
MASTER’S THESIS

Formal Groups and p-adic Periods

Adrien
Chassaing-Monjou

Advisor: Pr. Denis Benois

July 2019



2
Abstract

The aim of this Master’s thesis is to understand formal groups, in particular
commutative formal groups of dimension 1 over a ring of integers of a local field,
to study the construction of the period map of formal groups. Below is a brief
discussion on the content of each section.

1) Formal Groups. In this section we start by giving the definitions and basic
properties about formal groups of dimension n. Then we study commutative for-
mal groups of dimension 1 over different kind of rings. The aim is to understand
their structure and the construction of the Tate module for formal groups.

2) The Period rings BdR and Bcris. This second section explains the construction
of Fontaine of different p-adic period rings as BdR and Bcris. We give also prop-
erties of these objects. We talk at some point about the p-adic analogous of 2iπ
which is an interesting object living in B+

dR.

3) p-adic Periods of Formal Groups. In this last section, we discuss about the
construction of the period map of formal groups which is a special case of the
period map for abelian varietes, and give an example after, showing the link be-
tween the complex case and the p-adic one.

A good reference for the first section in which it is based on is [Fro68] and
if the reader look at it, he will see how rich is the theory of formal groups. For
the construction of the ring of periods, [BC], [FO] or [Col07] are really good
introductions and I can only stress how useful they were to understand these
objects. Normally, any references required are specified where needed.
In this work, no originality is claimed as it is based on [Ber01] and [Col92]. Any
mistake found is mine.
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1 Formal Groups

1.1 Formal Groups of dimension n

In this section, we take R to be a fixed commutative unitary ring, and all power series
are over R.

Definition 1.1. A formal group F (X, Y ) of dimension n is a system Fi(X, Y ) of n
power series in 2n indeterminates X = (X1, ..., Xn), Y = (Y1, ..., Yn) satisfying :

i) F (X, 0) = X,F (0, Y ) = Y

ii) F (F (X, Y ), Z) = F (X,F (Y, Z))

Remark 1.2. i) tells us that F (0, 0) = 0 and so we have Fi(X, Y ) = Xi + Yi mod
degree 2. Moreover, terms of degree greater than 1 are "mixed", i.e., X’s and Y ’s only
occur together.
We say that F is commutative if F (X, Y ) = F (Y,X).

Proposition 1.3. Given F , there exists a unique i(X) (n power series in n inderter-
minates) so that F (X, i(X)) = F (i(X), X) = 0.

Proof. Put gi(X, Y ) = Xi − Fi(X, Y ), for i = 1, ..., n. Note that gi has no constant
term when viewed as a power series in Y .
(∂gi/∂Yk)X=Y=0 = −(∂Fi/∂Yk)X=Y=0 = −δik. The determinant of (∂gi/∂Yk)Y=0 is a
unit of R[[X1, ...Xn]].
Therefore there exist hi(X, Y ), (for i = 1, ..., n) such that gi(X, hi(X, Y )) = Yi, or
Fi(X, h(X, Y )) = Xi − Yi (for i = 1, ..., n). Put Y = X, then Fi(X, h(X,X)) = 0.
Take i(X) = h(X,X). The proof of the uniqueness is a translation of the one of group
theory.

Remark 1.4. This proposition tells us that to any element x ∈ R, there exists a unique
inverse i(x) with respect to F . With property i) and ii), we start to see that F looks
like to a group law. We will see later in the section about the group of points of a
formal group that it is possible, thanks to F , to put a structure of a group on maximal
ideal.

For i = (i1, .., in) ∈ Nn, define |i| =
n∑
k=1

ik. For f ∈ Rn = R[[X1, ..., Xn]], we define the

order of f to be ord(f) = inf
fi 6=0
|i|.

For m ∈ N, define Am = {f ∈ Rn | ord(f) ≥ m}. Am is a subgroup of Rn and
Am ⊇ Am+1. Defining A∞ =

⋂
m∈N

Am, we have in fact A∞ = {f ∈ Rn | ord(f) =∞}.
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If (fk)k∈N is a sequence of elements of Rn, and lim
k→∞

ord(fk − f) = ∞ then we write
limord fk = f when k → ∞. One can replace (Rn, ord) by any (A, v) where A is a
commutative unitary ring and v a filtration defined on A.
Suppose now that F and G are formal groups of dimension n and m respectively.

Definition 1.5. A homomorphism f : F → G is a "vector" f = f1, ..., fm of m power
series in X1, ..., Xn with no constant terms, so that f(F (X, Y )) = G(f(X), f(Y )).

The homomorphism f determines a homomorphism θf : R[[Z1, ..., Zm]]→ R[[X1, ..., Xn]]
given by θf (Zi) = fi(X). If f : F → G, g : G → H are homomorphisms of formal
groups then g ◦ f : F → H is a homomorphism of formal groups. Also 1i(X) = Xi

gives the identity homomorphism of F . Hence :

Theorem 1.6. The formal groups and their homomorphism form a category FR(= F)
and f 7→ θf defines a functor FR → PR, where PR is the category whose objects are
(Rn, ord) and the morphisms are the continuous ring homomorphisms.

Remark 1.7. A homomorphism f : F → G of formal groups is an isomorphism (in
FR) if and only if θf is an isomorphism (in PR). Moreover, if f is any "vector" of n
power series with θf an isomorphism, and if F is a formal group of dimension n, then
there is a unique formal group G(= f ◦ F ◦ f−1) so that f is an isomorphism F → G.

In Rn = R[[X1, ..., Xn]], consider the ideal I = Ker(Rn → R) and denote by f the
image of f under the natural epimorphism I → I/I2 =: D(Rn).

For a given prime number p, denote π : Rn → Rn the homomorphism which fixes
Rn and takes Xi into Xp

i . Then π(m) : Xi 7→ Xpm

i for any m ≥ 1.
Let R+ denote the additive group of R.

Theorem 1.8. Let f : F → G be a homomorphism of formal groups (of dimension n
and m respectively) and let θf : Rm → Rn the corresponding homomorphism of rings.
i) suppose R+ is torsion free. Then D(θf ) = 0 if and only if f = 0
ii) suppose R+ is of exponent p (prime),that means that there exists g : F → G a
homomorphism of formal groups such that f(X) = g(Xp). Then D(θf ) = 0 if and only
if either f = 0, or θf = φf ◦ π(q), where D(φf ) 6= 0 and q > 0.

Proof. See [Fro68] Chapter I, section 2, Theorem 2.

Definition 1.9. Assume that R+ is of exponent p. If θ = φ ◦ π(h) and D(φ) 6= 0, then
h = ht(θ) is called the height of θ. We define ht(0) =∞.
For f a homomorphism of formal groups, ht(θf ) = ht(f) is called the height of f .
If f 6= 0, then ht(f) = h is the greatest integer so that f is a power series in Xph .
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Proposition 1.10. i) If f, g are homomorphisms of formal groups and f ◦ g is defined,
then ht(f ◦ g) ≥ ht(f) + ht(g).
ii) If G is a commutative formal group and f, g ∈ HomF(F,G), then

ht(G(f, g)) ≥ inf{ht(f), ht(g)}

.

Proof. See [Fro68] Chapter I, section 3, Proposition 5.

Remark 1.11. If our formal groups are of dimension 1, R is an integral domain and f◦g
is defined, then ht(f) + ht(g) = ht(f ◦ g) and the height function from Rn → Z ∪ {∞}
is a valuation.
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1.2 Commutative formal Groups of dimension one

Throughout this section, all formal groups are now commutative of dimension one. We
repeat the definitions in this case and state a few pertinent facts.
Let R be a ring.

Definition 1.12. A formal group F (X, Y ) is a power series (over R) in two variables
X,Y satisfying :

i) F (0, X) = X = F (X, 0) (Identity element)
ii) F (F (X, Y ), Z) = F (X,F (Y, Z)) (Associativity)
iii) F (X, Y ) = F (Y,X) (Commutativity)

Remark 1.13. As before, we necessarily have F (X, Y ) ≡ X + Y (mod degree 2).

Proposition 1.14. Given F , there exists a unique i(X) (a power series in one inde-
terminate) so that F (X, i(X)) = F (i(X), X) = 0

Proof. We already proved this for dimension n in Proposition 1.3.

Definition 1.15. A homomorphism f : F → G of formal groups is a power series (with
zero constant term) in one variable satisfying the relation

f(F (X, Y )) = G(f(X), f(Y ))

We denote by HomR(F,G) the set of homomorphisms F → G of formal groups. If
f, g ∈ HomR(F,G), (f + g)(X) = G(f(X), g(X)). With respect to this addition,
HomR(F,G) is an abelian group, and the composition ◦ for homomorphisms is bilinear.
We denote the category of commutative formal groups of dimension 1 over R by GR.
HomR(F, F ) = EndR(F ) is a ring with identity.

Definition 1.16. We define the multiplication-by-m map [ . ]F : Z → EndR(F ) with
[n+ 1]F (X) = F ([n]F (X), X) to be the unique homomorphism which preserves identi-
ties.
We have [1]F (X) = X and [−1]F (X) is the power series i(X) of Proposition 1.14, i.e.,
F (X, i(X)) = 0.

For n ∈ Z and f ∈ HomR(F,G) we have

f ◦ [n]F = [n]G ◦ f



1.2 Commutative formal Groups of dimension one 9

Now we recall the definition of the map D. For dimension 1, we simply have D(f) =
f1 =coefficient of X in f(X) and :

D(f ◦ g) = D(f).D(g)

D(f + g) = D(f) +D(g)

Moreover f is an isomorphism if and only if D(f) ∈ U(R)(= the units of R).

Proposition 1.17. If R is an integral domain, then EndR(F ) is a (non-commutative
integral) domain and HomR(F,G) is a torsion free EndR(F ) (and EndR(G))-module.

Proof. If f = frX
r + fr+1X

r+1 + ... and g = gsX
s + gs+1X

s+1 + ... with fr, gs 6= 0 then
f ◦ g = frg

r
sX

r+s + ... and frgrs 6= 0. Therefore f ◦ g = 0 implies either f = 0 or g = 0.
From this we deduce that EndR(F ) is an integral domain, and that HomR(F,G) is a
torsion-free EndR(F ) (and EndR(G))-module.

The image of [ . ] : Z → EndR(F ) is thus also an integral domain and its kernel must
therefore either be 0 or pZ for some prime p. If the characteristic of the quotient field of
R is 0 then D : EndR(F )→ R is an embedding. Therefore EndR(F ) is a commutative
integral domain and Ker(Z→ EndR(F )) = 0

Theorem 1.18. A formal group F is isomorphic over R to the additive group Ga if
and only if, for all primes p, [p]F has coefficient in pR. (We have Ga(X, Y ) = X + Y ).

Proof. See [Fro68] Chapter III, section 1, Theorem 2.

1.2.1 The invariant Differential

In this section we study a formal group F of dimension 1 defined over an arbitrary
integral ring R. In a formal setting of this sort, a differential form is simply an expression
Q(X)dX with Q(X) ∈ R[[X]]. Of particular interest are those differential forms that
respect the group structure of F .

Definition 1.19. An invariant differential on a formal group F is a differential form
ω(X) = Q(X)dX ∈ R[[X]]dX satisfying ω ◦ F (X, Y ) = ω(X).
Writing this out, ω(X) = Q(X)dX is an invariant differential if it satisfies

Q(F (X, Y ))F1(X, Y ) = Q(X)

where F1(X, Y ) is the partial derivative of F with respect to its first variable.
An invariant differential is said to be normalized if Q(0) = 1.
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Example 1.20. On the additive group Ga, the differential ω = dX is invariant.

Example 1.21. On the multiplicative group Gm, the following is an invariant differ-
ential :

ω =
dX

1 +X
= (1−X +X2 −X3 + ...)dX

Proposition 1.22. Let F be a formal group defined over R. There exists a unique
normalized invariant differential on F . It is given by the formula ω = F1(0, X)−1dX.
Every differential on F is of the form aω for some a ∈ R.

Proof. Suppose that Q(X)dX is an invariant differential on F , so it satisfies

Q(F (X, Y ))F1(X, Y ) = Q(X)

Putting X = 0 and since F (0, Y ) = Y , we have Q(Y )F1(0, Y ) = Q(0).
Since F1(0, Y ) = 1 + ... we see that that Q(X) is completely determined by the value
Q(0), and further that every invariant differential is of the form aω with a ∈ R and
ω = F1(0, X)−1dX.
Since this differential ω is normalized, it remains only to show that it is invariant. We
need to prove that F1(0, F (X, Y ))−1F1(X, Y ) = F1(0, X)−1.
To do this, we differentiate the associative law : F (Z, F (X, Y )) = F (Z,X), Y ) with
respect to Z to obtain F1(Z, F (X, Y )) = F1(F (Z,X)Y )FX(Z,X). Putting Z = 0 and
using the fact that F (0, X) = X yields F1(0, F (X, Y )) = F1(X, Y )F1(0, X), which is
the desired result.

Before starting the first corollary, we set the notation f ′(X) for the formal derivative
of a power series f(X) ∈ R[[X]] i.e., f ′(X) is obtained by formally differentiating f(X)
term by term.

Corollary 1.23. Let F and G be formal groups with normalized differentials ωF and
ωG. Let f : F → G be a homomorphism of formal groups. Then ωG ◦ f = f ′(0)ωF .

Proof. We compute (ωG ◦ f)(F (X, Y )) = ωG(G(f(X), f(Y ))) = (ωG ◦ f)(X). Hence it
is an invariant differential to F . By last proposition, we know that ωG ◦ f is equal to
aωF for some a ∈ R. Comparing coefficients on X on each side gives a = f ′(0).

Corollary 1.24. Let F be a formal group and let p ∈ Z be a prime. Then there are
power series f(X), g(X) ∈ R[[X]] with f(0) = g(0) = 0 such that

[p]F (X) = pf(X) + g(Xp).
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Proof. Let ω(X) be the normalized invariant differential on F .
We know that D([p]F ) = p, so last corollary implies that

pω(X) = (ω ◦ [p]F )(X) = (1 + ...)D([p]F )(X)dX.

The series (1 + ...) is invertible in R[[X]], from which it follows that D([p]F ) ∈ pR[[X]].
Therefore every term aXn in the series [p]F (X) satisfies either a ∈ pR or p|n.

1.2.2 Commutative formal groups of dimension one over a separably closed
field of characteristic p 6= 0

Let k denote our base field, separably closed of characteristic p. For formal group F
and G (over k) and f ∈ Homk(F,G), f is a power series in Xph , where h = ht(f).
More precisely, we have: f(X) = a1X

ph + a2X
2ph + ... with a1 6= 0.

Proposition 1.25. Let f and g be homomorphisms of formal groups, then :
i) ht(f + g) ≥ inf(ht(f), ht(g))
ii) ht(f ◦ g) = ht(f) + ht(g)

Proof. i) already done in 1.10
ii) Put n = ht(f), m = ht(g). Then f(X) = aXpn + ... and g(X) = bXpm + ... with
a 6= 0 and b 6= 0. Therefore f(g(X)) = abp

n
Xpn+m + ... with abpn 6= 0 and clearly we

get ht(f ◦ g) = n+m = ht(f) + ht(g).

Corollary 1.26. ht(u) = 0 if and only if u is an invertible power series, in which case
ht(u ◦ f ◦ u−1) = ht(f)

Proof. ht(u) = 0⇔ u(X) = a1X + a2X
2 + ... with a1 6= 0. But we have that

ε(u) = a1 ∈ U(k)⇔ u is invertible.
By the previous proposition we get ht(u◦u−1) = ht(1) = 0⇒ ht(u) = −ht(u−1). Hence
ht(u ◦ f ◦ u−1) = ht(u) + ht(f) + ht(u−1) = ht(f).

Corollary 1.27. If we consider Z with the p-adic filtration, and Endk(F ) with the
height filtration, then Z→ Endk(F ) is continuous.

