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Abstract

Making use of sophisticated physical systems such as Rydberg atoms, it is possible to implement
controllable quantum many-body systems, giving access to the realization of more and more powerful
quantum computers in the pursuit of quantum supremacy, one of the main goals of quantum comput-
ing. Thanks to these atoms’ peculiar characteristics, such as having a high principal quantum number
along with other exaggerated properties, it is possible to realize quantum gates that require interaction
between two qubits such as the “controlled-phase” gate. The research here presented aims to go one
step further in the study of the interaction between qubits in Rydberg atoms, analyzing the realization
of a three-qubit quantum logic gate with Rydberg atoms called a “controlled-controlled-phase” (flip)
gate. In the first part, the project aims to test whether the conditions for the actual realization of the
gate are met. In particular, with the use of GNU Octave scripts, firstly we check if the Hamiltonian
operators have complete control over the unitary operators that are invariant for permutations of two
qubits out of three. Secondly, we verify that the c-c-phase gate belongs to the closed Lie algebra
of these Hamiltonian operators. Finally, in the second part, with the use of sophisticated Quantum
Optimal Control algorithms (QuOCS), we attempt to obtain the actual optimization of this gate.

Facendo uso di sofisticati sistemi fisici realizzati con atomi di Rydberg, è possibile implementare
sistemi quantistici controllabili a molti corpi, dando così accesso alla realizzazione di computer quan-
tistici sempre più potenti nell’incessante tentativo di raggiungere la “supremazia quantistica”, uno degli
obiettivi principali del campo di ricerca della computazione quantistica. Grazie al numero quantico
principale molto alto di questi atomi e grazie ad altre loro proprietà esagerate, è possibile realizzare
porte logiche quantistiche che necessitano di interazione tra due qubit come, ad esempio, il “controlled-
phase” gate. Questa ricerca mira a fare un ulteriore passo in avanti nello studio dell’interazione di
qubit negli atomi di Rydberg, andando ad analizzare l’implementazione di una porta logica quantistica
a 3 qubit con atomi di Rydberg, nota come “controlled-controlled- phase” (flip) gate. Nella prima
parte, il progetto ha come obiettivo quello di controllare che le condizioni necessarie per la realiz-
zazione della porta logica siano effettivamente verificate. In particolare, con l’utilizzo di codici scritti
su GNU Octave, verifichiamo innanzitutto che gli operatori Hamiltoniani abbiano completo controllo
sugli operatori unitari invarianti per permutazioni di due qubit sui tre a disposizione. Successivamente,
verifichiamo che il “c-c-phase” gate appartenga alla chiusura dell’algebra di Lie degli operatori Hamilto-
niani. Nella seconda parte, facendo uso di sofisticati algoritmi di Quantum Optimal Control (QuOCS),
tentiamo infine di realizzare l’effettiva ottimizzazione della porta logica.



Chapter 1

Introduction

“Let the computer itself be built of quantum mechanical elements which obey quantum mechanical
laws.” This is what the physicist Richard Feynman stated in 1982, considering the idea that a quantum
device could take advantage of purely quantum phenomena such as superposition and entanglement
to better describe the intrinsically quantum nature of the physical world [1].

This simple yet groundbreaking concept marked the birth of two incredibly innovative research
areas known as quantum simulation and quantum computing. The first consists of using a quantum
system to model the behavior of another one, while the latter seeks to solve numerical problems by
making use of quantum circuits, which consist of a network of quantum logic gates, that are the basic
building blocks of quantum algorithms. These gates perform specific operations manipulating the
information stored in two-level systems, known as qubits, that are the quantum version of the classical
bits [2].

Quantum computers, by exploiting the unique features of quantum mechanics, have the poten-
tial to solve certain problems exponentially faster than any classical computer. This feat, known as
quantum supremacy, has not yet been achieved, but there has been considerable progress towards
its accomplishment [3]. Its achievement would indeed revolutionize fields such as cryptography [4],
condensed-matter physics [5] and industrial applications, holding tremendous promise for solving some
of the most challenging problems in science and technology.

Over the past few decades, various quantum devices have been developed. Among the most common
ones we find superconducting loops [6], trapped ions [7], and neutral atoms [2], where an effective two-
level system has been implemented.

Of these methods, neutral atoms have several attractive features that make them a promising system
for quantum computing, especially for their high scalability to large numbers of qubits, opening the
door to multi-qubit quantum processing and taking a step closer to quantum supremacy. This is due
to the fact that they interact weakly and therefore can be packed closely to each other.

In addition, these atoms can be readily prepared by optical pumping in well-defined initial states
that in some cases can be well isolated from the environment, allowing for long decoherence times, an
essential feature for high-fidelity quantum computing. Most notably, qubit states encoded in neutral
atoms can be rapidly and accurately controlled with electromagnetic fields, thus permitting the real-
ization of quantum gates obtained by making use of laser beams that are tightly focused on individual
atoms trapped in optical tweezers to drive atomic transitions between hyperfine levels [8, 2].

To have a complete set of quantum operations at our disposal, entangling gates are required, and
given the weak interaction taking place between neutral atoms, a solution is to temporarily excite them
to Rydberg atoms [9]. These atoms, initially studied by Johannes Rydberg at the end of the 1800s, have
attracted significant attention in the field of quantum computing due to their exaggerated properties
such as having a very high quantum principal number and a large electric dipole moment. In fact, atoms
excited to the Rydberg state strongly interact with dipole-dipole interaction enabling a phenomenon
known as Rydberg Blockade, that quenches the simultaneous excitation of nearby Rydberg atoms on
distances up to several micrometers [10]. This effect leads to entanglement of qubits and is an effect of
crucial importance for the implementation of entangling gates. The idea of making use of the strong
interaction between Rydberg atoms to realize entangling quantum gates was first suggested at the end
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of the 1990s [9]. After several years, in 2009 the first experimental demonstrations of Rydberg Blockade
were carried out [11, 12], leading to a boost in research aiming to the realization of entangling gates
with Rydberg atoms. In 2019, it has been shown how to implement a controlled-phase gate with a Bell-
state fidelity greater than 97.4% with Rubidium-87 atoms [13]. In addition, theoretical results have
demonstrated that a Bell-state fidelity greater than 99.9% is achievable on a Strontium-88 platform
[10], showing how the fidelity of Rydberg atoms is now just as competitive as the one of other quantum
devices such as trapped ions. Furthermore, theorical research is also aiming to extend these ideas to
multiqubit gates [14], in particular three-qubit gates, namely the main focus of this project.

The three-bit gate was first introduced by Tommaso Toffoli in 1980, with the classical Toffoli
(CCNOT) gate, which was then easily translated into the quantum logic version that consists of a
doubly-controlled NOT gate where the state of the target qubit changes depending on the state of the
two control qubits. Research on three-qubit gates highlighted several attracting properties of these
gates. For instance, we only have to consider one single-qubit gate along with the Toffoli one to
form a universal set of quantum gates [15]. Furthermore, the Toffoli gate is a key element for faster
implementation of algorithms such as quantum error correction schemes [16, 17].

Most notably, by using Toffoli gates, we are significantly reducing the time duration of these com-
putation processes. Since the dominant source of error in the implementation of a Rydberg quantum
gate is the decay rate of the Rydberg state [10] reducing the time spent in the Rydberg state is another
crucial advancement we want to make to enhance the gate’s fidelity. That is why in this Thesis we
aim to realize a three-qubit gate known as the "controlled-controlled-phase gate" by making use of
Quantum Optimal Control Algorithms in Python (QuOCS) [18].

This Thesis is structured as follows:

• In Chapter 2, firstly we introduce the Rydberg atoms by examining their main properties. Sec-
ondly, we give a rigorous analysis of the qubit and of the quantum gates, focusing in particular
on the two-qubit controlled-phase gate. Finally, we introduce the three-qubit gates by further
examining their advantages in quantum computing.

• In Chapter 3, we test whether the conditions for the actual realization of the controlled-controlled-
phase gate are met. We start by describing the setup of the Rydberg system with which we want to
create the gate. Then, with the use of GNU Octave scripts, we check if the Hamiltonian operators
have complete controllability over the unitary operators that are invariant for permutations of
two qubits out of three. Consequently, we check that the c-c-phase gate belongs to the closed Lie
algebra of these Hamiltonian operators. Finally, we verify which time-dependent parameters of
the laser pulse are negligible in sight of its optimization for the implementation of the c-c-phase
gate.

• In Chapter 4, we proceed with the actual optimization of the laser pulse. We firstly give a brief
introduction on the Quantum Optimal Control Theory (QOCT), by outlining the main Quantum
Optimal Control (QOC) problem, then applying it to our specific setup. Secondly, we give a brief
explanation of the dCRAB algorithm that resolves the control problem. We then explain the
main conceptual passages made to adapt the algorithm to our specific case. Finally, we outline
the optimization settings and the results consequently obtained.



Chapter 2

Quantum Computing with Neutral Atoms

Neutral atoms have several enticing features that make them an ideal candidate for quantum
computing, most of which are related to their high scalability to large numbers of qubits. To name a
few, the atoms are all identical and can readily be prepared by optical pumping in well-defined initial
states. Their qubit states can be precisely measured using fluorescence, and in some cases they can be
well isolated from the environment, which allows for long decoherence times. In addition, they can be
trapped in close proximity since the interaction between them is weak. Most importantly, the qubit
states can be rapidly and accurately controlled with electromagnetic fields [8, 2]. Thus, quantum gates
can be obtained with Rydberg atoms.

The main idea behind a quantum Rydberg gate is to trap the neutral atoms with optical tweezers
in a 2-dimensional lattice and then make use of laser beams that are tightly focused on individual
atoms to drive atomic transitions between hyperfine levels. Another way is to drive atomic transitions
with more easily controlled microwaves [2].

