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Chapter 1

Introduction

A system made of bosonic particles makes a Bose-Einstein condensate when,
under a critical temperature TC , a finite fraction of its particles occupies the
lowest accessible energy state. Since these particles can be described by the
same wave function, they show the same behaviour, which can lead to quan-
tum effects on a macroscopic scale. Bose-Einstein condensation (BEC) was
first theorized by A. Einstein in 1924 [1, 2], however, its experimental real-
ization in atomic gases has come almost a century later. The main problem
that needed to be solved in order to achieve the Bose-Einstein condensa-
tion was the extremely low temperature that needed to be reached for the
condensation to take place, which is of the order of the nK. The develop-
ment of laser cooling techniques has allowed to overcome this problem and
BEC in atomic gases was first observed in 1995 [3]. The fact that the Nobel
Prize was awarded in 2001 to E. A. Cornell, W. Ketterle and C. E. Wieman
”for the achievement of Bose-Einstein condensation in dilute gases of alkali
atoms, and for early fundamental studies of the properties of the conden-
sates” and in 1997 to S. Chu, C. Cohen-Tannoudji and W. D. Phillips ”for
development of methods to cool and trap atoms with laser light” clearly
shows how remarkable such achievements have been.

The development of techniques aimed at confining the atoms has allowed
the creation of systems with easily tunable parameters. In particular, the
combined use of laser beams and magnetic fields in the so called magneto-
optic traps has given the possibility to study condensates in optical lattices
and also in quasi one-dimensional systems.

A fundamental effect in quantum mechanics is the so called quantum
tunneling. It consists in the fact that a particle that does not have enough
energy to classically cross a barrier, can do so. In solid state physics this
phenomenon happens in a Josephson junction, which is formed by two su-
perconductors separated by a thin layer of insulating material. Using a
BEC, a similar system can be realized by inserting a barrier in the potential
trap that contains the atoms, thus making a double well potential, which
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6 CHAPTER 1. INTRODUCTION

separates the condensate in two parts. In both systems particles can move
from one side of the barrier to the other through quantum tunneling. This
can occur because the wave functions that describe the particles in either
side of the barrier are not completely localized, but have a non-zero overlap.
The Josephson effect was first theorized in 1962 by B.D. Josephson [4], who
predicted the tunneling of Cooper pairs between to superconductors, and
was seen experimentally by P. Anderson a year later [5]. The first obser-
vation of Josephson oscillations in a single Bosonic Josephson junction was
achieved in 2005 by M. Albiez et al. [6].

When ultracold atoms are inside of an optical cavity, the interaction
between light and matter plays a crucial role, even in the dilute gas limit
[14]. As a consequence the atomic and photon degrees of freedom influence
each other. Therefore the description of the atomic motion dynamically
depends on the photon field [15].

In this thesis we study a Bosonic Josephson junction (BJJ) that is in-
side of a optical cavity, following and expanding on the work carried out in
[11]. While previous proposals of similar systems [17, 18, 19, 20, 21] consid-
ered the effect of the cavity photons on the on-site energies of the Bosonic
Josephson junction, in our system, because of its geometry, we also consider
the phenomena arising from cavity assisted boson tunneling.

We will start in the second chapter by describing the components of
the system, i.e. the Bosonic Josephson junction and the cavity and we will
derive a model that describes their interaction. Adopting the semiclassical
approximation, that uses coherent states to describe both the cavity pho-
tons and the bosonic atoms, we will derive a set of equations that describes
the dynamics of the system. In the third chapter we will study some fea-
tures of the dynamics of the system, and we will show how the dynamics
of the Josephson junction is influenced when the photon field is constant.
In particular, using this last approximation, we will show how the cavity
photons can be used to induce a crossover between the different regimes
in which a Josephson junction can be found. This is one of the novelties
presented in this thesis. In the fourth chapter, we will study the system in
a different way, by treating the bosonic atoms in the junction in a purely
quantum manner. This description of the system, which we will call ”half-
semiclassical”, is an original contribution to the topic. We will study the
ground state of the system and see how the presence of the cavity photons
influences it. Some analogies between the results of this chapter and the
previous one will be then pointed out. The last chapter is the conclusion,
where we briefly summarize the main results of the thesis.



Chapter 2

Bosonic Josephson junction
coupled to photons: Model

2.1 Interacting Bose-Einstein condensate

The Bose-Einstein condensate in our system is composed of an atomic gas,
usually made of alkali or alkali-earth atoms, such as 87Rb or 23Na, which is
trapped with an external potential and it is cooled to a temperature of the
order of 100 nK. In order for the gas to show a purely quantum behaviour, it
needs to be degenerate. A gas is considered degenerate when the de Broglie
wavelength of its atoms is larger than their mean interparticle distance. If
the gas has density n, the mean interparticle distance is d ' n−1/3 and the
de Broglie wavelength is λ =

√
2π~2/mkBT , where m is the mass of the

atoms, T their temperature and kB is Bolzmann’s constant. The condition
can therefore be written as λ > d. When such condition is satisfied the
wave function of the atoms overlap, and they show quantum interference.
The gas we are studying is weakly interacting and can be considered to be
dilute. A gas is weakly interacting when the mean interparticle distance in
much larger than the s-wave scattering length, as of the atoms: n|as|3 � 1.
This does not mean that the interactions between atoms are weak. The
interaction can be strong as long as the interaction energy of the atoms is
small compared to their kinetic energy.

When such a gas is cooled to a low enough temperature it becomes a
Bose-Einstein condensate. The condensation is a consequence of the sta-
tistical properties of bosons, whose wave functions are symmetric for the
exchange of any two particles.

2.1.1 External potential

Ultracold atomic gases can be cooled and trapped with the combined use of
laser beams and magnetic fields in a so called Magneto-Optical trap [7].

7



8 CHAPTER 2. MODEL

Such a trap is composed of an arrangement of lasers tuned to a frequency
just below the resonant frequency of the atoms. In this system, an atom
headed toward such a beam will see the photons from the laser as having
a frequency closer to the resonance because of the Doppler effect. The
oncoming photons will affect the atom more than those coming from the
opposite direction, so they will tend to slow down the atom and therefore
cool it. Using three pairs of laser beams intersecting in the same point will
result in cooling along three orthogonal axis. This arrangement is called
optical molasses, because atoms moving in any direction will tend to slow
down as if they were in a viscous fluid. A position dependent trapping force
can be provided through a spatially dependent magnetic field. Because of
it, the resonance frequency of the atoms will experience a Zeeman shift and
the interaction of the atoms with the laser photons will result in a spatially
dependent force which constitutes the trapping potential.

Another technique for the trapping of the atoms is the optical dipole
trap that is based on the interaction of the induced electric dipole moment
of the atoms with an external light field. Such kind of traps are used in [8]
to build the same type of confining potential we are considering.

In our system the atoms are confined by a double-well (DW) potential,
VDW (x), along the x direction and we assume that the confinement is tightly
harmonic, with frequency ωH , in the (y, z) plane, so that the system can be
considered almost unidimensional. The total external potential V (r) for the
atoms is therefore given by

V (r) = VDW (x) +
1

2
mω2

H(y2 + z2) , (2.1)

where m is the mass of the bosons.

2.1.2 Atomic Hamiltonian

The Bose-Einstein condensate we are studying is formed by bosonic alka-
line or alkaline-earth-metal atoms having an electronic ground state, which
we will label with the subscript g, and an optically accessible excited state,
which we will label with e. The atomic transition frequency ωA is in the opti-
cal range, i.e. ωA ≈ 1015 Hz. The Hamiltonian that describes the interacting
bosons in the trapping potential can be written as:

ĤA =
∑
σ=g,e

∫
d3r Ψ̂†σ(r)

[
− ~2

2m
∇2 + V (r) + ~ωA δσ,e

+
1

2

∑
σ′

gσσ′Ψ̂
†
σ′(r)Ψ̂σ′(r)

]
Ψ̂σ(r), (2.2)
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where Ψ̂†σ(r) is the bosonic field operator that creates an atom in the state
σ at the position r and it satisfies the bosonic commutation relations:

[Ψ̂σ(r), Ψ̂†σ′(r1)] = δ(r− r1)δσ,σ′

[Ψ̂σ(r), Ψ̂σ′(r1)] = 0.

In principle, the trapping potential could depend on the internal state
of the atom, but it will play no role in our considerations.

In our study, atom-atom interaction is modelled by s-wave scattering,
with coupling constants ggg, gee and gge, where gσ,σ′ = 4π~2aσ,σ′/m. Here
aσ,σ′ is the s-wave scattering length pertaining to collisions between two
atoms in the state σ and σ′, respectively.

Elementary theory of particle scattering

Let us give a brief introduction to the theory of particle scattering with the
sole purpose of explaining why we model the interaction between the atoms
with the s-wave scattering.

When studying the scattering of two distinguishable particles it is con-
venient to use the center of mass coordinates and the relative coordinates.
The center of mass behaves like a free particle and can be described using a
plane wave. The wave function for the relative system ϕr is made up of the
sum of an ingoing wave ϕin, described by a plane wave, and of an outgoing
wave ϕout. If we observe the outgoing wave at a distance much larger than
the interatomic distances, the outgoing wave can be described by a spherical
wave which is modulated by a function f(k):

ϕr = ϕin + ϕout = eikz + f(k)
eikr

r
,

where f(k) is the scattering amplitude and where we assume that the in-
going wave has a wave number parallel to z. If the interacting potential is
spherically symmetric, the scattering amplitude depends only on the angle
θ between the relative momentum of the atoms before and after the scatter-
ing. The scattering amplitude f(θ) is linked to the differential cross section
dσ/dΩ as:

dσ

dΩ
= |f(θ)|2.

Because of the spherical symmetry of the potential, f(θ) can be expanded
using Legendre polynomials:

f(θ) =
1

2ik

∞∑
l=0

(2l + 1)(e2iδl − 1)Pl(cos θ),
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where l is the angular quantum number, δl(k) the scattering phase shift,
and Pl(cos θ) is the l-th Lengendre polynomial. The total cross section is:

σ = 2π

∫ ∞
−∞

d(cos θ)|f(θ)|2

=
4π

k2

∞∑
l=0

(2l + 1) sin2(δl).

The calculation of the cross section can be carried out by using some theo-
retical results regarding the relation between δl and k. It can be proven that
for a short-range potential, when k → 0 then δl ∼ k2l+1. For a long-range
potential that decays as r−n, when k → 0, then δl ∼ k2l+1 if l < n−3

2 and
δl ∼ kn−2 otherwise. Assuming that the potential between the atoms is
Van der Waals-like and it decays as r−6, we see that when k → 0, which is
satisfied for an ultracold Bose gas, all the δl become very small. The largest
contribution to the cross section is given by the s-wave, which is the l = 0
term of the sum. Given that δ0 ∼ k, it can be written as:

δ0 = −ask

and in the k → 0 limit:

f(θ) = −as.

where as is the s-wave scattering length and it depends only on the interac-
tion potential. The total cross section is:

σ = 4πa2
s

and it depends only on the scattering length. The scattering length allows
us to model the actual interaction potential with a simpler pseudo-potential
V (r), which describes the interaction between the atoms as:

V (r) =
4π~2as
m

δ(r) (2.3)

where m is the mass of the atoms and δ(r) is the Dirac delta function.
This potential well describes the short range of the interaction and also its
spherical symmetry. We are justified in using a two-body interaction because
the gas we are studying is dilute. This means that the probability of having
collisions between more than two atoms is negligible.

2.2 Optical cavity

An optical cavity, or optical resonator is an arrangement of optical com-
ponents that allows a light beam circulating inside of it to form standing
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waves. The type of optical cavity used in our system is a Fabry-Pérot res-
onator which is made of two highly reflective parallel mirrors.

In general, given an empty cavity we are interesting in knowing its normal
modes which are defined as the solutions of the Helmholtz equation:

(∇2 +
ω2

c2
)u(r) = 0,

with appropriate boundary conditions. In general, there is a discrete set of
eigenfrequencies ωn and of orthogonal eigenfunctions un(r), labelled by an
index n. The electric field inside of the cavity can be expanded in terms of
its normal modes as:

E(r, t) =
∑
n

εn(t)un(r)eiωnt + c.c.,

where εn(t) are the complex mode amplitudes and c.c is the complex conju-
gate of the same expression. By explicitly writing the term eiωnt, we ensure
that εn(t) is a slowly varying amplitude. However, since most cavities are
open because they are not bounded by closed surfaces, the formal definition
of a normal mode is not strictly applicable. Nevertheless, it is customary
to use the term cavity mode, because, after many reflections, additional
reflections have little effect on the distribution of the cavity field.

For on optical cavity formed by plane mirrors located at positions y =
−L/2 and y = L/2, the eigenfrequencies and eigenfunctions are:

ωn =
nπc

L

un(y) = cos
(πny
L

)
where un(y) vanishes at the surfaces and n is a large number. However for
more complicated geometrical configurations, the normal modes cannot be
approximated by plane waves.

In our system the cavity axis is perpendicular to the direction of the
double-well potential and the resonator is operated at the so called TEM00

mode [9]. TEM stands for transverse electromagnetic mode, and has neither
electric nor magnetic field in the direction of propagation. Its mode function
is:

f(r) =

√
2

L
cos(k y)

e−(x2+z2)/(2σ2)

π1/2σ
, (2.4)

where k = ωC/c is the wave number of the cavity mode, L is the distance
between the mirrors and σ is the width of the Gaussian profile in the (x, z)
plane.

The Q factor of a resonator is a measure of the strength of the damping
of its oscillations, and the average lifetime of a resonant photon in the cavity
is proportional to the cavity’s Q.
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x
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pumping laser
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Figure 2.1: Illustration of the setup. The bosonic Josephson Junction is created by
magnetic or optical means along the x direction. A Fabry-Pérot cavity is placed around
the junction with an axis orthogonal to the junction. The resonator is operated on the
TEM00 mode.

2.2.1 Cavity Hamiltonian

In our system, the bosonic Josephson Junction is located inside of a high-Q
optical cavity with a characteristic frequency ωC which is close to the atomic
transition frequency ωA of the bosonic atoms. The setup is illustrated in
Fig. 2.1.

Moreover, the cavity is pumped through one of its mirrors by a coherent
laser light. The single mode of the radiation inside of the cavity can be
described by the Hamiltonian [14]

ĤC = ~ωC â† â− i~η
(
eiωLtâ− e−iωLtâ†

)
, (2.5)

where η > 0 is the strength of the driving laser, and ωL is its single-mode
frequency.

The first part of the Hamiltonian represents the cavity photons which
have frequency ωC .

The second part of the Hamiltonian describes the laser pumping. Its
expression is phenomenological and it models a coherent source of light.
However it can be shown that ĤC is the quantum analogue of a driven
harmonic oscillator. Let us show this analogy.

Using the position and momentum operators x̂ and p̂, the creation and
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annihilation â† and â operators can be written as:

â =

√
ωc
2~

(
q̂ +

i

ωC
p̂

)
â† =

√
ωc
2~

(
q̂ − i

ωC
p̂

)
By substituting these expressions into the Hamiltonian ĤC we get:

ĤC =
ω2
C

2

(
q̂2 +

p̂

ω2
C

)
− i~η

√
ωC
2~

[(
q̂ +

i

ωC
p̂

)
eiωLt −

(
q̂ − i

ωC
p̂

)
e−iωLt

]
=

p2

2
+
ω2
C

2
q2 +

√
2~ωC η

[
q̂ sin(ωLt) +

p̂

ωC
cos(ωLt)

]
This Hamiltonian leads to the following Hamilton equations:

q̇ =
∂H

∂p
= p+

√
2~
ωC

η cos(ωLt)

ṗ = −∂H
∂q

= −ω2
Cq −

√
2~ωC η sin(ωLt)

These equations are equivalent to the second order differential equation:

q̈ + ω2
Cq +

√
2~ωC η

(
1 +

ωL
ωC

)
sin(ωLt) = 0,

which is the equation of a driven harmonic oscillator where the driving force
is sinusoidal with frequency ωL.

2.3 Interaction with the cavity

2.3.1 Atom-light interaction

Since the bosonic Josephson junction is inside of an optical cavity, it is very
important to model the interaction of the bosonic atoms with the radia-
tion. This can be done through the Jaynes-Cummings Hamiltonian, which
describes the interaction of a single two-level atom with a single-mode light
field. We will derive this model and understand under which conditions it
holds.

