UNIVERSITA DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL’'INFORMAZIONE

CORSO DI LAUREA MAGISTRALE IN
ICT FOR INTERNET AND MULTIMEDIA

Robotic Operating System talks
underwater: a communication
framework to control underwater
vehicles

Relatore: Laureando:
Pror. FiLipPO CAMPAGNARO DAVIDE COSTA
2090108

Anno Accademico 2023/2024

Abstract

In recent years, advancements in underwater communication have en-
abled engineers to achieve great milestones in this domain. Presently,
underwater devices such as drones and sensor stations are typically
interconnected via cables; however, emerging technologies now offer
the capability to realize the same connectivity using acoustic waves,

similarly to the evolution of wireless networks on land.

The Robot Operating System comprises a suite of software libraries
and tools utilized for building standardized robot applications in lan-
guages such as C++ and Python. Within ROS there is a specific
module known as middleware, allowing the communication between
different nodes. This middleware can be exploited to develop novel
data exchange layers capable of utilizing various transmission meth-
ods, and specifical solutions concerning the underwater channel will
be studied.

This project aims to build a middleware allowing to communicate
through an underwater acustic channel using the DESERT protocols
stack and the EvoLogics underwater acoustic modems, with the target
to remotely control aquatic robots for research and offshore applica-

tions.

Contents

1 Introduction

2 Underwater acoustic communication

2.1 System model
2.2 Channel model
2.2.1 Attenuation
222 Noise.

3 Acoustic modems

3.1 EvoLogics modem hardware
3.1.1 DMAC Emulator
3.2 Subsea Underwater Modem
3.2.1 Hardware components
4 DESERT underwater
4.1 The protocol stack used in this thesis
4.1.1 Application layero
4.1.2 Transport layero
4.1.3 Network layer L
4.1.4 Datalink layer
4.1.5 Physical layer I oL
4.1.6 Physical layer IT.

4.1.7 Protocol stack summary

5 Robot Operating System

5.1 Framework entities
5.1.1 Nodes
5.1.2 Topics
5.1.3 Services

ot Ot o W W

10
11

13
14
14
14
15
15
16
17
17

CONTENTS

5.1.4 Parameter server
5.1.5 Graphical representation
5.2 Application examples
5.2.1
5.2.2 Teleop key
5.3 Middlewares
5.3.1

6 ROS middleware for DESERT
6.1 CBOR encoding
6.1.1

6.2 Packet structure
6.3 TCP daemon
6.4 Message serialization
6.5 Middleware interface
6.6 DESERT entities

7 NS simulation results
7.1 UW/Physical
7.2 UW/UwModem/EvoLogicsS2C
7.3 EvoLogicsS2C and TDMA

8 Conclusions

References

Type supports

Data structure

Chapter 1
Introduction

Throughout history, humans have been striving to enhance their communication
abilities using the waves. From the early use of simple sound signals like whistles
and bells to the development of underwater telegraph cables in the 19th century,
the evolution of underwater communication has been truly remarkable [1].

A significant milestone in this field was the invention of sonar during World
War I, which revolutionized the ability of submarines to detect and track enemy
vessels underwater. This breakthrough led to the development of more sophis-
ticated underwater communication systems used in scientific research, marine
exploration, and even in marine mammal studies. Fast-forward to today, where
we have advanced underwater acoustic modems capable of high-speed data trans-
mission over long distances [3], opening up new horizons for underwater commu-
nication in various fields such as offshore drilling, oceanography, and underwater
robotics.

Among the renowned hardware for underwater communication are the Evo-
Logics underwater modems, showcasing cutting-edge technology. EvolLogics has
left a significant mark in the industry with their innovative modems enabling reli-
able and high-speed data transmission through acoustic waves. These devices are
designed to withstand the challenges of the underwater environment, providing
researchers, engineers, and marine professionals with a potent tool for real-time
data exchange. However, their high cost may not be suitable for all applications
where such performance is unnecessary.

The SIGNET laboratory at the University of Padova’s Department of Infor-
mation Engineering developed a more cost-effective modem based on a Raspberry
Pi [5]. While its performance may be lower than EvoLogics, it is ideal for short-

distance underwater transmissions performed consuming minimal power.

1

2 Chapter 1. Introduction

One concrete application of the underwater communications is for controlling
submarine wireless drones using common development frameworks. In this work,
starting from the Robot Operating System (ROS) set of software libraries and
tools used to build robot applications, it is presented a middleware extension
which enables those veichles to be controlled using acoustic underwater signals
through the DESERT underwater protocols stack [9] [7].

Called rmw _desert, short for ROS MiddleWare for DESERT, serves as a bridge
between the physical underwater data exchange and the higher programming
levels utilized by ROS developers. It enables them to seamlessly send and receive
information from robots using standard and custom structures constructed from
fundamental C or C++ data types.

Chapter 2
Underwater acoustic communication

Sending and receiving sound messages below the water is what underwater acous-
tic communication consists in. It remains a hot topic in various fields like military,
commercial, educational, and scientific activities [10], catching the eye of many
research companies and public universities. It is crucial for every user of un-
derwater acoustic communication systems to receive accurate and complete data
promptly.

However, bridging the gap between terrestrial and underwater acoustic com-
munication is still a major challenge due to issues like multi-path propagation,
limited bandwidth, signal attenuation over long distances, and channel variations
over time. The biggest hurdle in underwater communication is the water itself,
as the accuracy of acoustic signals underwater depends on factors like water type,

impurity levels, pressure, water composition, and temperature.

2.1 System model

In underwater acoustic communications, the system operates by transforming
electrical signals into acoustic signals at the transmitting end using a transducer,
and then converting those acoustic signals back into electrical signals at the receiv-
ing end. The block diagram of this underwater acoustic communication system
is presented in Figure 2.1.

Specific software handles the coding and decoding of messages using effi-
cient techniques with minimal overhead to make the most of the limited bitrate
available. Later on, a practical example of this efficiency will be provided. By
trimming unnecessary data and honing in on essential information, these encod-

ing methods ensure that all messages swiftly and accurately reach their intended

3

Chapter 2. Underwater acoustic communication

Send data stream Function Transmittin
— ¥ | modulation > : 9
driven transducer

code
Underwater
acoustic
channel
Receive data stream
decode | dem_odula < Front stage Receiving
tion amplifier transducer

Figure 2.1: Underwater communication system block diagram.
The image has been reproduced from [2].

destination.
The subsequent steps are taken care of by underwater acoustic modems,

which utilize various modulation techniques to encode information into acous-
tic signals that can navigate through the depths. These modems often employ
standard modulation schemes such as Frequency Shift Keying, Phase Shift Key-
ing, or Quadrature Amplitude Modulation and spread-spectrum techniques like
Frequency-Hopping Spread Spectrum, Direct Sequence Spread Spectrum or Lin-

ear Frequency Modulation for effective underwater communication.

2.2 Channel model

Underwater communication faces challenges from factors like the seabed, water
surface, noise from marine life, ship activity, and wind speed. Additionally a

strong multi-path propagation is present, making it tough to send messages over

long distances.

OCEAN
SURFACE N 7E%
4o ’
A 4 5 ’ N
\ “ N \
Tx Depth i 8,7 \ -
\
/ A oS Ambient noise
! i/ \ \
/, 1 3 b
H /
Transmitter e ‘\ S Receiver
b
A
N\
OCEAN \'m >
PROJECTOR D - » @ HYDROPHONE
DEPTH % Direct Path :
1
I

Biological noise

Acoustic signal

v Reflected Signals\\ "
OCEAN N
FLOOR

Figure 2.2: Underwater communication environment representation.

2.2 Channel model 5

Navigating through these underwater intricacies requires a keen understand-
ing of the channel characteristics and a strategic approach to ensure messages

can travel far and wide.

2.2.1 Attenuation

Path loss or attenuation is the first issue that must be considered. In underwa-
ter environments, electromagnetic waves lose power much faster than in wireless
communication on land. This happens because of spreading and absorption loss,
which get worse with higher frequencies.