In particular, to implement entangling gates strong interactions among qubits are required. Given
the weak interaction between neutral atoms, a solution is to temporarily excite atoms to Rydberg
states. In this way, the atoms enable a phenomenon called Rydberg Blockade which can be used to
entangle qubits. This phenomenon is described in depth in the following section (Sec. 2.1).

After the first experimental demonstrations of Rydberg Blockade [11, 12], a large theoretical interest
is focused on the two-qubit controlled-phase gate, endeavoring to improve the gate fidelity, showing
that an average gate fidelity above 99.9% is achievable [10]. Furthermore, theorical research is also
aiming to extend these ideas to multiqubit gates [14] which is what we are going to focus on, examining
a specific three-qubit gate, the controlled-controlled-phase gate.

In section 2.1 we introduce the Rydberg atoms by examining their main properties. In section 2.2
we rigorously introduce the concept of qubit along with quantum gates, exploring how they work by
specifically analyzing the controlled-phase gate analyzed in Ref. [10]. We then finally introduce the
three-qubit gates and examine the advantages they offer in quantum computing.

2.1 Rydberg Atoms

Rydberg atoms are excited atoms with one or more electrons in a highly excited state, with principal
quantum number n ≥ 10 1. In such conditions, the atoms’ diameter is of the order of micrometers,
approximately a factor 104 larger than that of a neutral atom in the ground state. Their massive
size leads them to exhibit several exaggerated properties which are incredibly useful for quantum
computation.

In fact, since both their size and their electric dipole moment scale as n2 they present huge dipole
matrix elements, which lead to strong interactions between atoms. This strong interaction enables a
phenomenon called Rydberg blockade. This effect prevents the simultaneous excitation to a specific
Rydberg state of nearby Rydberg atoms on distances up to a few micrometers and can be exploited
to entangle several qubits [19]. In addition, this implies that the Rydberg atom is very sensitive to

1I.e. The Rydberg state for the Strontium-88 Rydberg atom presented in Ref. [10] has n = 60.
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2.1 Rydberg Atoms 5

external electromagnetic fields, making it ideal for the creation of a quantum gate by controlling its
dynamics with specific laser pulses.

Furthermore, Rydberg atoms have arguably long decoherence times, that scale as n3. Finally,
another great advantage of neutral atoms is that on distances greater than a few micrometers the in-
teraction between atoms becomes very weak and the Rydberg blockade is essentially absent, permitting
us to pack a lot of atoms close to each other, paving the way for multiqubit quantum computing.

In Section 2.1.1 we describe more rigorously the decoherence time along with other properties of
the Rydberg atoms. In Section 2.1.2 we describe the interaction between Rydberg atoms and finally
explore the Rydberg Blockade mechanism.

2.1.1 Main properties

To simplify the approach, we can treat the Rydberg atoms as hydrogenic, and by calculating
the orbit size we see that it actually scales as n2. Now, let us first briefly examine the lifetime of
Rydberg atoms. Since they are in an excited state, they are naturally unstable and they decay with a
characteristic lifetime τ , that varies depending on the Rydberg state, eventually falling to the ground
state. The decay is governed by two main physical processes: one is spontaneous emission caused by
perturbation of the vacuum electromagnetic fluctuations at 0 K. Its rate defines the radiative lifetime
τ0 of the atom. The other is stimulated emission caused by blackbody radiation (BBR) at finite
temperature T with a rate τbb [19]. The total lifetime of the Rydberg atom is defined as:

1

τ
=

1

τ0
+

1

τbb
(2.1)

Focusing on the radiative lifetime, with rigorous analysis we can show that it scales with n3 for
transitions to low-energy states, and with n5 for those to neighbouring Rydberg states. The transitions
to low-lying states constitute dominant channels of spontaneous emission, so the radiative life-time is
approximately proportional to n3 [19]. By the results obtained in Ref. [10], where different error
contributions were considered in the calculation of the fidelity of a controlled-phase gate, the Rydberg
state decay is what turns out to be the dominant source of error. In particular, it corresponds to 90%
of the total error, given by the sum of three contributions: the finite lifetime of the Rydberg level, the
recoil of the single-photon transition and the force experienced by the atoms due to van der Waals
interaction, the last two being motional cooling errors. This implies that minimization of the time
duration of the gate plays a role of crucial importance to do effective quantum computing with neutral
atoms.

2.1.2 Interaction Between Rydberg Atoms

Now let us consider two neutral atoms, each having an electron in the Rydberg state, separated
by a distance R. Assuming R to be much greater than the size of the electronic wave-function, we
can limit ourselves to consider the electrostatic interaction between two charge distributions using the
electric multipole expansion in spherical coordinates [8, 20]. In this case, the interaction reduces to
dipole-dipole interaction as other interactions can be neglected. Recalling the definition of the dipole
moment operator p = −ed, the interaction can be expressed as:

Vdd =
e2

4πϵ0

d1 · d2 − 3(d1 · êR)(d2 · êR)
|R|3

, (2.2)

where êR is the unit vector along the relative coordinate R between two atoms, and R = |R| is the
separation between the atoms [See Figure 2.1a]. Such dipolar interaction scales as Vdd ∝ n4 because
the dipole moment scales as |d| ∝ n2.

Therefore, if the system of two non-interacting Rydberg atoms can be described by a static Hamil-
tonian H0, considering the dipole-dipole interaction the Hamiltonian now becomes:

H = H0 +Vdd (2.3)
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Because of this interaction, we know from perturbation theory that the eigenstate |rr⟩ of the static
Hamiltonian which describes the outer electrons experiences an energy shift ∆E with the respect to
its bare energy Err. We now want to calculate the energy shift.

To accomplish this, let us first notice that:

⟨dnlm⟩ := ⟨Ψnlm|d(t)|Ψnlm⟩ |Ψnlm⟩=|rr⟩−−−−−−−→ ⟨dnlm⟩ = ⟨rr|d(t)|rr⟩ = 0 (2.4)

In words, the spatial symmetry of the wave-functions |Ψnml⟩ results in a vanishing static dipole moment,
which therefore implies that ⟨Vdd⟩ = 0. On the contrary, the dipole matrix elements between eigenstates
with different parities are instead non-zero, and we can demonstrate that in the case of a single
transition from |rr⟩ to |r′1r′2⟩, where |r′1⟩ |r′2⟩ are different Rydberg states, we can describe the system
restricting ourselves to the subspace {|rr⟩ , |r′1r′2⟩}, and by defining the Hamiltonian

Ĥ =

[︃
0 C3/R

3

C3/R
3 δF

]︃
, (2.5)

where C3 ∝ n4 is the anisotropic interaction coefficient and δF = (Er′1
+ Er′2

) − (Er + Er) the Foster
defect defined as the difference of the bare energy between final and initial pair states [19]. Let us take
note that the non-diagonal matrix elements which represent the dipole-dipole interaction that couple
the state |rr⟩ with |r′1r′2⟩ are proportional to R−3.

We now restrict to the case where δF ≫ V (R) := C3/R
3, which is the regime where we can calculate

the energy shift as a perturbative correction. The calculation of the first order energy correction is
given by the dipole-dipole interaction expectation value ⟨Vdd⟩, which corresponds to the first element
of the matrix in Eq. (2.5). We notice that it is zero, as also concluded in Eq. (2.4). We thus consider
the second-order perturbative correction, which is defined as:

∆E = E(2)
rr =

∑︂
|r′1r′2⟩

| ⟨r′1r′2|Vdd|rr⟩ |2

2Er − Er′1
− Er′2

=
C6,rr

R6
. (2.6)

This interaction is conventionally called van der Waals interaction [21, 22] with C6,rr the van der Waals
coefficient, which scales with n11. We will consider this as the Rydberg-Rydberg interaction in the
next chapters.

We can now acknowledge two of the main properties of Rybderg atoms outlined at the beginning
of the Chapter. On one hand, the strong interactions between adjacent or nearby atoms placed in an
optical lattice, highlighted by the fact that the C6,rr coefficient scales with n11. On the other hand,
the weak interactions between non-adjacent Rydberg atoms, being V ∝ 1/R6 and therefore dropping
quickly to small values as the distance between atoms increases (R of a few micrometers).

We now want to study how the strong interaction between Rydberg atoms activates the Rydberg
blockade effect. Let us consider a system of two atoms, each having a ground state |g⟩ and a Rydberg
state |r⟩. Let us now activate a resonant laser field that couples the ground state |g⟩ to |r⟩ with Rabi
frequency Ω2.

If we now describe the system in a basis given by vector states {|gg⟩ , |+⟩ = |gr⟩+|rg⟩√
2

, |−⟩ =
|gr⟩−|rg⟩√

2
, |rr⟩} we find that the states |gg⟩ and |+⟩ are coupled with Rabi frequency

√
2Ω, whereas

|+⟩ and |rr⟩ are not [8].
In fact, in Eq. 2.6 we derived that the strong mutual interaction between Rydberg atoms induces

an energy shift in the state |rr⟩, and this implies that the resonant frequency we would need to excite
the state |+⟩ to |rr⟩ is greater than the one of the laser, since the difference in energy between these
states is greater than the one between |gg⟩ and |+⟩. This conclusion is valid when C6/R

6 ≫ ℏΩ, which
denotes the regime of strong interaction. We can rewrite it as Rb ≫ R where Rb = (C6/ℏΩ)1/6 is the
blockade radius [8].

