
università degli studi di padova

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE

CORSO DI LAUREA MAGISTRALE IN

INGEGNERIA CHIMICA E DEI PROCESSI INDUSTRIALI

Tesi di Laurea Magistrale in
Ingegneria Chimica e dei Processi Industriali

Optimal design of feasible clinical
tests for the identification of

physiological models of type 1
diabetes mellitus

Relatore: Prof. Fabrizio Bezzo

Correlatore: Dr. Federico Galvanin

Laureando: DAVIDE PRADELLA

Anno accademico 2015/2016





Abstract

Type 1 diabetes mellitus is a disease characterised by inadequate insulin secretion,

causing damaging imbalance to the glucoregulatory system. Cutting edge therapies

involve the use of an artificial pancreas, that is a device capable of maintaining a

physiological glucose concentration through accurate insulin infusions. Customisation

of these devices to the individual needs may be accomplished provided that a precise

identification of the patient is performed.

This work considers optimal model-based design of experiment techniques to devise

a new clinical test for the identification of model parameters in subjects affected by

T1DM. The pivotal feature required for this test is its implementation feasibility. In

order to satisfy this requirement, a novel approach based on heuristic indices is in-

troduced to assess several aspects that could impact on the practical applicability of

the designed protocol. Among the criteria considered, a particular emphasis is put

on assuring safety conditions for the test and on extracting the maximum information

content for a precise estimation of the model parameters.

A robust clinical protocol is devised, which exhibits statistically satisfactory parameter

estimation capabilities and complies with the requirements imposed by practicality.
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Riassunto

Il diabete mellito di tipo 1 è una malattia autoimmune che causa la progressiva di-

struzione delle cellule beta del pancreas, da cui deriva l’incapacità di produrre insulina

e quindi di regolare la glicemia. Pur riguardando una percentuale ridotta della popo-

lazione diabetica, colpisce milioni di persone in tutto il mondo, generando una spesa

economica di miliardi di dollari per la sua cura e il trattamento delle complicazioni che

ne derivano.

Il trattamento tradizionale richiede la somministrazione giornaliera di molteplici dosi

di insulina da parte del paziente. Questo metodo, oltre ad essere invasivo, non consente

un controllo ottimale della glicemia ed è influenzato dall’abilità del paziente. La terapia

più promettente in fase di sviluppo consiste nell’impiego di un pancreas artificiale, che

consenta di sopperire all’incapacità del paziente di produrre insulina da sè. Il funziona-

mento di questo dispositivo sfrutta un algoritmo di controllo basato su un modello del

paziente diabetico. Affinchè questa terapia risponda alle esigenze del singolo soggetto,

è richiesta un’accurata identificazione dei parametri del modello mediante opportuni

test clinici.

Questa tesi si propone di progettare test clinici che consentano un’identificazione otti-

male dei parametri di modelli fisiologici relativi a soggetti diabetici, tali da soddisfare

i requisiti di sicurezza richiesti per una loro implementazione clinica.

Il metodo impiegato nell’analisi è la progettazione di esperimenti basata su modello,

che permette di ottenere la procedura ottimale da seguire nell’esecuzione del test sia

in termini di campionamento sia di variabili di controllo. La progettazione del nuovo

protocollo è volta a massimizzare la quantitità di informazione ottenibile attraverso un

campionamento discreto, ottemperando ad alcuni vincoli imposti sulla sicurezza.

La capacità identificativa dei test viene valutata tramite alcune statistiche, relative

alla stima dei parametri su due pazienti simulati, affetti da diabete in maniera più o

meno severa. La valutazione complessiva dell’attuabilità del test avviene sulla base

di una serie di indici euristici introdotti a tal proposito. Questi, oltre a considerare

l’informazione fornita dal test, tengono in considerazione la sua sicurezza, invasività e

durata.

L’analisi prende avvio dalla valutazione dei due test tradizionali usati in ambito clinico:
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il test di tolleranza orale al glucosio e quello endovenoso. Partendo da tali basi, il lavoro

si estende poi alla progettazione di nuovi protocolli con l’obiettivo principale di garan-

tire una identificazione statisticamente soddisfacente del soggetto. I risultati forniscono

importanti indicazioni, tra cui la migliore efficacia di un test orale per l’identificazione

ma, al tempo stesso, la necessità di migliorare la sicurezza associata a tali protocolli.

Al fine di garantire una maggiore affidabilità al test, a fronte dell’elevata variabilità

osservata nelle riposte da soggetti differenti, si ricorre all’impiego di tecniche di pro-

gettazione robusta. Questo metodo simula una popolazione diabetica per trarre in-

formazioni statistiche sulla variabilità media osservata nelle risposte, sulla base della

quale viene progettato un nuovo protocollo. Il test ottenuto in tal modo, oltre a rea-

lizzare stime parametriche soddisfacenti, si dimostra efficace nell’ottemperare a tutti i

requisiti richiesti per un’implementazione clinica, in modo particolare garantendo un

sostanziale miglioramento del livello di sicurezza per il paziente.
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Introduction

Type 1 diabetes mellitus (T1DM) is a disease affecting millions of people around the

world and causing billions of dollars to be spent on its treatment and complications

every year. This metabolic disorder is characterised by the lack of insulin in the or-

ganism, due to the autoimmune destruction of the pancreatic beta cells. As a result,

high blood glucose concentrations are observed in the patient, which lead to unsafe

conditions that, if prolonged over time, may cause severe damage.

The typical management of this disease requires the patient to perform multiple daily

insulin injections, in order to maintain the normoglycaemia. There are several draw-

backs related to this therapy, such as it is highly invasive and relies on the ability of

the patient to keep his/her glycaemia under control.

The most promising therapy for the future is represented by the use of an artificial

pancreas, that is a device capable of mimicking the action of the pancreas in insulin

delivery. Such a device requires a control algorithm for the calculation of the insulin

dosage based on the continuous glycaemia measurements. The availability of a phys-

iological model, describing the glucoregulatory system of a diabetic patient, allows

assessing the algorithm performance on a simulated subject. Alternatively, in model

predictive control, the model itself is used in the algorithm, so as to customise the

therapy to the individual.

A tailored therapy requires a precise identification of the model parameters of the

patient by means of experimental measurements. Since the condition of the subject

is usually unknown a priori, it is necessary to adopt optimal design of experiments

techniques in order to devise tests, which comply with safety requirements. The goal

of the thesis is to apply a model-based design of experiments approach to conceive

clinical tests allowing for a statistically satisfactory identification of the parameters of

a simple physiological model. Since the main focus is on the feasibility of the designed

protocol, a novel approach based on five heuristic indices is introduced based on which

the overall performance of the different designs may be compared.

The first chapter presents an overview of the disease and its global impact. Then, the

chief clinical tests used for clinical and research purposes are discussed, along with the

current therapy and the future perspectives on its management. Much relevance is
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given to the review of the most important physiological models of T1DM that have

been proposed over the years for the description of the glucose and insulin dynamics.

Finally, the motivation for the use of a model-based design of experiments (MBDoE)

procedure is explained, and the objectives of the thesis are outlined.

The second chapter deals with the mathematical part of the model-based design of

experiments. Firstly, the Lynch and Bequette model is detailed, since it is the one

selected for the simulation of the diabetic patients in this work. Secondly, the theory

underlying MBDoE is presented, along with the in silico generation of experimental

data and the parameter estimation procedure. Lastly, five heuristic indices are intro-

duced, so as to evaluate the feasibility of the designed protocols.

Chapter three is about the preliminary analysis of the Lynch and Bequette model,

by means of two different standard clinical tests. This allows to understand how the

model, i.e. the simulated patient, reacts to different types of stimuli and how much

information can be extracted with these two protocols.

In chapter four, the different designed protocols obtained with MBDoE are presented

and their parameter estimation capability evaluated using two parametric sets, repre-

senting diabetic patients with different illness severity. Eventually, a comparison among

the several designed tests is made in order to evaluate their overall performance.

In chapter five, a robust design of experiments approach is adopted to reduce the vari-

ability of the outputs. This method allows to devise a clinical protocol which improves

the safety conditions when an unknown subject is to be identified.



Chapter 1

Diabetes mellitus

In this chapter an overview of diabetes mellitus is presented with a focus on the dis-

ease, its diagnosis and therapy. The different types of diabetes are analysed, with a

particular emphasis on type 1, which is the main objective of this work. Then, the

social and economic impact of diabetes are discussed and the main glucose tolerance

tests utilised for its diagnosis are outlined. Much relevance is given to an overview of

the proposed physiological models of type 1 diabetes and their role in state-of-the-art

therapies, such as the use of an artificial pancreas. Going into detail, the importance

of designing suitable clinical protocols for the identification of the parameters of phys-

iological models is dealt with. Finally, the objectives of this thesis are pointed out

along with a novel approach based on indices for the evaluation of the designed clinical

protocols.

1.1 Introduction

Carbohydrates introduced in the body through food are processed in the digestion into

their monomers: glucose, galactose and fructose. Both galactose and fructose are con-

verted into glucose by the liver, in order to make them usable for the cells. Glucose

constitutes the main source of energy for the organism and is carried to the various

parts of the body where is needed through blood circulation. The level of glucose in

blood is referred to as glycaemia and it is regulated by the glucoregulatory system

through two hormones secreted by pancreas: insulin and glucagon.

Insulin is synthesised by beta cells, which are located in the islets of Langerhans in the

pancreas. This hormone is responsible for some of the glucose to be directly used by

some cells, such as cerebral cells and red blood cells, and for the excess to be stored

as glycogen in the liver. On the opposite, glucagon is secreted by alpha cells in the

pancreas and carries out the conversion of glycogen back to glucose when glycaemia

decreases.
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Diabetes mellitus is a metabolic disorder characterised by high glucose concentrations

in blood due to insufficient insulin secretion, insulin effectiveness or both. Enduring de-

viations of blood glucose concentration from the physiological values (normoglycaemia)

are denoted as hyperglycaemia, if they exceed the upper level of normoglycaemia, and

hypoglycaemia, if they go beyond its lower limit. Persistent hyperglycaemic conditions

can cause serious consequences mainly to the nerves and blood vessels. If the subject

does not receive an adequate treatment, potentially deadly conditions may occur, such

as cardiovascular diseases, amputation, blindness and kidney failure. Similarly, hypo-

glycemic conditions should be avoided since they can lead to shakiness, fatigue and

eventually coma.

1.2 Diabetes classification

Three types of diabetes mellitus have been identified: type 1 and type 2, which regard

almost the totality of the people affected, and gestational diabetes, which accounts for

the remaining part.

1.2.1 Type 1 diabetes mellitus

Type 1 diabetes mellitus (T1DM), previously referred to as juvenile-onset or insulin

dependent diabetes mellitus, is caused by the autoimmune destruction of pancreatic

islet beta cells. Being incapable of producing the insulin by itself, the subject needs

multiple daily external administrations for survival.

In the absence of insulin, the three main target tissues where glucose is normally

delivered (liver, muscle and fat) are not capable of taking it up so that it flows, along

with amino acids and fatty acids, in the bloodstream. Inability of glucose to enter

into the cells causes the organism to use fatty acids for energy production; however,

fatty acids utilisation produces ketones, which tend to accumulate in blood being non-

volatile and, due to their acidity, lower pH.

Symptoms are increased urination and thirst, constant hunger, weight loss, recurrent

blurred vision and fatigue.

T1DM typically afflicts children and young adults and no evidence of a correlation

with body weight has been identified. The causes of this disease are still unknown,

even though it is generally agreed that T1DM is related to a complex interaction

between genes and environmental factors. In light of that, it is not preventable with

the current knowledge. Nevertheless, a swift diagnosis and an adequate therapy allow

the individual to conduct a decent life, even if life expectancy is reduced by more than

10 years [1].

T1DM is the target of this work because no prevention is possible and, although it
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affects only 10% of the diabetic patients, it still represents a huge number of people.

1.2.2 Type 2 diabetes mellitus

Type 2 diabetes mellitus (T2DM), previously known as adult-onset or non-insulin

dependent diabetes mellitus, derives from a relative insulin deficiency. Subjects affected

by this illness show heterogeneous conditions ranging from a severe resistance to insulin

but unaltered secretion capability to defects in insulin secretion [2]. The symptoms of

T2DM may be similar to those of T1DM (excessive urination and thirst, increased

hunger, vision changes), even though they are less evident, so that the diagnosis often

occurs some years after the disease onset.

T2DM accounts for nearly 90% of the people affected by diabetes all over the world

[3] and strong correlations have been highlighted between its onset and excess body

weight and sedentary lifestyle.

1.2.3 Gestational diabetes mellitus

Gestational diabetes mellitus (GDM) is characterised by hyperglycaemic levels during

pregnancy in an individual not previously affected by diabetes. Occurrence of this

disease may lead to complications during pregnancy and delivery, moreover, it enhances

the risk of incurring in type 2 diabetes mellitus in future life.

1.3 Global impact of diabetes mellitus

According to the World Health Organization [4], in 2012 diabetes was directly respon-

sible for the death of 1.5 million people in the world, especially in low-income countries,

and this number is expected to increase more than 50% in the next 10 years. In 2014,

diabetes was estimated to affect 422 million adults around the world [5]. From Figure

1.1, it can be observed as the number of people affected in the period 1980-2014 has

significantly increased in poor and developing countries (in orange and green). On the

contrary, in western countries (in light blue), apart from the USA, prevention started

earlier, hence the increase has slowed down.

These astounding figures explain why, in developed countries, 10% or more of the

health budget is allocated to the treatment of diabetes and its complications. Direct

medical costs associated with diabetes are related to its prevention and treatment.

These include inpatient hospital care, outpatient and emergency care, medications and

medical supplies such as injection devices and self-monitoring equipment.

Based on recent cost estimates, it has been evaluated the direct annual cost of diabetes

to the world amounts to US$ 825 billion [7]. This figure has been estimated by the
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Figure 1.1. Countries with the largest number of adults with diabetes in 1980 and 2014 (colours for
each country indicates its region) [6].

International Diabetes Federation to have more than tripled over the period 2003-2013

due to the increase in the number of people affected and rise in the per capita diabetes

spending. The national expense for diabetes ranks these countries at the forefront:

China ($ 127 billion), the USA ($ 105 billion), India ($ 73 billion) and Japan ($ 37

billion).

Nearly 60% of the global cost is borne by low-income and middle-income countries,

where significant parts of medical expenses are generally paid out-of-the-pocket [7],

which affects treatment adherence and causes serious financial hardships for patients

and their families.

1.4 Standard clinical tests

Several standard clinical tests have been set up for the diagnosis of diabetes and some

of them are also used for research purposes. They are generally based on a stimulus-

response pattern, so the patient receives a glucose meal and glycaemia is measured

at fixed times. The diagnosis is straightforward once the test results are available by

comparison with standard validated values. A quick overview of the most established

clinical tests is presented below.

• The Oral Glucose Tolerance Test (OGTT) is widely used for screening, since it

is the one recommended by the World Health Organization [8]. The test is to be

performed in the morning after the subject, in the 3 days before, has followed an
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unrestricted diet with at least 150 g carbohydrates/d and an overnight fast prior

to the test. A pre-test sample is collected to assess fasting values, then, at t=0

min, 75 g of glucose are administered in the form of a drink with 250-300 mL of

water over the course of 5 min. For screening purposes, samples are taken at end

of the test, which lasts 2 hours while, if the aim is model identification, more

samples are collected in between.