Spreading loss is the extra loss in wave amplitude compared to a flat wave,
affected by how the transmitter and receiver are set up and the environment’s
properties. Absorption loss is the gradual decrease in wave amplitude as it moves

through water, caused by heat and energy loss in the fluid.

350

N
a
o
T
I

200 2 B

absorption coefficient [dB/km)]
o
=]
1

o
o
T
!

o i i i i i i i i i
0 100 200 300 400 500 600 700 800 900 1000
frequency [kHz]

Figure 2.3: Underwater channel absorption coefficient.
The image has been reproduced from [10].

2.2.2 Noise

The influence of the environment on underwater noise levels, as depicted in Figure
2.2, is a crucial factor to consider. Four distinct sources of noise have been
identified and various scenarios were examined to determine the optimal carrier

frequency for each circumstance.

6 Chapter 2. Underwater acoustic communication

The first source is turbulence, characterized by random and chaotic three-
dimensional vorticity, impacting the lower frequency spectrum exclusively. Ship-
ping activity, generated by the movement of distant vessels, dominates the 10
Hz-100 Hz frequency range and is quantified through the shipping activity factor.

Surface motion, induced by wind-driven waves, significantly contributes to
noise levels within the 100 Hz - 100 kHz frequency range. Lastly, thermal noise,
arising from random thermal electron motion, becomes prevalent for frequencies
exceeding 100 kHz.

noise p.s.d. [dB re micro Pa]

20 ; - - ;
10 10 10 10 10 10 10
f [Hz]

Figure 2.4: Underwater channel power spectral density of the ambient noise.
The image has been reproduced from [10].

Chapter 3
Acoustic modems

Underwater acoustic modems use sound waves to transmit data between devices
submerged underwater. These modems convert digital signals into sound waves
that travel through water more efficiently than radio waves. By modulating the
frequency, amplitude, or phase of the sound waves, information can be transmit-
ted and received by other modems in the water.

In this chapter two different solutions are presented, the first one employing
hardware devices produced by Evologics, and the second one with software defined
modems developed at the University of Padova. Both are valid but it is important
to choose the correct one depending on the environmental conditions and the type

of application.

3.1 Evologics modem hardware

At the beginning of this century a company named EvoLogics emerged, as a result
of the work made by their scientists and research experts. Their primary objec-
tive was the development of pioneering technologies tailored for the maritime and
offshore industries. A strategic alliance that encouraged interdisciplinary collab-
oration between teams of engineers and life scientists developed sophisticated
modems, specifically designed to enable reliable data exchange in the depths of
the sea and surmounting the obstacles posed by underwater conditions.

With cutting-edge technology like acoustic signal processing and robust net-
working capabilities, these modems cater to the needs of various marine re-
searchers, scientists, and oceanographers, facilitating communication and data
transfer beneath the waves. They are the peak of innovation in underwater com-

munication, offering a refined solution for transmitting information across aquatic

7

8 Chapter 3. Acoustic modems

environments.

Figure 3.1: An underwater acoustic modem from EvoLogics.

EvoLogics has developed a variety of modem types with features tailored to
suit different environments. Some provide higher bitrates and shorter ranges,
while others are designed for the opposite. In Figure 3.2, a graph is provided
with the operating range on the horizontal axis and the bitrate on the vertical

axis to illustrate how these parameters interact across different modem models.

a
)
=
ui
<
o
=
@

62.5Q) S2CMHS @

-
/

L\\: \\ &
A~ o
¥ (7\ .

31.2QJ []
S2CR 48/78 S2CR 42/65

S2CM 48/78 S2CM 42/65 Y
- S2CR 15/27 S2CR7/17

- S2CR 12/24
S2CR 18/34 S2CR 18/34 s S2CR7/I7W $2CR7/17D

S2CM 18/34 O

NS

O O @, @,
S
$

o0 W
o o
(1)

OPERATING RANGE, m

I
Ve

Figure 3.2: Underwater modems positioned based on operating range and bitrate capabilities.
The image has been reproduced from [3].

3.1.1 DMAC Emulator

The Dual Media Access Control represents EvoLogics’ pioneering data-link layer
protocol. Its emulator serves as a software tool that enhances the versatility

available to underwater network protocol developers of EvolLogics’ underwater

3.1 Evologics modem hardware 9

acoustic modems. The primary goal is to streamline the development of un-
derwater network protocols by eliminating the need for costly modem hardware
during initial testing phases. The emulator replicates all aspects of the modem’s
data-link protocol layer and incorporates a phenomenological simulator of the
physical protocol layer.

Any code that is written and executed on the modem emulator can subse-
quently be executed on the physical modem hardware without necessitating any
alterations. This feature provides a time-efficient solution that reduces develop-
ment expenses associated with upper layer network protocols and streamlines the
process of integrating acoustic modems into underwater infrastructure.

Simulated variables are:

e signal propagation delays caused by finite speed of sound in the water;

packet collision detection generated by multiple simultaneous transmissions;

packet synchronization and demodulation errors of the receiver;

e movement and rotation of the virtual modems decided by the user;

attenuation of the signal produced by spreading and absorption loss.

EvoLogics DMACE
Underwater Acoustic

Lgéci)c S@ Network Fmulator | Logout ‘ | Change password ‘

DMACE-78 status: running
Emulated nodes:

node channel @ channel 1 channel 2 saved position(X Y Z)

1 10.42.78.1:9200 10.42.78.1:9201 10.42.78.1:9207 400.00 -9080.00 50.00
2 10.42.78.2:9200 10.42.78.2:9201 10.42.78.2:9207 0.00 -900.00 50.00
3 10.42.78.3:9200 10.42.78.3:9201 10.42.78.3:9207 -400.00 -980.00 50.00
4 10.42.78.4:9200 10.42.78.4:9201 10.42.78.4:9207 -200.00 -1580.080 50.00

E Number of Nodes
Restart, Start and Stop DMACE

@ Reset DMACE configuration to factory settings

Please report bugs to:
EvoLogics GmbH

Ackerstrasse 76

13355 Berlin

Germany

Tel. +49 30 4679 862-0

Fax. +49 30 4679 862-01
http://www.evologics.de
E-Mail: support@evologics.de

Figure 3.3: Online interface used to control simulated modems.

10 Chapter 3. Acoustic modems

An online tool is available for the graphical management of virtual modems,
allowing users to interact with them through control commands like position,
orientation, or frequency range. Each modem has a unique IP address within
EvoLlogics’ Virtual Private Network, enabling communication via netcat from

the developer’s Linux shell or Windows prompt for testing various scenarios.

3.2 Subsea Underwater Modem

The sophisticated acoustic modems produced by EvolLogics are extremely good
solutions, but they are also very expensive and some applications may necessi-
tate lower performance benchmarks and reduced power consumption than those
offered by these high-end devices. For instance, the deployment of Autonomous
Underwater Vehicles operating collectively in coordinated fleets requires compact,
lightweight, and energy-efficient acoustic modems for integration onto this size-
constrained and battery-operated drones. These challenges could be faced by
employing cheap modems built with low-power and low-depth rated components.

Moreover using the Software Defined Modem architecture provides the system
with improved adaptability and reconfigurability, enabling the customization of
various communication stack attributes to suit the specific channel conditions,
thereby enhancing reliability, minimizing energy usage, and reducing hardware
requirements to a few processing units [4]. Their flexibility allows for efficient
utilization of the limited resources within underwater nodes, while the general-
purpose processing units they utilize prove more cost-effective than specialized
hardware like digital signal processors or field-programmable gate array circuits.

The SIGNET lab, in collaboration with the Italian General Directorate of
Naval Armaments, the Italian National Research Council and the startup com-
pany SubSeaPulse Srl, has engineered a software-defined modem encompassing
two layers of the communication stack: the physical layer and the Medium Access
Control layer (MAC).

Afterwards, SubSeaPulse enhanched this research idea creating a modem
prototype now commercialized under the name SuM, “Subsea underwater Mo-
dem’, that is capable of executing real-time operations without necessitating
post-processing, relying only on cost-effective software and hardware tools. Its
integration potential appeals to professionists like students, researchers and prac-
titioners, bridging the gap between underwater communications and civilian ap-

plications.

