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Abstract

ModMax is the unique, non-linear, maximally symmetric one-parameter extension of
classical Maxwell’s electrodynamics. Shedding more light about the properties of ModMax
is an intriguing goal. In this work we proposed a possible ModMax precursor Lagrangian
theory in a 4-dimensional spacetime having linear combinations of Lorentz invariants and
one more degree of freedom from a pseudoscalar, axion-like particle. We constrained the
ModMax parameter � requiring the ModMax precursor to be the principal player of the
cosmic birefringence. We considered a sub-Planckian axion field and, using the recent
bound on the birefringence angle � ⇡ 0.342� [1], we found 10�26 < � < 10�19 for masses of
the axion-like field 10�35 eV . m . 10�30 eV. This thesis represents one of the first studies
of the ModMax theory in a cosmological set-up.
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Introduction

Maxwell’s theory of electromagnetism was the first theory to describe electricity, magnetism
and light as different manifestations of the same phenomenon: the electromagnetic field.
This unification was possible introducing the Lorentz symmetry in a four-dimensional
spacetime and writing the equation of electromagnetism in a manifestly covariant way.
In addition to be relativistic invariant, Maxwell’s theory is also gauge, conformal and
SO(2) invariant in the electric and magnetic space [2]. This last symmetry is called
duality-symmetry. It plays an important role in various physical aspects of electrodynamics
including Dirac’s hypothesis on the existence of magnetically charged particles (monopoles).

However, Maxwell electrodynamics predicts a singularity: the divergence of the electric
field of a point-like charge at its position. In order to solve this problem, in 1934 Born and
Infeld proposed an electromagnetic theory being nonlinear but that reduces to Maxwell
electrodynamics in the weak-field limit [3].

Few years later, another remarkable theory of nonlinear electrodynamics was proposed
by Euler and Heisenberg. It was an effective theory of quantum electrodynamics updating
the Maxwell’s Lagrangian with the vacuum polarization effect [4]. By construction, also
the Euler-Heisenberg theory reduces to Maxwell theory in the weak-field limit.

Years after a variety of non-linear electrodynamic (NED) models were proposed, such
as the logarithmic, double-logarithmic, exponential, power-law, arcsin and others (see e.g.
[5–9]). They have been created for applications in gravity, cosmology, condensed matter,
optical materials and in general as possible guides to catch new physics [10, 11].

One can build a Lorentz-invariant NED theory in 4 dimension writing a Lagrangian
density as a function of the two independent Lorentz invariants S = �Fµ⌫Fµ⌫/4 and
P = �Fµ⌫F̃µ⌫/4, where F̃µ⌫ is the Hodge dual of the field strength Fµ⌫ . A popular idea
was that a valid candidate for a NED may reduce to Maxwell’s theory in the low-energy limit,
as is the case of Born-Infeld and Euler-Heisenberg theory, but usually some symmetries of
Maxwell’s theory are lost.

In 2020 Bandos, Lechner, Sorokin and Townsend discovered a unique NED theory being
both conformal and duality invariant, it is a one-parameter generalization of Maxwell’s
theory dubbed ModMax [12], the parameter was denoted by � and Maxwell’s theory is
recovered at � = 0. In addition to the formal treatment of ModMax, its applications
may open new results in phenomenology, since comparing its predictions with physical
observations we can constrain the theory parameters.

An interesting property of almost all NEDs (with the exception of Born-Infeld theory
[13]) is the phenomenon of birefringence which happens when light propagates in an electro-
magnetic background and interacts with the latter due to non-linearities. In a cosmological
framework, the light propagating in the universe can produce birefringence if it couples
to external fields, making them behave as a birefringent material. This phenomenon is
called cosmic birefringence (it was also considered the scenario of photon self-interaction,
see e.g [14]). The cosmic birefringence was initially predicted assuming a coupling between
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photons and a pseudoscalar field � through a term / �F̃µ⌫Fµ⌫ , such a term is called
Chern-Simons term [15]. The effect is a rotation of the linear polarization plane of photons
during propagation. This phenomenology was largely studied in the last decades and in
2022 a joint analysis of polarization data from Planck and WMAP space missions has
allowed the detection of a small rotation angle of the linear polarization plane of CMB
photons in a propagation period running from their emission up to now (see [16–19] for
recent works). The estimated angle is � = 0.342� +0.094�

�0.091� at 68% C.L. [1].

The purpose of the thesis is to derive the cosmic birefringence for the ModMax theory
and use the observed value of the birefringence angle to constrain the ModMax parameter
�. Instead of working with the non-linear Lagrangian density of ModMax we follow the
tool of auxiliary fields to obtain a formulation in which the Lagrangian density is quadratic
in the electromagnetic fields and has an auxiliary scalar field [20]. The resulting Lagrangian
is equivalent in form to a Maxwell-axion-dilaton theory and has similarities with other
known theories [21, 22]. This result may be a hint on the existence of a more fundamental
theory in which ModMax emerges (in a certain conformal limit) as an effective field theory.
Supported by these observations, we promote the auxiliary field to be a physical field and
we derive the cosmic birefringence from this new theory, that we called ModMax precursor.
Then we numerically search an estimation of �.

We consider a quadratic potential for the dynamical scalar field, that we treat as an
axion-like particle (ALP) and we call it �. We set our work in the conditions at which
the quadratic potential is a good approximation of a more fundamental potential, as
for example the cosine-type potential [23]. In order to estimate � we have to solve the
dynamics of the ALP and we do so in the assumptions of a negligible electromagnetic
backreactions coming from the coupling between photon and the pseudoscalar field, and
a sub-dominant contribution of the field to the universe expansion in a flat Friedmann-
Lemaître-Robertson-Walker spacetime. We find the range 10�26 < � < 10�19 for masses of
ALP in the range 10�35 eV . m . 10�30 eV with an initial condition �in ⇠ 0.1MPl at the
epoch of recombination, where MPl is the Planck mass. This is a reasonable range showing
that the departure from the well established, low-energy theory of Maxwell electrodynamics
towards the ModMax electrodynamics is small.

The Thesis is organized as follows.

1. In chapter 1 we present an overview of electrodynamics theories starting from the
liner Maxwell theory, then we briefly introduce the Born-Infeld and Euler-Heisenberg
theories as important examples of NED theories. A self-consistent part is dedicated to
how to build a NED theory in general and the constraints it must respect in order to
be relativistic, conformal and duality-invariant; this is discussed in both Lagrangian
and Hamiltonian formalism. The chapter concludes with the exposition of ModMax
theory.

2. In chapter 2 we present the phenomenon of the vacuum birefringence in NED theories.
Then we introduce the polarization theory in order to set up the formalism that will
be used along the text.

3. Chapter 3 is devoted to the cosmic version of the vacuum birefringence: the cosmic
birefringence. We introduce the phenomenon considering the Maxwell-Chern-Simons
theory. At the end of the chapter we discuss recent bounds on the photon-axion
coupling of the Maxwell-Chern-Simons theory.
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4. Chapter 4 contains the original part of the thesis. We start applying the tool of
auxiliary fields in order to reformulate the ModMax Lagrangian in a quadratic form
for the electromagnetic fields, then we discuss similarities of this new formulation with
other known theories of electromagnetism. We promote the reformulated ModMax
theory to a new theory of interacting electromagnetic and neutral pseudoscalar fields.
Then we proceed by computing the cosmic birefringence angle in this new theory. We
numerically estimate the ModMax parameter � requiring that the new theory has
produced the rotational angle observed in the polarization map of CMB.