• The Intravenous Glucose Tolerance Test (IVGTT) was proposed by Bergman

[9] in 1981 to evaluate glucose and insulin sensitivity. The patient has to be

consumed at least 300 g carbohydrates/d in the 3 days preceding the test, which

is carried out in the morning following an overnight fast. Three 2-mL pre-test

samples are taken 13, 8 and 3 min prior to the beginning of the test to monitor

basal values, following which an intravenous glucose injection is performed at

300 mg/kg in an antecubital vein, starting at t=0 min and over a 60 s duration.

During the test, 23 2-mL additional samples are collected at times: 2, 4, 6, 8, 10,

12, 14, 16, 19, 22, 27, 32, 42, 52, 62, 72, 82, 92, 102, 122, 142, 162 and 182 min.

Since it is more invasive for the subject, it is mainly used for research purposes,

for instance to detect insulin sensitivity in response to a variation in glycaemia.

• The Postprandial Glucose Test is used both for screening and evaluating the

effectiveness of a treatment in diabetic patients. It is executed after the subject

has eaten a meal containing at least 100 g of carbohydrates and has fasted for 2

h with a variable sampling schedule.

• The Euglycemic Hyperinsulinemic Clamp, discussed by De Fronzo et al. [10], is

a test used to evaluate the insulin resistance while injecting an amount of glucose

sufficient to compensate the rise in insulin. The test lasts 2 h and the glucose

infusion profile applied in the last 30 minutes quantifies insulin sensitivity.

The OGTT is currently the most employed test for diabetes diagnosis because it has

been widely validated and, like the postprandial, is an oral test, which means it is

less invasive for the subject. Nevertheless, the choice of the optimal test for research

purposes is not trivial and it is worth being carefully analysed. In fact, it must take

into account many different aspects, such as:

• low stress for the subject,

• maximisation of the information obtainable,

• inherent safety throughout the execution.
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1.5 Type 1 diabetes mellitus management

Safety conditions for the patient affected by T1DM are ensured by maintaining its nor-

moglycaemic values through exogenous injections of insulin to prevent hyperglycaemic

conditions. Dosage and timing of the insulin administration are crucial to avoid also

the risk of incurring in hypoglycaemic values. In the past, the approach consisted of

instructing the subject to check the glycaemia during the day through self-monitoring

of blood glucose. Blood samples were collected from the fingertips and glycaemia was

read on a specific device. Multiple insulin injections are required during the day, usu-

ally long-lasting effect insulin is administered once a day and additionally short-acting

insulin before meals. This therapy is not expensive but it is invasive, due to the exoge-

nous injections, and does not allow an optimal glycemic control. Despite this technique

is still used, thanks to technological improvement more effective methods have emerged

allowing for continuous glucose monitoring. Frequent measurement permits, on the one

hand, to study the dynamics of glucose-insulin in the body and, on the other hand, to

enhance the treatment through an ad hoc therapy for the patient. Moreover, continu-

ous glucose monitoring is a breakthrough because it paves the way to the advent of an

artificial pancreas, that is a device capable of reproducing the function of this organ.

In the last 40 years, much work has been done to develop an artificial closed-loop

pancreas able to adjust the insulin infusion in response to glucose changes. In fact,

this kind of device would be less invasive for the subject, being either wearable or

implantable, and automate patient’s action. The first generation of artificial pancreas,

called Biostator, was based on two manipulated variables (glucose and insulin infu-

sion) and programmed to operate minimising hyperglycaemia while avoiding hypogly-

caemia [11]. Nowadays, the frontier is to develop portable devices (wearable artificial

pancreas, WAP), which continuously monitor glucose and provide insulin whenever

required. WAPs typically consist of three parts, as displayed in Figure 1.2:

Figure 1.2. Wearable artificial pancreas components [12].

• a continuous glucose sensor, which detects the glycaemia at regular intervals;
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• a controller, to regulate the insulin infusion rate through the use of control algo-

rithms;

• a continuous insulin pump for its administration, via a cannula inserted under

the skin.

Crucial for a WAP is to have available a reliable physiological model of the glucoreg-

ulatory system, i.e. representing both glucose and insulin dynamics, for the controller

to be able to predict at each time the optimal insulin infusion rate. While the first

devices based on a closed-loop configuration have appeared on market, much efforts

are still addressed to find robust glucose sensors and a reliable control algorithm. The

major challenges remaining are related to sensor calibration errors, unknown meal dis-

turbances, physical activity effect and insulin-glucose sensitivity variability [13].

A major approach in the development of WAP control algorithms is represented by the

use of model predictive control (MPC) strategies, which consist in applying a model to

predict the future output of blood glucose while optimising the future control moves,

namely the insulin infusion. Typically, the objective function to be minimised is the

difference between the desired set point and the blood glucose value estimated by

the model over the prediction time horizon [14]. This fact highlights the necessity of

identifying a reliable model in order to assure optimal performance to the artificial

pancreas.

1.6 T1DM models

An accurate description of the glucose-insulin dynamics in the body is desirable, in

order to make predictions on the behaviour of the subject to possible disturbances,

such as meals or physical exercise.

There are two main categories of mathematical models for the prediction of blood glu-

cose concentration: data-driven models and knowledge-driven models. The former are

empirical models based on a black box approach, that is they consider only input-output

data neglecting any physiology. These models are advantageous over knowledge-driven

ones because of their structural simplicity and low time required for their development.

However, data-driven models lack of any insights on glucose and insulin levels in tis-

sues and organs, since they do not consider any physiological information. On the

other hand, knowledge-driven models take into account the physiological interactions

between glucose and insulin in the glucoregulatory system. Therefore, the effort re-

quired to develop these models is significantly higher, as they usually involve systems

of differential and algebraic equations. The knowledge-driven models can be further

divided into lumped or semiempirical models and comprehensive models. The former
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models entail a limited number of dynamic equations, in which various organs or tis-

sues in the body are lumped into one or more compartments [15]. The latter models

are more complex and require more time for development than lumped models, which

will be examined in detail in the next section.

1.6.1 Lumped physiological models

Bolie was a pioneer in the development of physiological models of the glucoregulatory

system. In 1961, he proposed a linear model based on two differential ordinary differen-

tial equations representing glucose and insulin concentrations, based on his condensed

theory. According to this theory, the liver, pancreas and peripheral tissues commu-

nicate with each other by means of a single compartment through which glucose and

insulin concentration changes are distributed rapidly and uniformly [15]. The limita-

tions of this model are connected with the omission of the action of the kidneys and

intravascular-extravascular differences in concentrations of insulin and glucose.

The most widely known and used model was proposed in 1981 by Bergman et al. [9]

and is generally referred to as minimal model. It was originally developed to measure

insulin sensitivity and glucose effectiveness in an IVGTT, but it has gained popular-

ity due to its relative simplicity. In fact, it uses only three differential equations and

a few parameters to describe the effect of insulin on the regulation of glucose. It is

a compartmental model composed of two submodels: one to account for the glucose

disappearance and the other for the insulin kinetics, as shown in Figure 1.3.

Plasma	insulin	 REMOTE	INSULIN	
COMPARTMENT	

GLUCOSE	SPACE	 Periphery	Liver	

INSULIN	
DISTRIBUTION	

SPACE	

secre@on	 disappearance	

Figure 1.3. Schematic of compartments in the minimal model: glucose disappearance (above) and
insulin kinetics (below).

Glucose disappearance is characterised by assuming a remote insulin compartment,

where plasma insulin enters and can act effectively on the dispersal of glucose into

the periphery and the liver and on the inhibition of hepatic glucose production. Post-

prandial insulin secretion can be distinguished in a first-phase release, which begins
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within two minutes of the meal consumption and lasts 10-15 minutes and a following

second-phase release, which is responsible for restoring of normoglycaemia. Therefore,

first-phase insulin release is represented as a bolus accessing the plasma compartment

at the time of the glucose injection, whereas the second-phase insulin secretion is de-

scribed by the third differential equation of the model. The minimal model presents

two strong limitations: firstly, it does not allow representing an exogenous insulin in-

jection and, secondly, no description of the rate of glucose appearance after a meal is

permitted. These limitations make the model not suitable for describing the typical

insulin treatment in a T1DM individual.

A more comprehensive model was proposed by Lynch and Bequette (LB model) in

2002 [16], which is in turn derived from Fisher’s model (1991). Fisher’s model is a

modification of the minimal model, where the three differential equations are adjusted

to take into account glucose absorption after a meal. In addition, since it has been

adapted to T1DM, it omits the term of insulin secretion, which is replaced by an ex-

ogenous insulin infusion term. The LB model adds a fourth differential equation to

link blood and subcutaneous glucose concentrations accounting for a first order delay

between them. A schematic of the LB model is presented in Figure 1.4 with the possi-

ble manipulable inputs, i.e. glucose meal and insulin infusion, and measurable outputs,

i.e. glucose and insulin concentrations.

INSULIN	SPACE	 REMOTE	INSULIN	
COMPARTMENT	

GLUCOSE	
SPACE	 Periphery	

Liver	

clearance	
Insulin,	I(t)	

Insulin	
infusion,	U(t)	

Gut	
Glucose	meal,	A	

Subcutaneous	
Essues	

Subcutaneous	glucose	
concentraEon,	Gsc(t)	

Blood	glucose	
concentraEon,	
G(t)	

Glucose	
uptake	rate,	
D(t)	

Figure 1.4. Schematic of Lynch-Bequette model with inputs and outputs.

Discrete results were achieved by Lynch and Bequette in the application of the model

to model predictive control, even though lack of representation during food assumption

and nocturnal periods was observed. In 2006, Van Herpe et al. proposed a modified

minimal model whose extended time validity makes it appropriate to control blood

glucose concentration in intensive care unit patients [17]. At the same time, Roy et al.

[18] developed an extended minimal model which considers also free fatty acids, which

play a relevant role in altering the glucoregulatory system and thus are represented
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with an additional differential equation.

Several clinical and in vitro studies have shown that pancreatic insulin secretion follows

rapid small amplitude and slower large amplitude oscillatory behaviour depending on

the glucose infusion [15]. This fact has been considered by Sturis et al. [19] in develop-

ing a new physiological model of six ordinary differential equations and five nonlinear

equations in the attempt to represent the slow oscillations of insulin and glucose. In

2000, Tolic et al. [20] introduced two models of insulin receptor dynamics in the model

of Sturis et al. Later, Bennett et al. recognised that there were three variables in the

model of Sturis et al. to represent the delay of plasma insulin to inhibit hepatic glu-

cose production which had no clinical meaning. Therefore, they simplified the original

model reducing the 6 ODEs to 3 by introducing an explicit time delay [21].

In 2004, Hovorka and Wilinska developed a more detailed model, known as Hovorka-

Wilinska model [22], which permits a better description of the glucoregulatory system,

taking into account also the absorption of subcutaneous short-acting insulin. The

model includes three separate subsystems: one for glucose, one for insulin and one for

insulin action and entails an increased complexity due to the higher number of differ-

ential equations and model parameters. Nevertheless, it has been proved to be effective

for the characterisation of glucose homeostasis.

One of the latest models has been proposed by Dalla Man et al. in 2007 [23] to describe

accurately glucose assumption through an oral meal. The model consists of a glucose

and an insulin subsystem. The glucose subsystem is divided into two compartments:

the first one accounting for glucose masses in plasma and rapidly equilibrating tissues

and the second one in the slowly equilibrating tissues. The insulin subsystem is char-

acterized by a two-compartment model: one considering insulin mass in plasma and

the other in liver. The model was derived using data on normal subjects, thus addi-

tional modifications are required for its extension to T1DM. Moreover, the fact that

it is a mean model must taken under consideration because it could affect individual

prediction capabilities.

1.7 Design of clinical tests for model identification

The importance of having a reliable model of T1DM, when it comes to the design of

an artificial pancreas, has already been stressed above, so now the relation between

physiological models and clinical tests can be discussed.

Standard clinical tests are mainly used for the diagnosis of diabetes so that, based on

their results, it is possible to state if the patient is ill or healthy. Nevertheless, they are

of primary importance also for research purposes, in order to determine the parameters

of physiological models, that is to identify the subject.
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In the preliminary model analysis, the aim is, given a set of candidate models and

some variables to be measured, to determine whether it is possible to design an experi-

ment that allows to univocally identify the parameters of these models (identifiability)

and to distinguish the different model structures from one another (distinguishability).

Structural identifiability is a condition that guarantees that the same input, applied to

the same model and at the same initial conditions, but using different parameter vec-

tors, results in predicted output trajectories not overlying. Distinguishability, instead,

ensures that two different models with different parameter vectors and with the same

input and initial conditions generate two predicted output trajectories not overlying

[24]. Once verified that the proposed model is endowed with structural identifiability

and distinguishability, the identification of model parameters can be examined. Unique

parameter identification depends on several factors: the structure of the model, the

type of data collected in the experiment, sampling times at which data are collected

and the level of input perturbation (oral/intravenous glucose and pattern of subcuta-

neous/intravenous insulin administrations) induced during the clinical test [15]. An

accurate estimation of model parameters results in a model tailored on the individual

subject, which can provide enhanced care therapy, for instance realising a customised

artificial pancreas.

When performing a clinical test, an excitation pattern consisting in a glucose admin-

istration is applied to the subject and, depending on this solicitation and on how the

response is detected, the parameter estimation may be more or less precise. This issue

is not new, since in 1981 Bergman [9] had already pointed it out, stating that the

IVGTT he had analysed could possibly not represent the best stimulus pattern for the

estimation of metabolic parameters. Bergman suggested that using different temporal

patterns for the glucose and insulin administration could improve the process. In fact,

in 1987 he showed that the injection of insulin some time after glucose in the subject

leads to an increased precision in the estimation of the parameters [25].

More recently, the possibility to obtain better parameter estimation using different

tests has emerged. A schematic of the general procedure to be applied is shown in

Figure 1.5. Initially, the test is designed, subject to the contraints to be met, making

use of model-based design of experiments (MBDoE), then the experiment is carried out

and model parameters are identified. Finally, statistical analysis is used to determine

the accuracy of the estimated parameters.

Applying MBDoE techniques allows to design alternative clinical tests, derived from

the standard ones, which can produce relevant improvement on parameter estimation

while meeting also certain constraints. Adopting the Hovorka-Wilinska model, Gal-

vanin et al. [26] have shown that modifications of some standard clinical tests, like the

OGTT and the postprandial, can guarantee more accurate parameter estimation.
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Test	design	(MBDoE)	
subject	to	constraints		

Test	execu8on	

Model	parameters	
iden8fica8on	

Sta8s8cal	analysis	of	
the	es8mated	
parameters			

Constraints	are	
sa8sfied	throughout	

the	test	

Figure 1.5. Steps to parameters identification using MBDoE procedures.