As it is the case in our system, let us consider a single bosonic atom
which has only two electronic states, a ground state and an excited one and
it is interacting with an electromagnetic field. The interaction of the atom
with the light field can be modelled by using the minimal substitution. The
Hamiltonian of a single atom which interacts with an electromagnetic field
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is:

Ĥ =
1

2m
(p̂− qÂ)2 + U(r̂) + Ĥel + ~ωcâ†â

=
1

2m
p̂2 + U(r̂) + Ĥel −

q

2m
(p̂ · Â+ Â · p̂) +

q

2m
Â2 +

∑
k

~ωkâ†kâk

where p̂, r̂, q and m are the momentum, position, charge and mass of the
atom. Â is the vector potential of the field, Ĥel is the part of the Hamiltonian
that describes the electronic state of the atom, U(r̂) is a general external

potential that acts on the atom and ωk, â
†
k and âk are the frequency and

the creation and annihilation operators for the k-th mode of the quantized
electromagnetic field. From the second line of the previous expression we
find that

Ĥint = − q

2m
(p̂ · Â+ Â · p̂) +

q

2m
Â2

is the interaction Hamiltonian that we are interested in studying. If we use
the Coulomb gauge ∇ · Â = 0, then [P̂ , Â] = 0 and we can write:

Ĥint = − q

m
p̂ · Â+

q

2m
Â2

Moreover, the Â2 term is usually very small except for very intense fields,
so it can be neglected. Thus the interaction Hamiltonian is simply:

Ĥint = − q

m
p̂ · Â (2.6)

At this point it is convenient to quantize the atomic field and write the
atomic Hamiltonian in terms of the field operators. The atomic Hamiltonian
written in the coordinate representation reads:

ĤA =
1

2m
p̂2 + U(r̂) + Ĥel = − ~2

2m
∇2 + U(r) +Hel,

where it is not necessary to explicit the form of Hel. The normalized eigen-
functions ψj(r) and the eigenvalues Ej of ĤA satisfy:

ĤAψj(r) = Ejψj(r),

and the corresponding atomic field operators can be written as:

ψ̂(r) =
∑
j

b̂jψj(r)

ψ̂†(r) =
∑
j

b̂†jψ
∗
j (r),
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where b̂†j and b̂j are the creation and annihilation operators of an atom in

the state j, and they obey bosonic commutation relations [b̂i, b̂
†
j ] = δij and

[b̂i, b̂j ] = [b̂†i , b̂
†
j ] = 0. The atomic Hamiltonian can be written as:

ĤA =

∫
d3rψ̂†(r)HAψ̂(r) =

∑
i

Eib̂
†
i b̂i.

Using the field operators the interaction Hamiltonian can be written as:

Ĥint =

∫
d3r ψ̂†(r)

[
− q

m
Â · p̂

]
ψ̂(r)

The quantized vector potential operator Â can be written as:

Â =
∑
k

√
~

2ωε0

[
âk~uk(r) + â†k~u

∗
k(r)

]
where ~uk(r) are the normal modes of the field. After substituting the ex-
pression for Â the interaction Hamiltonian becomes:

Ĥint = − q

m

∑
i,j,k

b̂†i b̂j

∫
d3r ψ∗i (r)

√
~

2ωε0

[
âk~uk(r) + â†k~u

∗
k(r)

]
p̂ψj(r)

After renaming:

gijk = − q

m

√
1

2ωε0~

∫
d3r ψ∗i (r) (~uk(r) · p̂)ψj(r)

the interaction Hamiltonian can be written as:

Ĥint =
∑
i,j,k

b̂†i b̂j

(
gijkâk + g∗ijkâ

†
k

)
The expression for gijk is quite complicated. However, for typical light
sources, with a wavelength much larger than the atomic size (the optical part
of the light spectrum has a wavelength of about 500nm, which is 104 times
larger than the Bohr radius), the form of gijk can be simplified. Because
of this great difference in length scales, we can assume that the light field
is constant in space for the atom and so we can substitute uk(r) = uk(r0),
where r0 are the coordinates of the atom. This is the so called dipole ap-
proximation. Using this approximation and observing that p̂ = i

~m[ĤA, r̂]
the term

∫
d3rψ∗i (r)p̂ψj(r) can be written as:∫

d3rψ∗i (r)p̂ψj(r) =
i

~
m(Ei − Ej)〈i|r̂|j〉

=
i

~
m(Ei − Ej)~dij
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where ~dij is the dipole moment for the j → i transition and where we used
the ket notation for the eigenvectors of the Hamiltonian. Then we can write:

gijk = − q

m

√
1

2ωε0~
~uk(r0)

i

~
m(Ei − Ej)~dij .

We can simplify the model even more if we consider a sigle mode of the light
field and call its frequency ω. By calling (E2 −E1) = ~ωA, where ωA is the
atomic transition frequency, we can write:

g(r0) = −iq
√

1

2~ωε0
ωA~u(r0) · ~dij

where ~u(r0) can be chosen such that g is real. From now on let us omit the
position dependence of g. The interaction Hamiltonian becomes:

Ĥint = ~g
[
b̂†1b̂2(â+ â†) + b̂†2b̂1(â+ â†)

]
Let us now use the so called rotating wave approximation. If we work in the
interaction picture the operators become:

(Ĥint)I = eiĤ0t/~Ĥinte
−iĤ0t/~,

where Ĥ0 = Ĥ − Ĥint. In this picture the operators â and b̂j transform as:

b̂j(t) = b̂j(0)e−iEjt/~

â(t) = â(0)e−iωt.

After substituting the values of these operators we can write the interaction
Hamiltonian as:

(Ĥint)I = ~g[b̂†1b̂2âe
−i(ωA+ω)t + b̂†1b̂2â

†e−i(ωA−ω)t+

b̂†2b̂1âe
i(ωA−ω)t + b̂†2b̂1â

†e−i(ωA+ω)t]

If ωA ≈ ω , which means that the light field is close to the atomic resonance,
the exponential terms in the previous equation oscillate with very different
frequencies. The terms with e−i(ωA+ω)t ≈ e−2iωt while the terms e−i(ωA−ω)t

oscillate much slower. For typical optical transitions ωA+ω ≈ 1014Hz while
ωA−ω . 106Hz. The large difference of the time scales allows us to neglect
the terms that oscillate very fast because, on any appreciable time scale the
oscillations would average to zero. This is the rotating wave approximation.
It can also be pointed out that the terms that we are neglecting with the
rotating wave approximation are those that largely violate energy conserva-
tion. The term b̂†1b̂2â denotes the absorption of a photon and the transition
from the excited state to the ground state. This process clearly violates en-
ergy conservation. Similarly, the term b̂†2b̂1â

† represents the transition from
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the ground state to the excited state that emits a photon. This process
clearly violates energy conservation as well. The two terms that survive are
b̂†1b̂2â

† and b̂†2b̂1â which represent respectively the transition from the excited
state to the ground state with the emission of a photon and the transition
from the ground state to the excited state with the absorption of a photon.
Therefore, by switching back from the interaction picture, the interaction
Hamiltonian of a single two-level atom with a single-mode electromagnetic
field can be written as:

Ĥint = ~g
[
b̂†1b̂2â

† + b̂†2b̂1â
]
.

2.3.2 Interaction Hamiltonian

In our system we can describe the interaction of the atoms with the cav-
ity photons using a variation of the interaction Hamiltonian we just de-
rived. Using bosonic field operators and writing explicitly the parameter g
as g(r) = −i~ΩRf(r), the Hamiltonian can be written as:

ĤI = −i~ΩR

∫
d3r f(r)

[
â Ψ̂†e(r)Ψ̂g(r)− â† Ψ̂†g(r)Ψ̂e(r)

]
, (2.7)

where f(r) is the mode function of the cavity, and ΩR is called the single-
photon Rabi frequency.

2.4 Complete Hamiltonian

The Hamiltonian that describes the whole system is the sum of the individual
contributions Ĥ = ĤA + ĤC + ĤI , and it can be written as:

Ĥ =
∑
σ=g,e

∫
d3r Ψ̂†σ(r)

[
− ~2

2m
∇2 + V (r) + ~ωA δσ,e

+
1

2

∑
σ′

gσσ′Ψ̂
†
σ′(r)Ψ̂σ′(r)

]
Ψ̂σ(r)+

~ωC â† â− i~η
(
eiωLtâ− e−iωLtâ†

)
− i~ΩR

∫
d3r f(r)

[
â Ψ̂†e(r)Ψ̂g(r)− â† Ψ̂†g(r)Ψ̂e(r)

]
(2.8)

2.4.1 Rotating frame

We notice from Eq. (2.8) that the Hamiltonian of the system is time depen-
dent through ĤC . However, it is possible to eliminate the time dependence
of ĤC by switching to a rotating frame with frequency ωL, which allows us
to work with slowly varying variables. The change of frame is performed
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by using a unitary transformation Û that acts on any given operator Ô and
any given state |φ〉 in the following manner:

Õ = Û ÔÛ †

|φ̃〉 = Û |φ〉

where the tilde is used to identify the operators and the states in the new
frame. Let us now see how the Hamiltonian transforms. The Schrödinger
equation in the original frame can be written as:

i~
d

dt
|φ〉 = Ĥ|φ〉

Let us now insert the identity Û †Û before the state |φ〉 and apply Û on the
left:

ÛHÛ †Û |φ〉 = Û i~
d

dt

(
Û †Û |φ〉

)
ÛHÛ †|φ̃〉 = i~Û

d

dt

(
Û †|φ̃〉

)
= i~Û

(
˙̂
U †|φ̃〉+ Û †

d

dt
|φ̃〉
)

= i~
(
Û

˙̂
U † +

d

dt

)
|φ̃〉

Therefore, in the rotating frame, the Schrödinger’s equation

i~
d

dt
|φ̃〉 = H̃|φ̃〉

holds when
H̃ = ÛHÛ † + i~ ˙̂

UÛ †, (2.9)

where the identity
˙̂
UÛ † + Û

˙̂
U † = 0 was used in the last step.

The unitary transformation we use to eliminate the time dependence of
the Hamiltonian is:

Û(t) = exp

{
iωLt

[
â†â+

∫
d3r Ψ̂†e(r)Ψ̂e(r)

]}
(2.10)

The photon creation and annihilation operators â and â† commute with the
field operators Ψ̂e(r) and Ψ̂†e(r) because they act on different Hilbert spaces.
We are then allowed to write the unitary transformation as the product of
two exponentials:

Û(t) = Ûa Ûe = exp

{
iωLt â

†â

}
exp

{
iωLt

∫
d3r Ψ̂†e(r)Ψ̂e(r)

}
,
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where Ûa = exp
{
iωLt â

†â
}

and Ûe = exp
{
iωLt

∫
d3r Ψ̂†e(r)Ψ̂e(r)

}
, and we

can compute separately the action of the first and second exponential of the
unitary transformation Û on the Hamiltonian. It is also worth noticing that∫
d3r Ψ̂†e(r)Ψ̂e(r) = N̂e, where N̂e is the number operator for the atoms in

the excited electronic state.
Let us calculate the transformed Hamiltonian through Eq. (2.9). Let us

start by computing its second part: i~ ˙̂
UÛ †. The derivative of the unitary

operator Û is:

ˆ̇U = iωL

[
â†â+

∫
d3r Ψ̂†e(r)Ψ̂e(r)

]
exp

{
iωLt

[
â†â+

∫
d3r Ψ̂†e(r)Ψ̂e(r)

]}
and

i~U̇U † = −~ωL
[
â†â+

∫
d3r Ψ̂†e(r)Ψ̂e(r)

]
.

Let us now calculate the first term of the transformed Hamiltonian: ÛĤÛ †.
Since the Hamiltonian of the system is the sum of three parts, Ĥ = ĤA +
ĤC + ĤI , let us apply the unitary transformation to each of them. Let us
start with

ĤC = ~ωC â† â− i~η
(
eiωLtâ− e−iωLtâ†

)
= Ĥ0 + Ĥ1

where Ĥ0 = ~ωC â† â and Ĥ1 = −i~η
(
eiωLtâ− e−iωLtâ†

)
. In ĤC we find

only photon annihilation and creation operators. Therefore it is sufficient
to consider only the part of the unitary transformation Û that depends on
these operators, Ûa, as the part that depends on the atomic field operators,
Ûe, commutes with ĤC and gives no contribution. However, Ûa commutes
with Ĥ0 as well, because they are both functions of â†â. This means that:

H̃0 = ÛaĤ0Û
†
a = Ĥ0 = ~ωcâ†â.

The transformed operator of Ĥ1 is:

H̃1 = ÛaĤ1Û
†
a = −i~η

(
eiωLtÛaâÛ

†
a − e−iωLtÛaâ†Û †a

)
.

Now we need to evaluate ã = ÛaâÛ
†
a and ã† = Ûaâ

†Û †a . We can compute
them by using a special case of the Campbell-Baker-Haussdorf equality:

eλÂB̂e−λÂ = eλγ ,

where Â and B̂ are operators that satisfy [Â, B̂] = γB̂. Since [â†â, â] = −â
and [â†â, â†] = â†, we find that:

ã = eiωLtâ

ã† = e−iωLtâ†.
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We can now compute H̃1:

H̃1 = −i~η
(
eiωLtã− e−iωLtã†

)
= −i~η(â− â†)

Therefore the expression for H̃C is:

H̃C = ~ωcâ†â− i~η(â− â†). (2.11)

When applying the unitary transformation to light-matter interaction
part of the Hamiltonian, ĤI , we need to compute:

H̃I = ÛĤI Û
† = −i~ΩR

∫
d3r f(r)

[
Û â Ψ̂†e(r)Ψ̂g(r)Û † − Û â† Ψ̂†g(r)Ψ̂e(r)Û †

]
The expression between brackets can be written in a more convenient fash-
ion. After inserting Û †Û after the photon operators and reordering the
operators we get:

ãΨ̃†e(r)Ψ̂g(r)− ã†Ψ̂†g(r)Ψ̃e(r),

where Ψ̃†e(r) = ÛΨ̂†e(r)Û † and Ψ̃e(r) = ÛΨ̂e(r)Û † are the transformed ex-
pressions for the atomic field operators. Using the Campbell-Baker-Haussdorf
equality and the commutation relations [

∫
d3r Ψ̂†e(r)Ψ̂e(r), Ψ̂e(r)] = −Ψ̂e(r)

and [
∫
d3r Ψ̂†e(r)Ψ̂e(r), Ψ̂†e(r)] = Ψ̂†e(r), we find that:

Ψ̃e(r) = eiωLt Ψ̂e(r)

Ψ̃†e(r) = e−iωLt Ψ̂†e(r).

This means that:

H̃I = ĤI . (2.12)

The last term of the Hamiltonian we need to calculate is the transformed
expression of ĤA. We will show that this part of the Hamiltonian commutes
with Û , remembering the commutation relations of the atomic field opera-
tors:

[N̂e, ψ̂σ(r)] = −ψ̂σ(r)δe,σ

[N̂e, ψ̂
†
σ(r)] = ψ̂†σ(r)δe,σ,

and the fact that [eÂ, B̂] = 0 if [Â, B̂] = 0. ĤA can be separated into its
one-body part, which contains two field operators, and its two-body part,
which contains four field operators. The one-body part that depends on the
ground state field operator is:∫

d3r Ψ̂†g(r)T (r)Ψ̂g(r),
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where T (r) = − ~2

2m∇
2 +V (r)+~ωA δσ,e with σ = g, and it clearly commutes

with N̂e. The one-body part that depends on the excited state field operator
is: ∫

d3r Ψ̂†e(r)T (r)Ψ̂e(r),

and for the sake of clarity let us call it ĤA1. Let us show that ĤA1 commutes
with N̂e, by proving that ĤA1N̂e = N̂eĤA1:

ĤA1N̂e =

∫
d3r Ψ̂†e(r)T (r)Ψ̂e(r)N̂e

=

∫
d3r Ψ̂†e(r)T (r)

[
N̂eΨ̂e(r) + Ψ̂e(r)

]
=

∫
d3r Ψ̂†e(r)T (r)N̂eΨ̂e(r) + ĤA1

=

∫
d3r

[
N̂eΨ̂

†
e(r)− Ψ̂†e(r)

]
T (r)Ψ̂e(r) + ĤA1

=

∫
d3r N̂eΨ̂

†
e(r)T (r)Ψ̂e(r)

= N̂eĤA1.

Therefore the one-body part of ĤA commutes with Û . With similar, but
more tedious calculations, it can be shown that the two-body part of ĤA

commutes with Ne as well. Therefore:

H̃A = ĤA. (2.13)

At this point we can write the complete Hamiltonian in the rotating
frame by summing all the previous terms:

Ĥ =
∑
σ=g,e

∫
d3r Ψ̂†σ(r)

[
− ~2

2m
∇2 + V (r)− ~∆Aδσ,e

+
1

2

∑
σ′

gσσ′Ψ̂
†
σ′(r)Ψ̂σ′(r)

]
Ψ̂σ(r)− ~∆C â

† â− i~η
(
â− â†

)
− i~ΩR

∫
d3r f(r)

[
â Ψ̂†e(r)Ψ̂g(r)− â† Ψ̂†g(r)Ψ̂e(r)

]
, (2.14)

where the tilde symbol is no longer used. The Hamiltonian is no longer time
dependent. However, the change of frame has another consequence on the
expression of the Hamiltonian: the bare frequencies of the atomic transition
ωA, and of the cavity ωC are substituted by the following detunings: ∆A =
ωL − ωA and ∆C = ωL − ωC .
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2.5 Heisenberg equations

Now that we have written the Hamiltonian of the whole system we can derive
the Heisenberg equations of the field operators. The Heisenberg equation
for an operator Ô and Hamiltonian Ĥ are:

i~
∂

∂t
Ô = [Ô, Ĥ].