Along the text we adopt natural units c = ~ = 1 and a mostly positive metric
(�,+,+,+). We also use the following acronyms:

NED non-linear electrodynamics
BI Born-Infeld
BB Bialynicki-Birula
EL Eulero-Lagrange
EoM equation of motion
EoS equation of state
ALP axion-like particle
CMB cosmic microwave background
LSS last-scattering surface
FE Friedmann equation
FLRW Friedmann-Lemaître-Robertson-Walker



Chapter 1

Overview of electrodynamics theories

Before introducing the ModMax theory we give a short review of how electrodynamics
has developed along the years. During the second half of 1800 the Maxwell’s equations
were formulated in the vectorial form we nowadays know. Around the 1900 they were
formulated in a relativistic covariant way based on the principle that physical laws must be
invariant under the Poincarè group. The Poincarè group in the matrix representation over
a Minkowski spacetime is:

P(1, 3) ⌘ {(⇤, a) : ⇤ 2 O(1, 3), a 2 R} , (1.1)

where ⇤ is a vector representation of the homogeneous Lorentz group:

O(1, 3) ⌘
n
⇤ 2 GL(4,R) : ⇤>⌘⇤ = ⌘

o
, (1.2)

and ⌘µ⌫ = diag(�1, 1, 1, 1) is the (mostly positive) Minkowski metric.

1.1 Examples of electrodynamics theories

Maxwell theory

The Maxwell action of a source-free theory in a Minkowski spacetime written in a manifestly
Lorentz-invariant and gauge-invariant form is [2]:

SM = �1

4

Z
d4xFµ⌫Fµ⌫ , (1.3)

where Fµ⌫ = @µA⌫ � @⌫Aµ is the field strength and Aµ(x) = (A0, ~A) is a gauge field called
4potential in the framework of electrodynamics.

The field strength Fµ⌫ is gauge-independent, it is trivial to prove that it does not change
under a gauge transformation of the 4-vector Aµ ! Aµ + @µ⌦(x), where ⌦ is a scalar
function. Physical quantities, that must be gauge-independent, are the components of Fµ⌫ ,
electric and magnetic three-vector fields Ei and Bi are:

Ei = F 0i , (1.4)

Bi =
1

2
✏ijkFjk , (1.5)

where ✏ijk is the Levi-Civita tensor.

7



CHAPTER 1. OVERVIEW OF ELECTRODYNAMICS THEORIES 8

Free Maxwell equations can be derived using the least action principle, and together
with Bianchi identities are respectively [2]:

@µF
µ⌫ = 0 , (1.6a)

@µF̃
µ⌫ = 0 , (1.6b)

where F̃µ⌫ is the Hodge dual of the field strength:

F̃µ⌫ =
1

2
✏µ⌫⇢�F⇢� . (1.7)

We point out that the Bianchi identity is due to the antisymmetric nature of F̃µ⌫ and so it
will be valid for any theory of electromagnetism based on the field strength.

In terms of the electric and magnetic fields, the Maxwell action is:

SM =
1

2

Z
d4x

⇣
~E2 � ~B2

⌘
, (1.8)

and equations (1.6) read:

@t ~E = ~r⇥ ~B , ~r · ~B = 0 , (1.9a)

@t ~B = �~r⇥ ~E , ~r · ~E = 0 . (1.9b)

Maxwell theory is Lorentz and gauge invariant by construction, and one can show that
it is also invariant under conformal transformations and SO(2) duality rotation in the
electromagnetic plane. We will write more about these symmetries in the next sections.
Notice that the Maxwell action is quadratic in Fµ⌫ thus the EoM are linear for electric and
magnetic fields.

Born-Infeld theory

In 1934, Born and Infeld (BI) proposed a theory of NED with the aim to remove the
divergence of the electric field of a point-like charge on its position [3], a problem which is
present in the Maxwell electrodynamics. The BI theory is based on the Lagrangian density:

LBI = T � T
q
� det

�
⌘µ⌫ + T�1/2Fµ⌫

�
(1.10a)

= T �
r
T 2 +

T

2
Fµ⌫Fµ⌫ � 1

16

⇣
Fµ⌫F̃µ⌫

⌘2
. (1.10b)

Here T is the coupling parameter with the dimension of energy density, and ⌘µ⌫ is the
Minkowski metric. Since T is dimensional, the BI theory is not conformal, but is gauge
and duality-invariant.

Let us expand the Lagrangian (1.10) in powers of FF :

LBI

����
T!1

= �1

4
Fµ⌫F

µ⌫ +
1

32T

✓
(Fµ⌫F

µ⌫)2 +
⇣
Fµ⌫F̃

µ⌫
⌘2◆

+O
�
(FF )2

�
. (1.11)

The weak-field limit is equivalent to take T ! 1, in this limit Maxwell’s theory is restored.
On the other hand, the strong-field limit is equivalent to T ! 0 and it gives a purely
imaginary total derivative:

LBI

����
T!0

=
i

4

���Fµ⌫F̃
µ⌫
��� , (1.12)
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so the corresponding action vanishes. The strong-field limit can be taken in the Hamiltonian
formalism as pointed out by Bialynicki-Birula [24], taking the Legendre transform one gets
the Hamiltonian density:

HBI

⇣
~D, ~B

⌘
= ~D · ~E � LBI

⇣
~B, ~E

⌘
(1.13a)

=

r
T 2 + T

⇣
~D2 + ~B2

⌘
+
��� ~D ⇥ ~B

���
2
� T , (1.13b)

where ~D is the conjugate momentum to the three-vector potential ~A, called electric
displacement vector field:

~D =
@L

@ ~E
. (1.14)

The strong-field limit (T ! 0) can now be computed and yields the Hamiltonian density of
the so-called Bialynicki-Birula (BB) electrodynamics:

HBB =
��� ~D ⇥ ~B

��� . (1.15)

BB theory contains all possible electromagnetic fields in the null field configuration, where
both Lorentz scalars are null, i.e. S = 0 and P = 0. Examples of solutions in this
configuration are plane waves.

The BB theory is naturally conformal invariant since no dimensional parameter is
present in its Hamiltonian density to track a specific energy scale. Regarding the duality
symmetry, BB theory is SL(2,R) invariant in the plane ( ~D, ~B) rather than SO(2). The
duality symmetry is easily verifiable observing that the Hamiltonian density HBB does not
change under a SL(2,R) transformation:

 
~D
~B

!
!
 
~D0

~B0

!
=

✓
a b
c d

◆ 
~D
~B

!
(1.16)

since we are considering special matrix with determinant equal to 1.
The BB theory possesses infinite number of conserved currents. However, it does not

reduce to Maxwell’s theory.
We will come back to the Hamiltonian formulation of electrodynamics in the next

section.

Euler-Heisenberg theory

Another important theory was developed by Euler and Heisenberg (EH) few years after
Born-Infeld theory [4]. The theory generalizes the Maxwell’s Lagrangian with the vacuum
polarization effects of QED, predicting the refraction of light in an electromagnetic field
background, or in a particle perception the light by light scattering. However, both
conformal and duality-invariance are lost. The effective Lagrangian density of EH theory
is:1

LEH = S � 1

8⇡2

Z 1

0

ds

s3
exp
�
�m2s

�
"
(es)2P

R cosh
�
es
p
�S + iP

�

I cosh
�
es
p
�S + iP

� +
2

3
(es)2S � 1

#

(1.17)
1
This formulation of the Lagrangian was derived using the proper-time technique [25].
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where we are using 4⇡✏0 = 1. Here R and I stand for real and imaginary part, m is the
electron mass and e is the electron charge.

In the weak-field limit EH Lagrangian takes the form:

LEH = S +
2↵2

45m4

�
4S2 + 7P 2

�
+O

�
(FF )3

�
, (1.18)

where ↵ = e2 is the fine structure constant in our units. The theory reduces to Maxwell
electrodynamics in the weak-field limit by construction. The coefficient of the second-order
term in the Lagrangian, written in the international system units, is very small:

2~2↵2

45µ0m4c5
= 1.32⇥ 10�24(Tesla)�2 (1.19)

making the quantum corrections hard to experimentally observe.

1.2 Non-Linear Electrodynamics theories

The electrodynamics theories reported above are examples of a class of non-linear theories
describing self-interactions of electromagnetic fields. Let us now focus on NED theories
and following article [24] and chapter 3 of [26] we propose a general treatment on how a
NED theory should be in order to preserve some chosen symmetries. We will mainly focus
on relativistic theories with conformal and duality symmetries.