Proof. Z→ Endk(F ) is continuous if for (an)n ∈ ZZ≥0 , vp(an)→∞⇒ ht([an]F )→∞
which is clear since the height function of [an] depends on the greatest power of p which
divides an.

Definition 1.28. We define the height Ht(F ) of the formal group F to be ht([p]F ).

Remark 1.29. By Corollary 1.26, Ht(F ) only depends on the isomorphism class of F .
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Corollary 1.30. If Ht(F ) 6= Ht(G), then Homk(F,G) = 0.

Proof. If f ∈ Homk(F,G), then f ◦ [p]F = [p]G ◦ f . Hence, ht(f) + Ht(F ) = ht(f) +
Ht(G). Since Ht(F ) 6= Ht(G), then ht(f) =∞ and we get f = 0.

Proposition 1.31. Homk(F,G) is complete under the height filtration.

Proof. Let {fn} be a Cauchy sequence under the height filtration. Then it is a Cauchy
sequence with respect to the order filtration, and ord(g) = pht(g). Put f = limord(fn).
Then, working modulo degree n we have

f(F (X, Y )) ≡ fn(F (X, Y )) = G(fn(X), fn(Y )) ≡ G(f(X), f(Y ))

Hence f ∈ Homk(F,G) and f is the limit of {fn} under the height filtration.

Corollary 1.32. The homomorphism Z→ Endk(F ) extends to a homomorphism Zp →
Endk(F ).

Proof. Use Corollary 1.27 and Proposition 1.31
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1.3 Commutative Formal Groups of Dimension One over a Dis-

crete Valuation Ring

Suppose from now on that R is a discrete valuation ring with quotient field K of
characteristic 0, maximal ideal M and residue field k of characteristic p 6= 0. Let v
denote the valuation on K given by M (we take v normalized so that v(p) = 1). We
denote by k the separable closure of k. The homomorphism R → k induces a functor
GR → Gk under which F 7→ F .

Proposition 1.33. If F is not isomorphic to Ga then HomR(F,G)→ Homk(F ,G) is
injective.

Proof. Suppose f : F → G is a non-zero homomorphism such that f = 0. Let (π) = M.
Then f(X) = πrg(X) where r > 0 and g 6= 0. We have

πrg(F (X, Y )) = G(πrg(X), πrg(Y ))

≡ πrg(X) + πrg(Y ) (mod Mr+1R[[X]])

Hence g(F (X, Y )) ≡ g(X) + g(Y ) (mod MR[[X]]) and g(F (X, Y )) = g(X) + g(Y ).
Therefore g ◦ [p]F = [p]Ga ◦ g = 0. Since g 6= 0, then [p]F = 0, i.e., F = Ga (by Theorem
1.18.

Corollary 1.34. If Ht(F ) 6=∞, Ht(F ) 6= Ht(G), then HomR(F,G) = 0.

Proof. Ht(F ) 6= ∞ implies that F is not isomorphic to Ga and so HomR(F,G) →
Homk(F ,G) is injective. But Ht(F ) 6= Ht(G) implies that Homk(F ,G) = 0. And so,
by the injectivity we deduce that HomR(F,G) = 0.

1.3.1 The Group of Points of a Formal Group

In this section R is a complete discrete valuation ring with quotient field K of char-
acteristic 0, maximal ideal M and residue field k of characteristic p 6= 0. We assume
that the M-valuation v on K is normalized so that v(p) = 1. All formal groups, un-
less otherwise mentioned, are defined over R, and are assumed to be commutative of
dimension 1. K is the algebraic closure of K. The integers in K (i.e. the elements of
the integral closure in K of R) form a local ring R (it is not Noetherian). The unique
extension to K of the valuation v of K will again be denoted by v. Note that K is not
complete.
Suppose L is a finite field extension of K and let S denote the integers in L. Take
f ∈ S[[X1, ..., Xn]]. Then for α1, ..., αn ∈ M, f(α1, ..., αn) makes sense and converges
in R (and if the constant term in f is 0, f(α1, ..., αn) lies in M).
Note that α1, ..., αn and all the coefficients of f are integers in L1 := L(α1, ..., αn), and
L1 being a finite extension of a complete field K, is complete.
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Proposition 1.35. i) The elements of M form an abelian group F (R) that we denote
P (F ) under the operation α ∗F β = F (α, β) and v(α ∗F β) ≥ inf(v(α), v(β)).
The elements of P (F ) of finite order form a subgroup Λ(F ), the torsion subgroup of
P (F ).
ii) P (F ) and Λ(F ) are modules over Γ = Gal(K/K).
iii) If f : F → G is a homomorphism of formal groups defined over R then the map
α 7→ f(α) is a homomorphism P (f) : P (F )→ P (G).
P and Λ are covariant functors from the category GR to the category of Γ-modules.
In particular, P (F ) ad Λ(F ) are modules over EndR(F ) and these endomorphisms
commute with Γ.

Proof. i) see [Fro68] Chapter IV, section 2, Proposition 1.
ii) If γ ∈ Γ, then F (α, β)γ = F (αγ, βγ) since F is defined over R and its coefficients are
therefore fixed by γ. It is thus easy to verify that P (F ) and Λ(F ) are indeed Γ-modules.
iii) If f : F → G is a homomorphism defined over R, then f maps M into itself (since
f has no constant term). Since f(F (X, Y )) = G(f(X), f(Y )) we have f(α ∗F β) =
f(F (α, β)) = G(f(α), f(β)) = f(α) ∗G f(β). As f(α)γ = f(αγ), f commutes with
γ.

Remark 1.36. i) If F is the additive group Ga, then P (F ) is just M with the ordinary
addition and Λ(F ) = 0.
ii) If F is the multiplicative group Gm, with

Gm(X, Y ) = X + Y +XY = (X + 1)(Y + 1)− 1

then P (F ) is isomorphic to the group U of principal units u of R for which u ≡ 1 (mod
M).
The isomorphism P (F )→ U is given by α 7→ 1 + α.

Definition 1.37. An isogeny f : F → G is defined to be a non-zero homomorphism
defined over R.

From now on, all formal groups to be considered are assumed to be of finite height,
unless otherwise mentioned.

Theorem 1.38. (Lubin, Serre)
Let f : F → G be an isogeny. Then :
i) The map P (f) : P (F )→ P (G) is surjective
ii) The kernel of P (f) is a finite group of order pht(f)

To prove this theorem we will need the Weierstrass preparation theorem that we will
admit.
For f ∈ Rn, f denotes its image in kn under the epimorphism Rn → kn induced by
R→ k.
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Definition 1.39. The Weierstrass-order of f , denoted W -ord(f) is defined by W -
ord(f) = ordk(f).

Definition 1.40. A distinguished polynomial f of R is a polynomial of the form f0 +
f1X + ...+ fm−1X

m−1 where all the fi are in M.

Remark 1.41. Note then that for a distinguished polynomial W -ord(f) = deg(f).

Theorem 1.42. (Weierstrass preparation theorem)
If f ∈ R[[X]] and W -ord(f) = m <∞, then there exist a unique u ∈ U(R[[X]]) and a
unique distinguished polynomial g such that f = u.g. Then of course, W -ord(g) = W -
ord(f).

Now we can prove the theorem 1.38 :

Proof. Let ν ∈ M. Then f(X) − ν is defined over some finite extension S of R. For
the Weierstrass order we have the equation

W -ord(f(X)− ν) = W -ord(f(X)) = pht(f)

and ht(f) is finite by Proposition 1.33. By the Weierstrass preparation theorem (The-
orem 1.42) therefore f(X) − ν = u(X)g(X), where u(X) is an invertible power series
and g(X) is a distinguished polynomial :

g(X) = Xpht(f) +

pht(f)−1∑
i=0

giX
i, gi ∈MS

Take α ∈ K so that g(α) = 0. Since the coefficients of g lie in S then α ∈ R.
As gi ∈ M, then also α ∈ M. But the zeroes of f(X) − ν are precisely the zeroes of
g(X). Hence we have f(α) = ν for some α ∈M. This proves i).
For ii), take ν = 0. Now g(X) has pht(f) distinct roots, provided that g(α) = 0 implies
g′(α) 6= 0.
Thus f(X) = 0 has pht(f) roots in M, provided f(α) = 0 implies f ′(α) 6= 0 (α ∈M).
Differentiating the equation f(F (X, Y )) = G(f(X), f(Y )) with respect to Y , we obtain
f ′(F (X, Y ))F2(X, Y ) = G2(f(X), f(Y )).f ′(Y )
(here, the suffix 2 denotes the derivative with respect to the second variable). Put
X = α, Y = 0. If f(α) = 0, then f ′(α)F2(α, 0) = G2(0, 0).f ′(0) = f ′(0) 6= 0. Therefore
f ′(α) 6= 0.

The following theorem is really a corollary of Theorem 1.38
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Theorem 1.43. (Lubin, Serre)
i) P (F ) is a divisible group and the integers prime to p induce automorphism of P (F ).
ii) Λ(F ) ∼= (Qp/Zp)(h), h = Ht(F ) ((h) denotes h-fold product).

Proof. i) For n prime to p, i.e., n a unit of R, [n]F is an automorphism of F . Hence
P ([n]F ) is an automorphism of P (F ). Apply Theorem 1.38 to f = [p]rF . The surjectivity
of P ([p]rF ) : P (F )→ P (F ) implies that P (F ) is divisible.
ii) Λ(F ) is a torsion subgroup of the divisible group P (F ) hence divisible. Also Λ(F ) is
p-primary. Hence Λ(F ) ∼= (Qp/Zp)(c), where c = dim(Ker([p]F )). But the cardinality
of Ker([p]F ) is pdim(Ker([p]F )), which by Theorem 1.38 is ph. Therefore c = h.

For each real number ρ, the set Jρ = {α ∈ K|v(α) > ρ} is a fractional ideal of R. If
ρ ≥ 0 then Jρ is an ideal of R and in particular, J0 = M. For ρ ≥ 0, the elements of Jρ
form a subgroup F (Jρ) of P (F ).
We admit the existence of a unique isomorphism lF : F → Ga, defined over K such
that l′F (X) is defined over R and l′F (0) = 1. Its inverse is denoted eF . (For details, see
[Fro68]).

Theorem 1.44. (Serre)
i) lF converges on M ; eF converges on J 1

p−1
.

ii) The map α 7→ lF (α) (α ∈ M) defines a homomorphism P (F ) → K
+ of Γ-modules

and of EndR(F )-modules. The sequence :

0→ Λ(F )→ P (F )→ K
+ → 0

is exact.
iii) lF and eF define inverse isomorphisms F (J 1

p−1
) ∼= J+

1
p−1

(where the group operation

on J+
1
p−1

is the usual addition).

We will need the following lemma to prove Theorem 1.44

Lemma 1.45. For each real number ρ, there exists an integer n = n(ρ, F ) such that,
for all α ∈ K with v(α) ≥ ρ, we have v([p]nF (α)) > 1

p−1
.

Proof. We may assume ρ < 1, since otherwise we may take n = 0.
Now, [p]F (X) ≡ pX (mod deg 2). If v(α) > 0, then [p]F (α) = pα+α2r for some r ∈ R.
Thus if v(α) ≥ ρ, then v([p]F (α)) ≥ inf(1 + v(α), 2ρ) ≥ inf(1, 2ρ).
We deduce then by induction that v([p]nF (α)) ≥ inf(1, 2nρ), and we then choose n so
that 2nρ > 1

p−1
.

We can now prove the Theorem
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Proof. Write lF (X) =
∞∑
n=1

anX
n.

Since l′F is defined over R and l′F (0) = 1, then v(nan) ≥ 0 and a1 = 1. We thus have
v(an) ≥ −v(n). Put n = pσ(n), then v(n) ≤ σ(n).
Now v(anα

n) = nv(α) + v(an) ≥ pσ(n)v(α) − v(n) ≥ pσ(n)v(α) − σ(n), which tends to
∞ as n→∞, provided that v(α) > 0. Hence lF (α) converges if v(α) > 0.

Write eF (X) =
∞∑
n=1

bnX
n. Choose β ∈ R so that v(β) = 1

p−1
, e.g. βp−1 = p.

Then v(anβ
n−1) ≥ n−1

p−1
− v(n) which is ≥ 0 when v(n) = 0.

If v(n) > 0, we continue n−1
p−1
− v(n) ≥ pv(n)−1

p−1
− v(n) = 1 +p+p2 + ...+pv(n)− v(n) ≥ 0.

Therefore (β−1◦ lF ◦β)(X) =
∞∑
n=1

anβ
n−1Xn has coefficients in R, and leading coefficient

1. Its inverse under composition (β−1 ◦ eF ◦β)(X) =
∞∑
n=1

bnβ
n−1Xn is thus also a power

series with integral coefficients and leading coefficient 1. Hence v(bnβ
n−1) ≥ 0.

Take α ∈ J 1
p−1

, i.e., such that v(α) > 1
p−1

.
Then v(bnα

n) = v(bnβ
n−1(α

β
)n−1α) = v(bnβ

n−1) + v((α
β
)n−1) + v(α) → ∞ as n → ∞,

since v(α
β
) > 0. Thus eF (α) converges if α ∈ J 1

p−1
.

Moreover, v(bnα
n) > v(α), if n > 1. Therefore eF (α) = α + α′ where v(α′) > v(α).

Hence we deduce that, if α ∈ J 1
p−1

then v(eF (α)) = v(α). Similarly, if α ∈ J 1
p−1

, then
v(lF (α)) = v(α). The maps α 7→ eF (α) and α 7→ lF (α) thus define inverse bijections
J 1
p−1
→ J 1

p−1
. Under lF therefore the group of points F (J 1

p−1
) becomes isomorphic to

the additive group of J 1
p−1

, and the inverse ismorphism is given by eF . We have thus
established i) and iii).
Since K+ is torsion free, then Λ(F ) ⊆ Ker(lF ).
Let α ∈ Ker(lF ). By Lemma 1.45, [p]nF (α) ∈ F (J 1

p−1
) for some integer n > 0.

Since lF ([p]nF (α)) = 0, then by iii), [p]nF (α) = 0. Therefore α ∈ Λ(F ). Thus in fact
Ker(lF ) = Λ(F ).
Suppose a ∈ K

+, since K+
/J 1

p−1
is a torsion module, then pma ∈ J 1

p−1
for some m.

Thus by iii), there exists α ∈ J 1
p−1

such that lF (α) = pma. But P (F ) is divisible
(Theorem 1.43) so there exists β ∈ P (F ) such that [p]mF (β) = α. Since pmlF (β) = pma,
then lF (β) = a. We have thus shown that lF : P (F ) → K

+ is surjective and so that
the sequence

0→ Λ(F )→ P (F )→ K
+ → 0

of groups is exact. Since lF is defined over K this is a sequence of Γ-modules. If
f ∈ EndR(F ), then both lF ◦ f and f ′(0) ◦ lF are homomorphism F → Ga with
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derivative f ′(0) at 0. They therefore coincide. From the commutative diagram

P (F ) K
+

P (F ) K
+

P (f) f ′(0)

we deduce that P (F )→ K
+ is a homomorphism of EndR(F )-modules.

The following theorem is a converse of Theorem 1.38. It shows that every finite subgroup
of Λ(F ) arises as the kernel of some isogeny. We will admit it (for details see [Fro68]
Chapter IV, section 2, Theorem 4).

Theorem 1.46. (Lubin)
Let φ be a finite subgroup of Λ(F ). Let L be the fixed field of the stabilizer of φ in
Gal(K/K) and let S denote the integers of L. Then there exist a formal group G and
an isogeny f : F → G both defined over S, so that :
i) Ker(f) = φ (we write Ker(f) for Ker(P (f)))
ii) If g : F → H is an isogeny with Ker(g) ⊇ φ then there exists a unique isogeny
h : G → H such that g = h ◦ f . If g and H are defined over the integers S1, of some
finite extension L1 of L, then so is h.