Let us write the equation for the operators â, Ψ̂g(r) and Ψ̂e(r):

i~
∂

∂t
â = [â, Ĥ]

= −~∆C â+ i~η + i~ΩR

∫
d3rf(r)Ψ̂†g(r)Ψ̂e(r), (2.15a)

i~
∂

∂t
Ψ̂g(r) = [Ψ̂g(r), Ĥ] =

[
− ~2

2m
∇2 + V (r)

+
∑
σ

ggσΨ̂†σ(r)Ψ̂σ(r)

]
Ψ̂g(r) + i~ΩRf(r)â† Ψ̂e(r), (2.15b)

i~
∂

∂t
Ψ̂e(r) = [Ψ̂e(r), Ĥ] =

[
− ~2

2m
∇2 + V (r)− ~∆A

+
∑
σ

geσΨ̂†σ(r)Ψ̂σ(r)

]
Ψ̂e(r)− i~ΩRf(r)â Ψ̂g(r). (2.15c)

In the limit, when the atomic detuning ∆A is much larger than the other
characteristic frequency scales of the system, the population of the excited
state follows adiabatically the ground state. Therefore the excited state
field operator can be adiabatically eliminated. In fact, the field operators
ψ̂g(r) and â vary on a much larger time scale than 1/∆A, which is the

characteristic time of ψ̂e(r). Under these conditions the square bracket in
Eq. (2.15c) is dominated by the atomic detuning, and the excited state field
operator immediately relaxes to its steady-state value. Therefore we can set
its time derivative to zero and calculate its value as a function of the slow
evolving fields ψ̂g(r) and â:

Ψ̂e(r) ' −iΩRf(r)

∆A
a Ψ̂g(r). (2.16)

At this point we can substitute the expression (2.16) into the Heisenberg
equations for ψ̂g(r) and â and we get:

i~∂tâ = −~∆C â+ i~η + ~
Ω2
R

∆A
â

∫
d3rf2(r)Ψ̂†g(r)Ψ̂g(r), (2.17a)
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i~∂tΨ̂g(r) =

[
− ~2

2m
∇2 + V (r) + ~

Ω2
R

∆A
f2(r)â†â

+ gggΨ̂
†
g(r)Ψ̂g(r)

]
Ψ̂g(r), (2.17b)

where we have neglected the interaction with excited state atoms, assuming
that the population of the excited state is much smaller than that of the
ground state. At this point we can notice that Equations (2.17) can be
thought as the Heisenberg equations that derive from the following effective
Hamiltonian:

Ĥeff = −~∆C â
†â− i~η(â− â†) +

∫
d3r Ψ̂†g(r)

[
− ~2

2m
∇2

+ V (r) + ~U0 â
†âf2(r) +

1

2
gggΨ̂

†
g(r)Ψ̂g(r)

]
Ψ̂g(r), (2.18)

where U0 = Ω2
R/∆A has been introduced. As a result of the adiabatic

elimination of the excited state, the atom-photon interaction is represented
by the term ~U0 â

†âf2(r), which has the form of a new optical potential with
position dependence f2(r) and an effective amplitude U0 a

†a. When the
atomic transition is red detuned from the pumping (∆A < 0 and therefore
U0 < 0), the atoms are attracted to the intensity maximum of the cavity
field, which effectively lowers the double-well barrier. When the atomic
transition is blue detuned (∆A > 0 and therefore U0 > 0) the atoms are
repelled from the intensity maximum of the cavity field [12]. This effect is
proportional to the photon number â†â and therefore the state of the cavity
influences the parameters of the Josephson junction.

2.6 Two-Mode Hamiltonian

It is convenient to transform the Hamiltonian into a simpler form. In order
for us to do this we take advantage of the properties of the eigenfunctions
of a double well potential, and therefore use a two-mode description of the
system. The Hamiltonian of a double well potential in one dimension is:

ĤDW = − ~2

2m

d2

dx2
+ VDW (x).

If the double well potential is symmetric with respect to x, then the Hamil-
tonian ĤDW commutes with with the parity operator P̂ . This means that
the eigenfunctions of the system must be eigenstates of both ĤDW and P̂ ,
and so they must have a defined parity. By solving the Schrödinger equation
of the system it can be found that the ground state |ϕs〉 is symmetric and
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the first excited state |ϕa〉 is antisymmetric. From these two eigenstates
it is possible to build local Wannier-like states w1(x) and w2(x), which are
highly localized eigenstates, centered around the minima of the unperturbed
double-well potential VDW (x). The Wannier states are linear combinations
of the ground and first excited states of the system:

w1(x) =
|ϕs〉+ |ϕa〉√

2

w2(x) =
|ϕs〉 − |ϕa〉√

2
.

We assume that the Wannier states remain unchanged when the cavity field
is turned on. This assumption means that the second excited state of the
double well potential stays away from the low-energy doublet even when a
classical cavity field is present. If ∆DW is the difference in energy between
the second excited state and the first one, the condition that makes the
assumption hold can be written as: ∆DW � −U0ξ

2〈f2(r)〉, where ξ2 is the
average number of photons in the cavity and the average 〈f2(r)〉 is calculated
with respect to the condensate wave function [11].

The atomic field operator can then be approximated as:

Ψ̂g(r) =
(
w1(x) b̂1 + w2(x) b̂2

) e−(y2+z2)/(2l2H)

π1/2lH
, (2.19)

where b̂1 and b̂2 are the bosonic annihilation operators of the Wannier-
like functions centered around the two minima of the double well potential,
e−(y2+z2)/(2l2H )

π1/2lH
is the lowest energy eigenfunction of the 2D harmonic potential

in the (y, z) plane, and lH =
√
~/(mωH) is the characteristic length of the

strong harmonic confinement.

For the sake of simplicity we can write the atomic field operator as:

Ψ̂g(r) = φ̂(x)ϕ(y, z)

in which we have separated the part of the field operator that depends on
the coordinate x and on the coordinates (y, z).

In order for us to write the two-mode description of the Hamiltonian we
need to substitute the new expression for Ψ̂g(r) into the effective Hamil-
tonian. The part of the effective Hamiltonian Ĥeff that depends on the
atomic field operator is:

∫
d3r Ψ̂†g(r)

[
− ~2

2m
∇2 + V (r) + ~U0 â

†âf2(r) +
1

2
gggΨ̂

†
g(r)Ψ̂g(r)

]
Ψ̂g(r).
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This integral can be divided into three parts:

Ĥeff
1 =

∫
d3r Ψ̂†g(r)

[
− ~2

2m
∇2 + V (r)

]
Ψ̂g(r) (2.20)

Ĥeff
2 =

∫
d3r Ψ̂†g(r)

[
~U0 â

†âf2(r)

]
Ψ̂g(r) (2.21)

Ĥeff
3 =

∫
d3r Ψ̂†g(r)

[
1

2
gggΨ̂

†
g(r)Ψ̂g(r)

]
Ψ̂g(r). (2.22)

Let us start by evaluating the first part. Between brackets in Ĥeff
1 we find

the kinetic part of the Hamiltonian and the external potential. The explicit
expression of the external potential is V (r) = VDW (x)+ 1

2mω
2
H(y2 +z2). We

can separate the terms inside of the brackets in Ĥeff
1 into its x-dependent

part and (y, z)-dependent part:

Heff
1,x = − ~2

2m

d2

dx2
+ VDW (x)

and

Heff
1,yz = − ~2

2m
(
d2

dy2
+

d2

dz2
) +

1

2
mω2

H(y2 + z2)

Let us now integrate Heff
1 . The integral can be written as:

Ĥeff,1 =

∫
dx dy dz

[
φ̂†(x)ϕ(y, z)

(
Heff

1x +Heff
1yz

)
φ̂(x)ϕ(y, z)

]
=

∫
dx dy dz

[
φ̂†(x)ϕ(y, z)Heff

1x φ̂(x)ϕ(y, z) + φ̂†(x)ϕ(y, z)Heff
1yz φ̂(x)ϕ(y, z)

]
=

∫
dx
[
φ̂†(x)Heff

1x φ̂(x)
]

+

∫
dx
[
φ̂†(x)φ̂(x)

] ∫
dy dz

[
ϕ(y, z)Heff

1yz ϕ(y, z)
]

(2.23)

In the last line we used the fact that ϕ(y, z) is normalized. The last term
of the last integral in the y, z variables can be calculated explicitly:∫

dy dz
[
ϕ(y, z)Heff

1yz ϕ(y, z)
]

= ~ωH ,

and the integral in the variable x becomes:∫
dx φ̂†(x)φ̂(x) =

∫
dx
[(
w∗1(x) b̂†1 + w∗2(x) b̂†2

)(
w1(x) b̂1 + w2(x) b̂2

)]
.

Using the fact that the w1(x) and w2(x) are orthonormal functions we find
that the integral becomes simply:

b̂†1b̂1 + b̂†2b̂2 = n̂1 + n̂2 = N̂A,
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where b̂†1b̂1 = n̂1 is the number operator of atoms in the left well, b̂†2b̂2 = n̂2

is the number operator of atoms in the right well and N̂A is the operator of
the total number of atoms. As for the first integral in Eq. (2.23), we can
write it as:∫

dx
[
φ̂†(x)Heff

1x φ̂(x)
]

=∫
dx
(
w∗1(x) b̂†1 + w∗2(x) b̂†2

)[
− ~2

2m

d2

dx2
+ VDW (x)

](
w1(x) b̂1 + w2(x) b̂2

)
This integral is made of four terms which can be written as:∫
dx φ̂†(x)Heff,1xφ̂(x) = b̂†1b̂1

∫
dxw∗1(x)

[
− ~

2m

d2

dx2
+ VDW (x)

]
w1(x)

+ b̂†2b̂2

∫
dxw∗2(x)

[
− ~

2m

d2

dx2
+ VDW (x)

]
w2(x)

+ b̂†1b̂2

∫
dxw∗1(x)

[
− ~

2m

d2

dx2
+ VDW (x)

]
w2(x)

+ b̂†2b̂1

∫
dxw∗2(x)

[
− ~

2m

d2

dx2
+ VDW (x)

]
w1(x).

Now we can rename the integrals:

ε′ =

∫
dxw∗j (x)

[
− ~2

2m

d2

dx2
+ VDW (x)

]
wj(x),

where j = 1, 2, and

J = −
∫
dxw∗i (x)

[
− ~2

2m

d2

dx2
+ VDW (x)

]
wj(x),

where i 6= j. The Wannier functions can be chosen so that J is real and
positive. Since the double well is symmetric, both ε′ and J do not depend
on the i or j index. Therefore the whole integral Ĥeff

1 can be written as:

Ĥeff
1 = ~ωHN̂A + ε′N̂A − J

(
b̂†2b̂1 + b̂†1b̂2

)
= εN̂A − J

(
b̂†2b̂1 + b̂†1b̂2

)
, (2.24)

where ε = ~ωH + ε′ is the on-site energy of a single well and J represents
the tunneling amplitude.

Let us now evaluate Ĥeff
2 . By writing the mode function as the product

of its x-dependent part and its (y, z)-dependent part we can write:

Ĥeff
2 =

∫
dx dy dz

[
φ̂†(x)ϕ(y, z)

(
2~U0

πLσ2
â†âfx(x)fyz(y, z)

)
φ̂(x)ϕ(y, z)

]
=

2~U0

πLσ2
â†â

∫
dx
[
φ̂†(x)fx(x)φ̂(x)

] ∫
dy dz [ϕ(y, z)fyz(y, z)ϕ(y, z)] ,
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where fx(x) = e−x
2/σ2

and fyz(y, z) = cos2(k y)e−z
2/σ2

. The second integral
in the last line can be carried out explicitly:∫

dy dz [ϕ(y, z)fyz(y, z)ϕ(y, z)] =
σ

2

(e−k
2l2H + 1)√
σ2 + l2H

.

The complete integral then becomes:

Ĥeff
2 =

(e−k
2l2H + 1)√
σ2 + l2H

~U0

πLσ
â†â

∫
dx
[
φ̂†(x)fx(x)φ̂(x)

]
. (2.25)

The last integral is made of four parts:∫
dx
[
φ̂†(x)fx(x)φ̂(x)

]
= b̂†1b̂1

∫
dx |w1(x)|2

[
e−

x2

σ2

]
+ b̂†2b̂2

∫
dx |w2(x)|2

[
e−

x2

σ2

]
+ b̂†1b̂2

∫
dxw∗1(x)

[
e−

x2

σ2

]
w2(x)

+ b̂†2b̂1

∫
dxw∗2(x)

[
e−

x2

σ2

]
w1(x).

Now we can rename:

W0 =
~U0

(
1 + e−k

2l2H

)
Lπσ

√
l2H + σ2

∫
dx|wj(x)|2 e−x2/σ2

(2.26)

W12 =
~U0

(
1 + e−k

2l2H

)
Lπσ

√
l2H + σ2

∫
dxw∗1(x)w2(x) e−x

2/σ2
, (2.27)

where both W0 and W12 do not depend on the indices i, j because the double
well is symmetric. The parameters W0 and W12 are the AC-Stark shift and
the cavity assisted tunneling amplitude, respectively [22]. Since the Wannier
functions are highly localized, and the expressions for W0 and W12 are those
of overlap integrals of these functions, the magnitude of the parameter W0

is always larger than that of W12, therefore |W12| < |W0|. The setup of the
system, in particular the direction of the cavity axis relative to the Josephson
junction, is such that W0 and W12 can have values close to each other (see
Eqs. (2.26), (2.27) and Fig. 2.2). The ratio between W12 and W0 depends
on the width σ of the TEM00 mode function [11].

Therefore Ĥeff
2 becomes:

Ĥeff
2 = N̂L

[
W0N̂A +W12(b̂†1b̂2 + b̂†2b̂1)

]
, (2.28)
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Figure 2.2: The ratio between W12 and W0 as a function of the ratio between the width
of the cavity waist and the width of the double-well barrier. The parameters are chosen in
such a way that the Wannier functions have some small but non-zero overlap (J ≈ 0.1ε).

where N̂L = â†â is the photon number operator.
As for the last part of the Hamiltonian, Ĥeff

3 , which describes the inter-
action between the atoms, it can be written as:

Ĥeff
3 =

∫
dx φ̂†(x)φ̂†(x)φ̂(x)φ̂(x)

ggg
2

∫
dx dy ϕ4(y, z).

The (y, z)-dependent part of the integral can be carried out explicitly:∫
dx dy ϕ4(y, z) =

1

2πl2H
.

Remembering that φ̂(x) is written in terms of the operators b̂1 and b̂2 and of
the Wannier functions w1(x) and w2(x), we can see that the first part of the
integral is made of a sum of the overlap integrals of powers of the Wannier
functions. The first part of the integral can be written as:

1

2

∑
i,j,k,l=1,2

Uijklb̂
†
i b̂
†
j b̂k b̂l,

where

Uijkl =

∫
dxw∗i (x)w∗j (x)wk(x)wl(x).

However, since the Wannier function are highly localized, we can omit the
off-site terms, i.e. the ones where i, j, k, l are not all equal, because they are
typically two orders of magnitude smaller than the in-site interaction terms
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[16]. Therefore we only keep the terms that contain b̂†1b̂
†
1b̂1b̂1 and b̂†2b̂

†
2b̂2b̂2.

By doing this Ĥeff
3 becomes:

Ĥeff
3 =

ggg
4πl2H

(
b̂†1b̂
†
1b̂1b̂1

∫
dx |w1(x)|4 + b̂†2b̂

†
2b̂2b̂2

∫
dx |w2(x)|4

)
.

And by calling:

U =
ggg

2πl2H

∫
dx |wj(x)|4, (2.29)

we can write Ĥeff
3 as:

Ĥeff
3 =

U

2

(
b̂†1b̂
†
1b̂1b̂1 + b̂†2b̂

†
2b̂2b̂2

)
, (2.30)

where U is the on-site interaction energy, and because of the symmetry of
the double well potential it does not depend on the index j.