The most general Lorentz-invariant NED in four-dimensions has a Lagrangian density
constructed with the use of two Lorentz invariants, the scalar S and the pseudoscalar P 2:

S = �1

4
Fµ⌫F

µ⌫ =
1

2

⇣
~E2 � ~B2

⌘
, (1.20)

P = �1

4
Fµ⌫F̃

µ⌫ = ~E · ~B . (1.21)

Indeed, the NED action in a Minkowski spacetime is:

SNED =

Z
d4xLNED(S, P ) . (1.22)

Do note, in order to preserve parity-simmetry the NED Lagrangian should have only even
powers of the pseudoscalar P .

Since Maxwell’s theory successfully describes the classical electromagnetic phenomena,
a natural assumption when building a NED theory is that a valid candidate may reduce to
Maxwell’s theory in the low-energy limit. Indeed, one assumes the Lagrangian density to be
an analytic function that can be expanded in powers of S and P and that in the weak-field
limit (S2, P 2 ⌧ S, P ) it reduces to Maxwell Lagrangian. However, not all proposed NED
models, such as conformal NEDs, satisfy these assumptions.

Let us start a brief discussion of the equations of motion and stress-energy tensor of
a generic NED. Then we will consider requirements for a NED be conformal and duality
invariant.

2
In D = 4 there exist only two independent Lorentz invariants (e.g. S and P ) form which one can

construct (pseudo)scalar products of any number of Fµ⌫ . For instance, Fµ⌫F
⌫⇢F⇢�F

�µ = 8S2 + 4P 2
.
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Equation of motions

We assume the paradigm of least action principle as the tool to derive the EoM as the
Eulero-Lagrange (EL) equations; varing the action with respect to the 4-potential we get:

0 =
@L

@A⌫
� @µ

@L

@(@µA⌫)
(1.23a)

= �@µ

@L

@S

@S

@F↵�

@F↵�

@(@µA⌫)
+ (S ! P )

�
(1.23b)

= @µ
⇣
LSF

µ⌫ + LP F̃
µ⌫
⌘
, (1.23c)

where by (S ! P ) we mean a term equivalent in form to the first term in parenthesis but
with P instead of S. To work out the EoM we compute, one and for all, the following
derivatives:3

@S

@F↵�
= �1

4

@

@F↵�
(⌘⇢µ⌘�⌫F⇢�Fµ⌫) (1.25a)

= �1

4
⌘⇢µ⌘�⌫

h⇣
�↵⇢ �

�
� � ��⇢ �

↵
�

⌘
Fµ⌫ + F⇢�

⇣
�↵µ�

�
⌫ � ��µ�

↵
⌫

⌘i
(1.25b)

= �1

4

h⇣
�↵⇢ �

�
� � ��⇢ �

↵
�

⌘
F ⇢� + Fµ⌫

⇣
�↵µ�

�
⌫ � ��µ�

↵
⌫

⌘i
(1.25c)

= �F↵� , (1.25d)

and
@P

@F↵�
= �1

4

✏µ⌫⇢�

2

@

@F↵�
(Fµ⌫F⇢�) (1.26a)

= �1

4

✏µ⌫⇢�

2

h⇣
�↵µ�

�
⌫ � ��µ�

↵
⌫

⌘
F⇢� + Fµ⌫

⇣
�↵⇢ �

�
� � ��⇢ �

↵
�

⌘i
(1.26b)

= �1

2

✏µ⌫⇢�

2

⇣
�↵µ�

�
⌫ � ��µ�

↵
⌫

⌘
F⇢� (1.26c)

= �✏
↵�⇢�

2
F⇢� (1.26d)

= �F̃↵� , (1.26e)

in the third line we have used the property that ✏µ⌫⇢� is symmetric under the permutation
of the couples of indices.

Then the EoM reads:

0 = @µ
⇣
LSF

↵�
⇣
�µ↵�

⌫
� � ��µ�

↵
⌫

⌘
� LP F̃

↵�
⇣
�µ↵�

⌫
� � ��µ�

↵
⌫

⌘⌘
(1.27a)

= @µ
⇣
LSF

µ⌫ + LP F̃
µ⌫
⌘
. (1.27b)

The Kronecker’s deltas of the first line come from @F↵�/@(@µA⌫) , and the subscripts S
and P denote partial derivatives with respect to S and P .

Do note we can introduce the following tensor,

G̃µ⌫ ⌘ � @L

@Fµ⌫
, (1.28)

3
Here we use the fact that the derivative of an antisymmetric tensor Tµ⌫ by itself is:

@Tµ⌫

@T↵�
= �↵µ�

�
⌫ � ��µ�

↵
⌫ . (1.24)
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in order to write the EL equations in the compact form:

@µG̃
µ⌫ = 0 . (1.29)

Bianchi idenity still holds:

@µF̃
µ⌫ = 0 . (1.30)

Equations (1.29) and (1.30) are the dynamical equations for a NED written in tensor form.
Let us write them in vectorial notation; we do so making an analogy with the Maxwell’s
theory where EoM are @µFµ⌫ = 0 and physical fields are Ei = F i0 and Bi = ✏ijkFjk/2. For
a NED we introduce the following variables:

Di ⌘ G̃0i = � @L

@F0i
= �@L

@Ei
, (1.31a)

H i ⌘ 1

2
✏ijkG̃jk = �1

2
✏ijk

@L

@F jk
= �@L

@Bi
. (1.31b)

Di, H i derive from the tensor G̃µ⌫ in the same way Ei, Bi derive from Fµ⌫ in Maxwell
electrodynamics. Using vectorial notation:

~D = �@L

@ ~E
, (1.32a)

~H = �@L

@ ~B
. (1.32b)

We call the vector ~D electric displacement and vector ~H magnetic field intensity. These
equations are called constitutive relations in Lagrangian formalism: they are the link
between ~D, ~H and ~E, ~B. In fact ~D, ~H are not independent variables, they depend on ~E, ~B
as the Lagrangian does. Then the EoM of a NED theory, @µG̃µ⌫ = 0, in vectorial form
read:

~r · ~D = 0 , (1.33a)

@t ~D = ~r⇥ ~H . (1.33b)

Together with the Bianchi identity:

~r · ~B = 0 , (1.34a)

@t ~B = �~r⇥ ~E , (1.34b)

they are the dynamical equations for a NED theory.

1.2.1 Stress-energy tensor

If we build a Poncarè invariant electromagnetic theory and we assume the EoM are the EL
equations, the Noether theorem ensures the existence of a conserved tensor that we call the
stress-energy tensor [26]:

Tµ⌫ = Fµ↵G̃⌫
↵ � ⌘µ⌫L . (1.35)

Do note this tensor is symmetric and conserved. Let us unpack the tensor G̃⌫
↵:

Tµ⌫ = �Fµ↵ @L

@F↵
⌫
� ⌘µ⌫L (1.36a)

= �Fµ↵
⇣
�LSF↵

⌫ � LP F̃
⌫
↵

⌘
� ⌘µ⌫L , (1.36b)
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now we use the identity

Fµ↵F̃ ⌫
↵ = ⌘µ⌫P (1.37)

and the stress-energy tensor reads:

Tµ⌫ = LSF
µ↵F↵

⌫ + ⌘µ⌫(LPP � L ) . (1.38)

In this form the symmetry of the tensor is explicit. Regarding its conservation, we prove it
using (1.35) since then it easily follows from the EL equations:

@⌫T
µ⌫ = (@⌫F

µ↵)G̃⌫
↵ + Fµ↵@⌫G̃

⌫
↵ � ⌘µ⌫@⌫L . (1.39)

The first term is a contraction with the antisymmetric tensor G̃⌫
↵ in which survives only

the antisymmetric part of @⌫Fµ↵ for indices ⌫,↵. The second term is zero because of EoM
and the third term can be worked out using the chain rule. So:

@⌫T
µ⌫ =

1

2
(@⌫Fµ↵ � @↵Fµ⌫)G̃↵⌫ +

1

2
⌘µ⌫G̃↵�@⌫F↵� (1.40a)

=
1

2
(@⌫Fµ↵ + @↵F ⌫µ + @µF↵⌫)G̃↵⌫ = 0 . (1.40b)

The result is zero because the quantity in square brackets is the Bianchi identity.

