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Abstract

Over the past few years, the idea of human-robot cooperation has been evolving, and current re-
search in the robotics sector is demonstrating the promise of human-robot collaboration. From these
premises also industrial manipulator benefited by outmatching their older version, focused on exe-
cuting the planned trajectory with the maximum efficiency and without caring about the operator
safety, in favour of the new available technologies.
Implementing this new concept, they have the ability to be hand driven by regular users, simplifying
this task for those who operate or configure them. Results achieved by the reaction of the manipu-
lator to the external forces followed by a proper control of the robots dynamics in order to move or
not according with the given input.
Despite the several advantages of the collaborative robots the complete transition from their older
counterparts is not easy as it seems. Given that the replacement involves excessive costs ,sometimes
unbearable by the companies, and a sensible production of wastes the main objective of this disser-
tation arises: implementing a series of feature to the standard robotic manipulators that could be
useful in an industrial environment considering as final goal to have a human interaction with the
machine even if the robot is not suited for that.
A simulated environment was built to validate all research and test the solutions on a virtual Panda
Arm manipulator. To corroborate the implemented methods,several experiences have been performed
to compare the designed solution to the more sophisticated impedance control approaches seen in
collaborative robots and the results appeared as successful.
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Chapter 1

Introduction

In the 1996 J. Edward Colgate and Michael Peshkin, professors at the Northwestern University, in-
vented the cobots: robots conceived in order to physically interact with a human in a workspace [1].
Since then the cooperative robots achieved great results in several fields due the great potential
behind their concept and, still now, a lot of researches are working for expand their purpose and
optimize them.

Their older counterparts (common manipulators) instead are though to work in order to achieve their
goal in the less time possible and in the most efficient way for a better productivity and get those
results thanks only to an earlier proper setting and planning which usually done prior by trained
stuff. Those characteristics and the fact that often they are projected in order to work in a specific
workspace, free from obstacles and ignoring any external collision make really hard the physical
cooperation with a human operator.

Cobot instead, and more specifically the case of cobotics arms, since are developed in a different
way, have the capability to be hand driven by the users reacting to external forces and moves in the
direction that it’s being pushed or pulled. In that way is possible for the operator to move the robot
according to the trajectories allowing the realization of jobs too hard to be properly teached to a
machine and too difficult or dangerous to be handled by a human operator by itself.

If in the beginning they were thought for automotive purposes, the first realized cobots were employed
in the industries but with no internal source of driving force instead provided by the human being. In
fact in that moment the function of these cobots was to allow computerized motion control, guiding
a payload in cooperation with the worker [3].
Only in the 2004 the German company KUKA made LBR3, the first light cobot with self supply of
the driving force and in the 2008 the Danish industry Universal Robots made UR5, the first cobots
operating without barriers able to fully cooperate with a human safely.
Furthermore the progress made in this sector inspired the application in several other fields coming
up with the built of Da Vinci, the first surgical cobot and many other implementations [2].

Nevertheless replacing part of the standard manipulator with cooperative ones is not that sim-
ple.
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1.1 Motivations
The majority of the robots used in the assembly lines and in the industrial fields are for the majority
robotic arms and manipulator. Actually a large portion of industries still rely on non-cooperative
industrial manipulator models to perform their tasks and often, reprogramming these models with
specific path plans for every kind of task, would result extremely time expensive, extremely hard to
implement and could risk the companies to incur in a decrease of the productivity.

On the other hand the mayor replacement of the industrial manipulators with cobots imply not
indifferent costs that not often are affordable by the corporations and more importantly would lend
to huge production of wastes. Wastes that with a careless managing, considering that even nowadays
is still unfortunately possible, could sensibly pollute the environment.

Here below the graph in figure 1.1, from a note website that collect info about the automation
world [4], shows the fields in which non-cooperative robotics have been applied while the graph in

Figure 1.1:

figure 1.2 shows their annual installations.

Figure 1.2:
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1.2 Aim of the thesis
The aim of this thesis is to develop a series of features for the standard robotic manipulators, avail-
able in an industrial environment finalized to make the robot suited for a human interaction despite
it is not initially provided for that.

The first topic that will be discussed regard "workspace limitations" that, as the name suggests,
aims to limit the 3D workspace of the manipulator letting it avoid collisions with particulars envi-
ronment conditions or simply to avoid to make undesired contacts with fragile or delicate section of
its surrounding. A feature useful for narrow work-spaces, that could helps for sake of human safety
considering the eventual workstation of the operator as the threshold taken into account and in cases
where the objects to which the manipulator works require specific extra cares;

The second proposed feature concerns the "planning of sinusoidal trajectories" for the end-effector
of the manipulator.
An implementation that could be useful and directly applicable for really simple tasks like the inter-
action with regular and geometric surfaces in order to achieve painting, gluing,welding and so on by
following the designed trajectories. At the same time and more concretely it could also be used in
order to have reference paths from which the operator should interact with the end-effector according
to the needs of his goal;

In the end will be exposed the main feature that is the "force compliance control" for a manipulator
not predisposed for it, core idea of this thesis. In order to apply this feature the force sensors of the
robot will be exploited for the detect of the external forces, hypothetically applied by the operator,
and decide after a proper filtering to follow them or not.
Application that actually is the basic interaction for cobots but not so foregone by the standard ones.
Note that this task could be implemented also exploiting velocity sensors, with proper modification
in the process, but it arbitrary has been decided to use forces and torques in order to have a more
direct and aware communication between perceived signals and actuation.

1.3 Structure of the thesis
In the next chapters you will find the following structure:

• Chapter 2 start by exposing the theoretical knowledge behind robotic arm dynamics and the
physics about them as mechanical systems. There are also exposed some theoretical exam-
ples presented in the context of robotics to better understand the formulations. All concept
necessary for the comprehension of the dissertation and that later will be widely used in the
implementation of the features.

• Chapter 3 will expose the software environment adopted in order to program and simulate the
features and it also will point out the reason behind their choices.

• Chapter 4 explain specifically the realization of the feature explaining their concepts and idea,
their algorithms and the problems found along the design process

• Chapter 5 will be the ending one showing the actual results achieved with the feature imple-
mentation through several plots and graphics. Furthermore it will state final statements about
the projects and eventual consideration about the exposed features

6



Chapter 2

Theoretical introduction

For the implementation of the features explained earlier is necessary to first introduce the theory
behind a robotic manipulator, its physics and its dynamics.
In order to do that mathematic models help to syntetize those behaviour with simple conventions
and in this chapter they will be briefly exposed.
The book that came in help for summarizing all of the knowledge reported in this chapter is "Robotics:
Modelling, Planning and Control" [5].

2.1 Base Concepts
Beginning with the topic of the dissertation, a manipulator is a robot which present a fixed base and
a characterized by an arm that ensures mobility, a wrist that confers dexterity, and an end-effector
that performs the task required by the robot( [11]).

It can also be schematically represented from a mechanical viewpoint as a kinematic chain of rigid
bodies, called links, connected by means of junctions capable of rotating, called revolute joints, or
junctions capable of translating, called prismatic joints.

The end of the chain, constrained to the manipulator base and its links, with attached the part able
to interact with the environment is called end-effector.
This is the mechanical piece of the manipulator developed and suited ad hoc for executing the
assigned task. For this reason it is the main focus for the planning of the path to execute.

Moving to the surroundings, the area reachable by the end-effector is called workspace. It is often
customary to distinguish between reachable workspace and dexterous workspace. The latter is the
region that the origin of the end-effector frame can describe while attaining different orientations,
while the former is the region that the origin of the end-effector frame can reach with at least one
orientation.

Here in 2.1 is shown an example of a planar manipulator composed by three revolute joints.

7



Figure 2.1: example of a planar manipulator and its variables

2.2 Direct Kinematics
As anticipated in order to manipulate an object in space, it is necessary to describe the end-effector
position and orientation. The determination of those coordinate components given a reference frame
can be expressed as a function of the mechanical structure and of the joint variables (angles or
elongation of the joints) is called "Direct kinematics".

The first way for achieving this is to exploit the geometry of the manipulator.

For example in the case of the 3 links planar manipulator shown earlier(2.1) we would have, as final
orientation of the end-effector, the sum of the angles and as for the position

#

x “ L12cospθ1q ` L23cospθ1 ` θ2q ` L34cospθ1 ` θ2 ` θ3q

y “ L12sinpθ1q ` L23sinpθ1 ` θ2q ` L34sinpθ1 ` θ2 ` θ3q
(2.1)

considering θ3 with negative sign.

The second more generic way is the systematic method that instead allows to transform the base
frame into the end-effector one through an homogeneous transformation matrix

T b
e “

„

Rb
e P b

e

0 1

ȷ

(2.2)

where Rb
e is a 3 dimensional rotation matrix and P b

e is a 3x1 translation vector both from the base
frame towards the end-effector one.
With this method, in order to achieve the final result, is reasonable to consider first the relation
between consecutive frames T i´1

i pqiq and then obtain the overall description of the manipulator
kinematics in a recursive way.
The equation

T b
e “ T b

0 ˚ T 0
1 pq0q...T i´1

i pqiq...T
n´1
n pqnq ˚ T n

e (2.3)
is the obtained result considering a generic manipulator with n joints and n ` 1 links.
Note also that T b

0 and T n
e are constant transformation matrices since allow the transformation be-

tween reference frame that are fixed regardless of the joints moving.
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In order to do that some conventions are needed and the adopted are going to be the Denavit
Hattemberg ones.

2.2.1 Denavit Hattemberg convention

The advantage of the used convention is that only 1 reference frame for each joint will be used and,
instead of considering all of the 6 elementary transformation, it will be taken into account only 4.
The procedure that is going to be exposed allow the transformation from the frame of a joint i-1
towards the one of joint i lets start assigning them correctly. To begin with

• the origin of the frame i-1 (Oi´1) have to be put on the intersection between the kinematic
axes and the common normal.

• its z axis (zi´1) have to be assigned along the kinematic axis (there are 2 possibilities)

• its x axis (xi´1) have to be assigned along the common normal toward the next kinematic axis

• its y axis (yi´1) have to be assigned according to the right hand rule

Here below in the figure (2.2) is shown an example.

Figure 2.2: positioning of the frames according to Denavit Hattemberg convention

Once done all of the assignments it is possible to proceed with the transformation matrices.
In the following order:

1. compute the 3x1 translation vector Tzpdiq in order to reach the origin of the next reference
frame along zi´1

Tzpdiq “

»

—

—

–

1 0 0 0
0 1 0 0
0 0 1 di

0 0 0 1

fi

ffi

ffi

fl

(2.4)

2. compute the 3x3 rotation matrix Rzpθiq in order to rotate about zi´1 until x and y are aligned
with the new frame

Rzpθiq “

»

—

—

–

cospθiq ´sinpθiq 0 0
sinpθiq cospθiq 0 0

0 0 1 0
0 0 0 1

fi

ffi

ffi

fl

(2.5)

3. compute the 3x1 translation vector Txpaiq in order to reach the next kinematic axis translating
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along xi

Txpaiq “

»

—

—

–

1 0 0 ai

0 1 0 0
0 0 1 0
0 0 0 1

fi

ffi

ffi

fl

(2.6)

4. compute the 3x3 rotation matrix Rxpαiq in order to rotate about xi´1 until zi´1 is parallel to
zi

Rxpαiq “

»

—

—

–

1 0 0 0
0 cospαiq ´sinpαiq 0
0 sinpαiq cospαiq 0
0 0 0 1

fi

ffi

ffi

fl

(2.7)

Obtained all of the matrix is sufficient to concatenate them in order to get

T i´1
i “ Tzpdiq ˚ Rzpθiq ˚ Txpaiq ˚ Rxpαiq (2.8)

When this convention is used for the synthetic description of the manipulator, usually is given also a
table with the four described parameters of each link(ai, αi, di, and θi) knowing the scheme of its
axis disposition and is called the Denavit Hattemberg table.

2.3 Inverse Kinematics
If instead the goal is to find the joints components from the Cartesian coordinates of the end-effector
the task that is dealt with is called "Inverse Kinematics".
The solution to this problem is of fundamental importance in order to transform the motion spec-
ifications, assigned to the end-effector in the operational space, into the corresponding joint space
motions that allow execution of the desired movement.

It have to be stated that solve this problem it is not as simple as the forward case.
In fact dealing with inverse kinematics, comports multiple problems to occur since the equations to
solve are in general non-linear and it could cause multiple solutions to exist or even infinite in the
case of a redundant manipulator and even to present not admissible ones in view of the manipulator
kinematic structure. Only if the given end-effector position and orientation belong to the manipulator
dexterous workspace the existence of solutions is guaranteed.