Finally, combining all the parts of the Hamiltonian we find that, after
substituting Eq. (2.19) into the effective Hamiltonian Eq. (2.18) we get the
new Hamiltonian:

Ĥ = ĤL + ĤJ + ĤJL,

where the cavity is described by

ĤL = −~∆C â
†â− i~η

(
â− â†

)
, (2.31)

the bosonic Josephson junction is described by

ĤJ = ε N̂A − J
(
b̂†1b̂2 + b̂†2b̂1

)
+
U

2

(
b̂†1b̂
†
1b̂1b̂1 + b̂†2b̂

†
2b̂2b̂2

)
, (2.32)

and the interaction between the atoms and the cavity photons is modelled
by

ĤJL = N̂L

[
W0N̂A +W12(b̂†1b̂2 + b̂†2b̂1)

]
. (2.33)

The Hamiltonian of a isolated bosonic Josephson junction is given by only
ĤJ . The effect of the cavity field is to change the parameters of this Hamil-
tonian, which can be written as:

Ĥ ′J = ε̃ N̂A − J̃
(
b̂†1b̂2 + b̂†2b̂1

)
+
U

2

(
b̂†1b̂
†
1b̂1b̂1 + b̂†2b̂

†
2b̂2b̂2

)
, (2.34)

where ε̃ = ε+W0N̂L is the shifted on-site energy and J̃ = J −W12N̂L is the
assisted tunneling amplitude. For red detuned atoms (∆A < 0) both W0 and
W12 are negative. This means that the cavity field shifts the on-site energies
downwards and assists the tunneling by increasing the effective tunneling
amplitude. When the atoms are blue detuned (∆A < 0), W0 and W12 are
positive and the cavity field has the effect of shifting the on-site energies
upwards and lowering the effective tunneling amplitude.

These parameters, ε̃ and J̃ depend on the number of photons in the
system N̂L and therefore become, in general, dynamical quantities.
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Heisenberg equations

From the new expression of the two-mode Hamiltonian we can derive the
Heisenberg equations of motion for the operators b̂j (j = 1, 2) and â. When
writing the equations, the on-site energy term εN̂A can be dropped from the
Hamiltonian, since N̂A is a constant of motion and therefore gives no relevant
contribution to the equations. The Heisenberg equations then become:

i~
d

dt
b̂1 = W0 â

†â b̂1 − (J −W12 â
†â)b̂2 + U n̂1b̂1, (2.35a)

i~
d

dt
b̂2 = W0 â

†â b̂2 − (J −W12 â
†â)b̂1 + U n̂2b̂2, (2.35b)

i~
d

dt
â = −[~∆C −W0N̂A −W12(b̂†1b̂2 + b̂†2b̂1)]â+ i~η, (2.35c)

where n̂j = b̂†j b̂j is the atomic population in the well j.

2.7 Semiclassical approximation

We can study the set of equation we have found by using the semiclassical
(or mean-field) approximation. Under this approximation we assume that
the system is in a full coherent state (FCS). This means that we describe
the atoms in the left and right well, as well as the photons in the cavity with
coherent states. The full coherent state can be written as:

|FCS〉 = |β1〉A ⊗ |β2〉A ⊗ |α〉L; (2.36)

where b̂j |βj〉A = βj |βj〉A and â|α〉L = α|α〉L. It is convenient to write the
eigenvalues of the atomic coherent state as:

βj =
√
Nj(t) e

iθj(t),

where Nj(t) the average number of atoms in the j-th well at time t and θj(t)
the corresponding phase. Similarly:

α = ξ(t) eiφ(t),

where NL(t) = ξ(t)2 is the average number of photons in the cavity at
time t and φ(t) the corresponding phase. At this point we can evaluate the
Heisenberg equations of the system in the full coherent state by substituting
the creation an annihilation operators with the corresponding coherent state
c-numbers. The Heisenberg equation for the â operator becomes:

i~
d

dt
α = −[~∆C −W0NA −W12(

√
N1N2(ei(θ2−θ1) + e−i(θ2−θ1))]α+ i~η,
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where the t-dependence of the c-numbers has been omitted. By defining

z(t) =
N1(t)−N2(t)

NA
(2.37)

as the fractional imbalance of the atomic population of the left and right
wells, and

θ(t) = θ2(t)− θ1(t) (2.38)

as the atomic relative phase, we can write:√
N1N2 =

1

2
NA

√
1− z2.

The equation becomes:

d

dt
α = i

(
∆C −

W0

~
NA −

W12

~
NA

√
1− z2 cos θ

)
α+ η.

By writing α explicitly and using a dot to represent the time derivative,
dα/dt becomes:

α̇ = eiφξ̇ + iξeiφφ̇,

and the equation can be written as:

ξ̇eiφ + iξeiφφ̇ = i

(
∆C −

W0

~
NA −

W12

~
NA

√
1− z2 cos θ

)
ξ eiφ + η.

Dividing both sides by eiφ the equation becomes:

ξ̇ + iξφ̇ = i(∆C −
W0

~
NA −

W12

~
NA

√
1− z2 cos θ)ξ + η cosφ− iη sinφ.

The real and imaginary parts of the equation are:

ξ̇ = η cosφ (2.39)

ξφ̇ =

(
∆C −

W0

~
NA −

W12

~
NA

√
1− z2 cos θ

)
ξ − η sinφ. (2.40)

This pair of equations describes the dynamics of the cavity photons.
As for the Heisenberg equations of the atomic operators b̂1 and b̂2, after

substituting the operators with the c-numbers we get:

i~
d

dt
(
√
N1e

iθ1) = W0ξ
2
√
N1e

iθ1 − J̃
√
N2e

iθ2 + UN1

√
N1e

iθ1

i~
d

dt
(
√
N2e

iθ2) = W0ξ
2
√
N2e

iθ2 − J̃
√
N1e

iθ1 + UN2

√
N2e

iθ2

where J̃ = J −W12ξ
2. After writing the time derivatives explicitly using the

dot notation we get:

i~(
Ṅ1

2
√
N1

eiθ1 + i
√
N1θ̇1e

iθ1) = W0ξ
2
√
N1e

iθ1 − J̃
√
N2e

iθ2 + UN1

√
N1e

iθ1



32 CHAPTER 2. MODEL

i~(
Ṅ2

2
√
N2

eiθ2 + i
√
N2θ̇2e

iθ2) = W0ξ
2
√
N2e

iθ2 − J̃
√
N1e

iθ1 + UN2

√
N2e

iθ2 .

Let us now multiply the first and second equation by
√
N1e

−iθ1 and
√
N2e

−iθ2

respectively, and take the imaginary part of the equations:

~
2
Ṅ1 = −J̃

√
N1N2 sin θ

~
2
Ṅ2 = +J̃

√
N1N2 sin θ.

Taking the difference of the two equations, dividing by NA and remembering
the definition of z we get:

ż = −4

~
J̃

√
N1N2

NA
sin θ.

Since
√
N1N2 = 1

2NA

√
1− z2 and defining ν = J̃/~, we can write the equa-

tion as:
ż = −2ν

√
1− z2 sin θ.

By taking the real part of the two equations we get:

−~N1θ̇1 = W0ξ
2N1 − J̃

√
N1N2 cos θ + UN2

1

−~N2θ̇2 = W0ξ
2N2 − J̃

√
N1N2 cos θ + UN2

2

dividing the first equation by ~N1, the second by ~N2 and taking their
difference we find:

θ̇ =
J̃

~

(
N1 −N2√
N1N2

)
cos θ +

U

~
(N1 −N2),

which can be written as:

θ̇ =
1

~

(
2J̃ cos θ√

1− z2
+NAU

)
z.

Therefore the Heisenberg equations for the field operators â, b̂1 and b̂2,
in the semiclassical approximation, can be written as the following set of
ordinary differential equations (ODEs) for the variables z, θ, ξ and φ:

ż = −2ν
√

1− z2 sin θ, (2.41a)

θ̇ =

(
g̃ +

2 ν√
1− z2

cos θ

)
z, (2.41b)

ξ̇ = η cosφ, (2.41c)

φ̇ = δC −
η

ξ
sinφ, (2.41d)
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We have here introduced the following parameters which have the physi-
cal dimensions of a frequency: g̃ = UNA/~, which is the mean-field fre-
quency shift due to atomic collisions; ν = (J − W12ξ

2)/~, standing for
the effective tunneling strength modified by the photon assisted process;
δC = ∆C − NA(W0 + W12

√
1− z2 cos θ)/~ is the effective cavity detuning.

The parameters ν(t) and δC(t) are shorthand notations that actually depend
on the mean-field variables. Moreover, also the tunneling amplitude J , which
is a constant in the bare BJJ, is now replaced by the time-dependent term
ν(t). In the absence of radiation fields, i.e. ξ(t) = φ(t) = 0 at any time t,
the above ODEs reduce to those of the standard BJJ dynamics [10]:

ż = −2
J

~

√
1− z2 sin θ,

θ̇ =

(
g̃ +

2 J

~
cos θ√
1− z2

)
z.
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Chapter 3

Dynamics of the system in
the semiclassical
approximation

In this chapter we will be studying some features of the dynamics of the
system in the semiclassical approximation. In the first part we will find the
fixed point of the system and we will study how it behaves close to them.

In the second part we will study the system when the photon field can be
considered to be constant. This will allow us to perform a better analytical
study of the problem and to show how the presence of the cavity photons can
change the kind of dynamics the Bosonic Josephson junction can perform.

3.1 Fixed points

In order for us to study the the system (2.41), it is convenient to use a vector
notation, in which X = (X1, X2, X3, X4) = (z, θ, ξ, φ). The fixed points of
the ODEs (2.41), can be found by solving dX/dt = 0. We expect to find two
different types of equilibria: the ones with z = 0 are called zero imbalance
equilibria, because z = 0 implies that there is the same number of bosons in
the left and right well, while the ones with z 6= 0 are called finite imbalance
equilibria, because z 6= 0 implies that one of the wells is more populated
than the other.

3.1.1 Zero imbalance equilibria

Let us start with the zero imbalance equilibria. The second equation θ̇ = 0
is already met because z = 0. The condition ż = 0 is satisfied when θ = 0,
or θ = π. The third equation ξ̇ = 0 leads to φ = ±π/2. Solving the last

35
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equation φ̇ = 0 with respect to ξ, we can find its value at equilibrium:

ξ = ± ~η
~∆C −NA(W0 ±W12)

= ± η

δC(0)
(3.1)

The first ± sign depends on the value of φ: there is a + when φ = π/2 and
a − when φ = −π/2. The second ± sign depends on the value of θ: there is
a + when θ = 0 and a − when θ = π.

So we can write the stationary points with zero imbalance as:

X1 =

(
0, 0,

~η
~∆C −NA(W0 +W12)

,
π

2

)
, (3.2a)

X2 =

(
0, 0,

~η
NA(W0 +W12)− ~∆C

,−π
2

)
, (3.2b)

X3 =

(
0, π,

~η
~∆C −NA(W0 −W12)

,
π

2

)
, (3.2c)

X4 =

(
0, π,

~η
NA(W0 −W12)− ~∆C

,−π
2

)
. (3.2d)

Since ξ is the amplitude of the photon field, ξ > 0. Therefore, for δC > 0
the actual fixed points are X1 and X3; while for δC < 0 X2 and X4 are the
fixed points.

Let us now study how the system behaves close to these equilibria. We
can do this by linearizing the system (2.41). Using the vector notation the
system can be written as:

Ẋ = f(X),

where f(X) is a vector of four functions such that:

ż = f1(X),

θ̇ = f2(X),

ξ̇ = f3(X),

φ̇ = f4(X).

The Jacobian matrix of the system is made of the derivatives of the
functions fi with respect to the variables z, θ, ξ, φ:

J =


∂f1

∂z
∂f1

∂θ
∂f1

∂ξ
∂f1

∂φ
∂f2

∂z
∂f2

∂θ
∂f2

∂ξ
∂f2

∂φ
∂f3

∂z
∂f3

∂θ
∂f3

∂ξ
∂f3

∂φ
∂f4

∂z
∂f4

∂θ
∂f4

∂ξ
∂f4

∂φ

 .

When taking the derivatives of the functions fi(X), whose explicit formulas
can be seen in (2.41), it is important to remember that ν and δC are functions
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of X. The elements of the Jacobian matrix are:

∂f1

∂z
=

2z
(
J −W12ξ

2
)

sin(θ)

~
√

1− z2

∂f1

∂θ
= −

2
√

1− z2
(
J −W12ξ

2
)

cos(θ)

~
∂f1

∂ξ
=

4W12

√
1− z2ξ sin(θ)

~
∂f1

∂φ
= 0

∂f2

∂z
=

2
(
J −W12ξ

2
)

cos(θ)z2

~ (1− z2)3/2
+
NAU

~
+

2
(
J −W12ξ

2
)

cos(θ)

~
√

1− z2

∂f2

∂θ
= −

2z
(
J −W12ξ

2
)

sin(θ)

~
√

1− z2

∂f2

∂ξ
= −4W12zξ cos(θ)

~
√

1− z2

∂f2

∂φ
= 0

∂f3

∂z
= 0

∂f3

∂θ
= 0

∂f3

∂ξ
= 0

∂f3

∂φ
= −η sin(φ)

∂f4

∂z
=

NAW12z cos(θ)

~
√

1− z2

∂f4

∂θ
=

NAW12

√
1− z2 sin(θ)

~
∂f4

∂ξ
=

η sin(φ)

ξ2

∂f4

∂φ
= −η cos(φ)

ξ

In order to find the small oscillations frequencies of the system we need
to evaluate the Jacobian matrix J in one of the equilibria.

Let us start with the equilibrium X1. The Jacobian matrix becomes:

J(X1) =


0 −

2

(
J− ~2W12η

2

(~∆C−NA(W12+W0))2

)
~ 0 0

NAU
~ +

2

(
J− ~2W12η

2

(~∆C−NA(W12+W0))2

)
~ 0 0 0

0 0 0 −η
0 0 (~∆C−NA(W12+W0))2

~2η
0
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It is very interesting to notice how, in the linearized system resulting
from this Jacobian matrix, the atomic and photon degrees of freedom are
no longer coupled. For the sake of simplicity we can write J(X1) as:

J(X1) =


0 a 0 0
b 0 0 0
0 0 0 c
0 0 d 0


where

a = −
2
(
J − ~2W12η2

(~∆C−NA(W12+W0))2

)
~

b =
NAU

~
+

2
(
J − ~2W12η2

(~∆C−NA(W12+W0))2

)
~

c = −η

d =
(~∆C −NA(W12 +W0))2

~2η

Such a matrix has eigenvalues

λ1,2 = ±
√
ab

λ3,4 = ±
√
cd

The equilibrium is stable when all the eigenvalues are purely imaginary. The
corresponding frequencies are:

ω1,at =
√
|ab|

ω1,ph =
√
|cd|

where the subscripts at and ph stand for the atomic and photon degrees of
freedom respectively; the two vertical bars represent the absolute value of
the expression. The linearized system at X1 takes the form:

ż = a θ

θ̇ = b z

ξ̇ = c (φ− π

2
)

φ̇ = d (ξ − ξ̄1)

where ξ̄1 = X1,4. This system is made of four equations which are coupled
in pairs.

The system of ODEs for any given variables x and y:

ẋ = p (y − y0)

ẏ = q (x− x0)



3.1. FIXED POINTS 39

with initial conditions x(0) = x0 + δx, with δx small and y(0) = y0, has
solutions:

x(t) = x0 +
δx

2
(e
√
pq t + e−

√
pq t)

y(t) = y0 +

√
q

p

δx

2
(e
√
pq t − e−

√
pq t).

When all the eigenvalues ±√pq are purely imaginary the solutions clearly
represent oscillations around (x0, y0).

x(t) = x0 + δx cos (
√
|pq| t) (3.3)

y(t) = y0 − δx
√
|q
p
| sin (

√
|pq| t) (3.4)

The linearized system at X1 is made of two pairs coupled ODEs of this
kind. Two ODEs for the photon degrees of freedom and two for the atomic
degrees of freedom.

Looking at to pair of equations that describe the linearized dynamics of

the photon viariables we notice that the product cd = − (~∆C−NA(W12+W0))2

~2

is always negative. This means that the dynamics of the photon degrees
of freedom, close to the fixed point, is made of small oscillations for every
value of the parameters that appear in the equations.

As for the dynamics of the atomic degrees of freedom we need to study
the sign of the product ab. Let us analyze how the various parameters affect
the sign of the product. First of all, as mentioned before, X1 is a valid
equilibrium only when δc > 0. This implies that ∆C >

NA
~ (W0 +W12). Let

us start by separating the case when W12 > 0 and W12 < 0.

When W12 < 0, a < 0. The sign of the product ab is then determined
by the sign of b. If we write b as b = NAU

~ − a, then b > 0 if U > ~a
NA

.

Solutions of the system equations with initial conditions close to X1,
with ab > 0 and ab < 0 respectively, and W12 < 0 can be seen in the two
plots of Fig. (3.1). The green dashed lines represent the analytical solutions
as in Eq. (3.3). It can be clearly seen from the plots that when ab < 0
the system displays small oscillations around the equilibrium, as expected
from the analysis of the eigenvalues. On the other hand, when ab > 0 the
equilibrium is no longer stable and the solutions move away from the initial
values.