1.2.2 Conformal invariance

A property of relativistic conformal field theories is to have a traceless stress-energy tensor.
Indeed if we set the trace of a stress-energy tensor for a NED equal to zero we obtain
a constraint on the Lagrangian density: if the constraint is satisfied, the NED theory is
conformal invariant. Let us take the trace of Tµ⌫ given in equation (1.38)

Tµ
µ = LSF

µ↵F↵µ + ⌘µµ(LPP � L ) (1.41a)
= �LSF

µ↵Fµ↵ + 4(LPP � L ) (1.41b)
= 4(SLS + PLP � L ) , (1.41c)

where we used the definition of S. Hence, a conformal NED must have a Lagrangian density
solving the partial differential equation:

L = SLS + PLP , (1.42)

which means that the Lagrangian density of a conformal theory must be a homogeneous
function of S and P of order one, i.e. L (a�4S, a�4P ) = a�4

L (S, P ).
As a proof of this statement let us consider a conformal NED theory with Lagrangian

L (S, P ) which, indeed, solves (1.42). Then take a scale transformation xµ ! axµ with
a a constant parameter (this is the most intuitive conformal transformation). Using
a dimensional analysis the 4vector transforms as Aµ ! a�1Aµ, so the field-strength
Fµ⌫ ! a�2Fµ⌫ . Indeed Lorentz invariants transform as S ! a�4S and P ! a�4P , and the
Lagrangian density L (S, P ) ! L (a�4S, a�4P ). We now show that the new Lagrangian
density L (a�4S, a�4P ) still solves equation (1.42) if it is an homogeneous function of S and
P of degree one, proving explicitly that the theory is invariant under scale transformations.
So:

L (a�4S, a�4P ) = a�4S
@L (a�4S, a�4P )

@(a�4S)
+ a�4P

@L (a�4S, a�4P )

@(a�4P )
(1.43a)

a�4
L (S, P ) = a�4

LS(S, P ) + a�4
LP (S, P ) (1.43b)

L (S, P ) = SLS + PLP . (1.43c)
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The same result can be achieved with an intuitive approach at the level of the action: for
a homogeneous Lagrangian the scaling factor a�4 is compensated by the rescaling of the
integration measure in the action and the theory is scale invariant.

1.2.3 Duality invariance

The electric-magnetic duality symmetry may be a symmetry of the equations of motion
and the Bianchi identities of a NED. This idea arose from the Maxwell’s theory observing
that we can linearly mix the electric and magnetic field and still obtaining the same EoMs
and the Bianchi identities. Let us talk more about duality following ref. [27].

Here we consider a general NED theory with Lagrangian density L = L (Fµ⌫). Let us
recall the EoM and Bianchi identity:

@µG̃
µ⌫ = 0 , (1.44a)

@µF̃
µ⌫ = 0 , (1.44b)

where

G̃µ⌫ ⌘ � @L

@Fµ⌫
. (1.45)

From here on we will adopt an abuse of notation for which tensors Fµ⌫ , Gµ⌫ and their duals
lose the indices, i.e. we write them easily as F,G and F̃ , G̃, in order to make formulas look
simpler.

Equations (1.44) are invariant under a general linear transformation GL(2,R) in the
plane (G̃, F̃ ) since the derivative is a linear operator, in fact if we consider an element of
the group of general linear transformations 2⇥ 2 with real values:

✓
a b
c d

◆
2 GL(2,R) , (1.46)

then tensors (G̃, F̃ ) transform as:
✓
G̃
F̃

◆
!
✓
G̃0

F̃ 0

◆
=

✓
a b
c d

◆✓
G̃
F̃

◆
(1.47)

and EoM for G̃0 and Bianchi identity for F̃ 0 are equivalent in form to (1.44):

@µG̃0µ⌫ = 0 , (1.48a)

@µF̃ 0µ⌫ = 0 . (1.48b)

Same result holds for G0, F 0 since the Hodge dual is a linear transformation. This property
is what we call "duality symmetry", however it is not a symmetry in the usual sense but
refers to an ambiguity in our theoretical description: what one calls electric and magnetic
is a matter of choice (at least in the absence of charged sources as we are doing here). For
a NED theory one should ask that an element of GL(2,R) leaves invariant in form also
(1.45), meaning:

G̃0 = �@L (F 0)

@F 0 , (1.49)

and this condition is a constraint for Lagrangians L (F ) and parameters of the transfor-
mation. We can work out the constraint considering only NED theories that reduce to
Maxwell’s theory in the weak-field limit:

L (F ) ! LM = �F 2/4 . (1.50)
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Then the constraint which holds for L (F ) must hold for LM(F ) also. So let us apply a
duality transformation to Maxwell’s theory: first of all, do note for Maxwell’s theory G̃ = F ,
then applying a linear transformation we obtain a Lagrangian density LM(F 0) = �F 0F 0/4
and a new tensor G̃0 and we require they satisfy the duality-invariant condition (1.49):

G̃0 = �@(�F 0F 0/4)

@F 0 (1.51a)

= F 0 . (1.51b)

Recalling how tensor G̃0 and F 0 transform under (1.46) we work out the constrain:

G̃0 = F 0 (1.52a)

aG̃+ bF̃ = cG+ dF (1.52b)

aG̃ = (b+ c)G+ dF , (1.52c)

now we use the relation F = G̃ and its dual version F̃ = �G:

aG̃� bG = cG+ dG̃ (1.53a)

G̃(a� d) = G(b+ c) . (1.53b)

This system has a solution iff

a = d , (1.54a)
b = �c . (1.54b)

It means the duality group of a NED theory which reduces to Maxwell theory in the
weak-field limit is a subgroup of GL(2,R) having elements:

✓
a b
�b a

◆
. (1.55)

Elements of this form are compositions of dilatations and SO(2) rotations. Dilatations are
scale-transformations performed multiplying (G̃, F̃ ) by a constant a using the matrix aI2⇥2;
while SO(2) rotations contain elements of the form (1.55) having determinant equal to 1,
i.e. a2 + b2 = 1. A nontrivial solution of det = 1 is given by trigonometric functions:

a = cos' , (1.56a)
b = sin' , (1.56b)

with ' 2 (0, 2⇡) (where we consider an open interval since at the boundary the transforma-
tion is an identity).

So, depending on the Lagrangian, one can have either an SO(2)-invariant theory or scale-
invariant theory or both. Scale transformations are a subgroup of conformal transformations
and we have seen there exist infinite conformal-invariant NEDs as solutions of the constraint
(1.42). Regarding SO(2)-invariant NEDs, the constraint (1.49) must be satisfied by a
transformation of the form

✓
cos' sin'
� sin' cos'

◆
2 SO(2) . (1.57)

We consider an infinitesimal transformation for simplicity:
✓

cos' sin'
� sin' cos'

◆
⇡
✓

1 '
�' 1

◆
for '⌧ 1 . (1.58)
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Then tensors (G̃, F̃ ) transform as:
✓
G̃
F̃

◆
!
✓
G̃0

F̃ 0

◆
=

✓
1 '
�' 1

◆✓
G̃
F̃

◆
=

✓
G̃+ 'F̃
�'G̃+ F̃

◆
. (1.59)

Same form will hold for (G,F ). Therefore condition (1.49) for the infinitesimal transforma-
tion reads:

G̃+ 'F̃ = �2
@L (F � 'G)

@(F � 'G)
(1.60a)

= �2

"
@L (F )

@F
+

d

d(F � 'G)

✓
@L (F � 'G)

@(F � 'G)

◆����
'G=0

(�'G)

#
(1.60b)

= G̃� 'G
dG̃0

dF 0

�����
'G=0

(1.60c)

= G̃� 'G
@G̃

@F
, (1.60d)

where we have expanded the RHS near F up to first order. Simplifying terms we get:

F̃ = �G
@G̃

@F
. (1.61)