The methodologies available in order to compute the results are the ones in closed form and the
numerical ones.
In the first case it is possible to use the geometrical approach which as the name suggests, like in the
direct kinematics, exploit the geometry of the manipulator, or it is possible to adopt the algebraic
solution trough a transformation matrix that can be computed from the forward kinematic one.
Those closed form solutions usually are preferred if they can be found since they find the exact result
and just generates in a systematic ways a reduced set of equations to be solved. Moreover the first
one is a method that is easier to write but doesn’t work with all of the configurations while the
second one does even if it is usually harder to implement.

The numerical methods are instead an approach that through iteration find the best approximate
values that solves the inverse kinematic problem and must be used for redundant manipulators.
Despite they usually are slower approaches and the results do not say in which configuration we are
they are easier to set up.

An example is the Newton’s method.
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2.3.1 Newton’s method

In the uni-dimensional case of the Newton’s method the aim is to find the root of a real function
fpxq and in order to achieve that few steps need to be iterated. The idea is to start with an initial
guess x0, then to approximate the function by its tangent line, and finally to compute the x-intercept
of this tangent line.

To be more precise, by the assumption fpxi ` ∆xq « 0,

xi`1 “ xi ` ∆x (2.9)

∆x “ ´fpxiq{f
1

pxiq (2.10)

Through this technique after several iteration the algorithm converges in a quadratic time.

In the multidimensional case it is instead needed the computation of the Jacobian matrix. For
what concern the field of mathematics and calculus this concept is related to vector function
derivation and broadly states that it is formed by the first order partial derivatives considering
fpxq “ pf1pxq, f2pxq, ..., fnpxqqT and x “ px1, x2, ..., xnqT since in this specific case we are consid-
ering the dimension of the variables equal to the function one obtaining

J “
Bf

Bx
“

»

—

—

—

–

Bf1
Bx1

Bf1
Bx2

... Bf1
Bxn

Bf2
Bx1

Bf2
Bx2

... Bf2
Bxn

... ... ... ...
Bfn

Bx1
Bfn

Bx2
... Bfn

Bxn

fi

ffi

ffi

ffi

fl

(2.11)

and since fpxi ` ∆xq « fpxiq ` Jpxiq∆xi the new delta will be

∆x “ ´J´1pxiqfpxiq (2.12)

Returning in the robotic field, in order to solve the inverse kinematics problem, it will be used a
Jacobian calculated deriving the equation 2.1 getting its algebraic version

xd
e “ kpqq “ kpqiq ` Jipqiqpq ´ qiq (2.13)

qi`1 “ qi ´ `J´1
i pqiqpxd

e ´ qiq (2.14)

if the dimension of the operational space is the same as the dimension of the joint space and calling
k the vector of the end-effector Cartesian coordinate concatenated to its orientation.

In case of redundancy the inverse of the Jacobian is not available so it should be used its pseudo-
inverse defined by

J` “ pJT Jq´1JT (2.15)

2.4 Dynamic equations of a manipulator
Until now have been shown some of the static equations of a robotic manipulator, if it is needed to
take into account also velocities and forces a dynamic model have to be derived.

Its creation in fact plays an important role for simulation of motion, analysis of manipulator structures,
and design of control algorithms. Moreover the computation of the forces and torques required for
the execution of typical motions provides useful information for designing joints, transmissions and
actuators.
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2.4.1 Lagrange formulation

The method that is going to be used in order to formulate those equations of motion of a manipulator
in the joint space is the Lagrangian one. Simpler and systematic.

The Lagrangian formulation provides a description of the relationship between the joint actuator
torques and the motion of the structure independently of the reference coordinate frame.

Considering a manipulator with n joint and so n variables that describe them(qi) the Lagrangian of
the mechanical system can be defined as a function of the generalized coordinates:

L “ T ´ U (2.16)

where T denote the total kinetic energy of the system and U the potential one. Moreover if ϵi is the
generalized forces associated with the i-th joint then

d

dt

BL

Bq9 i

´
BL

Bqi
“ ϵi (2.17)

where q9 i is the derivative of qi.

The contributions to the generalized forces are given by the non-conservative forces like, the joint
actuator torques, the joint friction torques, as well as the joint torques induced by end-effector forces
at the contact with the environment.

2.4.2 Computation of the kinetic energy

In order to compute the Lagrangian formulation lets start with the kinetic component. This is given
by the sum of the contributions relative to the motion of each link and the contributions relative to
the motion of each joint actuator.

T “

n
ÿ

i“1
pTli ` Tmiq (2.18)

where Tli is the kinetic energy of Link i and Tmi is the kinetic energy of the motor actuating Joint i
i.

The first component of the sum is given by

Tli “
1
2

ż

Vli

p9 ˚T

i p˚
i ρdV (2.19)

where p˚
i denotes the linear velocity vector, ρ is the density of the elementary particle of volume dV

and vi is the volume of Link i.

Consider the position vector p˚
i of the elementary particle and the position vector pCi of the link

centre of mass, both expressed in the base frame. One has

ri “ rrix, riy, rizsT “ p˚
i ´ pli (2.20)

with

pli “
1

mli

ż

Vli

p˚
i ρdV (2.21)

where mi is the link mass.

As a consequence, with the skew symmetric matricial property the link point velocity can be expressed
as
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p9 ˚
i “ p9 li ` wi ˆ ri “ p9 li ` Spwiqri (2.22)

where p9 li is the linear velocity of the centre of mass and wi is the angular velocity of the link.

Now if we substitute the last equation with the 2.18 it can be recognized that the kinetic energy of
each link is composed by the sum of the following contributions:

• Translational as
1
2

ż

Vli

p9T
li p9 liρdV “

1
2mlip9

T
li p9 li (2.23)

• Mutual as
2p

1
2

ż

Vli

p9T
li SpwiqriρdV q “ 2p

1
2p9T

li Spwiq

ż

Vli

pp˚
i ´ pliqρdV q “ 0 (2.24)

• Rotational as
1
2

ż

Vli

rT
i ST pwiqSpwiqriρdV “

1
2wT

i p

ż

Vli

ST priqSpriqρdV qwi (2.25)

where exploiting the properties of the skew symmetric matrices we can write

1
2

ż

Vli

rT
i ST pwiqSpwiqriρdV “

1
2wT

i Iliwi (2.26)

The matrix Ili defined in 2.25 is called Inertia tensor and is relative to the centre of mass of Link i
when expressed in the base frame

Ili “

»

—

–

ş

Vli
pr2

iy ` r2
izqρdV ´

ş

Vli
rixriyρdV ´

ş

Vli
rixrizρdV

˚
ş

Vli
pr2

ix ` r2
izqρdV ´

ş

Vli
riyrizρdV

˚ ˚
ş

Vli
pr2

iy ` r2
ixqρdV

fi

ffi

fl

“

»

–

Ilixx ´Ilixy ´Ilixx

˚ Iliyy ´Iliyz

˚ ˚ Ilizz

fi

fl

(2.27)
Moreover if it is wanted to express it with respect to the link i frame, considering Ri the transfor-
mation matrix from to the link i frame to the base one it will be achieved

Ili “ RiI
i
liR

T
i (2.28)

To sum up with the found formulas and new definitions the result is

Tli “
1
2mlip9

T
li p9 li `

1
2wT

i RiI
i
liR

T
i wi (2.29)

but this equation is not in function of the joints variables. In order to update the equation is possible
to refer to the properties of the geometric Jacobian applied to the intermediate link other than the
end-effector, yielding

p9 li “ J
pliq

P 1 q91 ` ... ` J
pliq

P i q9 i “ J
pliq

P q9 (2.30)

wi “ J
pliq

O1 q91 ` ... ` J
pliq

Oi q9 i “ J
pliq

O q9 (2.31)

where
J li

P “ rJ li
P 1, ..., J li

Pi
, 0, ..., 0s (2.32)

J li
O “ rJ li

O1, ..., J li
Oi

, 0, ..., 0s (2.33)
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with columns computed as

J
pliq

Pj
“

#

zj´1for a prismatic joint

zj´1 ˆ ppli ´ pj´1qfor a revolute joint
(2.34)

J
pliq

Oj
“

#

0for a prismatic joint

zj´1for a revolute joint
(2.35)

considering pj1 as the position vector of the origin of Frame j1 and zj1 as the unit vector of axis z
of Frame j ´ 1.

It follows that the kinetic energy of Link i can be written as

Tli “
1
2mliq9

T J
pliqT
P J

pliq

P q9 `
1
2q9T J

pliqT
P RiI

i
liR

T
i J

pliq

P q9 (2.36)

If now it is assumed that the motor that makes the link i move is located on the link i ´ 1 and if it
is assumed that no induced motion occurs so that the motion of Joint i does not actuate the motion
of other joints then

Tmi “
1
2mmip9

T
mi

p9mi

1
2wT

mi
Ii

mi
wmi (2.37)

where mmi is the mass of the rotor,p9 mi denotes the linear velocity of the centre of mass of the rotor,
Ii

mi
is the inertia tensor of the rotor relative to its centre of mass, and wmi denotes the angular

velocity of the rotor. Consider now θmi to denote the angular position of the rotor and kri the gear
reduction ratio. On the assumption of a rigid transmission, one has

kriq9 i “ θ9mi (2.38)

From this, exploiting the angular composition rule, it is possible to write

wmi “ wi1 ` kriq9 izmi (2.39)

where wi1 is the angular velocity of Link i1 on which the motor is located, and zmi denotes the unit
vector along the rotor axis.

As before in order to express the rotor kinetic energy as a function of the joint variables it is possible
to express the linear velocity of the rotor centre of mass

p9mi
“ Jmi

P q9 (2.40)

and the angular velocity as
wmi “ Jmi

O q9 (2.41)

It comes that the Jacobians are

Jmi
P “ rJ

pmiq

P 1 , ..., J
pmiq

Pi´1
, 0, ..., 0s (2.42)

Jmi
O “ rJ

pmiq

O1 , ..., J
pmiq

Oi
, 0, ..., 0s (2.43)

where the columns are

J
pmiq

Pj
“

#

zj´1for a prismatic joint

zj´1 ˆ ppmi ´ pj´1qfor a revolute joint
(2.44)

J
pmiq

Oj
“

#

J li
Oj

forj “ 1, .., i ´ 1
krizmiforj “ 1

(2.45)
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After those calculations is possible to write the kinetic of the rotor i as

Tmi “
1
2mmiq9

T JmiT
P Jmi

P q9 `
1
2q9T JmiT

O RmiI
mi
mi

RT
mi

Jmi
O q9 (2.46)

Finally, by summing the various contributions relative to the single links and single rotors, the total
kinetic energy of the manipulator with actuators is given by the quadratic form

T “
1
2

n
ÿ

i“1

n
ÿ

j“1
bijpqqq9 iq9 j “

1
2q9T Bpqqq9 (2.47)

where Bpqq is called Inertia matrix and is defined as

Bpqq “

n
ÿ

i“1
pmliq9

T J
pliqT
P J

pliq

P q9`q9T J
pliqT
P RiI

i
liR

T
i J

pliq

P q9`mmiq9
T JmiT

P Jmi
P q9`q9T JmiT

O RmiI
mi
mi

RT
mi

Jmi
O q9q

(2.48)

2.4.3 Computation of the potential energy

Lets now proceed to the computation of the potential energy of the manipulator. Similarly to the
kinetic case it is possible to express the potential energy as a sum of the contributions relative to
each link as well as to each rotor

U “

n
ÿ

i“1
pUli ` Umiq (2.49)

Exploiting the assumption of having rigid links the contribution due to the gravitational force is given
by

Uli “ ´

ż

Vli

gT
0 P ˚

i ρdV “ ´mlig
T
0 pli (2.50)

naming g0 “ r0, 0, ´gsT the gravitational acceleration vector.

As for the rotor is similarly obtained

Uli “ ´mmig
T
0 pmi (2.51)

gaining as potential energy

U “ ´

n
ÿ

i“1
pmlig

T
0 pli ` mmig

T
0 pmiq (2.52)

It is also possible to note that the final equation is a function of variables q and not of their velocities
q9 .

