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Abstract

Reinforcement Learning is a promisingMachine Learning field that has started to be widely
used in many scenarios, from robotics to chemistry. Inspired by the way humans learn, it
consists of an iterative approach in which an agent, by interacting with and receiving feed-
back from its environment, attempts to learn an optimal action selection policy.
In this project we applied Deep-Q Reinforcement Learning, a technique that combines the
power ofDeepLearning, in particular ofConvolutionalNeuralNetworks (CNNs), with the
Q-Learning approach, to manage a swarm scenario in a bi-dimensional environment. Given
a square map with some targets, the goal is to make the drones able to learn to cooperate be-
tween them, trying to track and follow themost valuable targets. We compared a distributed
and a centralized approach and verified how the first can outperform the latter in a real-world
scenario with limited training.
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1
Introduction

In the last decade, thanks to the continuing growth of computing power, Machine Learn-
ing became a must in many fields. It is very useful for the analysis of a big amount of data
and the creation of models able to outperform any complex human model designed. In the
context of complex scenarios, the design of engineered models is very time consuming and
difficult. Instead of tuning the features of the models, in Machine Learning these are ex-
tracted from data. We can talk in this way of a model-free approach. Among the various
techniques used in Machine Learning, Neural Networks are nowadays the most common.
In particular Deep Neural Networks (DNNs) are state-of-the-art techniques: using the par-
allel computing power of Graphics Processing Units (GPUs), they are able to construct very
complex models that manage and benefit from large amounts of data. They are used in a va-
riety of tasks, including computer vision [1], speech recognition [2][3], machine translation
[4], social network filtering etc.

In the last years Neural Networks have been combined with Reinforcement Learning (RL),
and in particular with Q-Learning [5]. For this reason, now we talk about Deep Reinforce-
ment Learning applications and Deep-Q-Networks (DQN).
Reinforcement Learning is a sub-field of Machine Learning where an agent that interacts
with an environment learns an optimal action selection policy by receiving feedback from
it. RL algorithms learn in an iterative way: at each iteration the learner observes its state, it
chooses an action that leads to a subsequent environment’s state. Then, the learner receives

1



a reward or a penalty and updates its value function, which represents the objective to maxi-
mize. Exploring the environment and collecting this informations the agents learns how to
maximize the long-term reward.
Recently Artificial Intelligence reached incredible results, with the use of RL. It has been
hugely successful in classic table games, like chess or Go. These games imply solving a search
problem at each move, and RL amazingly boosts the efficiency of the search. AlphaGo be-
came the first program to defeat a human world champion in the game of Go [6].
Classic video games are other good benchmarks because they are executable environments
with large state spaces. With the use of a DQN, an agent was trained and tested on the chal-
lenging domain of classic Atari 2600 games [7]. It has been demonstrated that the DQN
agent, was able to surpass the performance of all previous algorithms and achieve a level com-
parable to that of a professional human games tester across a set of 49 games receiving only
the pixels and the game score as inputs. RL has also been applied to solve a Rubik’s cube
with a humanoid robot hand [8].

However, RL is also applicable in many real world scenarios: from the design of a traffic
light controller to solve the congestion problem [9], to the optimization of chemical reac-
tions [10] or personalized recommendations systems [11]. The list of other possible applica-
tions in which RL can be applied is vast. One of them is the coordination of a multi-agent
system. These situations arise naturally in a variety of domains, such as: robotics, telecom-
munications, drones, economics, distributed control, auctions, traffic light control, etc. In
such systems it is important that agents are capable of discovering good solutions to the prob-
lem at hand either by coordinating with other learners or by competing with them.

The drone scenario is the one chosen for this project. Drones can be used for search and
rescue operations [12], for aerial filming, for security reasons, for maintenance, for environ-
mentalmonitoring [13], delivery services [13] andmany other situations. In this workwe ap-
plied Deep-Q-Learning, using Conv. Neur. Networks (CNNs), to train a swarm of drones
to cooperate in a grid world. The objective is to explore a map and track any number of
targets, which might move around the map, have different values over time and space, or ap-
pear or disappear suddenly. In this thesis, we limited ourselves to a static case, in which the
problem simplifies to the assignment of a target to each drone. We compared a distributed
approach and a centralized one. A similar work on amulti-agent cooperation was developed
by Egorov [14], where a pursuit-evasion game has been simulated, with two pursuers that
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try to catch two evaders.

The structure of the rest of this thesis is as follows:
in Chapter II we present an introduction to RL, presenting the Markov Decision Processes
(MDP)model and the Temporal Difference (TD) learning solution. In particular, theDeep-
Q-Learning approach is presented , with the application of Neural Networks on the Q-
Learning.
In Chapter III we describe our drone swarm scenario and how we implemented Deep-Q-
Learning. Some Reinforcement Learning strategies are also described and the way we con-
ducted Optimization Search on some hyper-parameters is presented.
InChapter IV there are the results of a single drone scenario: how it behaves in a single target
situation and in a multi targets one, how it scales with the world size and how much some
parameters can affect the final performance.
In Section Vwe analyze the results of a swarm situation, with the comparison between a dis-
tributed and centralized approach, the study of a generalization onmore complex situations
and the benefits of the learning strategies and the Optimization Search described in Section
III.
In SectionVIwe briefly analyze the results obtained, we try to propose someways to increase
the performances andwe present the numerous theoretical extensions that this project could
have.

3



4



2
Reinforcement Learning

In this chapter, we present an introduction to theReinforcement Learning concepts that we
will use in our work [15]. Then, the Deep-Q-Learning approach is described with a general
overview on neural networks, and on Convolutional Neural Networks in particular.

What is Reinforcement Learning

ReinforcementLearning [15, Sec.I] is a subfield ofMachineLearning. MachineLearn-
ing can be divided into 3 main areas:

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

Supervised learning is learning from a training set of labeled examples provided by a knowl-
edgeable external supervisor. Each example is a description of a situation together with a
specification (the label) of the correct output the system should take in that situation. We
can, in general, classify the main tasks of Supervised Learning in classification tasks and re-
gression tasks.
Instead, Unsupervised learning is a kind of learning that tries to find structure hidden in
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collections of unlabeled data. Clustering and dimensionality reduction are the main appli-
cations of this kind of learning.
Although one might be tempted to think of Reinforcement Learning as a kind of unsuper-
vised learning, it is trying to maximize a reward signal instead of trying to find hidden struc-
tures in the data. We can say that RLmeans ”how tomap situations to actions”. The learner
is not told which actions to take, but instead must discover which actions yield the most re-
ward by trying them. In the most interesting and challenging cases, actions may affect not
only the immediate reward but also the next situation and all subsequent rewards. Since the
learner receives a scalar value as consequent feedback of its action, we could classify RL as
a supervised approach. But in the latter case the feedback received, the label, is sufficient to
know the correct output of the model, in the RL case it is only a scalar that helps to find
it. The two features, trial-and-error search and delayed reward, are the two most important
distinguishing features of Reinforcement Learning.

Main features of RL are:

• Its goal is to design algorithms (agents) that learn tomake actions in order tomaximize
the sum of the cumulated following reward

• The agent’s initial knowledge about the environment is limited

• The agent learns by trial and error: after selecting an action, the agent observes the
effects of the action on the environment, and receives a feedback signal (reward)

What makes it different from other areas in Machine Learning:

• There is no supervisor, only a reward signal

• Feedback is delayed, not immediate

• Time matters (data is received sequentially)

• The agent’s actions affect the subsequent data it receives

6



2.0.1 Elements of Reinforcement

• Policy: it defines the learning agent’s way of behaving at a given time. It is a mapping
from perceived states of the environment to actions to be taken when in those states.

• Reward signal: it defines the goal of a RL problem. At each time step, the environ-
ment sends a scalar called reward to theRL agent. The agent’s objective is tomaximize
the total reward it receives over the long run.

• Value function: while a reward indicates what is good in an immediate sense, a value
function specifieswhat is good in the long run. The value of a state is the total amount
of reward an agent can expect to accumulate in the future, starting from that state.
A state might yield a low immediate reward but still have an high value because it is
regularly followed by other states that yield high rewards. We prefer actions that lead
to states of highest value, not highest reward.

• Model environment: it’s something that mimics the behavior of the environment, or
more generally, that allows inferences to be made about how the environment will
behave. Given a state and action, the model might predict the resultant next state and
next reward.
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2.1 FiniteMarkov Decision Processes

2.1.1 The agent-Environment Interface

Figure 2.1: Reinforcement Learning framework

Theagent and environment interact at eachof a sequenceofdiscrete time steps, t=0,1,2,3,...
At each time step t, the agent receives some representationof the environment’s state, st ∈ S,
and on that basis selects an action, at ∈ A(s). One time step later, in part as a consequence
of its action, the agent receives a numerical reward, rt+1 ∈ R, and finds itself in a new state,
st+1 [15, Sec. III]. TheMDP and agent together thereby give rise to a sequence or trajectory
that begins like this:

s0, a0, r1, s1, a1, r2, s2, a2, r3, ...

In a finite MDP, the sets of states, actions and rewards (S,A,R) all have a finite number of
elements. In this case, the random variables St andRt have well defined discrete probability
distributions dependent only on the preceding state and action:

p(s
′
, r|s, a) = Pr[St = s

′
, Rt = r|St−1 = s, At−1 = a] ∀ s′

, s ∈ S, r ∈ R, a ∈ A(s)

(2.1)
The function p defines the dynamics of theMDP and is an ordinary deterministic function
with 4 arguments: ∑

s′∈S

∑
r∈R

p(s
′
, r|s, a) = 1 ∀ s ∈ S, a ∈ A(s) (2.2)

In aMDP, the state-transition and reward probability distributions completely characterize
the environment’s dynamics. The probability of each possible value for St andRt depends
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only on the immediately preceding state and action, St−1 andAt−1, and, given them, not at
all on earlier states and actions. This is a restriction on the state, not on the decision process.
The state must include information about all aspects of the past agent-environment interac-
tion that make a difference for the future. If it does, then we have the Markov property.

p(s
′|s, a) = Pr[St = s

′|St−1 = s, At−1 = a] =
∑
r∈R

p(s
′
, r|s, a) (2.3)

r(s, a) = E[Rt|St−1 = s, At−1 = a] =
∑
r∈R

r
∑
s′∈S

p(s
′
, r|s, a) (2.4)

r(s, a, s
′
) = E[Rt|St−1 = s, At−1 = a, St = s

′
] =

∑
r∈R

r
p(s

′
, r|s, a)

p(s′ |s, a)
(2.5)

2.1.2 Goals and rewards

If we want to make a robot learn how to escape from a maze, the reward is often -1 for every
time step that passes prior to escape; this encourages the agent to escape as quickly as possible.
One might also want to give the robot negative rewards when it bumps into things or when
somebody yells at it. Instead, for an agent that has to learn to play chess, we can use +1 for
winning, -1 for loosing and 0 reward for all non-terminal positions.
It is thus critical that the rewards we set up truly indicate what we have inmind. The reward
is our way of communicating to the robot what we want to achieve, not how we want it
achieved (a chess player should be rewarded only for actually winning, not for achieving sub-
goals such as taking it’s opponent’s pieces or gaining control of the center of the board. If
achieving these sorts of sub-goalswere rewarded, then agentmight find away to achieve them
without achieving the goal).

