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Abstract

The aim of this Master’s thesis is to understand formal groups, in particular
commutative formal groups of dimension 1 over a ring of integers of a local field,
to study the construction of the period map of formal groups. Below is a brief
discussion on the content of each section.

1) Formal Groups. In this section we start by giving the definitions and basic
properties about formal groups of dimension n. Then we study commutative for-
mal groups of dimension 1 over different kind of rings. The aim is to understand
their structure and the construction of the Tate module for formal groups.

2) The Period rings Bqr and Beris. This second section explains the construction
of Fontaine of different p-adic period rings as Bgr and B..;s. We give also prop-
erties of these objects. We talk at some point about the p-adic analogous of 2im
which is an interesting object living in B:{R.

3) p-adic Periods of Formal Groups. In this last section, we discuss about the
construction of the period map of formal groups which is a special case of the
period map for abelian varietes, and give an example after, showing the link be-
tween the complex case and the p-adic one.

A good reference for the first section in which it is based on is [Fro68| and
if the reader look at it, he will see how rich is the theory of formal groups. For
the construction of the ring of periods, [BC], [FO] or [Col07] are really good
introductions and I can only stress how useful they were to understand these
objects. Normally, any references required are specified where needed.

In this work, no originality is claimed as it is based on [Ber01] and [Col92]. Any
mistake found is mine.
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1 Formal Groups

1.1 Formal Groups of dimension n

In this section, we take R to be a fixed commutative unitary ring, and all power series
are over RR.

Definition 1.1. A formal group F(X,Y) of dimension n is a system F;(X,Y) of n
power series in 2n indeterminates X = (X7, ..., X,,), Y = (Y3,...,Y},) satisfying :

i) F(X,0) = X,F(0,Y) =Y
i) F(F(X,Y),Z)=F(X,F(Y,2))

Remark 1.2. i) tells us that F(0,0) = 0 and so we have F;(X,Y) = X; +Y; mod
degree 2. Moreover, terms of degree greater than 1 are "mixed", i.e., X’s and Y’s only

occur together.
We say that F' is commutative if F'(X,Y) = F(Y, X).

Proposition 1.3. Given F, there exists a unique i(X) (n power series in n inderter-
minates) so that F(X,i(X)) = F(i(X),X) =0.

Proof. Put ¢;(X,Y) = X; — F;(X,Y), for i = 1,...,n. Note that g; has no constant
term when viewed as a power series in Y.

(09;/0Yk)x=y=0 = —(0F;/0Yr)x=y=0 = —0i. The determinant of (0g;/0Y%)y—o is a
unit of R[[X1,...X,]].

Therefore there exist h;(X,Y), (for i = 1,...,n) such that ¢;(X, h(X,Y)) =Y, or
Fi(X,h(X,Y)) = X; = Y; (fori = 1,..,n). Put Y = X, then Fj(X,h(X,X)) = 0.
Take ¢(X) = h(X, X). The proof of the uniqueness is a translation of the one of group
theory. O]

Remark 1.4. This proposition tells us that to any element z € R, there exists a unique
inverse i(x) with respect to F'. With property i) and ii), we start to see that F' looks
like to a group law. We will see later in the section about the group of points of a
formal group that it is possible, thanks to F', to put a structure of a group on maximal
ideal.

For i = (i1, ..,i,) € N, define |i| = ) ix. For f € R, = R[[X1,..., X,)]], we define the
k=1
der of f to be ord(f) = inf |i|.
order of f to be ord(f) }_1;1&0|z|

For m € N, define 4,, :Z{f € R, | ord(f) > m}. A, is a subgroup of R, and
A 2 Apgr. Defining A, = () Aun, we have in fact A, = {f € R, | ord(f) = oo}.

meN



6 1 FORMAL GROUPS
If (fx)ren is a sequence of elements of R,, and klim ord(fr — f) = oo then we write
—00

lim,.q fx = f when k& — oco. One can replace (R,,ord) by any (A,v) where A is a
commutative unitary ring and v a filtration defined on A.
Suppose now that F' and G are formal groups of dimension n and m respectively.

Definition 1.5. A homomorphism f : FF — G is a "vector" f = fi,..., fin of m power
series in X7, ..., X,, with no constant terms, so that f(F(X,Y)) = G(f(X), f(Y)).

The homomorphism f determines a homomorphism 0y : R[[Z1, ..., Z,,]] = R[[ X1, ..., X]]
given by 0;(Z;) = fi(X). If f : F — G, g : G — H are homomorphisms of formal
groups then go f : FF — H is a homomorphism of formal groups. Also 1;(X) = X;
gives the identity homomorphism of F'. Hence :

Theorem 1.6. The formal groups and their homomorphism form a category Fr(= F)
and f +— 0y defines a functor Fr — Pr, where Pg is the category whose objects are
(R, ord) and the morphisms are the continuous ring homomorphisms.

Remark 1.7. A homomorphism f : FF — G of formal groups is an isomorphism (in
Fr) if and only if §; is an isomorphism (in Pg). Moreover, if f is any "vector" of n
power series with 0 an isomorphism, and if F' is a formal group of dimension n, then
there is a unique formal group G(= f o F o f~!) so that f is an isomorphism F — G.

In R, = R[[Xy,..., X,]], consider the ideal I = Ker(R, — R) and denote by f the
image of f under the natural epimorphism I — I/I? =: D(R,,).

For a given prime number p, denote m : R, — R, the homomorphism which fixes
R, and takes X; into XP. Then 7(™ : X; — XP" for any m > 1.
Let R* denote the additive group of R.

Theorem 1.8. Let f : F — G be a homomorphism of formal groups (of dimension n
and m respectively) and let 0y : R,, — R, the corresponding homomorphism of rings.
i) suppose R is torsion free. Then D(0f) =0 if and only if f =0

ii) suppose RT is of exponent p (prime),that means that there exists g : F — G a
homomorphism of formal groups such that f(X) = g(X?). Then D(8;) = 0 if and only
if either f =0, or 0 = ¢; oD, where D(¢;) # 0 and ¢ > 0.

Proof. See [Fro68] Chapter I, section 2, Theorem 2. ]

Definition 1.9. Assume that R* is of exponent p. If § = ¢ o 7™ and D(¢) # 0, then
h = ht(0) is called the height of 8. We define ht(0) = oc.

For f a homomorphism of formal groups, ht(f;) = ht(f) is called the height of f.

If f#0, then ht(f) = h is the greatest integer so that f is a power series in X"
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Proposition 1.10. i) If f, g are homomorphisms of formal groups and f o g is defined,
then ht(f o g) > ht(f) + ht(g).

i) If G is a commutative formal group and f,g € Homz(F,G), then

ht(G(f,g)) > inf{ht(f), ht(g)}

Proof. See |[Fro68] Chapter I, section 3, Proposition 5. ]

Remark 1.11. If our formal groups are of dimension 1, R is an integral domain and fog
is defined, then ht(f) + ht(g) = ht(f o g) and the height function from R,, — Z U {o0}
is a valuation.
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1.2 Commutative formal Groups of dimension one

Throughout this section, all formal groups are now commutative of dimension one. We
repeat the definitions in this case and state a few pertinent facts.
Let R be a ring.

Definition 1.12. A formal group F(X,Y) is a power series (over R) in two variables
X,Y satisfying :

i) F(0,X) =X = F(X,0) (Identity element)
i) F(F(X,Y),Z)=F(X,F(Y, Z)) (Associativity)
i) F(X,Y) = F(Y,X) (Commutativity)

Remark 1.13. As before, we necessarily have F(X,Y) = X +Y (mod degree 2).

Proposition 1.14. Given F, there exists a unique i(X) (a power series in one inde-
terminate) so that F(X,i(X)) = F(i(X),X)=0

Proof. We already proved this for dimension n in Proposition 1.3. [

Definition 1.15. A homomorphism f : F' — G of formal groups is a power series (with
zero constant term) in one variable satisfying the relation

FFX,Y)) = G(F(X), f(Y))

We denote by Hompg(F,G) the set of homomorphisms F' — G of formal groups. If
f,g € Homg(F,G), (f + ¢9)(X) = G(f(X),9(X)). With respect to this addition,
Hompg(F,G) is an abelian group, and the composition o for homomorphisms is bilinear.
We denote the category of commutative formal groups of dimension 1 over R by Gg.
Hompg(F, F) = Endg(F) is a ring with identity.

Definition 1.16. We define the multiplication-by-m map [ . |r : Z — Endg(F) with

n+1]p(X) = F([n]p(X), X) to be the unique homomorphism which preserves identi-

ties.

We have [1]p (X) X and [—1]p(X) is the power series i(X) of Proposition 1.14, i.e.,
F(X,i(X)) =

For n € Z and f € Hompg(F,G) we have

folnlp=Inlgof
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Now we recall the definition of the map D. For dimension 1, we simply have D(f) =
f1 =coefficient of X in f(X) and :

D(fog)=D(f).D(g)
D(f +g) = D(f) + D(g)

Moreover f is an isomorphism if and only if D(f) € U(R)(= the units of R).

Proposition 1.17. If R is an integral domain, then Endgr(F') is a (non-commutative
integral) domain and Hompg(F,G) is a torsion free Endgr(F) (and Endgr(G))-module.

Proof. If f = f, X"+ fo 0 X"+ .. and g = g, X°® + g1 X5 + ... with f,, gs # 0 then
fog=frg: X"+ ... and f,.g° # 0. Therefore f o g =0 implies either f =0 or g = 0.
From this we deduce that Endg(F) is an integral domain, and that Homg(F,G) is a
torsion-free Endgr(F') (and Endg(G))-module. O

The image of [ . | : Z — Endg(F) is thus also an integral domain and its kernel must
therefore either be 0 or pZ for some prime p. If the characteristic of the quotient field of
R is 0 then D : Endgr(F) — R is an embedding. Therefore Endg(F') is a commutative
integral domain and Ker(Z — Endgr(F)) =0

Theorem 1.18. A formal group F is isomorphic over R to the additive group G, if
and only if, for all primes p, [p|r has coefficient in pR. (We have G,(X,Y) =X +Y ).

Proof. See [Fro68] Chapter III, section 1, Theorem 2. ]

1.2.1 The invariant Differential

In this section we study a formal group F of dimension 1 defined over an arbitrary
integral ring R. In a formal setting of this sort, a differential form is simply an expression
Q(X)dX with Q(X) € R[[X]]. Of particular interest are those differential forms that
respect the group structure of F.

Definition 1.19. An invariant differential on a formal group F is a differential form
w(X) = Q(X)dX € R[[X]]dX satisfying wo F(X,Y) = w(X).
Writing this out, w(X) = Q(X)dX is an invariant differential if it satisfies

QIF(X,Y)) I (X,)Y) = Q(X)

where F7(X,Y) is the partial derivative of I’ with respect to its first variable.
An invariant differential is said to be normalized if Q(0) = 1.
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Example 1.20. On the additive group G, the differential w = dX is invariant.

Example 1.21. On the multiplicative group G,,, the following is an invariant differ-
ential :

dX

=  =(1-X+X2-X3+.)dX
w T x ( + +..)

Proposition 1.22. Let F' be a formal group defined over R. There exists a unique
normalized invariant differential on F. It is given by the formula w = F(0, X)) 'dX.
Fvery differential on F' is of the form aw for some a € R.

Proof. Suppose that Q(X)dX is an invariant differential on F', so it satisfies
QIF(X,Y))R(X,Y) = Q(X)

Putting X = 0 and since F(0,Y) =Y, we have Q(Y)F1(0,Y) = Q(0).

Since F1(0,Y) = 1+ ... we see that that Q(X) is completely determined by the value
Q(0), and further that every invariant differential is of the form aw with a € R and
w=F(0,X)"'dX.

Since this differential w is normalized, it remains only to show that it is invariant. We
need to prove that Fy (0, F(X,Y))'F(X,Y) = Fy(0, X)~".

To do this, we differentiate the associative law : F(Z, F(X,Y)) = F(Z,X),Y) with
respect to Z to obtain Fy(Z, F(X,Y)) = Fi(F(Z,X)Y)Fx(Z,X). Putting Z = 0 and
using the fact that F'(0,X) = X yields F1(0, F(X,Y)) = Fi(X,Y)F1(0,X), which is
the desired result. O

Before starting the first corollary, we set the notation f’(X) for the formal derivative
of a power series f(X) € R[[X]] i.e., f/(X) is obtained by formally differentiating f(X)
term by term.

Corollary 1.23. Let F' and G be formal groups with normalized differentials wr and
wg. Let f: F — G be a homomorphism of formal groups. Then wg o f = f'(0)wp.

Proof. We compute (wg o f)(F(X,Y)) = wa(G(f(X), f(Y))) = (wg o f)(X). Hence it
is an invariant differential to F. By last proposition, we know that wg o f is equal to
awp for some a € R. Comparing coefficients on X on each side gives a = f/(0). O

Corollary 1.24. Let F be a formal group and let p € Z be a prime. Then there are
power series f(X),g(X) € R[[X]] with f(0) = g(0) =0 such that

Plr(X) = pf(X) +g(XP).
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Proof. Let w(X) be the normalized invariant differential on F'.
We know that D([p]r) = p, so last corollary implies that

pw(X) = (wo [plp)(X) = (1 +..)D([p]r)(X)dX.