In this work three variables were optimised subject to safety constraints on the indi-

vidual: carbohydrates content of the meal, insulin infusion rate and sampling times. It

was proved that a statistically satisfactory parameter estimation for the single subject

is achievable through modified clinical protocols, even though some limitations were

encountered, such as excessive length (from 10 to 14h) and a difficult optimisation of

exogenous insulin administration. Galvanin et al. [27] have also investigated the use of

an advanced MBDoE technique that combines the online model-based design of exper-

iments with the backoff-based MBDoE in the design of clinical tests. This approach

allows to use experimental data as soon as they are available to adjust the design and

takes into account the uncertainty associated with model parameters in order to design

an optimally informative and safe test. Although parameter estimation achieved using

this method is satisfactory, there could be some issues related to the duration of the

test and restoration of basal values. Therefore, the need for more viable tests is the

starting point for further investigations on the topic.

In 2014, Laguna et al. [28] have enquired an identification method based on interval

analysis, which takes into account both variability of the subject and model impreci-

sions. The leading criterium of the procedure is the minimisation of a composite cost

index consisting of a glucose envelope width and an Hausdorff distance-based error

with respect to the envelope. Experimental tests showed that this kind of approach

has good prediction capability in average and better identification performances when

the maximum intra-patient variability is stimulated.

The use of continuous glucose monitoring systems (CGMSs) could ease the design

of optimal clinical tests, even though noise in the measurements and formulation of
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the test itself may hinder model identification in this type of approach, as shown by

Galvanin et al. [29].

1.8 Objectives

The objective of this thesis is to devise feasible clinical protocols allowing for a precise

identification of type 1 diabetes models suited to the characteristics of the individual

subject, while meeting constraints related to:

• safety conditions for the subject must be guaranteed, assuring normoglyceamic

values throughout the test and steady basal glucose concentration at the end of

it;

• invasivity on the patient (type of glucose and insulin admnistration) must be

minimised during execution, in order to make the protocol preferable among

other options;

• ease of implementation, which means the test must be not excessively time de-

manding and not too complex to execute, in terms of sampling and glucose and

insulin administration;

• robustness is required, so as to always assure parameter estimation is possible;

• the information content achievable must be maximised in order to identify the

model parameters for the single subject with the greatest possible precision, so

as to endow it with very reliable prediction capability.

All these requirements cannot be met using standard clinical tests because they have

not been designed specifically for this purpose. Nevertheless, based on their structure

a suitable test is to be devised which, regardless of the subject, is capable of assuring

an optimal parameter estimation so as to design feasible customised care solutions.

In order to account for all the features above, a novel approach will be introduced in

this work to simplify the choice of the best protocol among the several options available.

This approach consists in the definition of some heuristic indices, which are related to

the contraints listed above and allow a quick evaluation of the suitability of a designed

clinical test for parameter identification.





Chapter 2

Model-based design of experiments

This chapter deals with the theoretical aspects of model-based design of experiments.

After a preliminary discussion on the MBDoE procedure, the physiological model of

Lynch and Bequette is described in detail. Then, much relevance is given to the

mathematical description of the theory behind the MBDoE approach and the several

options available in the software where it is embedded. Finally, a novel methodology

based on heuristic indices is presented in order to evaluate the designed tests.

2.1 Introduction

State-of-the-art devices for T1DM management, such as the WAPs, require the avail-

ability of reliable physiological models for the description of glucose dynamics. Since

each subject is characterised by its own physiology, a precise identification of its model

parameters needs to be carried out in order to optimise the performance of the control

algorithm, which is responsible for maintaining normogylcaemia. Parameter identifica-

tion relies on the execution of clinical tests to acquire as much information as possible

to achieve this purpose.

The most commonly used clinical protocols have already been discussed in § 1.4; how-

ever, they were not specifically designed with this aim, so their sampling schedule is

often inappropriate. To overcome this drawback, it is useful to adopt a model-based

design of experiments approach, which allows to design new or modified clinical proto-

cols to accomplish the identification task.

MBDoE is a sequential procedure, which consists of three steps:

1. experiment design: based on the preliminary knowledge of the system, the op-

timal sampling schedule is sought while acting on some manipulable variables.

The objective is to maximise the information content derivable subject to some

constraints related to the safety of the patient;
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2. experiment execution: experimental data are collected carrying out the experi-

ment with the optimal conditions obtained in the previous step;

3. parameter identification: based on experimental data and using some estimators,

the identification of the unknown model parameters is performed.

Parameter	
guesses	 EXPERIMENT	

DESIGN	
EXPERIMENT	
EXECUTION	

PARAMETER	
ESTIMATION	

Is	the	
es:ma:on	
sa:sfactory?	

Experimental	
condi:ons	

STOP	

Experimental	
data	 yes	

no	

Sta:s:cs	

Design	a	new	test	

Figure 2.1. MBDoE procedure for parameter estimation [26].

2.2 Lynch-Bequette model

In this work the Lynch and Bequette model [16] (also referred to as LB model) is

selected because of its ease in representing the glucoregulatory system compared to

alternative more recent models. Although lumped physiological models, such as the

LB model, are not able to represent the dynamics of glucose at various organ or tissue

levels, they entail a lesser complexity, also in terms of number of parameters, compared

to comprehensive models. In fact, it consists of only 4 differential equations, which are

displayed below:

dG(t)

dt
= −θ1G(t)−X(t)[G(t) +Gb(t)] +D(t) (2.1)

dX(t)

dt
= −θ2X(t) + θ3I(t) (2.2)

dI(t)

dt
= −θ4[I(t) + Ib] +

U(t)

Vi
(2.3)

dGsc(t)

dt
=
G(t)−Gsc(t)

5
−Rut (2.4)

A description of the model variables and constants is given in Table 2.1 and 2.2,

respectively.

As pointed out in § 1.6, equations (2.1)-(2.3) are taken from Fisher’s model, whereas

equation (2.4) relates subcutaneous and blood glucose values considering a 5 minutes

delay between them. Examining the system in detail: equation (2.1) describes the

dynamics of blood glucose concentration, equations (2.2) and (2.3) characterise the
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dynamics of insulin, using a variable proportional to insulin in the remote compartment

(X ) and plasma insulin concentration (I ).

Table 2.1. Lynch-Bequette model variables.

Variable Description

G(t) Difference between blood glucose concentration and its basal value [mg/dL]
D(t) Glucose intake velocity after a meal [mg/dL/min]
U(t) Exogenous insulin infusion rate [mU/min]
X(t) Variable proportional to insulin in the remote compartment [mU/L]
Gsc(t) Difference between subcutaneous glucose concentration and its basal value [mg/dL]
I(t) Difference between plasma insulin concentration and its basal value [mU/L]

Table 2.2. Lynch-Bequette model constants.

Constant Description

Vi Insulin distribution volume [L]
Rut Glucose usage velocity [mg/dL/min]
Gb Glucose basal value [mg/dL]
Ib Insulin basal value [mU/min]

The inputs to the model are represented by the glucose meal D(t) and the exogenous

insulin infusion rate U (t). The model, as presented by equations 2.1-2.4, describes an

OGTT, where the meal-absorption dynamics, differently from Fisher, is not modelled

through the exponential form D(t) = A · exp(−0.05t) but using the more accurate

expression proposed by Hovorka and colleagues [22]:

D(t) =
1000 · A · t · exp(−t/tmax,G)

t2max,G ·BW · Vg
(2.5)

where A is the carbohydrate content of the meal expressed in grams and tmax,G repre-

sents the time-of-maximum appearance rate of glucose in the accessible glucose com-

partment. BW and Vg are factors related to the characteristics of the subject: the first

one, accounts for its body weight and the second one, assesses the available glucose

distribution volume.

In this analysis, the following values for the subject have been considered:

BW = 70 kg tmax,G = 20 min Vg = 1.6 dL/kg (2.6)

This choice represents a lean subject, with the same glucose distribution volume re-

ported by Hovorka et al. [22] and a sensible value for the time-to-maximum of glucose
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uptake.

On the contrary, in the IVGTT, glucose is administrated intravenously, thus the expo-

nential term D(t) in equation 2.1 is substituted with the glucose injection, Uv, while

the rest remains unchanged.

The monitored variable is the total glucose concentration, which is given by:

Gtot(t) = G(t) +Gb (2.7)

The values of Gb, Ib and Vi are chosen according to Lynch and Bequette [16]:

Gb = 80 mg/dL Ib = 15 mU/L Vi = 12 L (2.8)

whereas for Rut the value proposed by Sorensen [30] is selected:

Rut = 0.75 mg/(dL ·min) (2.9)

θ1-θ4 represent the model parameters, which allow for the identification of the single

subject metabolic behaviour. A description of the parameters is presented in Table

2.3:

Table 2.3. Lynch-Bequette model parameters.

Parameter Description

θ1 Rate of blood glucose disappearance into liver or periphery [min−1]
θ2 Insulin disapperance velocity from the remote compartment [min−1]
θ3 Insulin apperance velocity in the remote compartment [min−1]
θ4 Insulin disappearance velocity from the insulin space [min−1]

θ1 is also known as glucose effectiveness (SG) and quantifies the capacity of the glu-

coregulatory system to reduce blood glucose concentration after a meal. Therefore,

this parameter is very relevant for T1DM patients. The ratio θ3/θ2 represents the

sensitivity to insulin (SI), that is the effectiveness of insulin in restoring glucose basal

values. These two parameters are less important in patients affected by T1DM, as they

do not produce insulin on their own.

The design of a feasible clinical protocol for parameter identification represents the

ultimate objective of the present work.

The established LB model can be used to evaluate standard clinical tests but it also

proves useful to design enhanced modified protocols, where the two manipulable vari-

ables (i.e. glucose administration and insulin infusion) allow maximising the obtainable

information content.
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2.3 Optimal model-based design of experiments

This section deals with the theory behind optimal model-based design of experiments.

Firstly, a mathematical description of the general MBDoE problem is provided with

the variables and constraints involved. Secondly, the dynamic optimisation strategy is

tackled with an overview on the main optimisation criteria available.

2.3.1 Mathematical model and constraints

Dynamic models, such as the Lynch and Bequette model, can be represented using a

general form consisting of a system of differential and algebraic equations (DAEs):{
f(ẋ(t),x(t),u(t),w, θ̂, t) = 0

ŷ(t) = h(x(t))
(2.10)

where x(t) ∈ <Nx is the vector of time-dependent state variables, u(t) ∈ <Nu and

w ∈ <Nw are the time-dependent and time-invariant vectors control variables, respec-

tively, θ̂ ∈ <Nθ is the set of unknown model parameters to be estimated, t is the time,

ŷ ∈ <Ny is the vector of output responses estimated by the model.

Specifically, in the LB model, insulin infusion U(t) represents the time-dependent con-

trol variable and glucose meal A the time-invariant control variable, while the variable

to be measured is the total glucose concentration Gtot(t).

In order to solve system (2.10), a set of initial conditions, i.e. values of the state

variables at time t = t0, is required in the form:{
f(ẋ(t0),x(t0),u(t0),w, θ̂, t0) = 0

ŷ(t0) = h(x(t0))
(2.11)

In physiological models, state variables cannot assume any value but need to be con-

strained to assure safety conditions to the patient throughout the experiment. There-

fore, in the design procedure the following safety end-point constraints are imposed

on:

• lower bound of glucose concentration (LB), which is considered an “hard” con-

straint, that is not to be violated, in order to prevent hypoglycemic conditions.

This is mathematically expressed as:

LB −Gtot(t) ≤ 0→ Gtot(t) ≥ LB (2.12)
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but it is implemented in the software as:

dV1
dt

= max(0, LB −Gtot(t)) ≤ 0 (2.13)

where V1 represents the amount of the contraint violation. The first entry of the

function max represents the maximum violation allowed, while the second entry

defines the function on which the condition applies.

• upper bound of glucose concentration (UB), which can be treated either as a

“hard” or a “soft” constraint, since a small violation (V2) is much more tolerable

by the organism. Similarly to equation 2.13, this is implemented in the software

as:
dV2
dt

= max(0, Gtot(t)− UB) ≤ 0 (2.14)

• final glucose concentration, which must be restored within a certain range of the

initial basal value; a 10% deviation from the initial value has been allowed at the

end of the test.

• derivative of the final glucose concentration (Γ):

Γ =
dG

dt
(2.15)

which is an additional requirement to guarantee that the basal glucose value is

not only reached but also maintained at the end of the test, in order for the

patient to be safely discharged. Due to its definition, this constraint is compelled

to be as close as possible to zero. Typical values used in the design phase for

lower and upper bounds of Γ are -0.01 and 0.01, respectively.

In this work, a glucose concentration of 170 mg/dL is selected as upper bound and

60 mg/dL as lower bound.

MBDoE aims at reducing the model parameters uncertainty region by optimising the

experimental settings, which are grouped in the design vector ϕ ∈ <nϕ :

ϕ = {y0,u(t),w, tsp, τ} (2.16)

where y0 is the set of initial conditions on the measured variables, tsp = [t1, ..., tnsp ]
T

is the vector of sampling times, which defines the times at which the output variables

are measured and τ is the duration of the experiment.

In order to facilitate the solution of the dynamic optimisation problem, some control

vector parametrisation techniques can be adopted to approximate the set of control

variables u(t) over a number of intervals, as shown by Vassiliadis and colleagues [31].
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For instance, in this work a piecewise constant approximation is used for exogenous

insulin infusion, which means that the variables requiring optimisation are:

• the (nsw−1) times at which the insulin profile changes in value, which are collected

in the vector tsw of switching times;

• the nsw values that the control variable assumes before and after a switching

time, which are collected in the vector zsw [32].

Furthermore, due to practical limitations or safety reasons, constraints on maximum

values of insulin infusion rate and on upper and lower duration of switching intervals

are imposed in the design stage.

2.3.2 Objective function and optimisation criteria

The aim of MBDoE is the maximisation of the information content derivable from the

designed test, so as to achieve a statistically satisfactory parameter identification by

optimising the design vector ϕ. In particular, it is the function ψ of the variance-

covariance matrix that needs to be minimised acting on the elements of the design

vector:

ϕopt = arg min{ψ[Vθ(θ,ϕ)]} (2.17)

For a single experiment, the variance-covariance matrix of model parameters Vθ is

defined as:

Vθ(θ,ϕ) = [Σ−1θ + Hθ(θ,ϕ)]−1 (2.18)

where Hθ represents the Fisher information matrix (FIM) and Σθ the preliminary

variance-covariance matrix of model parameters.

For a dynamic system with discrete sampling the FIM, according to the formulation

of Zullo [33], assumes the form:

Hθ(θ,ϕ) =

nsp∑
k=1

Ny∑
i=1

Ny∑
j=1

sijQ
T
i Qj + H0

θ (2.19)

where sij is the ij-th element of the NyxNy inverse matrix of measurement errors, Qi is

the nspxNθ dynamic sensitivity matrix of the i-th measured response, whose elements

take the form:

Qi =

[
∂ŷil
∂θm

]
l = 1, ..., nsp m = 1, ..., Nθ (2.20)

and H0
θ is the prior dynamic information matrix.

Several design criteria have been proposed for the maximisation of the information

matrix. The most known ones are the so called “alphabetical criteria”, which are also

available in gPROMSr:
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• A-optimality: minimises the trace of the variance-covariance matrix Vθ:

ψA(Vθ) =
1

Nθ

Nθ∑
i=1

(νii) (2.21)

where νii represents the elements on the diagonal of the variance-covariance ma-

trix, which are summed because of the definition of the trace. In geometrical

terms, this criterion corresponds to minimising the dimensions of the hyperrect-

angle within which the confidence ellipsoid of model parameters can be inscribed,

as shown in Figure 2.2 (in 2D).