2.1.3 Returns and episodes

In general we seek tomaximize the expected return, where the return, denotedGt, is defined
as some specific function of the reward sequence. In the simplest case, the return is the sum
of the expected reward:

Gt = rt+1 + rt+2 + ...+ rT (2.6)

where T is a random variable which represents the final step. This approach makes sense in
applications in which there is a natural notion of the final step. Each episode ends in a spe-
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cial state called ”terminal state”, followed by a reset to a standard starting state or to a sample
from a standard distribution of starting states. The next episode begins independently of
how the previous one ended. Thus the episodes can all be considered to end in the same
terminal state, with different rewards for the different outcomes. These are called episodic
tasks.
On the other hand, in many cases the agent-environment interaction does not break natu-
rally into identifiable episodes, but goes on without limits. This would be a natural way to
formulate an on-going process-control task and manage in this way continuing tasks. Com-
putingGt is problematic for continuing tasks because the final step would be T=∞, and the
return could easily infinite. For this reason a discounting factor is used:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... = (2.7)

=
∞∑
k=0

γkRt+k+1 0 ≤ γ ≤ 1 : discount rate (2.8)

If γ < 1, the infinite sum has a finite value as long as the reward sequence {Rk} is bounded.

Gt = Rt+1+γRt+2+γ2Rt+3+... = Rt+1+γ(Rt+2+γRt+3+...) = Rt+1+γGt+1 (2.9)

This works for all time steps t<T, even if termination occurs at t+1, if we defineGT = 0. Al-
though the return is a sum of an infinite number of terms, it still converges to a finite value
if the reward is non-zero and bounded, if γ < 1. For example if the reward is +1,

Gt =
∞∑
k=0

γk =
1

1− γ
(2.10)

2.1.4 Policies and value functions

A policy is a mapping from states to probabilities of selecting each possible action:
π : s → p(a|s) ∀a ∈ A. If the agent is following policy π at time t, then π(a|s) is the
probability thatAt = a if St = s. The value function of a state s under a policy π, vπ(s), is
the expected return when starting in s and following π (the value of the terminal state, if any,
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is always 0):

vπ(s) = Eπ = [Gt|St = s] = Eπ[
∞∑
k=0

γkRt+k+1|St = s],∀s ∈ S (2.11)

Equation is defined as state-value function for policy π. We define the value of taking action
a in state s under a policy π, qπ(s, a), as the expected return starting from s, taking the action
a and following π:

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ[
∞∑
k=0

γkRt+k+1|St = s, At = a] (2.12)

vπ and qπ can be estimated from experience. If an agent follows policy π and maintains an
average, for each state encountered, of the actual returns that have followed that, then the av-
erage will converge to the state’s value vπ(s) as the number of times that state is encountered
approaches infinity. If separate averages are kept for each action taken in each state, then
the averages will similarly converge to the action values qπ(s, a). These methods are called
Monte Carlo methods because they involve averaging over many random samples of actual
returns.

vπ(s) = Eπ[Gt|St = s] = Eπ[Rt+1 + γGt+1|St = s] = (2.13)

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)[r + γEπ[Gt+1|St+1 = s′] (2.14)

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)] ∀s ∈ S (2.15)

Equation 2.14 is called ”Bellman equation for vπ”, and it expresses a relationship between
the value of a state and the values of its successor values; the value of the state must be equal
to the (discounted) value of the expected next state, plus the reward expected along the way.
The value function vπ is the unique solution to its Bellman equation.

2.1.5 Optimal policies and optimal value functions

A policy π is defined to be better than or equal to a policy π′ if its expected return is greater
than or equal to that of π′ for all states:

π ≥ π′ ⇐⇒ vπ(s) ≥ vπ′(s) ∀s ∈ S (2.16)
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There is always at least one policy that is better than or equal to all other policies: it’s the
optimal policy. Although there may be more than one, we denote all the optimal policies by
π∗. They share all the same-value function, called optimal state-value function:

v∗(s) = max
π

vπ(s) ∀s ∈ S (2.17)

Optimal policies also share the same optimal-action value function:

q∗(s, a) = max
π

qπ(s, a)∀s ∈ S, a ∈ A(s) (2.18)

→ q∗(s, a) = E[Rt+1 + γV∗(St+1)|St = s, At = a] (2.19)

Because v∗ is the value function for a policy, it must satisfy the self-consistency condition
given by the Bellman equation, for state values. Because it’s the optimal value function,
however, v∗’s consistency condition can be written in a special form without reference to
any specific policy. This is the Bellman equation for vπ, or the Bellman optimality equation,
that intuitively expresses the fact that the value of a state under an optimal policy must be
equal to the expected return for the best action from that state:

v∗(s) = max
a∈A(s)

qπ∗(s, a) = max
a

Eπ∗ [Gt|St = s, At = a] = (2.20)

= max
a

Eπ∗ [Rt+1 + γGt+1|St = s, At = a] = (2.21)

= max
a

E[Rt+1 + γv∗(St+1)|St = s, At = a] (2.22)

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)] (2.23)

q∗(s, a) = E[Rt+1 + γmax
a′

q∗(St+1, a
′)|St = s, At = a] (2.24)

=
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)] (2.25)

For finiteMDPs, the Bellman optimality equation for vπ has a unique solution independent
of the policy. TheBellmanoptimality equation is actually a systemof equations, one for each
state. So if there are n states, then, there are n equations in n unknowns. If the dynamics of
the environment are known, then in principle one can solve this system of equations for v∗
using any one of a variety ofmethods for solving systemof equations of non-linear equations.
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With v∗, it’s easy to obtain an optimal policy. For each state s, there will be one or more
actions at which the maximum is obtained in the Bellman optimality equation. Any policy
that assigns non-zero probability only to these actions is an optimal policy.

2.2 Dynamic programming

Dynamic programming refers to a collection of algorithms that can be used to compute
optimal policies given a perfect model of the environment as a Markon Decision Process
(MDP)[15, Sec. IV]. Classical DP algorithms are of limited utility in RL both because of
their assumption of a perfect model and because of their computational expense. Usually,
other methods are used: methods that try to achieve the same results of DP but with less
computation and without assumption of perfect environment’s model. With DP, the as-
sumptions are based on finiteMDP: it’s state, action and reward sets, (S,A,R) are finite. The
dynamics are given by a set of probabilities

p(s’,r|s,a) ∀ s∈ S, a ∈A(s), r ∈R and s ∈ S

Although DP ideas can be applied to problems with continuous state and action spaces, ex-
act solutions are possible only in special cases. With continuous states and actions, state and
action spaces are quantized and then applied finite-state DP methods.
The existence and uniqueness of vπ are guaranteed as long as either γ < 1 or eventual termi-
nation is guaranteed from all states under the policy π.
If the environment’s dynamics are completely known, then

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)] (2.26)

is a system of |S| simultaneous equations in |S| unknowns.
If we consider a sequence of approximate value functions v0, v1, v2, ... each mapping S+ to
R, v0 is chosen arbitrarily and each successive approximation is obtained by using Bellman
equation for vπ as an update rule:

vk+1(s) = Eπ[Rt+1 + γvk(St+1)|St = s] = (2.27)

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvk(s
′)]∀s ∈ S (2.28)
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vk = vπ is a fixed point for this update rule because the Bellman equation for vπ assures
us of equality in this case. The sequence vk can be shown in general to converge to vπ as
k →∞ under the same conditions that guarantee the existence of vπ. From vk to vk+1, iter-
ative policy evaluation applies the same operation to each state s: it replaces the old values of
the successor state s, and the expected immediate rewards, along all the one-step transitions
possible under the policy being evaluated: expected update. Each iteration of iterative policy
evaluation updates the value of every state once to produce the new approximate value func-
tion vk+1. All the updates done in DP algorithms are called expected updates because they
are based on the expectation over all possible next states rather than on a sample next state.

2.3 Monte Carlo methods

In Monte Carlo methods we don’t assume complete knowledge of the environment. We
need only experience: sample sequences of states, actions and rewards from actual or simu-
lated interaction with an environment. No prior knowledge of the environment is required.
Although a model is required, the model need only generate sample transitions, not the
complete probability distributions of all possible transitions that is required for dynamic
programming. Only on the completion of an episode the values estimates and policies are
changed.

The value of a state is the simply average of the returns observed after visits to that state.
As more returns are observed, the average should converge to the expected value. Each oc-
currence in a state s is called ”a visit to s”. There exist 2 possible methods: the First Visit
MCmethod (it estimates vπ(s) as the average of the returns following first visit to s) and the
Every-visit MCmethod (it averages the returns following all visits to s) [15, Sec. V].

2.3.1 Monte Carlo estimation of action values

If a model is not available, then it’s particularly useful to estimate action values rather than
state values. With a model, state values alone are sufficient to determine a policy. Without
a model, they are not. One must explicitly estimate the value of each action in order for the
values to be useful in suggesting a policy. Our goal is always to estimate q∗. Both First-visit
MC andEvery-visitMC converge quadratically to the true expected values as the number of
visits to each state-action pair→ ∞. But many state-action pairs may never be visited. If π
is a deterministic policy, then following it one will observe returns only for one of the action
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for each state. With no returns to average, the Monte Carlo estimates of the other actions
will not improve with experience.
This is the general problem of maintaining exploration. For policy evaluation to work for
action values, we must assure continual exploration. One way to do this is by specifying
that the episodes start in a state-action pair, and that every pair has a non-zero probability of
being selected as the start. This guarantees that all state-action pairs will be visited an infinite
number of times in the limit of an infinite number of episodes. This requirement is called
the assumption of exploring starts (ES). But exploring starts cannot generalize all the case as
the best option.