The series (1+ ...) is invertible in R[[X]], from which it follows that D([p|r) € pR[[X]].
Therefore every term aX™ in the series [p]p(X) satisfies either a € pR or pn. O

1.2.2 Commutative formal groups of dimension one over a separably closed
field of characteristic p # 0

Let k£ denote our base field, separably closed of characteristic p. For formal group F
and G (over k) and f € Homy(F,G), f is a power series in X?", where h = ht(f).
More precisely, we have: f(X) = a1 XP" + ap, X" + ... with a; # 0.

Proposition 1.25. Let f and g be homomorphisms of formal groups, then :
i) ht(f +g) > inf(ht(f), ht(g))
i) ht(f o g) = ht(f) + hi(g)

Proof. 1) already done in 1.10

ii) Put n = ht(f), m = ht(g). Then f(X) = aX?" + ... and g(X) = bXP" + ... with
a # 0 and b # 0. Therefore f(g(X)) = ab”" XP"™™" 4+ ... with ab”" # 0 and clearly we
get ht(fog) =n-+m = ht(f)+ ht(g). O

Corollary 1.26. ht(u) = 0 if and only if u is an invertible power series, in which case
ht(uo fou™') = ht(f)

Proof. ht(u) =0 < u(X) =a; X + a;X? + ... with a; # 0. But we have that

e(u) = a; € U(k) < u is invertible.

By the previous proposition we get ht(uou™') = ht(1) = 0 = ht(u) = —ht(u™'). Hence
ht(uo fou™t) = ht(u) + ht(f) + ht(u™t) = ht(f). O

Corollary 1.27. If we consider Z with the p-adic filtration, and Endy(F) with the
height filtration, then Z — Endy(F) is continuous.

Proof. 7. — End,(F) is continuous if for (a,), € Z*2°, v,(a,) — 0o = ht([a,)r) = o
which is clear since the height function of [a,] depends on the greatest power of p which
divides a,,. O

Definition 1.28. We define the height Ht(F') of the formal group F to be ht([p]r).

Remark 1.29. By Corollary 1.26, Ht(F') only depends on the isomorphism class of F'.
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Corollary 1.30. If Ht(F) # Ht(G), then Homy(F,G) = 0.

Proof. If f € Homy(F,G), then f o [p]r = [plg o f. Hence, ht(f) + Ht(F) = ht(f) +
Ht(G). Since Ht(F') # Ht(G), then ht(f) = oo and we get f = 0. O

Proposition 1.31. Homy(F,G) is complete under the height filtration.

Proof. Let {f,} be a Cauchy sequence under the height filtration. Then it is a Cauchy
sequence with respect to the order filtration, and ord(g) = p"9). Put f = limy.q(f,).
Then, working modulo degree n we have

fIF(X,Y)) = [u(F(X,Y)) = G(fu(X), fu(Y)) = G(f(X), f(Y))
Hence f € Homy(F,G) and f is the limit of {f,} under the height filtration. ]

Corollary 1.32. The homomorphism Z — Endy(F) extends to a homomorphism Z, —

Proof. Use Corollary 1.27 and Proposition 1.31 O]
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1.3 Commutative Formal Groups of Dimension One over a Dis-

crete Valuation Ring

Suppose from now on that R is a discrete valuation ring with quotient field K of
characteristic 0, maximal ideal 991 and residue field k of characteristic p # 0. Let v
denote the valuation on K given by 9t (we take v normalized so that v(p) = 1). We
denote by k the separable closure of k. The homomorphism R — k induces a functor
Gr — Gy under which F' — F.

Proposition 1.33. If F' is not isomorphic to G, then Homg(F,G) — Homz(F,G) is
mjective.

Proof. Suppose f : F' — G is a non-zero homomorphism such that f = 0. Let (7) = 9.
Then f(X) = 7n"g(X) where r > 0 and § # 0. We have

mg(F(X,Y)) = G(n"g(X),7"g(Y))
= m"g(X) + 7"g(Y) (mod M R[[X]))

Hence g(F(X,Y)) = g(X) + g(Y) (mod MR[[X]]) and g(F(X, ) = 9(X) +g(Y).
Therefore go [plz = [plg-0g = 0. Since g # 0, then [p|7 = 0, i.e., F' = G, (by Theorem
1.18. 0

Corollary 1.34. If Ht(F) # oo, Ht(F) # Ht(G), then Homg(F,G) = 0.

Proof. Ht( ) # oo implies that F is not isomorphic to G, and so Homg(F,G) —
Homz(F,G) is injective. But Ht(F) # Ht(G) implies that Homz(F,G) = 0. And so,
by the injectivity we deduce that Homg(F,G) = 0. O

1.3.1 The Group of Points of a Formal Group

In this section R is a complete discrete valuation ring with quotient field K of char-
acteristic 0, maximal ideal 9t and residue field k of characteristic p # 0. We assume
that the 9M-valuation v on K is normalized so that v(p) = 1. All formal groups, un-
less otherwise mentioned, are defined over R, and are assumed to be commutative of
dimension 1. K is the algebraic closure of K. The integers in K (i.e. the elements of
the integral closure in K of R) form a local ring R (it is not Noetherian). The unique
extension to K of the valuation v of K will again be denoted by v. Note that K is not
complete.

Suppose L is a finite field extension of K and let S denote the integers in L. Take
f € S[[Xi,...,X,]]. Then for ai,...,a,, € M, f(cu,..., ) makes sense and converges
in R (and if the constant term in f is 0, f(ax, ..., o) lies in 90).

Note that ay, ..., a;, and all the coeflicients of f are integers in Ly := L(ay, ..., o), and
Ly being a finite extension of a complete field K, is complete.
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Proposition 1.35. i) The elements of MM form an abelian group F(R) that we denote
P(F) under the operation a g = F(«, ) and v(a xp 8) > inf(v(a),v(5)).

The elements of P(F) of finite order form a subgroup A(F'), the torsion subgroup of
P(F).

i) P(F) and A(F) are modules over I' = Gal(K /K).

i) If f+ F — G is a homomorphism of formal groups defined over R then the map
a— f(a) is a homomorphism P(f): P(F) — P(G).

P and A are covariant functors from the category Ggr to the category of I'-modules.
In particular, P(F) ad A(F) are modules over Endg(F) and these endomorphisms
commute with T'.

Proof. 1) see [Fro68] Chapter IV, section 2, Proposition 1.

ii) If v € I, then F(a, 5)Y = F(a?, 57) since F' is defined over R and its coefficients are
therefore fixed by «y. It is thus easy to verify that P(F") and A(F") are indeed I'-modules.
iii) If f : F — G is a homomorphism defined over R, then f maps 9 into itself (since
f has no constant term). Since f(F(X,Y)) = G(f(X), f(Y)) we have f(a *r §) =

f(F(e, B)) = G(f(@), f(B) = fla) ¢ f(B). As f(a)’ = f(a7), f commutes with
. ]

Remark 1.36. i) If F is the additive group G, then P(F) is just 91 with the ordinary
addition and A(F') = 0.
ii) If F' is the multiplicative group G,,, with

Gn(X,)Y)=X+Y+XY=X+1)(Y +1) -1

then P(F) is isomorphic to the group U of principal units u of R for which « = 1 (mod
Mm).
The isomorphism P(F) — U is given by a — 1 + av.

Definition 1.37. An isogeny f : F' — G is defined to be a non-zero homomorphism
defined over R.

From now on, all formal groups to be considered are assumed to be of finite height,
unless otherwise mentioned.

Theorem 1.38. (Lubin, Serre)

Let f : F'— G be an isogeny. Then :

i) The map P(f): P(F) — P(G) is surjective

i) The kernel of P(f) is a finite group of order p"\/)

To prove this theorem we will need the Weierstrass preparation theorem that we will
admit.
For f € R,, f denotes its image in k, under the epimorphism R, — k, induced by
R — k.
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Definition 1.39. The Weierstrass-order of f, denoted W-ord(f) is defined by W-
ord(f) = ordg(f).

Definition 1.40. A distinguished polynomial f of R is a polynomial of the form fy +
fiX 4 ...+ frno1 X™ ! where all the f; are in 9.

Remark 1.41. Note then that for a distinguished polynomial W-ord(f) = deg(f).

Theorem 1.42. (Weierstrass preparation theorem)
If f € R[[X]] and W-ord(f) = m < oo, then there exist a unique v € U(R[[X]]) and a
unique distinguished polynomial g such that f = w.g. Then of course, W-ord(g) = W -

ord(f).

Now we can prove the theorem 1.38 :

Proof. Let v € 9. Then f(X) — v is defined over some finite extension S of R. For
the Weierstrass order we have the equation

Weord(f(X) = v) = W-ord(f(X)) = "/

and ht(f) is finite by Proposition 1.33. By the Weierstrass preparation theorem (The-
orem 1.42) therefore f(X) — v = u(X)g(X), where u(X) is an invertible power series
and ¢g(X) is a distinguished polynomial :

Pt 1

g(X) =x""" 4 Z 9: X", g: € Ms

=0

Take a € K so that g(a) = 0. Since the coefficients of g lie in S then o € R.

As g; € M, then also a € M. But the zeroes of f(X) — v are precisely the zeroes of
g(X). Hence we have f(a) = v for some o € M. This proves i).

For ii), take v = 0. Now g(X) has p"/) distinct roots, provided that g(a) = 0 implies
g'(a) #0. -
Thus f(X) = 0 has p"¥) roots in M, provided f(a) = 0 implies f'(a) # 0 (a € M).
Differentiating the equation f(F(X,Y)) = G(f(X), f(Y)) with respect to Y, we obtain
FF(X,Y)E(X,Y) = Ga(F(X), f(Y)).f/(Y)

(here, the suffix 2 denotes the derivative with respect to the second variable). Put
X=0a,Y=01If fla) =0, then f'(a)Fz(a,0) = G2(0,0).f(0) = f'(0) # 0. Therefore
f(a) £0. 0

The following theorem is really a corollary of Theorem 1.38
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Theorem 1.43. (Lubin, Serre)

i) P(F) is a divisible group and the integers prime to p induce automorphism of P(F).
i) A(F) = (Q,/Z,)™, h = Ht(F) (™ denotes h-fold product).

Proof. 1) For n prime to p, i.e., n a unit of R, [n]F is an automorphism of F'. Hence
P([n]F) is an automorphism of P(F"). Apply Theorem 1.38 to f = [p|}.. The surjectivity
of P([p|%) : P(F) — P(F) implies that P(F) is divisible.

ii) A(F') is a torsion subgroup of the divisible group P(F") hence divisible. Also A(F) is
p-primary. Hence A(F) = (Q,/Z,)®, where ¢ = dim(Ker([p]r)). But the cardinality
of Ker([p]r) is pmUer(plr) " which by Theorem 1.38 is p". Therefore ¢ = h. O

For each real number p, the set J, = {a € K|v(a) > p} is a fractional ideal of R. If
p > 0 then J, is an ideal of R and in particular, J, = 9. For p > 0, the elements of Jp
form a subgroup F(J,) of P(F).

We admit the existence of a unique isomorphism lp : ' — G, defined over K such
that ’x(X) is defined over R and I%:(0) = 1. Its inverse is denoted ep. (For details, see
[Fro68]).

Theorem 1.44. (Serre)
i) lp converges on M ; ep converges on J%.
-

i) The map a — lp(a) (o € M) defines a homomorphism P(F) — K" of T-modules
and of Endg(F)-modules. The sequence :

0= A(F) > P(F) > K =0

18 exact.

ii1) lp and e define inverse isomorphisms F(J%) >~ J*,  (where the group operation
p— p—1
on J*Y, s the usual addition).
p—1

We will need the following lemma to prove Theorem 1.44

Lemma 1.45. For each real number p, there exists an integer n = n(p, F) such that,
for all a € K with v(a) > p, we have v([p|f(a)) > p%l,

Proof. We may assume p < 1, since otherwise we may take n = 0.
Now, [p]#(X) = pX (mod deg 2). If v(a) > 0, then [p]#(a) = pa + a?r for some r € R.
Thus if v(a) > p, then v([p|r(a)) > inf(1 + v(a),2p) > inf(1,2p).
We deduce then by induction that v([p|%(a)) > inf(1,2"p), and we then choose n so
that 2"p > p%l. O]

We can now prove the Theorem
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[e9)
Proof. Write [p(X) = > a, X"

n=1
Since I} is defined over R and I%(0) = 1, then v(na,) > 0 and a; = 1. We thus have
v(a,) > —v(n). Put n = p°™, then v(n) < o(n).
Now v(an,a™) = nv(a) + v(a,) > p™v(a) — v(n) > p’™v(a) — o(n), which tends to
00 as n — 09, provided that v(a) > 0. Hence lr(«) converges if v(a) > 0.

Write ep(X) = Eb X". Choose f € R so that v(8) = 15, e.g. f77" =
Then v(a, 5" 1) > ”—1 — v(n) which is > 0 when v(n) = 0.

If v(n) > 0, we contlnue Zfi —v(n) > pv(n)l L—v(n)=1+p+p*+...+p"™ —v(n) > 0.

Therefore (3~ tolpoB)(X) = 3 a,B" 1 X™ has coefficients in R, and leading coefficient

n=1

1. Tts inverse under composition (8~ oepo8)(X) = > b, 1 X™ is thus also a power
n=1

series with integral coefficients and leading coefficient 1. Hence v(b, ") > 0.