2.4.4 Equation of motion

Now that both of the components have been computed it is possible to write the Lagrangian as

Lpq, q9q “ T pq, q9q ´ Upqq (2.53)

and taking the derivatives required by Lagrangian equation yields

Bpqqq: ` npq, q9q “ ϵ (2.54)

where
npq, q9q “ B9 pqqq9 ´

1
2p

B

Bq
pT BpqqqqT ` pBUpqqBqqT (2.55)
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then
ddtp

BT

Bqi
q “

n
ÿ

j“1
bijpqqq:j `

n
ÿ

j“1

n
ÿ

k“1
BbijpqqBqkq9kq9 j (2.56)

BU

Bqi
“ ´

n
ÿ

j“1
ppmlj gT

0 J
lj
Pi

pqq ` mmj gT
0 J

mj

Pi
pqqqq “ gipqq (2.57)

Finally with all the needed formulas the equation of motion becomes
n

ÿ

j“1
bijpqqq:j `

n
ÿ

j“1

n
ÿ

k“1
hijkpqqq9kq9 j ` gipqq “ ϵi with i “ 1, ..., n (2.58)

having
hijk “ BbijBqk ´ 12BbjkBqi (2.59)

From this final equation of motion it is possible to note that the first term is strictly related to the
Inertia of the manipulator, the second to the Coriolis effect induced on joint i by joints j and k and
that the last one is a configuration dependent factor.

To summarize it in a more compact way and keeping into account also non conservative factors it is
possible to write

Bpqqq: ` Cpq, q9qq9 ` Fvq9 ` Fssgnpq9q ` gpqq “ τ ´ JT pqqfe (2.60)

where Fv represent the viscous friction, Fs the static one, τ the actuation torques, fe the vector of
force and moment exerted by the end-effector on the environment and C is the Coriolis component
such that

n
ÿ

j“1
cijq9 j “

n
ÿ

j“1

n
ÿ

k“1
hijkpqqq9kq9 j (2.61)
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Chapter 3

System environment

All of the implemented feature that are developed in a virtual environment so in this chapter all of
the tools and supporting programs that have been used are going to be exposed.

3.1 Ros
The aim of the dissertation is to develop a generalized software able to work with any kind of
manipulator not provided with any manual drive features.

This implies that the frameworks and underlying system must be totally independent of the internal
processes employed by the various robotic arm types.
The best solution in order to achieve that is Ros [6], the robotic meta-operating system. An open-
source framework that allows the development of robot systems and application through its vast set
of software libraries. It also provides tools for obtaining, building, writing and running code across
multiple computers and furthermore it provides services expected from an operating system includ-
ing hardware abstraction, low-level device control, implementation of commonly-used functionality,
message-passing between processes and package management.

With this environment the problem of generalizing the software is solved with its node-based struc-
ture. A representative image is shown in figure 3.2. Each node controls a different functions of the

Figure 3.1: Ros node-based structure

system and can interact with the others thanks to the ROS network managed by the ROS Master.
The ROS master stores information about the network because it sets up p2p connections between
the nodes.

Those nodes communicate with the others through the message passing interface, a second important
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feature of Ros that allows communication between multiple processes that may or may not live on
the same computer.
A scheme of the process is reported in figure 3.2. In fact since the publish/subscribe system is

Figure 3.2: Ros messages interface

anonymous and asynchronous, the data can be easily captured and replayed without any changes to
code. At the same time if a synchronous communication is desired the system’s middleware offers
also services that allows it.
Moreover, an another feature provided by the middleware, is the way for tasks to share configuration
information through a global key-value store allowing to easily modifying task settings and to change
the configuration of other tasks.

One last advantage of Ros is the high re-usability that its libraries offer. Its packages provide stable,
debugged implementations of many robotics algorithms that since the message passing interface is
becoming a standard for robot’s software interoperability are often available.

3.1.1 Franka emika

Between those packages the one that has been used for the feature construction belong to a notorious
company with a lot of experience and famous in the robotics field: Franka emika [7].
The Franka Control Interface (FCI),connected to Ros through franka_ros, allows a fast and direct
low-level bidirectional connection to the Arm and Hand. It provides the current status of the robot
and enables its direct control with an external workstation PC connected via Ethernet. By using
libfranka, an open source C++ and Python interface, is possible to send real-time control values at
1 kHz like gravity and friction compensated joint level torque commands, joint position or velocity
commands and Cartesian pose or velocity commands.
Moreover at the same time, is possible to get access the measurements at 1kHz of measured joint
data, such as the position, velocity and link side torque sensor signals and various collision and
contact information.
An another important feature is that is the the library provides informations concerning forward
kinematics of all robot joints, the jacobian matrix of all robot joints and the dynamics components
like the inertia matrix, Coriolis and centrifugal vector and gravity vector.

It has to be stated that for the purposes of this dissertation other libraries work as well but Franka
emika have been chosen after a comparison with the other available ones(like the PandaArm python
library) since its features resulted to be more complete and results to be preciser [9].

3.1.2 Rviz

For the visualization and the test planning part it is used a specific tool offered by Ros itself:
Rviz [10]. Rviz (short for “ROS visualization”) is a 3D visualization software tool for robots, sensors,
and algorithms that enables to see the robot’s perception of its world (real or simulated). Since
it is already part of the adopted environment it also allow an easy communication between himself
and the coding part without time consuming calibrations or specific support packages. Between the
feature there is the one that permitting the use of markers and of visual interfaces to plan and set the
goals of the manipulator in a really user friendly way simplifying the testing part and the simulations.
An illustrative picture is shown in image 3.3
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Figure 3.3: Example of the Rviz markers on a PandaArm

3.2 Gazebo
If rviz describe what the robot perceive and help in the planning the actual "real world" simulator
is gazebo. This software allows a 3D simulation of the environment and of the robotic manipulator
and is able to create a complete and realistic scenario for it having the possibility of adding obstacles
and object. Furthermore it uses a physical engine for illumination, gravity and inertia that allows to
execute simulations really close to the reality. Despite many program more user-friendly exists, like
V-rep and Darts, gazebo is the most complete disposing of a plenty of features and settings to help
the simulation and make its design more tecnical. For this reason is widely used across the robotics
community resulting as a universal and relatable alternative.

3.3 Model of the robotic manipulator
Once it have been described all of the used simulation tools it is time to move on the actual
manipulator. For the simulations between the several choices it have been decided to adopt the
PandaArm manipulator from Franka emika. Its model is exposed in figure 3.4 One of the reason of
its choice, apart being part of the standard collaborative manipulator for simulations, is its capability
of detecting the torque acting on the joint that, as will be exposed in detail later, is one of the
keys for a correct detection of the external forces. Despite it is already provided by algorithm for
the human collaboration it has been used without those implementation resorting only to the torque
sensors that it present. Here below in the figure 3.5 is reported the Denavit-Hartenberg table of its
parameters

19



Figure 3.4: PandaArm model

Figure 3.5: PandaArm DH table
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Chapter 4

Features implementation

Having the information about the needed theoretical knowledge and the information about the used
settings it is possible to move on the effective features.
Starting from the beginning, since the following developed algorithms are built from a base common
script, it is going to be exposed now. This script aim to control the position of the manipulator’s
end-effector given the r-viz markers and achieve the result using a simple PD control.
Having this fundamental feature allows to move the manipulator according the desired goals with
high precision, a standard feature for industrial robotics, and is obtained finding the needed torque
values in a way similar to the inverse kinematics.
Its code can be entirely found in the appendix A.1 and, given a rate of work, it assume as goal position
and orientation the one received by the marker and then constantly iterate the control thread aiming
to minimize the errors. In order to achieve that it exploit the Jacobian for relationship between force
on the end-effector and torque on the joints and a controller with refined proportional and derivative
gains.
$

’

&

’

%

F “

«

PP ositionppositiongoal ´ positioncurrentq

POrientationporientationgoal ´ orientationcurrentq

ff

´

«

DP ositionpLinearV elocitycurrentq

DOrientationpAngularV elocitycurrentq

ff

τ “ JT F

(4.1)

21



4.1 Workspace limitation
In order to achieve a correct workspace limitation aiming to limit the end-effector space of movement
there are two kind of available approaches.

The first one is to act on the position of the end-effector frequently checking its coordinates, com-
paring them with the desired boundaries and, if it is out of the desired limitation, force it to the
closest available position. In that way the end-effector is constantly checked and controlled to the
right position resulting sturdy even to external interactions. On the other hand this kind of approach
imply a really high computational cost, since the system has to constantly check with an high fre-
quency the parameters of the coordinates and force or not the manipulator, and an average precision
since the end-effector is constantly trying to reach its goal moving towards it and this could lend to
slight border crossing.

The second approach, that it the adopted one, focus instead on targeting directly the goal of the
manipulator. In fact if it is out of the desired thresholds it force it on the closest point of the
boundaries and then let the system reach it with the standard process. In this way the global
computational cost become significantly lighter with a higher precision than the previous case since
the manipulator won’t need to cross any border.

4.1.1 Spherical coordinates

The basic assumption needed in order to have a useful workspace limitation is that the intersection
between the manipulator reachable workspace and the desired boundaries of the forced section of
space has to be not empty. In order to respect this condition the example adopted is the one of a
sphere: a simple and convex area which center is an arbitrary point inside the manipulator reachable
workspace.

The equations that describe it are
$

’

&

’

%

x = x0 ` ρ cos φ sin θ

y “ y0 ` ρ sin φ sin θ

z “ z0 ` ρ cos θ

(4.2)

and an example is reported in figure 4.1

4.1.2 Implementation

Since the aim of the feature is to force the goal on the border of the sphere if it is outside the
desired space, due the geometrical circumstances of the example, is sufficient to only adapt the ρ
to the desired one. In that way is possible to avoid the use of the inverse equations and pass from
Cartesian coordinates to the spherical ones just for adjusting the radius, letting in that way φ and
θ untouched. One method available for this radius adjustment is to first shift the coordinate of the
goal in order to have the center of the sphere(O’) as reference origin, get its normalized vector(v),
multiply it by the ρ of the desired sphere(getting O’B) and then shift back again the result in the
original reference system.
An explicative scheme is reported in figure 4.2.

In the Appendix A.2 is shown the code of this feature.

4.1.3 Drawbacks

At the same time from this strategy disadvantages we can find the fact that it is not robust against
external forces since it only act on the end-effector’s target, negligible aspect if we are considering
a safe or closed environment or if the robots is driven with compliance by a human operator and is
exploiting the workspace limitation in order to keep the arm on a specific surface in order to force
by himself the end-effector tools for the given task. An another disadvantage arise in the cases of
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Figure 4.1: image of a sphere with its spherical coordinates

really complex workspace limitations. To be more specific in concave spaces, since the manipulator
is programmed for taking the shorter path for the goal it could happen the eventuality of a collision
for consecutive movements on the border(see figure 4.3). Eventuality not considered in this work
but easily avoidable with a prior proper check on the points in between the end effector and its goal
and for example subdividing the path in several smaller translation towards to points on the border.
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Figure 4.2: image of the downscaling of the ρ

4.2 Sinusoidal path planning
For the planning of a sinusoidal path instead of using just a goal position or segmenting the trajectory
with too many predefined points the polynomial method have been used. Thanks to that it have
been possible to find the coordinate of the necessary points for the following of a sinusoidal path
given the time and according to the rate of the system. The obtained path resulted way smoother
than the former approach and take into account also acceleration and velocities aiming to optimize
them.

4.2.1 Polynomial equations

As said earlier the current feature exploits the polynomial equations and, if the desired trajectory is
not just linear, for every dimension at least two equations needs to be computed.
For explanatory purposes now consider the fundamental case: an iteration across a segment executing
a round trip between its extremes. In order to realize it a third grade polynomial law is sufficient and
state that the position is

xptq “ a0 ` a1t ` a2t2 ` a3t3 (4.3)

where xptq is the spatial coordinate given the time and a0, a1, a2, a3 are constants belonging to R.
Stated the starting equation, for an actually adoptable law, the constant values need to be found. This
is easily achievable considering the initial and final conditions desired for the path: If in fact the initial
velocity(v0) and the final one(vf ) are imposed as null and considering the starting coordinate(x0) and
the ending one(xf ) it is possible to proceed toward the actual computations. Deriving the equations
4.3 and imposing those condition is possible to compute

»

—

—

–

1 t0 t2
0 t3

0
0 1 2t0 3t2

0
1 tf t2

f t3
f

0 1 2tf 3t2
f

fi

ffi

ffi

fl

»

—

—

–

a0
a1
a2
a3

fi

ffi

ffi

fl

“

»

—

—

–

x0
v0
xf

vf

fi

ffi

ffi

fl

(4.4)

where t0 and tf are the desired beginning time and ending time, fundamental parameters since the
equation doesn’t take into account the manipulator’s capabilities and those two values should be
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Figure 4.3: example of a concave workspace

aware of the feasible performances of the joint’s motors.
Thanks to this equation is possible to find the desired constants and so have a full law available for
the system to follow based on the time that from a point start accelerating towards the goal and in
the middle point begin to decrease the acceleration until it stops in the target position.
It have to be noted that, in order to have a round trip, a second polynomial equation is needed for the
way back imposing new initial and final times and switching beginning and ending coordinates.