3.2 Subsea Underwater Modem

11

3.2.1 Hardware components

The structure of the modem is divided into three distinct parts detailed below.

1. A Raspberry Pi, serving as the processing unit, undertakes all protocol stack

functions, including routing, channel access, forward error correction, and

digital signal processing tasks such as filtering, preamble synchronization,

modulation, and demodulation.

2. A HiFiBerry DAC+ADC Pro HAT performing a 192 kHz 24-bit analog-to-

digital and digital-to-analog conversion process.

3. An amplification and switch module is employed to transition the modem

between reception and transmission modes, enhance the received signal

through pre-amplification, and amplify the outgoing signal for transmis-

sion.

All analog frontend components are consoli-
dated on a single Printed Circuit Board denoted
as the SuM HAT, which has the dimensions of a
standard Raspberry Pi HAT. The complete mo-
dem configuration comprises three layers: the
Raspberry Pi, HiFiBerry, and SuM HAT.

SuM is compatible with any Raspberry Pi
model: for energy-restricted applications, Rasp-
berry Pi 0 suffices, while Raspberry Pi 4B is rec-
ommended for high-power demands, with Rasp-
berry Pi 3B offering a balanced compromise be-
tween power consumption and processing capa-
bilities.

The modem supports various underwater
acoustic transducers, with its frequency band

limitation determined by the HiFiBerry, en-

Figure 3.4: A Subsea under-
water Modem.

abling transmission from 2 Hz up to a maximum frequency of 70 kHz.

The maximum transmission power is contingent upon the impedance and

Transmitting Voltage Response of the utilized transducers. For instance, with the

Aquarian AS1 hydrophone, the output amplifier’s 30 dB gain allows transmission

of approximately 155 dB re 1 pPa at 40 kHz. Conversely, employing the Btech-

2RCL transducer permits transmission of up to 180 dB re 1 pPa at 28 kHz owing

to its higher TVR [5].

12

Chapter 4

DESERT underwater

DESERT Underwater represents a comprehensive suite of publicly available C++
libraries that enhance the NS-MIRACLE simulator to facilitate the development
and deployment of underwater network protocols [6] [7]. The motivation behind
its development lies in expanding the realm of underwater networking studies
beyond mere simulations. The crucial significance of implementing research solu-
tions on real devices cannot be understated in achieving a robust communication
and networking framework that enables diverse nodes to communicate effectively

in the underwater domain.

e _ i i\

| | | network
simulator

wa Noadon
acoustic
transducer
water

Figure 4.1: Network infrastructure used for DESERT underwater.
The image has been reproduced from [7].

NS-Miracle enriches the ns2 network simulator by introducing a mechanism
for managing cross-layer messages and supporting the coexistence of multiple
modules within each layer of the protocol stack [8]. For instance, you can specify

and utilize multiple IP addresses, link layers, MACs, or PHYs within a single

13

14 Chapter 4. DESERT underwater

node. This feature underscores the high modularity of NS-Miracle, tailored to
simulate nodes with a logical architecture closely resembling that of actual de-
vices.

The utilization of NS-Miracle for designing protocol solutions for underwa-
ter networks presents developers with the opportunity to leverage existing code
from ns2 with minimal alterations, and capitalize on NS-Miracle’s modularity
for enhancing the organization of their design endeavors. Furthermore, the per-
formance evaluation of the developed protocol stack can be conducted through

simulations utilizing specific channel model tools.

4.1 The protocol stack used in this thesis

Within the DESERT framework, all ISO/OSI network layers, spanning from the
lowest to the highest, are fully implemented. This section provides insights into
the specific layers utilized in this project.

To differentiate between NS-Miracle and DESERT modules, all those within
DESERT are designated with a prefix uw-. It is worth noting that this prefix does
not necessarily indicate that a module’s protocol solution is tailored exclusively

for underwater networking.

4.1.1 Application layer

Amnong the various application layer of DESERT, in this thesis we use UW /AP-
PLICATION, a module that allows the transmission of adjustable size payloads
between nodes. Additionally, genuine data can be sent through either a TCP or
UDP socket on a specified port, enabling the connection of a sensor or device to
transmit its data to UW/APPLICATION through it. This module encloses the

payload with control headers and sends the packet to the lower layers.

4.1.2 Transport layer

For the Transport layer, the UW/UDP module is utilized to perform flow mul-
tiplexing and demultiplexing between the upper and the lower layers. However,
it is important to note that this module lacks support for link reliability, error

detection, or flow control.

3

4.1 The protocol stack used in this thesis 15

4.1.3 Network layer

The Network layer is responsible of furnishing tools for the network interfaces and
establishing mechanisms for data routing. In this specific setup, the UW /STATI-
CROUTING module was employed to facilitate the simulation and testing of data
traffic that must adhere to pre-defined routes.

Each network node has the option to designate a default gateway and/or
populate a static routing table, with a maximum capacity rigidly set to 100
entries. This data is subsequently utilized within each node to autonomously
direct network packets along the specified paths, hop by hop.

Setup routing table
for {set idl 0} {$id1l < [expr $opt(nn) - 1]} {incr id1} {
set id2 [expr $idl + 1]

$ipr($id1) addRoute [$ipif_sink addr] [$ipif($id2) addr]
$ipr_sink addRoute [$ipif($idl) addr] [$ipif($idl) addr]

set last_id [expr int($opt(mn) - 1)]
$ipr($last_id) addRoute [$ipif_sink addr] [$ipif_sink addr]
$ipr_sink addRoute [$ipif ($last_id) addr] [$ipif ($last_id) addr]

Listing 4.1: ns2 routing table population using TCL.

In addition, the UW/IP module is employed to allocate addresses to nodes
within a designated network based on the standard IPv4 addressing scheme. This
allocation includes the implementation of the Time-To-Live feature; however, it

does not incorporate any routing mechanism within its functionality.

4.1.4 Data link layer

At the heart of the Data link layer lies the Medium Access Control component,
which governs access to the acoustic communication channel.

ALOHA represents a random access scheme, denoting a protocol that enables
nodes to transmit data packets directly without the need for any prior channel
reservation procedure. Within this context, the UW/CSMA_ALOHA implemen-
tation is employed, serving as an upgraded variant of the initial ALOHA protocol.
This enhanced version integrates a carrier sensing mechanism into the fundamen-
tal ALOHA framework to mitigate collision incidents.

Additionally, since node-to-node interactions at the link layer rely on MAC
addresses, while those at the upper layers utilize IP addresses, there is a need for

a method to correlate the latter with the former.

16 Chapter 4. DESERT underwater

Send successful Collision retransmission

—»

Node 1 ";t
Collision retransmission ‘ ‘ Collision retransmission

4’ =
Node 2 - ‘;t
’ T . _— Send successful
) Collision retransmission
; =__.
Node N-1

t

Send successful

4
Node N »
t

Figure 4.2: Aloha scheme of multiple channel access.

Through the use of UW/MLL, an association is established between IP and
MAC addresses in advance, achieved by populating an ARP table for each net-
work node. Alternatively, ARP tables can be automatically populated using the

Address Resolution Protocol.

4.1.5 Physical layer |

This layer employs the UW/PHYSICAL module, which emulates an acoustic
underwater channel utilizing a Signal-to-Noise Ratio threshold calculation model
[10].

Factors such as shipping activity, wind velocity, inter-node spacing, signal
power, and carrier frequency are predetermined by the user and employed to
calculate attenuation and subsequent noise levels, culminating in the comparison
of the obtained SNR against a preset threshold.

If the computed SNR surpasses the threshold, most packets will be success-
fully received; otherwise, a significant packet loss may occur due to the high Bit
Error Rate. The formula is expressed in 4.1, where P is the transmitted acoustic
power, A is the absorption, | the distance between transmitter and receiver, f the

frequency, N the noise power spectral density, and Af the signal bandwidth.

P/A f)
N(f)-Af

Thus, a local simulation is performed through mathematical computations;

SNR(l, f) = (4.1)

however, this does not ensure the software’s readiness for integration with physical
hardware. To achieve this, an alternative module was subsequently trialed in

place of the existing one.