Take v € J_1_, i.e., such that v(a) > P

Then v(b,a™) = v(b,8" ()" ') = v(b,5"1) + v((5)"") + v(a) = 00 as n — o0,

since v(§) > 0. Thus ep(a) converges if a € J L

Moreover, v(ba™) > v(a), if n > 1. Therefore er(a) = a+ o where v(a/) > v(a).
Hence we deduce that, if v € J_1_ then v(ep(a)) = v(«). Similarly, if a € J 1, then

v(lp(a)) = v(a). The maps o — ep(a) and « — [p(«) thus define inverse bijections
J L= J L . Under [r therefore the group of points F'(J_1 ) becomes isomorphic to
the addltlve group of J L and the inverse ismorphism is g_iven by er. We have thus
established 1) and iii).

Since K ' is torsion free, then A(F) C Ker(lg).

Let a € Ker(lp). By Lemma 1.45, [p]k(a) € F(J ) for some integer n > 0.

Since lp([p]%(a)) = 0, then by iii), [p|E(a) = 0. Therefore a € A(F). Thus in fact
Ker(lp) = A(F).

Suppose a € K+, since FJF/J L is a torsion module, then p™a € J% for some m.
Thus by iii), there exists « e J L such that lp(a) = p™a. But Pp(F) is divisible
(Theorem 1.43) so there exists § € P(F') such that [p|%(8) = a. Since p™ip(5) = p™a,
then lp(5) = a. We have thus shown that lp : P(F) — K" is surjective and so that
the sequence

0 A(F) > P(F) > K =0

of groups is exact. Since [r is defined over K this is a sequence of I'-modules. If
f € Endg(F), then both lr o f and f’(0) o I are homomorphism F — G, with
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derivative f’(0) at 0. They therefore coincide. From the commutative diagram

P(F) — K
lp lf’(n)
P(F) —— K"
we deduce that P(F') — K" is a homomorphism of End r(F)-modules. O

The following theorem is a converse of Theorem 1.38. It shows that every finite subgroup
of A(F') arises as the kernel of some isogeny. We will admit it (for details see [Fro68|
Chapter IV, section 2, Theorem 4).

Theorem 1.46. (Lubin)

Let ¢ be a finite subgroup of A(F). Let L be the fized field of the stabilizer of ¢ in
Gal(K/K) and let S denote the integers of L. Then there exist a formal group G and
an isogeny f : F — G both defined over S, so that :

i) Ker(f) = ¢ (we write Ker(f) for Ker(P(f)))

i) If g+ F — H is an isogeny with Ker(g) 2 ¢ then there exists a unique isogeny
h:G — H such that g = ho f. If g and H are defined over the integers Sy, of some
finite extension Ly of L, then so is h.

Corollary 1.47. If there exists an isogeny F' — G defined over some S; then there
exists an isogeny G — F' defined over S.

Proof. If f : F — G is an isogeny, then suppose the exponent of Ker(f) is p". Then
Ker(f) C Ker([p]y). By Theorem 1.46, there exists an isogeny h : G — F' such that
ho f = [p]F, and h is defined over Sj. O

Corollary 1.48. Either Homg(F,G) =0, or Homg(F,G) as an Endg(F)-modules is
isomorphic to a non-zero ideal of Endg(F'), and as an Ends(G)-module is isomorphic
to a non-zero ideal of Ends(G).

Proof. Suppose Homg(F,G) # 0. By Corollary 1.47, there exists an isogeny g : G — F
over S. The map f + go f is an injective homomorphism Homg(F,G) — Ends(F') of
Endg(F)-modules, whose image is a non-zero ideal.

Analogously for the map f +— fog. O

Corollary 1.49. If Homg(F,G) # 0 then :
i) The quotient field of D(Endg(F)) and of D(Ends(G)) coincide.
i) The rank of Homg(F,G) over Z, is the rank of Ends(F) (and of Ends(G)).

Proof. See [Fro68| Chapter IV, section 2 Corollary 3 O
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1.4 The Tate Module

The notation is the same as in the section on group of points. We shall frequently write
[p]% in place of A([p]%). We know that [p|}% yields a homomorphism

pr " Ker([plE™) — Ker([p]7)

(here Ker([p] stands as an abbreviation for Ker(A([p|%)) ).
These maps, and the groups Ker([p]%) define an inverse system of Abelian groups.

Definition 1.50. The inverse limit of this system is called the Tate module, denoted
T(F).

The elements of T'(F') can be written as sequences

(a1, az,...) a; € A(F)
plr(a1) =0, pPlr(ais1) = a;

Similarly we have an inverse system, indexed by the integers m > 0, whose groups all
coincide with A(F") (that means that we put A(F),, = A(F) for all n), the map from
A(F)ptm to A(F),, being the endomorphism [p]%. Let V(F') be the inverse limit. The
element of V(F') can be written as sequences

a= (ao,al, ) a; € A(F)
[plF(aiv1) = a;

The map @ +— ag is a homomorphism V(F) — A(F'), whose kernel may clearly be
identified with T'(F), i.e., we get an exact sequence

0—=>T(F)—=V(F)— A(F)—0 (1.1)

Equivalent description :

We start with the isomorphism Homzp(p—l,lZp/Zp,A(F)) = Ker([p|}), which takes f
# mod Z,). The direct system #Zp /Z,, with limit Q,/Z, gives rise
to an inverse system by means of the functor Homgz, (—, A(F')), which under the above

isomorphism goes over the inverse system (Ker([p|F, pm™). Hence in fact

into the image f(

Homz, (Qy/Zy, A(F)) = T(F) (1.2)
Similarly from the direct system #Zp with limit @, one obtains an isomorphism

HomZp<Qp7A(F)) = V(F) (13)
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and of course we have the natural isomorphism

Homg, (Z,, A(F)) = A(F)

By means of these isomorphisms the sequence (1.1) can now be interpreted as being
obtained by applying the functor Homg, (—, A(F)) to the sequence

0—=%Z,—Q,—Q,/Z, =0
Alternatively (1.1) may be viewed as obtained from this sequence by tensoring over Z,

with T(F).
Another consequence of (1.2) and (1.3), together with the isomorphisms

HOmzp (Qp/Zpa QP/ZP) = Zp
Homgz, (Qp, Qp/Zy) = Q,

and Theorem 1.43 ii) is :
Proposition 1.51. T(F) = Z" and V(F) =~ Q"

We shall in fact view T'(F') as a lattice (= free Z,-module of maximal rank) in the
vector space V (F).

The groups and maps of (1.1) are clearly functorial. Here in particular T'(F') and V(F),
as well as A(F), are Endg(F)-modules, and the maps of (1.1) are homomorphisms
of Endgr(F)-modules. Moreover, an isogeny f : F' — G gives rise to a commutative
diagram (1.4)

T(F) —— V(F) —— A(F)
lT(f) lvm lA(f)
T(G) — V(G) —— A(G)

Proposition 1.52. V/(f) is an isomorphism and T(f) is injective, with Coker(T(f)) =
Ker(A(f)) finite.

Proof. If dimg,(Ker(V(f))) = s, then Ker(A(f)) contains the submodule

Ker(V(f))/Ker(T(f)) = (Q,/Z,)*. As Ker(A(f)) is finite (Theorem 1.38), s = 0 and
so Ker(V(f)) = 0. Similarly, as Coker(A(f)) = 0 (again by the same theorem) we
conclude that Coker(V (f)) = 0. Now it follows that Ker(T(f)) = 0 and Ker(A(f)) =
Coker(T(f)) (By Snake lemma). O
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From this proposition, it follows that Im(7'(f)) is a lattice in V(G), a sublattice of
T(G). (The term lattice L in a vector space V' is always to imply that L is of maximal
rank, i.e., spans V).

We shall write L(f) for the inverse image of T'(G) under V(f), i.e., for V(f)"HT(G)).
This is a superlattice of T'(F) in V(F).

The Galois group I' = Gal(K/K) acts on V(F) and T(F) as well as on A(F) and
the maps of (1.1) are homomorphisms of I-modules. We are assuming throughout that
the given formal group F' is defined over R, but we do not assume other formal groups
G, H, ... to be necessarily defined over R, they may be defined over the integers in some
finite extension of R. If however GG as well as the isogeny f : FF — G are defined over
R, then the diagram (1.4) is one of I'-module homomorphisms and so both Im(7'(f))
and L(f) are I'-modules.

Theorem 1.53. (Lubin)

i) Let L be a sublattice of T(F') in V(F). Then there exists an isogeny f : H — F
so that L = Im(T(f)), and if L is stable under I then H and f may be chosen to be
defined over R. If Im(T(f1)) C Im(T(f)), f1 being an isogeny Hy — F then there is
an isogeny h : Hy — H with f; = foh. In particular Im(T(f)) determines H and f
to within isomorphism.

ii) Let L be a supperlattice of T(F') in V(F). Then there exists an isogeny g : F — G
with L(f) = L. If L(g) € L(g1), ¢1 being an isogeny F' — G then there is an isogeny
h: G — Gy so that hog = g1. In particular L(g) determines G and g to within
1somorphism.

Proof. First that of ii). L/T(F) is a finite subgroup of V(F)/T(F) = A(F). Taking
quotients mod T'(F') we thus get an order preserving bijection from the set of supper-
lattices L to the set of finite subgroups of A(F), which also preserves stability under I'.
Note also that if g : F' — G is an isogeny, then Ker(A(g)) = L/T(F) precisely when
V(g)L =T(G), i.e., L= L(g).

ii) now follows from Theorem 1.46

Next the proof of i). Let in the sequel n be an integer with p~"L = L' O T'(F') and so, by
ii), there exists an isogeny ¢ : F' — H with L' = L(g), i.e., with V(g9)L' = T'(H). Now
p"L’ = L C T(F) implies that p"Ker(A(g)) = 0, i.e., that Ker(A(g)) C Ker([p]}).
By Theorem 1.46, there is an isogeny f : H — F with fog = [p|%. But then
Im(T(f)) =V(fog)l' =p"L' = L as required. Let f; : Hy — F be an isogeny with
Ly =Im(T(f1)) € Im(T(f)) = L. We may suppose that Im(T(f1)) 2 p"T(F). Let g
as above. As by hypothesis, p"Ker(A(f;)) = 0, there is an isogeny ¢; : F' — H; with
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g1 o fi = [p],. But then also f, 0 g1 = [p]r = f o g. Now we have

Ker(A(g1)) = p " Im(T(f1))/T(f) € p"Im(T(f))/T(F) = Ker(A(g))

Therefore by Theorem 1.46, there is an isogeny h : Hy — H with ¢ = h o gy, i.e.,
fohog = fiog, and so f; = f o h. This completes the proof of the theorem. O

Remark 1.54. i) Note that in the above construction the choice of n is immaterial (of
course within the stated conditions). If say m > n, then g, = g o [p]» ™" replaces g and

still f o g1 = [p7.

ii) Note secondly that if L is I-stable then so is L’. Choose then g to be defined over
R. Hence g~! (inverse under substitution) is defined over K, and thus f = [p|kog™! is
defined over K, hence over R.

We can extend the injective map
Hompz(F,G) — Hom(V (F),V(G))

to a map
Qp ®z, Homy(F,G) — Hom(V (F),V(G))

which we shall still denote by V and which remains injective. Viewing Homg(F,G) as
contained in Q, ®z, Homz(F,G) we have :

Theorem 1.55. Let g € Q, ®z, Homy(F,G). Then g € Homgz(F,G) if and only if
V(g) maps T(F) into T'(G).

Proof. The "Only if" is trivial

"If'" : Let p"g = h € Homp(F,G). Then Im(T'(h)) C p"T(G), whence by Theorem
1.38, h = [p|¢ o h1, hy € Homyx(F, G). But then g = hy. O

Write now Ep = D(Endg(F)) and let L be the quotient field of Er in K. Then of
course D induces an isomorphism

Qp ®Zp Endﬁ(F) = LF
We view T'(F') as an Ep-module and so V(F) as an Lp-module. By Theorem 1.55
Er ={a € Lp|adT(F) CT(F)}

Let g : G — F be an isogeny. We know (Corollary 1.49) that Lr = L, and in fact
V(g) is an isomorphism of Lp-modules. Hence :
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Corollary 1.56. (Lubin)

Eg = {a € LplaIm(T(g)) € Im(T(9))}

Let R be a discrete valuation ring with finite residue class of p® elements. Denote by

2N the maximal ideal of R and take 7 in R so that 9 = 7 R.
Lemma 1.57. Suppose f(X) and g(X) are power series over R satisfying

f(X)
f(X)

where q¢ = p* for some positive integer . Let L(Xy, ..., X,) be a linear form over R.
Then there ezists a power series F(X1, ..., X,,) over R satisfying the conditions :

i) F(Xy,....X,) = L(X1,...,X,) (mod deg 2)

i1) F(F (X1, s X)) = F(g(X1), o, g(X))

These conditions determine F uniquely over the quotient field of R.

(X) =7X mod deg 2

g
9(X) = X? mod M

Proof. Our aim is to construct a sequence (F,,) of polynomials over R in Xi,..., X,
with the properties :

Fo. (X1, ..., X,) is of degree m — 1
Fo(X1,....X,) = L(Xy, ..., X;,) (mod deg 2)
F(Fn(X1, s Xa)) = Fn(g(X1), s (X)) (mod deg m)

o X
Fir (X1, ooy X)) = Fon( X1, oo, X)) + A(Xy, .y X2)

where A(X7, ..., X,,) is a homogeneous polynomial of degree m.
These conditions imply (here we work with congruences modulo degree m + 1) that :

Fm—i—l(g(Xl)a 79<Xn)) = Fm(g(X1>’ 79<Xn)) + A(g(X1)7 7g(X7l))
= F(9(X1), ..., 9(Xp)) + A(n Xy, ..., 7mX,)
= Fn(9(X1), ..., 9(Xp)) + 7" A(Xy, ..., X5)

If we write f(X) = 71X + f)(X), then we also have

F(Fod (X1, s X)) = F(E(Xo, ooy X) + A(X, ooy X))
T (X1, s X))+ TA(X, o X)) + fioy(Fun (X1 . X))
= F(Fn( X1, X))+ 7A(X1, s X))

We are therefore required to find A satisfying the congruence :

Fo(g(X1), ooy g(X0)) + T AKX, s X)) = F(F(X1s ooy X)) + TA(X, oy X
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In other words, we must solve over the quotient field of R the congruence :

X)) =1 (Fm(g(X1)7 - 9(X0)) — f(Fu(X, ...,Xn)))

A(X, ...