For W12 > 0, the value of a can be either positive or negative.

a > 0 when J < ~2W12η2

(~∆C−NA(W12+W0))2 . If we write b as b = NAU
~ − a, then

b > 0 when U > ~a
NA

.
The two plots in Fig. (3.2) depict the solutions of the equations when ab < 0
and when ab > 0 respectively.

a < 0 when J > ~2W12η2

(~∆C−NA(W12+W0))2 . By writing b as b = NAU
~ − a, then
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Figure 3.1: Time evolution of the variables (z, θ, ξ, φ) around the fixed point X1. Time
is measured in units of ~/J . The red lines represent the numerical solution of the system.
The green dashed line represents the analytical solution as in Eq. (3.3). In panel (a) the
parameters of the system are such that the equilibrium is stable, and the green and red
lines overlap. In panel (b) the parameters of the system are such that the equilibrium
is not stable and only the numerical solution is showed. In both panels W12 < 0. The
four panels correspond to the four components of the state vector X. The parameters
for (a) are: ~∆C = −100J , W0NA = −90J , W12NA = −30J , UNA = 12J , NA = 1000,
~η = 20J . The initial condition is X(t = 0) = (0.01, 0, 1.01, π/2).The parameters for
(b) are: ~∆C = −100J , W0NA = −90J , W12NA = −30J , UNA = −12J , NA = 1000,
~η = 20J . The initial condition is X(t = 0) = (0.01, 0, 1.01, π/2).

b > 0 when U > ~a
NA

. The two plots in Fig. (3.3) depict the solutions of the
equations when ab < 0 and when ab > 0 respectively.

It can be seen from all the plots that the analytical solution is very
similar to the numerical one, and that near the equilibrium, when ab < 0,
the system shows small oscillations.

A similar analysis can be carried out for the other zero imbalance equilib-
ria because their Jacobian matrix has exactly the same structure as J(X1).
Therefore we only write the corresponding Jacobian matrices and the con-
ditions for the equilibria to be stable, without making other plots. Since
the frequency of the small oscillations for the photon degrees of freedom is
always real, we only need to study the product ab. When it is negative the
atomic frequency of the small oscillations is real, otherwise it is imaginary
and the equilibrium is not stable.

The Jacobian matrix for X3 is:
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Figure 3.2: Time evolution of the variables (z, θ, ξ, φ) around the fixed point X1. Time
is measured in units of ~/J . The red lines represent the numerical solution of the system.
The green dashed line represents the analytical solution. In panel (a) the parameters of
the system are such that the equilibrium is stable, and the green and red lines overlap.
In panel (b) the parameters of the system are such that the equilibrium is not stable and
only the numerical solution is showed. In both panels W12 > 0 and a > 0. The four
panels correspond to the four components of the state vector X. The parameters for (a)
are: ~∆C = 130J , W0NA = 90J , W12NA = 30J , UNA = 12J , NA = 1000, ~η = 200J .
The initial condition is X(t = 0) = (0.01, 0, 20.01, π/2). The parameters for (b) are:
~∆C = 130J , W0NA = 90J , W12NA = 30J , UNA = 25J , NA = 1000, ~η = 200J . The
initial condition is X(t = 0) = (0.01, 0, 20.01, π/2).

J(X3) =


0

2

(
J− ~2W12η

2

(~∆C−NA(W0−W12))2

)
~ 0 0

NAU
~ −

2

(
J− ~2W12η

2

(~∆C−NA(W0−W12))2

)
~ 0 0 0

0 0 0 −η
0 0 (~∆C−N(W0−W12))2

~2η
0


When W12 < 0, then a > 0. The sign of the product ab is then deter-

mined by the sign of b. Writing b = NAU
~ − a, then b < 0 when U < ~a

NA
.

For W12 > 0, a can have both signs. When W12 > 0 then also W0 > 0.
Since δc > 0, ∆C > 0.

a > 0 when J > ~2W12η2

(~∆C−NA(W12+W0))2 . Writing b = NAU
~ − a, b < 0 when

U < ~a
NA

.

a < 0 when J < ~2W12η2

(~∆C−NA(W12+W0))2 . Writing b = NAU
~ − a, then b > 0

when U > ~a
NA

.

Let us now write the Jacobian matrix for the equilibrium X2:
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Figure 3.3: Time evolution of the variables (z, θ, ξ, φ) around the fixed point X1. Time
is measured in units of ~/J . The red lines represent the numerical solution of the system.
The green dashed line represents the analytical solution. In panel (a) the parameters of
the system are such that the equilibrium is stable, and the green and red line overlap.
In panel (b) the parameters of the system are such that the equilibrium is not stable
and only the numerical solution is showed. In both panels W12 > 0 and a < 0. The
four panels correspond to the four components of the state vector X. The parameters
for (a) are: ~∆C = 140J , W0NA = 90J , W12NA = 30J , UNA = 12J , NA = 1000,
~η = 20J . The initial condition is X(t = 0) = (0.01, 0, 1.01, π/2). The parameters for (b)
are: ~∆C = 130J , W0NA = 90J , W12NA = 30J , UNA = −12J , NA = 1000, ~η = 20J .
The initial condition is X(t = 0) = (0.01, 0, 2.01, π/2).

J(X2) =


0 −

2

(
J− ~2W12η

2

(~∆C−NA(W12+W0))2

)
~ 0 0

NAU
~ +

2

(
J− ~2W12η

2

(~∆C−NA(W12+W0))2

)
~ 0 0 0

0 0 0 η

0 0 − (~∆C−NA(W12+W0))2

~2η
0


When W12 < 0 a < 0. The sign of the product ab is then determined by

the sign of b. b > 0 if U > ~a
NA

. If U > 0 then b > 0.

For W12 > 0 a can have both signs. When W12 > 0 then also W0 > 0.

Since δc > 0, then ∆C > 0. a > 0 when J < ~2W12η2

(~∆C−NA(W12+W0))2 . Writing

b = NAU
~ − a, then b > 0 when U > ~a

NA
.

a < 0 when J > ~2W12η2

(~∆C−NA(W12+W0))2 . Writing b = NAU
~ − a, then b > 0

when U > ~a
NA

.

The Jacobian matrix for X4 is:
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J(X4) =


0

2

(
J− ~2W12η

2

(~∆C−N(W0−W12))2

)
~ 0 0

NAU
~ −

2

(
J− ~2W12η

2

(~∆C−NA(W0−W12))2

)
~ 0 0 0

0 0 0 η

0 0 − (~∆C−NA(W0−W12))2

~2η
0


When W12 < 0 a > 0. The sign of the product ab is then determined by

the sign of b. b < 0 if U < ~a
NA

.
For W12 > 0 a can have both signs. When W12 > 0 then also W0 > 0.

Since δc > 0 ∆C > 0. a > 0 when J > ~2W12η2

(~∆C−NA(W12+W0))2 . Writing

b = NAU
~ − a, then b < 0 when U < ~a

NA
.

a < 0 when J < ~2W12η2

(~∆C−NA(W12+W0))2 . Writing b = NAU
~ − a, then b > 0

when U > ~a
NA

.

3.1.2 Finite imbalance equilibria

Now let us turn to the finite imbalance equilibrium solutions, where 0 <
|z| ≤ 1. These equilibria can be found by solving dX/dt = 0. The first
equation of the system implies that θ = 0 or θ = π. The third is met when
φ = ±π/2.

Let us first consider the case when θ = 0. The second equation becomes

UNA

~
+

2ν√
1− z2

= 0.

This means that √
1− z2 = − 2~ν

UNA
.

Since the left hand side of the equation is positive, ν/U needs to be negative.
This is a condition that must be satisfied in order for this equilibrium to
exist. Solving the equation for z we find:

z̄ = ±

√
1−

(
2~ν
UNA

)2

(3.5)

The last equation of dX/dt = 0 leads to the equilibrium value for ξ:

ξ = ± η

δC(0)
= ± ~η

~∆C −NA(W0 +W12

√
1− z̄2)

(3.6)

Let us now consider the case when θ = π. The second equation becomes

UNA

~
− 2ν√

1− z2
= 0

This means that √
1− z2 =

2~ν
UNA
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Since the left hand side of the equation is positive, ν/U needs to be positive.
This is a condition that must be satisfied to have this equilibrium. Solving
the equation for z we find:

z̄ = ±

√
1−

(
2~ν
UNA

)2

(3.7)

where we have used z̄ to label the equilibrium value of z. The last equation
leads to the equilibrium value for ξ:

ξ = ± η

δC(0)
= ± ~η

~∆C −NA(W0 −W12

√
1− z̄2)

(3.8)

The ± sign depends on the value of φ: there is a + when φ = π/2 and
a − when φ = −π/2.

For θ = 0, the condition we have found for the existence of the equi-
librium is that ν/U = (J −W12ξ̄

2)/U ≤ 0. This is different from the bare
BJJ, in which this condition can be satisfied only when U < 0 since J̃ = J
is always positive. However, because of the light-matter interaction, the
numerator can change sign for a large enough number of photons, so this
equilibrium configuration can occur both for a positive and negative inter-
action between the atoms: U > 0 when J −W12ξ̄

2 < 0 and U < 0 when
J −W12ξ̄

2 > 0.

Similar calculations can be carried out when θ = π. The condition for
the existence of the equilibrium becomes U < 0 when J −W12ξ̄

2 < 0 and
U > 0 when J −W12ξ̄

2 > 0. The finite imbalance equilibria we find are:

X5 =

(
z̄, 0,

~η
~∆C −NA

(
W0 +W12

√
1− z̄2

) , π
2

)
, (3.9a)

X6 =

(
z̄, 0,

~η
NA

(
W0 +W12

√
1− z̄2

)
− ~∆C

,−π
2

)
, (3.9b)

and similarly for θ = π,

X7 =

(
z̄, π,

~η
~∆C −NA

(
W0 −W12

√
1− z̄2

) , π
2

)
, (3.9c)

X8 =

(
z̄, π,

~η
NA

(
W0 −W12

√
1− z̄2

)
− ~∆C

,−π
2

)
. (3.9d)

In these equations

z̄ = ±

√
1−

(
2(J −W12 ξ̄2)

UNA

)2

. (3.10)
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where ξ̄ is a formal shorthand notation referring to the third component
of the vectors X5 . . .X8, and it is a function of z̄. This means that the
value of z̄ is the solution of Eq. (3.10), which is a third degree equation in√

1− z2. A cubic equation has either 1 or 3 real solutions, and the condition
for z̄ to be real is that the expression under the square root in Eq. (3.10)
is positive. This happens when −UNA/2 ≤ (J − W12ξ

2) ≤ UNA/2 for
repulsive interactions (U > 0), and (J −W12ξ

2) ≥ −UNA/2 for attractive
interactions (U < 0). As ξ has to be positive, it follows that for δC > 0 the
two finite imbalance fixed points are X5 and X7 , while for δC < 0 the finite
imbalance fixed points are X6 and X8.

The study of small oscillations is more complicated for the finite imbal-
ance equilibria, because of the form of the Jacobian matrix. Let us show
what the Jacobian matrix looks like for X5:

J(X5) =


0 e 0 0
f 0 g 0
0 0 0 h
i 0 j 0

 (3.11)

where

e = −
2
√

1− z2

(
J − ~2W12η2

(~∆C−N(W0+W12

√
1−z2))

2

)
~

f =

2

(
J − ~2W12η2

(~∆C−N(W0+W12

√
1−z2))

2

)
z2

~ (1− z2)3/2
+
NU

~

+

2

(
J − ~2W12η2

(~∆C−N(W0+W12

√
1−z2))

2

)
~
√

1− z2

g = − 4W12zη
√

1− z2
(
~∆C −N

(
W0 +W12

√
1− z2

))
h = −η

i =
NW12z

~
√

1− z2

j =

(
~∆C −N

(
W0 +W12

√
1− z2

))2

~2η

In these equations z̄ is the solution of Eq. (3.10).
It can be seen from the form of the Jacobian matrix that the atomic and

photon degrees of freedom are no longer independent of each other but are
coupled. Moreover the study of the stability of the equilibria is no longer
straightforward as it was before, and can not be carried out analitically as
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before The dynamics of the system around these equilibria will be carried
out later, by using a simplifying assumption.

3.2 Adiabatic elimination of the photon dynamics

In the system we are studying the characteristic frequency of the photon
dynamics is the effective detuning δC , while the characteristic frequency for
tunneling processes is given by ~−1ν and usually δC is orders of magnitude
larger than ~−1ν [14]. When such a relation holds between the two char-
acteristic frequencies, that is to say when δC � ~−1ν, the time scales of
photon and atom dynamics separate and the photon field can be adiabati-
cally eliminated. This means that the photon field evolves on a time scale
much smaller than the atom field and therefore we can assume that it relaxes
quickly to its steady state value when the atomic variables change. This al-
lows us to calculate the photon degrees of freedom ξ and φ as a function of
the atomic degrees of freedom z and θ by formally setting the derivative of
ξ and φ to zero and solving for ξ and φ.

Looking at the full system (2.41), and using the bar symbol to indicate
the value of the variables in this approximation, it can be seen that ξ̇ = 0
implies that η cosφ = 0 and so φ̄(t) = ±π

2 . Thus ξ̄(t) = η cos φ̄(t)/δC(t),
where φ̄ is chosen so that ξ̄ is positive, and where we remind that δC(t) =
∆C − NA(W0 + W12

√
1− z2(t) cos θ(t))/~. This means that, in this ap-

proximation, the photon degrees of freedom can be written as a function of
the atomic variables of the system. Substituting the expression for ξ̄ into
the system (2.41), we get a new set of two equations which describe the
dynamics of the system:

ż = −2ν̄
√

1− z2 sin θ, (3.12a)

θ̇ =

(
g̃ +

2 ν̄√
1− z2

cos θ

)
z, (3.12b)

with ν̄ = ν̄(t) = (J −W12ξ̄
2(t))/~ = (J −W12η

2/δ2
C(t))/~.

It is important to notice that this set of equations has the same form
as the equations that describe the dynamics of a bare BJJ, however there
is a quite relevant difference. The assisted tunneling amplitude ν̄ is not a
constant but a function of z and θ, and therefore it varies with time.

3.3 Constant photon field

When the cavity detuning ∆C is much larger than NAW0 and NAW12, the
photon amplitude ξ, as it appears in Eqs. (3.12), depends only weakly on
the atomic varables z and θ. Therefore, when this condition is satisfied, the
photon field amplitude ξ can be considered to be constant in time and have
value ξ = η/|∆C |. The new set of equations that describes our system is:
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ż = −2ν̃
√

1− z2 sin θ, (3.13a)

θ̇ =

(
g̃ +

2 ν̃√
1− z2

cos θ

)
z, (3.13b)

where ν̃ = (J −W12ξ̄
2)/~ = (J −W12η

2/δ2
C)/~ = J̃/~ and ξ = η/|∆C |.

This set of equations is very similar to the Josephson equations for a bare
Josephson junction. But here, because of the cavity photons, the tunneling
amplitude J is substituted with the assisted tunneling amplitude J̃ . The
assisted tunneling J̃ clearly depends on the number of photons ξ2. Since
the tunneling amplitude J is assumed to be positive, the presence of the
cavity photons can have three consequences. When W12 < 0 the assisted
tunneling amplitude J̃ can only get larger. When W12 > 0, for ξ2 < J/W12,
the assisted tunneling becomes smaller, but remains positive, and for ξ2 >
J/W12, J̃ changes sign and becomes negative.

At this point it is convenient to rewrite Eqs. (3.13) as:

ż = −2J̃
√

1− z2 sin θ, (3.14a)

θ̇ =

(
UNA +

2 J̃√
1− z2

cos θ

)
z, (3.14b)

where we used ~ = 1 and we have written explicitly the expression g̃ = UNA

to show more clearly how U and NA influence the dynamics.

These two equations are the Hamilton equations that derive from the
Hamiltonian that describes the total energy of the system:

H(z, θ) =
UN2

A

2
z2 − 2NAJ̃

√
1− z2 cos θ (3.15)

as

ż = − 1

NA

∂H

∂θ

θ̇ =
1

NA

∂H

∂z

3.3.1 Equilibria

We can now study the main features of the dynamics of the system by finding
the equilibria of the system and studying how the system behaves close to
them. By solving the equations ż = 0 and φ̇ = 0 we can find the stationary
points of the system, and using Eq. (3.15) we can calculate the energy of the
system at the equilibria. It is easy to see that the system has four equilibria.
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Using a vector notation in which Y = (Y1, Y2) = (z, θ), we can write the
equilibria as:

Y1 = (0, 0), (3.16a)

Y2 = (0, π), (3.16b)

Y3 =

±
√√√√1−

(
2J̃

UNA

)2

, 0

 , (3.16c)

Y4 =

±
√√√√1−

(
2J̃

UNA

)2

, π

 . (3.16d)

In order for the last two equilibria to exist the expression under the square
root must be positive and this implies that (UNA)2 > (2J̃)2. We don’t
consider Y3 and Y4 as two equilibria each for the clear z → −z symmetry
of the system. The first two equilibria are the only ones we can have if
there is no interaction between the atoms (U = 0). The last two equilibria
are characterized by a non zero value of z. This means that there is an
imbalance in the occupation of the wells. This phenomena is called self
trapping and it is a consequence of the interaction between the bosons. In
particular we can separate the solution to the equations in two classes. One
is characterized by oscillations around z = 0 and therefore the time average
of the population imbalance is zero: 〈z(t)〉 = 0. The second class of solutions
is characterized by an average imbalance in the population of the wells and
therefore 〈z(t)〉 6= 0, where the angular brackets represent the time average.
When 〈z(t)〉 6= 0 the system is said to be in the self trapping regime.