TR W N e

4.1 The protocol stack used in this thesis 17

4.1.6 Physical layer Il

For the purpose of conducting experiments with physical hardware, a trial was
conducted using underwater modem emulators from EvolLogics as detailed in
preceding sections. The UW/UwModem/EvoLogicsS2C module was employed
to establish a connection, defining and executing the interface between ns2 and
authentic acoustic modems.

This module is responsible for managing all requisite messages for NS-Miracle
like cross-layer communications between MAC and PHY layers, encompassing
user-adjustable simulation parameters and associated methods for modification.

The benefit lies in the fact that whether utilizing emulators or real modems,
the distinction is negligible. Therefore, validating a program in this virtualized
setting suffices to guarantee its functionality on tangible devices deployed in the
field.

Essentially, this module establishes a connection with the real or virtualized
underwater modem via a Virtual Private Network utilizing the conventional net-
work protocol. Subsequently, it sends directives to the device to allow the trans-
mission and reception of data through the acoustic channel, effectively leveraging

the full spectrum of functionalities of a physical modem.

4.1.7 Protocol stack summary

Node Node
o — - + o - +
| 7. UW/APPLICATION | | 8. UW/APPLICATION |
o — - + Rl +
| 6. UW/UDP | | 7. UW/UDP |
B i + Rl i +
| 5. UW/STATICROUTING | | 6. UW/STATICROUTING |
o - — - + o - +
| 4. UW/IP | | 5. UW/IP |
e e et + Rl et e e +
| 3. UW/MLL | | 4. UW/MLL |
L e e e + Rl i e +
| 2. UW/CSMA_ALOHA | | 3. UW/CSMA_ALOHA |
L e e + Rl e e +
| 1. UW/PHYSICAL | | 2. UW/AL |
L e + R e e +

| | | 1. UW/UwModem/EvoLogicsS2C |
| | B it +
| | | |
L e e + R e e e +
| MathematicalChannel | | UnderwaterChannel |

18 Chapter 4. DESERT underwater

This section provides a summary of the aforementioned protocols. Specifi-
cally, on the left, the UW/PHYSICAL channel was utilized, whereas on the right,
it was substituted with the EvoLogics interface. Furthermore, for the integration
with real network stacks and their transmission /reception of packets, a real-time
scheduler was employed to synchronize the simulation clock with the hardware
clock. The objective of the real-time scheduler is to ensure that the simulation
clock progresses in sync with the external time reference.

It is important to note that the latter configuration includes an additional
layer known as the Adaptation Layer, which is essential for packet translation
for real modems by interfacing with packers, performing the conversion of the

headers into a bit stream and vice-versa.

Chapter 5
Robot Operating System

ROS, an acronym for Robot Operating System, serves as an open-source frame-
work dedicated to the construction of robotic systems [9]. It furnishes software
developers with libraries and tools essential for the creation of robot applica-
tions. ROS finds extensive application in research, academia, and industry for
the advancement of state-of-the-art robotic technology.

Within the diverse tasks that a robot executes, ROS implements the functions
typically offered by an operating system. These encompass hardware abstraction,
driver-controlled device management, inter-process communication, application
oversight with packages, and other frequently employed operations.

In ROS, a series of processes can be visualized as nodes interconnected in
a graph structure. These nodes possess the capability to transmit, receive, and
multiplex messages between themselves, sensors and actuators.

Despite the critical nature of reactivity and low latency in robotic control
procedures, ROS does not function as a real-time operating system. However, it
remains feasible to integrate ROS with real-time modules for enhanced perfor-

mance.

5.1 Framework entities

Within the ROS framework, processes are depicted as nodes arranged in a graph
structure interconnected by edges known as topics. These nodes in ROS have
the capability to exchange messages via topics, initiate service requests to other
nodes, offer services to other nodes, or access and modify shared data from a
common repository known as the parameter server.

This decentralized design is particularly well-suited for robotic systems, which

19

20 Chapter 5. Robot Operating System

often comprise a network of interconnected hardware components and may ne-
cessitate communication with external computers for intensive computation or

command transmission.

5.1.1 Nodes

Nodes in ROS serve as individual processes within the ROS graph, each uniquely
identified by a name registered with the ROS master. These nodes can exist under
different namespaces with distinct names, or opt to be anonymous, in which case
they receive an additional randomly generated identifier.

The foundation of ROS programming lies in nodes, as most ROS client code
is structured in the form of ROS nodes that interact based on exchanged infor-

mation, issuing commands, and responding to requests from other nodes.

5.1.2 Topics

Topics in ROS function as named communication channels through which nodes
exchange messages. Fach topic must have a unique name within its namespace.
For a node to transmit messages to a topic, it must publish to that specific topic;
conversely, to receive messages, it must subscribe to the topic.

This publish/subscribe model maintains anonymity, with nodes unaware of
the specific senders or receivers on a given topic. The messages shared over topics
can encompass a wide array of data types, including user-defined content such as

sensor readings, control commands, system states, or actuator directives.

5.1.3 Services

Services are typically employed for actions with well-defined start and end points,
such as capturing a single image frame, as opposed to continuous processes like
motor control commands or sensor data processing. Nodes can advertise services

and invoke services from other nodes within the ROS ecosystem.

5.1.4 Parameter server

The parameter server in ROS serves as a shared database accessible to all nodes,
facilitating centralized access to static or semi-static information. Data that re-

mains relatively static and infrequently accessed, such as environmental distances

5.2 Application examples 21

or robot weight, are commonly stored in the parameter server for collective ref-

erence and retrieval.

5.1.5 Graphical representation

This section offers a graphical depiction of the publisher-subscriber and client-
service architectures to enhance comprehension of the underlying mechanisms

governing these components.

NODE

Service

Request Message

Publisher
Response

Figure 5.1: A service, a publisher and two subscribers.

5.2 Application examples

A valuable tool utilized for introducing the framework is Turtlesim, a lightweight
simulator designed for educational purposes within ROS 2. Turtlesim serves as a
fundamental demonstration of ROS 2 operations, offering insights into the activ-
ities one may engage in with an actual robot or a simulated robot in subsequent
stages.

Essentially, the turtlesim node showcases a graphical interface featuring a
turtle that periodically transmits data regarding its position, color, and other
attributes, while concurrently awaiting commands dictating its movement via
topics and services.

By simulating the functionalities of an abstract robot, the turtle assumes the
role of the target device necessitating control. Conversely, a program responsible
for dispatching control commands, known as turtle_teleop_key, is also imperative

for the interactive process.

22 Chapter 5. Robot Operating System

5.2.1 Node

Turtlesim

furtlel

Hurtle1/rotate_absolute

‘ Murtle1/rotate_absolute/_action/feedback I

/J turtle/rotate_absolute/_action/status I

:

Irosout
(a) (b)

Figure 5.2: Turtlesim node topics and services.

Figure 17 represents the topic hierarchy of the node turtlel, engaging in mes-
sage publication within the pose and color_sensor topics to relay data pertaining
to its current attributes. Concurrently, it subscribes to the cmd_vel topic to
receive directives for control.

Furthermore, a service named rotate_absolute is available for client utilization,
enabling manipulation of turtlel to adopt a predetermined absolute orientation

in the plane, with feedback confirming the successful execution of the task.

5.2.2 Teleop key

Hurtlel

fturtle1/rotate_absolute

| frurtle1/rotate_absolute/_action/feedback |

| Furtle1/rotate_absolute/_action/status I»-I /fteleop_turtle

Murtle1/cmd_vel

Figure 5.3: Teleop key topics and services.

The Teleop key module within Turtlesim operates in a terminal environment,
capturing keyboard inputs that are translated into movement instructions. This
module functions by publishing control commands derived from arrow key inputs
to the cmd_vel topic, while also acting as a client to the rotate_absolute service

for executing rotational maneuvers on the turtle.

5.3 Middlewares 23

5.3 Middlewares

Middlewares represent modules within ROS designed to act as drivers allowing
the interaction between high-level data exchange and the physical transmission
of data across a network. One primary objective of the middleware interface is to
shield the user land code from any system-specific data distribution implementa-
tion.