2.3.2 Monte Carlo control

Many episodes are experienced,with the approximate action-value function approaching the
true function asymptotically. Let us assume that episodes are generatedwith exploring starts,
and an infinite number of episodes. Under these assumptions, Monte Carlo methods will
compute each qπk

exactly, for arbitraryπk. Policy improvement is done bymaking the policy
greedy with respect to the current value function. In this case we have an action-value func-
tion, and therefore no model is needed to construct the greedy policy: for any action-value
function q, the corresponding greedy policy is the one that, for each s ∈ S, deterministically
chooses an action with maximal action-value:

π(s) = argmax
a

q(s, a) (2.29)

Policy improvement then can be done by constructing each πk+1 as the greedy policy with
respect to qπk

.
qπk

(s, πk+1(s)) = qπk
(s, argmax

a
qπk

(s, a)) = (2.30)

= max
a

qπk
(s, a) ≥ qπk

(s, πk(s) ≥ vπk
(s) (2.31)

The theorem assures that each πk+1 is uniformly better than πk, or just good as πk, in which
case they are both optimal policies. This assures that the overall process converges to the
optimal policy and optimal value function. But there are 2 unlikely assumptions:

1. episodes have exploring starts

2. Infinite number of episodes

The second assumptions is easy to remove. There are 2 ways:
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1. One is to hold firm to the idea of approximating qπk
in each policy evaluation. Mea-

surement and assumptions are made to obtain bounds on the magnitude and error
probability in the estimates, and then sufficient steps are taken during each policy
evaluation to assure that these bounds are sufficiently small. We will have correct con-
vergence up to some level of approximation, but it also requires far toomany episodes
to be useful.

2. We give up trying to complete policy evaluation before returning to policy improve-
ment. On each evaluation step we move the value function toward qπk

, but we don’t
expect to actually get close over many steps.

2.3.3 Monte Carlo control without ES

The only general way to ensure that all actions are selected infinitely often is for the agent to
continue to select them. There are 2 possible approaches:

1. On-policy methods

2. Off-policy methods

On-policy methods attempt to evaluate or improve a policy different from that used to gen-
erate the data. Monte Carlo with ES method is an example. The policy is generally soft,
meaning that π(a|s)>0 ∀ s ∈ S and all a ∈ A(s), but gradually shifted closer and closer to
a deterministic optimal policy→ ϵ−greedy. All non greedy actions are given the minimal
probability of selection, ϵ

|A(s)| , and the remaining to the greedy action: 1− ϵ+ ϵ
|A(s)| .

ϵ-greedy policies are examples of ϵ-soft policies, defined as policies for which π(a|s) ≥ ϵ
|A(s)|

for all states and actions, for some ϵ>0. Among ϵ-soft policies, ϵ-greedy policies are in some
sense those that are closest to greedy.
As inMonte Carlo ES, we use First-visitMC methods to estimate the action-value function
for the current policy. Without the assumption of ES, however, we cannot simply improve
the policy bymaking it greedywith respect to the current value function, because thatwould
prevent further exploration of non-greedy actions. General policy improvement does not re-
quire that the policy be taken all the way to a greedy policy, only that it be moved toward a
greedy policy. In our on-policy method we will move it only to an ϵ-greedy policy. For any
ϵ-soft policy,π, any ϵ-greedy policywith respect to qπ is guaranteed to be better than or equal
to π by the policy improvement theorem.
The on-policy approach is a compromise: it learns action values not for the optimal policy,
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but for a near-optimal policy that still explores. A possible solution is to use 2 policies: one
that is learned about and that becomes the optimal policy, and one that is more exploratory
and is used to generate behavior. They are called respectively, target policy and behavior pol-
icy. In this case the learning is from data ”off” the target policy: for this reason it is called
Off-policy learning. On-policy methods are generally simple. Off-policy methods require
additional concepts and notation, and because the data is due to a different policy, they are
often of greater variance and slower to converge. On the other hand, off-policy methods are
more powerful and general: they include on-policy methods as the special case in which the
target and behavior policies are the same. On policy methods estimate the value of a policy
while using it for control. In off-policy methods there 2 functions are separated. The policy
used to generate behavior, the behavior policy, may in fact be unrelated to the policy that is
evaluated and improved, the target policy. Possible advantage: the target policymay be deter-
ministic (e.g. greedy), while the behavior policy can continue to sample all possible actions.
Off policy Monte Carlo control methods follow the behavior policy while learning about
and improving the target policy. The behavior policy must have a non-zero probability of
selecting all actions that may be selected by the target policy. To explore all possibilities, we
require that the behavior policy be soft (that it select all actions in all states with non-zero
probabilities).
The target policyπ∗ is the greedy policywith respect toQ,which is an estimate of qπ. The be-
havior policy b can be anything, but in order to assure convergence ofπ to the optimal policy,
an infinite number of returns must be obtained for each pair of state and action. This can
be assured by choosing b to be ϵ-soft. The policy π converges to optimal at all encountered
even though actions are selected according to a different soft policy b, which may change
between or even within episodes. Possible problem: this methods learns only from the tails
of episodes, when all of the remaining actions in the episode are greedy. If non-greedy ac-
tions are common, then learning will be slow, particularly for states appearing in the early
portions of long episodes.

2.4 Temporal Difference Reinforcement Learning

Temporal Difference (TD) learning [15, Sec. VI] is a combination ofMonte Carlo ideas and
dynamic programming (DP) ones, and it is the method used in all this project. Like Monte
Carlo methods, TDmethods can learn directly from raw experience without a model of the
environment’s dynamics. Like DP, TDmethods update estimates based in part on the other
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learned estimates, without waiting for a final outcome.

2.4.1 TD prediction

A simple every-visit Monte Carlo method for non-stationary environment is:

V (St)← +α[Gt − V (St)] (2.32)

Whereas Monte Carlo methods must wait until the end of the episode to determine the in-
crement to V (St) (only then Gt is known), TD methods need to wait only until the next
time step. At time t+1 they immediately form a target and make a useful update using the
observed reward Rt+1 and the estimate V (St+1). The simplest TD method makes the up-
date

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)] (2.33)

immediately on transition to St+1 and receiving Rt+1. In effect, the target of the Monte
Carlo update isGt, whereas the target for the TDupdate isRt+1+γV (St+1). This method
is called TD(0), or one-step TD. Since TD(0) bases its update in part on an existing estimate,
is called bootstrapping method, like DP. We know that

vπ(s) = Eπ[Gt|St = s] (2.34)

= Eπ[Rt+1 + γGt+1|St = s] (2.35)

= Eπ[Rt+1 + γvπ(St+1)|St = s] (2.36)

Monte Carlo methods use an estimate of (2.34) as a target, whereas DP methods use an
estimate of (2.36) as a target. The Monte Carlo target is an estimate because the expected
value in (2.34) is not known; a sample return is used in place of the real expected return.
The DP target is an estimate not because of the expected values, which are assumed to be
completely provided by a model of the environment, but because vπ(St+1) is not known
and the current estimate, V (St+1), is used instead. The TD target is an estimate for both
reasons: it samples the expected values in (2.36) and it uses the current estimate V instead of
the true vπ.
The difference in the equation between St andRt+1 + γV (St+1) is the TD error:

δt = Rt+1 + γV (St+1)− V (St) (2.37)
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Because the TD error depends on the next state and next reward, it’s not available until one
time step later: δt is available at time step t+1.

2.4.2 Advantages of TD prediction methods

TDmethods update their estimate based in part on other estimates. They learn a guess from
a guess: they bootstrap.

1. TDmethods don’t require a model of the environment, of it’s reward and next-state
probability distributions

2. They arenaturally implemented in an ”on-line, fully incremental fashion”: withMonte
Carlo methods one must wait until the end of the episode, because only when then
the return is known, whereas with TD methods one need wait only one time step.
Some applications have very long episodes, so that delaying all learning until the end
of the episode is too slow; other are continuing tasks and have no episodes at all. Fi-
nally,MonteCarlomethodsmust ignore or discount episodes onwhich experimental
actions are taken, which can greatly slow learning. TD methods are much less sus-
ceptible to these problems because they learn from each transition regardless of what
subsequent actions are taken.

3. For any fixed policyπ, TD(0) has been proved to converge to vπ, in themean for a con-
stant step-size parameter if it’s sufficiently small, andwith probability 1 if the step-size
parameter decreases according to the usual stochastic approximation conditions. TD
methods have usually been found to converge faster than constant-αMCmethods on
stochastic tasks.

2.4.3 Optimality of TD(0)

When only a finite amount of experience is available, a common approach with incremental
learning methods is to present the experience repeatedly until the method converges upon
an answer. Given an approximate value function V, the increments specified by (2.32) and
(2.33) are computed for every time step t at which a non-terminal state is visited, but the
value function is changed only once, by the sum of all the increments. Then all the available
experience is processed again with the new value function to produce a new overall incre-
ment, and so on, until the value function converges→ it’s called batch updating because
updates are made only after processing each complete batch of training data. Under batch
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updating, TD(0) converges deterministically to a single answer independent of the step-size
parameter α, as long as α is chosen to be sufficiently small. The constant-α MC method
also converges deterministically under the same conditions, but to a different answer. Un-
der normal updating the methods do not move all the way to their respective batch answers,
but in some sense they take steps in these directions.

2.4.4 Sarsa: on-policy TD control

The first step is to learn an action-value function rather than a state-value function. In par-
ticular, for an on-policy method we must estimate qπ(s, a) for the current behavior π and
for all states s and actions a. This can be done using essentially same TD method described
above for learning vπ.
The theorems assuming the convergence of state values under TD(0) also apply to the corre-
sponding algorithm for action values:

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (2.38)

where the step-size parameter α ∈ (0, 1] is constant. This update is done after every tran-
sition from a non-terminal state St. If St+1 is terminal, then Q(St+1, At+1) is defined as
0. This rule uses every element of the quintuple of events, (St, At, Rt+1, St+1, At+1), that
make up a transition from one state-action pair to the next. This quintuple gives rise to the
name Sarsa algorithm [16].
We continually estimate qπ for the behavior policy π, and at the same time change π toward
greediness with respect to qπ. Sarsa converges with probability 1 to an optimal policy and
action-value function as long as all state-action pairs are visited an infinite number of times
and the policy converges in the limit to the greedy policy (for example, with ϵ-greedy policies
with ϵ = 1/t.
Sometimes it is convenient to vary the step-size parameter from step to step. For example, us-
ingαt(a) =

1
t
is guaranteed to converge to the true action values by the lawof large numbers.