A question we could raise is: why does the interaction not perturb the energies of |gg⟩ and |+⟩?
This is due to the fact that there is very little dipole-dipole interaction between two ground states and

2The Rabi frequency defines the frequency at which the probability amplitudes of two atomic energy levels fluctuate
in an oscillating electromagnetic field [23]
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(a) (b)

Figure 2.1: Rydberg interaction and Rydberg blockade. (a) Dipole-dipole interaction between two atoms with
interatomic separation R to the quantization axis z. (b) Rydberg blockade in the two-atom case. Figures from
Ref. [19]

between a ground state and a Rydberg one. In fact the dipole interaction in the latter cases is at least
11 orders of magnitude smaller than the one between two Rydberg states, since the interaction scales
with n11 and the principal quantum number of Ryderg states is around 10 times the one of the ground
state. Therefore, the perturbative correction in these cases is considered to be negligible. As a result,
in the regime of strong interaction the laser couples |gg⟩ and |+⟩, and it is instead off-resonant with
the energy transition between |+⟩ and |rr⟩, meaning that the state |rr⟩ is decoupled [see Fig. 2.1b].
This implies that one cannot excite two atoms simultaneously to Rydberg states if they are located
sufficiently close-by to each other. This effect is called Rydberg blockade.3

With no exaggeration, we can state that this phenomenon is the backbone of quantum computing
with Rydberg atoms, as it enables the entanglement of qubits, hence the creation of entangling quantum
logic gate, such as the controlled-phase gate examined in Ref. [10] and also the gate we are aiming to
realize, the controlled-controlled-phase gate.

To conclude, let us notice that the dipole-dipole interaction between atoms that are in the Rydberg
state is an effect that can neither be manipulated nor "shut down". Therefore we cannot control the
Rydberg state and its dynamics, thus indicating our inability to use them as computational states.
What we can and will do is use them as states of support in order to enable quantum entanglement4.

Another reason why we cannot use |r⟩ as a computational state is because the Rydberg state
decades rapidly with respect to the qubit states that present long decoherence times. This also implies
that in the optimization of the gate we should also minimize its time duration, finding the minimum
time for the gate to couple the state without, therefore limiting the error introduced by the Rydberg
decay (see Subsection 2.1.1).

2.2 Quantum Gates

2.2.1 Quantum computing with qubits

A qubit (quantum bit) is a basic unit of quantum information, that is the quantum version of the
classic binary bit. It is a two-level quantum system where the two basis qubit states are denoted as
|0⟩ and |1⟩ [24]. Generally, a pure qubit state is a unit vector in a two-dimensional Hilbert space and

3Let us notice that what we have concluded is valid in the regime of perfect Rydberg Blockade, where the van der
Waals interaction strength V = C6/R

6 is infinite. In reality, even though V ≫ ℏΩ, V is finite and this leads to a very
small probability of both atoms being excited to the Rydberg state.

4Entanglement is a phenomenon that entails an intrinsic correlation between the constituents of a quantum system.
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can be written as a linear combination, or coherent superposition, of the basis states:

|Ψ⟩ = α |0⟩+ β |1⟩ (2.7)

where α,β ∈ C are probability amplitudes with the constraint |α|2 + |β|2 = 1.
Examples of quantum systems that have two distinguishable states are the electron spin, where

the two levels are usually referred to as "spin up" and "spin down", and the polarization of a single
photon, which can be measured as either "vertical polarization" or "horizontal polarization". In the
case of neutral atoms, the qubits are encoded in two hyperfine states of the atoms [2], which we refer
to as |0⟩, ground state, and |1⟩, excited state, together named computational states. As outlined at the
beginning of the chapter, we know this to be an efficient system to encode a qubit since these states
can be well isolated from the environment, which allows for long decoherence times. To complete
the quantum system that underlies Rydberg qubits we also have to consider another state, which is
the Rydberg state |r⟩ (support state)5. As concluded in Subsection 2.1.2, it is in fact essential for
entanglement. Therefore, we assume the Rydberg qubit to be a three-level system, consisting of |0⟩,
|1⟩ and |r⟩.

The last thing we want to outline about the qubit is that by operating a suitable change of coor-
dinates and exploiting the undetectability of global phases in quantum mechanics, the qubit state can
be rewritten as:

cos θ

2
|0⟩+ eiϕ

sin θ

2
|1⟩ (2.8)

where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. Thus, we can describe the qubit state as a point on a three-
dimensional unitary sphere, called Bloch sphere.

Having introduced the concept of qubit we can now have a better idea of what quantum computing
actually is. In a nutshell, it consists of acting on a qubit register by means of a quantum algorithm.
By applying the quantum circuit model, we can represent algorithms as a sequence of quantum gates
performed on one or more qubits [8]. Here, an N -qubit quantum gate is an operation that is applied
on N qubits changing their quantum state. It can be represented by a unitary operator (matrix) of
dimension 2N ×2N . Since they are unitary, any single-qubit gate corresponds to a rotation of the state
vector onto the Bloch sphere.

In the specific case of Rydberg quantum gates, single-qubit gates are performed with laser beams
that couple the ground state |0⟩ and the excited state |1⟩. Let us now briefly outline the physics of
these gates. We consider a laser described by an oscillating electric field, e.g. a monochromatic plane
wave E(t) = E0 cos(ωt+ ϕ), with angular frequency ω and phase ϕ . To simplify the approach, we
neglect the spatial term of the laser as if we were studying the system in a fixed point. The interaction
between the atom and the field can be reduced to:

Ĥ int = −p · E(t) , (2.9)

where p is the electric dipole of the atom.
Now, we describe the Hamiltonian of the system in analogy with Eq. (2.3) as Ĥ = H0+Hint where

H0 is the static Hamiltonian of the Rydberg atom, and Hint is the interaction defined in Eq. (2.9).
Thus, we obtain:

Ĥ = ℏω0 |0⟩⟨0|+ ℏω1 |1⟩⟨1|+ ℏΩcos(ωt+ ϕ)(|1⟩⟨0|+ |0⟩⟨1|) , (2.10)

where we have introduced the Rabi frequency which can now be defined rigorously as Ω = p · E0/ℏ
[8]. Now by applying the rotating wave approximation, where we assume ∆,Ω ≪ ω, and rewriting the
Hamiltonian within the rotating frame of reference6 we obtain the final form of the Hamiltonian:

Ĥ = −ℏ
∆

2
|0⟩⟨0|+ ℏ

∆

2
|1⟩⟨1|+ ℏ

Ω

2
(|1⟩⟨0|+ |0⟩⟨1|) (2.11)

where we have defined the detuning of the laser relative to the transition frequency as ∆ = ω1−ω0−ω
[25]. In words, the laser detuning defines the difference between the laser’s optical frequency and the
atomic transition resonance frequency [26].

5We may even want to consider more than one Rydberg state in the encoding of a qubit, as they may be useful to
make measurements

6For more details see Ref. [8]
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2.2.2 The controlled-phase gate

To do quantum computing, we need a universal quantum computing gate set, which is a set of
gates to which any operation possible on a quantum computer can be reduced. To obtain this, we
must introduce entangling operations in addition to an arbitrary single-qubit gate. For instance, we
can achieve this by making use of the two-qubit controlled-phase gate along with a set of generators
for single-qubit gates [27]. It has been demonstrated that this gate, also known as CZ gate, can be
implemented by making use of the Rydberg Blockade [11, 12], as anticipated in Subsection 2.1.2 where
we acknowledged the vital importance of this phenomenon for entangling gates.

Let us now briefly describe the controlled-phase gate presented in Ref. [10]. We consider two
Rydberg qubits with states |0⟩ and |1⟩ and the Rydberg state |r⟩ encoded into two Rydberg atoms,
and a global laser homogeneously driven on the Rydberg atoms. The state |r⟩ is coupled with |1⟩ by
means of the laser electromagnetic field with Rabi frequency Ω(t) and detuning ∆(t), in analogy with
the coupling of |0⟩ and |1⟩ in the single-qubit gate analyzed in Eq. (2.11). In addition, we have derived
that two Rydberg atoms interact with dipole-dipole interaction shifting the energy of the |rr⟩ state
(sse Subsec. 2.1.2). The interaction strength is quantified by V = C6/R

6 and since we want to exploit
the Rydberg blockade effect for entangling we must assign a value to V for which V/ℏΩ ≫ 1. Overall,
the Hamiltonian of the system is given by

H = H0 +Hint , (2.12)

where the first term, H0 accounts for the coupling to the Rydberg state by means of the laser field,
within the rotating frame and applying the rotating wave approximation. The second term Hint

accounts for the dipole-dipole interaction:

H0 = ℏ
2∑︂

i=1

[︃
Ω(t)

2
|r⟩⟨1|i + |1⟩⟨r|i −∆(t) |r⟩⟨r|i

]︃
; Hint = −C6

R6
|rr⟩⟨rr| (2.13)

Since |0⟩ is uncoupled by the laser, it does not evolve, therefore the gate trivially maps |00⟩ in
|00⟩. At this point, the dynamics of |01⟩ can be described in a two-level system {|01⟩ , |1r⟩} with Rabi
frequency Ω0. The same applies for |10⟩, being the setup symmetric. Instead, as seen in Subsec. 2.1.2,

the dynamics of |11⟩ follows a two-level system composed by {|11⟩ , |1r⟩+ |r1⟩√
2

} with an enhanced

Rabi frequency
√
2Ω0. The different Rabi frequency for the two states |01⟩ and |11⟩ leads to different

trajectories of the states on the Bloch sphere [see Figure 2.2] and, therefore, the state |11⟩ picks up a
phase ϕ11 which is different from the phase ϕ01 = ϕ10 picked up by |10⟩ and |01⟩ [10]. Finally, if we
require that the phases satisfy the relation given by

ϕ11 = 2ϕ01 + π , (2.14)

we realize a controlled-phase gate, up to a global rotation by ϕ01 of the excited state |1⟩.

(a) (b)

Figure 2.2: Non-trivial trajectories of the computational initial states on the Bloch sphere. (a) Trajectory of
|01⟩. (b) Trajectory of |11⟩. Figures from Ref. [10]
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2.2.3 Three-Qubit Gates

Along with the two-qubit gates, research on quantum three-qubit gates has considerably increased
in the last years, as peculiar characteristics offered by these gates enhance the quality of quantum
computing processing. The idea of a 3-bit gate, which performs operations on three bits simultaneously,
was first introduced by Tommaso Toffoli in 1980, with the classical Toffoli (CCNOT) gate. Being it
a reversible logic gate, soon the equivalent quantum gate was introduced. The quantum Toffoli gate
consists of a doubly-controlled NOT gate where the state of the target qubit changes depending on the
state of the two control qubits. In particular, it performs a NOT operation on the target qubit if and
only if both control qubits are in the |1⟩ state, and otherwise leaves the target qubit unchanged [28].