3.3.2 Equilibrium stability

To study the stability of the equilibria we can use the Jacobian matrix of
the system:

J(Y) =

(
2J̃z sin θ√

1−z2
−2J̃
√

1− z2 cos θ

UNA + 2J̃z2 cos θ
(1−z2)3/2 + 2J̃ cos θ√

1−z2
−2J̃z sin θ√

1−z2

)
(3.17)

Now we need to calculate the Jacobian matrix at the equilibria and find its
eigenvalues.

Zero imbalance equilibria

Let us start with the equilibrium Y1:

J(Y1) =

(
0 −2J̃

UNA + 2J̃ 0

)
(3.18)
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This matrix has eigenvalues

λ1 = ±i
√

4J̃2 + 2UNAJ̃ .

The equilibrium is stable when the eigenvalues are purely imaginary. The
frequency of the small oscillations around Y1, written in the actual physical
dimensions, is therefore:

ω1 =
1

~

√
4J̃2 + 2UNAJ̃ . (3.19)

The frequency ω1 is real when:

4J̃2 + 2UNAJ̃ > 0,

which can be written as:

4J̃2

(
1 +

UNA

2J̃

)
> 0.

Therefore this equilibrium is stable when

UNA

2J̃
> −1. (3.20)

For the equilibrium Y2 we can follow the same steps:

J(Y2) =

(
0 2J̃

UNA − 2J̃ 0

)
(3.21)

After calculating the eigenvalues of the matrix we find that the frequency
of the small oscillations around Y2 is:

ω2 =
1

~

√
4J̃2 − 2UNAJ̃ , (3.22)

and we can write it as:

ω2 =
1

~

√
4J̃2

(
1− UNA

2J̃

)
.

The frequency is real when:
UNA

2J̃
< 1. (3.23)

Let us now show some examples of how the cavity photons influence
the frequency of small oscillations for the zero imbalance equilibria. Let us
choose Y1. When the in-site interaction is positive, U > 0, the condition
that gives the stability of the equilibrium is always satisfied when W12 < 0.
In this case the presence of the photon field only modifies the frequency of
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Figure 3.4: Frequency ω1 (3.19) written as a function of the number of photons ξ2. ω1

is in units of J/~. W12 = −0.03J in the first panel and W12 = 0.03J in the second. In the
second panel, the frequency is not real when 33.33 < ξ2 < 233.33. The other parameters
are NA = 1000 and U = 0.012J .

the small oscillations. This can be seen in the first panel of Fig. (3.4). On
the other hand, when W12 > 0, there exists a range of number of photons
for which the frequency is no longer real and the system no longer performs
small oscillations around the equilibrium. This happens when

J

W12
< ξ̄2 <

1

W12

(
UNA

2
+ J

)
. (3.24)

This can be seen in the second panel of Fig. (3.4).
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Figure 3.5: Frequency ω1 (3.19) written as a function of the number of photons ξ2. ω1

is in units of J/~. W12 = −0.03J in the first panel and W12 = 0.03J in the second. The
other parameters are NA = 1000 and U = −0.012J .

When U < 0 the equilibrium is not always stable. When it is not,
however, it can be made stable by increasing the number of photons. When
W12 < 0 the equilibrium is stable when:

ξ2 >
1

W12

(
UNA

2
+ J

)
, (3.25)

and when W12 > 0 it becomes stable for:

ξ2 >
J

W12
(3.26)
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The frequency ω1 as a function of ξ2 for this case can be seen in Fig. (3.5).

Finite imbalance equilibria

For the finite imbalance equilibrium Y3 the Jacobian matrix reads:

J(Y3) =

(
0 4J̃2

UNA

UNA −
U3N3

A

4J̃2
0

)
(3.27)

where we have used the fact that in order for this equilibrium to exist
UNA/2J̃ < −1 and therefore the ratio U/J̃ must be negative. The cor-
responding frequency is:

ω3 =
1

~

√
U2N2

A − 4J̃2, (3.28)

which is real when:
UNA

2J̃
< −1. (3.29)

This condition is the same as the one that describes the existence of this
equilibrium. Therefore, when this equilibrium exists, it is also stable.

For the other finite imbalance equilibrium Y4 the Jacobian matrix reads:

J(Y4) =

(
0 4J̃2

UNA

UNA −
U3N3

A

4J̃2
0

)
(3.30)

where in this cased we have used UNA/2J̃ > 1. The corresponding frequency
is:

ω4 =
1

~

√
U2N2

A − 4J̃2, (3.31)

which is real when:
UNA

2J̃
> 1 (3.32)

In this case as well, the existence condition for the equilibrium is the same
that gives its stability, and thus, when this equilibrium exisits, it is also
stable. In Fig. (3.6) we can see how the number of cavity photons influences
the frequency ω4.

When there is no interaction between the atoms U = 0. In this case the
only possible equilibria are Y1 and Y2 the equations of the system describe
oscillations with frequency:

ωR =
2

~
|J̃ | = 2

~
|J −W12ξ̄

2|, (3.33)

where ωR is called Rabi frequency and the osciallations Rabi oscillations.
The presence of the photon field modifies the Rabi frequency of the oscilla-
tions as can be seen from Fig. (3.7).
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Figure 3.6: Frequency ω4 (3.31) written as a function of the number of photons ξ2. ω4

is in units of J/~ and W12 = −0.03J in the first panel and W12 = 0.03J in the second. In
both panels the range of ξ2 is given by the condition for the stability of the equilibrium.
The other parameters are NA = 1000 and U = 0.012J
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Figure 3.7: Rabi frequency ωR (3.33) written as a function of the number of photons
ξ2. ωR is in units of J/~ and W12 = 0.03J .

Energies

The energies of the stationary points can be calculated by substituting their
values for z and θ into the expression of the Hamiltonian (3.15). The energies
of the equailibria with zero imbalance can be computed straightforwardly
and they are:

E1 = −2NAJ̃ (3.34)

E2 = 2NAJ̃ . (3.35)

As for the energy of the finite imbalance equilibria, it is necessary to pay
attention to the relative signs of the in-site interaction U and of the assisted
tunneling amplitude J̃ .

Let us start with the stationary point Y4. In order for Y4 to exist,
UNA/2J̃ > 0. This is a clear consequence of θ̇ = 0, when θ = π and z 6= 0
and it implies that U and J̃ need to have the same sign. This allows us to
write the condition (UNA)2 > (2J̃)2, as UNA/2J̃ > 1. It is convenient to
rename UNA/2J̃ = Λ, and the condition we have just mentioned becomes
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Λ > 1. Using this new variable we can write the energy of the equilibrium
as:

E4 = NAJ̃

(
Λ +

1

Λ

)
. (3.36)

Since Λ > 1 the quantity
(
Λ + 1

Λ

)
> 2.

Now let us calculate the energy for Y3. From the equation θ̇ = 0 we find
that this equilibrium exists only when UNA/2J̃ < 0 which means that U
and J̃ need to have opposite signs. The condition (UNA)2 > (2J̃)2 becomes
UNA/2J̃ < −1. Using Λ as before we find that:

E3 = NAJ̃

(
Λ +

1

Λ

)
. (3.37)

The expression for the energy of E3 is the same as the one we have found for
E4, however, for E3, Λ is negative. Since Λ < −1 the quantity

(
Λ + 1

Λ

)
<

−2.

Energy ranking

At this point we can compare the energies of the equilibria of the system and
and rank them to find out which one has the lowest energy. In particular
we are interested in understanding when the equilibria with a finite imbal-
ance are the most energetically convenient. The relevant parameters of the
system, for a fixed NA, are U and J̃ . The ranking order of the energies is
different depending on the sign of these parameters, so we need to separate
all the different cases. Let us write again the formulas for the energy of the
equilibria we have previously calculated:

E1 = −2NAJ̃ , (3.38)

E2 = 2NAJ̃ , (3.39)

E3,4 = NAJ̃

(
Λ +

1

Λ

)
, (3.40)

where E3 and E4 have the same expression, but can not both exist for the
same values of the parameters U and J̃ .

Let us start with the case with repulsive interaction, U > 0. We can
consider two cases: J̃ > 0 and J̃ < 0.

When J̃ > 0, J̃ and U have the same sign and therefore E3 does not
exist. E4 is positive and clearly larger 2NAJ̃ . E1 is the only equilibrium
with negative energy and therefore it has the lowest energy.

When J̃ < 0, J̃ and U have opposite signs and E4 does not exist. E3

is positive and clearly larger than 2NAJ̃ . E2 in the only equilibrium with
negative energy and it has the lowest energy. Therefore we see that when
the interaction is positive the zero imbalance equilibria are always the most
energetically favourable.



54 CHAPTER 3. SEMICLASSICAL DYNAMICS

When the interaction is attractive U < 0 we get different results.

When J̃ > 0, J̃ and U have opposite signs and E4 does not exist. E3 is
negative and clearly smaller than −2NAJ̃ . Therefore E3 is the equilibrium
with the lowest energy. However, for this equilibrium to exist, the condition
(UNA)2 > (2J̃)2 needs to be satisfied.

When J̃ < 0, J̃ and U have the same sign and E3 does not exist. E4 is
negative and clearly smaller than −2NAJ̃ . Therefore E4 is the equilibrium
with the lowest energy. However, for this equilibrium to exist, the condition
(UNA)2 > (2J̃)2 needs to be satisfied.

Therefore we can see that when the interaction is negative the energies
of the equilibria with a finite imbalance, when they exist, are the most
favourable for the system.

Photon induced self trapping

Using the fact that the energy is a constant of motion of the system, the
expression of the energy for the finite imbalance equilibria allows us to find
a general condition that describes when the system can display the self
trapping [10]. Let us remind that when the system is in the self trapping
regime there is an imbalance in the population of the wells and 〈z(t)〉 6= 0,
where the angular brackets represent the time average.

When U and J̃ have the same sign we need to consider the equilibrium
Y4 and when the have opposite signs Y3. Let us show how the cavity
photons in the system can induce self trapping solutions for the first case.

When both U and J̃ are positive the condition Λ > 1 tells us that the
energy of the system must satisfy E4 > 2NAJ̃ . This means that self trapping
can occur when the initial energy of the system H0 satisfies:

H0 = H(z(0), θ(0)) = NAΛJ̃z2(0)− 2NAJ̃
√

1− z2(0)cosθ(0)

= 2NAJ̃

[
Λ

2
z2(0)−

√
1− z2(0)cosθ(0)

]
> 2NAJ̃ ,

(3.41)

and since we have assumed that J̃ is positive, this expression can be written
as:

Λ

2
z2(0)−

√
1− z2(0) cos θ(0) > 1. (3.42)

This inequality allows us to find relations between z(0), θ(0) and Λ for which
the system can show the self trapping.

If we assume to fix the initial conditions z(0) and θ(0), the self trapping
can occur only when Λ is larger than a critical value ΛC . Solving for Λ we
find that:

ΛC = 2
1 +

√
1− z2(0)cosθ(0)

z2(0)
. (3.43)
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While in a bare Josephson junction, the tunneling amplitude J̃ = J is
fixed, in our system it can be modified, by changing the number of the
cavity photons. This means that in our system we have one more relevant
parameter that allows us to switch between different regimes. Remembering
that Λ = UNA/2J̃ , we can see that in a bare BJJ with a fixed number of
atoms, Λ can be changed to satisfy this condition only by changing the
interaction strength U and making it larger. In our system however we can
keep the interaction constant and satisfy this condition by making J̃ smaller.
This can be done when W12 > 0 by increasing the number of photons.

By writing explicitly J̃ , we can see that for fixed initial values z(0), θ(0)
and a value of U that would not allow the self trapping in the absence of
photons, the condition that the photon number ξ2 has to satisfy in order for
the self trapping to occur is:

ξ2 >
J

W12

(
1− UNA

J

z2(0)

4(1 +
√

1− z2(0)cosθ(0)

)
, (3.44)

with ξ2 ≤ J
W12

for J̃ to be positive.
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Figure 3.8: The two panels show, highlighted in blue, the values of z and U that allow
self trapping for a fixed θ = 0. The differences in the panels depend on the number of
photons in the cavity. In the first one ξ2 = 0 and J̃ = J , in the second ξ2 = 25 and
J̃ = 0.25J . The other parameters are NA = 1000, NAW12 = 30J . U is written in units of
J .

Instead of fixing both z(0) and θ(0), we can fix θ(0) and Λ. This leads
to a critical value of the initial atomic imbalance zc = zc(θ(0),Λ) for which
the system shows self trapping. The condition for the self trapping to occur
(3.42), by fixing θ(0) = 0 and Λ can be written as:

|z(0)| > zc =
2
√

Λ− 1

Λ
(3.45)
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Figure 3.9: The two panels show, highlighted in blue, the values of z and θ that allow
the self trapping. The differences in the graphics depend on the number of photons in the
cavity. In the first one ξ2 = 0 and J̃ = J , in the second ξ2 = 25 and J̃ = 0.25J . The other
parameters are NA = 1000, NAW12 = 30J , NAU = 12J

Remembering that Λ depends on the number of photons through J̃ it
is clear that the value of zc depends on ξ2. This effect can be seen in Fig.
(3.8), where we can notice that the value of z that allows the self trapping
gets smaller when the number of photons in the system is increased.

In Fig. (3.9) we can see for which values if z(0) and θ(0) the self trapping
can occur, for a fixed interaction strength U . The area of the plot highlighted
in blue represents the initial values from which the system is in the self
trapping regime. By comparing the two panels, it can be clearly seen what
the effect of changing the number of photons is. In particular we can notice
that increasing the number of photons widens the area that allows the self
trapping.
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Figure 3.10: Time evolution of the variable z. Time is measured in units of ~/J . The
first panel represents the bare junction in the absence of the cavity. The second one shows
the junction inside of the cavity. The red lines represent the numerical solution of the
simplified system, where the photon degrees of freedom are constant. The green dashed
line represents the solution of the complete system. The parameters for the second panel
are: ~∆C = 300J , W0NA = 4J , W12NA = 3J , UNA = 12J , NA = 1000, ~η = 3000J .
The initial conditions for the first panel are for (z, θ) = (0.7, 0). The initial conditions for
the second panel are (z, θ, ξ, φ) = (0.7, 0, 10.17, π/2)
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The change of regime can be clearly seen from Fig. (3.10). In the left
panel we can see the time evolution of the system in the absence of photons
and how the population of the wells has a zero average value. The right
panel shows the time evolution when the cavity photons are present in the
system: it can be clearly seen that the photons induce oscillations around a
non-zero average value of z.
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Chapter 4

Ground state of the system
in the half-semiclassical
approximation

So far we have studied the system in the semiclassical approximation that
allowed us to describe the photon field and the condensate in the left and
right well through coherent states. Now we want to study the static prop-
erties of the system, i.e. calculating its ground state, when we do not use
the semiclassical approximation for the atoms in the wells. We call this de-
scription of the system ”half-semiclassical” because the cavity photons are
still described with a coherent state, but the atoms are studied in a purely
quantum way.

Our intent in studying the system in the half semiclassical approximation
is twofold.

On the one hand we are interested in finding out how the presence of the
cavity photons influences the ground states of the system. In particular we
want to see how the photon field modifies the transition between the atomic
coherent state and the ”macroscopic cat” state for attractive interaction,
and between the atomic coherent state and the separable Fock state for
repulsive interaction. This study will make use of some quantum indicators
to better identify when the transitions take place.

On the other hand we are also interested in finding out if there is some
analogy between the half-semiclassical study of the system and the semi-
classical study we have carried out in the previous chapter. In particular we
would like to compare the transitions we have seen when studying the equi-
libria of the Josephson equations and the transitions we find in the ground
state of the system.