We can simplify more the equation noting we deal with tensors and their duals obtained
using the total antisymmetric Levi-Civita tensor, so a derivative of terms like F̃F and G̃G,
with respect to the field strength, will give a sum of two terms because of the chain rule
that should be equal because of antisymmetricity. In fact it holds:

@(F̃F )

@F
= 2F̃ , (1.62a)

@(G̃G)

@F
= 2G

@G̃

@F
, (1.62b)

where factor 2 is what we expected. Now equation (1.61) can be written as a differential
equation with respect to F on both sides:

@(F̃F )

@F
= �@(G̃G)

@F
. (1.63)

Integrating out we find:

FF̃ = �GG̃+ const , (1.64)

where the integration constant can be set to zero since we are considering NED theories
with Maxwell theory as low-energy limit, and equation (1.64) for Maxwell theory implies
const = 0. So, NEDs with SO(2)-invariance and with Maxwell as low-energy limit must
solve the constraint:

FF̃ +GG̃ = 0 . (1.65)

Rewriting indices and recalling the definition of G̃:

Fµ⌫F̃
µ⌫ � 2✏µ⌫�⇢

@L

@Fµ⌫

@L

@F �⇢
= 0 . (1.66)
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This result was firstly derived by Bialynicki-Birula [24] and then by Gibbons & Rasheed
[28]. If we also assume the NED theory to be Poincarè-invariant, i.e. having a Lagrangian
density L = L (S, P ), the constraint reads:

P
�
L

2
P � L

2
S + 1

�
+ 2SLPLS = 0 . (1.67)

We have talked about the duality symmetry at the level of the EoM for a source-less
theory, however it is not trivial to generalize it, both trying to extend the duality to the
level of the action and considering sources.

1.2.4 Hamiltonian formalism

Up to now we have worked in a Lagrangian framework, obtaining the EoM as the EL
equations of the theory. Our purpose now is to reformulate an electromagnetic theory with
Lagrangian L in the Hamiltonian formalism. The first step is to change the independent
variables we want to work with:

⇣
~E, ~B

⌘
!
⇣
~D, ~B

⌘
, (1.68)

where we recall ~D is the electric displacement. The electric field can be written as a function
of new variables, i.e. ~E = ~E( ~D, ~B), inverting the constitutive relation (1.32a). Then we
define the Hamiltonian density as the Legendre transform of the Lagrangian density:

H

⇣
~D, ~B

⌘
⌘ ~D · ~E � L

⇣
~D, ~B

⌘
.

The Legendre transform holds as long as L is a strictly convex function of ~E. The analogue
of the constitutive relations in the Hamiltonian formalism are:

~E =
@H

@ ~D
, (1.69)

~H =
@H

@ ~B
. (1.70)

They are the link between ~D, ~B and ~E, ~H.
As an example, let us compute the Hamiltonian for the Maxwell’s theory: from the

constitutive relations (1.32) we find ~D = ~E and ~H = ~B, then the Legendre transform of
the Maxwell Lagrangian density reads:

HM = ~D · ~B � 1

2

⇣
~E2 � ~B2

⌘
(1.71a)

= ~D2 � 1

2

⇣
~D2 � ~B2

⌘
(1.71b)

=
1

2

⇣
~D2 + ~B2

⌘
. (1.71c)

Let us now review the stress-energy tensor and conformal and duality symmetries using
the Hamiltonian formalism.
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Stress-energy tensor

Let us recall the stress-energy tensor Tµ⌫ , using the constitutive relations we can write its
components in a compact way:

T 00 = � ~E · ~D + L , (1.72a)

T 0i =
⇣
~H ⇥ ~E

⌘i
, (1.72b)

T i0 =
⇣
~B ⇥ ~D

⌘i
, (1.72c)

T ij = EiDj +H iBj � �ij
⇣
L + ~H · ~B

⌘
. (1.72d)

Do note the Hamiltonian density is exactly H = �T 00. Since we are building a Poincarè-
invariant theory with a symmetric stress-energy tensor, the following constraints must hold:

~H ⇥ ~E = ~B ⇥ ~D , (1.73a)
EiDj +H iBj = EjDi +HjBi . (1.73b)

The first constraint comes from T 0i = T i0 which holds because of Lorentz-boost invariance,
the second constraint comes from T ij = T ji which holds because of spatial-rotational
invariance. Do note equation (1.73b) is an identity since for diagonal terms (i.e. i = j) the
equation is identically zero, while for off-diagonal terms (i.e. i 6= j) one has to remember
the definitions of ~D = @L

.
@ ~E and ~H = � @L

.
@ ~B implying ~D k ~E and ~H k ~B and so

off-diagonal terms are zero by construction. Therefore, we can think to constraint (1.73a)
to be the condition a NED must satisfy to be a relativistic theory.

The constraint (1.73a) can be restated using the Hamiltonian formalism, i.e. adopting
the variables ~D, ~B. The idea is to introduce the following functions:

s =
1

2

⇣
~D2 + ~B2

⌘
, (1.74)

⇠ =
1

2

⇣
~D2 � ~B2

⌘
, (1.75)

⌘ = ~D · ~B , (1.76)

and considering H = H(s, ⇠, ⌘). Then if one compute:

@H

@ ~D
= Hs

~D + H⇠
~D + H⌘

~B = ~E , (1.77)

@H

@ ~B
= Hs

~B � H⇠
~B + H⌘

~D = � ~H , (1.78)

the quantity ~H ⇥ ~E reads:

~H ⇥ ~E =
�
H

2
s � H

2
⇠ � H

2
⌘

�
~B ⇥ ~D (1.79)

and because of the constraint (1.73a), it must hold:

H
2
s � H

2
⇠ � H

2
⌘ = 1 . (1.80)
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Conformal invariance

Having the components of the stress-energy tensor and the definition of the Hamiltonian
density, we can write the condition for a conformal theory in the Hamiltonian formalism:

Tµ
µ = T 00⌘00 + T ik�ki (1.81a)

= H + ~E · ~D + ~H · ~B � 3
⇣
L + ~H · ~B

⌘
(1.81b)

= H + ~E · ~D + ~H · ~B � 3
⇣
~D · ~E � H + ~H · ~B

⌘
(1.81c)

= 4H � 2 ~E · ~D � 2 ~H · ~B (1.81d)

and the requirement of a traceless stress-energy tensor is satisfied if:

~E · ~D + ~H · ~B = 2H . (1.82)

Duality invariance

Let us now comment on the duality symmetry in the Hamiltonian formalism H = H ( ~D, ~B).
One can observe that there are two SO(2)-invariant scalars:

s =
1

2

✓��� ~D
���
2
+
��� ~B
���
2
◆
, (1.83)

p =
��� ~D ⇥ ~B

��� . (1.84)

Thus if the Hamiltonian H is a function of (s, p) the theory will be duality invariant.
Let us see when a theory with H = H (s, p) is Poincarè-invariant. Recall the constraint

to satisfy is (1.73a):

~H ⇥ ~E = ~D ⇥ ~B . (1.85)

Using the definitions of s, p and the constitutive relations in the Hamiltonian formalism,

~E =
@H

@ ~D
= Hs

@s

@ ~D
+ Hp

@p

@ ~D
, (1.86)

~H =
@H

@ ~H
= Hs

@s

@ ~H
+ Hp

@p

@ ~H
, (1.87)

the constraint (1.73a) implies:

H
2
s + 2

s

p
HsHp + H

2
p = 1 . (1.88)

Here subscripts denote partial derivatives. This is a rewriting of the condition that an
SO(2)-invariant NED theory having Hamiltonian density H = H (s, p) must satisfy in
order to be Poincarè-invariant.