Corollary 1.47. If there exists an isogeny F → G defined over some S1 then there
exists an isogeny G→ F defined over S1.

Proof. If f : F → G is an isogeny, then suppose the exponent of Ker(f) is pr. Then
Ker(f) ⊆ Ker([p]rF ). By Theorem 1.46, there exists an isogeny h : G → F such that
h ◦ f = [p]rF , and h is defined over S1.

Corollary 1.48. Either HomS(F,G) = 0, or HomS(F,G) as an EndS(F )-modules is
isomorphic to a non-zero ideal of EndS(F ), and as an EndS(G)-module is isomorphic
to a non-zero ideal of EndS(G).

Proof. Suppose HomS(F,G) 6= 0. By Corollary 1.47, there exists an isogeny g : G→ F
over S. The map f 7→ g ◦ f is an injective homomorphism HomS(F,G)→ EndS(F ) of
EndS(F )-modules, whose image is a non-zero ideal.
Analogously for the map f 7→ f ◦ g.

Corollary 1.49. If HomS(F,G) 6= 0 then :
i) The quotient field of D(EndS(F )) and of D(EndS(G)) coincide.
ii) The rank of HomS(F,G) over Zp is the rank of EndS(F ) (and of EndS(G)).

Proof. See [Fro68] Chapter IV, section 2 Corollary 3
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1.4 The Tate Module

The notation is the same as in the section on group of points. We shall frequently write
[p]nF in place of Λ([p]nF ). We know that [p]nF yields a homomorphism

ρn+m
m : Ker([p]n+m

F )→ Ker([p]mF )

(here Ker([p]mF stands as an abbreviation for Ker(Λ([p]mF )) ).
These maps, and the groups Ker([p]mF ) define an inverse system of Abelian groups.

Definition 1.50. The inverse limit of this system is called the Tate module, denoted
T (F ).

The elements of T (F ) can be written as sequences

(a1, a2, ...) ai ∈ Λ(F )

[p]F (a1) = 0, [p]F (ai+1) = ai

Similarly we have an inverse system, indexed by the integers m ≥ 0, whose groups all
coincide with Λ(F ) (that means that we put Λ(F )n = Λ(F ) for all n), the map from
Λ(F )n+m to Λ(F )m being the endomorphism [p]nF . Let V (F ) be the inverse limit. The
element of V (F ) can be written as sequences

a = (a0, a1, ...) ai ∈ Λ(F )

[p]F (ai+1) = ai

The map a 7→ a0 is a homomorphism V (F ) → Λ(F ), whose kernel may clearly be
identified with T (F ), i.e., we get an exact sequence

0→ T (F )→ V (F )→ Λ(F )→ 0 (1.1)

Equivalent description :
We start with the isomorphism HomZp(

1
pn
Zp/Zp,Λ(F )) ∼= Ker([p]nF ), which takes f

into the image f( 1
pn

mod Zp). The direct system 1
pn
Zp/Zp with limit Qp/Zp gives rise

to an inverse system by means of the functor HomZp(−,Λ(F )), which under the above
isomorphism goes over the inverse system (Ker([p]mF , ρn+m

m ). Hence in fact

HomZp(Qp/Zp,Λ(F )) ∼= T (F ) (1.2)

Similarly from the direct system 1
pn
Zp with limit Qp one obtains an isomorphism

HomZp(Qp,Λ(F )) ∼= V (F ) (1.3)
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and of course we have the natural isomorphism

HomZp(Zp,Λ(F )) ∼= Λ(F )

By means of these isomorphisms the sequence (1.1) can now be interpreted as being
obtained by applying the functor HomZp(−,Λ(F )) to the sequence

0→ Zp → Qp → Qp/Zp → 0

Alternatively (1.1) may be viewed as obtained from this sequence by tensoring over Zp
with T (F ).
Another consequence of (1.2) and (1.3), together with the isomorphisms

HomZp(Qp/Zp,Qp/Zp) ∼= Zp
HomZp(Qp,Qp/Zp) ∼= Qp

and Theorem 1.43 ii) is :

Proposition 1.51. T (F ) ∼= Z(h)
p and V (F ) ∼= Q(h)

p

We shall in fact view T (F ) as a lattice (= free Zp-module of maximal rank) in the
vector space V (F ).

The groups and maps of (1.1) are clearly functorial. Here in particular T (F ) and V (F ),
as well as Λ(F ), are EndR(F )-modules, and the maps of (1.1) are homomorphisms
of EndR(F )-modules. Moreover, an isogeny f : F → G gives rise to a commutative
diagram (1.4)

T (F ) V (F ) Λ(F )

T (G) V (G) Λ(G)

T (f) V (f) Λ(f)

Proposition 1.52. V (f) is an isomorphism and T (f) is injective, with Coker(T (f)) ∼=
Ker(Λ(f)) finite.

Proof. If dimQp(Ker(V (f))) = s, then Ker(Λ(f)) contains the submodule
Ker(V (f))/Ker(T (f)) ∼= (Qp/Zp)s. As Ker(Λ(f)) is finite (Theorem 1.38), s = 0 and
so Ker(V (f)) = 0. Similarly, as Coker(Λ(f)) = 0 (again by the same theorem) we
conclude that Coker(V (f)) = 0. Now it follows that Ker(T (f)) = 0 and Ker(Λ(f)) ∼=
Coker(T (f)) (By Snake lemma).
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From this proposition, it follows that Im(T (f)) is a lattice in V (G), a sublattice of
T (G). (The term lattice L in a vector space V is always to imply that L is of maximal
rank, i.e., spans V ).
We shall write L(f) for the inverse image of T (G) under V (f), i.e., for V (f)−1(T (G)).
This is a superlattice of T (F ) in V (F ).

The Galois group Γ = Gal(K/K) acts on V (F ) and T (F ) as well as on Λ(F ) and
the maps of (1.1) are homomorphisms of Γ-modules. We are assuming throughout that
the given formal group F is defined over R, but we do not assume other formal groups
G,H, ... to be necessarily defined over R, they may be defined over the integers in some
finite extension of R. If however G as well as the isogeny f : F → G are defined over
R, then the diagram (1.4) is one of Γ-module homomorphisms and so both Im(T (f))
and L(f) are Γ-modules.

Theorem 1.53. (Lubin)
i) Let L be a sublattice of T (F ) in V (F ). Then there exists an isogeny f : H → F
so that L = Im(T (f)), and if L is stable under Γ then H and f may be chosen to be
defined over R. If Im(T (f1)) ⊆ Im(T (f)), f1 being an isogeny H1 → F then there is
an isogeny h : H1 → H with f1 = f ◦ h. In particular Im(T (f)) determines H and f
to within isomorphism.
ii) Let L be a supperlattice of T (F ) in V (F ). Then there exists an isogeny g : F → G
with L(f) = L. If L(g) ⊆ L(g1), g1 being an isogeny F → G1 then there is an isogeny
h : G → G1 so that h ◦ g = g1. In particular L(g) determines G and g to within
isomorphism.

Proof. First that of ii). L/T (F ) is a finite subgroup of V (F )/T (F ) = Λ(F ). Taking
quotients mod T (F ) we thus get an order preserving bijection from the set of supper-
lattices L to the set of finite subgroups of Λ(F ), which also preserves stability under Γ.
Note also that if g : F → G is an isogeny, then Ker(Λ(g)) = L/T (F ) precisely when
V (g)L = T (G), i.e., L = L(g).
ii) now follows from Theorem 1.46

Next the proof of i). Let in the sequel n be an integer with p−nL = L′ ⊇ T (F ) and so, by
ii), there exists an isogeny g : F → H with L′ = L(g), i.e., with V (g)L′ = T (H). Now
pnL′ = L ⊆ T (F ) implies that pnKer(Λ(g)) = 0, i.e., that Ker(Λ(g)) ⊆ Ker([p]nF ).
By Theorem 1.46, there is an isogeny f : H → F with f ◦ g = [p]nF . But then
Im(T (f)) = V (f ◦ g)L′ = pnL′ = L as required. Let f1 : H1 → F be an isogeny with
L1 = Im(T (f1)) ⊆ Im(T (f)) = L. We may suppose that Im(T (f1)) ⊇ pnT (F ). Let g
as above. As by hypothesis, pnKer(Λ(f1)) = 0, there is an isogeny g1 : F → H1 with
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g1 ◦ f1 = [p]nH1
. But then also f1 ◦ g1 = [p]F = f ◦ g. Now we have

Ker(Λ(g1)) = p−nIm(T (f1))/T (f) ⊆ p−nIm(T (f))/T (F ) = Ker(Λ(g))

Therefore by Theorem 1.46, there is an isogeny h : H1 → H with g = h ◦ g1, i.e.,
f ◦ h ◦ g1 = f1 ◦ g1, and so f1 = f ◦ h. This completes the proof of the theorem.

Remark 1.54. i) Note that in the above construction the choice of n is immaterial (of
course within the stated conditions). If say m ≥ n, then g1 = g ◦ [p]m−nF replaces g and
still f ◦ g1 = [p]mF .
ii) Note secondly that if L is Γ-stable then so is L′. Choose then g to be defined over
R. Hence g−1 (inverse under substitution) is defined over K, and thus f = [p]nF ◦ g−1 is
defined over K, hence over R.

We can extend the injective map

HomR(F,G)→ Hom(V (F ), V (G))

to a map
Qp ⊗Zp HomR(F,G)→ Hom(V (F ), V (G))

which we shall still denote by V and which remains injective. Viewing HomR(F,G) as
contained in Qp ⊗Zp HomR(F,G) we have :

Theorem 1.55. Let g ∈ Qp ⊗Zp HomR(F,G). Then g ∈ HomR(F,G) if and only if
V (g) maps T (F ) into T (G).

Proof. The "Only if" is trivial
"If" : Let png = h ∈ HomR(F,G). Then Im(T (h)) ⊆ pnT (G), whence by Theorem
1.38, h = [p]nG ◦ h1, h1 ∈ HomR(F,G). But then g = h1.

Write now EF = D(EndR(F )) and let LF be the quotient field of EF in K. Then of
course D induces an isomorphism

Qp ⊗Zp EndR(F ) ∼= LF

We view T (F ) as an EF -module and so V (F ) as an LF -module. By Theorem 1.55

EF = {a ∈ LF |aT (F ) ⊆ T (F )}

Let g : G → F be an isogeny. We know (Corollary 1.49) that LF = LG, and in fact
V (g) is an isomorphism of LF -modules. Hence :
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Corollary 1.56. (Lubin)

EG = {a ∈ LF |aIm(T (g)) ⊆ Im(T (g))}

Let R be a discrete valuation ring with finite residue class of ps elements. Denote by
M the maximal ideal of R and take π in R so that M = πR.

Lemma 1.57. Suppose f(X) and g(X) are power series over R satisfying

f(X) ≡ g(X) ≡ πX mod deg 2
f(X) ≡ g(X) ≡ Xq mod M

where q = psl for some positive integer l. Let L(X1, ..., Xn) be a linear form over R.
Then there exists a power series F (X1, ..., Xn) over R satisfying the conditions :
i) F (X1, ..., Xn) = L(X1, ..., Xn) (mod deg 2)
ii) f(F (X1, ..., Xn)) = F (g(X1), ..., g(Xn))
These conditions determine F uniquely over the quotient field of R.

Proof. Our aim is to construct a sequence (Fm) of polynomials over R in X1, ..., Xn

with the properties :

Fm(X1, ..., Xn) is of degree m− 1

Fm(X1, ..., Xn) ≡ L(X1, ..., Xn) (mod deg 2)
f(Fm(X1, ..., Xn)) ≡ Fm(g(X1), ..., g(Xn)) (mod deg m)
Fm+1(X1, ..., Xn) = Fm(X1, ..., Xn) + ∆(X1, ..., Xn)

where ∆(X1, ..., Xn) is a homogeneous polynomial of degree m.
These conditions imply (here we work with congruences modulo degree m+ 1) that :

Fm+1(g(X1), ..., g(Xn)) = Fm(g(X1), ..., g(Xn)) + ∆(g(X1), ..., g(Xn))

≡ Fm(g(X1), ..., g(Xn)) + ∆(πX1, ..., πXn)

≡ Fm(g(X1), ..., g(Xn)) + πm∆(X1, ..., Xn)

If we write f(X) = πX + f(2)(X), then we also have

f(Fm+1(X1, ..., Xn)) = f(Fm(X1, ..., Xn) + ∆(X1, ..., Xn))

≡ πFm(X1, ..., Xn) + π∆(X1, ..., Xn) + f(2)(Fm(X1, ...Xn))

≡ f(Fm(X1, ..., Xn)) + π∆(X1, ..., Xn)

We are therefore required to find ∆ satisfying the congruence :

Fm(g(X1), ..., g(Xn)) + πm∆(X1, ..., Xn) ≡ f(Fm(X1, ..., Xn)) + π∆(X1, ..., Xn)
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In other words, we must solve over the quotient field of R the congruence :

∆(X1, ..., Xn) ≡ 1

π

(
Fm(g(X1), ..., g(Xn))− f(Fm(X1, ..., Xn))

1− πm−1

)
There clearly exists a unique solution. But 1−πm−1 is a unit of R. To show that the so-
lution has coefficients in R we must show that Fm(g(X1), ..., g(Xn))−f(Fm(X1, ..., Xn))
has coefficients in M (i.e. divisible by π). Since f(X) ≡ g(X) ≡ Xq (mod M), then
Fm(g(X1), ..., g(Xn)) − f(Fm(X1, ..., Xn)) ≡ Fm(Xq

1 , ..., X
q
n) − (Fm(X1, ..., Xn))q (mod

M)
But (Fm(X1, ..., Xn))q ≡ F q

m(Xq
1 , ..., X

q
n) (mod M) (F q

m denotes the polynomial ob-
tained from Fm by raising all the coefficients to the q-th power). As q is a power of the
cardinality of the residue field, we have F q

m = Fm. Hence

(Fm(X1, ..., xn))q ≡ Fm(Xq
1 , ..., X

q
n) (mod M)

and therefore

Fm(g(X1), ..., g(Xn))− f(Fm(X1, ..., Xn)) ≡ 0 (mod M)

as required.

Now one has :

Theorem 1.58. (Lubin)
Let O be an order over Zp (contained in R). Then there is a formal group F with
ht(F ) = [O : Zp] so that EF = O.

We first find an F so that ht(F ) = [O : Zp] and so that LF is the quotient field of O.
Let K be the quotient field of O, R the valuation ring of K. We then have :

Proposition 1.59. There is a formal group F of height h = [K : Qp] so that EF = R.

Proof. (Constructon of Lubin-Tate). Let π generate the maximal ideal M of R and let
q = card(R/M) = ps. By Lemma 1.57, there is a unique F (X, Y ) ∈ R[[X, Y ]] with

F (X, Y ) ≡ X + Y mod deg 2

and with
F (f(X), f(Y )) = f(F (X, Y ))

where f(X) = πX + Xq. We shall then show below that F is a formal group, so that
the map D : EndE(F )→ R is surjective, hence bijective.
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Moreover [p]F = f e ◦ u, where e is the ramification index of K/Qp and u is a unit
of EndR(F ). Therefore ht([p]F ) = e.s = [K : Qp] = h. Thus F is of height h, and
K ⊆ LF . As [LF : Qp]|[K : Qp] = h, it follows that K = LF and R = EF .
Let a ∈ R and construct along the line of Lemma 1.57, a power series [a](X) over R
with

[a](X) ≡ aX mod degree 2

and
f ◦ [a] = [a] ◦ f

We have then to show that :

F (X, Y ) = F (Y,X)

F (F (X, Y ), Z) = F (X,F (Y, Z))

[a](F (X, Y )) = F ([a](X), [a](Y ))

and it will follow that F is indeed a commutative formal group and [a] is an endomor-
phism of F with D([a]) = a. In each case this is done via the uniqueness part of Lemma
1.57. Thus e.g. the two sides in the last equation are both solutions of the problem of
finding G, so that G(f(X), f(Y )) = f(G(X, Y )) and G(X, Y ) ≡ aX + aY (mod degree
2).