But convergence is not guaranteed for all choices of the sequence αt(a). The conditions re-
quired to assure convergence with probability 1 are [17]:

∞∑
t=1

αt(a) =∞ (2.39)
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and
∞∑
t=1

α2
t (a) <∞ (2.40)

The first condition is required to guarantee that the steps are large enough to eventually over-
come any initial conditions or random fluctuations. The second condition guarantees that
eventually the steps become small enough to assure convergence. Both conditions are sat-
isfied for the case αt(a) = 1

t
, but not for the case of constant step-size parameter. In the

latter case, this implies that the estimates never completely converge but continue to vary in
response to the most recently received rewards. This is actually desirable in a non-stationary
environment, and problems that are effectively non-stationary are the most common in RL.
In addition, sequences of step-size parameters that meet the conditions often converge very
slowly or need considerable tuning in order to obtain a satisfactory convergence rate. Al-
though sequences of step-size parameters that meet these convergence conditions are often
used in theoretical work, they are seldomused in applications and empirical research [15, Sec.
II].

2.4.5 Q-learning: Off-policy TD control

One of the early breakthroughs in reinforcement learning was the development of an off-
policy TD control algorithm known as Q-learning [5], defined by

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (2.41)

The learned action-value function, Q, directly approximates q∗, the optimal action-value
function, independent of the policy being followed. This simplifies the analysis of the algo-
rithm and enables early convergence proofs. The policy still has an effect in that it determines
which state-action pairs are visited and updated. However, all that is required for correct con-
vergence is that all pair continue to be updated.
Under this and other assumptions, Q has been shown to converge with probability 1 to q∗.

2.4.6 Expected Sarsa

It is a learning algorithm that is just like Q-learning except that instead of themaximum over
next state-action pairs it uses the expected value, taking into account how likely each action
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is under the current policy.

Q(St, At)← Q(St, At) + α[Rt+1 + γ + Eπ[Q(St+1, At+1)|St+1]−Q(St, At)] (2.42)

Q(St, At)← Q(St, At)+α[Rt+1+ γ+
∑
a

π(a|St+1)Q(St+1, a)−Q(St, At)] (2.43)

Given St+1, this algorithm moves deterministically in the same direction as Sarsa moves in
expectation: for this reason is called Expected Sarsa. Expected Sarsa is more complex com-
putationally than Sarsa, but it eliminates the variance due to the random selection of At+1.
Given the same amount of experience, we might expect it to perform slightly better than
Sarsa, and indeed it generally does.

2.4.7 Maximization bias and double learning

In these algorithms, a maximum over estimated values is used implicitly as an estimate of the
maximum value, which can lead to a significant positive bias: consider a single state s where
there are many actions a whose true values, q(s,a) are all zero but whose estimated values,
Q(s,a) are uncertain and thus distributed some above and some below 0. The maximum of
the true values is 0, but the maximum of the estimates is positive, a positive bias: this can
harm the performance of TD control algorithms. We call this maximization bias.
So there will be a positive maximization bias if we use the maximum of the estimates as an
estimate of the maximum of the true values. It’s due to using the same samples (plays) both
to determine themaximizing action and to estimate it’s value. Apossible solution is to divide
the plays in 2 sets and use them to learn 2 independent estimates,Q1(a) andQ2(a), each an
estimate of the true value q(a), ∀a ∈ A. We could then use one estimate,Q1, to determine
themaximizing actionA∗ = argmaxa Q1(a), and the other,Q2, to provide the estimate of
its value,Q2(A

∗) = Q2(argmaxa Q1(a). This estimate will then be unbiased in the sense
that E[Q2(A

∗)] = q(A∗). We can also repeat the process with the role of the two estimates
reversed to yield a second unbiased estimateQ1(argmaxaQ2(a).
The idea of double learning extends naturally to algorithms for fullMDPs. For example, the
double learning algorithm analogous to Q-learning, called Double Q-learning, divides the
time step in two, perhaps by flipping a coin on each step. If the coin comes up heads, the
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update is

Q1(St, At)← Q1(St, At) + α[Rt+1 + γQ2(St+1, argmax
a

Q1(St+1, a))−Q1(St, At)]

(2.44)
If the coin comes up tails, then the same update is done with Q1 and Q2 switched, so that
Q2 is updated. The two approximate value functions are treated completely symmetrically.
The behavior policy can use both action-value estimates. For example, an ϵ-greedy policy for
Double Q-learning could be based on the average (sum) of the two action-value estimates.

2.4.8 Exploration vs Exploitation

One of the challenges of Reinforcement Learning is the trade-off between exploration and
exploitation [15, Sec.I-II]. An agentmust prefer actions that it has tried in the past and found
to be effective in producing reward. On the other hand, in order to discover such actions, it
has to try actions that it has not selected before. The dilemma is that neither exploration
nor exploitation can be pursued exclusively without failing at the task. The agent must try
a variety of actions and favor those that appear to be the best. The problem is even harder
when reward is stochastic: each action must be tried many times to gain a reliable estimate
of its expected reward. If we define at as the action taken at time step t, rt the reward given
at time step t, we can define the value of an arbitrary action a as:

q∗(a) = E[Rt|At = a] (2.45)

The learner can only have an estimated real value: Qt(a), which should be as close as possible
to q∗(a). Since the true value of an action is the mean reward when that action is selected,
we can defineQt(a) as:

Qt(a) =
sum of rewards when ataken prior to t

number of times a taken prior to t
=

∑t−1
i=1 Ri1At=a∑t−1
i=1 1At=a

(2.46)

where 1predicate denotes the random variable that is 1 if predicate is true and 0 if it is not.
If the denominator is 0, then we instead define Qt(a) as some default value, such as 0. As
the denominator goes to∞, by the law of large numbers, Qt(a) converges to q∗(a). This
is called sample-average method for estimating action values because estimate is an average
of the sample of relevant rewards. This is just one way to estimate action values, and not
necessarily the best one. The simplest action selection rule is to select the action with the
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highest estimated value, that is,the ”greedy” action. If there aremore than one greedy actions,
then a selection ismade among them in some arbitraryway, perhaps randomly. Wewrite this
greedy action selection method as:

At = argmax
a

Qt(a) (2.47)

where argmaxa denotes the action a for which the expression that follows is maximized.
Greedy action selection always exploits current knowledge tomaximize immediate reward; it
spends no time at all sampling apparently inferior actions to see if theymight really be better.

ϵ-greedy method

A possible alternative is to behave greedily most of the time, but every once in a while, say
with probability ϵ, instead select from among all the actions with equal probability, indepen-
dently of the action-value estimates. These methods are called ϵ-greedy methods.
In the limit, as the number of steps increases, every actionwill be sampled an infinite number
of times, thus ensuring that all theQt(a) converge to q∗(a). This of course implies that the
probability of selecting the optimal action converges to greater than 1 − ϵ, that is, to near
certainty.

Soft-max method

Another possible solution is to learn a numerical preference for each action a, calledHt(a).
The larger the preference, the more often that action is taken. Only the relative preference
of one action over another is important. These preferences are determined according to a
soft-max distribution as follows:

Pr{At = a} = eHt(a)∑k
b=1 e

Ht(b)
= πt(a) (2.48)

Initially all action preferences are the same (e.g.,H1(a)=0, for all a) so that all actions have an
equal probability of being-selected. On each step, after selecting actionAt and receiving the
reward rt the action preferences are updated by:

Ht+1(At) = Ht(At) + α(Rt − R̄t)(1− πt(At)), and (2.49)
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Ht+1(a) = Ht(a)− α(Rt − R̄t)πt(a), ∀a ̸= At (2.50)

where α > 0 is the step-size parameter, and R̄t ∈ R is the average of all the rewards up
through and including time t. The R̄t serves as a baseline with which the reward is com-
pared. If the reward is higher than the baseline, then the probability of taking At in the
future is increased, and if the reward is below, decreased. The non-selected actions move
in the opposite direction. Some simulations show that without a baseline the performance
would be significantly degraded.
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2.5 Neural Networks

Neural networks (NNs) are a set of architectures, modeled from the human brain, that are
designed to recognize patterns. A neural network can be described as a graph whose nodes
correspond toneurons and edges correspond to links between them [18] [19, Sec. XX]. Such
systems ”learn” to estimate a function by looking at examples, without being programmed
with specific rules. Nowadays NNs represent a high-performant tool widely sued in many
machine learning problems; different versions of NNs exist. Neural networks can be used
for classification and regression tasks: in the first case, the output layer will have as many
neurons as the number of classes; in the second one, it can have an arbitrary amount of nodes.
To briefly describe how they work, in what follows we present the 2 types of them: the fully-
connected neural network, that can be considered as the original one, and the convolutional
neural network, which is implemented in this project.

2.5.1 Fully Connected neural network

Figure 2.2: Fully connected neural network.

A fully connected neural network is composed by a multiple neurons that are grouped
into layers. These layers are stacked subsequently from the input layer to the output layer.
Each of them is composed by an arbitrary amount of nodes (neurons), and receives the out-
put of the previous layer’s nodes. Then, it propagates its output to all the neurons belonging
to the next layer (Figure 2.2). In this way the data flow in a single direction, from input layer
to the output layer. In Figure 2.2 you can see a very simple example of a fully connected
neural network, with only 2 hidden layers and three neurons for each layer but the output

26



layer, which has only two neurons. More powerful neural networks are bigger and deeper,
i.e. they have more layers and more neurons per layer.

Neurons donot just propagate information, but also process it. Like a neuron in the brain,
a node of a neural network receives an input signal and under some conditions, it fires and
propagates the signal. In aNN, each neuron receives the output signal from each of the neu-
rons it is linked to, itmultiplies each signal by a differentweight and then sums them together.
The result is given in input to a non-linear activation function and its output is propagated to
all the following neurons that are linked. There exist different types of activation functions:
the sigmoid, the tanh, ReLU (Figure 2.2), etc. The ReLU activation function is fast from
a computationally point of view and avoids vanishing gradient problems, present with sig-
moid and tanh activation functions. For this reason, ReLU is nowadays state of the art [20].

Figure 2.3: ReLU ac va on func on.

To learn an input-outputmapping, neural networks have to adjust the weightmatrix, which
contains the weights of all the links between the nodes. To do that, we have to give to the
model the true output for each input. Then, it is shown we can use techniques like Stochas-
ticGradientDescent (SGD) to change theweights of themodel towards tominimize the loss
between the predicted output and the true output. If we define J as the loss function, θ the
set containing all the NN’s weights, x the training sample and y the training label sampled
from the their distribution p, the loss over the whole training set is the following:

J(θ) = Ex,yp̂dataL(x, y, θ) =
1

m

m∑
i=1

L(x(i), y(i).θ) (2.51)
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Figure 2.4: Effects of the learning rate on the minimiza on of the loss.