This gate presents several attracting properties: together with a single-qubit gate, it forms a univer-
sal set of gates in quantum computation [15]. In addition, it is a key element for faster implementation
of some quantum algorithms, such as the Shor’s algorithm [29], quantum error correction schemes and
fault-tolerant quantum computing [16, 17, 14].

This gate in fact can be decomposed as a sequence of six CNOT gates and several single-qubit gates
[30]. Therefore, the significant number of two-qubit and single-qubit gates necessary for its creation
increases the number of potential errors that can be made during the computation, thus having a
detrimental effect on gate fidelity. Indeed, replacing them with a direct single-shot implementation of
the Toffoli gate is of great interest to reduce this error. Furthermore, by using Toffoli gates, not only
are we reducing significantly the number of operations, but also the time duration of the computation
process. As stated in Subsection 2.1.1, the dominant source of error in the realization of a Rydberg
quantum gate is its decoherence time [10]. Therefore, reducing the time spent in the Rydberg state is
another crucial advancement we want to make to enhance the gate’s fidelity.

The Toffoli gate has been successfully demonstrated with atomic ions [31], but at a relatively low
fidelity of 71%, and the duration of the gate was as long as 1.5 ms. The Toffoli gate has also been
demonstrated with superconducting qubits at the fidelity of 68.5% [32] and 78% [33]. Whereas in
Ref. [14] the gate, realized with ultracold neutral-atom qubits, is shown to be much faster than in the
previous cases and can provide approximately 3 µs duration and 96.8% fidelity.

Overall, we have now convinced ourselves that the Toffoli gate, or generally a quantum three-qubit
gate, can be a crucial building block for many quantum algorithms and circuits, speeding up the
quantum computing processing and reducing the potential for errors. Bearing this in mind, we now
want to investigate the case of a three-qubit gate known as controlled-controlled-phase gate, aiming
to realize it with a Rydberg atoms setup and by making use of Quantum Optimal Control Algorithms
explained in Chapter 4.



Chapter 3

Check for Complete Controllability

In this chapter, we want to make sure that the controlled-controlled-phase gate can be realized at
least from a theoretical point of view, before moving on to its actual realization. In addition, we want
to see if we can extract some key information from an initial theoretical analysis that can facilitate
the optimization of the gate. We start by formulating the controlled-controlled-phase gate in braket
notation.

UCCP =

r∑︂
i,j,k=0

(i,j,k)̸=(1,1,1)

|ijk⟩⟨ijk|+ eiϕ |111⟩⟨111| = I+
(︂
eiϕ − 1

)︂
|111⟩⟨111| (3.1)

In this equation indexes i,j,k assume the values: {0,1,r}. The elements of the sum are three-qubit
states, given by the tensor-product of single-qubit states. Each single-qubit state indicates the specific
state of one of the 3 Rydberg atoms. There are 3 accessible energy eigenstates, or "levels", for each
single-qubit state: the first two, |0⟩ and |1⟩ are encoded into two internal states of the Rydberg atoms,
where 0 stands for the ground-level state and 1 for the first excited state. The remaining state |r⟩ is
encoded in the Rydberg state of the atom.

We see that given an initial state |ψ⟩, that corresponds to a certain superposition of basis states
{|000⟩ , ..., |rrr⟩} the gate acts on it leaving all of its components unvaried except for the |111⟩ compo-
nent, which is changed by adding a specific phase to it, that most of the time will be set to π, leading
to − |111⟩.

We immediately notice that this gate is invariant under permutations of two qubits out of three. To
be more clear, this symmetry can be illustrated in the following way: a certain element of the operator
is given by |ijk⟩⟨ijk| = |i⟩⟨i| ⊗ |j⟩⟨j| ⊗ |k⟩⟨k|, that is the tensor product of three components, the first
of which acts on the first qubit state, the second on the second and the third on the third. At this
point, if we exchange the states of two of the qubits, such as the first and the second states, we obtain
|jik⟩⟨jik|, and if we repeat the permutation for all of the gate’s elements we end up obtaining the exact
same gate defined in Eq. (3.1).

This peculiar property of the gate highlights an important aspect to take into account for its
realization: the gate is given by a certain combination of operators that are invariant under the
permutation of two qubits out of three. At this point we want to analyze this aspect more rigorously
by introducing the following permutation operators:

P12 =
r∑︂

i,j,k=0

|ijk⟩⟨jik| operator that exchanges the states of the first two qubits

P23 =

r∑︂
i,j,k=0

|ijk⟩⟨ikj| operator that exchanges the states of the last two qubits

(3.2)

We notice that there is no need to introduce the third permutation operator that exchanges the
first and the third state, as a combination of these two operators is sufficient to obtain any other
permutation, including the one between the first and third state. We now understand that an operator

11
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is permutation-invariant1 only if it commutes with both permutation operators and this mathematically
translates into:

O is permutation-invariant ⇐⇒

{︄
[O,P12] = OP12 − P12O = 0

[O,P23] = OP23 − P23O = 0
(3.3)

3.1 System Setup

Now, having noticed this peculiar symmetry, we figure out that the best geometrical arrangement
for the three Rydberg atoms is an equilateral triangle, that indeed presents the same symmetry as
the gate. Furthermore, in view of many-body quantum computation where many atoms are packed
together in an optical lattice, the triangular geometric layout here suggested would indeed maximize
the number of atoms that can be placed in a certain area. In fact, given a circle of radius r, if we aim
to place as many circles as possible on a plane, the best layout to adopt is to place the circle centers
in equilateral triangular arrangements.

Therefore, this disposition leads to higher connectivity between Rydberg atoms, that implies
stronger interactions, thus improving the quality of the Rydberg blockade effect on nearby atoms.
Overall, this results in an improvement of the gate’s fidelity as well as more efficient quantum paral-
lelism.

To formulate the Hamiltonian of the three-qubit system, we recall that the gate is achieved by
coupling the |0⟩ and |1⟩ states to a strongly interacting Rydberg state |r⟩ by driving precise laser
pulses on the Rydberg atoms [2]. In this case, we simplify the system by driving one homogeneous
laser beam on all atoms, in analogy with Ref. [10]. Therefore, we assume the Hamiltonian governing
the dynamics of the system to be of the form:

H = H0 +Hint (3.4)

The first term, H0 accounts for the coupling to the Rydberg state by means of the laser electro-
magnetic field and can be controlled by manipulating the lasers’ parameters. The second term Hint

accounts for the strong dipole-dipole interaction taking place between adjacent atoms when they are
in the Rydberg state (see Subsection 2.1.2). In particular, H0 describes the coupling to the Rydberg
state within the rotating frame and applying the rotating wave approximation2:

H0 =
3∑︂

j=1

[︂
Ω01(t) (|0⟩⟨1|+ |1⟩⟨0|)j +∆01(t) (|1⟩⟨1|)j +Ω1r(t) (|1⟩⟨r|+ |r⟩⟨1|)j +∆1r(t)(|r⟩⟨r|)j

]︂
(3.5)

In this equation, we imply that the one-qubit components indexed with j (where j indicates the number
of the qubit considered) are equivalent to three-qubit components given by the tensor product of two
identity operators acting on the other two qubits and the one-qubit component taken into account.
For example,

(|0⟩⟨1|+ |1⟩⟨0|)1 ≡ (|0⟩⟨1|+ |1⟩⟨0|)1 ⊗ I2 ⊗ I3 (3.6)

where I2 = |0⟩⟨0|2 + |1⟩⟨1|2 + |r⟩⟨r|2 represents the identity operator that acts on the second qubit’s
state, and the same goes for I3.

Furthermore, in Equation (3.5), Ω and ∆ are the parameters that characterize the dynamics of
the system and the coupling of the atomic states. In particular, Ω01 and Ω1r represent the time-
dependent Rabi frequencies at which the coupling between states |0⟩ |1⟩ and between states |1⟩ |r⟩
occurs. Whereas ∆01 and ∆1r represent the time-dependent detuning parameters (see Section 2.2).

The interaction between the Rydberg states reduces to

Hint =
C6

R6

3∑︂
i,j=1
i ̸=j

|rr⟩ij ⟨rr|ij (3.7)

1from this point onwards by saying permutation-invariant we will always refer to invariance under permutations of
two qubits out of three

2This equation is the generalization of Eq. (2.13), which describes the Hamiltonian of controlled-phase gate
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By recalling Subsection 2.1.2, this term describes the dipole-dipole (van der Waals) interaction between
adjacent Rydberg states |r⟩i and |r⟩j , where C6 describes the instantaneous dipole-dipole interaction
and R defines the inter-atomic distance, that is the separation between the centers. V = C6/R

6

denotes the interaction strength. We note that having placed the atoms in an equilateral triangle the
inter-atomic distance R is the same for all pairs of atoms.

3.2 Check 1: matching between space of permutation commutants
and Lie Algebra

Having defined the Hamiltonian of the system in Eq. (3.5) and having highlighted the invariance
property of the c-c-phase gate, we now want to test whether the Hamiltonian has complete controlla-
bility over the gate. In other words, we want to check the feasibility of the gate given this particular
Hamiltonian, and to achieve this, we carry out a series of tests written in the Scientific Programming
Language GNU Octave3.

Firstly, we want to verify whether the Lie Algebra given by the Hamiltonian matches the vector
space of the operators that are invariant under permutations of two qubits out of three. This would
ensure that the gate can be obtained from the Lie Algebra since we already mentioned that the gate
must be a combination of permutation-invariant operators. To simplify the verification, we notice that
the Hamiltonian is also permutation-invariant, a predictable result since it describes a geometrically
symmetrical system. Hence, to verify whether the two spaces match we can settle for a mere comparison
between the dimensions of the two vector spaces.