As a result, the ROS client library situated “above” the middleware inter-
face exclusively operates on ROS data structures. ROS 2 adheres to employing
ROS message files to outline the composition of these data entities and generate
corresponding data structures in each supported programming language.

Below the middleware interface, the middleware implementation is respon-
sible for converting ROS data objects from the client library into a customized
data format before transmission through the network protocol stack. Conversely,
incoming custom data objects from the network necessitate conversion into ROS
data entities before they are relayed back to the ROS client library.

The specification of middleware-specific data types is derived from the details
outlined in the ROS message files. A predefined mapping between the primitive
data types of ROS messages and middleware-specific data types ensures seamless
bidirectional conversion. The conversion functionality between ROS types and

the implementation-specific types or API is encapsulated within the type support

mechanism.
B e it +
| user land | 1) Create a ROS message
3 t—-———————————————————— + v
| ROS client library | 2) Publish the ROS message
5 tmmm e s e + v
i | middleware interface | 3) Convert the message into a bytestream
e e + v
| data distribution | 4) Send it to the network
o e + v
| network |
Fomm - +

5.3.1 Type supports

In ROS, messages are conveyed to the middleware in the form of raw void pointers
pointing to a memory location without any specific type specification. The chal-
lenge arises from the diversity of data that can potentially populate this memory

location, encompassing various types such as integers, floats, strings, and more.

19

21

N
N

24 Chapter 5. Robot Operating System

To enable the interpretation of this diverse data, ROS includes a special vari-
able known as type support, passed during the registration of topics or services.
This type support variable is a structured entity that encapsulates crucial details
regarding the type, dimensions, and field quantities present within the message.
It is important to note that type supports solely encompass the structural infor-
mation of the exchanged data, which remains consistent across all topics sharing

the same name.

/// Structure used to describe all fields of a single interface
type.
typedef struct ROSIDL_TYPESUPPORT_INTROSPECTION_CPP_PUBLIC

MessageMembers_s

/// The namespace in which the interface resides, e.g. for

/// example_messages/msg the namespaces generated would be

/// example_message::msg".

const char * message_namespace_;

/// The name of the interface, e.g. "Intl6"

const char * message_name_;

/// The number of fields in the interface

uint32_t member_count_;

/// The size of the interface structure in memory

size_t size_of_;

/// A boolean value indicating if there are any members
annotated as ‘@key‘ in the structure.

bool has_any_key_member_;

/// A pointer to the array that describes each field of the
interface

const MessageMember * members_;

/// The function used to initialise the interface’s in-memory
representation

void (* init_function) (void *, rosidl_runtime_cpp::
MessageInitialization) ;

/// The function used to clean up the interface’s in-memory
representation

void (* fini_function) (void x*);

} MessageMembers;

Listing 5.1: Struct containing type support informations in ROS.

Chapter 6

ROS middleware for DESERT

The central focus of this project lay in the development of RMW desert, which
stands for ROS MiddleWare for DESERT. This creation enables Robot Operating
System applications to engage in communication via acoustic wireless underwater
means sans any alterations to their original code.

Thanks to the modularity of ROS, this objective was successfully reached
through the creation of a package housing a fresh implementation of the rmw
interface. That interface resides within the C++ header files, delineating all
essential functions for a middleware layer.

It intercepts messages from the user land and dissects them into a series
of fundamental data types, which are later serialized using a specific encoding
method. In this particular project, the Coincise Binary Object Representation
was the chosen encoding due to its high efficiency and minimal overhead.

Tasks are executed within the instances of diverse classes embodying publish-
ers, subscribers, clients, and services, denoted in this context with the Desert-
prefix, such as DesertClient.

The code can be found on github [11].

6.1 CBOR encoding

Coincise Binary Object Representation is a compact binary data format that
boasts a succinct and efficient way to serialize and deserialize data structures. It
is particularly beloved in the field of computer science for its ability to represent
complex data in a concise manner, making it ideal for scenarios where bandwidth
or storage space is limited like underwater channels.

CBOR follows a standardized format, allowing data to be encoded and de-

25

26 Chapter 6. ROS middleware for DESERT

coded consistently across different systems and programming languages. It is a
data format whose design goals include the possibility of extremely small code
size, fairly small message size, and extensibility without the need for version
negotiation [12].

The attributes of this encoding method are as follows:

1. the encoding is adept at unambiguously representing the majority of com-

mon data formats utilized in Internet standards;

2. the implementation of an encoder or decoder can be concise to cater to
systems harboring minimal memory, processing capabilities, and instruction

sets;

3. data can be decoded sans the necessity of a schema description; therefore,
encoded data must possess self-descriptive qualities so that a generic de-

coder can be crafted;

4. the serialization process is reasonably compact, although the compactness
of code takes precedence over the compactness of data for both the encoder

and decoder;

5. the format is expansible, allowing for the incorporation of additional data

that can be deciphered by earlier decoders;

6. the format is crafted with longevity in mind, intended to remain relevant

and functional for decades to come.

6.1.1 Data structure

Encoded data presents itself as a sequence of data items. Each individual data
item comprises a header byte housing a 3-bit type designation and a 5-bit short
count. Subsequently, there may be an optional extended count, which comes into
play if the short count is too small to contain the data dimension, alongside an
optional payload. For data types unsigned integer, negative integer, and floating
point number, no payload is present; the count itself represents the value. In the
case of data types byte string and text string, the count signifies the length of
the payload.

6.2 Packet structure 27

CBOR Data item
Byte count | 1 byte (data item header) Variable Variable
Structure | Major type | Short count | Extended count Data payload
Bit count 3 bits 5 bits 8 bits x variable | 8 bits x variable

The interesting detail about this encoding is that all the data are sent only
with the strictly neccessary number of bytes nedded for a certain information.
Integer types do not contain any zero-padding, and for numerical values incor-
porating decimal points, three tiers of precision have been established: TEEE
754 half-precision, single-precision, and double-precision floating-point represen-

tations.

The minimalistic implementation for CBOR from Kyunghwan Kwon was used

in rmw_desert, choosen for its lightness and efficency [13].

6.2 Packet structure

Packets are composed by variable length payloads containing CBOR-encoded in-
formations, preceded by a header and closed by a tail. A predefined bit sequence
marks the initiation of the packet, followed by another sequence denoting its
termination. After the two fixed starting bytes, a field with the payload dimen-
sion is included, succeeded by the payload itself and by a single byte signifying
the conclusion of the packet. Within the payload, the initial two fields consis-
tently represent unsigned integers denoting the transmitting node type — be it a

publisher, client, or service — and the respective topic or service identifier.

While ROS employs strings to manage topic names, a mechanism was im-
plemented to mitigate the transmission of superfluous and bandwidth-intensive
string data. This entailed the integration of a configuration file containing static
mappings between names and integers. To ensure seamless communication, this

configuration must be shared across all underwater network devices.

Starting | Starting Payload | Stream | Stream | Remaining | Ending

Sequence | Sequence | Dimension | Type | Identifier | Payload | Sequence

1 byte 1 byte 1 byte 1 byte 1 byte n bytes 1 byte

28 Chapter 6. ROS middleware for DESERT

6.3 TCP daemon

A class offering essential functionalities is TcpDaemon, utilized for establishing
communication with the DESERT application layer socket, serving as the conduit
between userland software and the network protocol stack.

An initialization procedure begins the middleware connection via a TCP
stream to DESERT, subsequently creating threads for incoming and outgoing
messages and detaching them prior to the return statement.

These threads operate continuously to guarantee comprehensive data man-
agement, thus justifying the classification as a daemon. Specifically, the receiving
thread deposits received packets into a static packet queue, whereas the trans-
mitting thread retrieves content from another static packet queue and transmits
it to the socket.

Transmitting data is a straightforward process, requiring the insertion of three
bytes as a header and an additional byte as a tail. Conversely, receiving data
necessitates monitoring the stream until a valid header is encountered, verifying
that the payload aligns with the specified dimension, and upon reaching the
ending sequence, storing the packet in the queue.