Proposition 1.60. Let F be a formal group of finite height and let O be an order with
quotient field LF . Then there is a formal group G isogeneous to F so that O = EG.

Proof. Let L be any sublattice of T (F ) so that O = {a ∈ LF | aL ⊆ L}. Such
sublattices exist, e.g., L = Ox with 0 6= x ∈ T (F ). By Theorem 1.53, there is an
isogeny g : G→ F so that L = Im(T (g). By Corollary 1.55, EG = O.

Theorem 1.58 now follows from the last two propositions.

1.4.1 The Tate module as a module over Γ = Gal(K/K)

We already know that T (F ), and hence V (F ) is a Γ-module. An element γ of Γ will
leave T (F ) and hence V (F ) elementwise fixed if and only if γ leaves Λ(F ) fixed. But
Λ(F ) is just a subset of K, and so we see that the representation of Γ on V (F ) (or on
T (F )) is a faithful representation of its quotient group Gal(K(Λ(F ))/K).
Let t : Γ → GL(T (F )) (automorphism group of T (F )) be the homomorphism with
xt(γ) = γx for x ∈ T (F ). GL(T (F )) is a topological group, a fundamental system of
neighbourhood of the identity being the subgroup of automorphism a ≡ 1 (mod pn)
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(i.e., of form 1 + spn, 1=identity, s an endormorphism of T (F )). t is continuous. To see
this we only have to note that t(γ) ≡ 1 (mod pn) if and only if ρnt(γ) = ρnt(1), where
ρn is the map T (F )→ Ker([p]nF ) (we consider here the definion of T (F ) as an inverse
limit). But ρnt(γ) = ρnt(1) if and only if γ leaves Ker([p]nF ) ⊆ K fixed.
We now consider the Γ-module V (F ).

Theorem 1.61. V (F ) is an irreducible Γ-module over Qp (i.e., the only Qp-subspace
of V (F ) which are Γ-modules are V (F ) and 0).

Proof. Denote by Γs the orbit under Γ of an element s in a Γ-set S. What we have to
show is that if 0 6= x ∈ V (F ) then the subspace generated by Γx is the whole of V (F ).
It clearly suffices to consider an x ∈ T (F ), with x 6∈ pT (F ).
Let then M be the Zp-submodule of V (F ) generated by Γx. M is a free Zp-module of
rank s ≤ h and we have to show that s ≥ h.
Write ρn for the surjection T (F )→ Ker([p]nF ) associated with the inverse limit T (F ) =
lim
←
Ker([p]nF ). M ⊆ T (F ) and so ρn(M) is defined. It is the direct product of at most

s cyclic subgroups, and so the number of elements in ρn(M), not in pρn(M) is at most
pns − p(n−1)s. Write αn = ρn(x). Then each element of Γαn lies in ρn(M), and not in
pρn(M). Therefore

card(Γαn) ≤ p(n−1)s(ps − 1).

The left hand side is the number of conjugates of αn over K, and so equal to the degree
[K(αn) : K]. We thus get the inequality

[K(αn) : K] ≤ p(n−1)s(ps − 1) (1.4)

holding for all n.
Now note that

[p]F (α1) = 0, α1 6= 0, [p]F (αn+1) = αn (1.5)

We shall show that this implies the existence of a positive constant c so that

[K(αn) : K] ≥ cpnh, for all n (1.6)

Comparison of (1.5) with (1.7) as n→∞ yields then the required inequality s ≥ h.
To get (1.7) from (1.6) we require a lemma, to be proved later.

Lemma 1.62. Let α, β ∈ P (F ), [p]F (α) = β

a) If v(β) ≤ 1, then v(α) ≤ v(β)
p

b) If v(β) ≤ 1
e
, e being the ramification index of K over Qp, then v(α) ≤ v(β)

ph
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We apply the lemma to complete the proof of the theorem. Return to (1.6). By
Theorem 1.44, v(α1) ≤ 1

p−1
≤ 1. From the lemma, form a), we obtain by induction the

inequality v(αn) ≤ 1
pn−1 . Therefore for some n0, v(αn0) ≤ 1

e
. Now use form b) in the

lemma to get for n ≥ n0 the inequality v(αn) ≤ 1
ep(n−n0)h

. On the other hand let en
be the ramification index of K(αn)/K. Then certainly env(αn) ≥ 1

e
, 1
e
being the least

strictly positive value of v on K. Hence finally,

[K(αn) : K] ≥ en ≥
1

ev(αn)
≥ pnhc, c = p−n0h

It remains to prove the lemma

Proof. Let [p]F (X) =
∞∑
n=1

anX
n. Here a1 = p.

Apply Theorem 1.8 to the ring R/pR and the reduction of [p]F (X) mod pR. This tell
us that v(an) ≥ v(p) = 1 whenever p - n, i.e., in particular

v(an) ≥ 1 for 0 < n < p (1.7)

Similarly, applying the same reasoning to the residue field of R, one gets

v(an) ≥ 1

e
for 0 < n < ph (1.8)

Let now v(ajα
j) = inf

n
v(anα

n). Then v(β) ≥ v(ajα
j) and so

jv(α) ≤ v(aj) + jv(α) = v(ajα
j) ≤ v(β) (1.9)

If first v(β) ≤ 1 then for 0 < n < p, we have by (1.8)

v(anα
n) = v(an) + nv(α) > 1 ≥ v(β) ≥ v(ajα

j)

and so j ≥ p, whence by (1.10) pv(α) ≤ v(β)
If next v(β) ≤ 1

e
, then we deduce similarly that j ≥ ph, whence again by (4.10)

phv(α) ≤ v(β).
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2 The Period rings BdR and Bcris

2.1 Witt Vectors

In this section we will recall some properties about Witt vectors and the basic defini-
tions. It will be useful in the sequel for the construction of the rings of period BdR and
Bcris.
Fix p a prime number and let X = (X0, X1, ...) be a sequence of indeterminates.

Definition 2.1. Let n ∈ Z≥0, the n-th Witt polynomial is :

Φn(X) = Xpn

0 + pXpn−1

1 + p2Xpn−2

2 + ...+ pnXn

If A is a ring, the ghost map is :

ΦA : AZ≥0 → AZ≥0

a = (a0, a1, ...) 7→ (Φn(a))n∈Z≥0

Lemma 2.2. Let A be a ring, x, y ∈ A such that x ≡ y mod pA. Then

xp
n ≡ yp

n

mod pn+1A ∀n ∈ Z≥0

.

Proof. We proceed by induction on n ∈ Z≥0.
Assume n > 0 and xpn−1 ≡ yp

n−1 mod pnA. Write xpn−1
= yp

n−1
+ pnZ.

Then xpn = yp
n

+
p−1∑
k=1

(
p
k

)
pknZky(p−k)pn−1

+ppnZp ≡ yp
n mod pn+1A and we are done.

Lemma 2.3. (Dwork)
Assume ϕ : A → A is a ring homomorphism such that ϕ(a) ≡ ap mod pA for all
a ∈ A. Then a sequence (xn)n ∈ AZ≥0 lies in the image of ΦA if and only if we have
ϕ(xn) ≡ xn+1 mod pn+1A for all n ∈ Z≥0.

Proof. Let a = (a0, a1, ...) ∈ AZ≥0 .

As ϕ is a ring homomorphism, we have : ϕ(Φn(a)) =
n∑
i=0

piϕ(ai)
pn−i . The previous

lemma implies that ϕ(ai)
pn−i ≡ ap

n+1−i

i mod pn+1−iA. So piϕ(ai)
pn−i ≡ piap

n+1−i

i mod pn+1A.

Thus ϕ(Φn(a)) =
n∑
i=0

piap
n+1−i

i mod pn+1A. But
n∑
i=0

piap
n+1−i

i = Φn+1(a) − pn+1an+1.

Hence ϕ(Φn(a)) ≡ Φn+1(a) mod pn+1A.
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Conversely, assume (xn)n ∈ AZ≥0 is such that ϕ(xn) ≡ xn+1 mod pn+1A for all n.
We construct a = (a0, a1, ...) ∈ AZ≥0 inductively such that xn = Φn(a) for all n ∈ Z≥0.
Put a0 = x0. Let n ∈ Z≥0 be such that a0, a1, ..., an have been constructed such that
for all k ∈ {0, ..., n}, xk = Φk(a0, a1, ..., ak).

Then ϕ(xn) = ϕ(Φn(a0, a1, ..., an)) =
n∑
i=0

piap
n+1−i

i mod pn+1A i.e. xn+1 ≡
n∑
i=0

piap
n+1−i

i mod pn+1A.

This implies that xn+1 −
n∑
i=0

piap
n+1−i

i = pn+1an+1 for some an+1 ∈ A.

Hence xn+1 = Φn+1(a0, a1, ..., an+1).

Proposition 2.4. There exist unique sequences of polynomials (Sn(X, Y ))n∈Z≥0
,(Pn(X, Y ))n∈Z≥0

in Z[X, Y ] and (In(X))n∈Z≥0
in Z[X] such that :

Φn(S0(X, Y ), ..., Sn(X, Y )) = Φn(X) + Φn(Y )

Φn(P0(X, Y ), ..., Pn(X, Y )) = Φn(X)Φn(Y )

Φn(I0(X), ..., In(X)) = −Φn(X)

Proof. Put A = Z[X, Y ]. Let ϕ : A → A be the unique ring endomorphism such that
ϕ(Xi) = Xp

i and ϕ(Yi) = Y p
i for all i ∈ Z≥0. We have : ϕ(a) ≡ ap mod pA,

Φn(ϕ(X)) = Φn+1(X)− pn+1Xn+1 and Φn(ϕ(Y )) = Φn+1(Y )− pn+1Yn+1.
Hence ϕ(Φn(X) + Φn(Y )) = Φn+1(X) + Φn+1(Y ) mod pn+1A. By Dwork’s lemma we
get that (Φn(X) + Φn(Y ))n belongs to Im(ΦA), hence the existence of (Sn(X, Y ))n.
Similarly we have the existence of (Pn(X, Y ))n and (In(X))n. The unicity follows from
the injectivity of ΦA : AZ≥0 → AZ≥0 .

Definition 2.5. Let A be a ring. Put W (A) = AZ≥0 . If a = (a0, a1, ...) and
b = (b0, b1, ...) are both in W (A).

Put : a+ b = (Sn(a, b))n∈Z≥0

a.b = (Pn(a, b))n∈Z≥0

− a = (In(a))n∈Z≥0

Proposition 2.6. i) A 7→ (W (A),+, .) is a functor from the category of commutative
rings to that of sets endowed with two internal laws.
ii) If p is not a zero divisor in A (resp. p is not invertible in A), then ΦA is injective
(resp. bijective).
iii) (W (A),+, .) is a commutative ring with zero (0, 0, ...) and unit (1, 0, 0, ...).

Proof. i) and ii) are obvious.
For iii), we will use the following trick that will be useful in other proofs.
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Put B = Z[Xa]a∈A, p is not a zero divisor and we have a surjective ring homomor-
phism B → A which maps Xa to a. As ΦB is injective, W (B) is identified with a
subring of BZ≥0 and since W (B)→ W (A) is surjective, the ring axioms are satisfied in
(W (A),+, .).

Definition 2.7. Let A be a ring. The Teichmüller representative of a ∈ A is

[a] := (a, 0, 0, ...) ∈ W (A)

Proposition 2.8. Let A be a ring and a, b ∈ A. Then [a].[b] = [ab] in W (A)

Proof. By the same trick as in the previous proof, we may assume that A has no p-
torsion, thus ΦA is injective. This implies that ΦA([a]) = (a, ap, ap

2
, ...) is multiplicative

in AZ≥0 .

Proposition 2.9. There exists a unique sequence of polynomials (Fn(X))n∈Z≥0
such

that Fn(X) ∈ Z[X0, X1, ..., Xn+1] and Φn(F0(X), ..., Fn(X)) = Φn+1(X) for all n ∈ Z≥0.

Proof. We have to prove that (Φ1(X),Φ2(X), ...) ∈ Im(ΦA) where A = Z[X].
As A is endowed with the lift of Frobenius given by ϕ(Xi) = Xp

i , it is enough (by
Dwork’s lemma) to see that :

Φn+1(X) ≡ ϕ(Φn(X)) mod pn+1A

for all n ∈ Z≥0.
Unicity follows from unicity in Z[1

p
][X].

Definition 2.10. Let A be a ring. The Frobenius map on W (A) is :

F : W (A)→ W (A)

a = (a0, a1, ...) 7→ (F0(a), F1(a), ...)

Proposition 2.11. Let A be a ring.
i) ∀a ∈ A, F ([a]) = [ap]
ii) ∀n ∈ Z≥0, Fn(X) ≡ Xp

n mod pZ[X]
In particular, if pA = 0, then F (a0, a1, ...) = (ap0, a

p
1, ...).

Proof. i) We use again our trick and thus we may assume that A has no p-torsion so
the ΦA is injective. If a ∈ A :

Φn(F ([a])) = Φn+1([a]) = ap
n+1

= Φn([a])p

= Φn([a]p)
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ii) By induction on n, starting with F0(X0, X1) = Xp

0 + pX1.
Assume that n > 0 and Fi(X) ≡ Xp

i mod pZ[X] for i ∈ {0, 1, ..., n− 1}.
Then Fi(X)p

n−i ≡ Xpn+1−i

i mod pn+1−iZ[X], hence piFi(X)p
n−i ≡ piXpn+1−i

i mod pn+1Z[X].
Also

Φn+1(X) = Φn(F0(X), ..., Fn(X))

=
n∑
i=0

piFi(X)p
n−i

≡ pnFn(X) +
n−1∑
i=0

piXpn−i

i mod pn+1Z[X]

Therefore we have Φn(X) ≡ pnFn(X) + Φn+1(X)− pnXp
n − pn+1Xn+1 mod pn+1Z[X].

But pnFn(X) ≡ pnXp
n mod pn+1Z[X] i.e. Fn(X) ≡ Xp

n mod pZ[X].

Definition 2.12. Let A be a ring. The Veirschiebung map is :

V : W (A)→ W (A)

a = (a0, a1, ...) 7→ (0, a0, a1, ...)

Proposition 2.13. Let A be a ring and a, b ∈ W (A).
i) ΦA(F (a)) = (Φ1(a),Φ2(a), ...) = f(ΦA(a)) and ΦA(V (a)) = (0, pΦ0(a), pΦ1(a), ...) =
v(ΦA(a)) where f(x0, x1, ...) = (x1, x2, ...) and v(x0, x1, ...) = (0, px1, px2, ...).
ii) F is a ring endomorphism.
iii) V is a group endormorphism of (W (A),+).
iv) FV = pIdW (A) and V F (a) = (0, 1, 0, ...).a.
v) V (a.F (b)) = V (a.b), V (a)V (b) = pV (a.b).
vi) F (a) ≡ ap mod pW (A)

vii) a = [a0]+V (a′), where a′ = (a1, a2, ...) ∈ W (A) therefore we have a =
∞∑
n=0

V n([an]).

Proof. i) is computation
By the usual trick we can assume for ii)-vii) that A is p-torsion free hence that ΦA is
injective.
ii) (resp. iii)) follows from the fact that f (resp. v) is a ring (resp. group) endomorphism
of AZ≥0 .
iv) follows from the fact that f ◦ v = p and that ΦA(0, 1, 0, ...) = (0, p, p, ...)
v) follows from the corresponding properties of f and v.
vi) follows from Φn+1(X) ≡ Φn(X)p mod pZ[X] that implies that f coincides with the
p-th power map on Im(ΦZ[X])

vii) follows from Φ0(a) = a0 and that Φn(a) = ap
n

0 + pΦn+1(a′) for n > 0 which means
that Φn(a) = Φn([a] + V (a′)) for all n.
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Definition 2.14. Let A be a ring and n ∈ Z≥0. We define a filtration on W (A) by :

FilnW (A) = V nW (A)

= {(0, ..., 0, an, an+1, ...)|(ak)k≥n ∈ AZ≥0}.