We now proceed to compute the Lie algebra generated by the Hamiltonian. To do so, we define
the Lie Algebra generators in the following way:

A = (|0⟩⟨1|+ |1⟩⟨0|)1 ⊗ I2 ⊗ I3 + I1 ⊗ (|0⟩⟨1|+ |1⟩⟨0|)2 ⊗ I3 + I1 ⊗ I2 ⊗ (|0⟩⟨1|+ |1⟩⟨0|)3
B = (|1⟩⟨1|)1 ⊗ I2 ⊗ I3 + I1 ⊗ (|1⟩⟨1|)2 ⊗ I3 + I1 ⊗ I2 ⊗ (|1⟩⟨1|)3
C = (|1⟩⟨r|+ |r⟩⟨1|)1 ⊗ I2 ⊗ I3 + I1 ⊗ (|1⟩⟨r|+ |r⟩⟨1|)2 ⊗ I3 + I1 ⊗ I2 ⊗ (|1⟩⟨r|+ |r⟩⟨1|)3
D = (|r⟩⟨r|)1 ⊗ I2 ⊗ I3 + I1 ⊗ (|r⟩⟨r|)2 ⊗ I3 + I1 ⊗ I2 ⊗ (|r⟩⟨r|)3
V = (|rr⟩⟨rr|)12 ⊗ I3 + (|r⟩⟨r|)1 ⊗ I2 ⊗ (|r⟩⟨r|)3 + I1 ⊗ (|rr⟩⟨rr|)23

(3.8)

These operators are called the generators of the Hamiltonian due to the fact that if we combine
them with the respective Ω and ∆ parameters and sum them together we obtain the Hamiltonian
defined in Eq. (3.5). Consequently, we ideate an algorithm to create the Lie Algebra. The idea behind
the algorithm consists of the following steps: We write the operators in Eq. (3.8) as matrices, and then
proceed to write each operator as a single-dimensional array by stacking its columns one on top of the
other, starting with the first on top, the second beneath it, and so on. We then form a matrix named
CO (control matrix) with each operator as a column of the matrix (for example column 1 = operator
A written as column). CO represents the matrix whose columns are the elements of the Lie Algebra.
We then normalize each column making them unitary vectors. We then orthogonalize the columns by
applying the "orth" function in Octave, thus obtaining an orthonormal basis BCO.

We then proceed to generate a new element X of the algebraic Lie closure. X is obtained by
computing the commutator i[O1,O2] = X4 where O1 and O2 are two operators taken from the elements
in the Lie Algebra. If X is linearly dependent to the other elements in the algebra, we discard it,
otherwise we add it to the matrix as its last column, hence adding it to the set of generators and
elements contained in the Lie Algebra. To check if X is linearly dependent to the elements of the
Algebra we:

1. initially check if its norm is greater than a minimum benchmark (mb), set to 10−12. If the norm
is less than mb we discard it, since we assume the norm to be equal to 0. This passage must be
done in our procedure to avoid the traps of roundoff errors, introduced by the computer due to

3GNU Octave, version 4.4.1 Copyright (C) https://octave.org
4we multiply the commutators for the immaginary unit "i" because with this operation, if O1 and O2 are Hermitian,

also X is Hermitian. In this way, we are generating an Algebra of Hermitian Operators over the real Field

https://octave.org
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the finite number of digits used to compute the operations, meaning that a zero could be written
as 10−16. Since the columns consist of 729 complex components, if for a column we assume each
component to be vi = 10−16 + i10−16 = 0, the norm of the resultant vector is around 10−12,
thus considered equal to 0. If the norm is greater than mb we go to the next step.

2. make use of the Gram-Schmidt method. The method consists of discarding the components of
the X vector projected on the basis vectors ∈ BCO as this would lead to obtain a vector X’ that
is orthogonal to BCO. Let us use the braket notation by calling X = |v⟩ and the orthonormal
vectors {|w1⟩ , |w2⟩ , .., |wn⟩}. The orthogonalization of |v⟩ is achieved by applying the following
formula:

|v⟩ = |v⟩ −
N∑︂
i=1

⟨wi|v⟩ |wi⟩ (3.9)

3. We now check if
√︁
⟨v|v⟩ ≥ bm. If it is greater, we normalize it to 1 and then add it to the CO

matrix, otherwise we discard it.

We repeat the previous step for all possible pairs of elements contained in the Algebra, therefore for
all possible combinations of pairs of columns in the CO matrix, obtaining, in the end, a matrix given
by a set of orthonormal columns that correspond to all of the elements contained in the algebraic
Lie closure of the Hamiltonian. Now, given this set of columns, every operator obtained by comput-
ing the commutator of two columns of CO, Y = i[column 1, column 2] can be always obtained by a
specific linear combination of the columns of the matrix, or in other words, the operator is contained
in the Lie Algebra.5 By running this algorithm, we find the dimension of the Algebra to be equal to 164.

Note that this algorithm was first realized by checking the linear dependence of the columns by
checking the rank of the CO matrix, making use of the "rank" function in Octave, instead of the
Gram-Schmidt method. This method was then replaced to cope with the roundoff errors that would
lead to anomalies in the third testing phase described in Section 3.4.

Note also that the norm of the vectors used in the algorithm is the Euclidean norm, which is defined
as the square root of the inner product of a vector with itself. But we remember that the vectors were
actually operators written in columns, therefore we recognize that the Euclidean norm applied to vec-
tors corresponds to the matrix norm induced by the Hilbert-Schmidt trace Tr(A†B), called Frobenius
norm [34]. This norm is rigorously defined in Subsection 4.3.1.

Let us now derive the dimension of the space given by permutation-invariant operators. Recalling
Eq. (3.3), we remember that if an operator is permutation-invariant, it commutes with the permuta-
tion operators P12, P23, hence the name "permutation commutants". Bearing this in mind, we can
reformulate the commutators in a more convenient way by first defining the following operators:

M12 = −P12 ⊗ I+ I⊗ P †
12

M23 = −P23 ⊗ I+ I⊗ P †
23

(3.10)

At this point, we can quite straightforwardly see that [O,P12] = M12 (O) = 0, [O,P23] = M12 (O) =
0, where the second terms of the equations denote the application of the operator O written as a vector
(columns stacked one on top of the other) to the M operators.

This reformulation offers us the key to finding the invariant-permutation operators’ space dimen-
sion. Indeed, we can think of this space as the kernel of the M matrix given by stacking M12 M23 one
on top of the other. Making use of simple functions offered by Octave, we find the dimension to be
equal to 164.

We observe that the two spaces are not equivalent, and as we expect, the one out of the two which
has a higher dimension is the space of permutation-invariant operators, which therefore contains the
Lie Algebra. This result introduces the slight chance for us not to be able to realize the c-c-phase gate
since the element missing from the Lie Algebra could be crucial for the construction of the gate.

5This property corresponds to the definition of Closed Lie Algebra.
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3.3 Check 2: c-c-phase gate generated by the Lie Algebra

Secondly, we now proceed with a more straightforward verification. We want to directly check if
the c-c-phase gate can be generated by the elements in the Lie Algebra derived in Section 3.2. This
translates into checking if the generator of the gate, that we will refer to as target Hamiltonian HT ,
can be obtained as a linear combination of elements in the Lie Algebra. The condition for which the
Algebra Lie element HT generates the c-c-phase gate is given by [35]:

UCCP = exp(iϕHT ) = I+ iϕHT − ϕ2

2
H2

T + . . . (3.11)

Therefore, we understand that the generator of the gate is given by HT = |111⟩⟨111|. In fact

exp(iϕHT ) = I+ iϕ |111⟩⟨111| − ϕ2

2
111111 + · · · = I+ (eiϕ − 1) |111⟩⟨111| = UCCP (3.12)

In matrix notation, we have:

HT =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 . . . 0 0
...

. . . . . . 0
...

0 . . . 1 . . . 0
... 0 . . .

. . .
...

0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
eiϕHT−−−−→ UCPP =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 . . . 0 0
...

. . . . . . 0
...

0 . . . eiϕ . . . 0
... 0 . . .

. . .
...

0 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ (3.13)

Let us now proceed with the testing. We write HT as a column, and add it to the CO matrix, which
we know represents the Lie Algebra of the Hamiltonian. We then orthogonalize HT with respect to the
orthonormal columns of CO by using the Gram-Schmidt method illustrated in Section 3.2. We find
the norm to be equal to 0.086, meaning that the generator is not obtainable as a linear combination of
the only operators in the Lie Algebra: HT /∈ CO. Hence, the c-c-phase does not seem to be obtainable
starting from the Hamiltonian described, which then implies our inability to create the c-c-phase gate
with this particular system of 3 Rydberg atoms.

However, we can find an alternative solution. Indeed, what we are trying to obtain is a gate that
has complete control over all the possible three-qubit states, including the Rydberg states. Instead, we
discover that this request can be slightly weakened since there is no need to have complete controllability
over the Rydberg state for the quantum computation algorithms we are aiming to implement.

The crucial aspect to focus on is that Rydberg state is merely a support state that permits us
to realize the gate by coupling the |0⟩ |1⟩ states with |r⟩, but once the gate’s duration is ended, the
Rydberg state is no longer considered (see Subsection 2.1.2). Therefore, we can choose to limit the
gate’s control over the 8 computational three-qubit states, where no Rydberg states are present. Let
us call this the logical basis: B = { |000⟩, |001⟩, |010⟩, |011⟩, |100⟩, |101⟩, |110⟩, |111⟩ }. The gate
must leave all of the computational states unvaried except for the |111⟩ state which is manipulated
by the gate with an addition of a certain phase to it, eiϕ |111⟩. In this way, we do not have complete
controllability over the system, but we do have controllability over the actual states that we want to
manipulate.