1 —qm-1

There clearly exists a unique solution. But 1 —7™"! is a unit of R. To show that the so-
lution has coefficients in R we must show that F,(g(X1), ..., 9(Xn)) — f(Fn(X1, ..., X3))
has coefficients in 91 (i.e. divisible by 7). Since f(X) = ¢g(X) = X9 (mod ), then
Fm>(g(X1), e 9( X)) = f(Fn(Xy, .., X)) = Fo(XY, ., X)) — (Fn(Xy, ..., X3))? (mod
Mm

But (Fn(Xi,...,X,))? = F4(X{, ..., X9) (mod 9M) (F9 denotes the polynomial ob-
tained from F), by raising all the coefficients to the g-th power). As ¢ is a power of the
cardinality of the residue field, we have F¢ = F,,,. Hence

(F (X1, ooy 20))! = Fo(XY, .., X2) (mod 9N)

and therefore

as required. N
Now one has :

Theorem 1.58. (Lubin) B
Let O be an order over Z, (contained in R). Then there is a formal group F with
ht(F) =[O : Z,)] so that Er = O.

We first find an F' so that ht(F') = [O : Z,] and so that Lp is the quotient field of O.
Let K be the quotient field of O, R the valuation ring of K. We then have :

Proposition 1.59. There is a formal group F' of height h = [K : Q,] so that Er = R.

Proof. (Constructon of Lubin-Tate). Let m generate the maximal ideal 9% of R and let
q = card(R/9M) = p°. By Lemma 1.57, there is a unique F'(X,Y’) € R[[X, Y]] with

F(X,Y)= X +Y mod deg 2

and with
F(f(X), f(Y)) = f(F(X,Y))

where f(X) = 7X + X9 We shall then show below that F' is a formal group, so that
the map D : Endg(F) — R is surjective, hence bijective.
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Moreover [p|r = f© o u, where e is the ramification index of K/Q, and w is a unit
of Endg(F). Therefore ht([p|r) = e.s = [K : Q] = h. Thus F is of height h, and
K C Lp. As [Lr : Q]|[K : Q,] = h, it follows that K = Ly and R = EF.

Let a € R and construct along the line of Lemma 1.57, a power series [a](X) over R
with

[a)(X) = aX mod degree 2

and

We have then to show that :

FX,Y) = F(Y, X)
F(F(X,)Y), Z) = F(X,F(Y, 2))
[al(F(X,Y)) = F([a](X), [a](Y))

and it will follow that F' is indeed a commutative formal group and [a] is an endomor-
phism of F' with D([a]) = a. In each case this is done via the uniqueness part of Lemma
1.57. Thus e.g. the two sides in the last equation are both solutions of the problem of
finding G, so that G(f(X), f(Y)) = f(G(X,Y)) and G(X,Y) = aX +aY (mod degree
2). O

Proposition 1.60. Let F' be a formal group of finite height and let O be an order with
quotient field Lr. Then there is a formal group G isogeneous to F' so that O = Eg.

Proof. Let L be any sublattice of T'(F') so that O = {a € Lp | aL. € L}. Such
sublattices exist, e.g., L = Ox with 0 # z € T(F). By Theorem 1.53, there is an
isogeny g : G — F so that L = Im(T(g). By Corollary 1.55, Eg = O. O

Theorem 1.58 now follows from the last two propositions.

1.4.1 The Tate module as a module over I' = Gal(K/K)

We already know that T'(F"), and hence V(F) is a I''module. An element ~ of I" will
leave T'(F') and hence V(F) elementwise fixed if and only if v leaves A(F) fixed. But
A(F) is just a subset of K, and so we see that the representation of I' on V(F) (or on
T(F)) is a faithful representation of its quotient group Gal(K(A(F))/K).

Let t : I' = GL(T(F)) (automorphism group of T'(F')) be the homomorphism with
xt(y) = yx for x € T(F). GL(T(F)) is a topological group, a fundamental system of
neighbourhood of the identity being the subgroup of automorphism a = 1 (mod p")
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(i.e., of form 1+ sp™, 1=identity, s an endormorphism of T'(F')). t is continuous. To see
this we only have to note that ¢(y) = 1 (mod p") if and only if p,t(y) = p,t(1), where
P is the map T'(F') — Ker([p]) (we consider here the definion of T'(F') as an inverse
limit). But p,t(y) = pat(1) if and only if v leaves Ker([p]%) C K fixed.

We now consider the I'-module V (F).

Theorem 1.61. V(F) is an irreducible I'-module over Q, (i.e., the only Q,-subspace
of V(F) which are I'-modules are V(F') and 0).

Proof. Denote by I's the orbit under I' of an element s in a ['-set S. What we have to
show is that if 0 # = € V(F') then the subspace generated by 'z is the whole of V (F).
It clearly suffices to consider an x € T'(F'), with = & pT'(F).

Let then M be the Z,-submodule of V(F') generated by I'z. M is a free Z,-module of
rank s < h and we have to show that s > h.

Write p,, for the surjection T'(F') — Ker([p]}) associated with the inverse limit 7'(F) =
liin Ker([p|t). M C T(F) and so p,(M) is defined. Tt is the direct product of at most

s cyclic subgroups, and so the number of elements in p, (M), not in pp, (M) is at most
p™ — p™=Ys Write a,, = p, (7). Then each element of I'a, lies in p, (M), and not in
ppn(M). Therefore

card(Tay) < pm= V3 (p* — 1).

The left hand side is the number of conjugates of «,, over K, and so equal to the degree
[K () : K]. We thus get the inequality

(K (o) : K] < p D5 (p* —1) (1.4)

holding for all n.
Now note that

[plr(a1) =0, a1 #0, [plr(ani1) = ay (1.5)
We shall show that this implies the existence of a positive constant ¢ so that
[K (o) : K] > cp™, for all n (1.6)
Comparison of (1.5) with (1.7) as n — oo yields then the required inequality s > h.

To get (1.7) from (1.6) we require a lemma, to be proved later.

Lemma 1.62. Let o, € P(F), [plp(a) =0
a) If v(B) < 1, then v(a) < @
b) If v(B) < 1, e being the ramification index of K over Q,, then v(a) < v(p)

ph
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We apply the lemma to complete the proof of the theorem. Return to (1.6). By

Theorem 1.44, v(a;) < zﬁ < 1. From the lemma, form a), we obtain by induction the
inequality v(ay,) < #. Therefore for some ng, v(ay,,) < L. Now use form b) in the
m. On the other hand let e,
be the ramification index of K (cy,)/K. Then certainly e,v(c,,) > %, 1 being the least

strictly positive value of v on K. Hence finally,

lemma to get for n > ng the inequality v(a,) <

1
[K(ay) : K] > e, > > pe, c=p ot

It remains to prove the lemma

Proof. Let [p|p(X) = ZanX“ Here a; = p.

Apply Theorem 1.8 to the ring R/pR and the reduction of [p|r(X) mod pR. This tell
us that v(a,) > v(p) = 1 whenever p{n, i.e., in particular

v(a,) >1for0<n<p (1.7)

Similarly, applying the same reasoning to the residue field of R, one gets

1
v(a,) > = for 0 <n < p" (1.8)
e

Let now v(aja?) = inf v(a,a™). Then v(8) > v(a;a?) and so
jo(@) < v(a;) + jo(a) = v(asad) < o(d) (19)
If first v(B) < 1 then for 0 < n < p, we have by (1.8)
v(a,a™) = v(a,) +nv(a) > 1> v(B) > v(a;a?)

and so j > p, whence by (1.10) pv(a) < v(p)
If next v(f) < %, then we deduce similarly that j > p", whence again by (4.10)

pro(e) < o(B). =
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2 The Period rings 5,z and B, s

2.1 Witt Vectors

In this section we will recall some properties about Witt vectors and the basic defini-
tions. It will be useful in the sequel for the construction of the rings of period By and
Bcris‘

Fix p a prime number and let X = (Xj, X1, ...) be a sequence of indeterminates.

Definition 2.1. Let n € Z>(, the n-th Witt polynomial is :

O,(X) = XP" 4 pX?" 42X 4 X,

If A is a ring, the ghost map is :

@A : AZZO — AZZO

a = (ap,ay,...) — ((I)n(g))nelzo
Lemma 2.2. Let A be a ring, x,y € A such that x =y mod pA. Then

2" =y mod p"tt A Vn € Zsg

Proof. We proceed by induction on n € Zx.
Assume n > 0 and 2" = y?" " mod p"A. Write " = y?" ' 4+ p"Z.

p—1
Then 27" = y?" + 5 (’,z)p’mZ’“y(p_’“)pw1 +pPrZP = y*" mod p"t' A and we are done. [
k=1

Lemma 2.3. (Dwork)

Assume ¢ : A — A is a ring homomorphism such that p(a) = a? mod pA for all
a € A. Then a sequence (x,), € AZ>0 lies in the image of ® 4 if and only if we have
() = Tpi1 mod p"TA for all n € Zy.

Proof. Let a = (ag, ay,...) € AZ0,

As ¢ is a ring homomorphism, we have : ¢(®,(a)) = 3. pp(a;)?" . The previous
i=0

n41—i

n—1 P
a;

mod p"t 1 A, So pip(a;)P" T = piafnﬂ_i mod p"TLA.

n+1l—1

lemma implies that p(a;)?

Thus ¢(®,(a)) = > p'a?
i=0

Hence ¢(®,,(a)) = Ppy1(a) mod p"H1A.

N

n+1—

mod p"*'A. But Zpiai’ = ®pp1(a) — P ang
=0

)
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Conversely, assume (,,), € AZ>0 is such that ¢(z,) = 2,1 mod p"*1A for all n.
We construct a = (ag, ay,...) € AZ20 inductively such that z,, = ®,(a) for all n € Zx,.

Put ap = 9. Let n € Z>( be such that ay, ay, ..., a, have been constructed such that
for all k € {0,...,n}, xx = Px(ao, a1, ..., ax).

Then ¢(z,,) = ¢(Pn(ag, ai, ...,a,)) = > p'al
i=0

n+1l—1

mod p"TtAie. 1,4 = Zp 7 mod pitLA.

no . ntl—i
f il i P _
This implies that z,41 — Y p'al =p
i=0
Hence x, 11 = ®,11(ag, a, ..., apy1). O

"1, for some a,,, € A.

Proposition 2.4. There exist unique sequences of polynomials (Sp(X,Y))nez-o,(Pu(X, Y))nezs,
in Z[X,Y] and (I,(X))nez, i Z[X] such that :

©,(50(X,Y), ..., Sn (X, Y)) = ®p(X) + 0 (Y)
©,(Po(X,Y), ..., Py (X Y)) ®,(X)®,(Y)
O (Io(X), .., In(X)) = —Pn(X)

Proof. Put A =Z[X,Y]. Let ¢ : A — A be the unique ring endomorphism such that
o(X;) = XP and ¢(Y;) =Y/ for all i € Zs,. We have : ¢(a) = a? mod pA,

Bo((X)) = By (X) — X,y and B(p(Y)) = By (V) — Vi,

Hence ¢(®,(X) + ®,(Y)) = &,1(X) + ®,41(Y) mod p"tA. By Dwork’s lemma we
get that (®,(X) + ¢,,(Y)), belongs to Im(®P4), hence the existence of (S, (X,Y))n.
Similarly we have the existence of (P,(X,Y)), and (1,,(X)),. The unicity follows from
the injectivity of ®, : AZ20 — AZ>o, O

Definition 2.5. Let A be a ring. Put W(A) = A?>0. If a = (ag, a1, ...) and
b= (bo, by, ...) are both in W(A).

— 0= (In(a))neroy

Proposition 2.6. i) A — (W(A),+,.) is a functor from the category of commutative
rings to that of sets endowed with two internal laws.

ii) If p is not a zero divisor in A (resp. p is not invertible in A), then ®,4 is injective
(resp. bijective).

i) (W(A),+,.) is a commutative ring with zero (0,0, ...) and unit (1,0,0,...).

Proof. i) and ii) are obvious.
For iii), we will use the following trick that will be useful in other proofs.
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Put B = Z[X,]aca, p is not a zero divisor and we have a surjective ring homomor-
phism B — A which maps X, to a. As ®p is injective, W (B) is identified with a
subring of BZz0 and since W(B) — W(A) is surjective, the ring axioms are satisfied in
(W(A),+,.). O

Definition 2.7. Let A be a ring. The Teichmiiller representative of a € A is
[a] == (a,0,0,...) € W(A)
Proposition 2.8. Let A be a ring and a,b € A. Then [a].[b] = [ab] in W (A)

Proof. By the same trick as in the previous proof, we may assume that A has no p-
torsion, thus ® 4 is injective. This implies that ®4([a]) = (a, a?, a””,...) is multiplicative
in A%>o, O]

Proposition 2.9. There exists a unique sequence of polynomials (F(X))nez., such
that Fn(i) € Z[Xo, X17 ceey Xn+1] and CDn(FO(X), ceey Fn(&)) = @nJ’,l(X) fO’f’ alln € ZZO‘

Proof. We have to prove that (®1(X), ®2(X),...) € Im(P4) where A = Z[X].
As A is endowed with the lift of Frobenius given by ¢(X;) = X7, it is enough (by
Dwork’s lemma) to see that :

B,11(X) = ¢(®,(X)) mod p*1 A

for all n € Z>,.