At this point other classes can access those payloads as a sequence of bytes
contained in static variables encapsulating CBOR-encoded fields. To streamline
the conversion process between C++ data types and encoded fields, TxStream

and RxStream classes were implemented.

6.4 Message serialization

Before sending data types down to the stream the message structure coming
from nodes must be interpreted, in order to correctly locate the memory address
of each field. The pointer passed through a function argument indicates the
starting location of the entire message, and the middleware is responsible for
splitting it correctly.

In the MessageSerialization namespace, there are methods that implement
these functionalities based on the type support of each topic or service. Initially,
the outer structure is scanned and can contain basic types or more complex
ones, like strings. Each field can be single, an array, or a sequence of uniform
data, and it needs to be handled using C or C++4 structures depending on the

implementation.

6.5 Middleware interface 29

Message payload

1, "random", -44, -2.0, 0.4367

CBOR sequence

01 66 72616E646F6D 38 2B

unsigned int | &
J ;' "random”
\4
ts

text 6 eleme ¥
(t 6 elemen negative integer

Figure 6.1: Example of message payload being encoded.

Figure 6.1 illustrates a serialized message with various data types. Small in-
tegers occupy one byte because the short count can contain the entire number.
Larger integers necessitate more space, exemplified by the violet number in the
provided example. Strings incorporate a payload field, denoted in blue, repre-
senting a character sequence with a length equivalent to the final five bits in the
green data item header.

Additionally, floating point numbers adhere to a comparable structure. The
F9 header signifies a 16-bit float, FA represents a 32-bit float, and FB designates
a 64-bit float, also recognized as double precision floating point. The sequence is
essentially a series of bytes, underscoring the significance of the header. It enables
the encoding algorithm to discern the commencement and ending of each field,
preventing confusion between them.

Certain data types such as booleans and UTF-16 strings are absent from the
serialization standard, therefore the middleware transforms them into alternative
types. Booleans are encapsulated within integers, adopting values of zero and
one. On the other paw, ul6strings, defined in the type support, are transmuted
into plain strings by truncating characters outside the Unicode Transformation

Format 8 bits encoding.

6.5 Middleware interface

During developement the initial stride involved extracting informations concern-
ing the functions inside the headers. Each method had to be implemented, oth-
erwise a runtime error would be thrown during the execution of programs on the

top of rmw_desert.

N

3

30 Chapter 6. ROS middleware for DESERT

Initially, all these functions were implemented in a skeletal form, devoid of
any operational logic. Subsequently, those responsible for allowing data exchange
were located and constructed using classes.

For instance, the method rmw_create_publisher goes about allocating memory
to store a pointer to a new instance of the DesertPublisher class, complete with
all the requisite details to identify and manage the topic. This process ensures
that later, when a node endeavors to dispatch data to the topic, it forwards to
the rmw_publish function the identical pointer containing the class instance along
with all its members.
rmw_publisher_t * rmw_create_publisher (const rmw_node_t * node,

const rosidl_message_type_support_t * type_supports, const

char * topic_name, const rmw_qos_profile_t * qos_profile,

const rmw_publisher_options_t * publisher_options)
DEBUG("rmw_create_publisher" "\n");
rmw_publisher_t * ret = rmw_publisher_allocate();
ret->implementation_identifier =
rmw_get_implementation_identifier ();
ret->topic_name = topic_name;
DesertPublisher * pub = new DesertPublisher (topic_name,
type_supports) ;

ret->data = (void *)pub;

return ret;

Listing 6.1: Function declared in the ROS interface implemented to create a publisher.

rmw_ret_t rmw_publish(const rmw_publisher_t #* publisher, const

void * ros_message, rmw_publisher_allocation_t * allocation)

{
DEBUG ("rmw_publish" "\n");
DesertPublisher * pub = static_cast<DesertPublisher *>(
publisher ->data) ;
pub->push(ros_message) ;
return RMW_RET_0K;
X

Listing 6.2: Function declared in the ROS interface implemented to publish a message.

6.6 DESERT entities 31

As you can see the publish method just executes a member procedure inside
the class, where the logic that coverts and sends the message to the channel is
present. Note also that during the instance creation also type supports are stored,

in order to correctly interpret messages coming from the application.

6.6 DESERT entities

Within the middleware, a class is designated for each entity, encompassing all req-
uisite functions for task execution and member variables for information storage.
Each class features a get_type_support function, crucial for identifying whether
the application employs C or C++ data types. This function initiates the ex-
traction of members, a structure housing comprehensive details about the data
formats, stored within a private member variable.

DesertPublisher only comprises the “push ” public function, utilized to publish
a message in the specific topic stored in the instance through the constructor,
employing the serialization methods previously elucidated.

DesertSubscriber implements a “has_data’ public function that enables the
interpretation of packets stored in TcpDaemon, verifying the availability of data
in the topic. If confirmed, the ‘read_data” method triggers the deserialize proce-
dure, enabling the transfer of content to the appropriate memory location.

DesertClient and DesertService implement all functions previously outlined,
as the communication in this scenario is bidirectional. The client initiates a
request, which the service reads and generates a response to be sent back to the
client. Additionally, two categories of members exist within these entities: one

for the request message structure and another for the response.

32

Chapter 7
NS simulation results

The final phase of this project consisted in the integration of the DESERT proto-
col stack with the Robot Operating System through the middleware proposed in

this study to assess its functionalities and suitability for real-world applications.

This integration was made possible by ns2, a discrete event simulator tailored
for networking research, offering extensive support for simulating TCP, routing,
and multicast protocols across networks. Essentially, all protocols detailed in
Section 4.1 were run within this local simulation and subsequently linked at the

application layer with rmw_desert.

The simulations employed Turtlesim as the ROS application operating on the
top of rmw_desert, exchanging data through DESERT. The node, represented as
a graphical interface featuring a turtle, serves in this context as an analogy to
an underwater drone. Instead, the teleop key functions as a control interface,
maneuvered by an external human operator to receive real-time robot position

data and send navigational directives.

TurtleSim - ox

Pose

l

Command

Figure 7.1: Simulator windows with the controlling interface and the node.

33

34 Chapter 7. NS simulation results

Two distinct testing approaches were employed by changing the physical layer:
one involving mathematical simulations based on Signal-to-Noise ratio threshold
computation, and the other utilizing EvoLogics underwater modem emulators.

Diverse results were achieved, primarily highlighting protocol issues unrelated to

ROS.

7.1 UW/Physical

The initial simulation leveraged UW /PHYSICAL module parameters to manipu-
late the node distances and environmental variables like wind speed. Various con-
figurations were tested, including scenarios with and without acknowledgments
and wind speeds ranging from zero to fifteen meters per second, to elucidate the
significant impact of this variable.

The study focused on the Packet Delivery Ratio of ROS data at different
distances while keeping wind speed constant, resulting in the graphical represen-

tations below.

100%

80%

0,
60% = PDR [%)]

40%
20%

0%

Figure 7.2: Simulation with no wind.

Under ideal conditions with no wind, all packets were successfully received
until nodes were separated by less than 7 kilometers. Subsequently, the PDR
rapidly declined, leading to complete packet loss after one kilometer. It must be
noted that in realistic settings, sustaining a constant maximum PDR indefinitely
is highly improbable due to the interferences of the environment that are not
considered by this model, preventing such ideal performance.

Introducing a wind speed of five meters per second caused the PDR curve
to decline earlier by two kilometers, while other characteristics remained stable.

Further testing revealed a consistent behavior across varying conditions. A more

7.1 UW/Physical 35

100%
80%
0,
60% —— PDR [%]
40%
20%

0%
0 1 2 3 4 5 6 7 8 9 10

Figure 7.3: Simulation with a wind of five meters per second.

realistic scenario was observed with a wind speed of ten meters per second, where
a threshold of four kilometers appeared plausible, with no packet loss evident

before this distance.

100%
80%
0,
60% —— PDR [%]
40%
20%

0%
0 1 2 3 4 5 6 7 8 9 10

Figure 7.4: Simulation with a wind of ten meters per second.