The loss of the gradient with respect to the weights θ can be defined as:

∇θJ(θ) =
1

m

m∑
i=1

∇θL(x(i),y(i)θ) (2.52)

Rather than computing the gradient over the whole training set, in SGD it is approximated
by using a subset containingm’ training samples:

g =
1

m′∇θ

m′∑
i=1

∇θL(x(i), y(i), θ) (2.53)

The weights are then changed according to: θ← θ−ϵg, where ϵ is the learning rate, which
progressively decreases during training. In Figure 2.4 it is possible to see the effects of differ-
ent learning rates: if J is defined as the loss of themodel and θ as the parameters of themodel,
a too small learning rate requires an infeasible amount of time to learn the task, while a too
big one can escape the valley of the local minima.
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2.5.2 Convolutional Neural Networks

Figure 2.5: Example of CNN for object classifica on.

CNNs [21] are specialized kind of neural networks that exploits the convolution opera-
tion for processing data that have a known grid-like topology. For this reason they can be
used for image data. In a fully connected neural network each element of the weight matrix
is used exactly oncewhen computing the output of a layer. It is multiplied by one element of
the input and then never revisited. In CNNs instead, thanks to the convolution, each mem-
ber of the weight matrix, here called kernel, is used at every position of the input. This does
not affect the run-time of the forward propagation but reduces the storage requirements for
the model parameters. Most CNN are composed by:

• Convolution layer

• Non-linear activation function

• Pooling layer

• Fully-connected layer(s) (usually as output layer)

Tobeprecise, the combination givenbyConvolution layer, Pooling layer and activation func-
tion can be considered as an unique layer; Layers like this are stacked subsequently many
times until one or more fully-connected layers at the end of the neural network (Figure 2.5).
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Convolution layer

The convolution layer performs a 2D Convolution on the input image: the weight matrix,
whose dimension is smaller than the input image and called kernel, is convolved on the entire
input image. Each convolution layer can contain more than a single kernel: in that case we
talk about the number of filters of a convolution layer. Each filter can perform a convolution
on a different channel of the input image, if it hasmore than one. The tunable parameters of
a Convolution layer are: the dimension of the kernel (on x and y directions), the strides and
the padding parameter. The strides are step-size of the shift on both directions of the con-
volution operation, i.e. by howmany pixels the kernel is shifted on the right and downward
in the convolution operation. The padding consists in adding some blank pixels stacked on
the borders of the input image in such a way the result of the convolution has the same size
of the input image.

Figure 2.6: 2D Convolu on.

Non-linear activation function

The output of the convolution layer is one or more matrices (the matrix on the right in Fig-
ure 2.6) whose number is equivalent to the number of filters used. Each matrix is the result
of the convolution of a filter of the convolution layer with the input of the convolution layer.
All the values belonging to those matrices are then passed through a non -linear activation
function, like in fully-connected neural networks.
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Pooling layer

Figure 2.7: Mean average and max pooling.

The outputs of non-linear activation functions are combined with MaxPooling layers or
with AveragePooling operations that summarize statistics of nearby outputs: the matrices
that derive from the outputs of the non-linear activation functions are reduced by dimen-
sion using an average or the maximum of that region of the original matrices. Figure 2.7
shows how pooling works: a window whose size and strides are decided by the user, shifts
along both dimensions of the original matrix, replacing each of the four quadrants with a
single value: the maximum or the average of the original values.Pooling helps to make the
representation approximately invariant to small translations of the input. Invariance to local
translation can be a useful property if we care more about whether some features are present
than exactly where they are. Pooling over spatial regions produce invariance to translation,
but if we pool over the outputs of separately parametrized convolutions, the features can
learn which transformations to become invariant to [21]. Pooling is essential for handling
inputs of varying size: to classify images of variable size, the input to the classification layer
must have a fixed size.
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2.6 Deep Q-Learning

Now that we have briefly explained how neural networks work, we turn back to Q-learning,
and in particular to an off-policy temporal difference control. We have said that the equation
that governs the action-value function updates is the following:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (2.54)

Ideally, the estimation of the value function can be represented in a tabular form, for which
an optimal policy can be obtained. However many real-world problems present large or con-
tinuous state spaces making training extremely slow. This can be solved by using function
approximation methods like neural networks [7]. We refer to a neural network function ap-
proximator with weights θ as a Q-network. Remembering that the goal of the agent is to
select actions in a way that maximizes cumulative future reward, the objective of the neural
network is to approximate the optimal action-value function:

Q∗(s, a) = max
π

E[rt + γrt+1 + γ2rt+2 + ...|st = s, at = a, π] (2.55)

Q∗(s, a) is defined as themaximum expected return achievable by following any policy, after
seeing some sequence s and then taking some action a,Q∗(s, a) = maxπE[Rt|st = s, at =

a, π], in which π is a policy mapping sequences to actions. A Q-network can be trained by
adjusting the parameters θi , at iteration i to reduce the mean-squared error in the Bellman
equation, where the optimal target values r + γmaxa′ Q

∗(s′, a′) are substituted with ap-
proximate bootstrap target values y = r+γmaxa′ Q(s′, a′; θ−i ), using parameters θ−i from
some previous iteration. This leads to a sequence of loss functionLi(θi) that changes at each
iteration i. The Q-learning update at iteration i uses the following loss function:

Li(θi) = E(s,a,r,s’)∼U(D)[(r + γmax
a′

Q(s′, a′; θ−i )−Q(s, a; θi))
2] (2.56)

in which γ is the discount factor determining the agent’s horizon, θi are the parameters of
theQ-network at iteration i and θ−i are the network parameters used to compute the target at
iteration i. The targets depend on the network weights, differently from supervised learning
where are fixed before training begins. During the optimization, the parameters from the
previous iteration θ−i are kept fixed when optimizing the ith iteration loss function Li(θi).
Differentiating the loss function with respect to the weights, we arrive at the following gra-
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dient:

∆θiL(θi) = Es,a,r,s′ [(r + γmax
a′

Q(s′, a′; θ−i )−Q(s, a; θi))∆θiQ(s, a; θi)] (2.57)

Rather than computing the full expectations, it is common to optimize the loss function by
stochastic gradient descent, updating the weights of the neural network at every time step,
replacing the expectations using single samples, and setting θ−i = θi−1.
Reinforcement learning is known to be unstable or even to diverge when a nonlinear func-
tion approximation such as a neural network is used to represent the action-value function,
due to the correlations present in the sequence of observations, the fact that small updates
toQmay change the policy and therefore change the data distributions, and the correlations
between the action-values (Q) and the target values.
To overcome theses instabilities, two different techniques are used:

• the use of a mechanism called experience replay that randomizes the selection of train-
ing samples over the data, removing correlations in the observations sequence

• the use of an iterative update that adjusts the action-values (Q) towards target values
that are only periodically updated, reducing correlations with the target

At each time-step t, the agent’s experience et = (st, at, rt, st+1) is stored in a data setDt =

{e1, ..., et}. To perform experience replay, during learning Q-learning updates are applied
on samples of experience (s,a,r,s’)∼U(D), drawn uniformly at random from the pool stored
samples D. The uniform sampling gives equal importance to all the transitions in the mem-
ory replay. More sophisticated sampling strategies that emphasize transitions fromwhichwe
can learn the most are also possible: they use prioritized memory replays.
The target network parameters θ−i are only updated with the Q-network parameters (θi) ev-
ery C steps and are held fixed between individual updates. To be precise, every C updates we
clone the network Q to obtain a target network Q̂ and use Q̂ for generating the Q-learning
targets yj for the followingC updates toQ. Thismodificationmakes the algorithmmore sta-
ble compared to standard online Q-learning, where an update that increasesQ(st, at) often
also increasesQ(st+1, a), for all a and hence also increases the target yj , possibly leading to
oscillations or divergence of the q-values. Generating the targets using an older set of param-
eters adds a delay between the time an update to Q is made and the time the update affects
the targets yj , making divergence or oscillations much more unlikely.

33



Algorithm 2.1 Deep Q-learning with experience replay
Initialize memory replay D
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂with weights θ− = θ

for episode=1,M do
Initialize s1
for t=1,T do

Select an action at according to the behavior policy
Execute action at and observe reward rt and new state st+1

Set st+1 = st

Store transition (st, at, rt, st+1) in D
Sample randomminibatch of transitions (sj, aj, rj, sj+1) fromD
Set yj = rj + γmaxa′ Q̂(sj+1, a

′; θ−)

Perform a gradient descent step on (yj −Q(sj, aj; θ))
2 w.r.t. θ

Every C steps set Q̂ = Q

end
end

This algorithm is model-free: it solves the RL task directly using samples from the agent
experience, without explicitly estimating the reward and transition dynamics P (r, s′|s, a).
It is also off-policy: it learns about the greedy policy a=argmaxa′ Q(s, a′; θ), while follow-
ing a behavior distribution that ensures adequate exploration of the state space. In practice,
the behavior distribution is often selected by an ϵ-greedy policy that follows the greedy policy
with probability 1-ϵ and selects a random action with probability ϵ.
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3
Systemmodel

In this chapter, wewill describe the reinforcement learningmodel onwhich theproject analy-
sis is based. Inparticular, wewill describe the environment, theneural network’s architecture
used and the different RL techniques. For each studied scenario, a different neural network
will be trained.

3.1 Environment

The project analysis was achieved by leveraging an extended version of Gym. Gym is a well
known python library provided byOpenAI bywhich it is possible to create ad-hoc reinforce-
ment learning environments. Additionally, the Keras* library was used to build the NNs
used in this project.
The environment we developed represents a generic scenario where certain target events are
located within a certain area. These events should be identified and monitored by a swarm
of drones, which represents the agents of the RL scenario. Practically, the environment is
composed by a square grid where one or more agents can move. Each cell of this grid has
its own value, sampled fromGaussian distribution(s). Each distribution ideally represents a
target in the real world. In the case of more targets, the square grid will have regions influ-
enced bymore than aGaussian distribution. The framework allows the possibility to choose
a lot of parameters for the creation of the ”world”: the size of the grid, the number of drones

*https://keras.io/
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Figure 3.1: On the le the posi on of the drone, on the right the real map.

present on it, the number ofGaussian distributions presentwith their relativemean and vari-
ance and so on.
Figure 3.1 shows an example of the single-drone scenario: the environment, i.e. the grid with
the Gaussian distributions, is represented by the map on the right, while the position of the
agent within the grid is represented by the map on the left. The environment map is not
the map that the drone sees at the beginning of each episode: the agent can only discover it
completely after it has explored all the regions of the map. Hence, we can distinguish two
different maps representing the scenario: the first is the real map, containing the true values
of the targets; the second is the map discovered by the drones, the known map. At the be-
ginning of the episode, all the second map cells are set to the value 1 (white color). As the
dronemoves within themap, it discovers the real value of each location it explores, as shown
in Figure 3.2. The agent knows only the value of the cell corresponding to its position and

Figure 3.2: From le to right: at beginning the drone knows only a por on of the real map.
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of the 3x3 window centered around it. The real map values are all in the range [0,1]. The
size of the window is another tunable parameter before the training. This represents the fact
that the drone is able to discover the value of both its position and a region in its surround-
ings, thanks to cameras, radars and other sensors installed on it. The idea is that the agent is
encouraged to explore the map to find the center of the Gaussian distribution, i.e. the point
where it can better observe the target event.