θ1	

θ2	

E-op)mality	

D-op)mality	

A-op)mality	

Figure 2.2. Graphical interpretation of the different design criteria used in MBDoE in a 2D case.

• D-optimality: minimises the determinant of the variance-covariance matrix:

ψD(Vθ) = det(Vθ)

1

Nθ (2.22)

This is also known as the minimum volume criterion because it minimises the

volume of the confidence ellipsoid. In 2D this is the equivalent of minimising the

area of the ellipse (Figure 2.2).

• E-optimality: minimises the largest eigenvalue of the variance-covariance matrix:

ψE(Vθ) = max
k=1,...,Nθ

λk(Vθ) (2.23)

The eigenvalues of the variance-covariance matrix represent the lengths of the minor

and major axes of the confidence ellipsoid. Therefore, by minimising the largest eigen-
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value, the design forces the confidence ellipsoid to become as spherical as possible. In

2D it means the ellipse is forced as close as possible to a circumference (Figure 2.2).

2.4 Experimental data generation

Once the optimal design vector ϕopt has been obtained, the following step of the MB-

DoE consists in the experiment execution. At this stage, experimental data need to

be collected from the designed test. However, this is not actually possible because the

test is still in its design phase. For this reason, it cannot be performed in vivo because

safety and effectiveness have not been proved and the optimal conditions obtained from

the model in the design phase could jeopardise the subject in reality. In addition, at

this point data retrieval from a real patient would significantly augment the overall

time required for the sequential design procedure.

Therefore, experimental data are generated in silico using the same physiological model

but with different parameters (parametric mismatch). This procedure consists in the

following steps:

1. sensible perturbations are assigned to the initial parameters used for the ex-

periment design, generating a new set θ = [θ1, θ2, θ3, θ4]
T , which is assumed to

represent the real physiology of the patient. This set is used to simulate the

glucoregulatory response of that subject;

2. glucose concentrations collected at the sampling times obtained from the designed

test constitute the experimental measurements of the simulated patient;

3. some stochastic and ergodic disturbance factors are applied to these measure-

ments, in order to simulate the experimental noise, that is the random errors

that make each repetition of the experiment different from the others. Assuming

that systematic errors are avoided, the stochastic component can be regarded as

normally distributed with zero mean. The general variance model has the form:

σ2
i = ω2

i (ŷ
2
i )
γi (2.24)

where ωi is the standard deviation of the i-th measured response and γi the

heteroschedastic factor. In this work a constant relative variance of 0.033 is

considered according to Galvanin and colleagues [26], thus γ = 1 and equation

2.24 becomes:

σ2
i = ω2

i (ŷ
2
i ) = (0.033Gtot)

2 (2.25)
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2.5 Parameter estimation

The parameter estimation step consists in the identification of the model parameters

in a statistically sound way based on the experimental data collected or generated in

silico. The optimal result of this procedure is a vector that minimises the distance

between experimental data y and model predicted responses ŷ.

2.5.1 Estimators

The most widely used estimators for the evaluation of the model parameters of a

dynamic model are:

• least squares (LS): is the simplest one and is defined as:

ΦLS(y) =

nsp∑
i=1

[
(yi − ŷi)

T (yi − ŷi)
]

(2.26)

• weighted least squares (WLS): takes into account the variance-covariance matrix

of measurement errors:

ΦWLS(y,Σ1, . . . ,Σnsp) =

nsp∑
i=1

[
(yi − ŷi)

TΣ−1i (yi − ŷi)
]

(2.27)

As suggested by Galvanin [32], the problem associated with LS and WLS is that

they only provide an estimate of model parameters θ̂ but no a-posteriori statistics

about their precision.

• maximum likelyhood (ML): considers a probability distribution that allows to

derive the a-posteriori variance-covariance matrix of model parameters, which

makes this approach suitable for MBDoE. For independent and normally dis-

tributed measurement errors, the ML estimator can be expressed according to

Bard [34] as:

ΦML(y,Σ1, . . . ,ΣN) = 2π
Ny
2

nsp∏
i=1

|Σi|−
1
2 exp

{
−1

2

nsp∑
i=1

[
(yi − ŷi)

TΣ−1i (yi − ŷi)
]}

(2.28)

This is also the estimator that gPROMSr uses for the evaluation of model

parameters.
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2.5.2 Assessment of parameter estimates

Parameter estimates need to be evaluated in terms of precision and accuracy. Precision

of the estimate corresponds to enclosing the set of parameters to a restricted confidence

region, whereas accuracy expresses how much close to the true value (which is unknown)

the estimate is.

Precision of the estimates is evaluated by means of confidence intervals, which are

defined as:

Ki(α) = t̄
(1− α

2
, nsp −Nθ

)
·
√
νii i = 1, ..., Nθ (2.29)

where t̄ represents the upper critical value of a t-distribution with (nsp −Nθ) degrees

of freedom and νii the variance of the i-th parameter, i.e. element of the variance-

covariance matrix. A α% confidence region indicates that if the experiment is repeated

and the parameters are estimated from the new experimental data, their values will

lie in this confidence region with α% probability. Therefore, the confidence intervals

define the bounds of the confidence ellipsoid:

[θ̂i −Ki(α); θ̂i +Ki(α)] i = 1, ..., Nθ (2.30)

where θ̂i is the i-th estimated parameter.

The t-values express the percentage accuracy of the estimated parameters with respect

to the 95% confidence intervals, i.e. t̄(0.95, nsp −Nθ), which are given by:

t̄i =
θ̂i

Ki(0.95)
i = 1, ..., Nθ (2.31)

These values need to be compared with the reference t-value obtained from a Student t-

distribution with confidence α and (nsp−Nθ) degrees of freedom. A t-value larger than

the reference one means that the parameter has been accurately estimated, otherwise

a poor estimate has been accomplished.

Accuracy cannot be evaluated directly since the true value of the parameters remains

unknown, instead, the lack-of-fit test is used to assess that the residuals, i.e. difference

between measured output and predicted response, are actually minimised. It consists

in a χ2-test considering the sum of weighted residuals:

SWR =
N∑
i=1

[(yi − ŷi)
TΣ−1i (yi − ŷi)] (2.32)

The fitting of the experimental data is adequate and the model represents a good

description of the system if:

SWR < χ2
ref (2.33)
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where χ2
ref is a reference χ2 distribution with (nsp −Nθ) degrees of freedom.

2.6 Preliminary analysis of the model

Prior to the design of experiments procedure, an a-priori evaluation of the physiological

model can be performed so as to get some insights on its structure and potential. In

the present work, two preliminary studies are conducted:

• sensitivity analysis,

• information content analysis.

2.6.1 Sensitivity analysis

Sensitivity analysis consists in the assessment of how some variations on the inputs to

the model reflect on the predicted outputs. In the first place, it is a qualitative analysis

aimed at detecting the temporal effect of the variation on some variables, since a

dynamic model is involved. This kind of observation allows, in the case of a parametric

model, to determine which parameters can be more easily identified (for a specific

set of experimental settings) and which, instead, could require a reparametrisation to

facilitate the process. The responses predicted by the model ŷ to a change in the

parametric set θ are collected in the NyxNθ matrix of local sensitivities:

Q(t) =


q1,1(t) . . . q1,Nθ(t)

...
. . .

...

qNy ,1(t) . . . qNy ,Nθ(t)

 =


∂ŷ1(t)

∂θ1
. . .

∂ŷ1(t)

∂θNθ
...

. . .
...

∂ŷNy(t)

∂θ1
. . .

∂ŷNy(t)

∂θNθ

 (2.34)

2.6.2 Information content analysis

Information content analysis in terms of trace of the FIM can be used for an evaluation

of complex systems with a large number of parameters. In this case, the dynamic pro-

file of the trace highlights time periods when the maximum information can potentially

be obtained through sampling.

Alternatively, a different evaluation of the information content can be performed by

comparing continuous and discrete sampling. Continuous cumulative information con-

tent Ic derivable in the entire test can be computed through the integral of the trace

of the FIM:

Ic =

∫ τ

t=0

tr[Hθ(t)]dt (2.35)
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while discrete information content Id is given by considering only the information ob-

tained at sampling times:

Id =

tsp∑
i=1

tr[Hθ(t)]∆t (2.36)

Beyond the gap in value between the two strategies, this analysis can provide interesting

insights on the best time allocation of the samples.

2.7 Software

The entire simulation work presented in this thesis from modelling to experiment design

and parameter estimation is carried out using gPROMSr Model builder 4.1.0 [35]-

[36], which is an advanced modelling software by Process Systems Enterprise Ltd.

gPROMSr is an equation-oriented modelling system used for building, validating

and executing first-principles models. It allows for the simultaneous resolution of large

systems of algebraic and differential equations. Its peculiarity is that it can be applied

to a wide variety of problems: from steady-state simulation to dynamic simulation and

from parameter estimation to model-based design of experiments.

Generation of the noise applied to glucose measurements is made using the function

normrnd of MATLABr R2013a by MathWorksr [37], which produces arrays from

the normal distribution with the specified mean and variance.

2.8 Indices

The main objective of this work is to devise a feasible clinical test for the identification

of T1DM. So far, the attention has been focused on the experiment design procedure,

aimed at estimating the model parameters with the greatest precision.

In order to discriminate among the possible tests the one offering the best performance,

some criteria for the evaluation must be defined. These criteria must take into account,

beyond the information content derivable, the assurance of safety conditions throughout

the execution and feasibility factors for a successful application.

In order to fulfil these requirements a set of 5 heuristic indices is proposed as the

framework for the test design procedure. All indices are normalised, i.e. defined on

a scale ranging from 0 to 1, where the boundary values represent the least and most

desirable one, respectively. This allows a quick comparison among the tests, both to

identify possible improvement factors and to evaluate the best protocol.

Each index is individually presented and discussed in the following sections.
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2.8.1 Information content index

It quantifies the information content derivable from a test by means of the discrete

information content (Id), defined by equation 2.36, achieved during the sampling pro-

cedure, by comparing it with the maximum value (Id,max) obtained among all the tests

analysed at a given parametric set. Mathematically, it is expressed as:

γ =
Id

Id,max
(2.37)

2.8.2 Invasivity index

It is an attempt to quantify the impact of the glucose and insulin administration strate-

gies on the subject. Compared to the other indices, it is more tricky to define because

it depends on the tolerance of the individual.

A basic difference between the OGTT and the IVGTT lies in glucose administration:

for the first it is oral, while for the second it is intravenous.

In terms of insulin administration, several pathways exist: the most used is subcu-

taneous delivery because it allows continuous infusion and it is less invasive (since it

involves the subcutaneous layer) than intravenous injection, which is normally utilised

just for surgery or complications. A third preferable route is oral delivery, which is a

non-invasive method but it still requires studies due to insulin lack of permeability in

the intestinal epithelium [38].

Invasivity index has been assessed through the following equation:

α = 1− αglucose + αinsulin
2

(2.38)

where the factors αglucose and αinsulin may assume the values: 0 for oral administration,

0.5 for subcutaneous (only for insulin administration) and 1 for intravenous.

2.8.3 Safety index

This index takes into account the violations of glucose upper and lower bounds observed

during the entire duration of the test in terms of areas. As already pointed out, upper

and lower bound violations are to be treated differently because of their different impact

on the subject. Thus, the total violation β′ is calculated using a weighting factor:

β′ = V1 + 0.5V2 (2.39)

where V1 and V2 represent the violations of glucose lower and upper bounds, respec-

tively.
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However, since the sought value should lie in the range from 0 to 1, applying normali-

sation the safety index β becomes:

β = 1− β′

βmax
(2.40)

where β′ is the total violation of the test considered and βmax the maximum violation

observed over all the tests analysed at a given parametric set.

2.8.4 Sample index

This index accounts for the overall number of samples which are collected during the

test execution. A maximum of 60 samples (nmax) collected is considered, assuming

to apply a discrete sampling schedule to the OGTT (whose duration is 2 h) with a

minimum time between measurements of 2 min. Therefore, the index results:

π = 1− nsp
nmax

(2.41)

2.8.5 Duration index

This index considers the time horizon for the execution of the test. As a reference,

a maximum duration of 12 h (tmax), corresponding to the length of a day hospital, is

assumed for its completion, that is taking into account the time required to restore and

maintain the glucose basal value of the subject. Therefore, the index is simply defined

as:

τ = 1− ttest
tmax

(2.42)
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Preliminary analysis of the model

This chapter deals with the preliminary evaluation of the Lynch and Bequette model

by means of two clinical tests. Firstly, the two reference tests adopted in this work

are described, in terms of schedule and inputs to the model. Secondly, sensitivity

analysis is applied to the model to investigate how it responds to small variations in

the input of glucose and in model parameters using the two standard protocols. Finally,

a comparison is made of the cumulative information content derivable from the model

using the standard tests with discrete and continuous sampling.

3.1 Standard clinical tests

In § 1.4 the structure of the main standard clinical tests has already been discussed.

The present work is concerned with only two of them: the Oral Glucose Tolerance Test

and the Intravenous Glucose Tolerance Test, which are considered the framework for

the development of optimised protocols.

As outlined by the WHO, the OGTT entails only two glucose samples, which are clearly

insufficient for model identification purposes. Because of this and the unfeasibility to

restore glucose basal value within the 2 h duration (using 2 U of insulin), a different

protocol for the OGTT has been considered. This modified protocol, proposed by Dalla

Man and coworkers [39], consists in a 5 h test using the same glucose administration

but collecting 11 samples at times: 0, 10, 20, 30, 60, 90, 120, 150, 180, 240 and 300 min.

From now on, this test will be referred to as standard OGTT. In the case of the OGTT,

the LB model, described in § 2.2, has two control variables: glucose administration and

insulin infusion. For the standard OGTT, the glucose meal amounts to 75 g and the

insulin infusion rate is kept constant at 16.666 mU/min [16], which corresponds to a

total of 5 U.

The schedule of the IVGTT is maintained unchanged, as described in § 1.4, with 23

samples collected at the sampling times prescribed by Bergman [9] over the 182 min
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duration of the test. The so established protocol will be referred to as standard IVGTT.

Similarly to the OGTT, there are still two control variables in the model: glucose

injection and insulin infusion. For the IVGTT, the term representing the glucose meal

D(t) in equation 2.1 of the LB model is replaced by the glucose injection Uv. Following

the guidelines of this test, a glucose injection of 300 mg/kg over a 1 min interval is

performed at time t=0, which means the term Uv corresponds to:

Uv =
300 mg/kg ·���BW

1 min · Vg ·���BW
=

300 mg/kg

1 min · 1.6 dL/kg
= 187.5

mg

dL ·min
(3.1)

In the same way as the OGTT, insulin infusion rate is maintained constant at 16.666 mU/min

so, due to the shorter duration of the IVGTT, the total amount of insulin is reduced

to 3033 mU.

The initial set of parameters θ0 for the model has been chosen according to Lynch and

Bequette, as shown in Table 3.1.