Remark 2.15. FilnW (A) is an ideal in W (A).

Definition 2.16. The ring of Witt vectors of length n is : Wn(A) = W (A)/F ilnW (A)

Proposition 2.17. Let A be a ring and assume that pA = 0. Let a, b ∈ W (A).
i) FV (a) = V F (a) = p.a (i.e. (0, 1, 0, ...) = p)
ii) V n(a)V m(b) = V n+m(Fm(a), F n(b)).
iii) The p-adic and the V (W (A))-adic filtrations are the same and they are finer than
the topology defined by {FilnW (A)}n. In particular, W (A) is separated and complete
for the p-adic topology.
iv) If A is perfect (i.e. the Frobenius map on A is an automorphism), then the three
topologies coincide, W (A)/pW (A) ' A and

a = (a0, a1, ...) =
∞∑
n=0

V n([an])

=
∞∑
n=0

V nF n([ap
−n

n ]) =
∞∑
n=0

pn([ap
−n

n ])

2.1.1 Witt vectors and p-rings

Definition 2.18. Let A be a ring and R be a ring of characteristic p. The ring A is
called p-ring with residue ring R if there exists π ∈ A such that A is separated and
complete with respect to the π-adic topology and if R = A/πA.

Remark 2.19. Since R is of characteristic p, we have p ∈ πA.

Definition 2.20. A p-ring with residue field R is called strict if π = p and if p is not
nilpotent in A. A is called perfect if it is strict and if R is perfect.

Example 2.21. Zp is a perfect p-ring since Zp/pZp ∼= Fp and Fp is a perfect field.

Theorem 2.22. If R is a perfect ring of characteristic p, there exists a strict p-ring
W (R), unique up to isomorphism, which residue field is R. Moreover, W (R) has the
following universal property : If A is a p-ring with residue field R′, θ : R → R′ is a
ring homomorphism and θ̃ : R→ A is a multiplicative application lifting θ, there exists
a unique ring homomorphism θ : W (R)→ A such that if x ∈ R then θ([x]) = θ̃(x).
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Proof. See [Col07] Theorem 2.29

Remark 2.23. If R is not perfect, then there still exist strict p-ring A such that
A/pA = R, but A is not unique anymore. Such a ring is called a Cohen ring.

Proposition 2.24. If R and R′ are both perfect rings of characteristic p, the natural
application from Hom(W (R),W (R′)) into Hom(R,R′) is a bijection.
In particular, the Frobenius morphism x 7→ xp on R can be lifted to a Frobenius auto-
morphism ϕ of W (R).

Proof. If θ is a morphism from R into R′, set θ̃(x) = [θ(x)] and θ̃ is a multiplicative
application from R into W (R′) lifting θ. We deduce by Theorem 2.22 the surjectivity
of the natural application from Hom(W (R),W (R′)) into Hom(R,R′).
If θ is a morphism from W (R) into W (R′), we have θ([x]) = lim

n→∞
θ([xp

−n
])p

n
= [θ(x)]

since θ([xp−n ]) is a lift in W (R′) of θ(xp−n) = (θ(x))p
−n .

The injectivity follows from the fact that W (R) being a strict p-ring, knowing θ([x])
for every x ∈ R is equivalent to know θ.

Proposition 2.25. If A is a p-ring with residue ring R and if x ∈ A, the following
statements are equivalent :
i) x is a unit in A.
ii) The image x of x modulo π is a unit in R.

Proof. If y has an inverse x in A, then y has an inverse x in R.
Reciprocally, if y has an inverse x in R and if y is any lift of y in A, then set

z = 1− xy ∈ πA and y(
∞∑
n=0

zn) is the inverse of x.

Corollary 2.26. If A is a strict p-ring to which the residue ring is a field, then B = A[1
p
]

is a field.

Proof. If x ∈ B\{0}, then there exists a unique n ∈ Z such that pnx ∈ A\pA. The
last proposition tells us that pnx is a unit in A and therefore its reduction modulo π is
so.
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2.2 The construction of BdR

In this section, we will explain the construction of the rings of period of Fontaine, BdR

and Bcris. We will keep more or less the notations of the article of L. Berger [Ber01]
that we follow mostly for this section.

2.2.1 The ring Ẽ+

Let R be a perfect ring of characteristic p, K a p-adic field for which we will denote k its
residue field and GK = Gal(K/K). We will denote also C = K̂ the p-adic completion
of the algebraic closure of K.

Definition 2.27. Let Ẽ+ = lim←
x 7→xp

OC = {(x(0), x(1), ...)|(x(i+1))p = x(i)}.

We endow this set with the following sum and product : if x = (x(i)) and y = (y(i)) are
two elements of Ẽ+, then their sum is defined by (x+ y)(i) = lim

j→∞
(x(i+j) + y(i+j))p

j and

their product by (xy)(i) = x(i)y(i).
With this two operations, the set Ẽ+ becomes a ring (which is clear since operation are
made componentwise and that OC is a ring).

If σ ∈ GK , σ acts on Ẽ+ in the following way : if x = (x(n))n≥0 ∈ Ẽ+ then

σ(x) = (σ(x(n)))n≥0

Proposition 2.28. The ring Ẽ+ is a perfect ring of characteristic p.

Proof. We need to prove that the Frobenius map on Ẽ+ is an automorphism. The
ring Ẽ+ is by construction an inverse limit with transition map the Frobenius map.
Therefore the surjectivity is clear. For the injectivity : suppose (x(i))p = 0. This implies
that x(i−1) = 0 for all i ≥ 1. Hence, for x ∈ Ẽ+, xp = ((x(0))p, x(0), x(1), ...) = (0, 0, ...)
we get x = (0, 0, ...)
The fact that it is of characteristic p comes from the next proposition.

Proposition 2.29. There exists a bijection between Ẽ+ and lim←
x 7→xp

OC/(p) defined by :

(x(n))n≥0 7→ (x(n)mod p)n≥0 with inverse (xn)n≥0 7→ ( lim
m→∞

x̂p
m

n+m)n≥0 where x̂n+m ∈ OC
is a lift of xn+m.

Proof. First we show that both maps are well defined. For the first map, it is naturally
induced by the map OC → OC/(p) hence it is well defined. For the second map, let
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x ∈ lim←

x 7→xp
OC/(p). So we have x = (xn)n≥0, xn ∈ OC/(p) and xpn+1 = xn. For any n ≥ 0,

we choose a lifting of xn in OC , say x̂n. Thus x̂pn+1 ≡ x̂nmod p. By Lemma 2.2 we
have that for n,m ∈ Z≥0, x̂

pm+1

n+m+1 ≡ x̂p
m

n+mmod pm+1. Hence for every n ≥ 0, lim
m→∞

x̂p
m

n+m

exists in OC and thus the limit is independant of the choice of the liftings. Therefore
lim
m→∞

x̂p
m

n+m is a lifting of xn, ( lim
m→∞

x̂p
m+1

n+m+1)p = lim
m→∞

x̂p
m

n+m and the second map is well
defined. We clearly see through the constrution that they are inverse to each other so
we are done.

If x = (x(n))n≥0 ∈ Ẽ+, we define a valuation vE on Ẽ+ by vE(x) = vp(x
(0)). Therefore

vE(x) = pnvp(x
(n)) for any n ∈ Z≥0.

Proposition 2.30. The application vE is a valuation on Ẽ+ for which it is complete.

Proof. If x = (x(n))n≥0 and y = (y(n))n≥0 are two elements of Ẽ+, then

vp((x
(n) + y(n))p

n

) = pnvp(x
(n) + y(n))

≥ inf(pnvp(x
(n)), pnvp(y

(n)))

= inf(vE(x), vE(y))

By passing to the limit we get the inequality

vE(x+ y) ≥ inf(vE(x), vE(y))

The other properties that we need to check are clear, hence vE is a valuation.
Now we want to show that Ẽ+ is complete with respect to vE.
We have vE(x − y) ≥ pn if and only if x(0) = y(0), ..., x(n) = y(n) in OC/(p). This
shows that the basis of neighbourhoods of x for the induced topology of vE which
are {y | vE(x − y) ≥ pn} is also a basis of neighbourhoods of x for the topology on
(OC/(p))Z≥0 , each of the factors being equipped with the discrete topology. Since a
product of discrete spaces is complete, so is Ẽ+ (a Cauchy sequence being stationnary
in each component).

Let µn = {x ∈ K | xn = 1} the set of n-th root of unity and consider (ε(n))n∈Z≥0
a

compatible sequence of primitive pn-th roots of unity with ε(0) = 1, ε(n) ∈ µpn ⊆ K
such that ε(1) 6= 1 and (ε(n+1))p = ε(n). Let ε = (ε(n)).
It is clear that ε is an element of Ẽ+.

Remark 2.31. Something that we will need later is that the valuation of ε− 1 is p
p−1

.
Let’s compute it :
There are two cases, whether if p is 2 or not since vE(ε − 1) = vp((ε − 1)(0)) and by
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definition of the addition in Ẽ+ we get (ε−1)(0) = lim
n→∞

(ε(n) +(−1)(n))p
n and (−1)p

n
= 1

if p = 2 and −1 if p is odd.
If p = 2, then

vp((ε− 1)(0)) = lim
n→∞

2nvp(ε
(n) + 1)

= lim
n→∞

2nvp((ε
(n) − 1) + 2)

= lim
n→∞

2nvp((ε
(n) − 1)

with ε(n) a 2n-th root of unity, so we get vE(ε− 1) = lim
n→∞

2n

2n−1(2−1)
= 2.

For p odd, we get vp((ε− 1)(0)) = lim
n→∞

pnvp(ε
(n) − 1) with ε(n) a pn-th root of unity, so

we get vE(ε− 1) = lim
n→∞

pn

pn−1(p−1)
= p

p−1
.

2.2.2 The ring Ã+

We denote by Ã+ the ring of Witt vectors W (Ẽ+) with coefficients in the perfect field

ring Ẽ+. Any element of Ã+ can be written in a unique way as x =
∞∑
n=0

pn[xn] where

(xn)n≥0 is a sequence in Ẽ+. The actions of GK and of the Frobenius ϕ on Ẽ+ can be
lifted in a unique way in actions of GK and ϕ on Ã+. We have :

ϕ

(
∞∑
n=0

pn[xn]

)
=
∞∑
n=0

pn[xpn] and σ

(
∞∑
n=0

pn[xn]

)
=
∞∑
n=0

pn[σ(xn)] if σ ∈ GK

There is natural map Ẽ+ → OC defined by x = (x(i))i≥0 7→ x(0) which induced a homo-
morphism from Ẽ+ to OC/(p) (by taking the reduction modulo p) which is surjective
and commutes with the action of GK .

Proposition 2.32. The map θ : Ã+ → OC defined by θ
(
∞∑
k=0

pk[xk]

)
=
∞∑
k=0

pkx
(0)
k is a

ring homomorphism.

Proof. Since Ã+ = W (Ẽ+), consider the map

θn(= θ mod pn) : Wn(Ẽ+) = W (Ẽ+)/(pn)→ OC/(pn)

defined by θn
(
n−1∑
k=0

pk[xk]

)
=

n−1∑
k=0

pkx
(0)
k .

We only need to show that θn(x+y) = θn(x)+θn(y) since θn(xy) = θn(x)θn(y) depends
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Z-bilinearly on (x, y) and so via Teichmüller expansions the verification of this identity
is reduced to the case x = [a] and y = [b] with a, b ∈ Ẽ+ : θ([a][b]) = θ([ab]) = (ab)(0) =
a(0)b(0) = θ([a])θ([b]). Hence we just need to check that each θn is additive.
Writing x = (x0, ..., xn−1) ∈ W (Ẽ+) we have :

θn(x) =
n−1∑
i=0

pix
(0)
i = x

(0)
0 + px

(0)
1 + ...+ pn−1x

(0)
n−1

= (x
(n)
0 )p

n

+ p(x
(n−1)
1 )p

n−1

+ ...+ pn−1(x
(1)
n−1)p

=
n−1∑
i=0

pi(x
(n−i)
i )p

n−i

= Φn(x
(n)
0 mod pn, ..., x(1)

n−1mod pn)

where Φn is the n-th ghost map (notice that Φn−1 = Φn since we work mod pn).
We have that Φn is additive. By Lemma 2.2, we get that Φn(x0, ...xn−1) depends only
on the xi mod p.
That means that Φn factors as Φn ◦ πn where πn : Wn(OC/(pn)) � Wn(OC/(p)) is
the natural quotient map and Φn : Wn(OC/(p)) → OC/(pn) maps (x0, ..., xn−1) to
n−1∑
i=0

pixp
n−i

i where xi ∈ OC/(pn) is a lift of xi. Clearly πn is surjective and it is additive

by functoriality of the additive structure on Wn. Thus, as Φn is also additive we get
that Φn is so. Considering now pn : Ẽ+ → OC/(p) the projection r 7→ r(n) mod p, we
have θn = Φn ◦Wn(pn). The map Wn(pn) is additive since pn is a ring homomorphism
and the additive structure onWn is functorial in ring homomorphism. So Φn is additive
and we conclude that θn is also additive, we are done.

Lemma 2.33. The ring homomorphism θ is surjective.

Proof. Once again via Teichmüller expansions it is enough to show that for any y ∈ OC
there exists x ∈ Ẽ+ such that θ([x]) = y. But C is algebraically closed, therefore there
exists a solution to x(0) − y = 0, hence we are done.

There are two natural topologies on Ã+. The strong topology which is the p-adic topol-
ogy (a basis of neighbourhood of 0 are the pkÃ+ for k ∈ Z≥0), makes the application
∞∑
n=0

pn[xn] 7→ (xn)n≥0 a homeomorphism from Ã+ into (Ẽ+)Z≥0 , where Ẽ+ is equipped

with the discrete topology.

The natural topology on Ã+ is the one which makes
∞∑
n=0

pn[xn] 7→ (xn)n≥0 a homeomor-

phism from Ã+ into (Ẽ+)Z≥0 where this time Ẽ+ is equipped with the topology defined



38 2 THE PERIOD RINGS BDR AND BCRIS

by vE. This topology, the weak topology, is weaker than the p-adic topology, but Ã+ is
still complete for this topology since Ẽ+ is complete for vE.
As GK acts continuously on Ẽ+ for the topology defined by vE, it acts continuously on
Ã+ equipped with the weak topology.

Proposition 2.34. Choose p̃ ∈ Ẽ+ such that p̃(0) = p (so p̃ = (p, p
1
p , p

1
p2 , ...) and

vE(p̃) = vp(p̃
(0)) = 1). Let ξ = [p̃]− p = (p̃,−1, 0, ...) ∈ Ã+. Then :

i) Ker(θ) is a principal ideal of Ã+ generated by ξ.
ii) An element x = (x0, x1, ...) ∈ Ker(θ) is a generator of Ker(θ) if and only if x1 is a
unit in Ã+.