In the rest of the chapter we will analyze in detail different scenarios with different num-
bers of drones and targets

3.1.1 Single drone scenario

The first scenario studied is the one with a single drone moving within the grid. At every
time step, the drone can choose one of the 5 actions Stand, Left, Right, Down, Up and re-
ceives a positive reward (+1) when it reaches the center of the target distribution, a negative
reward when it tries to exit from the map (-1 and it will remain in the same cell), and a null
reward in all the other cases (0 reward). Hence, the drone is expected to learn the following
behavior: it tries to get closer to the highest point, without necessarily following the highest
value cells along the path. A different behavior could be possible with a change of the re-
wards, that should be proportional to the values of themap, and not restricted to a subset of
3 values. For this reason the performances will be compared with a heuristic approach, the
look-ahead algorithm, that chooses the best action at each time step that will maximize the
sum of rewards of the next t time steps, where t is a predefined horizon. The heuristic ap-
proach requires exponentially larger computational resources as t grows, and for this reason
could not be applied in a real world scenario.

On this scenario we trained 3 models:

(a) One trained on a 6x6 grid with a low peak (value=0.4)

(b) One trained on 6x6 grid with an high peak (value=0.8)

(c) One trainedona6x6gridwith2peaks, one lower (value=0.4) andonehigher (value=0.8),
receiving reward only when the highest is reached

The main studies that have been conducted on these 3 models are:
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• we studied how the grid size, the learning rate, γ and ϵ affect the learning of the task

• we compared the performances of model (a) and model (b) and we tested model (a)
to situation (b) and viceversa

• we tested model (a) and model (b) in the situation (c). They should perform worse,
because applied to a more difficult task than the one seen during their training.

• We tested model (c) on situation (a) and (b).

• We comparedmodel (c) with the look-ahead algorithmwith different number of steps

3.1.2 Swarm scenario

In a swarm scenario, we need to train a newmodel where each agent is aware of the presence
of other agents. In this study, all the agents have a common goal: to reach the highest cells
in the map, without overlapping each other on the same cells. To promote the partition of
the targets between the agents, the system receives a reward when all the drones are located
over different targets. Instead, it will receive a negative reward when two or more drones are
on the same cell or a drone tries to exit from the map.
In this perspective we developed two different models: the first one is centralized, i.e., all the
drones are jointlymanaged, the second one is distributed, whichmeans that each drone takes
decisions in an autonomous fashion. The distributed approach should train faster because
the complexity of the action space is independent to the number of drones that must coop-
erate in the map: the same neural network is applied to each of them, so they have to choose
the best action among the five ones. In this way each dronemust learnwhich of the 5 actions
to choose, taking in consideration the agent’s own position, the position of the other agents
and the distance from the targets in the map. On the other hand, the centralized approach
needs to jointly optimize the action combinations of all the drones at once, so its complexity
increases exponentially with the number of drones. We expect the centralized approach to
be more efficient than the distributed version, especially in the first steps, because the first
should be able to jointly optimize the action space and assign a target to each drone from
the beginning, while in the latter the drones may try to reach the same target. A central-
ized system should be re-trained every time the features of the scenario, e.g. the number of
drones, changes. Particularly, the complexity of the centralized system quickly increases as
the number of agents grows. Indeed, the number of possible actions is given by 5N , where
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N is the number of drones. In a distributed version, the model does not need amodification
on the neural network architecture: we have 5 possible actions in output as always, and each
agent has to choose the best one considering its position and the position of others. Hence,
the only feature that changes is the composition of the system state, which also takes into
account the position of the neighbor drones. In this case, we can train a model with a given
number of drones, e.g. N, and extend it to a scenario with a different number of drones, e.g.
K ̸= N . It should probably perform worse in the case of more agents present in the envi-
ronment with respect to the ones seen during training; however, transfer learning is possible,
as the two scenarios have some similarities. The distributed approach is very attractive, since
in a real scenario we must able to generalize to a number of agents not seen during training.
In a centralized version instead, we have to know howmany agents we have because we have
to give an action to each of them. For this reason the number of output neurons of the
neural network grows exponentially with respect to the number of agents, whichmakes this
version impossible to scale to a huge number of agents, and also to a number of agents not
seen during training. For this reasonwewant to demonstrate that, even though a centralized
algorithm can have a better performance with enough training, a completely distributed ap-
proach is more flexible and adaptable.

On this scenario we trained 3 models:

(a) One trained with a distributed approach on an environment with 2 drones and 2 tar-
gets

(b) One trained with a distributed approach on an environment with 2 drones and 3 tar-
gets

(c) One trained with a centralized approach in an environment with 2 drones and 2 tar-
gets

Main studies that have been conducted are:

• We used the iterative adaptive hyper-parameter optimization search to find the best
values for γ and the value of the malus corresponding to the drone overlapping situa-
tion

• We studied how the different memory replay settings have affected the final perfor-
mances
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• We compared the performances ofmodels (a) and (b) in scenarios with different num-
ber of targets

• We tested (a) and (b) on scenarios with only 1 drone and an arbitrarily number of
targets

• We studied the best way to compute the reward of a centralized approach

• We compared models (a), (b) and (c) on scenarios with 2 drones and an arbitrarily
number of targets

3.2 Techniques

3.2.1 Neural networks

As explained in Section 2.6, to train themodel we developed, we used the double Q-learning
algorithm, which was detailed explained in the previous Chapter. In particular, each system
agent is associated to two neural networks, which we call step model and target model. They
are identical from an architecture point of view but have differentweights: the first one is the
neural network trained during the learning, the second one is a copy periodically refreshed
to compute the greedy-actions. Both neural networks, independently from their inner archi-
tecture, will have as many output neurons as the possible actions chosen by the agent.
In the case of a single drone scenario there are 5 possible actions, like in the distributed

swarm one: (Left,Right,Stand,Up,Down). The value of the output neurons will then repre-
sent the Q-values of the 5 possible actions for the given state. The state will be the position
of the drone and the map discovered by the agent until now in the case of a single-drone
scenario; in a swarm scenario, there will be a second matrix with the map of all the other
drones’ positions. In the centralizedmulti-drone scenario instead, there will bemore output
neurons (all the possible combinations of the agent governed) and the same input as in the
Distributed case.

The general architecture of the CNN used in the entire project is very simple:

1. Input layer with 2 or 3 square matrices (if single agent or multi agent scenario) with
variable size (dependent on the size of the grid world)

2. Conv2D layer with 20 filters, kernel of size 3, padding=”same”, strides=(1,1) and relu
as activation function
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Figure 3.3: Single drone neural network case

Figure 3.4: Distributed neural network case

41



Figure 3.5: Centralized neural network case (2 drones)

3. Conv2D layer with 20 filters, kernel of size 2, padding=”valid”, strides=(1,1) and relu
as activation function

4. Conv2D layer with 20 filters, kernel of size 2, padding=”valid”, strides=(1,1) and relu
as activation function

5. Flatten layer

6. Dense layer with as many neurons as the number of possible actions (5 in the case
of single agent/distributed version, 25 or more in the case of centralized), without
activation function

The choice to use 3 convolutional layers is a free choice, pushed by the need to have at least
some non-linear transformations from the original input. In our research, we established
that three layers were sufficient to handle the complexity of the problem in the various sce-
narios. For the hidden layers we used ReLU activation function. Instead, the last layer, the
output layer, does not have any activation function because we do not know the possible
limits of the Q-values. The loss used is always the mean squared error.
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3.2.2 Pre-training

Before the training, in all the considered scenarios, a pre-training phase has been done: 500
episodes with 100 steps have been computed and stored on disk to create a dataset on which
the neural network can start to train just at the beginning of the training phase. This is done
to make the neural network able to generalize to different situations also at the beginning of
the training phase, instead of starting to train only on those cases that it has seen in the first
episodes and attempting to generalize only when the exploration has just reduced a lot.
In the single-drone scenario, at every time-step the drone chooses 1 of the 5 possible actions
and its position on the left map is updated, as well as the known map. In the distributed
swarm environment instead, at every time step only one agent chooses an action while the
other one remain in their current position to make the training simpler.
At every time step, a tuple [actual state, new state, action, reward] is created and stacked on
top of the dataset.

3.2.3 Exploration policies

Exploration is a fundamental phase in RL tasks. Indeed, if the exploration done is not suf-
ficient, the learner could not have seen which is the best action for a sufficient number of
states. So, in the first phase of the training, we must ensure that the learner tries the actions
at random, following the behavior policy with a probability that decreases during training.
For this reason, 3 different ϵ-greedy profiles have been studied: the goal is to see if they can
affect the final performances.

3.2.4 Learning - how to train

After the creation of the pre-training dataset, the training-procedure starts: 1000 episodes
are presented to the agent(s), and during these episodes the drone moves in the grid choos-
ing either a random action or a greedy action. The probability to choose a random action
inside each of the 1000 episodes is defined by one of the 3 profiles plotted in Figure 3.6. Dur-
ing this procedure, all the tuples [actual state,next state,action,reward] are stacked on top of
the pre-training dataset, enlarging it until the end of the training phase. During each episode,
a batch of some tuples is sampled randomly from the dataset and the step model neural net-
work is trained on it, and less frequently the weights of the target model are updated with a
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Figure 3.6: How much explora on is performed during the training.

copy of the actual weights of the first neural network.

As we have said in chapter 2, a common technique used in Reinforcement Learning is
the memory-replay. Every time we train the neural network, a batch from there is sampled
and the model is trained to predict the Q-value corresponding to the actions made in each
situation inserted in the batch.
The rewards received by the agents are relatively rare for 2 reasons:

• we have non-zero rewards only when targets are reached, the agents are in the same
cell or they try to exit from the grid

• with bigger maps, rewards are less probable in the state-action space.