4.2.2 Circular example

Passing to the case of an increase of the dimensions in the desired path lets for instance discuss
the case of a circular trajectory. In order to realize it 5 polynomial equation are needed: 2 for both
dimension plus one for the beginning of the path actuation as shown in the image 4.4 considering a
clockwise spinning.

Figure 4.4: Polynomial equations for a circular path planning

As the image explain in order to achieve the desired result is sufficient to assign the right polynomial
law to the correspondent coordinates according to the current time. To be more specific if we assume
a travel time of 10 seconds spit equally in the circle quarters:

• for the beginning section 1, the one that after the first execution will be permanently substitute
by the number 5, is used the short polynomial law and so developed to go from the center
towards the left extreme for the horizontal component while for the vertical one will be adopted
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and the equation that lead the manipulator from the bottom point toward the upper one;

• for the section 2 the vertical component follows the previous vertical law while the horizontal
one this time follows an polynomial equation that aims to start from the leftmost point and
go towards the rightmost one;

• for the section 3 the horizontal component have to follow the horizontal equation of the section
2 while the vertical one this time need to go downwards and so to adopt the vertical law that
this time starts from the upper point and move towards the bottom one

• for the section 4 the vertical component continues to follow the equation used by the vertical
coordinate in section 3 while the horizontal one starts to move to the leftmost point with the
polynomial equation left to use

• finally the section 5 is the same as the section 1 exception made for the horizontal component
that this time have to follow the horizontal law of the section 4;

In the Appendix A.3 is possible to see both of the implementation under "sinusoidal control thread"
and "circular control thread".

4.2.3 Possible implementations

The previous examples were extremely basic and represent a fundamental path for the development
of more complex trajectories.
Despite that even with the simple use of the linear and circular case, with the implementation of the
force compliance that will be shown later, some interesting results could be achieved.
For instance in the case of a long surface to glue or pain, the manipulator could follow a linear and
sinusoidal path letting a human operator to push the end-effector up and down or to press it on the
surface as needed by the task.
Same case for a compact surface which could present various irregularities that could be managed
by a simple circular path from the manipulator with the consequent eventual forcing by the human
operator.
Aiming instead to a full automated circuit working for regular shaped surfaces some interesting
implementations could be used.
One example could be the use of the linear case but every time adding to the ending horizontal
coordinate a fixed value in order to have an horizontal translation(see figure 4.5). Result that could
as well be obtained directly implementing an horizontal polynomial law towards left or right. An

Figure 4.5: example of a sinusoidal path obtained by the linear one

another example, if the task require a wider area to cover, could be the modification of the circular
path setting in the last quarter to execute a slightly shifted coordinate toward the desired direction
obtaining a sort of projection of a helicoidal trajectory(see figure 4.6).
Moreover the possible applications could also be implemented in the three dimension by the addition

of further polynomial laws suited for the desired cases. For instance the implementation of a shifted
plane or the one of a sphere section or even more complicated shapes with the right mathematical
implementations.
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Figure 4.6: example of a helicoidal 2D path obtained by the circular one

4.3 Force compliance control
The compliance control aims to allow a human operator to freely move a manipulator according to
his movements in order to perform tasks. For this reason a properly developed system for allowing
that should continuously taking care of external stimulus and consequently actuate the proper actions.

Keeping this in mind the proposed solution that will be exposed suggests an algorithm that, given a
reference pose that the manipulator pursue by default, will indulge on the detected external forces
and counteract to the undesired ones. The distinction between desired and undesired forces is made
on few conventions that depends on the task that the manipulator will achieve and are going to be
exposed later.

As told earlier, in this feature the used input for achieving this cooperation is going to be the detected
external force applied on the manipulator from the reference frame of the end-effector. In this way
even if the human operator’s inputs are applied on the others links of the manipulator the focus of
the compliance will remain the end-effector itself since they will be finalized for moving the tool in
charge of interacting with the environment in order to compute the desired task.
Furthermore it have arbitrarily have been decided to detect forces instead of velocities for a matter
of precision and accuracy, since generally the robot’s sensor are usually more sensitive to the forces
because they are provided with the possibilities of recognizing their own joints exerted torques, and
for a matter of practicality. For what concern the latter aspect it has to be considered that when
they deals with manual works, due to their muscular composition and to their behaviour, humans
tend to exert short and intense forces rather than constant and prolonged velocities obtained by the
repetition of small instantaneous efforts.

For the implementation of this feature two big sub-goal have to be managed:

• the force detection, followed by a proper filtering of the inputs

• the managing between force control and stiffness control

Both steps that will require a conscious and aware calibration.

4.3.1 Force detection

The force detection part as the name suggests aims to correctly identify the external forces acting on
the manipulator, to minimize the eventual errors and if needed to properly filter the receive signal.
In order to find the external forces acting on the end-effector the formula 2.60 comes to help.
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In fact the equation lend to

τext “ τtotal ´ pBpqqq: ` Cpq, q9qq9 ` Fvq9 ` Fssgnpq9q ` gpqq ` τcontrolq (4.5)

where the τcontrol taken into account is the control vector obtained from the manipulator given a cer-
tain move command. So considering a system with null frictions or a system where the friction models
were observed and described computationally and taking into account an end-effector Jacobian for
the inverse mapping between Cartesian and joint space, it would be possible to have

τext “ JpqqT fext (4.6)

with a 6x1 fext having its first three lines as components of the external forces acting on the end-
effector.
It can be noted that a lot of prior information are needed for those computations but the modern
software that interact with the manipulators easily allow to have access to them.

For the realization of this part in the beginning it was used the PandaArm python library since it lends
all of the equation’s components for then calculating the external forces but the obtained results were
not as precise as wanted.
Probably since the components of the dynamic equations already took into account values and
conventions different from the considered ones.
The graphs in figure 4.7 reports some results about that.

Figure 4.7: example of the results gotten with the PandaArm library

For this reason it have been substituted by the franka emika one that made all of this calculations
following automatically the explained equation giving as result more clear and relatable data to work
with.

Despite the accuracy of the obtained detected forces and even if the detection trials where made in a
simulated environments applying instantaneous and constant forces to the end-effector, the obtained
measures were of course not precise as the imposed one. Expected consequence of working with a
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good and realistic simulator. For this reason a lot of trials have been made in order to understand
the behaviour of the system and the results shown a pretty clear pattern.

In a concrete scenario the expected results from a force measure would be in a form expressed by
4.8

Figure 4.8: hypothetical example of an external force applied in a concrete scenario

As it is possible to notice from the image 4.8 when the force is applied,it usually present an initial
consistent overshoot and then it stabilize over the desired force reference but without totally con-
verging.
For this reason the part of the signal taken into consideration doesn’t start with the initial variation
of force but after a certain delay.

A further observation that can be made consist in the presence of an always present and consistent
factor that does not allow the signal to be null in the stationary case which generates a signal drift,
this factor is the gravity itself.
In facts joints that are currently being compensated for gravity are typically holding the link’s weight
for a long time and, therefore, variables like temperature will make joint torques deviate from the
computed theoretic values that don’t account for this kind of variation. For this reason the expected
external torques can’t be exactly zero when the system is still.

In the simulation, considering that the simulated external force is a constant signal exerted in a
specific and defined time window, the detected values report different behaviour.
In order to get relatable and valuable data, several measurements have been made exerting the
desired forces on the end-effector. Considering a force applied on the system at the second 1(time
delay) and for a duration of 1 second, 100 samples of the signal variation have been recorded and
those trails have been repeated 5 times for each kind of force.
The chosen rate of measurement is sufficient to evaluate the signal performances.

Considering that without external forces applied the detected one(in Newton) are

»

–

0.18
0.32

´1.80

fi

fl with as

highest parameter the one most affected by the gravity, here the mean of the obtained values in the
different components is shown in figure 4.9 It has to be taken into account that averagely a human
arm can exert a force between the 50 and the 150-200N

, the measures made with higher forces where performed in order to stress the behaviour of the
system and for sake of completeness.

Moving onto the numerical data, it is possible to note that the detected forces present some inter-
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Figure 4.9: Measures of the detected external force simulated and applied on the end-effector

esting features different from the real case. To begin with it is immediate to see that the peak of
the detected signals never exceed the actual one stopping itself earlier and without converging to the
actual force. At the same time as the magnitude of the force increase the error with respect to the
applied force grows.
In fact is possible to see that

• in the trial with -100N applied to the Z axis, the fully operational value of the detected force
is about the 97% of the real one

• in the trial with -200N applied to the Z axis, the fully operational value of the detected force
is about the 90% of the real one

• in the trial with -300N applied to the Z axis, the fully operational value of the detected force
is about the 86% of the real one

• in the trial with -200N applied to the Z axis, the fully operational value of the detected force
is about the 80% of the real one

An another fact is that while the module of the applied force increase, increase also the noise in the
system "spreading" the detected force into the other two components, even if they should be null.
In fact if when in one of the three dimension a force of 100N is applied their value is at most about
the 3% of the dominant factor while, rising the magnitude of the applied force, the error grows to
the 27% in the case of the 200N and reach its 50% in the extreme case of the 400, situation that
won’t be taken into account in the next development.

So the resulting image that emerge from this kind of data should have a shape close to the one
shown in figure 4.10

Due to the presence of those inaccuracies it have been decided to apply a filtering before taking into
account strong forces for the sake of a cleaner control.
This filtering consider all of the previous observation and take care of them through a calibration
based on the several numerical values seen.
Here below is shown the pseudo-code applied only in the case of a relevant forces
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Figure 4.10: hypothetical example of an external force applied in a simulated scenario

Algorithm 1: Pseudo-code of the external force filtering
Data: detected_force.
Result: filtered detected force.
filtered_force=zeros(3,1);
receive detected_force;
if (|detected_force|>minimum_force) && (|detected_force|<security_threshold) then

max = maximum component of the detected_force;
insert max in filtered_force;
if filtering_percentage|max|<detected_force[*] then

insert detected_force[*] in filtered_force;
end
if filtering_percentage|max|<detected_force[**] then

insert detected_force[**] in filtered_force;
end

end

This pseudo-code is supposed to be fed with a detected external force that has been measured after
a certain time delay in order to consider only the meaningful part of the signal, time of about 0,3
seconds. Then the absolute value of the detected signal is compared with a minimum force that
have been arbitrarily set to 20N, imagining a task that doesn’t require extreme delicacy, and at the
same time is compared with a maximum force called "security_threshold". As the name suggests
this constant was thought for safety purposes in order to avoid the following from the manipulator of
inputs too "strong" to be safely handled by a human operator and have arbitrarily put to 200N. Value
that as the former one should depend on the goal of the desired job goal and be custom designed.
Once this check is made, is first of all taken into account the maximum parameter of the detected
force that promptly inserted into the output vector in the corresponding position and then a control
is made on the other two components.
Those are compared with a percentage of the maximum one and if they are bigger it is assumed
their authenticity allowing them to be inserted in the corresponding positions of the output array,
otherwise they are treated as errors and ignored. The percentage taken into account basing on the
trials and their available data is set to be the 20% since the cases of external forces bigger than 200N
have been excluded.

With this implementation is possible to filter the detected forces and obtain a relatable value that
considering the simulations will be slightly weaker than the effective one but that in a real scenario
would be close to the real peak.
It have to be also stated that this approach limits the 360° range of the possible translation discretizing
the number of the available direction forcing, in some sporadic cases, the subdivision of a motion in
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more steps but do this for sake of a safe control and according to a prior awareness of the eventual
human operator.
Moreover a matter that have been ignored due to its negligibility is the signal drift: a value extremely
low for the measures taken into account but that depending on the concrete application could become
more significant and so could probably need to be taken care of.