The conclusion of the testing evidences that in all greather-than-zero PDR
situations the ROS application tutorial Turtlesim worked as expected, successfully
executing received command packets and remaining idle in cases of packet loss.

It is noteworthy that the blocking of unnecessary topics at the middleware
level played a crucial role in mitigating the substantial volume of traffic gener-
ated by the application. This underscores the importance of developing software
tailored for underwater communications taking into account the limited bitrate
capabilities. Hence, it is imperative to ensure that any program interfacing with
DESERT generates an appropriate quantity of packets suitable for transmission
through the acoustic channel.

Another identified inefficiency arose when activating the stop-and-wait ac-

36 Chapter 7. NS simulation results

knowledgment mode, attributable to the extended latencies stemming from the
reduced speed of sound propagation in water. The practice of waiting for indi-
vidual ACKs before transmitting subsequent packets significantly impeded the
overall data transfer rate, rendering this mode impractical for real-world applica-

tions.

100%
80%
o)
60% —— PDR [%]
40%

20%

0%
0 1 2 3 4 5 6 7 8 9 10

Figure 7.5: Simulation with acknowledgements enabled.

This approach not only led to a rapid decline in PDR but also resulted in
an unacceptably low volume of transmitted packets. A potential workaround
could involve bundling multiple packets and awaiting a collective ACK; however,
it is advisable to steer clear of this mode for optimal performance in underwater

communication settings.

7.2 UW/UwModem/EvologicsS2C

In order to simulate the behavior of a real modem, the UW/UwModem/Evo-
LogicsS2C module was utilized as the physical layer to connect with EvoLogics
modem emulators, while keeping the other layers unchanged.

No changes were made to the middleware or the ROS application, except for
adjusting the NS configuration to accommodate the functions required by the
new module. One notable addition was the implementation of a special library
called “packer’, which includes instructions for compressing and converting the
header of a specific protocol into a bit stream and vice versa [14].

In the initial test, only the topic /turtlel/cmd_vel was activated to enable
teleoperation control over the turtle’s movement through one-way communica-
tion. The outcomes were positive: the first node successfully transmitted the

packet through the channel, and the second node received it accurately.

7.2 UW/UwModem/EvologicsS2C

37

matlin@matlin-Aspire: ~/Documenti/Sviluppo

--> Bin data header generated by packer:[81][62][00][60]
--> Header length (unsigned char):4

1 [01]

20

32 [20]

(TX) UWAPPLICATION::DATA packer hdr

1st field ,
2nd field ,
3rd field ,
4th field ,
5th field ,
5th field ,

Bin data payload generated by packer:[41][1c][@1][60][01][20][12][6@][12][00
1062][08][8c][cc][4c][0a][00][81][7c][060][80][7c][00][80]1[7c][00]1[80][7c][0O

SN_FIELD: 2
RFFT_FIELD: 0
RFFTVALID_FIELD: 1

ZE_FIELD: 24
PAYLOADMSG_FIELD: eeeeeeee@U

1
1[80][7c][00][80][7c][20][80][2a]
--> Payload length (unsigned char):38

: 28 hdr_length: 4, payload_length: 38, pkt_length: 42, framePay

“frameNumber: 1 lastFramePayloadLength: 10

matlin@matlin-Aspire: ~/Documenti/Sviluppo

et size = 38

Bin data payload received by packer:[41][1c][01][00][01][20][12][60][12][66]
[52][02][08][8c][cc][4c][0a][00][81][7c][00][80][7c][00][80][7c][00][80][7c][00]
[80][7c][00][80][7c][20][80][2a]

1st field ,
2nd field ,
3rd field ,
4th field ,
5th field ,
5th field ,

ch->siz

SN_FIELD: 2
RFFT_FIELD: ©
RFFTVALID_FIELD: 1
PRIORIT! 0
ZE_FIELD: 24
IELD: +0060000QU
7

rx Packet
3494e788e30 (this=0x63494e774b20 1d=6)
art rx Idle state, received a pkt type =
ted distance between nodes = 0 m
in state DATA received state
pLayerSAP_[0]=0x63494e788670 (this=0x63494e773bf0 1d=5)

35.01 CsmaAloha(32)::stateIdle() queue size =

Figure 7.6: Output of the Network Simulator.

Within Figure 7.6 s left section lies the diagnostic output from NS linked to

the teleop key application, showcasing the binary header produced by the "packer’

alongside the payload containing control data. Furthermore, numerous additional

fields are included to allow proper packet routing throughout the protocol stack

to the intended destination.

On the right terminal, the displayed output is connected to Turtlesim, which

receives messages from the EvoLogics emulated modem and transfers them to

higher layers via the CSMA ALOHA module. In this scenario no collisions oc-

curred due to the unidirectional communication.

=l matlin@matlin-Aspire: ~/Documenti/Sviluppo

--> Header length (unsigned char):4

TX frame num: ©
Header: [01][17][00][80]

Payload: [41][1d]1[18]1[ee@][e1]1[20][12][e0][12][e0][52]1[19]1[88][8c][cc][cc][@al[8@

1[00][7d][a0][58][b6][6b][7d][a0][58][b6]

TX AL packer hdr|

--> Bin data header generated by packer:[01][17][01][00]

--> Header length (unsigned char):4

TX (last) frame num: 1
Header: [01][17][01][00]

Payload: [8b][7c][ee][8e][7c][ea]l[se][7c][ea]l[80][2a]

53.151535 downlLayerSAP_[0]=0x5d9alae548d0 (this=0x5d9alae399e@® id=6)
151535 downlLayerSAP_[0]=0x5d9alae548d0 (this=0x5d9alae399e0 id=6)
& Uwal::checkRxFrameSet() - INCOMPLETE pkt DISCARDED! - frame_set_

validity elapsed
Number of elements in sendUpFrameSet: 1

53.600000 upLayerSAP_[0]=!
53.61 UW-AL(32) : received pkt UP

5d9al1ae845f0 (this=0x5d9alae76a00 id=7)

<-- Bin data header received by packer:[01][16][01][60]

Figure 7.7: The Adaptation Layer received an incomplete packet and discarded it.

Regrettably, upon attempting to activate the position topic that transmits

data in the opposing direction, packets originating from the teleop key arrived

incomplete and were consequently discarded. This led to the inability to control

38 Chapter 7. NS simulation results

the turtle, a challenge that perturbed other developers grappling with the same
protocols.

High frequency of packet collisions in the underwater channel likely con-
tributes to the incomplete data reception, as evidenced by the warning in Figure
7.7. To investigate this phenomenon, an alternative Medium Access Control pro-
tocol was tested in combination with the EvoLogics physical layer, whose results

are detailed in the subsequent section.

7.3 EvologicsS2C and TDMA

This last NS configuration uses a module which implements the Time Division
Multiple Access multiplexing technique, that allows multiple users to share the
same frequency channel by dividing the signal into different time slots. Each node
transmit its data at a specific time slot, ensuring that it does not interfere with
other nodes.

The UW/TDMA module was set to create two slots with a frame period of
one second, so that each node waits untils the whole channel is reserved for it, pre-
venting collisions. This adjustment successfully resolved the issues encountered
with CSMA ALOHA and the bidirectional communication worked as expected.

Node 1 Node 32

L e + L e e +
| 8. UW/APPLICATION | | 8. UW/APPLICATION |
L e e e + L e e e +
| 7. UW/UDP | | 7. UW/UDP
e + o m e — - +
| 6. UW/STATICROUTING | | 6. UW/STATICROUTING |
o - + o e — - +
| 5. UW/IP | | 5. UW/IP |
e + it +
| 4. UW/MLL | | 4. UW/MLL

o e e + o e +
| 3. UW/TDMA | | 3. UW/TDMA

o e + o e +
| 2. UW/AL | | 2. UW/AL |
e i + o - +
| 1. UW/UwModem/EvoLogicsS2C | | 1. UW/UwModem/EvoLogicsS2C |
o e e + e +

| | | |

e — - +

Above the complete protocol stack employed in this test, with the first node

operating turtlesim assigned to address 1, and the subsequent node running the

7.3 EvologicsS2C and TDMA 39

teleop key designated to address 32. It is important to note that no alterations

were made to any layers beyond TDMA in this setup.

matlin@matlin-Aspire: ~/Documenti,

ndUpFrameSet: 1

ta payload received by packer:[41][1d][07][e0][@1][20][12][e0][12][60]
c][8c][cc [eal[se][e0][7d][20]1[70]1[c3][Sb]1[7d][a0][58]1[b6]1[8b][7c]
00][80][7c][00][80][2a]

1 matlin@matlin-Aspire: ~/Documenti/Sviluppoj...