Do note p is SL(2,R) electromagnetic duality-invariant, so a theory with Hamiltonian
density H = H (p) will be SL(2,R)-invariant. In this case the condition (1.88) reduces to
H

2
p = 1 with solutions H = ±p. Choosing the positive sign, we have the Bialynicki-Birula

electrodynamics.
An alternative basis to (s, p) for SO(2) duality-invariance is (u, v) with:

u =
1

2

⇣
s+

p
s2 � p2

⌘
, (1.89)

v =
1

2

⇣
s�

p
s2 � p2

⌘
. (1.90)
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Notice they are well defined since s2 � p2 = ⇠2 + ⌘2 � 0 holds everywhere [29]. Condition
(1.88) in the new basis reads [29]:

HuHv = 1 . (1.91)

In this section we have found the condition for a relativistic theory to be conformal-
invariant in equation (1.42), and condition to be SO(2)-invariant in equation (1.65). In
principle there exist infinite number of Lagrangian densities solving either (1.42) or (1.65),
but there exist only two NEDs being conformal and SO(2) invariant simultaneously : the
Bialynicki-Birula theory and the ModMax theory. We will tell more about ModMax in the
next section.

1.3 ModMax theory

In 2020 Bandos, Lechner, Sorokin and Townsend discovered a NED theory being both
conformal and duality invariant which they called ModMax. In the article [12] they
took a generic NED Hamiltonian and imposed conditions for both conformal and duality
invariance. They found two solutions: one yealds to the BB theory, the other yealds to
ModMax. ModMax theory is remarkable since it is a one-parameter generalization of
Maxwell electrodynamics and only when the parameter, denoted by �, goes to zero Maxwell
theory is restored. This is in contrast to the BB theory that does not reduce to Maxwell
theory in any limit. When � 6= 0 EoM of ModMax are nonlinear.

Let us now report the main results obtained in [12]. To have an SO(2) electromagnetic
duality invariant theory the Hamiltonian density was considered to be H = H (s, p), or
equivalently H = H (u, v). To have a Poincarè-invariant theory, the Hamiltonian density
must be a solution of (1.88) if we use (s, p) basis, or equivalently a solution of (1.91) in
(u, v) basis. A solution of the Poincarè-invariance condition is an Hamiltonian density of
the form:

H =
p
K + const , (1.92)

where K is a scalar function. E.g. considering K = K(u, v) equation (1.91) reads KuKv =
4K.

Considering a quadratic K, the general solution for which K is non-negative for all
(u, v) gives a Hamiltonian density depending on one parameter T with dimensions of an
energy density and a dimensionless parameter �. Assuming zero vacuum energy one fixes
the additive constant, and the result Hamiltonian density is:

H =
p
T 2 + 2T [exp(��)u+ exp(�)v] + 4uv � T , (1.93)

A more detailed derivation is exposed in [29] section 4. Interesting limits of (1.93) are the
following:

• when � = 0 the Hamiltonian density reduces to the one of BI electrodynamics, indeed
we can say (1.93) is a one-parameter generalization of the BI Hamiltonian density;

• the strong-field limit T ! 0 yields the Hamiltonian density H = p of BB electrody-
namics;

• the weak-field limit T ! 1 yields the so-called ModMax Hamiltonian density.
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The ModMax Hamiltonian density (T ! 1) is:

HMM = (cosh �)s� (sinh �)
p

s2 � p2 (1.94a)

=
1

2

 
cosh �

⇣
~D2 + ~B2

⌘
� sinh �

r⇣
~D2 + ~B2

⌘2
� 4
⇣
~D ⇥ ~B

⌘2
!
. (1.94b)

Do note for any value of � the Hamiltonian density is conformal invariant. The Maxwell
Hamiltonian density is recovered for � = 0: ModMax electrodynamics is indeed the
one-parameter extension of Maxwell electrodynamics being Lorentz, conformal and electric-
magnetic duality invariant. ModMax and BB theories are the only electromagnetic theories
with these symmetries. There may be other solutions of (1.88) (or equivalently (1.91))
corresponding to other duality and Lorentz invariant theories, but they are not conformal
invariant. This is explicitly proved in [12].

Hamiltonian density (1.94) is well defined for null-field configurations, where it reduces
to BB Hamiltonian density:

HMM

����
null-fields

=
��� ~D ⇥ ~B

��� . (1.95)

Among these configurations plane waves [12] and topologically non-trivial knotted electro-
magnetic fields [30] are exact solutions of ModMax field equations. However, the linear
superposition of plane waves is not a solution because of the non-linearity of the electrody-
namics equations. The conditions of causality and unitarity require the parameter � to be
non-negative: � � 0. The Hamiltonian density (1.94) for � > 0 is not a convex function of
~D for all values of ( ~D, ~B), so the Legendre transform of H ( ~D, ~B) with respect to ~D must
be carried out only within the domain of H ( ~D, ~B) in which the Hamiltonian density is
convex. This results in the following Lagrangian density of ModMax [12]:

LMM =
cosh �

2

⇣
~E2 � ~B2

⌘
+

sinh �

2

r⇣
~E2 � ~B2

⌘2
+ 4
⇣
~E · ~B

⌘2
(1.96a)

= cosh �S + sinh �
p
S2 + P 2 . (1.96b)

As it was for the ModMax Hamiltonian density, the Maxwell Lagrangian density is recovered
when � ! 0: there is no weak-field limit that reduces ModMax to Maxwell theory because
of conformal invariance.

Using the variational principle, one obtains the Euler-Lagrange field equations:

cosh �@µF
µ⌫ + sinh �@µ

 
SFµ⌫ + PF̃µ⌫

p
S2 + P 2

!
= 0 , (1.97)

and together with Bianchi identitiy @µ ˜Fµ⌫ = 0 they are a set of field equations for free
ModMax theory. EoM are not well defined for null field configurations S = P = 0, while
there are no porblems in the Hamiltonian formulation. Configurations of the type |S| = c|P |,
where c is a constant, linearize the EoM allowing solutions of Maxwell equations @µFµ⌫ = 0
with |S| = c|P | be also solutions of ModMax equations.

If one takes the Legendre transform of the most-general Poincarè and SO(2) invariant
Hamiltonian density (1.93) with respect to ~D (under the assumption of a suitable domain
where the Hamiltonian density is convex), one obtains the following Lagrangian density
[29]:

LMM-BI = T �
r

T 2 � 2TLMM � 1

16

⇣
Fµ⌫F̃µ⌫

⌘2
. (1.98)
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As was for the Hamiltonian density (1.93), the theory described by such Lagrangian is a
generalized BI theory whose weak-field limit is ModMax (instead of Maxwell at which the
BI theory (1.10) tends) and the strong-field limit is BB electrodynamics.



Chapter 2

Vacuum birefringence in NED

theories

Almost all NEDs show birefringence property when ligth propagates in an electromagnetic
background (in the following we will show why, see [9, 31–34] for some examples). In optical
physics, birefringence is a double refraction of a light ray hitting a material: the ray is
split by polarization, with respect to the optical axis of the material, into two rays taking
different geodesics. In NED theories the electromagnetic background plays the role of the
optical material and a small perturbation as an electromagnetic plane wave propagating in
the background could split by polarization, this phenomenon is called (electromagnetic)
vacuum birefringence. It is a general property of NED theories since their EoM is non-linear
by construction and so superposition of waves is no more a solution as in the case of
linear theories. Thus, when we have a plane wave on the top of a background we expect
interactions to appear between the waves and the background in a NED theory [13, 35].

Different experiments were proposed and driven to observe the vacuum birefringence;
we cite the PVLAS (Polarisation of Vacuum with LASER) collaboration in which a laser
beam is shot into a Fabry-Perot cavity to increase the optical path, with a magnetic
field background. PVLAS carried out 25 years of efforts in the search for the vacuum
birefringence and dichroism, and it established the best limits on theories’ parameters
known so far [36]. In the astrophysical framework physicists take advantage of the strong
magnetic field of neutron stars to catch vacuum birefringence, see e.g. [37].

We are going to open the chapter showing the effect of the nonlinearity of a classical NED
in the dispersion relation of a plane wave propagating in an electromagnetic background.
Then we will discuss the polarization theory in order to set up the formalism we will use in
next chapters.

2.1 General treatment

Let us consider the general NED Lagrangian L = L (S, P ) in a Minkowski spacetime
describing a system with an electromagnetic background and a small perturbation, as
a wavefront, on top of the background; being general, we start considering a spacetime
dependent background.