4.3.2 Control managing

With the control managing section the software, after having correctly received the detected external
force from the previous part, aims to manage the behaviour of the manipulator between a control
that go according to the exerted forces, that will be called force control, and a control that aims to
contrast any external interaction, that will be called stiffness control.
As said earlier the whole program goal is to follow a predefined position by default and, in case of a
significant human input, to work with the operator; for this reason the script have been developed such
that in the eventuality of absent or (most likely) weak external forces it should by default contrast any
interference controlling the end-effector position to the predefined one with the impedance control,
but that with the arise of a significant interaction should put into effect the force control until the
end of the collaboration.
In figure 4.11 is shown a diagram of the algorithm.

Figure 4.11: diagram of the program algorithm

Beginning with the default approach the stiffness control will be now analyzed.
Inspired to the base scripts exposed in the beginning of the chapter this kind of approach aims to
track and follow the goal position but with an extra factor taken into account that is the detected
external force.
Since the values that are considered in the impedance control belong to a window of really weak
forces, between the 2N and the 20N, and since earlier it has been shown that with low magnitudes,
more specifically below the 100N, the detection is really accurate, these values were not filtered with
the former algorithm.
This decision has been made suited on the imagined task but it has to be taken into account that in
other scenario a proper treatment of the received data could occur. An example for instance could
be the case of a task in which the input required forces are extremely high like for heavy weight to
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carry or a situation in which the precision of the end-effector position is crucial consequently having
a more extended force window for the stiffness control.

The considered force window for the stiffness control starts from the 2N because since even in the
simulation in always present the signal drift that in the real environment most likely will be enhanced,
it has been decide to have the thread working until the goal position is reached with a certain precision
and until the presence of forces at least stronger than the environmental noises disappear.

Said that the pseudo-code of the stiffness control is

Algorithm 2: Pseudo-code of the stiffness control
receive first detected_force;
while (position_error>0.5) && (|detected_force|>signal_drift) do

if (|detected_force|>minimum_force) && (|detected_force|<security_threshold) then
Force_control(rate);

end
receive position, orientation, and velocities of the end-effector;

F “

„

PP ositionppositiongoal ´ positioncurrentq

POrientationporientationgoal ´ orientationcurrentq

ȷ

´

„

DP ositionpLinearV elocitycurrentq

DOrientationpAngularV elocitycurrentq

ȷ

Ftot “ F ` ksmoothen ˚ detected_force
τ “ JT Ftot;
command(τ);
calculate position_error;
receive new detected_force;
wait(rate);

end

where the algorithm operate according to the given desired rate basing on the possibilities of the
manipulator.
Moreover it has been added a constant ksmoothen that decrease the value of the detected external
force in order to have a reaction from the manipulator less impulsive and more gentle.
For testing purposes this implementation of the system have been tested with external force higher
than 5 Newtons and thanks to the correct use of the rate it was able to contrast the external
interference suggesting a high reliability in the considered external force eventuality.

As for the force control the procedure where similar with slight differences. Going straight to the
pseudo-code
Algorithm 3: Pseudo-code of the impedance control
while (|detected_force|>minimum_force) && (|detected_force|<security_threshold) do

actual_force=filter(detected_force);
τ “ JT pkforce ˚ actual_forceq;
command(τ);
receive new detected_force;
wait(rate);

end

As anticipated earlier the script here filter the detected force and apply it to the manipulator directly
since when the human operator is interacting with the machine there is no need to come back to the
base position.
Moreover a new constant kforce is taken into account in order to strengthen the input force.
Its value is 1.2 and it is an empowering one firstly because of the difference in the detected signal
with the applied one and so it aim to recover the true value and secondly because the thought
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implementation for this software is a generic one and it has been decided to give more importance
to the received input in order to make the resulting interaction less tiring on the human operator
side. In fact thinking of a welding or painting task a more reactive manipulator could be felt as
more helpful than a stiffer one while in the case of an end-effector endowed with pliers or syringe
for biomedical purposes, given the delicacy and the precision required by the task, a constant factor
included between one and zero and so able to smooth down the applied force could result more
comfortable.

In the appendix A.4 is shown the whole code of the implementation.
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Chapter 5

Results

In this chapter some numerical results and some considerations about the implemented features will
be exposed evaluating the behaviour of the scripts.

5.1 Workspace limitation
For the workspace limitation feature it have been implemented a spherical threshold that has its
center located on the end effector default position and that present a radius of 0.5, definitely less
that the manipulator reach.
For showing purposes it have been placed the marker on the x axis and in order to have a goal
position outside the desired threshold.

Figure 5.1: Manipulator that tries to reach a goal beyond its limited workspace

As it is possible to see from the image 5.1, the end-effector does not overcome the borders and stay
under the spherical surface along the line between the goal position and the center of the spherical
workspace.
In figure 5.2 a graph about the steady state error between the end effector position and the threshold
witness the behaviour.
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Figure 5.2: Mean error between the end effector position and the threshold

Showing the whole process of threshold reaching would require a huge plot making difficult to ap-
preciate the details of the feature herself but like the graphic shows the end effector, after the initial
approach phase where it move towards the goal, as told earlier place himself really close to the border
staying below it.
The plotted signal is the mean of the error of the three components and present a negative sign since
the manipulator is approaching the goal from below.

Looking at the image 5.1 is also possible to note a crucial aspect: if the end-effector respect the
desired thresholds and limitation the rest of the manipulator often does not.
This is because the software implements a control suited only for the tool of the robots so that the
other physical part are not considered.
In this dissertation the possible implementation are not treated but there are some possibilities that
could be realized in future works. An immediate but not functional method if the aim of the task
would become to avoid the interaction of the whole manipulator with the environment could be the
restriction of the desired limited workspace considering the maximum extension of others components
of the robot. Despite it should work it would extremely limits the end-effector workspace excluding
poses that could be needed.
An another method that is widely used nowadays it the one of the collision boxes which assign
to all of the mechanical parts of the manipulator a virtual box that will be taken into account
during the trajectory planning avoiding intersection between them and the environment. A more
sophisticated solution to reach the goal and that doesn’t limits consistently the end-effector available
positions.

5.2 Path planning
For what concern the path planning for showing purposes it has been implemented a simple circular
path with a travel time of 10 seconds.

In the figure 5.3 some screenshots of the motion have been reported.

The only observation worth of notice concern the right choosing of the travel time. In this case it
was in fact set in order to be slack and to permit a correct and clear visualization of the motion
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Figure 5.3: Screenshots of the manipulator following a circular trajectory

thought the simulation environment.
Otherwise in the eventuality of a wrong designed time parameter, for what has been observed, the
manipulator tent to loose and not reach in time some goal positions during the process resulting
in a rhomboidal shaped trajectory. A clearly undesired achievement that in the wrong concrete
application(like in a welding task) could bring to important or dangerous consequences like the
harming of human operators or the damaging of the materials in the surrounding.
Fortunately this feature has been designed for a human cooperation permitting an interaction when
needed therefore implying controllable and manageable motions without reaching the maximum speed
the manipulator can achieve( note that each joint can perform a maximum velocity between 150-180
degree per second [12]).

5.3 Compliance control
To show some results concerning the compliance control it has been made a simple test. In order to
show the effectiveness of the stiffness control a vertical force of 5N has been applied downwards on
the end-effector for 2 seconds considering it already in the default position. The results are reported
in the figure 5.4. From the reported data is possible to note that the error is really low but even better

Figure 5.4: results of the stiffness control test

results could be achieved by more detailed calibration or by more sophisticated control techniques.
An example could be a PID controller for estimation of the global force but also a global system with
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higher rate could result helpful for the sake of the goal.

As for the force control the experimental test to perform are a bit harder to expose.
Despite this, for showing purposes, a comparison between the perceived velocities of the end-effector
with and without the feature is reported in the following.
In order to realize it a force of 25N have been applied on the end-effector along the z axis for 0.5
seconds and, with the constant variables exposed earlier, the resultant velocities have been plotted
in the figure 5.5.

Figure 5.5: comparison between the end-effector velocities

From the image is possible to note that the algorithm specifically enhance only the relevant forces
that it detects but due to the physical nature of the system, several kind of noises arise after the
application.
Moreover it has also to be noticed that in the second plot no positive velocities, related to end-
effector coming back to its default position, are shown. This is due to the fact that they are just
postponed, and so not reported in the graph, since the system waits until external forces becomes
negligible, keeping the end-effector away from the rest position for more time with respect to the
standard case.
Despite those errors can be conceived as negligible, they will most likely appear also in a real scenario
and maybe in an even stronger way but with more complete controls one the ending part of a detected
force,with a further parameters calibration and with better sensor and system rate, those could be
smoothed.
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Chapter 6

Conclusions

The purpose of this thesis was to find a way of implementing generic manual guidance solutions
into non-collaborative robots. The compliance behavior seen in cobots provides ways of creating a
natural interaction between the robotic arm and its human operator.
Standard manipulators lack this feature but are consistently found in multiple industries that currently
fulfill a certain task by designing hand driving mechanisms. Providing a human-robot interaction
without completely replacing the robots themselves creates opportunities in these industries and
provides quality behaviors that certainly help increase overall productivity.

To provide a clear understanding of formal compliance approaches, a thorough investigation into
the theory underlying mechanical systems and robotic arm dynamics was conducted. It has to be
stated that many others manual guidance solutions exist but that the majority of them rely on more
practical mechanisms and sensor [13] while the exposed approach involves a more theoretical strategy
in order to generalize this application.

In order to assess the compliance solutions and compare them with various manipulators, a simulation
in Gazebo was used during development and testing. Nevertheless this is considered as a safe and
stable environment so the developed methods will need to be further analyzed in a real robotic
arm.

While the compliance solution itself is generalized and should work with any manipulator, the interface
and middleware between the robotic arm and the compliance entity needs to be created for each
specific robot.

The results of this thesis involve both a generalized hand guidance solution, a workspace limitation
algorithm and a sinusoidal path planning, all features available for any manipulator.

To enhance the compliance features and provide precise control over the hand guidance behavior in
particular situations, a conditional compliance mode is also proposed and despite being an uncommon
feature, restricting the robot’s movement while in manual guidance mode proved to be an elegant
solution to fulfill certain trajectory programming tasks. The results of the experiences performed to
test this mechanism proved that it can certainly be used in the discussed use-case scenarios.

Although the compliance solution as a whole works considerably well, some issues with this system
have been faced. First and foremost, using the current readings to infer the joint torques isn’t the
most attractive solution. It is undoubtedly an option, but it has issues with high signal noise and
temperature-dependent readings, where as more energy is lost as heat and other factors, the currents
sent to the joint motors behave differently.

For what concern both the workspace limitation and the sinusoidal path planning it can be stated
that the initial purposes have been fulfilled in a realization of working features.
In the case of the planning the actual limits are the mathematical instruments capable of designing
the desired trajectories, the dexterity of the manipulator and its physical structure. All parameters
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independent from the program.
In the case of the workspace limitation, a working software has been implemented but some difficulties
arose treating complex shapes. With a proper computing availability a control on the end-effector
could be applied to the feature itself for the sake of a more robust program solving the problem.
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Appendix A

Python scripts

In this appendix will be exposed all of the scripts used to implements the features

A.1 Starting script
The one below is the reference script used in order to implement all of the other features. It is a
program that, through the use of a PD controller with reference to the position, keep the manipulator
in the position and with the orientation decided by the rviz markers.

1 #!/ usr/bin/env python3
2

3 import copy
4 import rospy
5 import threading
6 import quaternion
7 import numpy as np
8 from geometry_msgs .msg import Point
9 from visualization_msgs .msg import *

10 from interactive_markers . interactive_marker_server import *
11 from franka_core_msgs .msg import EndPointState , JointCommand , RobotState
12

13 # -- add to pythonpath for finding rviz_markers .py
14 import sys , os
15 sys.path. append (os.path. dirname (os.path. abspath ( __file__ )))
16 # -------------------------------------------------
17

18 from rviz_markers import RvizMarkers
19

20 # Task -space controller parameters
21 # stiffness gains
22 P_pos = 50.
23 P_ori = 25.
24 # damping gains
25 D_pos = 10.
26 D_ori = 1.
27 #my strange gains
28 P_vel =0.5 #it should include the 1/ publis_rate component in order to get acc

from differences and the mass one
29 P_omg =0.5
30 # -----------------------------------------
31 publish_rate = 100
32

33 JACOBIAN = None
34 CARTESIAN_POSE = None
35 CARTESIAN_VEL = None
36

37 destination_marker = RvizMarkers ()
38
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39 def _on_robot_state (msg):
40 """
41 Callback function for updating jacobian and EE velocity from robot state
42 """
43 global JACOBIAN , CARTESIAN_VEL ,Inertia ,grav_comp , coriolis_comp , joint_v
44 JACOBIAN = np. asarray (msg. O_Jac_EE ). reshape (6,7, order = ’F’)
45

46 Inertia =np. asarray (msg. mass_matrix ). reshape (7, 7, order=’F’) #mio
47 grav_comp = np. asarray (msg. gravity ). reshape (1, 7, order=’F’) #mio
48 coriolis_comp = np. asarray (msg. coriolis ). reshape (1, 7, order=’F’) #mio
49

50

51 CARTESIAN_VEL = {
52 ’linear ’: np. asarray ([ msg. O_dP_EE [0], msg. O_dP_EE [1], msg.

O_dP_EE [2]]) ,
53 ’angular ’: np. asarray ([ msg. O_dP_EE [3], msg. O_dP_EE [4], msg.