Table 3.1. Initial set of parameters θ0 for the LB model.

Parameter Value [min−1]

θ1 0.028735
θ2 0.028344
θ3 5.035 ·10−5

θ4 5/54

3.2 Sensitivity analysis

3.2.1 Sensitivity to glucose administration

Firstly, sensitivity analysis has been carried out on the control variable regarding glu-

cose meal/injection. The input of glucose A expressed in grams has been increased of

10% in the standard OGTT (Figure 3.1) and, similarly, the glucose injection has been

augmented of 10% in the standard IVGTT (Figure 3.2). In both cases, the output

variable of interest is the glucose concentration Gtot, because it is the measured vari-

able in the experiments to be designed and, more importantly, it is the variable that

needs to be controlled in the patient.

Figure 3.1 and 3.2 show a first important difference between the two standard proto-

cols on the glucose profile due to the type of glucose administration. In the standard

OGTT, the oral glucose assumption is modelled with the exponential equation 2.5 and

this results in a delayed smooth peak. On the contrary, in the standard IVGTT the

intravenous glucose injection produces an immediate spike.
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Additionally, in both cases the effect of the glucose change in input is concentrated on

the spike of the curve and its proximity and softens when moving away from it.

As a further consideration, the amount of insulin administered is insufficient for both

the standard protocols to prevent violations of glucose upper bound, even though basal

glucose values are restored at the end of them.

Figure 3.1. Sensitivity of glucose concentration Gtot to a 10% increase in the glucose meal A in a
standard OGTT.

Figure 3.2. Sensitivity of glucose concentration Gtot to a 10% increase in the glucose injection Uv

in a standard IVGTT.

3.2.2 Sensitivity to model parameters

In the second place, sensitivities of glucose concentration to model parameters have

been individually tested upon a 10% increase in their values. Sensitivity matrix is
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calculated according to formula 2.34, whose elements, considering only one output (i.e.

Gtot), can be expressed as:

qi =
Gtot(θ

′
i)−Gtot(θi)

θ
′
i − θi

· θi i = 1, . . . , Nθ (3.2)

where θi and θ
′
i represent the original and perturbed sets of parameters, respectively,

and Gtot(θ
′
i) and Gtot(θi) the corresponding responses of the model.

The results are presented in Figure 3.3 for the standard OGTT and 3.4 for the standard

IVGTT.

(a) (b)

(c) (d)

Figure 3.3. Standard OGTT sensitivity analysis to a 10% increase in model parameters: θ1 (a), θ2
(b), θ3 (c) and θ4 (d).

Peaks exhibited in sensitivity indicate zones where the larger deviations due to the

parameter change are observed, hence where the maximum information content of that

specific test can be extracted.

For the standard OGTT, glucose sensitivities to the parameters show spikes distributed

in the times ranging from 75 to 125 min. Looking back at Figure 3.1, it can be observed

that this temporal distribution corresponds to the period following the maximum in
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glucose concentration occurring after a meal. It is worth noting that glucose sensitiv-

ities to θ2 and θ3 are 4 orders of magnitude lower than those of the other parameters

due to fact that they are not closely related to glucose dynamics.

(a) (b)

(c) (d)

Figure 3.4. Standard IVGTT sensitivity analysis to a 10% increase in model parameters: θ1 (a), θ2
(b), θ3 (c) and θ4 (d).

Figure 3.4 shows glucose sensitivities to model parameters for a standard IVGTT.

A peak due to glucose injection is observed around 30 min for θ1 (a), which is related

to glucose effectiveness, and thus is anticipated compared to the OGTT because of the

faster response induced by the injection. Similarly to the OGTT, glucose sensitivities

to θ2 and θ3 (b, c) are 4 orders of magnitude lower than the other parameters. Apart

from θ1, sensitivities to the other parameters present an asymptotic behaviour, which

makes it harder to locate the best sampling zone but also indicates that the information

may theoretically be extracted over a longer period.

Finally, it is interesting to note that the highest sensitivity values in the standard

OGTT, i.e. for θ1 and θ3, are more than double of the same sensitivities in the standard

IVGTT. This fact can be interpreted as a hint of the higher potentiality of the OGTT

regarding the information content derivable.
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3.3 Information content analysis

The information content theoretically derivable through the standard OGTT and

IVGTT has been inquired comparing the continuous and discrete information, which

are computed using equations 2.35 and 2.36. Additionally, in order to evaluate the

effect of an increase in the number of samples, the effect of the sampling schedule of

the standard tests has been compared to 50 time-equispaced samples.

Final data of the cumulative information content from the standard tests with regular

and augmented sampling are presented in Table 3.2, while graphical comparisons of

the cumulative information content are plotted in Figure 3.5-3.6.

Table 3.2. Cumulative information content of standard OGTT and IVGTT: continuous versus
discrete sampling.

Test Discrete sampling Continuous sampling

OGTT 11 samples 150.06 2.89 · 105

50 samples 963.94 2.89 · 105

IVGTT 23 samples 125.23 8.66 · 104

50 samples 475.93 8.66 · 104

From Table 3.2, it is clear that the OGTT compared to the IVGTT allows for an

higher information content to be reached both in the continuous and discrete sampling.

The reason for this lies in the different type of stimulus induced on the patient: the

OGTT uses a meal which is more physiological than an injection. In addition, the

OGTT induces an higher violation of glucose upper bound, that is responsible for a

greater information gain during the test.

The information content significantly decreases (3 orders of magnitude) from the con-

tinuous to the discrete sampling, while, as it is easily deducible, increasing the sampling

frequency a greater discrete information can be achieved. Theoretically, by increasing

the number of samples to infinite the information content achieveable reaches the same

realised with a continuous sampling strategy.

Figure 3.5 shows that, in the OGTT, the rise in the sampling frequency (b), especially

in the first 100 min where the height of the steps is higher with the standard sampling

(a), is responsible for the final higher value.
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(a) (b)

Figure 3.5. Cumulative information content from the OGTT with standard, i.e. 11 samples (a), and
increased sampling, i.e. 50 samples (b), compared to the continuous one.

On the contrary, Figure 3.6 displays how in the IVGTT the overall discrete infor-

mation content enhancement is less evident than the OGTT due to the better temporal

distribution of the samples, which results in a more uniform increase of the information

at each step.

(a) (b)

Figure 3.6. Cumulative information content from the IVGTT with standard, i.e. 23 samples (a),
and increased sampling, i.e. 50 samples, compared to the continuous one.





Chapter 4

Designed clinical tests

This chapter represents the core of this thesis because it deals with the design of clini-

cal tests for the identification of physiological models complying with some safety and

feasibility requirements.

Firstly, the assumptions made in the design phase and in the following parameter

estimation task are discussed. Secondly, the inadequacy of the two standard proto-

cols presented in Chapter 3 is shown and the designed clinical tests are individually

addressed, both in terms of design and parameter estimation capability. Finally, a

comparison is made among the designed tests to assess their overall performance by

means of the heuristic indices previously introduced.

4.1 Introduction

In this chapter the design of clinical protocols using a model-based design of experi-

ments approach is tackled. The objective is to devise an optimal test procedure for the

identification of model parameters in subjects affected by T1DM.

Based on the Lynch and Bequette model, described in § 2.2, the following tests have

been designed and will be discussed:

• 5h-11s oral test: an oral test with one meal, a duration of 5 h and 11 samples

taken;

• 5h-22s oral test: similar to the previous one, but with 22 samples collected;

• 5h-22s-2m oral test: an oral test with two meals, a duration of 5 h and 22 samples

taken;

• 3h-23s intravenous test: an intravenous test with one glucose injection, a duration

of 3 h and 23 samples collected;
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• 3h-23s-2i intravenous test: similar to the previous one, but with two glucose

injections.

The reason why these tests are presented will be pointed out in the chapter as soon as

they are introduced.

Beyond the settings applied for their design and schedule obtained for the execution, the

tests will be characterised based on their identification capabilities. For this analysis,

two different parametric sets have been chosen: one involving a moderate and the other

a severe change with respect to the design parametric set.

4.1.1 Parametric sets

The values of the model parameters previously reported in Table 3.1 refer to a healthy

subject. Taking those parameters as a reference, the set has been normalised and from

now on it will be indicated as Θ0 = [1, 1, 1, 1]T . This set has been considered as the

starting point for the design procedure of all the tests presented in this work because

the purpose is not just to identify a population of diabetic subjects. On the contrary,

the protocol should ideally be able to identify every possible individual, assuming that

no a-priori information on the severity of his/her illness is available.

In addition, two different parametric sets are taken into account for assessing the

parameter estimation performance of the designed tests. Set Θ1 considers a slightly

diabetic patient, while set Θ2 describes a subject with a more severe condition. Both

sets are normalised with respect to the parameters of the healthy subject and reported

in Table 4.1.

Table 4.1. Parametric sets used for the parameter estimation task.

Parametric set Values [min−1]

Θ1 [0.8, 1.2, 0.8, 1.2]T

Θ2 [0.6, 1.4, 0.6, 1.4]T

Two aspects have been examined for the choice of these two parametric sets:

• sensible deviations from the healthy subject set, so as to reproduce a hypotetical

T1DM patient;

• different degrees of deviation, i.e. a moderate and a severe change, in order to

compare and contrast the parameter estimation capability of different designed

tests.

Typical values of the parameters have been found in literature [9] for lean subjects

with a low glucose tolerance. In terms of parameter values, this primarily reflects in
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a decrease of the first and third parameter and an increase of the fourth one. In fact,

the first parameter represents the rate of blood glucose disappearance into liver or

periphery, also known as glucose effectiveness. This capacity is highly compromised

in diabetic patients. The third parameter represents insulin appearance velocity in

the remote compartment, where it is effective in accelerating glucose disappearance.

Typically, the value of this parameter in diabetic patients is significantly lower than

healthy subjects due to the deficiency of their glucoregulatory system. The rate of

insulin disappearance from the insulin space, represented by the fourth parameter,

undergoes a substantial increment, since there is no endogenous insulin production in

a T1DM patient. The second parameter has been somehow overestimated in set Θ2,

in order to investigate the identification performance of the designed protocols.

4.1.2 Design assumptions

In all the tests performed, it is assumed to measure blood glucose concentration. The

number of samples collected is not subject to optimisation, but only their temporal

allocation. A minimum distance of 5 min between measurements is assigned to the oral

tests, according to Galvanin et al. [26]. In the intravenous tests, the distance is reduced

to 2 min as in the standard IVGTT, because of the shorter duration and different kind

of stimulus induced in the subject.

A minimum duration of 5 min is selected for the insulin infusion intervals. However,

a higher value is often imposed so as to obtain a protocol easier to be implemented,

hence reducing the complexity of execution.

The lower bound is a “hard” constraint, thus its violation is not allowed, while the

upper bound is a “soft” constraint, hence small violations are sometimes tolerated.

As regards the other end-point constraints, the final glucose concentration needs to

be restored within a ± 5% range of the basal value (i.e. 80 mg/dL). Additionally, the

derivative of the final glucose concentration needs to be as close as possible to zero, so

as to assure the conservation of the basal value.

Finally, a calculation of the typical insulin requirement per meal is performed, in order

to allow for a comparison with the design results. For adult T1DM patients, an insulin

value of 0.54 U/kg/d has been found in literature [40], which corresponds to 37.8 U/d

for a 70 kg person. It is assumed that the daily calorie need for a person is equivalent to

2000 kcal/d and 55% is introduced as carbohydrates, as recommended by the Food and

Agriculture Organization of the United Nations [41]. This is equivalent to an intake

of 1100 kcal/d from carbohydrates. Glucose and sugars in general provide 3.75 kcal/g

[41], hence approximately 295 g of carbohydrates are daily required:

1100 kcal/d

3.75 kcal/g
= 293.3 g/d ≈ 295 g/d (4.1)
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Based on this value, the amount of insulin required by the patient in a standard OGTT

can be computed through the following proportion:

37.8 U/d : 295 g/d = x : 75 g → x = 9.61 U (4.2)

Similarly, in a standard IVGTT, which entails a 21 g glucose administration, the esti-

mated insulin needed corresponds to 2.69 U.

4.2 Standard OGTT

This test has already been presented in Chapter 3 and analysed with some preliminary

sensitivity studies on the glucose assumption and on the model parameters. It consists

of a 5 h test during which 11 blood samples are taken at the times reported in Table 4.2.

Table 4.2. Sampling times for the standard OGTT.

Variable Value

tsp [min] [0, 10, 20, 30, 60, 90, 120, 150, 180, 240, 300]

Insulin is perfused at a constant rate of 16.666 mU/min, as stated by Lynch and

Bequette [16].

This protocol has not been obtained through a design of experiments procedure, hence

it is not optimised. Therefore, it is interesting to enquire how informative this protocol

is.

Figure 4.1 shows the glucose profile of the healthy subject (i.e. set Θ0) and the one

obtained after parameter identification with set Θ1. It is worth noting the great

mismatch between the two curves, especially after the peak of glucose has been reached

on. This gap is due to the influence of the parameters on the response that, in the case

of a diabetic patient, causes a significant increment of glycemia.

In terms of safety, it is clear how this protocol jeopardises the patient. In fact, despite

the upper bound is not a hard constraint, glucose concentration of the subject heavily

exceeds this limit for about two hours.

Safety could be improved through an optimisation of the insulin infusion profile. In

particular, it can be noticed that the current amount of insulin administered (i.e. 5 U)

is far below the reference value computed in Equation 4.2 for such a glucose meal.
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Figure 4.1. Glucose profiles of the standard OGTT for the healthy subject (i.e. with set Θ0) and
after identification with set Θ1.

From Table 4.2, it is evident that the estimated parameters are far from the true

values. In effect, this non-optimised protocol provides statistically unsatisfactory esti-

mates, as it is proved by the t-values, which are all well below the reference one.

Table 4.2. Parameter estimation statistics for the standard OGTT with set Θ1 (asterisks denote t
values failing the t-test).

Parameter Final value Initial guess Confidence interval 95% 95% t-value (Ref. 1.895)

Θ1 0.7775 1 0.700 1.111*

Θ2 0.6650 1 6.480 0.103*

Θ3 3.9925 1 3694 0.001*

Θ4 1.0212 1 20.13 0.051*

Table 4.3 highlights that also the fitting of the experimental data is inadequate,

thus this test cannot be used for identification purposes with the current schedule.

Table 4.3. Lack of fit test for the standard OGTT with set Θ1 (asterisk indicates a bad fit).

Weighted residual χ2-value (95%)

27.3241* 14.0671
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4.3 Standard IVGTT

This test has a duration of 182 min and entails the collection of 23 blood samples with

the schedule reported in Table 4.4.

Table 4.4. Sampling times for the standard IVGTT.

Variable Value

tsp [min] [2, 4, 6, 8, 10, 12, 14, 16, 19, 22, 27, 32, 42,

52, 62, 72, 82, 92, 102, 122, 142, 162, 182]

Similarly to the standard OGTT, the insulin infusion rate is constant and equal to

16.666 mU/min. This results in an overall insulin infusion slightly greater (i.e. 3.03 U)

than the value estimated for such a glucose assumption.

Figure 4.2 shows the glucose profiles with set Θ0 and after identification with set Θ1.

