351753 kHz (3.34)

while the time evolution operator is Û =







0.508 + 0.861j 0.+ 0.j −0.014 + 0.014j 0.006 + 0.009j
0.+ 0.j 0.493 + 0.87j 0.+ 0.j 0.+ 0.j

−0.005− 0.01j 0.+ 0.j 0.004 + 0.011j 0.500 + 0.866j
−0.019 + 0.006j 0.+ 0.j 0.491 + 0.871j −0.007− 0.009j







(3.35)

We can hence conclude that the two-ρ̂1 approach is indeed convenient since it

works very well with an order of magnitude less random realisations and it natu-

rally displays less noisy curves. Nevertheless, the total number of function eval-

uations to reach the optimum is relatively large: in a practical implementation of
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two parameters (δm = δr = δ, γ) in the two-ρ̂1 variant. Top panel: reference

(Fsm) and actually minimised FJ infidelity measures for each function evaluation.

Bottom panel: best set of controls returned by dCRAB.
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the protocol this can potentially lead to some issues. Looking at the differences

between the standard protocol and this variant, it is possible that testing the gate

action on the basis state-per-state (i.e., tomography by basis states) will lead to

even more accurate results, since the ones displayed are naturally affected by the

random realisations. Nevertheless, we believe that this approach can be most con-

venient because of the better suitability with the natural measurement process of

the spins.

3.2.6. Comparison with non-selective e
− spin transitions

In all the analysis carried out in the previous pages a fundamental detail has been

assumed, i.e. the possibility to selectively drive the |0⟩ − |2⟩ or |1⟩ − |3⟩ transi-

tions. In some situations it is either convenient or necessary to have non-selective

electron excitation, either via bi-chromatic pulses or strong illumination with large

bandwidth. Hence, we verify the possibility of building the gate with the non-

selective excitation Ωnv = Ω02 = Ω13. The approach is the same of section 3.2.5:

multiple SIs with adaptive amplitude variation and different balance for the two

contributes to FJ . Best results are reported in figure 3.10.

The best parameters found by the optimisation are

{
δ = 1.040245 kHz
γ = −0.372271 kHz (3.36)

while the time evolution operator is: Û =







0.590 + 0.796j −0.094 + 0.068j −0.011− 0.021j −0.009 + 0.059j
−0.100 + 0.057j 0.442 + 0.885j 0.045 + 0.007j 0.025− 0.068j
−0.059− 0.009j 0.072 + 0.014j −0.015− 0.011j 0.463 + 0.881j
0.017 + 0.021j 0.021− 0.037j 0.425 + 0.903j −0.004 + 0.021j







(3.37)

While the final fidelity is slightly worse for the non-selective case with respect

to the selective one (studied in the previous sections), we believe that a deeper

optimisation procedure might enforce the results also in this situation. In any case,

we must remember that the model of the system is not meant to be used for actual

optimisation but simply to prove the validity of the FoM introduced in equation

(2.1). Once again, we see in the evolution of the control objective (figure 3.10

above) the similar trends of the two infidelity measures. This makes us confident

that application of this technique to a real system could help building high-fidelity

gates regardless of the selectivity of the NV transitions.
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Chapter 4

Summary and outlook

In this work we addressed the problem of designing an efficient protocol to per-

form closed-loop two-qubit gate optimization on NV centers in diamonds. Our

approach includes a review of modern quantum optimal control techniques, a deep

understanding of the quantum hardware specifics, the layout of the optimisation

procedure and its numerical validation by development of a digital twin of the sys-

tem.

On the basis of the simulations carried out, we can conclude that our optimi-

sation routine reaches the goal of shaping electromagnetic control pulses that steer

the system time evolution as a CNOT gate application with a reference fidelity

Fsm > 99%, comparable with the state of the art. Most importantly, being the

process fully designed on the basis of experimental details, it enables a straight-

forward implementation on real devices. This will allow to perform the control

search directly based on the system specifics, looking at the actual response and

saving the effort of developing a model (which is usually either too complex or too

approximate to be a perfect representation).