O_dP_EE [5]]) }
54

55 def _on_endpoint_state (msg):
56 """
57 Callback function to get current end -point state
58 """
59 # pose message received is a vectorised column major transformation matrix
60 global CARTESIAN_POSE ,ext_f
61 cart_pose_trans_mat = np. asarray (msg. O_T_EE ). reshape (4,4, order=’F’)
62 ext_f =msg. O_F_ext_hat_K #np. asarray (msg. O_F_ext_hat_K ) #mio
63

64 CARTESIAN_POSE = {
65 ’position ’: cart_pose_trans_mat [:3 ,3] ,
66 ’orientation ’: quaternion . from_rotation_matrix ( cart_pose_trans_mat

[:3 ,:3]) }
67

68

69

70 def quatdiff_in_euler (quat_curr , quat_des ):
71 """
72 Compute difference between quaternions and return
73 Euler angles as difference
74 """
75 curr_mat = quaternion . as_rotation_matrix ( quat_curr )
76 des_mat = quaternion . as_rotation_matrix ( quat_des )
77 rel_mat = des_mat .T.dot( curr_mat )
78 rel_quat = quaternion . from_rotation_matrix ( rel_mat )
79 vec = quaternion . as_float_array ( rel_quat )[1:]
80 if rel_quat .w < 0.0:
81 vec = -vec
82

83 return -des_mat .dot(vec)
84

85 def control_thread (rate):
86 """
87 Actual control loop. Uses goal pose from the feedback thread
88 and current robot states from the subscribed messages to compute
89 task -space force , and then the corresponding joint torques .
90 """
91 while not rospy. is_shutdown ():
92 error = 100.
93 while error > 0.005:
94 curr_pose = copy. deepcopy ( CARTESIAN_POSE )
95 curr_pos , curr_ori = curr_pose [’position ’], curr_pose [’orientation ’]
96

97 curr_vel = ( CARTESIAN_VEL [’linear ’]). reshape ([3 ,1])
98 curr_omg = CARTESIAN_VEL [’angular ’]. reshape ([3 ,1])
99

100 delta_pos = ( goal_pos - curr_pos ). reshape ([3 ,1])
101 delta_ori = quatdiff_in_euler (curr_ori , goal_ori ). reshape ([3 ,1])
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102

103 # Desired task -space force using PD law
104 F = np. vstack ([ P_pos *( delta_pos ), P_ori *( delta_ori )]) - \
105 np. vstack ([ D_pos *( curr_vel ), D_ori *( curr_omg )])
106

107 error = np. linalg .norm( delta_pos ) + np. linalg .norm( delta_ori )
108

109 J = copy. deepcopy ( JACOBIAN )
110

111 # joint torques to be commanded
112 tau = np.dot(J.T,F)
113

114 # publish joint commands
115 command_msg . effort = tau. flatten ()
116 joint_command_publisher . publish ( command_msg )
117 #print (" goal coords : ", goal_pos )
118 rate.sleep ()
119

120 def process_feedback ( feedback ):
121 """
122 InteractiveMarker callback function . Update target pose.
123 """
124 global goal_pos , goal_ori
125

126 if feedback . event_type == InteractiveMarkerFeedback . MOUSE_UP :
127 p = feedback .pose. position
128 q = feedback .pose. orientation
129 goal_pos = np.array ([p.x,p.y,p.z])
130 goal_ori = np. quaternion (q.w, q.x,q.y,q.z)
131

132 def _on_shutdown ():
133 """
134 Clean shutdown controller thread when rosnode dies.
135 """
136 global ctrl_thread , cartesian_state_sub , \
137 robot_state_sub , joint_command_publisher
138 if ctrl_thread . is_alive ():
139 ctrl_thread .join ()
140

141 robot_state_sub . unregister ()
142 cartesian_state_sub . unregister ()
143 joint_command_publisher . unregister ()
144

145 if __name__ == " __main__ ":
146 # global goal_pos , goal_ori , ctrl_thread
147

148 rospy. init_node (" ts_control_sim_only ")
149

150 cartesian_state_sub = rospy. Subscriber (
151 ’panda_simulator / custom_franka_state_controller / tip_state ’,
152 EndPointState ,
153 _on_endpoint_state ,
154 queue_size =1,
155 tcp_nodelay =True)
156

157 robot_state_sub = rospy. Subscriber (
158 ’panda_simulator / custom_franka_state_controller / robot_state ’,
159 RobotState ,
160 _on_robot_state ,
161 queue_size =1,
162 tcp_nodelay =True)
163

164 # create joint command message and fix its type to joint torque mode
165 command_msg = JointCommand ()
166 command_msg .names = [’panda_joint1 ’,’panda_joint2 ’,’panda_joint3 ’,’

panda_joint4 ’,’panda_joint5 ’,’panda_joint6 ’,’panda_joint7 ’]
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167 command_msg .mode = JointCommand . TORQUE_MODE
168

169 # Also create a publisher to publish joint commands
170 joint_command_publisher = rospy. Publisher (
171 ’panda_simulator / motion_controller /arm/ joint_commands ’,
172 JointCommand ,
173 tcp_nodelay =True ,
174 queue_size =1)
175

176 # wait for messages to be populated before proceeding
177 rospy. loginfo (" Subscribing to robot state topics ...")
178 while (True):
179 if not ( JACOBIAN is None or CARTESIAN_POSE is None):
180 break
181 rospy. loginfo (" Recieved messages ; Starting Demo.")
182

183 pose = copy. deepcopy ( CARTESIAN_POSE )
184 start_pos , start_ori = pose[’position ’],pose[’orientation ’]
185 goal_pos , goal_ori = start_pos , start_ori # set goal pose a starting pose in

the beginning
186

187 # start controller thread
188 rospy. on_shutdown ( _on_shutdown )
189 rate = rospy.Rate( publish_rate )
190 ctrl_thread = threading . Thread ( target = control_thread , args = [rate ])
191 ctrl_thread .start ()
192 #

------------------------------------------------------------------------------------

193 server = InteractiveMarkerServer (" basic_control ")
194

195 position = Point( start_pos [0], start_pos [1], start_pos [2])
196 marker = destination_marker . makeMarker ( False , InteractiveMarkerControl .

MOVE_ROTATE_3D , \
197 position , quaternion . as_float_array (

start_ori ), True)
198 server . insert (marker , process_feedback )
199

200 server . applyChanges ()
201

202 rospy.spin ()
203 #

------------------------------------------------------------------------------------

A.2 Workspace limitation script
For the Workspace limitation feature it was enough to just change the process function in order
to modify the program’s goal with the desired limited one. Here below it is possible to see that
method.

1

2 # limited workspace specifics
3 spherical_workspace_range =0.5
4 spherical_workspace_center_x0 = 0.17
5 spherical_workspace_center_y0 = -0.21
6 spherical_workspace_center_z0 = 0.5
7 # -----------------------------------------
8

9

10 def process_feedback ( feedback ):
11 """
12 InteractiveMarker callback function that update target pose forcing it

inside the boundaries
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13 """
14 global goal_pos , goal_ori
15

16 if feedback . event_type == InteractiveMarkerFeedback . MOUSE_UP :
17 p = feedback .pose. position
18 q = feedback .pose. orientation
19

20 #check range
21 x_shift =p.x- spherical_workspace_center_x0
22 y_shift =p.y- spherical_workspace_center_y0
23 z_shift =p.z- spherical_workspace_center_z0
24 rho=np.sqrt(np.power(x_shift ,2)+np.power(y_shift ,2)+np.power(z_shift ,2))
25 if(rho > spherical_workspace_range ):
26 p.x= x_shift * spherical_workspace_range /rho+

spherical_workspace_center_x0
27 p.y= y_shift * spherical_workspace_range /rho+

spherical_workspace_center_y0
28 p.z= z_shift * spherical_workspace_range /rho+

spherical_workspace_center_z0
29 print("out of boundaries ")
30 goal_pos = np.array ([p.x,p.y,p.z])
31 goal_ori = np. quaternion (q.w, q.x,q.y,q.z)

A.3 Sinusoidal path planning script
Here is reported the sinusoidal path planning code entirely.

1 #!/ usr/bin/env python3
2 """
3

4 After launching the simulator ( panda_world . launch ),
5 run this demo using the command :
6

7 roslaunch esperimentopacco my_demo_task_space_control . launch
8

9 """
10

11 import copy
12 import rospy
13 import threading
14 import quaternion
15 import numpy as np
16 from geometry_msgs .msg import Point
17 from visualization_msgs .msg import *
18 from interactive_markers . interactive_marker_server import *
19 from franka_core_msgs .msg import EndPointState , JointCommand , RobotState
20

21 # -- add to pythonpath for finding rviz_markers .py
22 import sys , os
23 sys.path. append (os.path. dirname (os.path. abspath ( __file__ )))
24 # -------------------------------------------------
25

26 from rviz_markers import RvizMarkers
27

28 from gazebo_msgs .srv import ApplyBodyWrench
29 from geometry_msgs .msg import Wrench
30

31 def applyForce (): rospy. wait_for_service (’/ gazebo / apply_body_wrench ’)
32 force = rospy. ServiceProxy (’/ gazebo / apply_body_wrench ’,ApplyBodyWrench )
33

34 # --------- Modify as required ------------
35 # Task -space controller parameters
36 # stiffness gains
37 P_pos = 50.
38 P_ori = 25.
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39 # damping gains
40 D_pos = 10.
41 D_ori = 1.
42 #my strange gains
43 P_vel =0.5 #it should include the 1/ publis_rate component in order to get acc

from differences and the mass one
44 P_omg =0.5
45 # -----------------------------------------
46 publish_rate = 100
47

48 JACOBIAN = None
49 CARTESIAN_POSE = None
50 CARTESIAN_VEL = None
51

52 destination_marker = RvizMarkers ()
53

54

55 def _on_robot_state (msg):
56 """
57 Callback function for updating jacobian and EE velocity from robot state
58 """
59 global JACOBIAN , CARTESIAN_VEL ,Inertia ,grav_comp , coriolis_comp , joint_v
60 JACOBIAN = np. asarray (msg. O_Jac_EE ). reshape (6,7, order = ’F’)
61

62 CARTESIAN_VEL = {
63 ’linear ’: np. asarray ([ msg. O_dP_EE [0], msg. O_dP_EE [1], msg.

O_dP_EE [2]]) ,
64 ’angular ’: np. asarray ([ msg. O_dP_EE [3], msg. O_dP_EE [4], msg.