A sharp spike is observed with a lower maximum than the standard OGTT and a

relatively reduced violation of the upper bound.

Figure 4.2. Glucose profiles of the standard OGTT for the healthy subject (i.e. with set Θ0) and
after identification with set Θ1.

From an a-priori evaluation, as a consequence of the higher number of samples

collected, an enhanced identification capability would be expected compared to the

standard OGTT. However, in Table 3.2 it has already been pointed out that the stan-

dard OGTT provides a higher information content despite its lower number of samples.

This fact reflects on the parameter estimates reported in Table 4.5. Only the first pa-

rameter can be estimated satisfactorily, while no estimate is obtained for the second
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one. The other two parameters present completely unreliable values, as it is showed

by the huge confidence intervals associated with them.

Table 4.5. Parameter estimation statistics for the standard IVGTT with set Θ1 (asterisks denote t
values failing the t-test).

Parameter Final value Initial guess Confidence interval 95% 95% t-value (Ref. 1.725)

Θ1 0.6336 1 0.111 5.707
Θ2 0 1 - -
Θ3 0.3507 1 143.5 0.002*
Θ4 1.0559 1 214.06 0.044*

Finally, Table 4.6 shows that a bad fit of the experimental data is still obtained.

Table 4.6. Lack of fit test for the standard IVGTT with set Θ1 (asterisk indicates a bad fit).

Weighted residual χ2-value (95%)

48.4254* 31.4104

4.4 5h-11s oral test

This first designed protocol aims at optimising the standard OGTT applying a MBDoE

approach. It maintains the same duration and number of samples, trying to extract as

much information as possible while controlling the insulin infusion rate.

4.4.1 Experiment design

The sampling times adopted for the standard OGTT are not the result of an optimi-

sation, hence they do not allow to maximise the information content achievable during

the test. Therefore, it makes sense to apply the design of experiments to devise the

best temporal allocation of the samples to be collected, using insulin infusion as the

control variable. Table 4.7 reports the settings imposed in the design phase to the

manipulated variable.
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Table 4.7. Controlled variable settings for the 5h-11s oral test design of experiment.

Insulin settings Value

Control type piecewise-constant

Intervals number 4

Interval lower bound [min] 5

Upper bound [mU/min] [150,115,115,115]

Furthermore, the test is required to be safe for the subject, thus the end-point

constraints displayed in Table 4.8 have been enforced in order to ensure that kind of

design. On the one hand, the constraints on the upper and lower bound violations

aim at assuring harmless conditions during the execution. On the other hand, the

constraints on the final glucose concentration and its derivative force to restore the

basal values of the patient prior to the test.

Table 4.8. End-point constraints for the 5h-11s oral test design of experiments.

Constrained variable Lower bound Upper bound

Lower bound violation [mg · min/dL] -0.1 0.1

Upper bound violation [mg · min/dL] -0.1 0.1

Gtot [mg/dL] 76.0 84.0

Γ [mg/(dL · min)] -0.01 0.01

The result of the MBDoE procedure is shown in Figure 4.3, in terms of glucose

profile obtained (a) and insulin infusion schedule (b). Firstly, it is clear how the design

allows to enclose the glucose profile between the lower and upper bound, thus max-

imising the safety of the patient, at least with this parametric set. However, it could

endanger a different subject, i.e. having a highly different parametric set. Secondly,

a simple insulin administration profile is obtained, since insulin needs to be perfused

only in two of the four control intervals.
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(a) (b)

Figure 4.3. 5h-11s oral test: glucose profile from the MBDoE procedure (a) and insulin administra-
tion profile (b).

Table 4.9 collects the detailed results of the optimisation. The first thing to notice

is the information content improvement accomplished thanks to the optimisation, since

index Id increases from 150 to 268.

Unfortunately, the main issue of this test is related to the excessive insulin infusion

rate required in its initial part. This value is beyond those reported in literature for

the available insulin infusion devices. Therefore, this test is only meant to show the

enhancements permitted by a MBDoE approach over the standard OGTT.

Table 4.9. Optimised design variables and discrete information content for the 5h-11s oral test.

Variable Value

tsp [min] [0, 38, 43, 48, 123, 128, 222, 227, 232, 295, 300]

U [mU/min] [149.99, 0, 23.82, 0]

tU [min] [39.52, 148.01, 95.46, 17.01]

Id 268.00

4.4.2 Parameter estimation

Parameter identification has been performed using sets Θ1 and Θ2. Looking at Figure

4.4, a significant mismatch is evident between the designed and the identified profiles,

which increases as the gap in the corresponding parametric sets rises. This behaviour,

on the one hand, moves the subject away from the lower bound but, on the other hand,

causes a modest violation of the upper bound.
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(a) (b)

Figure 4.4. Glucose profiles from the MBDoE procedure and after identification with set Θ1 (a) and
Θ2 (b) for the 5h-11s oral test.

The estimates of the parameters are statistically satisfactory for both the sets used,

as shown in Table 4.10 and 4.11. This means that the optimisation strategy adopted is

actually effective in devising a protocol capable of increasing the information content

achievable.

Table 4.10. Parameter estimation statistics for the 5h-11s oral test with set Θ1.

Parameter Final value Initial guess Confidence interval 95% 95% t-value (Ref. 1.895)

Θ1 0.6469 1 0.1836 3.524

Θ2 1.3089 1 0.1799 7.274

Θ3 0.7439 1 0.0637 11.68

Θ4 1.0630 1 0.1703 6.242

Table 4.11. Parameter estimation statistics for the 5h-11s oral test with set Θ2.

Parameter Final value Initial guess Confidence interval 95% 95% t-value (Ref. 1.895)

Θ1 0.4716 1 0.1814 2.600

Θ2 1.4866 1 0.2784 5.340

Θ3 0.5517 1 0.0860 6.419

Θ4 1.1534 1 0.3461 3.332

4.5 5h-22s oral test

This test attempts to maintain the positive aspects observed in the 5h-11s oral test,

such as the good estimation capabilities, while getting rid of the unfeasible insulin
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infusion rate used in that test.

4.5.1 Experiment design

In this optimisation, the number of samples is risen to 22, so as to furtherly increase

the information derivable. This is a sensible value because it is close to the number of

samples taken in the standard IVGTT, but distributed over a longer time period.

Similarly to the 5h-11s oral test, only insulin infusion is considered as control variable

in the design. However, the maximum on the upper bound is fixed at 100 mU/min,

according to Lynch and Bequette [16], and the control intervals reduced to 3, as shown

in Table 4.12.

Table 4.12. Controlled variable settings for the 5h-22s oral test design of experiment.

Insulin settings Value

Control type piecewise-constant

Intervals number 3

Interval lower bound [min] 30

Upper bound [mU/min] [100, 90, 90]

The end-point constraints are partially relaxed. In fact, due to the lower insulin in-

fusion rate imposed, a small violation of the upper bound needs to be permitted (Table

4.13), for the optimisation to converge. Additionally, the constraint on the derivative

of the final glucose concentration is loosened, so as to keep the duration of the test

unchanged.

Table 4.13. End-point constraints for the 5h-22s oral test design of experiment.

Constrained variable Lower bound Upper bound

Lower bound violation [mg · min/dL] -0.1 0.1

Upper bound violation [mg · min/dL] -0.1 500

Gtot[mg/dL] 76.0 84.0

Γ [mg/(dL · min)] -0.1 0.1

The glucose and insulin profiles obtained applying the MBDoE procedure are shown

in Figure 4.4. It can be noticed that allowing for a small violation of the upper bound

prevents glucose concentration from hitting the lower bound. Insulin infusion profile is
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even simpler than the 5h-11s oral test and also the amount of insulin perfused decreases

from 8.2 U to 6.1 U.

(a) (b)

Figure 4.4. 5h-22s oral test: glucose profile from the MBDoE procedure (a) and insulin administra-
tion profile (b).

The settings obtained for the test, as the sampling times, control variable values

and switching times are displayed in Table 4.14. Furthermore, the discrete information

content exhibits a huge increment as a consequence of the rise in samples.

Table 4.14. Optimised design variables and discrete information content for the 5h-22s oral test.

Variable Value

tsp [min] [0, 17, 22, 27, 82, 97, 102, 107, 112, 117, 154, 182,

190, 195, 200, 213, 218, 254, 261, 290, 295, 300]

U [mU/min] [96.31, 0, 18.59]

tU [min] [30, 95.83, 174.17]

Id 455.57

4.5.2 Parameter estimation

The effect of the parametric mismatch is relevant (Figure 4.5), especially for set Θ2

(b), which shows a remarkable violation of the upper bound. This represents a poten-

tially harmful condition for the patient, hence it needs to be handled if the test is to

be applied on a clinical scale.

Additionally, it should be observed that in both cases it is difficult to obtain a stable

end-point glucose concentration, i.e. a zero derivative.
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(a) (b)

Figure 4.5. Glucose profiles from the MBDoE procedure and after parameter identification with set
Θ1 (a) and Θ2 (b) for the 5h-22s oral test.

The effect of the samples rise is numerically evident also by the estimates achieved,

presented in Table 4.15 and 4.16. In fact, the t-values associated with the estimated

parameters are greater than those reported for the 5h-11s oral test for both sets. This

means higher precision in the identification, as it is also proved by the reduction of the

confidence intervals.

Table 4.15. Parameter estimation statistics for the 5h-22s oral test with set Θ1.

Parameter Final value Initial guess Confidence interval 95% 95% t-value (Ref. 1.734)

Θ1 0.7738 1 0.0964 8.031

Θ2 1.2316 1 0.1680 10.05

Θ3 0.8117 1 0.1360 5.969

Θ4 1.1566 1 0.0877 13.19

Table 4.16. Parameter estimation statistics for the 5h-22s oral test with set Θ2.

Parameter Final value Initial guess Confidence interval 95% 95% t-value (Ref. 1.734)

Θ1 0.6038 1 0.1024 5.897

Θ2 1.4844 1 0.2348 6.322

Θ3 0.6533 1 0.1935 3.376

Θ4 1.4164 1 0.2156 6.569
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4.6 5h-22s-2m oral test

The objective of this design is to avoid or at least reduce the violation of the glucose

upper bound, so as to increase the safety of the test. This can be accomplished, for

instance, by administering multiple glucose meals with a reduced amount of glucose in

each one.

4.6.1 Experiment design

The design of this protocol departs from the positive results obtained from the oral

tests previously devised, in terms of parameter estimation performance. The number

of samples taken is maintained at 22, so as to possibly reproduce the high information

content previously achieved. The oral administration of glucose is kept as well, but

it is splitted into two different meals of reduced quantity, which are to be optimised.

Therefore, in addition to the insulin infusion rate, two other control variables can be

adjusted: the amount of glucose of each meal and the meal times. The amount of

glucose per meal is enclosed between 10 and 30 g, while the meal times are chosen so

as the first one occurs at t=0 min and the second one can move in the range from 100

to 150 min. Differently from insulin infusion, these two variables are time-invariant.

The settings used for the manipulated variables in the design are reported in Table 4.17.

Table 4.17. Controlled variable settings for the 5h-22s-2m oral test design of experiment.

Insulin infusion Glucose amount Meal times

Control type piecewise-constant time-invariant time-invariant

Intervals number 3 1 1

Interval lower bound 20 min - -

Lower-Upper bounds 0-50 mU/min 10-30 g [0-1, 100-150] min

Since the aim is to improve the safety of the protocol, stricter limits have been

imposed on the design not tolerating any violation at all (Table 4.18).
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Table 4.18. End-point constraints for the 5h-22s-2m oral test design of experiments.

Constrained variable Lower bound Upper bound

Lower bound violation [mg · min/dL] -0.01 0.01

Upper bound violation [mg · min/dL] -0.01 0.01

Gtot [mg/dL] 76.0 84.0

Γ [mg/(dL · min)] -0.01 0.01

The design result, shown in Figure 4.6, allows to avoid any violation of the upper

bound and, at the same time, to assure a higher stabilisation of the final glucose con-

centration.

(a) (b)

Figure 4.6. 5h-22s-2m oral test: glucose profile from the MBDoE procedure (a) and insulin admin-
istration profile (b).

The two peaks that are observed are due to the two meals, which also produce a

different type of insulin infusion profile from those observed in the previous tests. In

fact, the maximum insulin infusion rate is located in the central interval because of the

second meal.

Table 4.19 exhibits the detailed results of the optimisation. It can be observed that

the second meal has the effect of concentrating the samples in the last 100 min of the

test. The overall amount of glucose administered to the patient has been reduced to

51 g, even though the total amount of insulin perfused has been scarcely decreased to

5.8 U.

The discrete information content derived at the design conditions is only slightly re-

duced compared to the 5h-22s oral test, hence the parameter identification should still

be satisfactory.
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Table 4.19. Optimised design variables and discrete information content for the 5h-22s-2m oral test.

Variable Value

tsp [min] [0, 79, 84, 89, 94, 145, 150, 155, 160, 202, 207, 212,
217, 222, 227, 232, 275, 280, 285, 290, 295, 300]

U [mU/min] [10.57, 33.34, 16.78]
tU [min] [114.87, 87.20, 97.94]
Meals [g] [21.09, 30.00]
tmeals [min] [0, 150]
Id 431.56

4.6.2 Parameter estimation

From Figure 4.7, the result of the identification with set Θ1 (a) by means of the 5h-22s-

2m oral test appears to be quite good in terms of safety. A small violation of the upper

bound is observed and glucose final concentration is not too far from its basal value.

Unfortunately, the identification performed with set Θ2 (b), emphasises the limitation

of this protocol. In fact, the final glucose concentration is too distant from the basal

value and the final derivative is not stable yet, thus making the test unsuitable for

clinical applications.

(a) (b)

Figure 4.7. Glucose profiles from the MBDoE procedure and after identification with set Θ1 (a) and
Θ2 (b) for the 5h-22s-2m oral test.

Parameter estimates are satisfactory with both sets (Table 4.20 and 4.21), even

though not as good as those realised in the 5h-22s oral test, as it can be observed

comparing the t-values.
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Table 4.20. Parameter estimation statistics for the 5h-22s-2m oral test with set Θ1.

Parameter Final value Initial guess Confidence interval 95% 95% t-value (Ref. 1.734)

Θ1 0.8067 1 0.1744 4.626

Θ2 1.0835 1 0.2929 3.699

Θ3 0.7431 1 0.1169 6.354

Θ4 1.1978 1 0.1576 7.600

Table 4.21. Parameter estimation statistics for the 5h-22s-2m oral test with set Θ2.

Parameter Final value Initial guess Confidence interval 95% 95% t-value (Ref. 1.734)

Θ1 0.8856 1 0.2417 3.665
Θ2 1.0343 1 0.3032 3.411
Θ3 0.6769 1 0.2008 3.371
Θ4 1.9089 1 0.3921 4.868

4.7 3h-23s intravenous test

Similarly to the optimisation of the standard OGTT performed in the 5h-11s oral test,

this design aims at detecting the performance of an optimised standard IVGTT.

4.7.1 Experiment design

Considering the same duration and number of samples of the standard IVGTT, a

MBDoE approach is applied in order to identify the optimal sampling schedule. The

control variable for the optimisation is still the insulin infusion, which can be modified

over three time intervals (Table 4.22).