In terms of the 4vector potential, we consider:

Aµ(x, t) = Aµ
B
(x, t) + aµ(x, t) , (2.1)

where Aµ
B

refers to the electromagnetic background component and aµ to the photon field
perturbation. Given such a decomposition, the field-strength tensor has the following form:

23
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Fµ⌫ = Fµ⌫
B

+ fµ⌫ (2.2a)
=
�
@µA⌫

B
� @⌫Aµ

B

�
+ (@µa⌫ � @⌫aµ) . (2.2b)

To see non-linear phenomena, it is sufficient to expand the NED Lagrangian density around
the background up to the second order in aµ. Doing so:

L (S, P ) =L (SB, PB) +
@L

@Fµ⌫

����
B

fµ⌫ +
1

2

@2L

@Fµ⌫@F↵�

����
B

fµ⌫f↵� +O
�
f3
�
. (2.3)

Quantities with subscript "B" are computed at the electromagnetic background. Let us use
the notation of [38] to denote partial derivatives of the Lagrangian with respect to S, P :

c1 =
@L

@S

����
B

, c2 =
@L

@P

����
B

, d1 =
@2L

@S2

����
B

, d2 =
@2L

@P 2

����
B

, d3 =
@2L

@S@P

����
B

,

(2.4)

also the following tensors are introduced in order to write the Lagrangian in a compact
form:

Gµ⌫
B

= c1F
µ⌫
B

+ c2F̃
µ⌫
B

, (2.5)

Qµ⌫�
B

= d1F
µ⌫
B

F �
B

+ d2F̃
µ⌫
B

F̃ �
B

+ d3F
µ⌫
B

F̃ �
B

+ d3F̃
µ⌫
B

F �
B

. (2.6)

So the Lagrangian density reads:

L (S, P ) =L (SB, PB)�
1

2
Gµ⌫

B
fµ⌫ �

1

4


c1fµ⌫f

µ⌫ + c2fµ⌫ f̃
µ⌫ � 1

2
Qµ⌫�

B
fµ⌫f�

�
. (2.7)

Varying this Lagrangian with respect to aµ and assuming that the background satisfies
the EL equations of motion one gets the EL equations for the photon field:

0 =
@L

@a⌫
� @µ

@L

@(@µa⌫)
(2.8a)

= @µ


c1f

µ⌫ + c2f̃
µ⌫ � 1

2
Qµ⌫�

B
f� +Gµ⌫

B

�
. (2.8b)

The photon field also satisfies the Bianchi identity:

@µf̃
µ⌫ = 0 . (2.9)

Do note for any theory depending on S only, coefficients c2, d2, d3 are all vanishing. The
simplest example is the Maxwell’s theory for which LM = S and thus c1 = 1 and d1 = 0. If
the Lagrangian depends also on P , one usually assumes the dependence on even powers of
P in order to preserve the parity symmetry.

For simplicity we consider a uniform and constant external magnetic field ~B and no
electric field. As a consequence, coefficients (2.4) are also uniform and constant in time; in
addition whenever electric field is zero and we work with even powers of P , the coefficient
d3 = 0.

We unpack EoM for the perturbation (2.8) writing them in vectorial notation where we
denote the photon electric and magnetic field as ~e,~b and the background as ~B:

~r · ~e+ d2
c1
~B · ~r

⇣
~B · ~e

⌘
= 0 , (2.10a)

~r⇥~b+ d1
c1
~B ⇥ ~r

⇣
~B ·~b

⌘
= @t~e+

d2
c1
~B@t
⇣
~B · ~e

⌘
. (2.10b)



CHAPTER 2. VACUUM BIREFRINGENCE IN NED THEORIES 25

These are a scalar EoM (2.10a) and a vectorial EoM (2.10b). The Bianchi identities are

~r ·~b = 0 , (2.11a)
~r⇥ ~e+ @t~b = 0 . (2.11b)

Let us consider plane wave solutions:

~e(~x, t) = ~e0 exp
h
i
⇣
~k · ~x� !t

⌘i
, (2.12)

~b(~x, t) = ~b0 exp
h
i
⇣
~k · ~x� !t

⌘i
, (2.13)

where the components of the amplitude vectors ~e0,~b0 are constant complex vectors. Inserting
the plane wave ansatz into the EoM we derive the photon dispersion relation. From the
Bianchi idensity we get:

�i!~b = i~k ⇥ ~e . (2.14)

This means that the magnetic field ~b is orthogonal to ~k, but we cannot say the same for the
electric field ~e as normally happens in Maxwell electrodynamics. The non-orthogonality
of ~e with respect to ~k is a consequence of the nonlinearity of the theory and it is explicit
looking at (2.10a) where the divergence of ~e is different from zero because of d2 6= 0 in a
NED theory.

We now substitute plane waves ~e and ~b = �(~k ⇥ ~e)/! into the system (2.10). In this
way we will have a system for the electric field only. The scalar EoM (2.10a) reads:

i~k · ~e+ i
d2
c1
~B · ~k

⇣
~B · ~e

⌘
= 0 . (2.15)

While the vectorial EoM (2.10b) reads:

i~k ⇥
~k ⇥ ~e

!
+ i

d1
c1
~B ⇥ ~k

 
~B ·

~k ⇥ ~e

!

!
= �i!~e� i!

d2
c1
~B
⇣
~B · ~e

⌘
. (2.16)

The LHS can be worked out using vectorial identities:

A⇥ (B ⇥ C) = B(A · C)� C(A ·B) , (2.17a)
A · (B ⇥ C) = B · (C ⇥A) = C · (A⇥B) , (2.17b)

where A,B,C are vectors. So the equation reads:
h
~k ·
⇣
~k · ~e

⌘
� k2~e

i
+

d1
c1
~B ⇥ ~k

h⇣
~B ⇥ ~k

⌘
· ~e
i
= �!2~e� !2d2

c1
~B
⇣
~B · ~e

⌘
. (2.18)

Thus, the system of EoM reads:
h
~k ·
⇣
~k · ~e

⌘
� k2~e

i
+

d1
c1
~B ⇥ ~k

h⇣
~B ⇥ ~k

⌘
· ~e
i
= �!2~e� !2d2

c1
~B
⇣
~B · ~e

⌘
, (2.19a)

~k · ~e+ d2
c1
~B · ~k

⇣
~B · ~e

⌘
= 0 . (2.19b)

Let us consider a configuration in which the wave-vector is orthogonal to the external
magnetic field, namely ~B · ~k = 0. This simplifies the computation since in this case the
scalar EoM reads:

~k · ~e = 0 , (2.20)



CHAPTER 2. VACUUM BIREFRINGENCE IN NED THEORIES 26

namely the electric field spans together with ~B a plane orthogonal to ~k. We can decompose
the electric field into its parallel and orthogonal component with respect to the external
magnetic field ~B, respectively ~ek and ~e?:

~e = ~ek + ~e? . (2.21)

Let us choose a reference frame in order to assign labels to vectorial components:
assume the external magnetic field ~B is oriented along z-axis and the wave vector ~k of the
perturbation is along x-axis, then ~ek will be along z-axis and ~e? will be along y-axis. In
this reference frame the vectorial EoM reads:

0

B@
0�

!2
? � k2

�
e?⇣

!2
k � k2

⌘
ek

1

CA+

0

@
0

d1
c1
(Bk)2e?

0

1

A+

0

@
0
0

!2 d2
c1
B2ek

1

A =

0

@
0
0
0

1

A . (2.22)

Indeed fields ~ek and ~e? oscillate with different frequencies. The component of the electric
field orthogonal to ~B oscillates with a frequency !? which is the solution of:

�
!2
? � k2

�
+

d1
c1

(Bk)2
�
e? = 0 =) !2

? = k2
✓
1� d1

c1
B2

◆
. (2.23)

While the component of the electric field parallel to ~B will oscillate with the frequency !k
which is the solution of:

⇣
!2
k � k2

⌘
+ !2

k
d2
c1

B2

�
ek = 0 =) !2

k = k2
✓

c1
c1 + d2B2

◆
. (2.24)

So, for a NED theory the dispersion relations of a photon propagating in an external
electromagnetic background are generically different from the relativistic ones and depend
on the NED property.