O_dP_EE [5]]) }
65

66 def _on_endpoint_state (msg):
67 """
68 Callback function to get current end -point state
69 """
70 # pose message received is a vectorised column major transformation matrix
71 global CARTESIAN_POSE ,ext_f
72 cart_pose_trans_mat = np. asarray (msg. O_T_EE ). reshape (4,4, order=’F’)
73

74 CARTESIAN_POSE = {
75 ’position ’: cart_pose_trans_mat [:3 ,3] ,
76 ’orientation ’: quaternion . from_rotation_matrix ( cart_pose_trans_mat

[:3 ,:3]) }
77

78

79

80 def quatdiff_in_euler (quat_curr , quat_des ):
81 """
82 Compute difference between quaternions and return
83 Euler angles as difference
84 """
85 curr_mat = quaternion . as_rotation_matrix ( quat_curr )
86 des_mat = quaternion . as_rotation_matrix ( quat_des )
87 rel_mat = des_mat .T.dot( curr_mat )
88 rel_quat = quaternion . from_rotation_matrix ( rel_mat )
89 vec = quaternion . as_float_array ( rel_quat )[1:]
90 if rel_quat .w < 0.0:
91 vec = -vec
92

93 return -des_mat .dot(vec)
94

95 def sinusoidal_control_thread (rate):
96 t=0
97 while not rospy. is_shutdown ():
98 error = 100.
99 while error > 0.005:

100 if(t <5):
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101 z=0.55 + 0.036* t*t - 0.0048* t*t*t # calculated with cubic
polynomial

102 t=t+0.01 #1/ rate
103 else:
104 z= -0.65 +0.72*t- 0.108* t*t + 0.0048* t*t*t
105 t=t+0.01
106 if(t >10):
107 t=0
108 goal_pos =[0.31091106 , 0.00948111 , z]
109

110 curr_pose = copy. deepcopy ( CARTESIAN_POSE )
111 curr_pos , curr_ori = curr_pose [’position ’], curr_pose [’orientation ’]
112 curr_vel = ( CARTESIAN_VEL [’linear ’]). reshape ([3 ,1])
113 curr_omg = CARTESIAN_VEL [’angular ’]. reshape ([3 ,1])
114 delta_pos = ( goal_pos - curr_pos ). reshape ([3 ,1])
115 delta_ori = quatdiff_in_euler (curr_ori , goal_ori ). reshape ([3 ,1])
116 # Desired task -space force using PD law
117 F = np. vstack ([ P_pos *( delta_pos ), P_ori *( delta_ori )]) - \
118 np. vstack ([ D_pos *( curr_vel ), D_ori *( curr_omg )])
119 error = np. linalg .norm( delta_pos ) + np. linalg .norm( delta_ori )
120 J = copy. deepcopy ( JACOBIAN )
121 tau = np.dot(J.T,F)
122 command_msg . effort = tau. flatten ()
123 joint_command_publisher . publish ( command_msg )
124 #print ("t: ", t," z: ", z)
125 rate.sleep ()
126

127 def circular_control_thread (rate):
128 t=0
129 while not rospy. is_shutdown ():
130 error = 100.
131 first_spin =False
132 while error > 0.005:
133 if(t <2.5):
134 y =9.48111000e -03 + 0.072* t*t - 0.0192* t*t*t
135 if( first_spin ):
136 y =0.00948111 -0.09* t +0.0048 *t*t*t
137 z=0.55 + 0.036* t*t - 0.0048* t*t*t # calculated with cubic

polynomial
138 t=t+0.01 #1/ rate
139 print("parte uno")
140 if(t >=2.5 and t <5):
141 y= 0.15948111 -0.27* t + 0.072* t*t - 0.0048* t*t*t
142 z=0.55 + 0.036* t*t - 0.0048* t*t*t
143 t=t+0.01
144 print("parte due")
145 if(t >=5 and t <7.5):
146 y= 0.15948111 -0.27* t + 0.072* t*t - 0.0048* t*t*t
147 z= -0.65 +0.72*t- 0.108* t*t + 0.0048* t*t*t
148 t=t+0.01
149 print("parte tre")
150 if(t >=7.5) :
151 y = -3.89051889+1.35* t -0.144 *t*t + 0.0048 *t*t*t
152 z= -0.65 +0.72*t- 0.108* t*t + 0.0048* t*t*t
153 t=t+0.01
154 print("parte quattro ")
155 if(t >10):
156 t=0
157 first_spin =True
158

159 goal_pos =[0.31091106 , y, z]
160

161 curr_pose = copy. deepcopy ( CARTESIAN_POSE )
162 curr_pos , curr_ori = curr_pose [’position ’], curr_pose [’orientation ’]
163 curr_vel = ( CARTESIAN_VEL [’linear ’]). reshape ([3 ,1])
164 curr_omg = CARTESIAN_VEL [’angular ’]. reshape ([3 ,1])
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165 delta_pos = ( goal_pos - curr_pos ). reshape ([3 ,1])
166 delta_ori = quatdiff_in_euler (curr_ori , goal_ori ). reshape ([3 ,1])
167 # Desired task -space force using PD law
168 F = np. vstack ([ P_pos *( delta_pos ), P_ori *( delta_ori )]) - \
169 np. vstack ([ D_pos *( curr_vel ), D_ori *( curr_omg )])
170 error = np. linalg .norm( delta_pos ) + np. linalg .norm( delta_ori )
171 J = copy. deepcopy ( JACOBIAN )
172 tau = np.dot(J.T,F)
173 command_msg . effort = tau. flatten ()
174 joint_command_publisher . publish ( command_msg )
175 #print ("t: ", t," z: ", z)
176 rate.sleep ()
177

178 def process_feedback ( feedback ):
179 """
180 InteractiveMarker callback function . Update target pose.
181 """
182 global goal_pos , goal_ori
183

184 if feedback . event_type == InteractiveMarkerFeedback . MOUSE_UP :
185 p = feedback .pose. position
186 q = feedback .pose. orientation
187 goal_pos = np.array ([p.x,p.y,p.z])
188 goal_ori = np. quaternion (q.w, q.x,q.y,q.z)
189

190

191

192 def _on_shutdown ():
193 """
194 Clean shutdown controller thread when rosnode dies.
195 """
196 global ctrl_thread , cartesian_state_sub , \
197 robot_state_sub , joint_command_publisher
198 if ctrl_thread . is_alive ():
199 ctrl_thread .join ()
200

201 robot_state_sub . unregister ()
202 cartesian_state_sub . unregister ()
203 joint_command_publisher . unregister ()
204 # ###############################################################################
205 if __name__ == " __main__ ":
206 # global goal_pos , goal_ori , ctrl_thread
207

208 rospy. init_node (" ts_control_sim_only ")
209

210 # if not using franka_ros_interface , you have to subscribe to the right
topics

211 # to obtain the current end - effector state and robot jacobian for computing
212 # commands
213 cartesian_state_sub = rospy. Subscriber (
214 ’panda_simulator / custom_franka_state_controller / tip_state ’,
215 EndPointState ,
216 _on_endpoint_state ,
217 queue_size =1,
218 tcp_nodelay =True)
219

220 robot_state_sub = rospy. Subscriber (
221 ’panda_simulator / custom_franka_state_controller / robot_state ’,
222 RobotState ,
223 _on_robot_state ,
224 queue_size =1,
225 tcp_nodelay =True)
226

227 # create joint command message and fix its type to joint torque mode
228 command_msg = JointCommand ()
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229 command_msg .names = [’panda_joint1 ’,’panda_joint2 ’,’panda_joint3 ’,’
panda_joint4 ’,’panda_joint5 ’,’panda_joint6 ’,’panda_joint7 ’]

230 command_msg .mode = JointCommand . TORQUE_MODE
231

232 # Also create a publisher to publish joint commands
233 joint_command_publisher = rospy. Publisher (
234 ’panda_simulator / motion_controller /arm/ joint_commands ’,
235 JointCommand ,
236 tcp_nodelay =True ,
237 queue_size =1)
238

239 # wait for messages to be populated before proceeding
240 rospy. loginfo (" Subscribing to robot state topics ...")
241 while (True):
242 if not ( JACOBIAN is None or CARTESIAN_POSE is None):
243 break
244 rospy. loginfo (" Recieved messages ; Starting Demo.")
245

246 pose = copy. deepcopy ( CARTESIAN_POSE )
247 start_pos , start_ori = pose[’position ’],pose[’orientation ’]
248 goal_pos , goal_ori = start_pos , start_ori # set goal pose a starting pose in

the beginning
249

250 # start controller thread
251 rospy. on_shutdown ( _on_shutdown )
252 rate = rospy.Rate( publish_rate )
253 # ctrl_thread = threading . Thread ( target = sinusoidal_control_thread , args = [

rate ]) depending of what I want to use
254 ctrl_thread = threading . Thread ( target = circular_control_thread , args = [rate

])
255 ctrl_thread .start ()
256 #

------------------------------------------------------------------------------------

257 server = InteractiveMarkerServer (" basic_control ")
258

259 position = Point( start_pos [0], start_pos [1], start_pos [2])
260 marker = destination_marker . makeMarker ( False , InteractiveMarkerControl .

MOVE_ROTATE_3D , \
261 position , quaternion . as_float_array (

start_ori ), True)
262 server . insert (marker , process_feedback )
263

264 server . applyChanges ()
265

266 rospy.spin ()
267 #

------------------------------------------------------------------------------------

A.4 Compliance control script
Here is reported the compliance control script.

1 #!/ usr/bin/env python3
2 """
3

4 After launching the simulator ( panda_world . launch ),
5 run this demo using the command :
6 roslaunch panda_gazebo panda_world . launch
7

8 roslaunch esperimentopacco force_control_1f_using_sim_only .py. launch
9

10 """
11

50



12 import copy
13 import rospy
14 import threading
15 import quaternion
16 import numpy as np
17 import matplotlib . pyplot as plt
18 from geometry_msgs .msg import Point
19 from visualization_msgs .msg import *
20 from interactive_markers . interactive_marker_server import *
21 from franka_core_msgs .msg import EndPointState , JointCommand , RobotState
22

23 # -- add to pythonpath for finding rviz_markers .py
24 import sys , os
25 sys.path. append (os.path. dirname (os.path. abspath ( __file__ )))
26 # -------------------------------------------------
27

28 from rviz_markers import RvizMarkers
29

30 from gazebo_msgs .srv import ApplyBodyWrench
31 from geometry_msgs .msg import Wrench
32

33 def applyForce (): rospy. wait_for_service (’/ gazebo / apply_body_wrench ’)
34 force = rospy. ServiceProxy (’/ gazebo / apply_body_wrench ’,ApplyBodyWrench )
35

36 # --------- Modify as required ------------
37 # Task -space controller parameters
38 # stiffness gains
39 P_pos = 50.
40 P_ori = 25.
41 # damping gains
42 D_pos = 10.
43 D_ori = 1.
44 #my strange gains
45 P_vel =0.5 #it should include the 1/ publis_rate component in order to get acc

from differences and the mass one
46 P_omg =0.5
47 # -----------------------------------------
48 publish_rate = 100
49

50 JACOBIAN = None
51 CARTESIAN_POSE = None
52 CARTESIAN_VEL = None
53

54 Inertia = None #mio
55 grav_comp =None #mio
56 coriolis_comp =None #mio
57 ext_f= None #mio
58

59 joint_v = None #mio
60 joint_eff = None #mio
61 # -----------------------------------------------for compliance control
62 filter_const =0.3 # percentage under which I don ’t consider the detected value of

the forces components
63 k_impedence =20 # threshold (in N) for which I don ’t consider forces
64 k_force =1.2 # factor that empower the force I apply on the machine
65 security_threshold =200 # maximum force
66

67 detected_force =None
68

69 n=0.5* np.sqrt (2)
70 Rot45 =[[n,n,0],[-n,n ,0] ,[0 ,0 ,1]]#da capire come mai il segno
71

72 destination_marker = RvizMarkers ()
73

74

75 def _on_robot_state (msg):
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76 """
77 Callback function for updating jacobian and EE velocity from robot state
78 """
79 global JACOBIAN , CARTESIAN_VEL ,Inertia ,grav_comp , coriolis_comp , joint_v
80 JACOBIAN = np. asarray (msg. O_Jac_EE ). reshape (6,7, order = ’F’)
81

82 Inertia =np. asarray (msg. mass_matrix ). reshape (7, 7, order=’F’) #mio
83 grav_comp = np. asarray (msg. gravity ). reshape (1, 7, order=’F’) #mio
84 coriolis_comp = np. asarray (msg. coriolis ). reshape (1, 7, order=’F’) #mio
85

86

87 CARTESIAN_VEL = {
88 ’linear ’: np. asarray ([ msg. O_dP_EE [0], msg. O_dP_EE [1], msg.

O_dP_EE [2]]) ,
89 ’angular ’: np. asarray ([ msg. O_dP_EE [3], msg. O_dP_EE [4], msg.