The restriction to the B basis mathematically corresponds to applying a change of basis operator
C to the c-c-phase operator. Let us define the operator C:

C = |1⟩⟨000|+ |2⟩⟨001|+ |4⟩⟨010|+ |5⟩⟨011|+ |10⟩⟨100|+ |11⟩⟨101|+ |13⟩⟨110|+ |14⟩⟨111| (3.14)

In this equation the ket states are written in the "full" basis of 27 three-qubit states which include the
Rydberg state (ranging from |000⟩ to |rrr⟩), and the number of each state indicates its position in the
basis6. Let us call this the B basis. The bra states instead are written in full extent in the 8 states
computational basis B (discarding the Rydberg states). So what we are doing is transforming a vector

6For example, the state |11⟩position = |101⟩basis is the 11th state of the complete computational basis.
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written in the B basis to the same vector written in the complete basis B. Therefore, to restrict the
gate’s action to B we apply C in the following way: ŨC = UCCP · C

Another way to figure this is by writing the gate in matrix notation in the full-basis (27× 27) and
rearranging it by placing the 8 columns that match the ones of ŨC at the left of the matrix. Thus
obtain:

UCPP =

(︃
ŨC 0

R

)︃
=

(︃
Ũ 0
0 R

)︃
(3.15)

where we apply no restrictions to the matrix block R, whereas Ũ must operate as a controlled-
controlled-phase gate on the two computation levels |0⟩ and |1⟩, namely on the B basis: Ũ = I+(eiϕ−
1) |111⟩⟨111|. In simple words, by applying C we are filtering the gate and only focusing on 8 columns
out of 27.

The question we now have to answer is: how can we check if the gate in Eq. (3.15) is generated
by the Lie Algebra of the Hamiltonian? We simply verify whether the first 8 columns of its generator,
H̃T , are given by a linear combination of the Lie Algebra restricted to the logical basis obtained by
applying the change of basis operator C to all of its elements. This is because we have generated the
Lie Algebra so that all of its elements are Hermitian operators (by adding the immaginary unit in the
commutator, see Section 3.2). Therefore, if the first 8 columns of the generator are given by:

H̃T =

(︃
H̃

0

)︃
(3.16)

With H̃ = |111⟩⟨111| written in the logical basis, since the operator is hermitian, the generator in the

full basis must be of the form: HT =

(︃
H̃ 0
0 M

)︃
Finally, we can convince ourselves that by calculating

exp (iϕHT ) with HT defined as a block matrix, we obtain UCPP defined in Eq. (3.15).
Now, by writing H̃T and the elements of the restricted Lie Algebra CÕ as vectors (see Section 3.2),

we now apply the Gram-Schmidt method to |H̃T ⟩. Therefore we calculate the inner product of |H̃T ⟩
with each component of the Lie Algebra, and subtract it to |H̃T ⟩, obtaining a new vector |H̃ ′

T ⟩ that is
orthogonal to the Lie Algebra basis BCÕ. Thus, we find its norm to be ∥ |H̃ ′

T ⟩ ∥ = 1.5 · 10−15 < mb =

10−12. This implies that the c-c-phase gate generator H̃T is given by a linear combination of the Lie
Algebra restricted to the logical basis.

Therefore, with no spared efforts, we are now convinced that we can build a c-c-phase gate that
has complete controllability over the 8 computational states of the B basis.

3.4 Check 3: negligible time-dependent parameters

Since the check for complete controllability was no easy work to conclude, we do not expect the
realization of the gate to be intuitive. Indeed, we cannot find easy theoretical thought-out ways to
construct the gate. That is why we directly aim to build the gate by making use of Optimal Control
Algorithms, where the time-dependent parameters are manipulated in a certain way to achieve the
gate. In sight of this, we want to carry out one last check, that aims to facilitate the realization of the
gate by verifying whether some of the time-dependent parameters can be excluded, therefore restricting
the number of time-dependent parameters that are to be handled.

The process remains the same as the one laid out in Section 3.2, with the only difference being that
in this case the Lie Algebra is not generated by all of the operators defined in Eq. (3.8). We exclude
one generator at a time and generate the Lie Algebra with the remaining ones and then proceed to
check whether the c-c-phase gate restricted to the B basis can be obtained by the Lie Algebra or not.
For instance, by excluding the A operator, we then generate the Lie Algebra with B, C, D and V, and
finally, we check if the c-c-phase gate is a linear combination of this Lie Algebra.
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Excluded Gen. Excluded Par. Lie Dimension ∥HT ∥F ∥H̃T ∥F c-c-phase
A Ω01 31 0.22 6 · 10−16 no
B ∆01 and ∆1r 164 0.09 6 · 10−16 yes
C Ω1r 6 0.84 0.71 no
D ∆1r 164 0.09 2 · 10−15 yes
V C6/R

6 9 0.86 0.71 no
B and D ∆01 and ∆1r 163 0.17 10−15 yes
A, B and D ∆01, ∆1r and Ω01 28 0.29 9 · 10−16 yes

Table 3.1: Results on whether generators and respective parameters can be excluded or not for the realization of
the c-c-phase gate. ∥HT ∥F denotes the Frobenius norm of the generator of the c-c-phase gate written in the full
basis (27× 27). ∥H̃T ∥F denotes the Frobenius norm of the generator restricted to the logical basis (27× 8)

We notice that generators A, B and D can be neglected in the realization of the gate, and this
gives us a precious hint on how to manipulate their respective time-dependent parameters, ∆01, ∆1r

and Ω01. We indeed expect that we can fix these parameters to constant values, and limit ourselves to
vary the Rabi frequency Ω1r in time.

In addition, the testing carried out without considering the interaction term in generating the Lie
Algebra confirms what previously stated in Subsection 2.1.2. Without the dipole-dipole interaction
between atoms, which leads to the Rydberg blockade effect, it is impossible to create the gate. In fact,
the controlled-controlled-phase gate requires entangling properties of the physical system in order to
be realized.
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Optimization of the Gate

What we are now trying to accomplish is the optimization of the controlled-controlled-phase gate.
To better understand what we are talking about let us briefly outline what the Quantum Optimal
Control Theory (QOCT) is about. As we have mentioned in Chapter 2 and 3, the gate is obtained
by applying a global laser on the Rydberg atoms, which triggers the coupling of the intrinsic atomic
states that depend on certain time-dependent Rabi frequencies Ω(t) and detuning parameters ∆(t).
After the duration τ of the laser, the outcome of the dynamics is that a certain initial state of the
Rydberg system has been transferred to a final one.

Our aim is to tailor the laser pulses in order to control the dynamics of the system, that in our
case means to find the optimal pulse which leads to the realization of the c-c-phase gate, and here is
where QOCT intervenes. The basic concept behind this theory is that the definition of an optimal
pulse follows from the variation of a properly defined functional [36].

Another aspect we should also consider is that the decay time of the Rydberg state is the biggest
source of error that deteriorates the gate fidelity, as stated in Subsection 2.1.1. Therefore the opti-
mization should focus both on shaping the pulse and reducing the time duration of the gate, finding
the sweet spot in time where there is little decoherence but sufficient time to couple the states. In this
analysis, we neglect the error introduced by the decoherence, and focus on optimizing the pulses.

4.1 Quantum Optimal Control Problem

To analyze the theory more in depth, let us consider a generic QOC problem, generally defined
as control problem, which can be outlined through the dynamics of a quantum system1, and an
optimization target [18]. The system starts in an initial state |Ψ0⟩ and evolves according to the time-
dependent Schrödinger’s equation:

∂

∂t
|Ψ(t)⟩ = − i

ℏ
H |Ψ(t)⟩ (4.1)

In the case of a closed2 quantum system, the solution to Equation (4.1) is given by

|Ψ(t)⟩ = U(t) |Ψ0⟩ (4.2)

With the unitary propagator

U(t) = T exp

(︃∫︂ t

0
H(t)dτ

)︃
(4.3)

where T is the Dyson time-ordering operator [37].
Consequently, the functional we want to minimize has to quantify the distance between the final

state, resulting from the time evolution of the initial state, and the optimization target, which is the
state we would obtain from the time evolution following the dynamics we are aiming to achieve [18].

1The dynamics in our case consists of the interaction between the laser and the Rydberg atoms
2By saying that the system is closed we intend that there is no interaction between the system and the external

environment and we take this assumption to be valid also for our problem

18



4.2 CRAB and dCRAB Algorithms 19

The functional is called Figure of Merit (FoM). Such FoM can be the state overlap fidelity, or also the
gate overlap fidelity. They are defined as:

Fstate = ∥ ⟨ΨT |Ψaim⟩ ∥2 Fgate =
1

N2
tr
(︂
U †
aimUT

)︂
(4.4)

The only thing left to do is to link the optimization of the laser to the minimization of the functional,
which would imply the resolution of the control problem. To face these kind of control problems, the
CRAB (Chopped Random Basis) algorithm and its recursive version dCRAB (dressed CRAB), have
proven to be effective and efficient [38]. To fully describe their procedure let us now introduce a
specific Python library named QuOCS (Quantum Optimal Control Suite) [18] where these algorithms
are defined.

4.2 CRAB and dCRAB Algorithms

Firstly, let us transfer the control problem from the optimization of the laser pulse to the one of
its 4 time-dependent parameters, detunings ∆01, ∆1r, and Rabi frequencies Ω01 and Ω1r, that we can
name control fields or control pulses f(t) [18]. Let us now describe the main features of the algorithm
and its main steps applied to this specific case.

The main idea of the dCRAB algorithm is to make a randomized truncated expansion of the pulse
in a given basis, for example in Fourier series [38, 10]. The Fourier series is defined as:

g(t) = 1 +

[︂∑︁Nc
n=1An sin(ωnt) + Bn cos(ωnt)

]︂
λ(t)

(4.5)

with coefficients {Ai, Bi, ωi}, where i is the base index.
The main steps of the algorithm in our specific case are:

1. Assign the initial values to the parameter pulses.

2. Simulate the dynamics by calculating the time evolution of a smartly chosen initial state (which
will be rigorously defined in Subsec. 4.3.1 ). To compute the time evolution, we use Eq. (4.2),
where the unitary operator Ui defined in Eq. (4.3) is calculated considering the Hamiltonian
defined in Eq. (3.5). Here the Hamiltonian time-dependent parameters take the values initially
assigned.