For this reason, it is important to ensure a correct learning during the 1000 episodes, trying
to showmore often some situations than others. For example, there could be some situations
where the neural network has trained sufficiently and that can be seen less frequently during
subsequent training steps. There are also some combinations of action-states that are not
so important for the learning task, because they will be never reached. For this reason, even
though the neural network is not able to perform well in those situations, we can neglect
them. To solve this kind of problem, 4 kinds of memory-replay have been studied:
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1. Standard memory-replay: all states have equal probability to be chosen during the
sampling-phase

2. Prioritized memory-replay: every 50 episodes we increase the sample probability of
those transitions on which the highest Q-value has changed.

3. Rewards-basedmemory-replay: there aremorememory-replay datasets, each contain-
ing states that bring the same rewards. For example amemory-replaywith action-state
combinations that bring positive rewards, null rewards, or negative rewards. During
the training phase, the neural network will train more often on some of them.

4. Prioritized rewards-based memory-replay: similar to the third one but with the same
sampling probability of the second one applied in each of the differentmemory-replay
datasets.

3.2.5 Hyper-parameters Optimization Search

Reinforcement Learning is a difficult process in which many parameters must be tuned, as
a wrong selection of them can interfere with the learning task. The RL algorithm itself has
several parameters (such as the profile of ϵ, the learning rate, γ, the rewards, etc), and adding
neural networks further complicates the issue. Since the tasks that have to be learned in this
project are relatively simple, most efforts have been focused on the RL parameters.
For this reason, a hyper-parameter search has been performed before the training of the
swarm scenario, to discover which were best values for the learning rate, γ and the malus of
the overlapping drones situation. To find them, it is necessary to compute all possible com-
binations of the considered parameters. Such kind of search, when applied to traditional
supervised learning tasks, can be boosted using only a representative fraction of the original
dataset. In the RL scenario instead, is quite difficult to say which is the best way to save
time during the hyper-parameters search: in this project we sampled the mini-batch less fre-
quently during the hyper-parameter search. When the best values are found, the model is
trained more. This kind of pre-training can benefit a lot from parallelism, trying a different
combination of the parameters in every machine.
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There exist a lot of automatic hyper-parameters optimization search. Some of them are:

• Grid Search

• Random Search

• Bayesian Search

• Gradient Search

Grid Optimization: when there are 3 or fewer hyper-parameters, the common practice
is to perform grid search. For each hyper-parameter, the user selects a small finite set of val-
ues to explore. The grid search algorithms then trains a model for every joint specification
of hyper-parameter values in the Cartesian product of the set of values for each individual
hyper-parameter. The experiment that yields the best error is then chosen as having found
the best hyper-parameters. Grid search usually works best when it is performed repeatedly,
changing the limits of the hyper-parameters whose best values are found around there, or
zooming in on the best regions of each hyper-parameters found at some point of the process.
Unfortunately, if there arem hyper-parameters, each taking at most n values, then the num-
ber of training trials required grows as O(nm). The trials may be run in parallel, but even
parallelization may not provide a satisfactory size of search, due to the exponential cost of
grid search [21].

Random Search: Random Search replaces the exhaustive enumeration of all combina-
tions by selecting them randomly. It can outperform Grid search, especially when only a
small number of hyper-parameters affects the final performance of the machine learning al-
gorithm. [21]

Bayesian Optimization: Bayesian optimization is a global optimizationmethod for noisy
black-box functions. Applied tohyper-parameter optimization, Bayesianoptimizationbuilds
a probabilistic model of the functionmapping from hyper-parameter values to the objective
evaluated on the task. By iteratively evaluating a promising hyper-parameter configuration
based on the current model, and then updating it, Bayesian optimization, aims to gather
observations revealing as much information as possible about this function and, in particu-
lar, the location of the optimum [22]. It tries to balance exploration (hyper-parameters for
which the outcome is most uncertain) and exploitation (hyper-parameters expected close to
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the optimum). In practice, Bayesian optimization has been shown to obtain better results
in fewer evaluations compared to grid search and random search, due to the ability to reason
about the quality of experiments before they are run [23].

Gradient Optimization: For specific learning algorithms, it is possible to compute the
gradientwith respect to hyper-parameters and then optimize the hyper-parameters using gra-
dient descent. The first usage of these techniques was focused on neural networks [24].

Iterative Adaptive Hyper-parameter Optimization Search

Trying to simulate some of the features of these techniques, a custom optimization search
method has been developed for this project. The algorithm requires to insert in input the
limits of the hyper-parameters values, the number of attempts, the number of rounds and
the search type. The search works in the following way:

1. all possible combinations of the hyper-parameters values are computed at their limits
and in an arbitrarily number of additional points inside the ranges. The additional
points can be sampled between the limits with a grid search (see at Round 1 of Figure
3.7) or with a random search and their numbers is dependent by the attempt value
defined by the user.

2. For each hyper-parameter the algorithms focuses on the best region found in round i,
and tries new values inside it at round i+1. New values are sampled with a grid search
technique inside the new region (Round >1 of Figure 3.7) or with a random search.

3. The process repeats for a number of rounds defined by the user

Figure 3.7 is an example of an optimization search with only 2 hyper-parameters. At round
1 we can have 3 possible cases: the trivial case when attempts is set at value 0, where the
optimization search is useless because it will try only the middle value of the limits of each
parameter; the attempts=2 case, where only the borders of the hyper-parameters are tested
and then 2 new values are sampled at the next round inside the best region; the attempts>2
case, where an additional number of equally spaced values are tested at round 1, but from
the next round only 2 attempts are tested (for computational reasons).
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Figure 3.7: Op miza on search procedure. Each row of the table corresponds to a different parameter that needs to be
tuned; the columns represent the values studied for each parameter; the color indicates the performance of the model
with that par cular value for the parameter. At each round of the op miza on search, the algorithm tries some new
values for each parameter inside the best range found un l now for each of them.
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4
Results - single drone scenario

4.1 One drone, one target

4.1.1 Reinforcement Learning optimization

For the pure Reinforcement Learning part, 4 aspects have been studied:

• Learning rate α

• γ

• How performances scale with the map size

• ϵ-shape

Among all the parameters of reinforcement learning and the neural network, we found that
the learning rate is themost important one: with the wrong choice, the agent is never able to
learn the task. For this reason, the tuning of this parameter is the first thing to do: we have
studied 4 different Keras optimizers, 3 using SGD with different initial learning rates and 1
that is an evolution of Adam invariant with respect to the learning rate, called Radam[25].
The features chosen for the optimizers are the following:
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Optimizer Learning rate Momentum Nesterov flag Notes

SGD 0.001 0.9 True -
SGD 0.01 0.9 True -
SGD 0.1 0.9 True -
Radam - - - Default values
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Figure 4.1: The learning rate of the neural network is determinant for the learning of the task.

The results that we see in Figure 4.1 are obtainedwith thismain parameters configuration:

• 6x6 world

• 500 pre-training episodes with 100 steps each

• 1000 training episodes with 100 steps each

• Neural network trained every 2 steps

• γ = 0.9

The performance of Radam seems quite good and comparable with the right learning rate
choices for SGD. Since it’s invariant with respect to the learning rate and it performs well,
from here we will always use it.
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The right choice of γ

Using the same parameters described above, here a study on γ is presented: you can see that
it is another an important parameter. For the next tests we will use γ = 0.9
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Figure 4.2: An high value of γ can give more importance to future events, but it requires more training.

Bigger map, more training

With the same parameters used until now (Radam,γ = 0.9,...) a comparison between differ-
ent world size performances is illustrated in Figure 4.3 This plot shows how the performance
decreases if we train the model for a bigger world with the exactly same amount of training
andwith the same parameters. The solution to scale to a bigger scenario is to train themodel
more frequently, with longer episodes and with a proper selection of the hyper-parameters
for each different situation. We hope that a proper selection of the best hyper-parameters is
not necessary for every possible change of the environment, such as a bigger map. Probably,
an higher amount of training should be sufficient to increase the performance.
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Figure 4.3: The performance decreases with a bigger map

ϵ-profile

For the profile of the ϵ parameter, 3 different choices have been studied (see Figure 3.6 of
Chapter III). The idea is to study how the amount of exploration done during training can
affect the performance on the task learning. An insufficient amount of exploration can dras-
tically reduce performance, due to the fact that the agent has not experienced a sufficient
number of transitions. For this reason, even an arbitrarily long training procedure using
large computational resources, could be useless with an incorrect exploration-profile. The
exploration profiles we tested did not have any significant effect on the training, as shown in
Figure 4.4 (5x5 map), probably due to the relative simplicity of the task.
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Figure 4.4: No par cular evidences between the different epsilon-shapes.

4.1.2 Peak invariance
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Figure 4.5: The model trained on an high target outperforms.

After optimizing the hyper-params, we trained 2 models where the only difference is the
target’s value: in the Low case, the target is set at 0.4, in theHigh case at 0.8. Ideally, we can
think that the first one could outperform the second one, because recognizing a low target
makes the agentmore robust to anhighone. However, fromaNNpoint of view, recognizing
a lower target could be harder, given that it continues to see the unexplored areas at an high
value.
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4.2 One drone, two targets
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Figure 4.6: With a 2 targets environment, the model trained on 2 targets is the best one.
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Figure 4.7: Model trained on 2 targets outperforms previous ones when there’s only 1 target

Thenwe trained amodel in an environmentwith 2 targets, one higher and one lowerwith
the same height of the targetsHigh and Low used in the previous section. It is interesting to
see that this model is obviously the best one in this kind of situation (2 targets instead of one,
Figure 4.6), but it also performs better in the 2 situations studied before (Figure 4.7).
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Figure 4.8: First 6 steps of an episode: it’s possible to see that the model is able to not stop in the lower target
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Figure 4.9: Next 6 steps

Figure 4.8 and 4.9 show a successful example of the model. Even if in the first steps it
is near a target, it is able to recognize that it corresponds to the Low targets that it has seen
during training. For this reason it starts to explore the unknowns regions until the discovery
of theHigh target.
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Look-ahead (heuristic) comparison

2 peaks
Peak value

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
re

wa
rd

 p
er

 st
ep

Inference

DQN
Look-ahead 2 steps
Look-ahead 3 steps
Look-ahead 4 steps
Look-ahead 5 steps
Look-ahead 6 steps

Figure 4.10: Look-ahead outperforms the neural network
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Figure 4.11: An heuris c approach is infeasible in a real world scenario

Here we compare the performances of the Neural Network with the heuristic approach de-
scribed inChapter III. In Figure 4.10 it is possible to see that the heuristic approach performs
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better. Ideally, we would expect that the DQN should perform at least as well as Look-ahead
if trained in a proper way, because the heuristic approach could be trapped in the lower tar-
get after the exploration of the map. However the world might be too small to observe these
situations and the model has not trained sufficiently.
Instead, Figure 4.11 demonstrates our hypothesis about the time required from the heuristic
approach to compute the next action. When we increase the steps of the Look-ahead algo-
rithm, forcing it to compute an higher amount of possible action-combinations, we increase
toomuch the time required. In a real world scenario, where the map is bigger, this approach
becomes infeasible.
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5
Results -swarm scenario

In the swarm scenario, we have always used 6x6 grids, with targets with the same height and
trying to avoid their overlap, dividing the map in 4 regions and assigning a target to each of
them.