Since safety is a major concern, it is chosen to inject only two-thirds of the glucose

used in the standard IVGTT, i.e. 14 g. As a consequence, the glucose injection rate

reduces to 125 mg/dL/min. This is supposed to induce a considerable reduction in the

initial glucose peak, thus reducing the risk of an upper bound violation. However, since

the violation cannot be avoided completely, a small tolerance is allowed in order for

convergence to be reached, as shown in Table 4.23.
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Table 4.22. Controlled variable settings for the 3h-23s intravenous test design of experiment.

Insulin settings Value

Control type piecewise-constant

Intervals number 3

Interval lower bound [min] 10

Lower-Upper bounds [mU/min] 0-50

Table 4.23. End-point constraints for the 3h-23s intravenous test design of experiment.

Constrained variable Lower bound Upper bound

Lower bound violation [mg · min/dL] -0.01 0.01

Upper bound violation [mg · min/dL] -0.01 200

Gtot [mg/dL] 76.0 84.0

Γ [mg/(dL · min)] -0.1 0.1

The reduction in the glucose injection results in a sharp decrease of the initial spike

in the glucose concentration profile (Figure 4.8). Nevertheless, the upper bound viola-

tion is still present, even though negligible. The advantage of this protocol consists in

the good stabilisation of the final glucose concentration profile permitted by the short

stimulus induced on the subject.

(a) (b)

Figure 4.8. 3h-23s intravenous test: glucose profile from the MBDoE procedure and after parameter
identification with set Θ1 (a) and insulin administration profile (b).

As a result of the optimisation the time of the initial samples is postponed and

there is a higher concentration of samples in the final part of the test (Table 4.24).
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In addition, there is a good increase in the discrete information content derived with

respect to the standard IVGTT, which should result in an improved parameter esti-

mation capability. However, it can be noticed that the information achievable with

this optimised protocol remains below the one obtainable from the 5h-11s oral test.

This fact confirms what was previously observed in the preliminary analysis about the

higher information content of the standard OGTT over the standard IVGTT.

Table 4.24. Optimised design variables and discrete information content for the 3h-23s intravenous
test.

Variable Value

tsp [min] [28, 30, 32, 34, 61, 63, 65, 67, 69, 105, 108, 110, 112

114, 116, 118, 120, 172, 174, 176, 178, 180, 182]

U [mU/min] [49.57, 2.31, 18.23]

tU [min] [11.45, 36.83, 133.72]

Id 208.08

4.7.2 Parameter estimation

Figure 4.9 shows that the parametric mismatch still causes a significant gap between

the designed test on the healthy subject and the profile after identification with diabetic

sets. Nevertheless, due to the different type of stimulus induced by the glucose injection,

the violation of the upper bound remains quite limited regardless of the parametric set.

(a) (b)

Figure 4.9. Glucose profiles from the MBDoE procedure and after identification with set Θ1 (a) and
Θ2 (b) for the 3h-23s intravenous test.

The designed test exhibits an acceptable parameter estimation capability with set
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Θ1, although the second parameter is on the border line of acceptability (Table 4.25).

The limitations of this protocol clearly emerge when the parameter estimation with set

Θ2 is performed and statistically unsatisfactory estimates are obtained for the second

and third parameters (Table 4.26). Additionally, also the fourth parameter presents too

much a large confidence interval value, which makes the identification highly unreliable.

Table 4.25. Parameter estimation statistics for the 3h-23s intravenous test with set Θ1.

Parameter Final value Initial guess Confidence interval 95% 95% t-value (Ref. 1.729)

Θ1 0.7886 1 0.1149 6.864

Θ2 1.1464 1 0.6457 1.775

Θ3 0.8355 1 0.2726 3.065

Θ4 1.2037 1 0.1629 7.391

Table 4.26. Parameter estimation statistics for the 3h-23s intravenous test with set Θ2 (asterisks
denote t-values failing the t-test).

Parameter Final value Initial guess Confidence interval 95% 95% t-value (Ref. 1.729)

Θ1 0.6557 1 0.1713 3.827

Θ2 3.6051 1 5.344 0.675*

Θ3 1.0708 1 1.7 0.630*

Θ4 1.8098 1 0.7203 2.513

4.8 3h-23s-2i intravenous test

The purpose of this design is to improve safety and identification performance of the

3h-23s intravenous test using two glucose injections.

4.8.1 Experiment design

The optimisation of the 23 samples is carried out adjusting three control variables: the

insulin infusion rate, the amount of glucose injected and the injection times.

Insulin infusion is manipulated over three intervals and narrower bounds, since less

glucose per injection is assumed by the patient. Manipulation of the amount of glucose

injected, along with no upper bound violation tolerated, allows to enclose the glucose

profile between the two bounds. The first glucose injection is forced to occur in the

first minute of the test, while the second one can move in the range from 40 to 100 min,
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as shown in Table 4.27.

As regards the other end-point constraints imposed on the design, they are the same

used in the 5h-22s-2m oral test (Table 4.18).

Table 4.27. Controlled variable settings for the 3h-23s-2i intravenous test design of experiment.

Insulin infusion Glucose injection Injection times

Control type piecewise-constant time-invariant time-invariant

Intervals number 3 1 1

Interval lower bound 10 min - -

Lower-Upper bounds 0-40 mU/min 50-120 mg/(dL·min) [1-1, 40-100] min

Figure 4.10 confirms that, similarly to the 3h-23s intravenous test, the type of stim-

ulus generated by an injection permits to stabilise the glucose profile and restore the

basal value in a simple way.

The design procedure yields two glucose injections, approximately of the same amount,

at a distance of an hour (Table 4.28).

At the same time, it can be noticed that the increment realised in the discrete informa-

tion content compared to the previously designed intravenous test is not so significant

as expected.

(a) (b)

Figure 4.10. 3h-23s-2i intravenous test: glucose profile from the MBDoE procedure (a) and insulin
administration profile (b).
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Table 4.28. Optimised design variables and discrete information content for the 3h-23s-2i intravenous
test.

Variable Value

tsp [min] [24, 26, 28, 30, 39, 59, 61, 74, 101, 103, 105, 107,

109, 111, 113, 115, 118, 172, 174, 176, 178, 180, 182]

Glucose injections [mg/(dL·min)] [90.52, 87.52]

tinjections [min] [0, 61]

U [mU/min] [27.81, 15.08, 16.06]

tU [min] [44.35, 69.06, 68.59]

Id 269.51

4.8.2 Parameter estimation

Figure 4.10 displays the good safety achieved with this test in the identification of dif-

ferent diabetic subjects, as it is proved by the negligible violations of the upper bound

observed. End-point glucose concentration is not very close to the basal value, but,

quite a flat end-profile is obtained.

Nevertheless, the poor identification performance of this new protocol can already be

perceived by looking at the fact that there is only slight improvement in the t-values

after identification with set Θ1 (Table 4.29) compared to the 3h-23s intravenous test.

In fact, from Table 4.30, it can be seen that this test fails in the estimation of the

second and third parameters with set Θ2.

(a) (b)

Figure 4.11. Glucose profiles from the MBDoE procedure and after identification with set Θ1 (a)
and Θ2 (b) for the 3h-23s-2i intravenous test.
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Table 4.29. Parameter estimation statistics for the 3h-23s-2i intravenous test with set Θ1.

Parameter Final value Initial guess Confidence interval 95% 95% t-value (Ref. 1.729)

Θ1 0.8080 1 0.1889 4.278

Θ2 1.5252 1 0.6223 2.451

Θ3 1.1467 1 0.4516 2.539

Θ4 1.1796 1 0.1390 8.486

Table 4.30. Parameter estimation statistics for the 3h-23s-2i intravenous test with set Θ2 (asterisks
denote t-values failing the t-test).

Parameter Final value Initial guess Confidence interval 95% 95% t-value (Ref. 1.729)

Θ1 0.7275 1 0.2684 2.710

Θ2 1.3618 1 2.1570 0.631*

Θ3 0.7910 1 1.2280 0.644*

Θ4 1.3981 1 0.4021 3.477

4.9 Evaluation of the designed protocols

In this section, some considerations on the information content derived at different

conditions are pointed out and an overall assessment of the designed protocols is made.

4.9.1 Parametric bias on the information content

The glucose profiles previously examined for different parametric sets have shown that

the model parameters have a strong influence on the glucose response. To put it an-

other way, it means that each patient has his/her own parameters, which are initially

unknown and produce a different response to the same stimulus. The information

content derivable in a test is highly dependent on the parametric set of the subject

considered, hence it is not sensible to compare different tests based on distinct para-

metric sets.

Therefore, it is chosen to compare different tests only at the same parametric set. How-

ever, an issue could be raised regarding the fact that the choice of the specific set on

which to base the comparison could affect the corresponding result. With respect to

this, an empirical analysis has shown that for each test the following equality holds,
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regardless of the parametric set considered:

log

(
Id
Ic

)
= constant (4.3)

where Id and Ic represent the discrete and continuous information content realised with

the same parametric set, respectively. The use of the logarithm is due to the two/three

orders of magnitude difference between the discrete and continuous information.

In practical terms, Equation 4.3 means that the fraction of discrete information derived

over the continuous information potentially achievable is the same for a specific test for

every parametric set examined. This implies that if a test is found to be more informa-

tive than another for a certain parametric set then, also considering other parametric

sets, it will remain so. This can be visualised from the cumulative information content

graphs reported in Figure 4.12 for sets Θ1 and Θ2. The 5h-22s oral test is shown to

be the most informative for both sets and the same hierarchy is maintained also for

the other two tests.

(a) (b)

Figure 4.12. Comparison of the cumulative information content derivable from three designed pro-
tocols considering set Θ1 (a) and Θ2 (b).

4.9.2 Overall assessment

Beyond the capability to identify the model parameters in a statistically sound way,

the purpose of this work is to provide some criteria based on which to evaluate the

feasibility of the designed tests. In fact, the optimally devised protocol should be able

to identify an unknown subject while complying with the safety requirements needed

for its clinical implementation.

A novel approach is hereby introduced, which takes into account five distinct indices,

whose mathematical formulation has already been presented in § 2.8. These heuristic

indices allow to draw a comparison between different tests considering the factors that
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could impact the most on their applicability.

In light of the previous considerations, it is chosen to compare the tests on the basis

of set Θ2. Computation of the indices is performed considering safety and information

realised after the identification with that set. Therefore, only the tests that allow a

statistically satisfactory parameter estimation are taken into account, so as to avoid

deceiving results because of the great parametric mismatch. As a result of this, only

three designed protocols are displayed in Figure 4.13. The radar chart is a useful tool

Figure 4.13. Indices radar chart for the designed protocols that allow for a statistically satisfactory
parameter estimation with set Θ2.

for a quick evaluation of the most suitable clinical protocol based on the different in-

dices introduced. In fact, the larger the area of the polygon, the greater the suitability

of the designed test.

Firstly, the oral tests have been shown to outperform the intravenous ones for identi-

fication purposes, because they produce a more physiological type of stimulus on the

subject. As a matter of fact, only oral tests are represented in the radar chart.

Secondly, it can be easily noticed the rise in the information content that can be accom-

plished through an increase in the number of samples, i.e. a decrease in π. Nevertheless,

this fact has a direct impact on the safety of the protocol: the 5h-22s oral test presents

the highest information index but, at the same time, its safety reaches a minimum.

The 5h-22s-2m represents a good compromise between high information content and

good safety, however, it has been shown to be difficult to restore basal glucose values

at the end of the test (Figure 4.7b) due to the second meal.

It is clear that none of these protocols completely meets the requirements needed for

a clinical application, even though valuable information has been derived. The major
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issue associated with these tests is represented by the rapid loss of their safety due

to the parametric mismatch. As a final consideration, some additional improvements

on safety are necessary, in order to guarantee a feasible implementation of the most

informative protocols.



Chapter 5

Robust design

This chapter deals with the design of a test that ensures the compliance of safety

requirements over a wide range of variability of the model parameters.

Firstly, the strategy adopted for the implementation of a robust design is presented.

Secondly, the effectiveness of such an approach in the design of a new protocol is shown,

in terms of safety enhancement and parameter estimation performance.

5.1 Introduction

In previous analyses, it has been shown that subject’s responses are highly dependent

on the parameter values. In other words, this means that a great variability in the

outputs is observed moving in the domain of uncertainty of the model parameters.

The main drawback associated with this fact consists in the large deviations of the glu-

cose profile from the design result, which can cause significant violations of the upper

bound.

In order to prevent the uncertainty of model parameters from leading to unsafe op-

erating conditions, robust design of experiment techniques may be implemented. A

successful application of this approach allows to design tests which are insensitive to

the starting value of the parameters. The method consists in the use of stochastic

simulations, which reproduce the physiological behaviour of a large group of diabetic

patients. The results are then applied to devise tests with stricter safety requirements,

so as to minimise the effect of parameter uncertainty when performed on unknown

subjects.

5.2 Variability assessment

The effect of the uncertainty of the model parameters on the glucose output is tested

on a population of 500 individuals affected by T1DM, adopting the 5 h-22 s oral test.
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The set of parameters of each of them is assigned randomly using a uniform distribution

within a certain range of variability. A uniform distribution is chosen because each

parameter is equally likely to be selected for the simulated patient. With respect to

the normalised set of parameters considered in the design stage for the healthy subject,

i.e. Θ0, the variability range assigned in the uniform distribution is the following:

[0.43− 0.73, 1.03− 1.20, 0.21− 0.40, 1.40− 1.60]

This choice has been made according to data reported in literature by Bergman [9] for

lean diabetic subjects.

Glucose profiles resulting from the 500 simulated patients are analysed by means of

some statistics, so as to assess their gap from the upper threshold. In particular, an

expected value approach is chosen, which considers the a priori uncertainty in the model

parameters by assuming that the parametric set to be used belongs to a population

of subjects, whose distribution is known, i.e. a uniform distribution over the range

specified above [42]. This method consists in selecting the maximum glucose value of

each profile and computing the mean and standard deviation over the entire population

taken into account.

Standard deviation (SD) is then used for designing robust tests, in which the upper

bound violation constraint is reformulated as:

dV1
dt

= max(0, Gtot(t)− UB + 2 · SD) (5.1)

A value of 19.53 for the standard deviation has been found but it has been chosen

to round it off to 20, so that the upper bound in the new design lowers from 170 to

130 mg/dL.

5.3 Robust oral test

The 5h-22s oral test has been detected the most informative among the several designs

presented in Chapter 4. Therefore, it is assumed as a reference for the development

of a clinical protocol which combines a satifactory identification capability with an

excellent safety.

5.3.1 Experiment design

An initial design is performed controlling both insulin infusion and the amount of

glucose of the meal, so as to be able to enforce the stricter constraint on the upper

threshold (Equation 5.1). Insulin infusion is controlled as for the 5h-22s oral test (Ta-
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ble 4.12), while the glucose meal can move in the range from 30 to 60 g. The end-point

constraints imposed on the design are similar to the 5h-22s-2m oral test (Table 4.18),

except for the glucose derivative constraint, which is relaxed in the range from -0.1 to

0.1. Relaxation of this constraint is required because otherwise the good excitation

pattern previously obtained is lost and, as a result, the parameter identification per-

formance is dramatically reduced.