3. Calculate the FoM as the state or gate overlap fidelity, defined in Eq. (4.4) where the target
unitary operator UT corresponds to UCPP , the c-c-phase gate, and Uaim = Ui, that is the
unitary operator that we just calculated with this initial set of parameter pulses. In general, the
procedure of step 2 and 3 can be condensed into a single function named "get_FoM", which takes
the parameter pulses as an input, and returns the FoM as an output [18]. We can define this
function as F := F(f(t)). Furthermore, being the parameter pulses expanded in basis functions
with coefficients {A,Bi, ωi}, this implies that F(f(t)) = F(A1, B1, ω1, ..., An, Bn, omegan).

4. Update the set of coefficients {Ai, Bi, ωi} in order to minimize F with direct-search methods,
which can be either gradient-free such as Nelder-Mead simplex method algorithm, or gradient-
based as the CMA-ES [38]. Return then to step 2.

By setting stopping criteria in the minimization algorithm we conclude our optimization. In a nutshell,
by using this algorithm the control problem given by the minimization of a functional (FoM), is recast
to a multivariable function minimization that can be performed via direct-search methods [38].

Note that defining the "get_FoM" function as in step 3 would lead us to a maximization problem.
If we want to solve a minimization problem, which is the actually solvable one, the FoM must be
redefined as an object called "infidelity", that goes to zero as the gate’s fidelity reaches its maximum
value. An example of infidelity would be:

infidelity = 1− FoM (4.6)
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where we have normalized the FoM so that its maximum value (perfect overlap between the two gates)
is equal to 1.

Now, let us consider the pulse f(t) ∈ L2, where L2 is the function space of square-integrable
functions. By using a limited number N of basis functions to describe f(t), we risk to get trapped in
a local minimum that we might mistake for the global one, since we are performing the optimization
in a restricted space of dimension N. This is known as a false trap. To cope with this, the CRAB
algorithm chooses randomly the basis functions e.g. in a Fourier basis the frequencies ωi are chosen
stochastically in a fixed interval. To further avoid false traps, we can use the improved version of the
CRAB algorithm called dCRAB. Its key feature is to reiterate the CRAB algorithm each time with an
initial pulse equal to the final one of the previous iteration. Those iterations are called super-iterations,
so as to distinguish them from the ones of the coefficients’ optimization. Once we start a new super-
iteration "I2", we have already optimized the coefficients of the N basis functions considered in the
previous one "I1", so the algorithm proceeds to expand the parameter pulses into newly randomly
chosen basis functions summed to the ones previously optimized. At this point, it optimizes the pulses
by optimizing the coefficients of the new basis functions. To simplify the notation let us compactly
denote the coefficients as {Ai, Bi, ωi} = ci. Thus, the j-th super-iteration restricts the optimization
only to cji , i = 0, 1..N of

f j(t) = cj0f
j−1(t) +

N∑︂
i=1

cjif
j
i (t) , (4.7)

where f j−1 is the pulse obtained from the previous super-iteration and f j are the new basis functions
randomly chosen.

Let us highlight that by using the dCRAB algorithm, supposing we get stuck in a false trap, the
probability of adding a new random direction and remaining in the false trap is zero because of the
infinite possible choices of basis [39].

To conclude, the truncation of basis in the CRAB or dCRAB algorithm translates to a natural arise
of bandwidth limits which contribute to the capability of these algorithms to encompass experimental
constraints [40]. In fact, high bandwidth of the pulses is extremely challenging to achieve in the
experimental setup [10].

4.3 Optimization with QuOCS

Finally, we can now proceed with the actual realization of the c-c-phase gate. We start by displaying
the hints offered by the analysis carried out in Chapter 3, taking them as starting points for an efficient
optimization procedure.

1. We must restrict the gate’s control over the actual computational states (B basis)

2. We can presumably limit ourselves to vary the Rabi frequency Ω1r in time while fixing the other
parameters to constant values.

From Section 4.1 we know that optimizing the laser pulse corresponds to optimizing the system’s
parameters ∆ and Ω (control fields). To accomplish this, we make use of the QuOCS library in Python3.

4.3.1 Creation of the "get_FoM" function

The core of the algorithm is the creation of the get_FoM function that resembles our optimization
problem. Let us call this function F. We remember that we need to "feed" F with the parameter
pulses for it to return the FoM, which is the value we want to minimize. Practically, since we use
numerical computational methods to solve the problem, we must discretize the time duration of the
dynamics in a finite number of time steps, and that implies a discretization of the parameter pulses.
Hence, we create a list that defines the timegrid and for each parameter a list where the i-th element

3Python 3.11.2 https://www.python.org

https://www.python.org
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of the list defines the value assumed by the parameter at the i-th timestep. These lists are then passed
as an argument to F.

Let us now use the second hint defined at the beginning of the section, which implies that there
is no need to optimize all 4 parameter pulses. In fact, the only one that plays a significant role in
the realization of the gate and that consequently controls the dynamics of the system is the Rabi
frequency Ω1r. This reduces to excluding the detuning parameters and the Rabi frequency Ω01 from
the optimization, fixing them to constant values initially set to 1, therefore all we have to do is define
them only once in the Get_FoM function’s environment, whereas the list of the Rabi frequency has to
be updated by the algorithm and called by F in every iteration.

The next step is to calculate the time evolution of a generic initial state, within the F function. We
have a list of time-steps at our disposal, and we can use numerical computing algorithms to calculate
the integral in Eq. (4.3) such as the ones defined in the QuTiP library. However, differently from the
general method explained in Section 4.1, we decide to calculate the time evolution by applying a first
order approximation on the Hamiltonian. We assume the Hamiltonian to be sufficiently constant in the
time interval equal to the time-step considered. Therefore, we can locally assume for the time-evolution
to be well described by the time-dependent Schrödinger equation:

|Ψ(t2)⟩ = e−i
H(t1)

ℏ dt |Ψ(t1)⟩ ⇐⇒ U(t2) = e−i
H(t1)

ℏ dtU(t1) (4.8)

Where the Hamiltonian is constant, giving us the vector state’s evolution from t1 to t2, where t1 and
t2 represent two adjacent values of time in the time grid list, with time-step dt = t2 − t1. Thus, we
can calculate the time-evolution operator for the whole duration of the gate by iteratively calculating
the local time evolution for each time-step:

Uaim(t) =

N∏︂
i=1

e−i
H(ti)

ℏ dt (4.9)

Where N is the number of time steps defined in the time grid list and the Hamiltonian is the one defined
in Eq. (3.5). Let us stress that the Hamiltonian, which depends on the time-dependent parameters, is
calculated at time ti (i-th element of the time grid list) by setting each parameter, in our case Ω1r(ti),
equal to the i-th element of the respective parameter pulse’s list. The detunings, ∆01 and ∆1r and
Rabi frequency Ω01 are instead fixed to constant values. The Van der Waals coefficient C6

R6 is set to the
constant value know from Subsection much greater than the one of the parameters considered. In fact,
recalling 2.1.2, we need to impose this condition if we want the system to be close to the ideal regime
of Rydberg blockade (V ≫ ℏΩ, V ≫ ℏ∆) and access the entangling features of Rydberg atoms.

At this point, the only thing left to do is the calculation of the Figure of Merit. We now must
consider the first hint outlined at the start of the section. Since we only have control over the 8
computational states of the B basis, we have to restrict the operators to them. Recalling the explanation
in Section 3.3, we operate this restriction by applying the change of basis operator C introduced in Eq.
(3.14) to the time-evolution operator Uaim and to the c-c-phase gate UCCP :

ŨCCP = UCCP · C
Ũaim = Uaim · C

(4.10)

Finally, let us now examine the issue of defining the initial state and the optimization target4. The
first naive approach we could adopt is to choose an initial state given by a superposition of all the
computational states of the B basis, each one contributing to the initial state with the same coefficient
ai =

1
2
√
2

with i=1,..,8, in order for the vector state to be normalized. Hence, the optimization target
still turns out to be a superposition of all the states, with the coefficients that coincide with the ones
of the initial state except for the coefficient of the |111⟩ state, which becomes a8 = eiϕ 1

2
√
2
:

|Ψin⟩ =
7∑︂

x=0

|x⟩√
N

ccp gate−−−−−→ |Ψfin⟩ =
6∑︂

x=0

|x⟩√
N

+
eiϕ√
N

|7⟩ (4.11)

4which is the state resulting from the application of the c-c-phase gate to the initial state, see Section 4.1
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With N = 8, number of basis states. The states are written by converting the computational states
|ijk⟩ (with i,j,k = 0 or 1) from binary notation to decimal notation:

⃓⃓
22i+ 21j + 20k

⟩︁
. Now, if we

were to calculate the FoM as the state overlap fidelity, we would make a mistake, since the initial state
and the optimization target adopted do not fully describe the c-c-phase gate we are considering. That
means that we can find many other gates other than the c-c-phase gate which applied to the initial
state return the exact same optimization target, therefore the optimization of the parameter pulses
could lead to the creation of a generic gate that has nothing to do with the controlled-controlled-phase
gate.

An example of a rigorous approach consists of the following passages: calculate the state overlap
fidelity for each computational state chosen as initial state, thus obtaining 8 fidelities, then proceed to
calculate their norm and sum them. The quantity given by the sum is the one we define as FoM. In fact,
in this way we are sure that whatever initial state we choose, which is given by a specific combination
of computational states, the final state obtained will coincide with the optimization target.