Unicity follows from unicity in Z[%] [X]. O

Definition 2.10. Let A be a ring. The Frobenius map on W (A) is :
F:W(A) — W(A)
a = (ag,ay,...) = (Fy(a), Fi(a), ...)
Proposition 2.11. Let A be a ring.
i)Va € A, F([a]) = [a?]

i) Vn € Z>o, F(X) = X? mod pZ|X]
In particular, if pA =0, then F(ag,aq,...) = (ag,al, ...).

Proof. 1) We use again our trick and thus we may assume that A has no p-torsion so
the ® 4 is injective. If a € A :

O, (F([a) = Ppra((a]) = a"
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ii) By induction on n, starting with Fy(Xo, X1) = X¥ + pX;.

Assume that n > 0 and F;(X) = X} mod pZ[X] for i € {0,1,....,n — 1}.

Then F;(X)P" ™ = XfHH mod p"'Z[X], hence p' Fy(X)P" " = pinHH
Also

mod p" T Z[X].

q)n+1(i) - (I)n(FO<K)a ey Fn(i))

n—1
=p"F.(X)+ Zp"anﬂ mod p" M Z[X]
i=0

Therefore we have ®,,(X) = p"F,(X) + ®,,,1(X) — p"XP — p" ™ X, 11 mod p"'Z[X].
But p"F,(X) = p"X? mod p"™'Z[X] i.e. F,(X)= X? mod pZ[X]. O

Definition 2.12. Let A be a ring. The Veirschiebung map is :
V:W(A) — W(A)
a = (ag,ay,...) = (0,ap,a,...)

Proposition 2.13. Let A be a ring and a,b € W(A).

) A(F(@) = (91(a), y(a), ) = f(D4(a) and ©4(V(a)) = (0, pBo(a), pb1(a), ) =

v(P4(a)) where f(xg,x1,...) = (T1, T2, ...) and v(zg, z1,...) = (0, pr1, P22, ...).

ii) F' is a ring endomorphism.

it1) V' is a group endormorphism of (W(A),+).

w) FV = pldw ) and VF(a) = (0,1,0,...).a.

o) Vi F(B) = V(abd), V(@V(D) = pV(ab)

vi) F(a) = a? mod pW(A)

vit) a = [ap] +V ('), where d’ = (ay, aq,...) € W(A) therefore we have a = >, V" ([ay)).
n=0

Proof. 1) is computation

By the usual trick we can assume for ii)-vii) that A is p-torsion free hence that ®, is

injective.

ii) (resp. iii)) follows from the fact that f (resp. v) is a ring (resp. group) endomorphism

of AZ=0,

iv) follows from the fact that f owv = p and that ®4(0,1,0,...) = (0,p,p, ...)

v) follows from the corresponding properties of f and v.

vi) follows from ®,,1(X) = @, (X)? mod pZ[X] that implies that f coincides with the

p-th power map on Im(®zx))

vii) follows from ®y(a) = a¢ and that ®,(a) = aﬁn + p®,41(a’) for n > 0 which means

that @, (a) = ©,([a] + V(a)) for all n. O



32 2 THE PERIOD RINGS Bpr AND Beris
Definition 2.14. Let A be a ring and n € Zxy. We define a filtration on W(A) by :

Fil"W(A) = V"W (A)
={(0,...,0,an, apy1,...) | (ar)ksn € AP0},
Remark 2.15. Fil"W(A) is an ideal in W (A).
Definition 2.16. The ring of Witt vectors of length n is : W,,(A) = W(A)/Fil"W (A)

Proposition 2.17. Let A be a ring and assume that pA = 0. Let a,b € W(A).

i) FV(a) =V F(a) = p.a (ie (0,1,0,..)=p)

i) V(@)Y (b) = V(P (a), F (D).

iwi) The p-adic and the V(W (A))-adic filtrations are the same and they are finer than
the topology defined by {Fil"W (A)},. In particular, W (A) is separated and complete
for the p-adic topology.

w) If A is perfect (i.e. the Frobenius map on A is an automorphism), then the three
topologies coincide, W(A)/pW (A) ~ A and

a=(ap,a1,..) = »_ V"(ay])
=Y VrEr(lah ") = " (ah )

2.1.1 Witt vectors and p-rings

Definition 2.18. Let A be a ring and R be a ring of characteristic p. The ring A is
called p-ring with residue ring R if there exists m € A such that A is separated and
complete with respect to the m-adic topology and if R = A/7A.

Remark 2.19. Since R is of characteristic p, we have p € 1A.

Definition 2.20. A p-ring with residue field R is called strict if 7 = p and if p is not
nilpotent in A. A is called perfect if it is strict and if R is perfect.

Example 2.21. Z, is a perfect p-ring since Z,/pZ, = F, and F, is a perfect field.

Theorem 2.22. If R is a perfect ring of characteristic p, there exists a strict p-ring
W(R), unique up to isomorphism, which residue field is R. Moreover, W(R) has the
following universal property : If A is a p-ring with residue field R',  : R — R' is a
ring homomorphism and 0 : R — A is a multiplicative application lifting 0, there exists
a unique ring homomorphism 6 : W(R) — A such that if x € R then 0([z]) = 0(x).
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Proof. See |Col07] Theorem 2.29 O

Remark 2.23. If R is not perfect, then there still exist strict p-ring A such that
A/pA = R, but A is not unique anymore. Such a ring is called a Cohen ring.

Proposition 2.24. If R and R’ are both perfect rings of characteristic p, the natural
application from Hom(W (R), W (R')) into Hom(R, R') is a bijection.

In particular, the Frobenius morphism x — P on R can be lifted to a Frobenius auto-
morphism ¢ of W(R).

Proof. If 6 is a morphism from R into R, set §(z) = [6(z)] and @ is a multiplicative
application from R into W (R') lifting . We deduce by Theorem 2.22 the surjectivity
of the natural application from Hom(W (R), W (R')) into Hom(R, R').

If 6 is a morphism from W(R) into W (R’), we have 0([z]) = lim O([zP")*" = [0(x)]

since O([zP ")) is a lift in W(R') of (2P ") = (6(x))?"".
The injectivity follows from the fact that W (R) being a strict p-ring, knowing 6([z])
for every x € R is equivalent to know 6. m

Proposition 2.25. If A is a p-ring with residue ring R and if x € A, the following
statements are equivalent :

i) x is a unit in A.

ii) The image T of x modulo 7 is a unit in R.

Proof. If y has an inverse z in A, then 7 has an inverse 7 in R.
Reciprocally, if 7 has an inverse 7 in R and if y is any lift of 7 in A, then set

[e.e]

z=1—ay emAand y(> 2") is the inverse of z. O
n=0

Corollary 2.26. If A is a strict p-ring to which the residue ring is a field, then B = A[%]

is a field.

Proof. If x € B\{0}, then there exists a unique n € Z such that p"z € A\pA. The
last proposition tells us that p™x is a unit in A and therefore its reduction modulo 7 is
SO. O
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2.2 The construction of B;p

In this section, we will explain the construction of the rings of period of Fontaine, B;r
and B..;s. We will keep more or less the notations of the article of L. Berger [Ber(1]
that we follow mostly for this section.

2.2.1 The ring E*

Let R be a perfect ring of characteristic p, K a p-adic field for which we will denote k its

residue field and G = Gal(K /K). We will denote also C' = K the p-adic completion
of the algebraic closure of K.

Definition 2.27. Let £ = lim Og = {(z, 20, . )[(z0+)P = 20},
P

We endow this set with the following sum and product : if x = (z™) and y = (y(i)_) are
two elements of £*, then their sum is defined by (z 4+ )® = lim (2(+7) 4 4(+9)P" and
j—00

their product by (zy)® = 20y,
With this two operations, the set E* becomes a ring (which is clear since operation are
made componentwise and that O¢ is a ring).

If 0 € G, o acts on ET in the following way : if z = (x™),50 € E* then
() = (o(z™))nz0
Proposition 2.28. The ring ET is a perfect ring of characteristic p.

Proof. We need to prove that the Frobenius map on E* is an automorphism. The
ring E* is by construction an inverse limit with transition map the Frobenius map.
Therefore the surjectivity is clear. For the injectivity : suppose (z?)? = 0. This implies
that 20~ = 0 for all ¢ > 1. Hence, for z € ET, 2P = ((z@)?, 2z 21 ) =(0,0,...)
we get x = (0,0, ...)

The fact that it is of characteristic p comes from the next proposition. n

Proposition 2.29. There exists a bijection between Et and lim Oc/(p) defined by :

xr—xP
() >0 = (2™ mod p)so with inverse (z,)ns0 + (lim :i’f:;m)po where Ty m € Oc
- - - m—00 -

is a lift of Tpim-

Proof. First we show that both maps are well defined. For the first map, it is naturally
induced by the map Oc — O¢/(p) hence it is well defined. For the second map, let
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z € lim Oc/(p). So we have x = (¥,)n>0, ¥» € Oc/(p) and z, ; = z,,. For any n > 0,
P
we choose a lifting of x,, in O¢, say :%n Thus 27, = &,mod p. By Lemma 2.2 we

m+1
have that for n,m € Zso, 2%, . = &5, mod p™*!

. ~p™
. Hence for every n > 0, lim .,
m—0o0

exists in O¢ and thus the limit is 1ndependant of the choice of the liftings. Therefore

TrlLl~I>r<l>o P s a lifting of z,, ( hm fﬁ;l )P = nllg;o #7" - and the second map is well
defined. We clearly see through the constrution that they are inverse to each other so
we are done. N

If 2 = (2("),>0 € ET, we define a valuation vy on Et by vp(z) = v,(2(®?). Therefore
vg(r) = pru,(x™) for any n € Zsy.

Proposition 2.30. The application vg is a valuation on Et for which it is complete.

Proof. If = (2(™),50 and y = (y™),>¢ are two elements of E*, then

(2™ 4y )" = ploy (2 4 ™)
> inf(p"v, (z™), p v, (y™))
= inf(vp(z), ve(y))

By passing to the limit we get the inequality

vg(r +y) > inf(ve(z), ve(y))

The other properties that we need to check are clear, hence vg is a valuation.

Now we want to show that ET is complete with respect to vg.

We have vg(z —y) > p" if and only if 2 = 4@ . 20 = 4™ in Og/(p). This
shows that the basis of neighbourhoods of z for the induced topology of vg which
are {y | vg(x —y) > p"} is also a basis of neighbourhoods of z for the topology on
(Oc/(p))*2°, each of the factors being equipped with the discrete topology. Since a
product of discrete spaces is complete, so is B+ (a Cauchy sequence being stationnary
in each component). O

Let p, = {# € K | 2" = 1} the set of n-th root of unity and consider (¢M),cz_, a
compatible Sequence of primitive p”-th roots of unity with ¢© = 1, ¢™ ¢ ppn € K
such that €M # 1 and (e = £ Let ¢ = ().

It is clear that e is an element of E+.

Remark 2.31. Something that we will need later is that the valuation of ¢ — 1 is
Let’s compute it :
There are two cases, whether if p is 2 or not since vg(e — 1) = v,((¢ — 1)) and by

P
p—1°
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definition of the addition in E* we get (e—1)© = lim (¢ 4 (—=1)™)?" and (—1)"" =1
n—oo

if p=2and —1 if p is odd.

If p =2, then
vp((e — 1)) = lim 2" (e 4+ 1)
= nhjEO 2",((e™ — 1) +2)
= lim 2"v,((™ — 1)
with €™ a 27-th root of unity, so we get vg(e — 1) = lim 2,112—(21) = 2.

n—

For p odd, we get v,((e — 1)) = lim p™v,(e™ — 1) Wlth £ a p"-th root of unity, so
n—oo

we get vgp(e — 1) = Jingom = b

2.2.2 The ring At
We denote by A* the ring of Witt vectors W (E™) with coefficients in the perfect field

- -~ o0
ring E*. Any element of A* can be written in a unique way as * = > p"[x,] where
n=0

(n)n>0 18 a sequence in E*. The actions of G and of the Frobenius ¢ on E™* can be
lifted in a unique way in actions of G and ¢ on A*. We have :

© (Zp”[xn]) = an[a:fl] and o (Zp"[xn > Zp x,)| if 0 € Gk

There is natural map Et — O¢ defined by 2 = (?),5¢ — 2(© which induced a homo-
morphism from E* to O¢/(p) (by taking the reduction modulo p) which is surjective
and commutes with the action of Gg.

Proposition 2.32. The map 6 : At — O¢ defined by 6 <Z pk[xk]) Z prxy, 0 45 g
k=0

ring homomorphism.

Proof. Since At = W(E), consider the map

0(= 0 mod p") : W (E™) = W(E)/(p") = Oc/ (")

defined by 6, (Z p [xﬂ) Z pk % .
We only need to show that 6, (:c+y) = 0, (z)+0,(y) since 0,,(xy) = 0,,(x)0,(y) depends
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Z-bilinearly on (z,y) and so via Teichmiiller expansions the verification of this identity
is reduced to the case x = [a] and y = [b] with a,b € E* : 6([a][b]) = 6([ab]) = (ab)® =
a®b® = g([a])8([b]). Hence we just need to check that each 6, is additive.