5.1 Distributed version

In the distributed version, we performed a hyper-parameter optimization search on 2 param-
eters: γ and the malus corresponding to the overlapping drones situation. We then studied
the 4 types of memory replay described in Chapter III and trained 2 models: the first one
with 2 drones and 2 targets, the second one with 2 drones and 3 targets. We then compared
their performances in different scenarios.

5.1.1 Hyper-parameters optimization search

An optimization on some hyper-parameters has been performed. In particular, we found
that the best value of γ was 0.8, and the best malus corresponding to the situation of at least
2 overlapping drones was -0.4. Figure 5.1 shows the training performances of all the possible
combinations of the hyper-parameters studied. The 2 optimal values obtained for γ and the
malus are used in all the studies of this multi-drone scenario.
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Figure 5.1: Mean reward per step of all the parameters combina ons studied.

5.1.2 How to learn - memory replay settings
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Figure 5.2: Single memory replay seems to be a be er solu on.

We also studied different sampling strategies on the creation of the mini-batch. Among
the 4 different kinds of sampling proposed in Chapter III, we found that the best strategies
seem to be the ones with a unique memory replay. This could be due to the fact that our
attempt to guarantee a more frequent training on transitions with a positive reward could
damage the training of transitions with negative rewards, especially the one involving over-
lapping. Indeed, if in this kind of environment is quite simple to compute the probability of
an action that takes a negative reward trying to exit from the map, it is instead more difficult
to compute the probabilities of a negative reward due to an overlapping. So, we could have
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set a probability sampling on those transitions lowerwith respect to a random sampling, neg-
atively affecting the learning on those transitions. Since the final performances between the
single memory-replay and the one prioritized are not so different, for the following tests we
used the first one, because the second one is more computationally demanding.

5.1.3 2 targets vs 3 targets models
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Figure 5.3: Model trained on 2 targets vs model trained on 3 targets.

Then we trained 2 models: one in a scenario with 2 targets, and one with 3. Since more
targets are present in the map, we can expect an higher mean reward if the model is trained
properly, because the mean distance between a drone and a target should be lower. Instead,
looking at Figure 5.3, we can see that the second model converges slower with respect to the
first one. We can make 2 hypothesis to explain that:

• the second scenario is more difficult to learn, so more training is required

• the map is too small and our technique to avoid the overlap of the targets is not per-
fect: there are more overlapping situations. In that case, the drones could have more
difficulties, since their targets are near but they must also try to avoid the overlapping.
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Figure 5.4: First 7 steps (from le to right) of a successful test episode of the model trained on 2 targets.

Figure 5.5: The following 7 steps: remember that at each me step only a drone is moved.
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5.1.4 Inference - more targets

In Figure 5.6 we plotted how the 2 models studied in the previous paragraph perform on
different scenarios. The number of times both drones reach their targets is still too slow for
bothmodels, even in the scenario inwhich they have been trained. From this plot you can see
howmuchmore difficult is this task to be learned, with respect to the single drone scenario.
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Figure 5.6: Generaliza on on the number of targets.

5.1.5 Inference - 1 drone

Then we removed the assumption of a multi-drone scenario and we tested the 2 models on
a single-drone situation, comparing their performances with the model trained in the single-
agent scenario on 2 targets. The first observation that we can make is that all the 3 models
performworse when tested on scenarios different fromwhich they have been trained. When
only 1 target is present, the task is simpler, but it is a task onwhich they have been not trained.
We can say that in that situation the performance decrease also because the mean distance
between the drone and a target is bigger than the situations inwhichmore targets are present.
So themodelmust be able to capture farther rewards. But themodel trained on a single agent
scenario seems to be able to adapt itself to this different environment. When the number of
targets present increases, Single 2 targets seems to be more robust.
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Figure 5.7: Generaliza on on the number of targets.

5.2 Centralized version

5.2.1 Computation of the centralized reward
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Figure 5.8: Performance with respect to the way centralized reward is computed.

For the centralized approach, we made a study on the way the centralized reward is com-
puted. We have tested 2 techniques: themean average of the rewards of both the drones, and
the minimum value of them. The first resulted the best, maybe because the latter classified
as null rewards transitions that in the first one are classified with a positive rewards. We can
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think that the first one starts to converge sooner, but the latter could be more robust with
respect to negative actions. A linear combination of them could be an interesting study.

5.2.2 Comparisonwith distributed

Looking at Figure 5.8, we can see that the final performance of theMeanaverage case is lower
than the one obtained with the distributed version. We also observe a slower convergence of
the model. This validates our intuition about the higher amount of training necessary for
the centralized approach. Finally, we compared the performances of the model trained with
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Figure 5.9: Performances on different situa ons of different models.

the centralized approach and the 2 models trained in the distributed scenario with 2 and 3
targets. They have received the same amount of training and this is clearly seen in Figure 5.9:
theCentralizedmodel should be the best one on 2 targets and the 3 targets trainedmodel the
best one in the case of 3 targets. Instead we are not able to see this, probably because these 2
models require more training with respect to the one trained on 2 targets of the distributed
approach.
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6
Conclusion

In Chapter I we introduced the goal of this project, highlighting the importance of Rein-
forcement Learning in complex situations and illustrating some of the possible applications
of a drone swarm in a real world scenario. In Chapter II we introduced the theory on which
RL is based, from theMDPs to Temporal Difference Learning and its extension to theDeep
Learning approach. In particular, we focused on Deep-Q-Learning and the use of CNNs
to implement it. In Chapter III we described our system model and the different environ-
ments we have considered, i.e. the single-drone and the multi-drone scenarios. In the same
Chapter, we presented the learning strategies that we implemented to reach the project’s ob-
jectives. Finally, in chapter IV an V we analyzed the results of our simulations, highlighting
the benefits and the drawbacks of the proposed strategy over conventional approaches.

From the analysis of the results, we have verified our predictions on the models’ perfor-
mances. Models that we have thought to be the best, require more training for their com-
plexity. If we train them with an insufficient amount of training, they are not the best ones.
The centralized approach, for example, was not able to outperform the distributed one. Sim-
ilarly, a distributed model trained on 3 targets was not able to outperform the one trained
on 2 targets when tested on a scenario with 3 targets.
In the single drone scenario, we trained three different models, able to reach the target or the
highest target when more than one is present. We proved the impracticability of a heuristic
approach in a real-world scenario justifying the importance of a learning strategy. The latter
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should be able to generalize to different scenarios from the ones seen during training: we
have shown that the model trained in the single-agent scenario with 2 targets is able to out-
perform the two models trained in a single-target environment when only one peak in the
map is present. This kind of generalization is not possible with a heuristic approach, because
it must be re-designed for each different scenario.
We said that the centralized approach should outperform the distributed one because it is
able to jointly optimize the action space of the controlled drones, but it could have required
more training since the larger action space. We failed to demonstrate the first hypothesis:
perhaps not only more training is required, but also the adjustment of other parameters and
the use of different learning strategies. Instead, to help the distributed approach to converge
faster, it could be possible to add some extra information in input to the CNNs, such as the
recent positions of other drones, and not only their actual positions. This could encourage
the use of LSTMs and of Recurrent Neural Networks in general.

In this project, we have faced all the typical difficulties of a Reinforcement Learning frame-
work. The amount of time spent on the search of the best parameters is the most important
one: a heuristic approach as the one applied in the multi-drone scenario is very useful for
the task’s learning. Even an incorrect selection on a unique parameter can prevent our goal’s
achievement. More studied should be done on theNN architectures: it could be interesting
to see which parameters of the NNs can improve the performance and how, such as the size
of the network, the loss type and the activation function used. Due to the small size of the
grid, no pooling layers have been used in the CNN: their use must be studied and tuned.
We highlight that CNNs can have a 3D structure. Therefore, with some modifications, our
work can be extended in a 3D scenario where drones are able to move along three directions.
Also, Dropout could be a useful extension, helping theNNs to generalize better and creating
a Bayesian approximation model if used also in the prediction phase. [26] [27][28].

From the RL point of view, some possible extensions could be the use of Transfer Learn-
ing strategies [29][30], Teacher-Student Curriculum Learning[31] and of Curiosity [32].
Transfer learning is a machine learning method where a model developed for a task is reused
as the starting point for a model on a second task. The second task is usually more difficult
to be learned: in this way, it may be possible to train a model over simple policies and than
make it learnmore difficult tasks. For example, if wewant that our drones are able tomanage
also the energy of their batteries, we could start to train them using the neural networks ob-
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tained at the end of the training of this project [29]. Teacher-Student Curriculum Learning
(TSCL) instead, is a framework for automatic curriculum learning, where the Student tries
to learn a complex task and the Teacher automatically chooses subtasks from a given set for
the Student to train on. The Student should practicemore of the tasks onwhich itmakes the
fastest progress, i.e. where the slope of the learning curve is highest [31]. Finally, Curiosity
could be used to incentive the exploration. For well-explored trajectories, the loss should be
small while in less-explored trajectories, the loss is supposed to be large. For this reason, it
is possible to create a new reward function (called “intrinsic reward”) that provides rewards
proportional to the loss of the predictive model. Thus, the agent receives a strong reward
signal when exploring new trajectories [32].

Instead, from a theoretical point of view, with a high number of agents, the application of
Game Theory can be useful[33]. When multiple learners simultaneously apply reinforce-
ment learning in a shared environment, the traditional approaches often fail. In the multi-
agent setting, the assumptions that are needed to guarantee convergence are often violated
andmanynew complexities arise. When agent objectives are aligned and all agents try tomax-
imize the same reward signal, coordination is required to reach the global optimum. When
agents have opposing goals, a clear optimal solution may no longer exist. In this case, an
equilibrium between agent strategies is usually searched for [33]. To search such equilib-
rium, Game Theory strategies could be very useful.
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