We now also present another approach that differs from the latter in the way we calculate the FoM.
We consider each computational state as an initial state |Ψj⟩ on its own and proceed to calculate the
time-evolution with Eq. (4.2) where the unitary operator is given by Ũaim defined in Eq. (4.10). By
doing so, we obtain 8 final states |Ψj,aim⟩:

|Ψj⟩
ccp gate−−−−−→ |Ψj,aim⟩ , j = 1,...,8 (4.12)

Since the FoM has to quantify the distance between the target state |Ψj,T ⟩ and the final state |Ψj,aim⟩
we decide to calculate the actual distance between the two states. We do that for all 8 final states and
sum the distances together obtaining:

FoM =
8∑︂

j=1

∥ |Ψj,aim⟩ − |Ψj,T ⟩ ∥2 (4.13)

By examining this procedure more in depth, we comprehend that the FoM defined in Eq. (4.13)
is the same FoM given by defining a specific matrix distance between the operators ŨCPP and Ũaim

defined in Eq. (4.10).
To show this, let us now introduce a specific matrix norm called the Frobenius Norm [34]. Given

an operator A, the norm can be defined in the following equivalent ways:

∥A∥2F =
n∑︂
i

m∑︂
j

|aij |2 = Tr
[︂
A†A

]︂
(4.14)

Where n,m denote the number of rows and columns of the matrix. This norm induces a distance,
known as Frobenius Distance. Given two operators A1 and A2, the distance is defined as the Frobenius
norm of a matrix B equal to the difference of the two matrices: B = A2 −A1.

Let us now calculate the FoM as the Frobenius distance between the operators ŨCPP = Ũ
T

(the
c-c-phase gate is the target operator) and Ũ

aim
:

FoM2 =

n∑︂
i

m∑︂
j

|Ũaim
ij − Ũ

T
ij |2 (4.15)

We can now demonstrate that the Figures of Merit defined in Eq. (4.13) and in Eq. (4.15) are the
same FoM. Indeed, if we think of the gates as matrices and the states as vectors (columns), we see that
the j-th initial state, let us say the second (j = 2), is equal to |Ψ2⟩ = |001⟩ =

(︁
0 1 0 0 0 0 0 0

)︁T
where in the last notation it is written as a vector in the B basis. Therefore, if we define the columns
of Ũ

aim
as (υ1, .., υ8), once we apply the time-evolution operator Ũ

aim
to the initial state |Ψ2⟩ in

matrix notation, we obtain a final state given by the column υ2, which therefore has to be equal to
|Ψ2,aim⟩. Thus, by doing so for each initial state, we see that the 8 final states match the 8 columns
of the time-evolution operator and we can now convince ourselves that the distance between the j-th
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target state and the j-th optimization target is equal to the matrix distance between the j-th column
of the time-evolution operator and the j-th one of the c-c-phase gate operator. Finally by summing
the distances for j going from 1 to 8 we finally get that FoM1 = FoM2 = FoM .

Having now built the "get_FoM" function with FoM given by Eq. (4.15), we can build the Op-
timization algorithm following the steps neatly explained in the QuOCS GitHub website, for more
details see [18].

4.3.2 Optimization Settings

Now, we define all the parameters of the optimization problem, by collecting them in a particular
"json" file named "optimization dictionary". For instance, in this file we define what direct-search
method we want to use, the number of bits corresponding to the time grid and so on5. Let us now
display the main settings of the json file in our case:

• Algorithms: dCRAB and Nelder-Mead direct-search method, or also CMA-ES, both mentioned
in Section 4.1. In our case, the preferred direct-search method was NelderMead, but also CMA-ES
was used.

• Maximum number of function evaluations (in total) to perform and number of super-iterations
was set variably during the analysis.

• Basis selected: the Fourier basis, considering 3 or 4 elements of the basis to build the pulses.
Upper limit set to 3. The upper limit quantifies the variability of the pulse, e.g. the higher
the upper limit, the greater the number of oscillations, thus higher the frequency. During the
analysis these number were changed several times: the ones of basis vectors ranging from 2 to
10, whereas the upper limit from 2 to 8.

• FoM goal, set to 0.00001

• Maximum and minimum values of the pulses respectively set to 2 and -2, and the number of bins
to the maximum value set to 101. The interaction strength V is set to 60.

• Inital guess of the pulse set in different ways during the analysis.

• Duration of the gate set to 15.

In particular, the following starting settings have been set for the pulses in the various attempts
made:

1. setting the initial pulses to be triangular, in analogy with Ref. [10]. This case was soon discarded
since the FoM obtained were very high and much more computational time was needed for them
to reach values comparable with other initial guesses, such as the FoM obtained by setting the
initial pulse to a constant.

2. setting the initial pulses to the sine function: sin
(︁
2π
τ t

)︁
3. setting the initial pulses to zero and to a constant pulse

4.4 Results

Many attempts were made before reaching an acceptable optimization. Let us overview some of
the choices made that consequently lead us to efficiently minimizing the FoM.

First of all, we fix all of the parameters except for Ω1r, as theorically predicted in Section 3.4.
Unluckily, this assumption does not lead to an efficient minimization of the FoM. In this case, by
setting 6 super-iterations and 20000 maximum function evaluations we obtain the following results:

5to see the complete setting of the json file, see Json Settings

https://github.com/Quantum-OCS/QuOCS
https://github.com/Quantum-OCS/QuOCS/blob/develop/Documentation/Settings_in_Optimization_Dict.md
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By setting the initial pulse to be constant (set to 1), a FoM equal to 6 is reached. By setting it to zero
we reach FoM = 7. By setting it to a sine function we obtain FoM = 7.2.

Thus, we decide to perform the optimization with more than one pulse, attempting for example to
optimize all 4 pulses. In this case, by setting the initial guesses to zero we obtain FoM = 4, whereas
with initial guesses equal to the sine function for all 4 pulses we obtain FoM = 1.3. Being these
values better than the previous ones with the single pulse, we assume to be proceeding in the right
direction. Then, after several attempts, we find that the winning combination is given by optimizing
all 4 parameters and setting each initial pulse differently, thus achieving the FoM goal, FoM = 9.4·10−6.

Parameter pulses Initial Guesses Basis Vectors
Ω01 constant = 0 3
Ω1r sine function 4
∆01 constant = 0.1 3
∆1r sine function 4

Table 4.1: Winning combination of initial guesses and number of basis vectors with respect to the parameter
pulses to achieve FoM goal of 10−5

We now want to conclude by comparing ŨT = ŨCCP with Ũaim which corresponds to the optimized
time-evolution operator:

Figure 4.1: Comparison between ŨCCP with Ũaim. Components of Uaim rounded to the third decimal digit.

We observe that the two gates are almost identical. Therefore, we can confidently state that the
optimization has been successfully achieved: we have found the parameter pulses that realize the
controlled-controlled-phase gate.

Finally, we display here the pulses obtained by two separate optimizations, starting from the same
combination displayed in Table 4.1, both achieving the FoM goal:
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(a)

(b)

Figure 4.2: Optimized Paramater Pulses for the realization of the c-c-phase gate (a) Optimized Pulses with FoM
equal to 10−5. (b) Optimized Pulses with FoM equal to 9.4 · 10−6



Chapter 5

Conclusion

In this Thesis we have focused on the quantum optimization of a particular three-qubit gate named
controlled-controlled-phase gate.

We initially analyzed the main features of Rydberg atoms, especially focusing on the Rydberg
Blockade phenomenon, acknowledging its crucial role for entangling gates. We later observed how
it introduces entanglement by examining the case of the two-qubit controlled-phase gate, where we
have concluded that different trajectories traced by initial states |01⟩ and |11⟩, are to be attributed to
the Rydberg blockade effect. The different trajectories then lead the initial states to acquire different
phases and by satisfying the relation in Eq. (2.14) we implement the controlled-phase. In addition,
the Hamiltonian of the controlled-phase gate supplied us with the the tools to generalize the system
to a three-qubit gate.

We then observed that the symmetry of the c-c-phase gate translates into a specific geometry of
the setup where the Rydberg atoms are placed in an equilateral triangle. Furthermore, by performing
the testing in Chapter 3, we found that the Lie Algebra of the Hamiltonian does not match with
the vector-space of permutation-invariant operators. We also figured out a general way to generate a
Hermitian Lie Algebra starting from the Hermitian generators of the Hamiltonian.

In the second testing phase we have discovered a new approach that can be adopted for the imple-
mentation of a multi-qubit gate, that is the restriction of gate to the logical basis where we only we
consider the computational states by excluding the Rydberg state |r⟩, which corresponds to filtering
the gate’s action to the states we can actually measure and manipulate for quantum computation.
Therefore, by rearranging the columns of the gate, we only need to require that the gate has the form
of the block matrix defined in Eq. (3.15), and since the Lie Algebra is Hermitian, we can impose this
by filtering the Lie Algebra to the logical basis and checking if the filtered generator is contained in
the filtered Lie Algebra. In this way, we found the first remarkable result of the project, namely that
the filtered c-c-phase gate can be achieved at least from a theoretical point of view by our Rydberg
Setup.

Moreover, two important aspects emerged from the third check. On one hand, we can still obtain the
c-c-phase gate by neglecting three parameters in the dynamics of the system, which are: the detunings
∆01, ∆1r and the Rabi frequency Ω01. On the other hand, it is impossible to obtain an entangling
gate without considering the dipole-dipole interaction between the Rydberg states, confirming what
previously stated in examining the Rydberg Blockade.

In conclusion, we explored a generic Quantum Optimal Control problem to fully comprehend how to
apply it to our specific case. We then learned how to transform the optimization of several pulse shapes
into a minimization problem of a functional, and how to solve it by applying the dCRAB algorithm.
Moreover, we figured out the right way to write the functional (Figure of Merit) of the problem,
by introducing the Frobenius Distance and finally, after several attempts, neglecting the decoherence
time error, we accomplished the minimization of the Figure of Merit with FoM = 10−5, successfully
optimizing the parameter pulses. We also found out that, differently from what theoretically predicted
in Section 3.4, it is incredibly difficult to optimize the laser pulse by only varying the Rabi frequency
Ω01. Therefore, even though the other parameters are negligible in theory, they are almost essential
for the actual optimization of the controlled-controlled-phase gate.
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