Proof. Computing θ(ξ) = θ([p̃])−θ(p) = p̃(0)−p = 0 we see that ξ ∈ Ker(θ). Moreover,
Ã+/(Ker(θ)) = OC has no non trivial p-torsion, so we have Ker(θ)∩pnÃ+ = pnKer(θ)
and since Ã+ is p-adically separated and complete (Ẽ+ is perfect so W (Ẽ+) = Ã+ is
a strict p-ring), it is enough to show that Ker(θ) ⊆ (ξ, p)(= (p̃, p)) to prove the first
assertion.
Let x = (x0, x1, ...) ∈ Ker(θ). Then θ(x) = 0⇔

∞∑
k=0

pkx
(0)
k = 0⇔ x

(0)
0 ≡ 0 mod p, that

is vE(x0) = vp(x
(0)
0 ) ≥ 1 = vE(p̃), hence x0 ∈ p̃Ã+. Thus x ∈ ([x0], p) ⊆ ([p̃], p) and we

are done for i).
Let x = (x0, x1, ...) ∈ Ker(θ). Since ξ generates Ker(θ) we can write x as x = ξ.x′

with x′ = (x′0, x
′
1, ...). So x = (Pn(ξ, x′))n≥0 = (p̃x′0, p̃

px′1 − x′p0 , ...) therefore we get
x = (p̃x′0, p̃

px′1 − x
′p
0 , ...) and so x1 = p̃px′1 − x

′p
0 . So x1 is a unit of Ẽ+ if and only if x′0

is a unit of Ẽ+. But if x′0 is a unit of Ẽ+ then x′ = (x′0, x
′
1, ...) is a unit of Ã+ and if x′

is a unit of Ã+ then x is a principal generator of Ker(θ) (since Ã+ is a domain).

Example 2.35. Let ω = [ε]−1

[ε
1
p ]−1

= 1 + [ε
1
p ] + ...+ [ε

1
p ]p−1 ∈ Ã+. We have θ(ω) = 0 since

θ([ε]) = 1 and θ([ε
1
p ]) = ε(1) 6= 1. Moreover, the image ω of ω in Ẽ+ is ε−1

ε
1
p−1

= (ε−1)1− 1
p

and so vE(ω) = (1− 1
p
)vE(ε− 1) = 1.

This shows that ω is a generator of Ker(θ).

Proposition 2.36. The weak topology on Ã+ is also the (p,Ker(θ))-adic topology.

Proof. [Col07] Proposition 2.39

2.2.3 The ring BdR

Let B̃+ = Ã+[1
p
]. We can extend θ by Qp-linearity into a ring morphism from B̃+ into

OC [1
p
] = C. We denote this extension by θK . Thanks to Proposition 2.34, we see that

Ker(θK) is still principal generated by ξ.
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Corollary 2.37. For all i ≥ 0 we have : Ã+ ∩ (Ker(θK))i = (Ker(θ))i.

Moreover
∞⋂
i=0

(Ker(θ))i =
∞⋂
i=0

(Ker(θK))i = 0

Proof. The proof goes by a simple induction on i. For the case i = 1 it is immediate
since Ã+/Ker(θ) = OC has no non trivial p-torsion.
Recall that θK : B̃+ = Ã+[1

p
] → OC [1

p
] = C. Any element of B̃+ admits a p-power

multiple in Ã+ and so
∞⋂
i=0

(Ker(θK))i =
∞⋂
i=0

(Ker(θ))i[1
p
]. It suffices now to show that it

vanishes.
Let x = (x0, x1, ...) ∈ Ã+ such that x ∈

∞⋂
i=0

(Ker(θ))i. It is then divisible by any power of

the generator of Ker(θ) (in particular by ξ), so x0 is divisible by any power of p̃ (in Ẽ+).
But vE(p̃) = 1 > 0 and so, since Ẽ+ is vE-adically separated we have that x0 = 0. Hence
x = px′ with x′ ∈ Ã+ since Ẽ+ is perfect. Thus x′ ∈ Ã+ ∩ (Ker(θK))i = (Ker(θ))i for

all i. So we see that each element of
∞⋂
i=0

(Ker(θ))i in Ã+ lies in
∞⋂
n=0

pnÃ+, which vanishes

since Ã+ is a strict p-ring.

Definition 2.38. The de Rham ring

B+
dR := lim←

j

B̃+/(Ker(θK))j

is the ring obtained by completing B̃+ for the Ker(θK)-adic topology.

Remark 2.39. Since B+
dR = lim←

j

B̃+/(Ker(θK))j, it is mapped onto each quotient

B̃+/(Ker(θK))j via the evident natural map and in particular for j = 1, θK induces a
surjective map θ+

dR : B+
dR � C.

We get from the definitions that Ker(θ+
dR) ∩ Ã+ = Ker(θ) and moreover that

Ker(θ+
dR) ∩ B̃+ = Ker(θK) (since θ+

dR restricts to θK on the subring B̃+).

Proposition 2.40. The ring B+
dR is a complete discrete valuation ring with residue

field C, and any generator of Ker(θK) in B̃+ is a uniformizer of B+
dR. The natural map

B+
dR → B̃+/(Ker(θK))j is identified with the projection B+

dR → B+
dR/(Ker(θ

+
dR))j for

all j ≥ 1.

Proof. Since Ker(θK) is a nonzero principal maximal ideal (with residue field C) in the
domain B̃+, for j ≥ 1 we see that B̃+/(Ker(θK))j is an Artin local ring whose only
ideals are (Ker(θK))i/(Ker(θK))j for j ≥ i ≥ 0. In particular, an element of B+

dR is a
unit if and only if it has nonzero image under θ+

dR. In other words, the maximal ideal
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Ker(θ+
dR) consists of precisely the non-units, so B+

dR is a local ring. Consider a non-
unit b ∈ B+

dR, so its image in each, B̃+/(Ker(θK))j has the form bjξ with bj uniquely
determined modulo (Ker(θK))j−1 (with ξ as above). In particular, the residue classes
bj mod (Ker(θK))j−1 are a compatible sequence and so define an element b′ ∈ B+

dR

with b = ξb′. The construction of b′ shows that it is unique. Hence, the maximal
ideal of B+

dR has the principal generator ξ, and ξ is not a zero divisor in B+
dR. It now

follows that for each j ≥ 1 the multiples of ξj in B+
dR are the elements killed by the

surjective projection to B̃+/(Ker(θK))j. In particular, B+
dR is ξ-adically separated, so

it is a discrete valuation ring with uniformizer ξ. We have identified the construction of
B+
dR as the inverse limit of its Artinian quotients, so it is a complete discrete valuation

ring.

We denote by vH the valuation defined by ξ on B+
dR. Since Ker(θK) is stable by GK ,

the action of GK on B̃+ extends continuously on B+
dR. However, the action of ϕ does

not extend since ϕ does not preserve the kernel of θK (as ϕ(ξ) = [p̃p]− p 6∈ Ker(θK)).
The natural topology on B+

dR is not the topology defined by vH ; this one is too strong
for GK to act continuously on B+

dR. The natural topology on B+
dR is the one for which

pkÃ+ + ξnB+
dR, k, n ≥ 0, gives us a basis of neighbourhoods of 0. This topology is

weaker than the topology induced by vH but GK acts continuously on B+
dR equipped

with it.

Definition 2.41. The field of p-adic periods (also called the de Rham period ring) is
BdR := Frac(B+

dR) equipped with its natural GK-action and GK-stable filtration via
the Z-powers of the maximal ideal of B+

dR.

For i ∈ Z, let FiliBdR be the i-th power of the maximal ideal of B+
dR.

Then, if i ≥ 0, FiliBdR = mi
B+
dR

. For i ∈ Z, FiliBdR is the free B+
dR-module generated

by ξi : Fil0BdR = B+
dR and FiliBdR = ξiB+

dR.

2.2.4 The p-adic analogous of 2iπ

In the following we will show that B+
dR admits a uniformizer t, canonical up to Z∗p-

multiple, on which GK acts by the cyclotomic character, and that the set of such t’s
is naturally Z∗p-equivariantly bijective with the set of Zp-bases of Zp(1) = lim

←
µpn(K).

Such elements t do not live in B̃+ so it was essential for us to pass to the completion
B+
dR to find such a uniformizer. Moreover, we will see that the element t is in fact a

p-adic analogous of 2iπ.
Let’s construct this t. Recall that we have ε = (ε(n))n≥0 a compatible sequence of
primitive pn-th roots of unity.
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Since θ([ε]− 1) = ε(0) − 1 = 0 we have that [ε]− 1 ∈ Ker(θ) ⊆ Ker(θ+

dR). So [ε]− 1 is
"small" for the topology of B+

dR and the following series :

∞∑
n=1

(−1)n+1 ([ε]− 1)n

n

will converge in B+
dR, to our desired t. Of course, one should think of t as t = log([ε])

and notice that it lies in the maximal ideal of B+
dR.

Proposition 2.42. Let t be the element defined as above. Then :

t ∈ Fil1BdR and t 6∈ Fil2BdR

In other words, t generates the maximal ideal of B+
dR (i.e. it is a uniformizer).

Proof. Fil1BdR = ξB+
dR and as [ε]−1 ∈ Ker(θ), it is clear that ([ε]−1)n

n
∈ Fil1BdR ∀n ≥

1, hence t ∈ Fil1BdR.
Fil2BdR = ξ2B+

dR and for the same reason it is clear that ([ε]−1)n

n
∈ Fil2BdR ∀n ≥ 2, so

to prove that t 6∈ Fil2BdR we only need to show that [ε]− 1 6∈ Fil2BdR.
[ε] − 1 ∈ Ker(θ) implies that we can write [ε] − 1 as [ε] − 1 = xξ with x ∈ Ã+. So
showing that [ε]− 1 6∈ Fil2BdR is equivalent to show that θ(x) 6= 0, that is x 6∈ ξÃ+.
Suppose that [ε] − 1 ∈ ξ2Ã+ so we can write it as [ε] − 1 = xξ2 with x ∈ Ã+ and
x = (x0, x1, ...).
Since ξ = (p̃,−1, 0, ...), we have ξ2 = (p̃2, ...) and thus xξ2 = (p̃2x0, ...).
But [ε]− 1 = (ε− 1, ...) so ε− 1 = p̃2x0. We have vE(p̃2x0) ≥ vE(p̃2) = 2 and therefore
we should have vE(ε − 1) ≥ 2. We know by the Remark 2.31 that if p is odd then
vE(ε − 1) = p

p−1
so we get a first contradiction and if p = 2 we need to do a little

computation (we will work in W2(Ẽ+)).
Suppose p = 2, then ξ2 = (p̃2, 0, ...) and xξ2 = (p̃2x0, p̃

4x1, ...).
Moreover, for p = 2 we have −1 = (1, 1, ...) in Z2 = W (F2) since −1 = 1 + 2.1 mod 4,
hence [ε] − 1 = (ε − 1, ε − 1, ...) in Ã+. Thus if xξ2 = [ε] − 1, then ε − 1 = p̃4x1

and vE(ε − 1) ≥ vE(p̃4) = 4. We get again a contradiction since by Remark 2.31
vE(ε− 1) = 2 if p = 2. So we are done.

Remark 2.43. Note that since the begining we have made a choice for our ε so a
natural question is : what happend if we choose a different compatible sequence of
pn-th root of unity, say ε′ ?
If we make such another choice then ε′ = εa for a unique a ∈ Z∗p using the natural
structure on units in Ẽ+. Since the Teichmüller map from Ẽ+ to Ã+ is continuous for the
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vE-adic topology of Ẽ+ we have [ε′] = [εa] = [ε]a in Ã+. Hence t′ = log([ε′]) = log([ε]a).
We would like to have t′ = a.log([ε]), but this is not trivial since the logarithm is
defined as a convergent sum relative to the topology on B+

dR that does not use the
vE-adic topology of Ẽ+ whereas the exponentiation procedure [ε]a involves the vE-adic
topology of Ẽ+ in an essential manner. It is possible to introduce a topological ring
structure on B+

dR, finer than its discrete valuation topology and such that the map
Ã+ → B+

dR is continuous (details can be found in [BC]). Once this done, we get
t′ = log([ε′]) = a.log([ε]) = at with a ∈ Z∗p. So we see that the line Zpt in the maximal
ideal of B+

dR is independant of the choice of ε and making a choice of Zp-basis of this
line is the same as making a choice of ε. Also, choosing ε is a choice of Zp-basis of
Zp(1).

If we look for a p-adic analogous of 2iπ in Cp, the completion of the algebraic closure
of Qp, it should be defined by the formula 2iπ = lim

n→∞
pnlog(ε(n)). The issue is that

we have logp(ε(n)) = 0 for any n ∈ Z≥0 and so our formula gives us 2iπ = 0 which is
absurd. If we look at the previous formula with a Galois point of view, and that we use
the formula σ(ε(n)) = (ε(n))χ(σ), for σ ∈ GQp , we see that the minimum required to be
a p-adic analogous of 2iπ is to satisfy the formula σ(2iπ) = χ(σ)2iπ for any σ ∈ GQp .
However we have the following results that tell us that such an analogous cannot exist
in Cp (we admit them, for details see [Col07]) :

Theorem 2.44. If k ∈ Z, then {x ∈ Cp | σ(x) = χ(σ)kx, for any σ ∈ GQp} = {0} if
k 6= 0 and is equal to Qp if k = 0.

Corollary 2.45. Let K be a finite extension of Qp.
If k ∈ Z, then {x ∈ Cp | σ(x) = χ(σ)kx, for any σ ∈ GK} = {0} if k 6= 0 and is equal
to K if k = 0.

As we have seen earlier, t = log([ε]) =
∞∑
n=1

(−1)n+1 ([ε]−1)n

n
converges in B+

dR.

If σ ∈ GQp , we have

σ(t) = σ(log([ε])) = log([σ(ε)]) = log([εχ(σ)])

= log([ε]χ(σ))

= χ(σ)log([ε])

= χ(σ)t

This shows us that t is a p-adic analogous of 2iπ and that it is a period for the cyclotomic
character. We have θ+

dR(t) = 0 which explain why we did not see it in Cp.
We could have defined BdR = B+

dR[1
t
] and so FiliBdR = tiB+

dR.
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2.3 The construction of Bcris

As we have already said, the ring B+
dR is too coarse a ring since there is no extension of

the natural Frobenius ϕ : B̃+ → B̃+ to a continuous map ϕ : B+
dR → B+

dR. One would
still like to have a Frobenius map, and there is a natural way to complete B̃+ such that
the completion is still endowed with a Frobenius map.

Definition 2.46. The ring A0
cris is defined to be the divided power envelope of Ã+ with

respect to Ker(θ), that is : A0
cris = Ã+[α

m

m!
]m≥1, α∈Ker(θ)

Remark 2.47. Since (ax)n

n!
= an x

n

n!
, we can define A0

cris as A0
cris = Ã+[ ξ

m

m!
]m≥1 with ξ

the principle generator of Ker(θ).

Definition 2.48. We define Acris to be the p-adic completion of A0
cris :

Acris = lim←
n

A0
cris/p

nA0
cris

.

Remark 2.49. By the definition of Acris we see that it is p-adically separated and
complete.

We would like to warn the reader that proving even basic properties about Acris requires
a lot of effort and knowledge in algebra so we will be less precise in this section.
One can prove that there exists a unique continuous map j such that the following
diagram commutes using the p-adic topology on Acris and the finer topology that we
talked about earlier on B+

dR :

Acris B+
dR

A0
cris B̃+

j

The uniqueness of j comes from the fact that one can show that A0
cris is dense in Acris

and B+
dR is Hausdorff. Moreover the map j can be proved to be injective, so Acris is a

domain and A0
cris → Acris is indeed injective.

The image of Acris in B+
dR can be described as the subring of elements{

∞∑
n=0

xn
ξn

n!
| xn ∈ Ã+, xn → 0 for the p-adic topology

}
in which the infinite sums are taken with respect to the discretely-valued topology of
B+
dR (the convergence of the sums is due to the fact that ξ ∈ mB+

dR
).
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Definition 2.50. The ring B+
cris is defined to be the B̃+-subalgebra :

B+
cris := Acris[

1

p
]

.

Remark 2.51. The ring B+
cris is a subring of B+

dR, consisting of the limits of sequences

of B+
dR which satisfy some growth conditions. For example

∞∑
n=0

p−n
2
tn converges in B+

dR

but not in B+
cris. This ring is equipped with a continuous Frobenius.