59
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4.1 Bare Josephson junction

Let us start by studying the ground states of the bare Josephson junction
following [13]. The Hamiltonian of the system is:

ĤJ = −J
(
b̂†1b̂2 + b̂†2b̂1

)
+
U

2

(
b̂†1b̂
†
1b̂1b̂1 + b̂†2b̂

†
2b̂2b̂2

)
. (4.1)

It is worth noticing that the number operator N̂A = n̂1 + n̂2 commutes with
the Hamiltonian and therefore the total number of particles is conserved.
Given a fixed number of atoms N in the Josephson junction we want to
see how the ground state of the system changes when we vary the ratio
ζ = U/J . In order to do this we need to solve the eigenvalue problem for
the Hamiltonian ĤJ :

ĤJ |Ej〉 = Ej |Ej〉, (4.2)

where Ej is the j-th eigenvalue and |Ej〉 the corresponding eigenvector.
To solve this problem numerically, we want to write the Hamiltonian ĤJ

in its matrix form. By using the Fock basis {|n〉, n = 0, 1, ..., N}, where
|n〉 = |N − n, n〉 = |N − n〉1 ⊗ |i〉2, the Hamiltonian is represented by a
(N + 1)× (N + 1) matrix. The element of the Fock basis |n〉 describes the
state where there are n atoms in the right well and N − n in the left well.
The matrix elements of the Hamiltonian are:

(HJ)nm = 〈n|ĤJ |m〉. (4.3)

The eigenstate |Ej〉 for a given eigenvalue Ej , can be written as:

|Ej〉 =

N∑
n=0

c(j)
n |n〉 . (4.4)

where the square module of the coefficient |c(j)
n |2 is the probability to have

n atoms in the right well and N − n in the left one when the system is in
the jth eigenstate of the Hamiltonian.

Since we are interested in the ground state of the system we will only
need the lowest eignevalue E0 and eigenvector |E0〉.

4.1.1 Coherent, Fock and ”macroscopic cat” states

The ground state of the Hamiltonian (4.1) at a fixed N shows different con-
figurations depending on the relative strength of the in-site interaction U
and the tunneling amplitude J that can be represented with the dimension-
less parameter ξ = U/J . Let us start by listing the theoretical results in
some limit cases.
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• When there is zero interaction U = 0, and therefore ξ = 0, the ground-
state of the Hamiltonian ĤJ is the atomic coherent state (ACS)

|ACS〉 =
1√
N !

[
1√
2

(b̂†1 + b̂†2)

]N
|0, 0〉 , (4.5)

where |0, 0〉 = |0〉1⊗ |0〉2 is the tensor product between the vacuum of
the operator b̂1 and the vacuum of and b̂2, which is the state with no
atoms in either well [23, 24].

• When the interaction is repulsive, U > 0 and ζ > 0. the ground-state
of the Hamiltonian can be found into two different regimes depending
on the value of the parameter ζ [25, 26, 27, 28]. When ζ � N the
ground-state is close to |ACS〉. If ζ � N , the ground-state is close to
the separable Fock state

|FOCK〉 = |N
2
,
N

2
〉 . (4.6)

where half of the atoms are in the right well and half in the left one.

• When the interaction is attractive, U < 0 and ζ < 0 the ground-state
of the Hamiltonian can be close to the atomic coherent state |ACS〉
or in a entangled superposition of macroscopic states, i.e. macroscopic
Schrödinger cat states [29, 30, 31, 32, 33]. By changing the parameter
ζ = U/J < 0 towards smaller values the ground-state of the system
evolves towards the following macroscopic superposition state

|CAT 〉 =
1√
2

(|N, 0〉+ |0, N〉) (4.7)

which is the linear combination of the states with all particles in the
left or in the right well. This entangled macroscopic superposition
state is also known as “NOON state” or “macroscopic cat state”.

4.2 Quantum indicators

The coherence and entanglement properties of the ground states can be bet-
ter described by using some estimators, that allow to identify the transitions
between the various regimes the ground state can be found in. The estima-
tors we will be using are the Fisher information [34], the coherence visibility
[28] and the entanglement entropy [35]. Let us briefly define this quantities
and their relation to our system.
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4.2.1 Quantum Fisher information

For pure states, such as our ground state |E0〉, the quantum version of the
Fisher information FQFI , is defined as the variance of the difference of the
number of atoms in the right and left well [36, 34, 37]:

FQFI = (∆n̂1,2)2 = 〈(n̂1 − n̂2)2〉 −
(
〈n̂1 − n̂2〉

)2
, (4.8)

where the expectation value 〈...〉 is calculated with respect to the ground
state |E0〉. Since the Hamiltonian ĤJ is left-right symmetric, the ground
state has s definite parity and therefore it satisfies the condition 〈n̂1〉 = 〈n̂2〉.
At this point the Fisher Information FQFI of the state can be written in

terms of the coefficients c
(0)
i as:

FQFI =

N∑
i=0

[
2i−N

]2|c(0)
i |

2 . (4.9)

FQFI can be normalized with respect to its maximum value N2 by defining
the Fisher information F as:

F =
FQFI
N2

. (4.10)

F gives the width of the distribution |c(0)
i |2 centered at i/N = 1/2. We can

observe that F = 1 holds for the “macroscopic cat state” |CAT 〉, F = 1/N
for the atomic coherent state |ACS〉 and F = 0 for the “separable Fock
state” |FOCK〉. It is also worth mentioning that there exists a sufficient
condition to have entanglement between the atoms and it reads F > 1/N
[34].

4.2.2 Coherence visibility

In cold atom physics, the coherence properties of condensates are usually
studied in terms of their momentum distribution n(p). The momentum
distribution is defined as the Fourier transform of the one-body density
matrix ρ1(x, x′) [25, 26, 28]:

n(p) =

∫
dxdx′ exp

(
− ip(x− x′)

)
ρ1(x, x′) , (4.11)

where
ρ1(x, x′) = 〈φ̂(x)†φ̂(x′)〉 . (4.12)

Here the operators φ̂(x) and φ̂(x)† are the operators defined in Eq. (2.19)
and the average 〈...〉 is the ground-state average. It was proven [25, 26, 28]
that the momentum distribution n(p) can be written as:

n(p) = n0(p)

(
1 + αv cos

(
pd
))

, (4.13)
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where n0(p) is the momentum distribution in the fully incoherent regime
(which depends on the shape of the double-well potential VDW (x)), and d
is the distance between the two minima of VDW (x). αv is a real quantity
which measures the visibility of the interference fringes of the distribution
n(p). When calculated in our system, the coherence visibility αv can be
written as

αv =
2 |〈â†1â2〉|

N
(4.14)

and it characterizes the degree of coherence between the two wells.
When evaluated in the ground-state |E0〉 and written in terms of the

coefficients c
(0)
i , the visibility α becomes:

αv =
2

N
|
N∑
i=0

c
(0)
i c

(0)
i+1

√
(i+ 1)(N − i)| . (4.15)

The coherence visibility has its maximum value when the ground state
of the system is the atomic coherent state |ACS〉 and it equal to 1.

Density operator and entangled states

We quickly remind some of the properties of the density operator, because
it will be useful when defining the entanglement entropy of the system.

Given a system in the state |ψ(t)〉, the density operator associated with
the state of the system is ρ̂(t) = |ψ(t)〉〈ψ(t)|. The expectation value of an
observable Ô in the state |ψ(t)〉 can be calculated as:

〈Ô〉(t) = 〈ψ(t)|Ô|ψ(t)〉,

or using the density operator:

〈Ô〉(t) = Tr[ρ̂(t)Ô].

When ρ̂(t) represents a pure state, then ρ̂2 = ρ̂ and Trρ̂2 = 1.
Let us now briefly intorduce the concept of entangled state. Let us

consider a system composed of two parts, (1) and (2), with Hilbert spaces
H1 and H2 respectively. The global system (1) + (2) has as Hilbert space
the tensor product H = H1⊗H2. If {|um〉1} is an orthonormal basis for H1,
and {|vn〉2} is an orthonormal basis for H2, then H has as basis {|wmn〉} =
{|um〉1 ⊗ |vn〉2}. A pure state of system (1) can be written as: |ϕ〉1 =∑

m am|um〉1, and a pure state of system (2) as: |χ〉2 =
∑

n bn|vn〉2. A pure
state of the complete system can be written as: |Φ〉 =

∑
m,n cm,n|um〉1 ⊗

|vn〉2 =
∑

m,n cm,n|wmn〉. A pure state is used when the state of the system is
perfectly well known. However, when there is only incomplete information
about a system, we describe it through a mixed state. In this case, the
state of the system may be |ψ1〉 with probability p1, or the state |ψ2〉 with
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probability p2, etc, with
∑

i pi = 1. In this case we are dealing with a
statistical mixture of states. Such a state can not be described with an
average state vector. However it is possible to define a density operator for
such a state as: ρ̂(t) =

∑
i pi(t)|ψi(t)〉〈ψi(t)|. Since we are studying the

properties of the ground state of the system, which is obtained from the
diagonalization of the system Hamiltonian, and it is a pure state, from now
on we will be using only pure states. A pure state of a combined sysytem is
said to be separable if it can be written as the tensor product of the states of
its subsystems, that is to say: |Φ〉 = |ϕ〉1⊗|χ〉2. When such a decomposition
of the state |Φ〉 is not possible, the state of the complete system is said to be
entangled. The density operator ρ̂ of the complete system is separable if it
can be written as ρ̂ = ρ̂1⊗ ρ̂2. In fact if |Φ〉 = |ϕ〉1⊗|χ〉2, then ρ̂1 = |ϕ〉1〈ϕ|1
and ρ̂2 = |χ〉2〈χ|2. For a separable state ρ̂1 and ρ̂2 can be calculated from ρ̂
by taking the partial trace:

ρ̂1 = Tr2ρ̂

ρ̂2 = Tr1ρ̂.

When the state is not separable than the product of ρ̂1 and ρ̂2 obtained
after taking the partial trace is not equal to ρ̂. However taking the partial
trace can be used to measure the correlations between the two parts of the
system.

4.2.3 Entanglement entropy

The third and last indicator we will use to analyze the quantum entangle-
ment of the the ground state |E0〉 is the entanglement entropy S, which
measures the quantum correlations between the atoms in the two wells [35].
If the system is in the state |E0〉, its density matrix ρ̂ is

ρ̂ = |E0〉〈E0| . (4.16)

The entanglement entropy of this state is defined as the von Neumann en-
tropy of the reduced density matrix ρ̂1 defined by

ρ̂1 = Tr2ρ̂ , (4.17)

that is a matrix obtained by partial tracing the total density matrix (4.16)
over the basis vectors of the right well. The entanglement entropy S can be
written as:

S = −Trρ̂1 log2 ρ̂1. (4.18)

The expression for the entanglement entropy written in terms of the co-
effiencients of the ground state is:

S = −
N∑
i=0

|c(0)
i |

2 log2 |c
(0)
i |

2 . (4.19)
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The maximum value S can have, for a given number of bosons N , is log2(N+
1). This value is achieved when all the coefficients of the ground state take

the same value: c
(0)
i = 1/

√
N + 1.

4.3 Crossover between the ground states

We will briefly rederive the results obtained in [13] that describe how the
ground state of the system changes regimes when changing the value of ζ.
The results here provided will serve as a baseline for the study of the same
problem in the presence of cavity photons.

4.3.1 Repulsive interaction

Let us start by numerically solving the eigenvalue problem of Eq. (4.2) for
different values of the positive interaction, and therefore of ζ = U/J , to find
out what the ground state of the system is. In panel (b) of Fig. (4.1) we can

see the plot of the coefficients |c(0)
n |2 for N = 1000 for various values of the

positive interaction. When the interaction is U = 0, as expected, the state
of the system is the |ACS〉 which has a Gaussian profile. We notice that
when the interaction becomes stronger, the width of the distribution of the

coefficients |c(0)
n |2 becomes narrower. This is related to the aforementioned

fact that when ζ is large, the ground state becomes close to the separable
Fock state, in which half of the atoms are in the left well and half in the

right well. In this configuration only the coefficient |c(0)
n |2 with n = N/2 is

non zero.

4.3.2 Attractive interaction

In panel (a) of Fig. (4.1) we can see what happens when the interaction
is attractive. When increasing the absolute value of ζ we see a change
of regime. When |ζ| is close to zero the ground state is close to an atomic

coherent state and the plot of the coefficients |c(0)
n |2 shows a single maximum.

The width of the distribution of the gets wider when |ζ| increases. However
for a large enough |ζ| (ζcr ' −0.00203 for N = 1000), a valley appears
in the middle of the distribution of the coefficients. The distribution has
two maxima which are symmetric with respect to n/N = 1/2. This means
that the system is most likely to be found in a state where there is an
imbalance in the population of the right and left well. The emergence of
this kind of ground state can be interpreted as the onset of the self trapping
equilibria in the semiclassical dynamics. For an even larger |ζ|, the two
maxima move away from each other and the ground state goes toward the

”macroscopic quantum cat” state, in which only the coefficients |c(0)
0 |2 and

|c(0)
N |2 have a non-zero value. When the ground state of the system shows
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Figure 4.1: Coefficients |c(0)
n |2 as a function of n/N for N = 1000. In panel (a) the

interaction is negative U < 0 and in panel (b) it is positive U > 0. In both cases the
ground state is showed for 5 values of U , which is written in units of J and therefore
equivalent to ζ = U/J . The coefficients c

(0)
n are normalized so that

∑N
n=0 |c

(0)
n |2 = 1. n/N

is adimensional.

the two symmetric maxima, we will say that it is in the ”cat state regime”,
remembering however that the terminology ”cat state” is only used for the
aforementioned state.

4.3.3 Quantum indicators

Let us now see how the quantum indicators we have previously mentioned
can help us describe the change of regimes of the ground state. The values
of the quantum indicators are plotted in Fig. (4.2) as a function of U ; since
U is written in units of J , in this case, ζ = U/J and U are equivalent.

As for the Fisher information, we can see from Fig. (4.2) that it is a
monotonic decreasing function of U . This is in agreement with the fact that
F assumes its maximum value F = 1 for the ”macroscopic cat state” and
and its minimum value F = 0 for the separable Fock state. As expected we
can see that F = 1/N = 0.001 when U = 0. From the analysis of the plot
we can notice that there is a value of ζ for which the second derivative of the
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Fisher information changes sign ζF ' −0.002, and above which F plateaus.
In Fig. (4.2) we can see the coherence visibility αv as a function of U .

When ζ = U/J = 0 the ground state is the atomic coherent state and αv has
its maximum value. For smaller values of ζ the coherence visibility shows
a plateau but for larger values of |ζ|, αv gets smaller. It is worth noticing
that on the attractive side of the interaction there is a value of ζ for which
the second derivative of αv changes sign. This value of ζ, which we can call
ζα turns out to be the same as ζF , and it is close to ζcr.
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Figure 4.2: Fisher information F , coherence visibility αv and entanglement entropy S,
plotted as a function of U , which is written in units of J , for N = 1000. In panel (a)
the interaction is attractive U < 0 and in panel (b) it is repulsive U > 0. F, α and S are
adimensional.

Lastly, let us plot in Fig. (4.2) the entanglement entropy of the ground
state. We can notice that S shows a maximum for a finite value of ζ when the
interaction is attractive; we can call this value ζS . We see that this ground
state has a larger S than the cat state for which S = 1. This means that
for a Bosonic Josephson junction the cat state is not the most entangled.
Moving away from ζS in both directions, S assumes monotonically smaller
values. ζS is close to ζcr that identifies the onset of the coherence loss and
the transition to the cat state regime.

Because of the close analogy between the critical points of these quantum
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indicators and the change of regimes in the ground states, the quantum
indicators can also be used to discriminate the transitions between the cat,
coherent and Fock state regimes instead of needing to plot the coefficients
of the ground state.

4.4 Complete system

Let us now study the ground state of the complete system, that is to say
the Bosonic Josephson junction inside of the optical cavity.

In the previous chapter, when studying the dynamics of the system, we
used the semiclassical approximation. This meant that both the atoms in
the left and right well and the photons in the cavity were described with
coherent states. We now use a different approximation, in which we describe
only the photons as a coherent state, but we describe the atoms in the wells
in a purely quantum way, by using Fock states.

We call the photon coherent state |α〉, with â|α〉 = α|α〉. Furthermore,
in the same way as we stated when we described the adiabatic elimination
of the photon dynamics in the previous chapter, we assume that the photon
field relaxes quickly and this allows us to consider the photon coherent state
to be a parameter on which the atomic ground state depends.

The ground state of the atomic field for a given photon field strength
can be written as:

|GS〉α =
∑
n

cn(α)|n〉 (4.20)

where |n〉 = |N − n, n〉 is an element of the Fock basis {|n〉, n = 0, 1, ..., N},
as defined before and the coefficients cn(α) clearly depend on the photon
field strength.

So the ground state of the complete system can be written as:

|GS〉 = |α〉 ⊗ |GS〉α, (4.21)

which is the tensor product of the coherent state of the photon field and of
the atomic ground state for that field strength. Since the Hamiltonian Ĥ
of the complete system commutes with the number operator of the atoms,
N̂A, the atomic ground state is also an eigenstate of the number operator
and therefore N̂A|GS〉α = N |GS〉α.