. SN_FIELD: 8 Teleop key modified version by professor D. Costa
, RFFT_FIELD: 16
» RFFTVALID_FIELD: 1 Reading from keyboard

FIELD: @

ZElFELE 25 arrow keys to move the turtle.

g|b|v|c|d|e|r|t keys to rotate to absolute orientations.
10000 upLayerSAP_[0]=0x63370606740 (;'f' to cancel a rotation.
10000 upLayerSAP_[0]=0 706060d2i

.500000 downlLayerSAP_[0]=0x633706032b70 (this: turtle is at (7.02, 5.54) with orientation 0.00 rad
received pkt DOWN =

(a) (b)

Figure 7.8: Teleop key received a packet.

In Figure 7.8a, we observe a snapshot representing a packet transmitted by
turtlesim via rmw_desert on the “pose” topic and successfully received by teleop
key, with pertinent details stored in the PAYLOADMSG field. The presence
of random characters is a result of the binary encoded stream being directly
converted to a char sequence, which deviates from the expected CBOR encoding.
However, Figure 7.8b the correct interpretation of the pose is displayed by the

application.

TurtleSim O X

matlin@matlin-Aspire: ~/Documenti/Sviluppo

- Bin data payload received by packer:[41][1c][00][60][20]1[01][02][12][6|
0][e1][e8][8c][cc]ll[4c][@al[@@][81][7c][20][80][7c][@@][80][7c][@@][80][7]
0]1[7c][00][80]1[7c][00][80][2a]

2 [20]

field |, SN_FIELD: 1
field , T_FIELD: 0

field , RFFTVALID_FIELD: 1

field , ORITY_FIELD: ©

field , _FIELD: 24
field , Y , FIELD: ¢oo@oooosl
ize() a

3706032b76 (thi
06031Fa® (thi
READ_PROC

yerSAP_[
: received pkt DOW

(2) (b)

Figure 7.9: Turtlesim node received a packet.

40 Chapter 7. NS simulation results

Conversely, Figure 7.9 showcases a control packet originating from teleop
key and received by turtlesim, effectively directing the turtle to the intended
orientation. This outcome serves as validation for the accuracy and functionality
of the bidirectional communication provided by the current modules configuration

in real world scenarios.

Chapter 8
Conclusions

This thesis introduces a middleware application designed for the Robot Operating
System, enabling the remote operation of automated systems via an underwater
communication channel. The application serves as a bridge, allowing the in-
tegration of such systems with the DESERT protocol stack, that autonomously
manages the network infrastructure without necessitating any code modifications.
Tests conducted with the EvolLogics underwater modem simulator validate the
readiness of rmw_desert, the middleware component, for practical deployment in
real-world scenarios, contingent upon the establishment of a valid network config-
uration. In fact the assessments revealed inherent structural issues within certain

protocols that impede efficient data exchange.

Specifically, observations indicate that the tutorial application Turtlesim suc-
cessfully operated using the TDMA module at the MAC layer in conjunction
with the EvoLogics physical interface, whereas protocols like CSMA ALOHA
encountered challenges due to collision-related issues. This underscores the effi-
cacy of the final simulation proposed in the thesis for underwater environments
interfacing with ROS-controlled systems. Future enhancements entail the imple-
mentation of some empty methods in the rmw interface used to get informations
about events, quality of service, count of nodes and topics and service availability.
While these functionalities were not indispensable for basic communication, their
incorporation is vital for the operation of specific features, so a continuation of
the development and refinement of the system architecture is suggested.

Another aspect requiring further development pertains to simulating the sys-
tem using position-varying nodes, enabling the software to dynamically adjust
the coordinates of devices to replicate the authentic movement of an underwater

drone. This enhancement is essential for assessing the propagation-related effects

41

42 Chapter 8. Conclusions

on target control, a factor of significance given the slower velocity of acoustic
waves in comparison to conventional radio waves. Additionally, extended trials
must be conducted to ensure the system’s reliability over prolonged operational
durations, mitigating the risk of unintended communication disruptions. Finally,
a practical evaluation with hardware modems deployed in the sea would serve as

the ultimate validation of the system’s functionality.

References

1]
2]

[5]

[10]

M. Schwartz, J. F. Hayes, A history of transatlantic cables, October 2008.

N. Tang et al 2020 J. Phys.: Conf. Ser. 1617 012036, Research on Develop-

ment and Application of Underwater Acoustic Communication System.

EvoLogics GmbH, Modems using acoustic waves to perform underwater com-

munications, https://www.evologics.com/acoustic-modems.

E. Coccolo, R. Francescon, F. Campagnaro, M. Zorzi, Field Tests of the
Software Defined Modem Prototype for the MODA Project.

A. Montanari, F. Marin, V. Cimino, D. Spinosa, F. Donega, D. Cosimo,
L. Bazzarello, D. Natale, F. Campagnaro, M. Zorzi, Fxperimenting Various
JANUS Frequency Bands with the Subsea Software-Defined Acoustic Modem.

N. Baldo, F. Maguolo, M. Miozzo, M. Rossi, M. Zorzi, ns2-MIRACLE: a
modular framework for multi-technology and cross-layer support in network
simulator 2, October 2007.

R. Masiero, S. Azad, F. Favaro, M. Petrani, G. Toso, F. Guerra, P. Casari,
M. Zorzi, DESERT Underwater: an NS-Miracle-based framework to Design,

Simulate, Emulate and Realize Test-beds for Underwater network protocols,
May 2012.

NS2 soft solution, A discrete event network simulator based on TCL scripting

languages, https://networksimulator?2.com/.

Open robotics, A set of software libraries and tools that help you build robot
applications, https://www.ros.org/.

M. Stojanovic, On the Relationship Between Capacity and Distance in an

Underwater Acoustic Communication Channel, November 2007.

43

https://www.evologics.com/acoustic-modems
https://networksimulator2.com/
https://www.ros.org/

44 REFERENCES

[11] D. Costa, ROS middleware implementation for the DESERT underwater

communication protocol, https://github.com/dcostan/rmw_desert.

[12] Internet Engineering Task Force, RFC 8949 - Concise Binary Object Repre-
sentation (CBOR), December 2020.

[13] K. Kwon, Minimalistic implementation for CBOR, the Concise Binary Ob-
ject Representation, https://github.com/libmcu/cbor.

[14] G. Toso, I. Calabrese, F. Favaro, L. Brolo, Pa. Casari, M. Zorzi, Testing Net-
work Protocols via the DESERT Underwater Framework: the CommsNet’13

Ezperience.

https://github.com/dcostan/rmw_desert
https://github.com/libmcu/cbor

	Introduction
	Underwater acoustic communication
	System model
	Channel model
	Attenuation
	Noise

	Acoustic modems
	EvoLogics modem hardware
	DMAC Emulator

	Subsea Underwater Modem
	Hardware components

	DESERT underwater
	The protocol stack used in this thesis
	Application layer
	Transport layer
	Network layer
	Data link layer
	Physical layer I
	Physical layer II
	Protocol stack summary

	Robot Operating System
	Framework entities
	Nodes
	Topics
	Services
	Parameter server
	Graphical representation

	Application examples
	Node
	Teleop key

	Middlewares
	Type supports

	ROS middleware for DESERT
	CBOR encoding
	Data structure

	Packet structure
	TCP daemon
	Message serialization
	Middleware interface
	DESERT entities

	NS simulation results
	UW/Physical
	UW/UwModem/EvoLogicsS2C
	EvoLogicsS2C and TDMA

	Conclusions
	References