Proposition 2.52. One has t ∈ Acris and tp−1 ∈ pAcris.

Proof. Choose a generator ξ of Ker(θ). We know that [ε] − 1 ∈ Ker(θ) therefore we
can write [ε]− 1 = xξ for x ∈ Ã+. Looking at t now in B+

dR we have :

t =
∞∑
n=1

(−1)n+1 ([ε]− 1)n

n
=
∞∑
n=1

(−1)n+1 (xξ)n

n

=
∞∑
n=1

(−1)n+1(n− 1)!xn.
ξn

n!

with (n− 1)!xn → 0 for the p-adic topology of Ã+. Hence t ∈ Acris inside of B+
dR.

The fact that tp−1 ∈ pAcris depends on t mod p since t ∈ Acris. So the infinite sum
expression for t allows us to check whether or not tp−1 ∈ pAcris by replacing t with a

suitable finite truncation of the sum on
∞∑
n=1

(−1)n+1(n− 1)!xn ξ
n

n!
(we would like to drop

the terms with coefficient (n − 1)! divisible by p). Hence we can restrict to the sum
over 1 ≤ n ≤ p.
The terms for 1 ≤ n < p are Acris-multiple of [ε] − 1, and the term for n = p is
(−1)p+1 ([ε]−1)p

p
= (−1)p+1 ([ε]−1)p−1

p
([ε]−1) so t = ([ε]−1)(a+(−1)p+1 ([ε]−1)p−1

p
) for some

a ∈ Acris. Hence to prove that tp−1 ∈ pAcris it remains to check (and apply twice) that
([ε]− 1)p−1 ∈ pAcris. But pÃ+ ⊆ pAcris and [ε]− 1 ≡ [ε− 1] mod pÃ+. So it suffices to
show that [(ε− 1)p−1] ∈ pAcris.
We know that vE(ε− 1) = p

p−1
, so for p̃ ∈ Ẽ+ defined as usual we have

vE((ε− 1)p−1) = p = vE(p̃p)

Hence, (ε − 1)p−1 = p̃px for some unit x ∈ Ẽ+, so [(ε − 1)p−1] is a (Ã+)∗-multiple of
[p̃p] = (ξ + p)p ≡ ξpmod pAcris. But ξp = p.( ξ

p

p!
)(p− 1)! ∈ pAcris. So we are done.



2.3 The construction of Bcris 45
Proposition 2.53. For any a ∈ Ker(Acris � OC) we have am

m!
∈ Acris ∀m ≥ 1.

Proof. Fix a choice of m. By definition, a in Acris is a sum of terms an ξ
n

n!
with n ≥ 1,

an ∈ Ã+ and an → 0 in Ã+ for the p-adic topology. therefore it is enough to treat
the case when this infinite sum is replaced with a finite truncation, big enough, so that
the tail lies in pNAcris with m! which divides pN . By the binomial theorem we have
(x+y)m

m!
=

m∑
i=0

xi

i!
ym−i

(m−i)! . Thus, it suffices when a is a finite sum to treat the case when a is

a single term, i.e. a = xξn

n!
with x ∈ Ã+. But (xy)m

m!
= xmym

m!
so finally we are reduced to

the case a = ξn

n!
with n ≥ 1 and we wish to prove that the divided power am

m!
lies in Acris.

By the universal identity of divided power in any Q-algebra we get that am

m!
∈ Acris for

a = ξn

n!
and all m ≥ 1, as required.

Definition 2.54. The crystalline period ring Bcris is defined as the B̃+-subalgebra

Bcris := B+
cris[

1

t
] = Acris[

1

t
]

inside of B+
dR[1

t
] = BdR.

For the end of this section, we will state few properties about the different Frobenius
automorphism that we have.
Recall that we have our usual p̃ ∈ Ẽ+ such that p̃(0) = p and ξ = [p̃] − p ∈ Ker(θ).
Recall also that Bcris = Acris[

1
t
] with Acris defined to be the p-adic completion of

A0
cris = Ã[ ξ

m

m!
]m≥1. We start with the following lemma :

Lemma 2.55. The Ã+-subalgebra A0
cris ⊆ B̃+ is ϕ-stable.

Remark 2.56. Here ϕ is the Frobenius automorphism of B̃+.

Proof. Since ϕ(ξ) = [p̃p] − p = [p̃]p − p = (ξ + p)p − p = ξp + px for some x ∈ Ã+,
we have : ϕ(ξ) = p(x + (p− 1)!( ξ

p

p!
)). Therefore ϕ(ξm) = pm(x + (p− 1)!( ξ

p

p!
))m for all

m ≥ 1. But pm

m!
∈ Zp for all m ≥ 1, so ϕ( ξ

m

m!
) ∈ A0

cris for all m ≥ 1.

The endomorphism of A0
cris induced by ϕ on B̃+ extends uniquely to a continuous

endomorphism of the p-adic completion Acris, and hence to an endomorphism of B+
cris =

Acris[
1
p
] that extends the Frobenius automorphism of the subring B̃+. Recall that we

constructed earlier a uniformizer of B̃+ called t defined as t = log([ε]) and that it
belongs to Acris . Moreover we have the following lemma :

Lemma 2.57. ϕ(t) = pt.
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Proof. We have t =
∞∑
n=1

(−1)n+1 ([ε]−1)n

n
. Therefore ϕ(t) =

∞∑
n=1

(−1)n+1 (ϕ([ε])−1)n

n
=

∞∑
n=1

(−1)n+1 ([ε]p−1)n

n
since ϕ on Acris extends the Frobenius map on Ã+. Therefore

ϕ(t) =
∞∑
n=1

(−1)n+1 ([ε]−1)n

n
= log([ε]p). By Remark 2.43 we know that it is p.log([ε]) = pt.

So we are done.

This lemma allows us to extend the Frobenius to Bcris by setting ϕ(t−1) = p−1t−1.
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3 p-adic Periods of Formal Groups

3.1 The infinitesimal thickening

Let Λ be a ring and V a Λ-algebra

Definition 3.1. A pro-infinitesimal Λ-thickening of V is a couple (D, θ) where D is
a Λ-algebra and θ a surjective Λ-algebra homomorphism θD = θ : D → V such that,
if ID = I denotes the kernel of θ, then D is separated and complete for the I-adic
topology.

Definition 3.2. If D is a pro-infinitesimal Λ-thickening of V and if ID is nilpotent, D
is called an infinitesimal Λ-thickening of V . If m is an integer such that Im+1

D = 0, we
say that the thickening has order ≤ m.

Definition 3.3. Let p be an ideal of Λ and assume V to be separated and complete with
respect to the p-adic topology. We say that (D,θ) is a formal p-adic pro-infinitesimal
Λ-thickening if it is a pro-infinitesimal Λ-thickening of V such that D is separated and
complete for the (I, p)-adic topology.

Remark 3.4. These notions depend on the topology defined by the powers of p and
not on the ideal p itself.

Theorem 3.5. Let Λ be a ring, V a separated and complete Λ-algebra for the p-adic
topology. Assume that for every a ∈ V , there exist x, y ∈ V such that a = xp + py.
Then the ring V admits a universal formal p-adic pro-infinitesimal Λ-thickening.

3.2 The ring Ainf,K and Acris,K

Let K be a finite extension of Qp, OK its ring of integers, K0 the maximal unramified
extension of Qp in K and OK0 its ring of integers.

Definition 3.6. Ainf,K is the subring of B+
dR generated by Ã+ and OK , that is

Ainf,K = OK ⊗OK0
Ã+

In fact Ainf,K is the universal p-adic infinitesimal OK-thickening of OC . Since Ainf,K
can be described as OK ⊗OK0

Ã+ we deduce that Ker(θ)∩Ainf,K is a principal ideal of
Ainf,K .
Let πK = π (respectively ρK = ρ) a uniformizer of OK (respectively a generator of
Ker(θ) ∩ Ainf,K).
We define for any k ∈ Z≥0 the following subring of B+

dR :

Akinf,K = Ainf,K [[π−kρ]].
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We have for k = 0, Akinf,K = Ainf,K and Akinf,K is a closed subring of B+
dR for any k ≥ 0.

We recall that for a generator u of Ker(θK) ∩ Ã+ we have Acris, the subring of B+
dR

composed by elements x of the form
∞∑
n=0

xnu
n where (n!xn)n∈Z≥0

is a sequence of ele-

ments of Ã+ which tends to 0.
B+
cris was defined by B+

cris = Acris[
1
p
] and let ϕ be the Frobenius endomorphism of B+

cris

obtained by extending by continuity the Frobenius action (x0, ..., xn, ...) 7→ (xp0, ..., x
p
n, ...)

of Ã+.

Definition 3.7. If K is a finite extension of Qp, we define Acris,K by the subring of
B+
dR generated by Acris and OK , that is Acris,K = Acris ⊗OK0

OK . We define also
B+
cris,K = Acris,K [1

p
].

If K0 = K ∩Qnr
p is the maximal unramified extension of Qp in K, we have

B+
cris,K

∼= K ⊗K0 B
+
cris and we denote ϕK the endomorphism id⊗K0 ϕ

[K0:Qp] of B+
cris,K .

We set for k ∈ Z≥0 : Akcris,K = Acris,K if k = 0 and Akcris,K = Akinf,K if k ≥ 1.

Lemma 3.8. Let e be the absolute ramification index of K, ps be the smallest power of
p greater or equal than e and r(e) = sup{em− pm−s | m− s ∈ Z≥0}.
If u ∈ (Akinf,K ∩Ker(θ)) and l, n ∈ Z≥0 with l ≤ n then un

l
∈ π−r(e)Akcris,K.

Proof. We prove the lemma for k = 0 because we only need this case in the sequel and
that the case k ≥ 1 is supposed to be easier.
Since k = 0 we have Akinf,K = Ainf,K and Akcris,K = Acris,K .
If x = (x(n)) ∈ Ẽ+ such that x(0) = π, then [x] − π is a generator of Ainf,K ∩Ker(θ)
and we can reduce to the case l = n = pm and u = [x]− π.
As vE(xp

s
) = vp(x

(0)p
s

) = psvp(π) > 1, and since θ is surjective, we can find y ∈ Ã+ such
that α = [x]p

s − py in Ã+ ∩Ker(θ). So ups = ([x]− π)p
s

= [x]p
s − py+ πβ, β ∈ Ainf,K .

If m ≥ s,
up

m

pm
=

(up
s
)p
m−s

pm
=

(α + πβ)p
m−s

pm

=

pm−s∑
k=0

(
pm−s

k

)
αp

m−s−k(πβ)k

pm

Expending the binomial coefficient and setting i = pm−s−k and j = k (so i+j = pm−s)
we get

up
m

pm
=

∑
i+j=pm−s

αi

i!

βj

j!
πj

(pm−s − 1)!

ps
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We have αi

i!
∈ Acris,K because α ∈ Ker(θ) and Acris,K = Ainf,K [γ

m

m!
] for γ ∈ Ker(θ)

(Proposition 2.53). Since r(e) = sup{em − pm−s | m − s ∈ Z≥0}, factoring out
πp

m−s
ps−m ∈ πr(e)OK and noticing that βj belongs to Ainf,K , we therefore deduce

that up
m

pm
∈ π−r(e)Acris,K .

Corollary 3.9. If F ∈ K[[z1, ..., zd]] satisfies :
i) F (0) = 0

ii) dF =
d∑
i=1

fidzi with fi ∈ Akcris,K [[π−kz1, ..., π
−kzd]]

and if u = (u1, ..., ud) ∈
(
Akinf,K ∩Ker(θ)

)d then F (u) ∈ π−r(e)Akcris,K.

Proof. If u = (u1, ..., ud) ∈
(
Akinf,K ∩Ker(θ)

)d then ui ∈ Akinf,K ∩ Ker(θ) for all i =

1, ..., d and so for some ni, li ∈ Z≥0
u
ni
i

li
∈ π−r(e)Akcris,K (by Lemma 3.8).

As F (0) = 0 the fact that F (u) ∈ π−r(e)Akcris,K really depends on fi(ui).

If u
ni
i

li
∈ π−r(e)Akcris,K then fi(ui) ∈ π−r(e)Akcris,K and hence we get F (u) ∈ π−r(e)Akcris,K

as required.

Lemma 3.10. If x ∈ B+
dR satisfies |θ(x)− 1|p < 1 then the series

logp(x) =
∞∑
n=1

(−1)n−1

n
(x− 1)n

converges in B+
dR.

Proof. If x ∈ B+
dR satisfies |θ(x) − 1|p < 1, then x − 1 ∈ Ker(θ), and we can write

x− 1 = aξ, a ∈ Ainf,K , ξ a generator of Ker(θ).

logp(x) =
∞∑
n=1

(−1)n−1

n
(x− 1)n =

∞∑
n=1

(−1)n−1 (aξ)n

n

=
∞∑
n=1

(−1)n−1(n− 1)!an
ξn

n!

and since (n− 1)!an → 0 as n→∞ we deduce that logp(x) converges in B+
dR.

3.3 Dieudonné Module of a Formal Group

Let K be a fintie Galois extension of Qp and K0 = K ∩ Qnr
p the maximal unramified

extension of Qp inside K, and let kK be the residue field of K.
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Definition 3.11. A Dieudonné module is a triplet (V, φ, F il) where V is a K0-vector
space of dimension h, φ an endomorphism of V which is ϕ-semilinear, injective and
topologically nilpotent, satisfying moreover that if M is a lattice of V stable by φ then
pM ⊆ φM . Fil is a decreasing filtration on VK = K ⊗K0 V satisfying Fil0(VK) =
VK , F il

2(VK) = 0 and Fil1(VK) is a K-vector space of dimension the dimension of
M/φM as kK-vector space.

If D1 = (V1, φ1, F il) and D2 = (V2, φ2, F il) are both Dieudonné modules, the mor-
phisms from D1 into D2 are by definition the K0-linear applications f from V1 into V2

satisfying f ◦ φ1 = φ2 ◦ f and f(Fil1(V1,K)) ⊆ Fil2(V2,K).

Let Γ be a commutative formal group defined over OK , of dimension d and finite height
h. To such a formal group, we can associate a Dieudonné module in the following way:

Let OK [[X]] = OK [[X1, ..., Xd]] be the affine algebra of Γ and denote ⊕ the law of

formal group. If ω =
d∑
i=1

αi(X1, ..., Xd)dXi where αi(X) ∈ K[[X]] is a closed differential

form, denote Fω the unique element of K[[X]] satisfying dFω = ω and Fω(0) = 0. Let
F 2
ω ∈ K[[X, Y ]] be the formal series given by the formula

F 2
ω(X, Y ) = Fω(X ⊕ Y )− Fω(X)− Fω(Y ).

Definition 3.12. A closed differential form ω is called exact if Fω has bounded coeffi-
cients (or equivalently if there exists r ∈ Z≥0 such that πrFω ∈ OK [[X1, ..., Xd]]).

Definition 3.13. A closed differential form ω is called of second kind if F 2
ω has bounded

coefficients (or equivalently if there exists r ∈ Z≥0 such that πrF 2
ω ∈ OK [[X, Y ]]).

Definition 3.14. A closed differential form ω is called invariant if F 2
ω = 0.

Denote by ΩΓ the K-vector space of invariant differential forms. It is a K-vector space
of dimension d. Denote K[[X]]0 the subspace of K[[X]] of formal series F satisfying
F (0) = 0.

Definition 3.15. An element of K[[X]]0 such that dF ∈ ΩΓ is called a logarithm of Γ.