A value close to 40 g is found for the meal from this preliminary design, so it is rounded

off to 40. Then, a new design is carried out fixing the meal at 40 g and controlling only

the insulin infusion with the same settings used before.

This designed protocol will be referred to as robust oral test. The results of this test,

i.e. sampling times and insulin infusion schedule, are reported in Table 5.1.

Table 5.1. Optimised design variables and discrete information content for the robust oral test.

Variable Value

tsp [min] [0, 37, 42, 47, 52, 57, 62, 107, 112, 117, 122, 180,

185, 190, 195, 200, 275, 280, 285, 290, 295, 300]

U [mU/min] [100, 0, 18.62]

tU [min] [35.78, 98.39, 165.83]

Id 413.29

The high value found for the discrete information content, which is slightly lower

than the 5h-22s oral test, indicates that good parameter estimates can possibly be

achieved with this new protocol.

In addition to good identification performance, the objective of the robust design is

primarily that of guaranteeing safety conditions to the unknown patient. At this pur-

pose, the robust oral test can be compared to an identical design obtained at the same

conditions but using the original upper bound constraint, i.e. 170 mg/dL. Initially,

another preliminary design is performed adjusting both insulin infusion and glucose

administration, which now varies in the range from 30 to 70 g. A value of 62.23 g is

obtained, thus it is rounded off to 62 g.

Fixing the glucose meal at this value, a new design is carried out in which only the

insulin infusion is controlled as before. The results of the new protocol, which will be

referred to as non robust oral test, are presented in Table 5.2.
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Table 5.2. Optimised design variables and discrete information content for the non robust oral test.

Variable Value

tsp [min] [0, 44, 49, 54, 59, 98, 103, 108, 113, 124, 131, 171,

181, 191, 196, 201, 222, 251, 285, 290, 295, 300]

U [mU/min] [99.30, 0, 18.65]

tU [min] [48.93, 93.26, 157.82]

Id 490.03

It can be noticed that the non robust oral test is even more informative than the

5h-22s oral test (Table 4.14), because it induces a higher stimulus in the subject push-

ing the glucose profile towards both bounds (Figure 5.1a). Similarly, the robust oral

test, thanks to the reduced glucose meal, presents a similar behaviour but allows to

maintain the glucose profile below the new upper bound imposed by the robust design.

As regards insulin infusion, Figure 5.1b shows that the two profiles are approximately

equivalent. A slightly longer insulin infusion is required in the non robust oral test,

since a greater glucose meal is applied.

(a) (b)

Figure 5.1. Comparison between robust and non robust oral tests: glucose profile from the MBDoE
procedure (a) and insulin administration profile (b).

5.3.2 Parameter estimation

The effectiveness of the robust design can be shown performing a parameter estimation

task with set Θ2. Figure 5.2 shows the glucose profiles after identification with that

set for the robust and the non robust oral tests. Experimental measurements are not

displayed in the graph for the sake of clarity. It can be observed that the robust oral

test succeeds in maintaining the glucose profile within the upper bound, even though
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set Θ2 does not belong to the population of subjects simulated in the robust design,

for the reasons pointed out in § 4.1.1.

Figure 5.2. Glucose profiles of the robust and non robust oral tests after identification with set Θ2.

The robust protocol devised does not guarantee that no violation of the upper

threshold is obtained for any choice of the parametric set. Nevertheless, since an ex-

pected value approach has been used, it ensures that, at least in a neighbourohood of

the variability range taken into account in the robust design, the violation is limited.

In terms of parameter estimation performance, both tests permit to identify the model

parameters with set Θ2 in a statistically sound way. A light improvement in the es-

timates is observed in the non robust oral test, due to the higher information content

realised. However, since the focus is now on safety, only the robust oral test estimates

are reported in Table 5.3.

Table 5.3. Parameter estimation statistics for the robust oral test with set Θ2.

Parameter Final value Initial guess Confidence interval 95% 95% t-value (Ref. 1.734)

Θ1 0.6999 1 0.1347 5.196

Θ2 1.3043 1 0.1519 8.589

Θ3 0.6193 1 0.0961 6.447

Θ4 1.5739 1 0.2424 6.493

A comparison between these estimates and those achieved with the 5h-22s oral

test (Table 4.16) shows that the effect of the loss of information content due to safety
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enforcement is not so evident. In fact, the t-values prove that, for the second and third

parameter, better estimates are achieved using the robust oral test.

5.4 Final considerations

The non robust oral test seems to grant an enhancement of the information content

compared to the 5h-22s oral test. However, since the primary concern of the robust

design is to ensure safety conditions to the subject, the non robust oral test is excluded

from further analyses.

Figure 5.3 presents a comparison based on the 5 heuristic indices between the 5h-22s

oral test and the robust oral test.

Figure 5.3. Indices radar chart: comparison between the 5h-22s oral test and the robust oral test
after parameter estimation with set Θ2.

The first one has been shown to be the most informative among all the designed

protocols, while the latter exhibits the highest safety. Taking merely the areas of the

two polygons into account, the robust oral test clearly outperforms the 5h-22s oral test

in an overall assessment. As a consideration related to this fact, it is important to

highlight the effectiveness of the implementation of a robust approach in the design of

clinical tests.

Additionally, it should be clear that the more information is desired, the less safety

is achieved. This fact has clearly emerged from the previous comparison between the

robust and the non robust oral tests. Broadly speaking, the implementation of stricter

safety requirements in the design phase, due to the robust approach, causes a reduction

of the degrees of freedom available. As a result, a lesser stimulus can be induced on the

patient, at least considering the same duration for the test, thus a lower information
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content can be accomplished.

As a final consideration, the research of an optimal clinical protocol for parameter

identification seems to be more the result of a compromise on the highest information

achievable at the maximum safety, rather than a simultaneous maximisation of both

of them.

Beyond safety conditions over the entire duration of the test, the optimal protocol is

also required to restore basal glucose values at the end of it. Nevertheless, this re-

quirement is not simple to be satisfied, since its direct implementation in the MBDoE

would result in a further decrease of the degrees of freedom available, hence a much

more complex design. Therefore, a different procedure has been followed, in order to

assure the compliance of this condition, based on the results obtained at the end of the

test.

Figure 5.4. Glucose profiles of the robust oral test with sets Θ1 and Θ2 over a 350 min duration
(test ends at 300 min).

Figure 5.4 shows the behaviour of glucose concentrations with sets Θ1 and Θ2 once

the robust oral test terminates, i.e. at 300 min. As previously observed in Figure 5.2,

glucose profile is not flat at the end of the test, due to the parametric mismatch. How-

ever, suspending insulin infusion at 300 min, a stabilisation of glucose concentration is

achieved after a while, followed by a rapid increase due to the lack of insulin adminis-

tration.

This fact is confirmed by looking at the values of the glucose derivative reported in

Table 5.4: after 10 min in both cases the derivatives fall in the range imposed in the

design, i.e. -0.1 < Γ < 0.1.
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Table 5.4. Glucose derivative and glucose concentration values at the end of the robust oral test and
10 min after with sets Θ1 and Θ2.

Parametric set Γ @ 300 min Γ @ 310 min Gtot @ 300 min Gtot @ 310 min

[mg/(dL · min)] [mg/(dL · min)] [mg/dL] [mg/dL]

Θ1 -0.13 0.06 90.97 90.38

Θ2 -0.20 -0.03 105.60 104.30

As for the final glucose values achieved, it should be considered that they are not

too far from the basal value, i.e. 80 mg/dL, so they can be easily restored under

the supervision of the medical staff or, alternatively, with the patient’s knowledge of

himself/herself.
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The purpose of this thesis was to devise a feasible clinical protocol for the identification

of physiological models of T1DM. The Lynch-Bequette model has been assumed as the

reference model in this analysis, which has been entirely conducted by means of the

software gPROMSr.

The investigation has departed from the tests currently used in clinical facilities for dia-

betes diagnosis and research purposes: the standard OGTT and the standard IVGTT.

A preliminary analysis has provided some valuable knowledge on them, such as the

more physiological stimulus induced by an oral test and the higher information content

derivable from it.

The chief part of the work has been the design of new clinical tests applying a MBDoE

approach. Firstly, the poor performance of the two standard tests has been demon-

strated, motivating the search of reliable alternatives. Secondly, five protocols have

been enquired, primarily in terms of parameter estimation capability, using two dis-

tinct parametric sets representing different degrees of diabetes severity.

The design procedure applied to the standard tests has shown considerable improve-

ments in both cases. However, at the same time, it has highlighted the superiority of

an oral test over an intravenous one for parameter estimation purposes. In fact, the

5h-11s oral test succeeds in this task, while the 3h-23s intravenous test fails, due to

its poor stimulus. This hurdle cannot be overcome even using two glucose injections

(3h-23s-2i intravenous test), although excellent safety standards are exhibited during

the test.

Focusing on the oral tests, the 5h-22s oral test has shown the most satisfactory param-

eter estimation performance among the designed protocols, along with a simple insulin

infusion profile. The main issue related to this protocol is its unsatisfactory safety,

especially in the identification of patients with severe parametric deviations from the

healthy subject. As a countermeasure to this problem, a different protocol has been

examined based on two glucose meals of reduced quantity. The resulting 5h-22s-2m

oral test has only partially met the safety requirements desired for a clinical implemen-

tation and, at the same time, it has shown some difficulties in restoring the glucose

basal value at the end of it.
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It has been noticed that there is a strong dependence of the model outputs on the

parameters, which causes significant deviations from the designed profiles, putting

sometimes the subject at risk. In turn, there is also a bias of the information con-

tent due to the parametric set, which needs to be considered when comparing different

tests. In light of the constant ratio between the discrete and continuous information

content for the same test, regardless of the parametric set, an assessment of the most

informative protocol is allowed.

The evaluation of the overall feasibility requirements of the tests has been based on

five indices. The invasivity index cannot be improved with the kind of tests taken into

account, duration can hardly be reduced for identification purposes, while the number

of samples has been maintained at a sensible value, since it is directly linked to the

information derivable. However, the MBDoE procedure has shown its effectiveness in

maximising the information content while enforcing constraints on the safety.

The lack of a reliable protocol has triggered further investigation, which has entailed

the application of a robust design approach. Starting from the most informative and

least safe protocol (i.e. 5h-22s oral test), this method has allowed to design a highly

reliable clinical protocol (robust oral test). This test is endowed with high robustness,

that is its safety is quite insensitive to the parameter values, which is a major concern

when an unknown subject is to be identified. In addition, it assures a statistically

satisfactory parameter estimation, even though some information content is inevitably

lost. As a final consideration, this protocol seems suitable because it has a simple

insulin infusion profile and glucose values close to basal are restored at the end of it.

Future developments may involve the application of a multi-objective design strategy,

where information content and safety are both optimised at the same time. Addition-

ally, it could be interesting to take into consideration oral insulin administrations, so

as to minimise the invasivity on the subject.
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Symbols

A glucose meal [g]

BW body weight [kg]

D glucose intake velocity [mg/dL/min]

G glucose concentration [mg/dL]

Gb basal glucose concentration [mg/dL]

Gsc glucose concentration in the subcutaneous layer [mg/dL]

Gtot total glucose concentration [mg/dL]

I difference between blood and basal insulin [mU/L]

Ib basal insulin concentration [mU/L]

Ic continuous information content [-]

Id discrete information content [-]

Id,max maximum discrete information content among all the

tests [-]

Ki confidence interval [-]

LB lower glucose bound [mg/dL]

Nθ number of model parameters [-]

nmax maximum number of samples allowed in a test [-]

nsp number of blood samples taken in a test [-]

nsw number of switching levels of a control variable [-]

Nu number of manipulated inputs [-]

Nw number of time invariant controls [-]

Nx number of state variables [-]

Ny number of measured variables [-]

Nθ number of model parameters [-]

qi i -th element of the dynamic sensitivity matrix [-]

Rut glucose usage velocity in tissues [mg/dL/min]

sij ij -th element of the inverse matrix of Σ [-]
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SG glucose effectiveness [min−1]

SI insulin sensitivity [mU·min/L]

t time [min]

t̄ t-value [-]

t0 initial time [min]

tmax maximum test duration [min]

tmax,G time-to-maximum of glucose uptake [min]

tsp glucose sampling time [min]

ttest test duration [min]

U exogenous insulin infusion rate [mU/min]

Uv intravenous glucose injection rate [mg/dL/min]

UB upper glucose bound [mg/dL]

V1 glucose lower bound violation [mg·min/dL]

V2 glucose upper bound violation [mg·min/dL]

Vg glucose distribution volume [dL/kg]

Vi insulin distribution volume [L]

X insulin concentration in the remote compartment [mU/L]

Greek letters

α invasivity index [-]

αglucose glucose invasivity index [-]

αinsulin insulin invasivity index [-]

α% confidence region [-]

β safety index [-]

β
′

total bound violation of a test [mg·min/dL]

βmax maximum bound violation observed in the OGTT [mg·min/dL]

γ information content index [-]

Γ time derivative of glucose concentration at the end

of a test [mg/dL/min]

γi heteroschedastic factor [-]

θi i -th model parameter [-]

θ
′
i i -th perturbated parameter [-]

λk k -th eigenvalue [-]

νii element on the diagonal of the variance-covariance

matrix [-]

π sample index [-]
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σi standard deviation of the i -th response ŷi [-]

τ test duration index [-]

ΦLS objective function for LS parameter estimation [-]

ΦML objective function for ML parameter estimation [-]

ΦWLS objective function for WLS parameter estimation [-]

χ2 chi-square [-]

Vectors and matrices

χ2
ref reference chi-square [-]

Ψ Vθ measurement function [-]

ωi standard deviation of the i -th measured response [-]

Hθ Fisher information matrix [NθxNθ]

H0
θ preliminary Fisher information matrix [NθxNθ]

Q sensitivity matrix [nspxNθ]

tsp vector of sampling times [nsp]

tsw vector of switching times [nsw+1]

u vector of time-dependent control variables [Nu]

Vθ variance-covariance matrix of model parameters [NθxNθ]

w vector of time-invariant control variables [Nw]

x vector of state variables [Nx]

y measurements vector [Ny]

ŷ vector of estimated responses [Ny]

zsw vector of switching levels [nsw]

ŷ vector of estimated values of model parameters [Nθ]

θ0 vector of initial model parameters [Nθ]

Θ0 vector of normalised initial model parameters [Nθ]

Θ1 first vector of normalised model parameters for the subject [Nθ]

Θ2 second vector of normalised model parameters for the subject [Nθ]

Σi measurement errors variance-covariance matrix in the i -th

experiment [NyxNy]

Σθ prior variance-covariance matrix of model parameters [NθxNθ]

ϕ design vector [nϕ]

ϕopt optimal design vector [nϕ]
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Acronyms

CGMS continuous glucose monitoring system

GDM gestational diabetes mellitus

IVGTT intravenous glucose tolerance test

LB Lynch and Bequette model

LS least squares

MBDoE model-based design of experiments

ML maximum likelyhood

MPC model predictive control

OGTT oral glucose tolerance test

SWR sum of weighted residuals

T1DM type 1 diabetes mellitus

T2DM type 2 diabetes mellitus

WAP wearable artificial pancreas

WHO World Health Organization

WLS weighted least squares
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