We managed to propose the protocol with some degrees of freedom that can

be tuned according to the user requirements. If a fast convergence of the figure of

merit is needed, the recommended approach would be the investigation of the gate

action on all the basis states at once via the preparation and average of multiple pure

states with random-coherence and non-degenerate populations. Instead, if a slow

yet precise infidelity minimisation is preferred, then it is convenient to monitor the

evolution of the whole set of basis vectors or to exploit an hybrid approach. In

any case, the random-phase methods appear to be more experiment-friendly, since

they are well suited for the multiple realisations required to gather statistics in the

readout process and therefore require no extra experimental effort.

4.1. Towards the experiment

The next interesting development of this work will be the experimental validation

of the protocol. To move in this direction it is first of all necessary to find an ad-
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equate system: while 13C, 14N and 15N atoms are all suitable candidates, they

present different challenges together with different academic interest. For exam-

ple, to initialise the nuclear spin to |0⟩n it is necessary to prepare the electronic spin

in |0⟩e and then transfer this state to the nuclear one: this procedure is technically

faster on Nitrogen atoms [59] and it is a partial motivation to the fact that experi-

mental efforts towards two-qubit gates on a single NV center have been especially

focused on this platform so far [60]. Moreover, in section 3.1.3 we highlighted

how the ability to independently readout the populations of the four basis states

is strongly conditioned to the possibility to drive selective transitions between the

ms = 0 andms = −1 states of the 3A2 and 3E levels. Of course, this is only feasi-

ble if the respective transition frequencies are sufficiently far apart in the spectrum.

Since the energy scheme of the NV center depends on its internal structure together

with the configuration of the neighbouring atoms, it is important to individuate a

suitable candidate for the application of the protocol.

Another huge factor is given by the decoherence time of the two qubits. We

discussed the specifics of a suitable experiment for our proposal: typical decoher-

ence scales are given by t∗2 = O(20 µs) for the NV (with possible extension of

one order of magnitude if spin echo is performed) and t∗2 = O(1ms) for a 13C
nuclear spin [61, 62]. Hence, the total gate time must be much shorter than the

one fixed in the previous simulations. We can aim for optimisation in two possible

regimes: the first one requires Ωm ≈ Ωr with a total gate time T of orderO(1 µs),
while the second scenario employs Ωm = O(50MHz), Ωr = O(40 kHz) and

T = O(100 µs).
While performing open-loop analysis to certify the quality of the protocol be-

fore moving to the experimental setup, some issues arise. The first one refers to

the simulation details illustrated in section 1.3, where we stated that the system

Hamiltonian we control is defined in the interaction picture within the rotating

wave approximation. The latter is valid in the case Ω ≪ ω, i.e. Rabi frequency

much smaller than the transition frequency, for both the MW and RF pulses. Nev-

ertheless, since ω13 = O(100MHz) as well as ω23 = O(100MHz) (where

ωij = |Ei − Ej |/ℏ), for the RWA to be valid the control amplitudes should be at

most of the order of 1MHz, which is incompatible with the requirement of a gate

time T ∼ 1 µs. Hence, to test the protocol with the first set of conditions men-

tioned above it will be necessary to prepare a more complex model which does not

exploit approximations for fast oscillating terms.

This is not the case for the second scenario, since over a longer gate time we

can reduce the control intensity and remain in a (borderline) valid approximation

regime. With this new settings, the observe that simulations fail to find a reasonable

solution. Following the approach indicated in [63], we believe that the use of two

controls such that Ωm ≫ Ωr introduces in the system a Zeno subspace in which

the survival probability for any initial state within the subspace is given by:

Ps (t) =

(

1− 2Ω2
r

Ω2
r +Ω2

m

sin2

(√

Ω2
r +Ω2

mt

2

))2
Ωm≫Ωr7−−−−−→ 1 (4.1)
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which means that the action of the RF pulse becomes useless.

To summarise, numerical validation of this protocol for setup parameters com-

parable with the ones of the real lab we are starting a collaboration with is still to

be verified and will require a more detailed characterisation of the system. Another

solution would be the design of controls with a pulse duration of T ≥ O(1ms),
taking into account that for this pulse length the system is subject to decoherence

and therefore additional, correction terms in the figure of merit should be consid-

ered. In any case, these results simply indicate that the modeling we used for the

numerical validation is not suitable to represent the real-world setup: the power of

closed-loop control lays exactly in the possibility of directly accessing the system

without the need of a model. In this sense, we are confident that a direct imple-

mentation of the protocol will lead to some quality results, making another step

forward towards the realisation of two-qubit gates to enhance the future of quan-

tum computers.
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