To perform the numerical diagonalization of the Hamiltonian we need
to calculate its matrix elements in the basis of the Fock states. The Hamil-
tonian of the Bosonic Josephson junction inside of the cavity is given by
Eq. (2.34). We can substitute the photon operators with the corresponding
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c-numbers since we are using a coherent state, and we get:

Ĥ(α) = − (~∆C −W0N) |α|2−i~η (α− α∗)−
(
J −W12|α|2

) (
b̂†1b̂2 + b̂†2b̂1

)
+

+
U

2

(
b̂†1b̂
†
1b̂1b̂1 + b̂†2b̂

†
2b̂2b̂2

)
. (4.22)

The Hamiltonian that needs to be diagonalized is such that:

Ĥ|GS〉 = Ĥ (|α〉 ⊗ |GS〉α) = H(α)|GS〉α, (4.23)

which can also be written as:

H(α)|GS〉α = H(α)

N∑
n=0

cn(α)|n〉 =

N∑
m,n=0

|m〉〈m|H(α)|n〉cn(α) (4.24)

where we inserted the completeness relation:
∑N

m=0 |m〉〈m| = I.
Therefore the matrix elements of the Hamiltonian are:

Hm,n(α) = 〈m|H(α)|n〉 (4.25)

To write explicitly the matrix elements of the Hamiltonian we use the
fact that:

〈m|b̂†1b̂2|n〉 =
√
N −m

√
n δm,n−1

〈m|b̂†2b̂1|n〉 =
√
N − n

√
mδm,n+1

〈m|b̂†1b̂
†
1b̂1b̂1|n〉 = (N − n)(N − n− 1)δm,n

〈m|b̂†2b̂
†
2b̂2b̂2|n〉 = n(n− 1)δm,n

Finally the matrix elements of the Hamiltonian can be written as:

Hm,n(α) = −
[
(~∆C −W0N) |α|2 + i~η (α− α∗)

]
δm,n−

−
(
J −W12|α|2

) (√
N −m

√
n δm,n−1 +

√
N − n

√
mδm,n+1

)
+

+
U

2
[(N − n)(N − n− 1) + n(n− 1)] δm,n (4.26)

By numerically diagonalizing this matrix we can find the value of the
coefficients cn(α). We can notice that the first part of the matrix that
reads:

−
[
(~∆C −W0N) |α|2 + i~η (α− α∗)

]
δm,n

is proportional to the identity matrix, as it does not depend either m or n.
Therefore it gives no contribution to the calculation of the eigenstates and
we can diagonalize the simpler matrix:

H ′m,n(α) = −
(
J −W12|α|2

) (√
N −m

√
n δm,n−1 +

√
N − n

√
mδm,n+1

)
+

+
U

2
[(N − n)(N − n− 1) + n(n− 1)] δm,n (4.27)
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If we assume that the photon field relaxes fast then i~ d
dtα = 0. The

expression for i~ d
dtα calculated for the ground state reads:

i~ d

dt
α = −

[
~∆C −W0N −W12

N∑
n,m=0

c∗m(α)cn(α)〈m|(b̂†1b̂2 + b̂†2b̂1)|n〉

]
α+ i~η. (4.28)

By setting this expression equal to zero we find that:

α =
i~η

~∆C −W0N −W12

∑N
n,m=0 c

∗
m(α)cn(α)〈m|(b̂†1b̂2 + b̂†2b̂1)|n〉

=
iη

∆C − ~−1
[
W0N +W12

∑N
n=1

√
N − n− 1

√
n
(
c∗n−1(α)cn(α) + c∗n(α)cn−1(α)

)]
(4.29)

Therefore, in order for this procedure to be consistent the coefficients cn(α)
of the eigenstates of the Hamiltonian obtained as result of the diagonaliza-
tion must give the same value of α we started with.

The procedure here described is carried out numerically through a C++
program. The program starts with a trial value of the initial α, calculates
the coefficients of the ground state cn(α) and using them it computes a new
value of α. This procedure is repeated for several values of α until the α
calculated from the coefficients is equal to the starting one. From this α the
actual ground state coefficients are calculated.

The analysis of the ground state can be simplified using the same ap-
proximation we have used in the previous chapter when studying the assisted
Josephson Junction. When ∆C �W0N and ∆C �W12N , then α depends
weakly on the coefficients cn(α). Therefore, for any starting number of pho-
tons |α|2 the above procedure gives as result the starting |α|2. The number
of photons in the system can thus be modified by changing the parameters
η and ∆C .

Under this approximation we need to study how the ground states of the
Hamiltonian with the assisted tunneling is influenced by the presence of the
photons.

4.5 Ground states of the assisted Hamiltonian

The matrix elements (4.26) of the Hamiltonian of the system differ from
those of the bare Josephson junction just for the modified tunneling ampli-
tude. The assisted tunneling amplitude becomes J̃ =

(
J −W12|α|2

)
.

The assisted amplitude J̃ can now change its magnitude and also its sign
when W12 is positive.

Let us now calculate the ground state of the system as we have done for
the bare cavity, but this time showing what the effect of the cavity photons
is.
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4.5.1 W12 < 0

When W12 < 0 the assisted tunneling amplitude J̃ is always positive and its
magnitude gets larger as the number of photons in the system |α|2 increases.

Let us choose W12 = −0.03J and plot together the ground states for
various values of U for |α|2 = 1 and J̃ = 1.03J . We always plot the ground
state of the bare junction, which correspond to |α|2 = 0 to use as a reference.
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Figure 4.3: Coefficients |c(0)
n |2 as a function of n/N for W12 = −0.03J and N = 1000.

In panel (a) the interaction is negative U < 0 and in panel (b) it is positive U > 0. U
is written in units of J . The red line represents the system with |α|2 = 0, while the blue
dashed line the system with |α|2 = 1. In both cases the ground state is showed for 5 values

of U . The coefficients c
(0)
n are normalized so that

∑N
n=0 |c

(0)
n |2 = 1. n/N is adimensional.

In panel (a) of Fig. (4.3) we can see what happens when the in-site in-
teraction U is negative. The valley in the middle of the distribution appears
only for a larger value of |U |. This means that the photons have the effect of
increasing the coherence of the state, and the transition to the ”cat state”
regime is delayed. This effect can be clearly seen also from Fig. (4.4) where
the plot of the entanglement entropy shows its maximum for a larger |U |,
and from the Fisher information, which is smaller and therefore represents

a narrower width in the distribution for the coefficients |c(0)
n |2.

When the interaction is positive, the effect of the photons is still to delay
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the transition to the separable Fock state. While the effect can not be seen
from Fig. (4.3), because it is very small, it can be clearly seen in Fig. (4.4)
where the coherence visibility of the ground state in the presence of photons
is always larger that the state without them.
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Figure 4.4: Fisher information F , coherence visibility α and entanglement entropy S,
plotted as a function of U , which is written in units of J , for W12 = −0.03J and N = 1000.
The red line represents the system with |α|2 = 0, while the blue dashed line the system
with |α|2 = 1. In panel (a) the interaction is attractive U < 0 and in panel (b) it is
repulsive U > 0. F, α and S are adimensional.

4.5.2 W12 > 0

When W12 > 0 the assisted tunneling amplitude J̃ gets smaller when increas-
ing the number of photons in the cavity. This can lead to two main con-
sequences. On the one hand, if the number of photons is sufficiently small,
J̃ maintains its positive sign but its magnitude gets smaller 0 < J̃/J < 1.
On the other hand if the number of photons is large enough the assisted
tunneling can become negative J̃/J < 0.
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Figure 4.5: Coefficients |c(0)
n |2 as a function of n/N for W12 = 0.03J and N = 1000.

In panel (a) the interaction is negative U < 0 and in panel (b) it is positive U > 0. U
is written in units of J . The red line represents the system with |α|2 = 0, while the blue
dashed line the system with |α|2 = 1. In both cases the ground state is showed for 5 values

of U . The coefficients c
(0)
n are normalized so that

∑N
n=0 |c

(0)
n |2 = 1. Both ζ and n/N are

adimensional.

0 < J̃/J < 1

Let us start with the case when 0 < J̃/J < 1. We can plot the ground states
of the system, for different values of U , and for |α|2 = 1, and J̃ = 0.97J . We
can see from Fig (4.5) that the effect of the photons in this case is opposite
to the effect in the previous section where W12 was negative. Since the ratio
U/J̃ gets larger in magnitude, the transition from the atomic coherent state
to the separable Fock state, when the interaction U is positive, appears
more rapidly. The same holds for the transition to the ”cat state” regime,
when U is negative, which occurs for a negative U with smaller magnitude.
This effect can also be seen from the quantum indicators in Fig. (4.6). In
particular the maximum of the entanglement entropy can be used to observe
the transition to the ”cat state” regime, and how it appears for a smaller |U |.
The plot of the coherence visibility α can be used to see how the coherence
of the system is always smaller.
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Figure 4.6: Fisher information F , coherence visibility α and entanglement entropy S,
plotted as a function of U which is written in units of J , for W12 = 0.03J and N = 1000.
The red line represents the system with |α|2 = 0, while the blue dashed line the system
with |α|2 = 1. In panel (a) the interaction is attractive U < 0 and in panel (b) it is
repulsive U > 0. F, α, S and ζ are adimensional.

It is worth mentioning that this result is actually more interesting then
the sole rescaling of the ratio U/J . Focusing our attention on the attractive
in-site interaction and on the emergence of the ”cat state” regime we can
notice a fundamental difference. For a fixed number of atoms in the system,
in the bare Josephson junction, the transition to the ”cat state” regime hap-
pens for a definite value of ζ = U/J . However, in the complete system, with
a positive W12, by fine tuning the number of cavity photons the transition
to the ”cat state” regime can happen for a given magnitude of negative U ,
without changing the number of atoms. This means that the photons in the
system act as a new degree of freedom through which the transition between
different regimes can be manipulated. The significant effect the photons can
have, can be seen from Fig. (4.7), which compares the ground states for
|α|2 = 0, |α|2 = 1 and |α|2 = 25 for the same interaction strength U . The
ground state of the system when |α|2 = 25 shows the ”cat-like” state much
sooner because the assisted tunneling J̃ becomes much smaller for the same
value of U .



4.6. ANALOGIES BETWEEN THE HALF-SEMICLASSICAL AND THE SEMICLASSICAL STUDYOF THE SYSTEM75

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  0.2  0.4  0.6  0.8  1

|c
(0

) n
|2

n/N

|α|
2
=0

|α|
2
=1

|α|
2
=25

Figure 4.7: Coefficients |c(0)
n |2 as a function of n/N for |α|2 = 0, |α|2 = 1 and |α|2 = 25

and U = −0.00052J , for W12 = 0.03J and N = 1000. When |α|2 = 0 and |α|2 = 1 the
ground states do not differ for such a small interaction strength and are very similar to the
atomic coherent state. On the other hand, the ground state of the system with |α|2 = 25

clearly shows the transition to the ”cat state” regime. The coefficients c
(0)
n are normalized

so that
∑N
n=0 |c

(0)
n |2 = 1.

4.5.3 J̃/J < 0

The change of the sign of J̃ is significant when analyzing the Hamiltonian of
the system. In the case of the bare Josephson junction J can always be taken
to be positive. However, by numerically calculating the ground state of the
system we found out that the sign of J̃ bears no relevance to the coefficients

|c(0)
n |2 and to the value of the quantum indicators. Therefore, choosing

values of |α2| such that the values of the assisted tunneling amplitude J̃ is
the same as the ones we have just studied, but with opposite signs, leads
to the same plots. Therefore, for |α|2 = 65.666, the assisted tunneling is
J̃ = −0.97J , and it is described by the same plots we used for J̃ = 0.97J ,
that is Fig. (4.5) and Fig. (4.6). For |α|2 = 67.666, the assisted tunneling
is J̃ = −1.03J , and it is described by the same plots we used for J̃ = 1.03J ,
that is Fig. (4.3) and Fig. (4.4).

It is very interesting to notice this analogy between the case with positive
J̃ and negative J̃ . One would at first think that, since the relevant parameter
in the analysis is the ratio U/J̃ , when J̃ is negative, the same results could
be obtained by changing the sign of U as well. However this is not the case,
and we can justify it by comparing the results we have achieved for the
half-semiclassical system with the ones form the semiclassical analysis.

4.6 Analogies between the half-semiclassical and
the semiclassical study of the system

In the half-semiclassical analysis of the problem we have studied how the
ground state of the system is influenced by the cavity photons. In order to
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compare the results we have achieved in this chapter with the ones in the
semiclassical approximation of the previous chapter, we need to concentrate
our attention on the equilibria of the assisted Josephson junction equations.

In fact, we can think of the ground state in which the distribution of the

coefficients |c(0)
n |2 has a single maximum centered on |c(0)

N/2|
2 as the quantum

analogue of the zero-imbalance equilibria of the semiclassical system. In
both cases the we have the same number of bosons in either well. When the
distribution of the coefficients |c(0)

n |2 of the ground state shows two maxima,

symmetrically placed on the sides of |c(0)
N/2|

2,we can think that this state is
the quantum analogue of the finite-imbalance equilibria of the semiclassical
system, where there is a actual imbalance in the populations of the wells.

Since the system (3.13) has several equilibria we assume that the one
with the lowest energy is the one that describes the ground state of the
system, because it is the most energetically favourable.

At this point we can see the first analogy between the analysis of the
system performed in the two approximations. From the study of the ground
states we have seen how the presence of a negative J̃ did not influence the
coefficients of the ground states. In particular this means that the transition
to the cat state regime can occur only when the in-site interaction U is nega-
tive, independently of the sign of J̃ . However, this is the same conclusion we
reached when studying the equilibria of Eqs. (3.13), where we found that
the finite imbalance equilibria are the most energetically favourable only
when the interaction is negative, assuming that these equilibria do exist.

This leads to the second analogy. The finite imbalance equilibria exist
only if the parameters of the system satisfy the condition:

(UN/2J̃)2 > 1. (4.30)

We can try to compare the values of U for which we saw the appearance

of the valley in the plots of the coefficients |c(0)
n |2 of the ground state with

the ones given by the condition for the existence of the equilibria. When
W12 = 0.03J and |α|2 = 1, Eq. (4.30) gives U < −0.00194J , and from

the numerical calculation of the coefficients |c(0)
n |2 we find that the valley

appears when U ' −0.00196J . When W12 = −0.03J and |α|2 = 1, Eq.
(4.30) gives U < −0.00206J , and from the plot of the coefficients we get
that the valley appears when U ' −0.00209J . When |α|2 = 0, Eq.(4.30)
gives U < −0.002J , and from the plot of the coefficients we get that the
valley appears when U ' −0.00203J . The critical values of U we got from
both models are quite similar and therefore Eq. (4.30) describes quite well
the transition between the two relevant regimes also in the half semiclassical
case.
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Conclusions

In this thesis we have studied some features of the dynamics and of the
statics of a Bosonic Josephson junction inside of an optical cavity. The
Bosonic Josephson junction is made of an atomic Bose-Einstein condensate
trapped in a symmetric double well potential in one direction and by a tightly
harmonic potential in the two orthogonal directions. This makes the system
quasi one-dimensional. In order for the atoms to interact with the light field,
they have two electronic states, a ground state and an excited state with a
transition frequency ωA. The cavity has a characteristic frequency ωC close
to the atomic transition frequency ωA, and it is pumped by a coherent laser
light with frequency ωL.

We have first derived the Hamiltonian that describes the system and we
have introduced a simplified version of it using the two-mode approximation,
that describes the condensate wave function as a sum of the condensate in
the right and left well of the double well potential.

After introducing the ”semiclassical approximation” that describes the
condensate in both wells and the light field with a coherent state, we have
written a set of four coupled differential equations that describe the dynam-
ics of the system. Then we have calculated the equilibria of this system and
analytically computed the small oscillation frequencies for the zero imbal-
ance fixed points. In particular we have noticed how, close to these fixed
points, the dynamics of the atomic and photon variables were no longer
coupled.

We have then written a set of equations that approximate the complete
system when, the photon variables can be considered as constant. This has
allowed us to study the dynamics of the system, and in particular show
that the system can be found in two different regimes, one were the average
population imbalance is zero and one where it is different than zero. This last
regime is called the self trapping regime. We have shown how the presence of
photons can induce self trapping solutions, that would not occur in the bare
Bosonic Josephson junction. After studying the system in the semiclassical
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approximation, we have studied its static properties by treating the photon
field as a coherent state, but describing the atoms in the wells with Fock
states. By numerically diagonalizing the Hamiltonian of the system we
have managed to see how the ground states of the system are modified
by the presence of photons. In the bare Josephson junction, we have seen
a transition between different kinds of ground states by changing the in-
site interaction strength U between the atoms. When U is positive, by
increasing its magnitude the ground state changes from a atomic coherent
state to a separable Fock state. When U is negative, by increasing its
magnitude the ground state changes form the atomic coherent state to the
”macroscopic cat state”. In our system, the cavity photons can be used as
a new parameter that allows to change regime. In particular we have shown
how the transition to the ”cat state” regime can occur in the complete system
for a given negative U , by appropriately changing the number of photons in
the system. Lastly we have pointed out some analogies between the study
of the static properties of the system when describing the condensate with
a coherent state or in a purely quantum manner, using Fock states.
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