Writing & = (g, ..., Tn_1) € W(E™) we have :

pr —xo pmg)—ir +p"1(0)

= (") + pla? P T (@)

I
3
.
—~
&
S
3
<
N—
=

@n(xén)mod P2t mod p")

»n—1

where ®,, is the n-th ghost map (notice that ®,_; = ®,, since we work mod p").

We have that ®,, is additive. By Lemma 2.2, we get that ®,,(x,...z,_1) depends only
on the z; mod p.

That means that ®, factors as ®, o m, where 7, : W,(Oc/(p")) — Wn(Oc/(p)) is
the natural quotient map and ®, : W,(O¢/(p)) — Oc/(p") maps (To,...,Tn_1) to

Z plal” " where z; € O¢ /(p") is a lift of 7;. Clearly 7, is surjective and it is additive

by functoriality of the additive structure on W,. Thus, as ®,, is also additive we get
that @, is so. Considering now p, : B+ — O¢/(p) the projection r + r™ mod p, we
have 6,, = ®, o W,(p,). The map W, (p,) is additive since p, is a ring homomorphism
and the additive structure on W, is functorial in ring homomorphism. So ®,, is additive
and we conclude that 6,, is also additive, we are done. O

Lemma 2.33. The ring homomorphism 0 is surjective.

Proof. Once again via Teichmiiller expansions it is enough to show that for any y € O¢
there exists © € E* such that 6([x]) = y. But C is algebraically closed, therefore there
exists a solution to z(°) — y = 0, hence we are done. n

There are two natural topologies on A*. The strong topology which is the p-adic topol-
ogy (a basis of neighbourhood of 0 are the p* AT for k € Zs), makes the application
S p"[n] = (Zp)ns0 @ homeomorphism from A into (E)%20, where E7 is equipped
n=0

with the discrete topology.

The natural topology on A* is the one which makes 3 p"[zn] = (#4)ns0 a homeomor-
n=0

phism from A+ into (E+)%=0 where this time E* is equipped with the topology defined
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by vg. This topology, the weak topology, is weaker than the p-adic topology, but A™ is
still complete for this topology since E* is complete for vp.

As G acts continuously on E* for the topology defined by vg, it acts continuously on
At equipped with the weak topology.

Proposition 2.34. Choose p € ET such that p© = p (so p = (p,p%,pp%,...) and
vp(p) = v,(P?) =1). Let £ = [p] —p = (p,—1,0,...) € AT. Then :

i) Ker(0) is a principal ideal of AT generated by €.

ii) An element x = (xg, 21, ...) € Ker(0) is a generator of Ker(0) if and only if x1 is a
unit in AT

Proof. Computing 0(¢) = 0([p]) —0(p) = p® —p = 0 we see that £ € Ker(f). Moreover,
At /(Ker(0)) = O¢ has no non trivial p-torsion, so we have Ker(0)Np* AT = p"Ker()
and since AT is p-adically separated and complete (ET is perfect so W(E1) = At is
a strict p-ring), it is enough to show that Ker(f) C (£,p)(= (p,p)) to prove the first
assertion.

Let @ = (o, 21,...) € Ker(f). Then 6(z) =0 . pF2l” = 0« 2{” = 0 mod p, that
k=0

is vg(xg) = vp(x(()o)) > 1 = vg(p), hence xy € pA*. Thus = € ([zo],p) C ([p],p) and we
are done for i).

Let © = (zg,1,...) € Ker(f). Since £ generates Ker(f) we can write x as x = £.2
with o/ = (20,27,...). So & = (Pu(&,2))nz0 = (pxf), PPy — x(,...) therefore we get
x = (px), pPe) — z,...) and so z; = pPal — x7. So z; is a unit of B if and only if z},
is a unit of E*. But if z is a unit of E* then 2’ = (z), 2/, ...) is a unit of AT and if 2
is a unit of A* then z is a principal generator of Ker(f) (since A* is a domain). [

Example 2.35. Let w = [[i]]_l =1+ [5%] +...+ [z—:%]p’l € A*. We have A(w) = 0 since
epP|—1

0([e]) = 1 and «9([6%]) — (M £ 1. Moreover, the image @ of w in E+ is £=L = (5—1)1_%
ep—1

and so vg(w) = (1 — %)UE(ﬁ -1)=1

This shows that w is a generator of Ker(f).

Proposition 2.36. The weak topology on A™ is also the (p, Ker(0))-adic topology.

Proof. [Col07] Proposition 2.39 O

2.2.3 The ring Byr

Let BT = fﬁ[%}] We can extend @ by Q,-linearity into a ring morphism from B into
Oc[%] = C. We denote this extension by 6. Thanks to Proposition 2.34, we see that
Ker(0k) is still principal generated by &.
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Corollary 2.37. For all z >0 we have : AT N (Ker(fx))' = (Ker(f)).

Moreover ﬂ(Ker( )= ﬂ(Ker(@K)) =0

=0

Proof. The proof goes by a simple induction on i. For the case ¢ = 1 it is immediate
since A™/Ker(f) = O¢ has no non trivial p-torsion. )
Recall that 0x : BT = A*[%] — OC[%] = C. Any element of Bt admits a p-power

multiple in A* and so () (Ker(0x))' = N (Ker(@))i[é]. It suffices now to show that it
i=0 i=0
vanishes. o
Let 2 = (x¢,x1,...) € A" such that z € () (Ker(#))". It is then divisible by any power of
i=0

the generator of Ker(6) (in particular by §), so x is divisible by any power of p (in ET).
But UE( 5) = 1 > 0 and so, since E* is vg-adically separated we have that o = 0. Hence
x = pa’ with 2/ € A* since E* is perfect Thus 2/ € A* N (Ker(QK)) (Ker(0))" for

all 7. So we see that each element of ﬂ (Ker(#)) in A* lies in ﬂ p" AT, which vanishes

1=0 n=0
since At is a strict p-ring. O

Definition 2.38. The de Rham ring

Bip = lim B /(Ker(0x))

J
is the ring obtained by completing B for the K er(f)-adic topology.

Remark 2.39. Since B, = lim Bt /(Ker(k)), it is mapped onto each quotient
J

B*/(Ker(0k))? via the evident natural map and in particular for j = 1, f induces a

surjective map 61, : Bi, — C. i

We get from the definitions that Ker(6;;) N A" = Ker(f) and moreover that

Ker(03,) N BT = Ker(y) (since 0, restricts to fx on the subring B*).

Proposition 2.40. The ring B}y, is a complete discrete valuation ring with residue
field C, and any generator of Ker () in B7 is a uniformizer of Bis. The natural map
B, — BT/(Ker(0k)) is identified with the projection B, — Bin/(Ker(61,)) for
all 7 > 1.

Proof. Since Ker(fk) is a nonzero principal maximal ideal (with residue field C) in the
domain B*, for j > 1 we see that B*/(Ker(fx))? is an Artin local ring whose only
ideals are (Ker(0k))'/(Ker(0k))? for j >4 > 0. In particular, an element of B}, is a
unit if and only if it has nonzero image under 6;,. In other words, the maximal ideal
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Ker(0},) consists of precisely the non-units, so B is a local ring. Consider a non-
unit b € By, so its image in each, B*/(Ker(0x))’ has the form b;¢ with b; uniquely
determined modulo (Ker(fx))’~! (with £ as above). In particular, the residue classes
b; mod (Ker(fk))’~" are a compatible sequence and so define an element b € Bj,
with b = &0. The construction of ' shows that it is unique. Hence, the maximal
ideal of B} has the principal generator &, and ¢ is not a zero divisor in Bj,. It now
follows that for each j > 1 the multiples of &’ in B}, are the elements killed by the
surjective projection to BT /(Ker(fx))’. In particular, By is &-adically separated, so
it is a discrete valuation ring with uniformizer £. We have identified the construction of
B} as the inverse limit of its Artinian quotients, so it is a complete discrete valuation
ring. 0

We denote by vy the valuation defined by € on Bj,. Since Ker(fx) is stable by Gy,
the action of Gx on Bt extends continuously on Bj,. However, the action of ¢ does
not extend since ¢ does not preserve the kernel of 0k (as (&) = [p*] —p & Ker(0k)).
The natural topology on BJ, is not the topology defined by vy ; this one is too strong
for Gk to act continuously on BJ,. The natural topology on Bj is the one for which
pPAY + "B, k,n > 0, gives us a basis of neighbourhoods of 0. This topology is
weaker than the topology induced by vy but G acts continuously on B, equipped
with it.

Definition 2.41. The field of p-adic periods (also called the de Rham period ring) is
Bir := Frac(Bj,) equipped with its natural Gk-action and Gg-stable filtration via
the Z-powers of the maximal ideal of Bjp.

For i € Z, let Fil' By be the i-th power of the maximal ideal of BJj.
Then, if i > 0, Fil'Bqr = w',, . For i € Z, Fil'Byg is the free Byp-module generated
dR

by 51 . FilOBdR = B;R and FleBdR = ézB;R

2.2.4 The p-adic analogous of 2ir

In the following we will show that BJ, admits a uniformizer ¢, canonical up to Zy-
multiple, on which G acts by the cyclotomic character, and that the set of such #’s
is naturally Zj-equivariantly bijective with the set of Z,-bases of Z,(1) = liin fpn (K.

Such elements ¢ do not live in BT so it was essential for us to pass to the completion
B} to find such a uniformizer. Moreover, we will see that the element ¢ is in fact a
p-adic analogous of 2i7.

Let’s construct this ¢. Recall that we have ¢ = (¢(),> a compatible sequence of
primitive p"-th roots of unity.
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Since f([g] — 1) = &® — 1 = 0 we have that [g] — 1 € Ker() C Ker(6}). So [¢] — 1 is
"small" for the topology of Bj, and the following series :

[e.9] n

Z(_l)n—i-l ([5] _ 1)

n
n=1
will converge in By, to our desired ¢. Of course, one should think of ¢ as t = log([¢])
and notice that it lies in the maximal ideal of Bj.

Proposition 2.42. Let t be the element defined as above. Then :

t € Fil'Byr and t € Fil?Byg

In other words, t generates the mazimal ideal of B (i.e. it is a uniformizer).

Proof. Fil'Byr = £BJj, and as [e] — 1 € Ker(0), it is clear that {E=2" 1) € Fil' Byr Vn >

1, hence t € Fil' Byp.

le2BdR = 2B, and for the same reason it is clear that E=D" ¢ Bil2Byp Wn > 2, so

to prove that t € Fil> Byr we only need to show that [e] — 1 §Z Fil?Byp.

[e] — 1 € Ker(#) implies that we can write [e] — 1 as [¢] — 1 = £ with z € At. So

showing that [e] — 1 € Fil? Byr is equivalent to show that 6(z) # 0, that is = & 5121*

Suppose that [g] — 1 € £2A1 so we can write it as [¢] — 1 = x§2 with z € At and

r = (xg, 21, ...).

Since £ = (p,—1,0,...), we have £ = (p?, ...) and thus z£? = (p*xy, ...).

But [e] - 1= (¢ —1,...) so e — 1 = p?zy. We have vg(p*r) > ve(p?) = 2 and therefore

we should have vg(e — 1) > 2. We know by the Remark 2.31 that if p is odd then
p

vp(e — 1) = o7 so we get a first contradiction and if p = 2 we need to do a little

computation (we will work in Wa(E™T)).

Suppose p = 2, then &2 = (2,0, ...) and &2 = (p*xo, p'x1, ...).

Moreover, for p = 2 we have —1 = (1,1,...) in Zy = W(F3) since —1 = 1 + 2.1 mod 4,
hence [e] =1 = (e — 1,6 — 1,...) in AT. Thus if 2£> = [¢] — 1, then ¢ — 1 = play
and vg(e — 1) > vg(p') = 4. We get again a contradiction since by Remark 2.31
vg(e —1) =2 if p=2. So we are done. O

Remark 2.43. Note that since the begining we have made a choice for our € so a
natural question is : what happend if we choose a different compatible sequence of
p"-th root of unity, say &’ ?

If we make such another choice then ¢’ = & for a unique a € Z; using the natural
structure on units in £*. Since the Teichmiiller map from E* to A" is continuous for the
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vg-adic topology of ET we have [¢/] = [¢%] = [¢]* in At. Hence t' = log([¢]) = log([]*).
We would like to have ¢ = a.log([¢]), but this is not trivial since the logarithm is
defined as a convergent sum relative to the topology on Bj, that does not use the
vg-adic topology of ET whereas the exponentiation procedure [¢]* involves the vg-adic
topology of E* in an essential manner. It is possible to introduce a topological ring
structure on Bjp, finer than its discrete valuation topology and such that the map
At — Bj, is continuous (details can be found in [BC|). Once this done, we get
t' = log([¢']) = a.log([e]) = at with a € Z}. So we see that the line Z,t in the maximal
ideal of B}, is independant of the choice of ¢ and making a choice of Z,-basis of this

line is the same as making a choice of €. Also, choosing ¢ is a choice of Z,-basis of
Zp(1).