Denote H1
dR(Γ) the K-vector space which is the quotient of the space of the differential

form of second kind by the one of exact differential forms. It is a K-vector space of
dimension h equipped with the filtration Fil0(H1

dR(Γ)) = H1
dR(Γ), F il1(H1

dR(Γ)) = ΩΓ

and Fil2(H1
dR(Γ)) = 0.
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Let V (Γ) the K0-vector subspace of H1

dR(Γ) generated by the differential forms ω with
coefficients in K0, equipped with the endomorphism φ obtained by the formula :

φ(ω) = ωϕ((X1)p, ..., (Xd)
p).

The triplet D(Γ) = (V (Γ), φ, F il) where Fil is the filtration on V (Γ)K = K⊗K0 V (Γ) =
H1
dR(Γ) introduced earlier, is a Dieudonné module and we will call it the Dieudonné

module of Γ. We have H1
dR(Γ) ∼= K ⊗K0 D(Γ).

We have that two formal groups defined over OK are isogeneous if and only if they have
isomorphic Dieudonné module.

3.4 Tate’s module and the period map

Let Tp(Γ) = lim←
n

Γpn , where Γpn is the subgroup of points of pn-torsion of Γ(MK), be

the Tate module of Γ ; as we already know, it is a Zp-module of rank h equipped with
a continuous action of GK = Gal(K/K).

Lemma 3.16. i) If x = (x1, ..., xd) ∈ (Ainf,K)d is such that |θ(xi)|p < 1 for 1 ≤ i ≤ d,
then Fω([p]Γx)− pFω(x) ∈ π−sAinf,K.
ii) Let r(e) be the integer introduced in Lemma 3.8. If there exists y = (y1, ..., yd) such
that yi − xi ∈ Ainf,K ∩Ker(θ) then Fω(y)− Fω(x) ∈ π−s−r(e)Acris,K.

Proof. i) Note first that we have :

πsF 2
ω([k − 1]Γx, x) + πs(Fω([k − 1]Γx)− (k − 1)Fω(x)) = πs(Fω([k − 1]Γx⊕ x)− Fω([k − 1]Γx)

− Fω(x)) + πs(Fω([k − 1]Γx)− (k − 1)Fω(x))

= πs(Fω([k]Γx)− kFω(x))

We show now by induction on k that : πs(Fω([k]Γx)− kFω(x)) ∈ OK [[X1, ..., Xd]]
For k = 0 :
πs(Fω([0]Γx)− 0Fω(x)) = 0 ∈ OK [[X1, ..., Xd]]
Now suppose it is true for k ≥ 0, that is : πs(Fω([k]Γx) − kFω(x)) ∈ OK [[X1, ..., Xd]]
for k ≥ 0.
πs(Fω([k + 1]Γx) − (k + 1)Fω(x)) = πsF 2

ω([k]Γx, x) + πs(Fω([k]Γx) − kFω(x)) (by our
remark). We have that πsF 2

ω([k]Γx, x) ∈ OK [[X1, ..., Xd]] since ω is of second kind and
πs(Fω([k]Γx)− kFω(x)) ∈ OK [X1, ..., Xd]] by induction hypothesis.
Hence πs(Fω([k]Γx)− kFω(x)) ∈ OK [X1, ..., Xd]] for any k ≥ 0.
By taking k = p we get πs(Fω([p]Γx) − pFω(x)) ∈ OK [X1, ..., Xd]] which implies
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Fω([p]Γx) − pFω(x) ∈ π−sOK [[X1, ..., Xd]]. So now, taking x = (x1, ..., xd) ∈ (Ainf,K)d

such that |θ(xi)|p < 1 for 1 ≤ i ≤ d we get indeed Fω([p]Γx) − pFω(x) ∈ π−sAinf,K as
required.
ii) It is an immediate consequence of Corollary 3.9.
Indeed, if y = (y1, ..., yd) with yi−xi ∈ Ainf,K∩Ker(θ) then y−x ∈ (Ainf,K ∩Ker(θ))d.

We have by definition F (0) = 0 and dFω = ω =
d∑
i=1

αidXi with αi ∈ K[[X1, ..., Xd]]. So

as shown later we have πsω ∈ OK [[X1, .., Xd]] which implies that πsαi ∈ OK [[X1, ..., Xd]].
By Corollary 3.9, we obtain πsFω(y − x) ∈ π−r(e)Acris,K so in particular,

Fω(y)− Fω(x) ∈ π−s−r(e)Acris,K .

We state now the main proposition :

Proposition 3.17. Let ω be a differential form of second kind, u = (0, u1..., un, ...) ∈
Tp(Γ) and ûn ∈ (Ainf,K)d such that θ(ûn) = un. Then :
i) the sequence −pnFω(ûn) converges in B+

cris,K to a limit which depends only on u and
the range of ω in H1

dR(Γ).
ii) the period map defined as

H1
dR(Γ)× Tp(Γ)→ B+

cris,K

(ω, u) 7→
∫
u

ω = lim
n→∞

pnFω(ûn)

is bilinear, respects the filtrations (i.e.
∫
u
ω ∈ Fil1(BdR+) if ω ∈ Fil1(H1

dR(Γ)) and
commutes with the action of Gal(K/K) (i.e. g(

∫
u
ω) =

∫
g(u)

ω if g ∈ Gal(K/K)).
iii) If ω ∈ D(Γ), then

∫
u
ω ∈ B+

cris and ϕ(
∫
u
ω) =

∫
u
φ(ω).

Proof. ω is a differential form of second kind, so by defintion there exists r ∈ Z≥0 such
that πrF 2

ω ∈ OK [[X1, ..., Xd, Y1, ..., Yd]]. Moreover by definition of F 2
ω , F 2

ω = Fω(X ⊕
Y )− Fω(X)− Fω(Y ). As dFω = ω we get

dF 2
ω(X, Y ) = dFω(X ⊕ Y )− dFω(X)− dFω(Y )

= ω(X ⊕ Y )− ω(X)− ω(Y )

and so πrF 2
ω ∈ OK [[X1, ..., Xd]] implies that πr(ω(X⊕Y )−ω(X)−ω(Y )) ∈ OK [[X1, ..., Xd, Y1, ..., Yd]].

ω(X ⊕ Y ) − ω(X) − ω(Y ) =
d∑
i=1

αi(X ⊕ Y )d(X ⊕ Y )i −
d∑
i=1

αi(X)dXi −
d∑
i=1

αi(Y )dYi.

Therefore, there exists s ≥ r such that πsω ∈ OK [[X1, ..., Xd]] (take Xi = Yi in the
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previous equality to see it).
Now, let x = (x1, ..., xd) ∈ B+

dR such that |θ(x)|p < 1 for i = 1, ..., d then |θ(xi)− 1|p ≤
max{|θ(xi)|p, |1|p} < 1 and so, as in Lemma 3.10, Fω(x) converges in B+

dR (it is the
formal logarithm of ω).
In particular, as θ(ûn) = un and [p]nΓun = 0, |un|p < 1, we have that Fω(ûn) converges
in B+

dR.
Write :

pn+1Fω(ûn+1)− pnFω(ûn) = pn(pFω(ûn+1)− Fω([p]Γûn+1)) + pn(Fω([p]Γûn+1)− Fω(ûn))

By i) of Lemma 3.16, as ûn+1 ∈ (Ainf,K)d and that |θ(ûn+1)|p = |un+1|p < 1, we have
pFω(ûn+1)− Fω([p]Γûn+1) ∈ π−sAinf,K
By ii) of Lemma 3.16, as θ([p]Γûn+1) = [p]Γun+1 = un = θ(ûn) we have [p]Γun+1 − un ∈
Ainf,K ∩Ker(θ) and so Fω([p]Γ([p]Γûn+1)− Fω(ûn) ∈ π−s−r(e)Acris,K .
We obtain pn(pFω(ûn+1)−Fω([p]Γûn+1) ∈ πn−sAcris,K and pn(Fω([p]Γ([p]Γûn+1)−Fω(ûn) ∈
πn−s−r(e)Acris,K .
As B+

cris,K = Acris,K [1
p
] and that Fω(ûn) converges in B+

dR, we obtain that −pnFω(ûn)

converges in B+
cris,K .

We clearly see that the limit does not depend on ûn but on u = (0, u1, ..., un, ...) and
on the range of ω in H1

dR(Γ) (we do not wish that ω is exact).
We have finally proved i) of the proposition.

We want to show now the bilinearity of the period map.
The linearity with respect to ω is clear since dFλω = λω = λdFω so Fλω = λFω by
unicity of Fω. Still by the unicity of Fω we deduce dFω+ω′ = ω + ω′ = dFω + dFω′ .
For the linearity with respect to u, we note that since [p]nΓun → 0 as n → ∞ and that
−pnF 2

ω(ûn, û
′
n) = pnFω(ûn) + pn(û′n)− pnFω(ûn ⊕ û′n) we have

pnFω(ûn ⊕ û′n)→ pnFω(ûn) + pnFω(û′n) as n→∞

and thus
∫
u+u′

ω =
∫
u
ω +

∫
u′
ω.

Hence we have proved the bilinearity.
We want to show now that the period map commutes with the action of Gal(K/K)
(i.e. g(

∫
u
ω) =

∫
g(u)

ω if g ∈ Gal(K/K)).
Let g ∈ Gal(K/K) and ûn ∈ (Ainf,K)d such that θ(ûn) = un, then g(ûn) ∈ (Ainf,K)d

and θ(g(ûn)) = g(un) because θ is GK-equivariant (θ(g(ûn)) = g(θ(ûn)) = g(un)).
As Fω ∈ K[[X1, .., Xd]] we have Fω(g(ûn)) = g(Fω(ûn)) and so g(

∫
u
ω) =

∫
g(u)

ω.
We finally prove that the period map respects filtrations (i.e.

∫
u
ω ∈ Fil1(B+

dR) if
ω ∈ Fil1(H1

dR(Γ)).
Let ω ∈ Fil1(H1

dR(Γ)) = ΩΓ, that means, F 2
ω = 0, which implies that Fω(X ⊕ Y ) =
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Fω(X) + Fω(Y ) and so in particular Fω([k]ΓX) = kFω(X).
Taking k = pn and X = un, we get : Fω([pn]Γun) = pnFω(un) and so Fω(un) =
p−nFω([pn]Γun) = 0 since [pn]Γun = 0. Hence Fω(ûn) ∈ Fil1(B+

cris,K).

iii) We want to show now that if ω ∈ D(Γ) then
∫
u
ω ∈ B+

cris and ϕ(
∫
u
ω) =

∫
u
φ(ω).

If un = (xn,1, ..., xn,d), consider yn,i ∈ Ẽ+ such that y(0)
n,i = xn,i (therefore we have

yn,i = (xn,i, x
1
p

n,i, x
1
p2

n,i, ...)). Set ûn = ([yn,1], ..., [yn,d]). If ω ∈ D(Γ), that means,
ω ∈ K0[[X1, ..., Xd]] and ω ∈ H1

dR(Γ). Since B+
cris,K

∼= K ⊗K0 B
+
cris and H1

dR(Γ) =

K ⊗K0 D(Γ), we have Fω(ûn) ∈ B+
cris.

Moreover,

dFφ(ω)(ûn) = φ(ω)(ûn) = ωϕ((X1)p, ..., (Xd)
p)(ûn)

= ωϕϕ(ûn)

= ϕ(ω(ûn)) = ϕ(dFω(ûn))

And therefore, by unicity of Fω we get ϕ(Fω(ûn)) = Fφ(ω)(ûn). By passing to the limit,
as Fω(ûn) ∈ B+

cris which is closed in B+
cris,K , we get that lim

n→∞
Fω(ûn) ∈ B+

cris. We also

know, by i), that the sequence −pnFω(ûn) converges in B+
cris,K to a limit which depends

on u and on the range of ω in H1
dR(Γ) and so we have indeed

∫
u
ω ∈ B+

cris if ω ∈ D(Γ).
Moreover, as ϕ(Fω(ûn)) = Fφ(ω)(ûn), we have that :

ϕ(

∫
u

ω) = ϕ(lim
n
pnFω(û))

= lim
n
pnFφ(ω)(û)

=

∫
u

φ(ω)

as required.

We will give an example of a concrete computation when we consider the multiplactive
group and show the analogous for the complex case.

Example 3.18. ConsiderGm = Spec(C[z, 1
z
]). Let γ a generator ofH1(C∗,Z), ω = dz

z
∈

H0(Gm,Ω
1
Gm/C) and εn = e

2iπ
pn , where Ω1

Gm/C is the quotient of the Kähler differential
module of Gm by the submodule generated by the da, for a ∈ C (that means that we
see the elements of C as constants and that we can apply the usual rules of derivation).
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We know that : ∫

γ

ω = pn
∫ εn

1

ω = pn
∫ 2π

pn

0

deiΘ

eiΘ

= 2iπ

This is the classical period.
Now, suppose that Gm = Spec(K[z, 1

z
]) and let γ = (εn)n be a generator of Tp(Gm) =

lim
←
µpn(Qp) and ω = dz

z
∈ H0(Gm,ΩGm/K). We have Fω = log and by definition :

pn
∫ εn

1

ω = pnlog(εn) = log(εp
n

n )

= 0

So we see one more time that there is no p-adic analogous of 2iπ in a finite extension
of Qp.
Consider now ε̃n = [(εn+m)m∈Z≥0

] ∈ B+
dR and let t = log(ε̃0) ∈ B+

dR\{0}. Of course,
ε̃n 6= εn but θ+

dR(ε̃n) = εn. Moreover :

pn
∫ ε̃n

1

ω = pnlog(ε̃n) = log(ε̃0)

= t

And we see that we find our element t.



56 REFERENCES

References
[BC] Olivier Brinon and Brian Conrad. Cmi summer school notes on p-adic hodge

theory. http://math.stanford.edu/ conrad/papers/notes.pdf. (Preliminary ver-
sion).

[Ber01] Laurent Berger. An introduction to the theory of p-adic representations, 2001.

[Bre00] Christophe Breuil. Integration sur les varietes p-adiques. Asterisque, 266:489–
549, 2000.

[Col92] Pierre Colmez. Periodes p-adiques des varietes abeliennes. Mathematische
Annalen, 292:629–644, 1992.

[Col93] Pierre Colmez. Periodes des varietes abeliennes à multiplication complexe. In
Annals of Mathematics, volume 138, pages 625–683. Annals of Mathematics,
1993.

[Col98] Pierre Colmez. Integration sur les varietes p-adiques. Asterisque, 248, 1998.

[Col07] Pierre Colmez. Periodes et representations galoisiennes, notes du cours de m2.
https://webusers.imj-prg.fr/ pierre.colmez/Orsay.pdf, 2007.

[FO] Jean-Marc Fontaine and Yi Ouyang. Theory of p-adic galois representations.

[Fon94] Jean-Marc Fontaine. Le corps des periodes p-adiques. Asterisque, 223:59–111,
1994.

[Fro68] A. Frohlich. Formal Groups. Springer, 1968.

[Sil08] Joseph H. Silverman. The arithmetic of Elliptic curves, volume 106. Springer,
2nd edition, 2008.



INDEX 57

Index
Λ-thickening

infinitesimal, 47
pro-infinitesimal, 47
formal p-adic, 47

p-ring, 32
strict, 32
perfect, 32

Differential form, 9
exact, 50
invariant, 50
second kind, 50

Distinguished polynomial, 15

Filtration, 32, 40
Formal group, 50

of dimension 1, 8
of dimension n, 5

Frobenius map, 30

Height
of a formal group, 11
of a homomorphism, 6

Homomorphism
of formal groups
of dimension 1, 8
of dimension n, 6

Invariant differential, 9
normalized, 9

Isogeny, 14

Logarithm
of formal groups, 50

Module
Dieudonné, 50, 51
Tate, 19, 51

Multiplication-by-m map, 8

Period map, 52
Period ring

crystalline, 45
de Rham BdR, 40

Teichmüller representative, 30
The ring

Acris,K , 48
Acris, 43
A0
cris, 43

Ainf,K , 47
B+
cris,K , 48

B+
cris, 44

B+
dR, 39
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