O_dP_EE [5]]) }
90

91 def _on_endpoint_state (msg):
92 """
93 Callback function to get current end -point state
94 """
95 # pose message received is a vectorised column major transformation matrix
96 global CARTESIAN_POSE , ext_f
97 cart_pose_trans_mat = np. asarray (msg. O_T_EE ). reshape (4,4, order=’F’)
98 ext_f =msg. O_F_ext_hat_K #mio
99

100 CARTESIAN_POSE = {
101 ’position ’: cart_pose_trans_mat [:3 ,3] ,
102 ’orientation ’: quaternion . from_rotation_matrix ( cart_pose_trans_mat

[:3 ,:3]) }
103

104

105

106 def quatdiff_in_euler (quat_curr , quat_des ):
107 """
108 Compute difference between quaternions and return
109 Euler angles as difference
110 """
111 curr_mat = quaternion . as_rotation_matrix ( quat_curr )
112 des_mat = quaternion . as_rotation_matrix ( quat_des )
113 rel_mat = des_mat .T.dot( curr_mat )
114 rel_quat = quaternion . from_rotation_matrix ( rel_mat )
115 vec = quaternion . as_float_array ( rel_quat )[1:]
116 if rel_quat .w < 0.0:
117 vec = -vec
118

119 return -des_mat .dot(vec)
120

121 def control_thread (rate):
122 """
123 Actual control loop. Uses goal pose from the feedback thread
124 and current robot states from the subscribed messages to compute
125 task -space force , and then the corresponding joint torques .
126 """
127 while not rospy. is_shutdown ():
128 error = 100.
129 while error > 0.005:
130 curr_pose = copy. deepcopy ( CARTESIAN_POSE )
131 curr_pos , curr_ori = curr_pose [’position ’], curr_pose [’orientation ’]
132

133 curr_vel = ( CARTESIAN_VEL [’linear ’]). reshape ([3 ,1])
134 curr_omg = CARTESIAN_VEL [’angular ’]. reshape ([3 ,1])
135

136 delta_pos = ( goal_pos - curr_pos ). reshape ([3 ,1])
137 delta_ori = quatdiff_in_euler (curr_ori , goal_ori ). reshape ([3 ,1])
138
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139 # Desired task -space force using PD law
140 F = np. vstack ([ P_pos *( delta_pos ), P_ori *( delta_ori )]) - np. vstack ([

D_pos *( curr_vel ), D_ori *( curr_omg )])
141

142 error = np. linalg .norm( delta_pos ) + np. linalg .norm( delta_ori )
143

144 J = copy. deepcopy ( JACOBIAN )
145

146 # joint torques to be commanded
147 tau = np.dot(J.T,F)
148

149 # publish joint commands
150 command_msg . effort = tau. flatten ()
151 joint_command_publisher . publish ( command_msg )
152 #print (" goal coords : ", goal_pos )
153 rate.sleep ()
154

155 def full_control (rate):
156 while not rospy. is_shutdown ():
157 t=0 #time part just for force simulation
158 error = 100.
159 ext_f_i =copy. deepcopy (ext_f)
160 ext_f_i =[ ext_f_i . wrench .force.x, ext_f_i . wrench .force.y, ext_f_i . wrench .

force.z]
161 ext_f_i = np. matmul (Rot45 , ext_f_i )
162

163 while (error > 0.005) or ((np.abs( ext_f_i [0] >2))or(np.abs( ext_f_i [1] >2))
or(np.abs( ext_f_i [2]) >2)):

164 ’’’# for simulating a force
165 if (t>1 and t <1.01) :
166 wrench = Wrench ()
167 wrench .force.x = 0
168 wrench .force.y = 0
169 wrench .force.z = -100
170 wrench . torque .x = 0
171 wrench . torque .y = 0
172 wrench . torque .z = 0
173 force( body_name = "panda :: panda_link7 ", wrench = wrench , duration

= rospy. Duration (3))
174 print (" force/ torque applied ")
175 ’’’
176 ext_f_i =copy. deepcopy (ext_f)
177 ext_f_i =[ ext_f_i . wrench .force.x, ext_f_i . wrench .force.y, ext_f_i .

wrench .force.z]
178 ext_f_i = np. matmul (Rot45 , ext_f_i )
179 if((np.abs( ext_f_i [0]) >k_impedence )or(np.abs( ext_f_i [1]) >k_impedence

)or(np.abs( ext_f_i [2]) >k_impedence )):
180 detected_force =[50 ,50 ,50]
181 while ((np.abs( detected_force [0]) >k_impedence ) or (np.abs(

detected_force [1]) >k_impedence ) or (np.abs( detected_force [2]) >
k_impedence )) and \

182 ((np.abs( detected_force [0]) <security_threshold )and(np.abs(
detected_force [1]) <security_threshold )and(np.abs( detected_force [2]) <
security_threshold )):

183

184 detected_force =[0 ,0 ,0 ,0 ,0 ,0]
185 ext_f_c = copy. deepcopy (ext_f)
186 measured_forces =[ ext_f_c . wrench .force.x, ext_f_c . wrench .

force.y, ext_f_c . wrench .force.z]
187 measured_forces = np. matmul (Rot45 , measured_forces )
188 abs_force =[np.abs( measured_forces [0]) ,np.abs( measured_forces

[1]) ,np.abs( measured_forces [2])]#since the abs function on the array cut
some values

189 if(np.max( abs_force )==np.abs( measured_forces [0])):
190 detected_force [0]= measured_forces [0]
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191 if( filter_const *np.max( abs_force ) <=np.abs(
measured_forces [1])): #force -error check

192 detected_force [1]= measured_forces [1]
193 if( filter_const *np.max( abs_force ) <=np.abs(

measured_forces [2])):
194 detected_force [2]= measured_forces [2]
195 if(np.max( abs_force )==np.abs( measured_forces [1])):
196 detected_force [1]= measured_forces [1]
197 if( filter_const *np.max( abs_force ) <=np.abs(

measured_forces [0])):
198 detected_force [0]= measured_forces [0]
199 if( filter_const *np.max( abs_force ) <=np.abs(

measured_forces [2])):
200 detected_force [2]= measured_forces [2]
201 if(np.max( abs_force )==np.abs( measured_forces [2])):
202 detected_force [2]= measured_forces [2]
203 if( filter_const *np.max( abs_force ) <=np.abs(

measured_forces [1])):
204 detected_force [1]= measured_forces [1]
205 if( filter_const *np.max( abs_force ) <=np.abs(

measured_forces [0])):
206 detected_force [0]= measured_forces [0]
207 print(" detected and filtered force ",detected_force )
208 J = copy. deepcopy ( JACOBIAN )
209 tau = np.dot(J.T, detected_force )
210 command_msg . effort = tau. flatten ()
211 joint_command_publisher . publish ( command_msg )
212 t=t+0.01
213 rate.sleep ()
214 else:
215 if ((np.abs( ext_f_i [0]) >security_threshold ) and (np.abs( ext_f_i

[1]) >security_threshold )and(np.abs( ext_f_i [2]) >security_threshold )):
216 print("force too high , could be dangerous ")
217 ext_f_i =copy. deepcopy (ext_f)
218 ext_f_i =[ ext_f_i . wrench .force.x, ext_f_i . wrench .force.y, ext_f_i

. wrench .force.z]
219 ext_f_i = np. matmul (Rot45 , ext_f_i )
220 k_decrease =0.1
221 ext_f_i =[- k_decrease * ext_f_i [0],- k_decrease * ext_f_i [1],-

k_decrease * ext_f_i [2] ,0 ,0 ,0]
222 curr_pose = copy. deepcopy ( CARTESIAN_POSE )
223 curr_pos , curr_ori = curr_pose [’position ’], curr_pose [’

orientation ’]
224 curr_vel = ( CARTESIAN_VEL [’linear ’]). reshape ([3 ,1])
225 curr_omg = CARTESIAN_VEL [’angular ’]. reshape ([3 ,1])
226 delta_pos = ( goal_pos - curr_pos ). reshape ([3 ,1])
227 delta_ori = quatdiff_in_euler (curr_ori , goal_ori ). reshape ([3 ,1])
228

229 error = np. linalg .norm( delta_pos ) + np. linalg .norm( delta_ori )
230 F = np. vstack ([ P_pos *( delta_pos ), P_ori *( delta_ori )]) - np.

vstack ([ D_pos *( curr_vel ), D_ori *( curr_omg )])
231 F_with_ext = F + ext_f_i
232 J = copy. deepcopy ( JACOBIAN )
233

234 tau = np.dot(J.T, F_with_ext )
235 command_msg . effort = tau. flatten ()
236 joint_command_publisher . publish ( command_msg )
237 t=t+0.01
238 rate.sleep ()
239

240

241 def process_feedback ( feedback ):
242 """
243 InteractiveMarker callback function . Update target pose.
244 """
245 global goal_pos , goal_ori
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246

247 if feedback . event_type == InteractiveMarkerFeedback . MOUSE_UP :
248 p = feedback .pose. position
249 q = feedback .pose. orientation
250 goal_pos = np.array ([p.x,p.y,p.z])
251 goal_ori = np. quaternion (q.w, q.x,q.y,q.z)
252

253

254

255 def _on_shutdown ():
256 """
257 Clean shutdown controller thread when rosnode dies.
258 """
259 global ctrl_thread , cartesian_state_sub , \
260 robot_state_sub , joint_command_publisher
261 if ctrl_thread . is_alive ():
262 ctrl_thread .join ()
263

264 robot_state_sub . unregister ()
265 cartesian_state_sub . unregister ()
266 joint_command_publisher . unregister ()
267 # ###############################################################################
268 if __name__ == " __main__ ":
269 # global goal_pos , goal_ori , ctrl_thread
270

271 rospy. init_node (" ts_control_sim_only ")
272

273

274 # if not using franka_ros_interface , you have to subscribe to the right
topics

275 # to obtain the current end - effector state and robot jacobian for computing
276 # commands
277 cartesian_state_sub = rospy. Subscriber (’panda_simulator /

custom_franka_state_controller / tip_state ’,EndPointState , _on_endpoint_state ,
queue_size =1, tcp_nodelay =True)

278

279 robot_state_sub = rospy. Subscriber ( ’panda_simulator /
custom_franka_state_controller / robot_state ’,RobotState , _on_robot_state ,
queue_size =1, tcp_nodelay =True)

280

281 # create joint command message and fix its type to joint torque mode
282 command_msg = JointCommand ()
283 command_msg .names = [’panda_joint1 ’,’panda_joint2 ’,’panda_joint3 ’,’

panda_joint4 ’,’panda_joint5 ’,’panda_joint6 ’,’panda_joint7 ’]
284 command_msg .mode = JointCommand . TORQUE_MODE
285

286 # Also create a publisher to publish joint commands
287 joint_command_publisher = rospy. Publisher (’panda_simulator / motion_controller

/arm/ joint_commands ’, JointCommand , tcp_nodelay =True , queue_size =1)
288

289 # wait for messages to be populated before proceeding
290 rospy. loginfo (" Subscribing to robot state topics ...")
291 while (True):
292 if not ( JACOBIAN is None or CARTESIAN_POSE is None):
293 break
294 rospy. loginfo (" Recieved messages ; Starting Demo.")
295

296 pose = copy. deepcopy ( CARTESIAN_POSE )
297 start_pos , start_ori = pose[’position ’],pose[’orientation ’]
298 print( start_ori )
299 goal_pos , goal_ori = start_pos , start_ori # set goal pose a starting pose in

the beginning
300

301 #print (" velocities : ",( CARTESIAN_VEL [’ linear ’]). reshape ([1 ,3]))#mio
302 #print (" Inertia : ", Inertia ) #mio
303 #print (" grav_comp : ", grav_comp ) #mio
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304 #print (" coriolis_comp : ", coriolis_comp ) #mio
305 #print (" ext_f: ",ext_f. wrench .force) #mio
306

307 # start controller thread
308 rospy. on_shutdown ( _on_shutdown )
309 rate = rospy.Rate( publish_rate )
310 # ctrl_thread = threading . Thread ( target = control_thread , args = [rate ]) #

codice vero
311 # ctrl_thread = threading . Thread ( target =vel_contr , args = [rate ]) #mio
312

313

314

315 # little delay
316 for i in range (5):
317 rate_long = rospy.Rate (100)
318 rate_long .sleep ()
319

320 #
-------------------------------------------------------------------------------------------------------

321 ctrl_thread = threading . Thread ( target = full_control , args = [rate ])
322 # ctrl_thread = threading . Thread ( target = test_impedance , args = [rate ])
323 ctrl_thread .start ()
324 print("end of the thread ")
325 #

------------------------------------------------------------------------------------

326 server = InteractiveMarkerServer (" basic_control ")
327

328 position = Point( start_pos [0], start_pos [1], start_pos [2])
329 marker = destination_marker . makeMarker ( False , InteractiveMarkerControl .

MOVE_ROTATE_3D , position , quaternion . as_float_array ( start_ori ), True)
330 server . insert (marker , process_feedback )
331

332 server . applyChanges ()
333 rospy.spin ()
334 #

------------------------------------------------------------------------------------
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