If we look for a p-adic analogous of 2im in C,, the completion of the algebraic closure
of Q,, it should be defined by the formula 2i7 = lim p"log(e™). The issue is that
n—oo

we have log,(¢™) = 0 for any n € Z>( and so our formula gives us 2ir = 0 which is
absurd. If we look at the previous formula with a Galois point of view, and that we use
the formula (™) = (e™)X?) for o € Gg,, we see that the minimum required to be
a p-adic analogous of 2i7 is to satisfy the formula o(2im) = x(0)2im for any o € Gg,.
However we have the following results that tell us that such an analogous cannot exist
in C, (we admit them, for details see [Col07]) :

Theorem 2.44. If k € Z, then {x € C, | o(z) = x(0)*z, for any 0 € Gg,} = {0} if
k #0 and is equal to Q, if k = 0.

Corollary 2.45. Let K be a finite extension of Q,.
Ifk € Z, then {x € C, | o(z) = x(0)kx, for any 0 € Gg} = {0} if k # 0 and is equal
to K if k =0.

As we have seen earlier, t = log([¢]) = > (—1)"+1W converges in Bjp.
n=1

If o € Gg,, we have

o(t) = o(log([e])) = log([o(e)]) =

This shows us that ¢ is a p-adic analogous of 2:7 and that it is a period for the cyclotomic
character. We have 0,(¢) = 0 which explain why we did not see it in C,,.
We could have defined Byr = Bjp[1] and so Fil'Byg = t'Bp.

T
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2.3 The construction of B,,;,

As we have already said, the ring B}, is too coarse a ring since there is no extension of
the natural Frobenius ¢ : BY — BT to a continuous map ¢ : B, — B, One would
still like to have a Frobenius map, and there is a natural way to complete B such that
the completion is still endowed with a Frobenius map.

Definition 2.46. The ring A% .. is deﬁned to be the divided power envelope of At with
respect to Ker(f), that is : A% . = A*[ ]m>1 acKer(0)

cris

Remark 2.47. Since 2" = ¢"Z we can define A%, as A%, = AT[E], -, with ¢
the principle generator of Ker(0).

Definition 2.48. We define A.,;; to be the p-adic completion of A% . :

cris

Apris = llm A

CT”LS/pnAO

cris

Remark 2.49. By the definition of A..;; we see that it is p-adically separated and
complete.

We would like to warn the reader that proving even basic properties about A..;s requires
a lot of effort and knowledge in algebra so we will be less precise in this section.

One can prove that there exists a unique continuous map j such that the following
diagram commutes using the p-adic topology on A..;s and the finer topology that we
talked about earlier on B :

J -
Acris I BdR

o

Agms — B
The uniqueness of j comes from the fact that one can show that A2 . is dense in A
and B} is Hausdorff. Moreover the map j can be proved to be injective, so A..s is a
domain and A%, — A.. is indeed injective.
The image of A..;s in BjR can be described as the subring of elements

{Z Ty~ | z, € AT, 2, — 0 for the p-adic topology}

in which the infinite sums are taken with respect to the discretely-valued topology of
B (the convergence of the sums is due to the fact that £ € mB;R).



44 2 THE PERIOD RINGS Bpgr AND B¢ris
Definition 2.50. The ring BY.._ is defined to be the B*-subalgebra

cris

1

B+ = Acris[_]
p

cris

Remark 2.51. The ring B, is a subring of Bj,, consisting of the limits of sequences

cris
o
of B}, which satisfy some growth conditions. For example > p~"’t" converges in Bin
n=0

but not in B . This ring is equipped with a continuous Frobenius.

Proposition 2.52. One hast € Agis and P71 € pAgyis.

Proof. Choose a generator £ of Ker(f). We know that [¢] — 1 € Ker(f) therefore we

can write [¢] — 1 = z€ for x € A*. Looking at ¢t now in B, we have :
t = E -1 n+1([€] _ 2 : 1 n+1

3
Il
i

n=1

(=)™ (n — 1)!x”.%

NE

Il
—

n

with (n — 1)l2"™ — 0 for the p-adic topology of A*. Hence t € A5 inside of B,
The fact that tP~! € pA,.;; depends on t mod p since t € Agis. So the infinite sum
expression for ¢ allows us to check whether or not t*~! € pA..;, by replacing ¢t with a

suitable finite truncation of the sum on Y- (—1)"*!(n — 1)lz"%; (we would like to drop

n=1
the terms with coefficient (n — 1)! divisible by p). Hence we can restrict to the sum
over 1 <n <p.
The terms for 1 < n < p are A.is-multiple of [¢] — 1, and the term for n = p is

(—1)p+1—([5];1)p = (—1)1”“—([5]7;)10_1 ([e]—=1)sot = ([e] —1)(a+ (—1)7’*1—([5]7;)10_1) for some

a € A..is. Hence to prove th~at tP~1 € pA,.s it remains to check (an(j apply twice) that
([e] = 1P~ € pA,is. But pAT C pA.s and [e] — 1 = [ — 1] mod pAT. So it suffices to
show that [(e — 1)P7!] € pAers.

We know that vg(e — 1) = pfl, so for p € E* defined as usual we have

ve((e = 1)P™) = p = vs(p")

Hence, (¢ — 1)P~! = pPx for some unit z € E*, so [(¢ — 1)?"!] is a (AT)*-multiple of
PPl = (£ +p)P = Pmod pA.is. But & = p.(%)(p — 1)! € pAris. So we are done. [
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Proposition 2.53. For any a € Ker(Aq.is - Oc) we have ‘% € Agis Ym > 1.

Proof. Fix a choice of m. By definition, a in A..;s is a sum of terms an Wlth n>1,
a, € At and a, — 0 in At for the p-adic topology. therefore it is enough to treat
the case when this infinite sum is replaced with a finite truncation, big enough, so that
the tail lies in p" A..;s with m! which divides p". By the binomial theorem we have

L —i

% = f—, (fn_z.)!. Thus, it suffices when a is a finite sum to treat the case when a is
i=0

a single term, i.e. a = % with z € A*. But &% — gmy™ “— so finally we are reduced to

the case a = 5 - with n > 1 and we wish to prove that the divided power - hes in A
By the umversal identity of divided power in any Q-algebra we get that o5 € Agpis for

a= n! = and all m > 1, as required. O

Definition 2.54. The crystalline period ring B.,;s is defined as the B*—subalgebra

Beris i= B}, [=] = Acris "
cms[t] [t]

inside of BJ,[}] = Bug.

For the end of this section, we will state few properties about the different Frobenius
automorphism that we have.

Recall that we have our usual p € E* such that p© = p and ¢ = [p] — p € Ker(h).
Recall also that B.,s = Ams[t] with A, defined to be the p-adic completion of

AY = Al ],u51. We start with the following lemma :

cris

Lemma 2.55. The At -subalgebra A%, C Bt is p-stable.

cris

Remark 2.56. Here ¢ is the Frobenius automorphism of B.

Proof. Since p(&) = [Pl —p = [p]P —p = (€ + p)’ — p = £ + px for some z € AT,
we have : 90(5) =plx+(p—1)! (5—,)) Therefore (™) = p™(x + (p — 1)!(%))’” for all

m > 1. But £ € Z, for all m > 1, s0 p(£7) € A%, for all m > 1. O

cris

The endomorphism of A% induced by ¢ on BT extends uniquely to a continuous
endomorphism of the p-adic completion A, and hence to an endomorphism of Bl.. =
Ams[ ] that extends the Frobenius automorphism of the subring B*. Recall that we

constructed earlier a uniformizer of Bt called ¢ defined as t = log([e]) and that it
belongs to A..;s . Moreover we have the following lemma :

Lemma 2.57. ¢(t) = pt.
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Proof. We have t = Z(—l)”“w. Therefore ¢(t) = Z(_l)nﬂ(so([e]g—l)” _

n=1 n=1

Z(—l)”ﬂw since ¢ on A, extends the Frobenius map on A*. Therefore
n=1

o(t)= > (—1)"*1([6]%)" = log([e]?). By Remark 2.43 we know that it is p.log([¢]) = pt.

n=1

So we are done. O

This lemma allows us to extend the Frobenius to B..s by setting ¢(t7') = p~1t71.
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3 p-adic Periods of Formal Groups

3.1 The infinitesimal thickening
Let A be a ring and V' a A-algebra

Definition 3.1. A pro-infinitesimal A-thickening of V' is a couple (D,#) where D is
a A-algebra and 6 a surjective A-algebra homomorphism 0p = 6 : D — V such that,
if Ip = I denotes the kernel of 6, then D is separated and complete for the I-adic
topology.

Definition 3.2. If D is a pro-infinitesimal A-thickening of V' and if I is nilpotent, D
is called an infinitesimal A-thickening of V. If m is an integer such that Ij7™! = 0, we
say that the thickening has order < m.

Definition 3.3. Let p be an ideal of A and assume V' to be separated and complete with
respect to the p-adic topology. We say that (D,f) is a formal p-adic pro-infinitesimal
A-thickening if it is a pro-infinitesimal A-thickening of V' such that D is separated and
complete for the (I, p)-adic topology.

Remark 3.4. These notions depend on the topology defined by the powers of p and
not on the ideal p itself.

Theorem 3.5. Let A be a ring, V' a separated and complete A-algebra for the p-adic
topology. Assume that for every a € V', there exist x,y € V such that a = xP + py.
Then the ring V admits a universal formal p-adic pro-infinitesimal A-thickening.

3.2 The ring Aj,rx and Ags x

Let K be a finite extension of Q,, O its ring of integers, K, the maximal unramified
extension of @, in K and O, its ring of integers.

Definition 3.6. A;,; i is the subring of BjR generated by At and Ok, that is
Aingx = Ok Qoy, AT

In fact A;ufx is the universal p-adic infinitesimal Og-thickening of O¢. Since A;pf i
can be described as Ok Rog, A+ we deduce that K er(0) N A, i is a principal ideal of
Ainf,K-

Let mx = 7 (respectively px = p) a uniformizer of O (respectively a generator of
Ker(0) N Ainsic)-

We define for any k € Zs, the following subring of B} :

Alp i = Ainprcllnpl].
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We have for k =0, A} ; o = Aimsx and AL, is a closed subring of By, for any k& > 0.

We recall that for a generator u of Ker(0x) N At we have A, the subring of Bl

composed by elements x of the form ) z,u™ where (nlx,)nez., is a sequence of ele-
n=0 -

ments of AT which tends to 0.
BY. was defined by BY. = Am-s[]l?] and let ¢ be the Frobenius endomorphism of B

cris cris
obtained by extending by continuity the Frobenius action (o, ..., %y, ...) = (24, ..., 7%, ...)
of AT,

+

cris

Definition 3.7. If K is a finite extension of Q,, we define A..;s k by the subring of
B;R generated by A..;s and Ok, that is Aqisx = Aeris R0y, Ok. We define also

B;‘is,K = Acm’s,K[%]-
If Ko =K NQ)" is the maximal unramified extension of Q, in K, we have
B;‘is,K =K ®KO Bctzs

We set for k € Zxg : Ak, = Acrisic if k=0and AL, . = Afnij if £ > 1.

and we denote ¢ the endomorphism id @, %! of BY, .

Lemma 3.8. Let e be the absolute ramification index of K, p® be the smallest power of
p greater or equal than e and r(e) = sup{em —p"* | m — s € Z>o}.
Ifue (AL, x N Ker(0)) and l,n € Zso with | < n then %~ € (e Ak

cris, K -

Proof. We prove the lemma for £ = 0 because we only need this case in the sequel and
that the case k > 1 is supposed to be easier.
Since k = 0 we have Afnva = Aigi and AL = Agis k.
If 2 = (2™) € E* such that (® = 7, then [z] — 7 is a generator of A;,;x N Ker(6)
and we can reduce to the case [ =n = p™ and u = [z] — 7.
As vp(a?’) = v,(2®"") = p*v,(m) > 1, and since 0 is surjective, we can find y € A* such
that a = [2]?" — py in AT N Ker(0). So u?" = ([z] — )" =[] —py +7B, B € Aimsx-

If m> s, ur = (W)™ = (a+ By -

p p "

o () M mp)!

pm

Expending the binomial coefficient and setting i = p™ *—k and j = k (soi+j = p™ %)
we get
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We have ‘j—, € Agris,x because a € Ker(0) and Acrisx = Aingic[ Ly ] for v € Ker(0)
(Proposition 2.53). Since r(e) = sup{em — p™* | m — s € Zzo} factoring out
mefsps_m € 70Ok and noticing that 37 belongs to A, x, we therefore deduce
that % — cm r(e)Acm,s’K. L]

Corollary 3.9. If F € K[z, ..., z4]] satisfies :
i) F(0) = O

i) dF = Z fidzi with f; € AL ellmFzy, o m7F 2]

cris, K *

and if u = (ul, tg) € (AF e Ker(@))d then F(u) € m~7(¢) A

Proof Ifu= (ur,...,uq) € (A5, x ﬂ Ker(&))d then u; € A}, N Ker(0) for all i =

..d and so for some n;,l; € Zxq “— € m @Ak, 1 (by Lemma 3.8).
As F(O) = 0 the fact that F'(u) € ”(e JAE . i really depends on fi(u;).
@Ak« then fi(u;) € 77_7"(6 Ak . i and hence we get F(u) € m @Ak
as requlred O

Lemma 3.10. If x € Bj, satisfies |0(x) — 1|, < 1 then the series

_1)n—1
n

N

log, (x) = (z—1)"

n=1

converges in B

Proof. If © € Bj, satisfies |[f(x) — 1|, < 1, then z — 1 € Ker (), and we can write
r—1=a&, a€ Ay, & a generator of Ker(0).

logp(x) = Z £($ _ 1)” — Z(_l)n_l (Gf)n

n — n
o
n ngn
=y - e
n=1
and since (n — 1)la™ — 0 as n — oo we deduce that log,(z) converges in Bjp. O

3.3 Dieudonné Module of a Formal Group

Let K be a fintie Galois extension of Q, and Ko = K N Q)" the maximal unramified
extension of Q, inside K, and let kx be the residue field of K.
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Definition 3.11. A Dieudonné module is a triplet (V, ¢, Fil) where V is a Kg-vector
space of dimension h, ¢ an endomorphism of V' which is ¢-semilinear, injective and
topologically nilpotent, satisfying moreover that if M is a lattice of V' stable by ¢ then
pM C ¢M. Fil is a decreasing filtration on Vi = K ®g, V satisfying Fil®(Vyk) =
Vi, Fil*(Vk) = 0 and Fil'(Vk) is a K-vector space of dimension the dimension of
M/pM as kg-vector space.

If Dy = (Wi, ¢, Fil) and Dy = (Va, ¢9, Fil) are both Dieudonné modules, the mor-
phisms from D; into Dy are by definition the Ky-linear applications f from V; into V5
satisfying f o ¢1 = ¢p o f and f(Fil' (Vi x)) C Fil*>(Vax).

Let I' be a commutative formal group defined over O, of dimension d and finite height
h. To such a formal group, we can associate a Dieudonné module in the following way:

Let Okl[X]] = Okl[[X1,..., X4]] be the affine algebra of I' and denote @ the law of
d
formal group. If w =Y a;(Xy, ..., X4)dX; where o,;(X) € K[[X]] is a closed differential

i=1
form, denote F,, the unique element of K[[X]] satisfying dF,, = w and F,(0) = 0. Let
F? € K[[X,Y]] be the formal series given by the formula

FA(X)Y)=F,(X®Y) - F,(X) - F,Y).

Definition 3.12. A closed differential form w is called exact if F,, has bounded coeffi-
cients (or equivalently if there exists r € Z> such that 7" F,, € Ok[[X1, ..., X4]]).

Definition 3.13. A closed differential form w is called of second kind if F? has bounded
coefficients (or equivalently if there exists r € Zsq such that 7" F? € Ok[[X,Y]]).

Definition 3.14. A closed differential form w is called invariant if F? = 0.

Denote by Qr the K-vector space of invariant differential forms. It is a K-vector space
of dimension d. Denote K[[X]]y the subspace of K[[X]| of formal series F' satisfying
F(0) = 0.

Definition 3.15. An element of K[[X]|y such that dF € Qr is called a logarithm of T'.

Denote Hn(T") the K-vector space which is the quotient of the space of the differential
form of second kind by the one of exact differential forms. It is a K-vector space of
dimension h equipped with the filtration Fil°(H},(T')) = Hix(T), Fil'(Hjz(T)) = Qr
and Fil>(H},(T)) = 0.
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Let V(T') the Ko-vector subspace of Hj,(T') generated by the differential forms w with
coefficients in Ky, equipped with the endomorphism ¢ obtained by the formula :

P(w) = w?((X1)", .., (Xa)?).

The triplet D(I") = (V(I), ¢, F'il) where Fil is the filtration on V(I') g = K ®g, V(') =
Hj,(T) introduced earlier, is a Dieudonné module and we will call it the Dieudonné
module of I'. We have Hj,(T') & K ®, D(T).

We have that two formal groups defined over O are isogeneous if and only if they have
isomorphic Dieudonné module.

3.4 Tate’s module and the period map
Let T,(I') = limI'yn, where I'yn is the subgroup of points of p"-torsion of I'(Mz), be

the Tate modlﬁe of I ; as we already know, it is a Z,-module of rank % equipped with
a continuous action of Gx = Gal(K/K).

Lemma 3.16. i) If z = (x1,...,24) € (Ains.r)? is such that |0(z;)|, < 1 for 1 <i <d,
then F,([plrx) — pF,(z) € 7 Ainy k-

ii) Let r(e) be the integer introduced in Lemma 3.8. If there exists y = (yi, ..., Ya) such
that y; — x; € Asnsi N Ker(0) then F(y) — F,(z) € 7O A ke

Proof. 1) Note first that we have :

w* F([k = rz, z) + 7 (Fu([k — 1rz) — (k — 1)F,())

7 (Fy([k — 1rz @ 2) — F,([k — 1)rz)
— Eu(@)) + 7 (Fu([k — Ura) — (k — D E,(2)
7*(E,([Krz) — kE(2))

We show now by induction on k that : 75(F,([k]rz) — kF,(x)) € Ok[[X1, ..., X4]]

For k=0

7 (F,([0]rz) — 0F,(x)) = 0 € Ok[[X1, ..., X4]]

Now suppose it is true for £ > 0, that is : 7°(F,([k|rz) — kF,(x)) € Okl[[ X1, ..., X4]]
for kK > 0.

o (F,([k + 1rz) — (k + 1) E,(x)) = 7 F2([k]rx, x) + 75 (F,([k]rz) — kF,(z)) (by our
remark). We have that 7° F2([k]rz,z) € O|[[X1, ..., X4]] since w is of second kind and
m(F,([k]rz) — kF,(x)) € Ok[Xq, ..., X4]] by induction hypothesis.

Hence 7°(F,([k]rz) — kF,(x)) € Ok[Xq, ..., X4]] for any k > 0.

By taking k = p we get 7°(F,([plrz) — pF.(z)) € Ok[Xi,...,X4]] which implies
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F,([plrz) — pF,(z) € 7 *Ok|[[X1, ..., X4]]. So now, taking z = (z1,...,24) € (Ainsx)?
such that |0(z;)|, < 1 for 1 <i < d we get indeed F,([p|rz) — pF.(z) € 7 *Ajp i as
required.

ii) It is an immediate consequence of Corollary 3.9.

Indeed, if y = (y1, ..., yq) with y; —z; € AmeﬂKeT(G) then y—z € (Agsx N Ker(0))”.

We have by definition F(0) = 0 and dF, = w = Z a;dX; with a; € K[[ X7, ..., X4]]. So

=1
as shown later we have m°w € Ok[[X1, .., X4]| Wh1ch implies that 7°«; € (’)K[[Xl, e X4l]-

By Corollary 3.9, we obtain 7°F,(y — ) € 7"(9) A.;s x 50 in particular,

Fw(y) - Fw ([L‘) € W_S_T(E)Acris,K-

We state now the main proposition :

Proposition 3.17. Let w be a differential form of second kind, uw = (0,u;..., u,,...) €
T,(T) and i, € (Ainy.r)?* such that 0(i,) = u,. Then :

i) the sequence —p"F,,(,) converges in chsK to a limit which depends only on u and
the range of w in Hjp(T).

ii) the period map defined as

(w,u r—>/w—hmp w(tn)

is bilinear, respects the filtrations (i.e. [ w € Fz'll(BdR—l—) if w € Fil*(Hjp(T')) and
commutes with the action of Gal(K/K) (i.e. g(f = f(u) w if g € Gal(K/K)).
ii) If w € D(T), then [ we B}, and p([ w) = [, gb

Proof. w is a differential form of second kind, so by defintion there exists r € Z>( such
that 7" F? € Ok|[Xy, ..., X4, Y1, ..., Yg]]. Moreover by definition of F? F? = F,(X &
Y)—F(X)—F,Y). As dF,, = w we get

AFX(X,Y) = dF,(X ®Y) — dF,(X) — dF,(Y)
=wXaY)—-wlX)—-wlY

)
and so 7" F? € Ok[[ Xy, ..., X4]] implies that 7" (w(X®Y)—w(X)—w(Y)) € OK[[Xl, ey Xa, Y1, 0, Y]]
WwXaY)—wlX)—-wl}y) = Zd: u(XeY)dXaeY) — Zd: J(X)dX; — Zaz( )dY;.
Therefore, there exists s > rls:&ch that mw € Ok[[X7, . 1Xd]] (take X =Y, in the
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previous equality to see it).

Now, let & = (21, ...,24) € B}y such that |0(z)], < 1 for i = 1,...,d then |0(x;) — 1|, <
max{|0(z;)|p, |1|,} < 1 and so, as in Lemma 3.10, F,(z) converges in B, (it is the
formal logarithm of w).

In particular, as 0(4,) = u, and [p|fu, = 0, |u,|, < 1, we have that F,(,) converges
in By

Write :

pn+1Fw(an+1) - pan(ﬁn) = pn(pFw(ﬁn+1) - Fw([p]l“ﬁn-&-l)) —{—p"(Fw([p]Fﬁn+1) - Fw(ﬁn))

By i) of Lemma 3.16, as @,+1 € (Ainsx)? and that [0(d,41)|, = |tnt1l, < 1, we have
pFw(an—&-l) - Fw([ph‘an-i-l) cm Ame

By ii) of Lemma 3.16, as 0([p|rt,+1) = [plrtns1 = u, = 6(t,) we have [p|ru, 1 — u, €
Ainsx 0 Ker(6) and so F,([plr([plrins) — Fo (i) € 7757 A .

We obtain p"™(pFy, (tin 1) = Fu([plring 1) € T Agris, i and p” Fu([plr([plrtng) = Fu (i) €
T e)Acris,K-

= Ams’K[%] and that F,(d,) converges in B}, we obtain that —p™F,,(i,)
converges in ch K-

We clearly see that the limit does not depend on 4, but on u = (0,uy, ..., Uy, ...) and
on the range of w in Hj,(T') (we do not wish that w is exact).

We have finally proved i) of the proposition.

We want to show now the bilinearity of the period map.

The linearity with respect to w is clear since dF), = Aw = AdF, so F), = \F, by

unicity of F,. Still by the unicity of F, we deduce dF,, =w +w' = dF, + dF,,.

For the linearity with respect to u, we note that since [p|fu, — 0 as n — oo and that
—p"F2(lin, ul,) = p"F,(ty,) + p™(a],) — p"Fou(t, ® 4,) we have

P E, (U, ®al) — p"F, () + p"Fu(1),) as n — 0o

and thus fu+u,w = fuw + J,w

Hence we have proved the bilinearity.

We want to show now that the period map commutes with the action of Gal(K/K)
(ie. g(f,w) = [,yw if g € Gal(K/K)).

Let g € Gal(K/K) and 4, € (Aifx)? such that 0(d,) = u,, then g(t,) € (Ainsx)?
and 0(g(t,)) = g(u,) because 0 is Gg-equivariant (0(g(a,)) = g(0(i,)) = g(uy,)).

As F,, € K[[Xy,.., X4]] we have F,(g(in)) = g(Fl(t,)) and so g( [, w) = [,y

We finally prove that the period map respects filtrations (i.e. f w € Fil'(Bly) if
w € Fil'(Hjs(T)).

Let w € Fil'(H}(T)) = Qr, that means, F? = 0, which implies that F,(X &Y) =
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F(X)+ F,(Y) and so in particular F,([k]rX) = kF,(X).

Taking k£ = p™ and X = u,, we get : F,([p"|ru,) = p"F,(u,) and so F,(u,) =
p "L ([p"]rua) = 0 since [p"]ru, = 0. Hence F,(i,) € Fil' (B, k).

iii) We want to show now that if w € D(T") then [, w € BJ,, and ([ w) = [ o(w).

cris

If wu, = (Tp1,...,Tna), consider y,; € E* such that y(o) = Z,,; (therefore we have

Yni = (xm,xgl,xfi,)) Set U, = ([Yni]s s [Una))- If w € D(I'), that means,
w € Ko[[X1,..,Xq]] and w € Hyg(T). Since B, x = K ®k, B, and Hjp(T') =
K ®g, D(T), we have F,(1u,) € BY,..

Moreover,

AFy() (n) = ¢(w)(tn) = w?((X1)"; ..., (Xa)") (i)

And therefore, by unicity of F, we get ¢(F,,(t,)) = Fy)(t,). By passing to the limit,

as F,(i,) € B, which is closed in B}, ., we get that lim F,(a,) € B,,. We also
’ n—00

know, by i), that the sequence —p" F,(1,,) converges in B;is’ ;- to a limit which depends

on v and on the range of w in H,(T") and so we have indeed [ w e By, if w e D(I').

Moreover, as ¢(F, (i) = Fy)(Uy), we have that :

o[ ) = oltimp" Fu(@)

u

= lim p" Fy(e) (@)

- [ ot

as required. N

We will give an example of a concrete computation when we consider the multiplactive
group and show the analogous for the complex case.

Example 3.18. Consider G,, = Spec(C[z, 1]). Let v a generator of H;(C*,Z),w = £ €
H(G, O, ) and &, = e , where Qg c is the quotient of the Kahler differential

module of G, by the submodule generated by the da, for a € C (that means that we
see the elements of C as constants and that we can apply the usual rules of derivation).
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We know that :
w=p" [ w=p e
¥ 1 0 e

= ur

This is the classical period.

Now, suppose that G,, = Spec(K|[z,1]) and let v = (¢,), be a generator of T),(G,,) =
lim 11,2 (Q,) and w = “ € HY(G,n, Qq,,./x). We have F,, = log and by definition :

$—

p" / = p"log(e,) = log(e”")
1

=0
So we see one more time that there is no p-adic analogous of 2i7 in a finite extension
of Q.
Consider now &, = [(€n4m)mezs,] € Bi, and let t = log(&y) € Bjz\{0}. Of course,

&y # &, but 01:(2,) = £,. Moreover :

p"/ w = p"log(&,) = log(&)
1

=t

And we see that we find our element ¢.
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