Let us summarize the results: we approximated the nonlinearity expanding the La-
grangian around the background and keeping terms up to the second-order in the propagating
field, we have considered the case of an external uniform magnetic field as a background
and a plane wave perturbation propagating orthogonal to it, then the dispersion relations
we have found are:

!2
k = k2

✓
c1

c1 + d2B2

◆
, (2.25)

!2
? = k2

✓
1� d1

c1
B2

◆
. (2.26)

The components of the perturbation oscillate with different frequencies depending on their
linear polaraization with respect to the external magnetic field: this produces birefringence.

Notice that in the limit B ! 0 or if we deal with the linear electrodynamics theory
(i.e. d1 = d2 = 0) the usual Maxwellian dispersion relation !2 = k2 is recovered and no
birefringence appears.

Having the photon dispersion relations, one can compute the refraction indices from
the definition n = v�1 = k/!:

nk =

✓
c1 + d2B2

c1

◆1/2

, (2.27)

n? =

✓
c1

c1 � d1B2

◆1/2

, (2.28)
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and the birefringence condition !k 6= !? can be stated as nk 6= n?, or

�n = nk � n? . (2.29)

The PVLAS experiment has put an upper bound on vacuum birefringence in an external
magnetic field ~B = 2.5Tesla [36]:

�nPVLAS  (12± 17)⇥ 10�23 . (2.30)

Although the sensibility of PVLAS did not reach the values predicted by the QED, computed
from the EH Lagrangian �nQED ⇡ 4⇥ 10�24(B/Tesla)2 [39], its upper bound shows the
smalness of vacuum birefringence phenomena and thus of nonlinear corrections.

2.1.1 Examples

Let us compute the refraction indices for some electrodynamics theories. We will always
consider the configuration used above: ~k along x-axis and ~B along z-axis.

As we have already seen, in Maxwell electrodynamics only c1 6= 0 and any refraction
index is equal to 1, so there is no birefringence as expected.

Euler-Heisenberg theory has an effective Lagrangian written in equation (1.17), and we
report here its weak-field limit:

LEH ⇡ S +
2↵2

45m4

�
4S2 + 7P 2

�
. (2.31)

Computing coefficients c1, d1 and d2 from the weak-field Lagrangian one finds:

cEH

1 = 1� 8↵2B2

45m4
, dEH

1 =
16↵2

45m4
, dEH

2 =
28↵2

45m4
. (2.32)

Indeed, vacuum refraction indices in a magnetized environment for EH electrodynamics are:

nEH

k ⇡ 1 +
14↵2

45m4
B2 , (2.33)

nEH

? ⇡ 1 +
8↵2

45m4
B2 . (2.34)

Birefringence is present but it is very small as anticipated above: �n ⇠ 10�24B2/Tesla2.
Generalized BI theory is a generalization of the BI Lagrangian (1.10) in which instead

of the square root one takes the power p in the range 0 < p < 1. Its Lagrangian is [38]:

LgBI = �2

1�

✓
1� 2

S

�2
� P 2

�4

◆p�
, (2.35)

where �2 is a parameter with dimension of energy density. The usual BI theory is obtained
for p = 1/2, and the Maxwell electrodynamics is restored in the weak-field limit �2 ! 1
with p = 1/2, as expected. Using LgBI, one computes the coefficients:

cgBI

1 =
2p

(1 +B2/�2)1�p
, dgBI

1 =
4p(1� p)

�2(1 +B2/�2)2�p
, dgBI

2 =
2p

�2(1 +B2/�2)1�p
.

(2.36)
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So, the refraction indices are

ngBI

k =


1� B2

B2 + �2

��1/2

, (2.37)

ngBI

? =


1� 2(1� p)

B2

B2 + �2

��1/2

. (2.38)

Do note that in the case of BI theory (p = 1/2) the two refraction indices coincide and
no birefringence is expected. It is the unique physically relevant NED theory having no
birefringence [10].

ModMax theory has Lagrangian density (1.96), and hence

cMM

1 = cosh � +
sinh � Sp
S2 + P 2

����
B

= exp(��) , (2.39)

dMM

1 =
sinh �p
S2 + P 2


P 2

S2 + P 2

�����
B

= 0 , (2.40)

dMM

2 =
sinh �p
S2 + P 2


S2

S2 + P 2

�����
B

=
2 sinh �

B2
, (2.41)

where we used S = �B2/2 and P = 0 for a magnetic background. Because of dMM

1 = 0,
the component of the electric field orthogonal to ~B oscillates with the canonical dispersion
relation !2 = k2. In fact the refraction indices are:

nMM

k = exp � , (2.42)

nMM

? = 1 . (2.43)

Notice there is no dependence on the magnitude B of the external field, in contrast to the
cases of EH and BI theories. This is presumably a consequence of conformal invariance
of ModMax [12]. The propagation of the parallel-mode is always sub-luminar as long as
� > 0. The magnitude of birefringence is:

�nMM = exp � � 1 ⇡ � +O
�
�2
�
. (2.44)

Using the upper bound of PVLAS experiment, we can estimate an upper bound for the
coupling constant � of ModMax:

�  3⇥ 10�22 . (2.45)

This is a rough estimation obtained considering ModMax as the unique source of birefrin-
gence. In general birefringence may be a combined effect of classical and quantum non-linear
contributions, indeed to be able to discriminate between NED theories one should also
have experimental results for refraction indices themselves but this requires incredibly high
sensitivity.

2.2 Polarization theory

In the previous section we have seen how a NED theory can produce a non-trivial dis-
persion relation for an electromagnetic plane wave because of the nonlinear terms; the
result is a wave propagating with different frequency depending on its polarization. The
polarization properties of electromagnetic waves are described by the polarization theory of
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electromagnetism. Let us introduce such theory following the Jackson’s book "Classical
Electrodynamics" [2] in order to set up the formalism we will use.

Consider an electric plane wave:

~E =

0

@
Ex

Ey

Ez

1

A =

0

@
Ex
Ey
Ez

1

A exp
h
i
⇣
~k · ~x� !t

⌘i
, (2.46)

where Ei = Ei(x, t) are complex components of the plane wave, while Ei 2 C are amplitudes,
they are spacetime independent in a plane wave. Thus, components of the wave are:

Ex = Ex exp
h
i
⇣
~k · ~x� !t

⌘i
, (2.47)

Ey = Ey exp
h
i
⇣
~k · ~x� !t

⌘i
, (2.48)

Ez = Ez exp
h
i
⇣
~k · ~x� !t

⌘i
. (2.49)

From now on, let us consider a reference frame in which the propagating vector ~k is
along z-axis, then the plane wave can be written in components as:

~E =

0

@
Ex
Ey
0

1

A exp[i(kz � !t)] . (2.50)

Let us introduce constant real unit vectors ~✏x and ~✏y pointing respectively along x and y
axis, then the wave can be written as:

~E =
⇣
~✏xEx + ~✏yEy

⌘
exp[i(kz � !t)] . (2.51)

Vectors ~✏x and ~✏y indicate the direction of the electric field and are called the polarization
vectors. The physical electric field is the real part of the wave ~E, i.e. Re( ~E). It will span in
general an ellipse in the (x, y) plane depending on the real part of Ex and Ey. Boundary
configurations of the ellipse are the extremely flat ellipse, i.e. a straight line, and a circle.
These configurations are respectively called linear polarization and circular polarization.

Linear polarization: it is obtained when the complex amplitudes Ex and Ey have the
same phase �. Calling with minor letters ex, ey 2 R the modulus of Ex, Ey, the linear
polarization requires Ex = ex exp(i�) and Ey = ey exp(i�). In this case the electric
plane wave (2.51) reads:

~E =
⇣
~✏xex + ~✏yey

⌘
exp[i(kz � !t+ �)] . (2.52)

The quantity ~✏xex+~✏yey is therefore a real vector that can be written as a real-valued
unit vector ~✏ times a real-valued magnitude e. Vector ~✏ is the new polarization vector
of the linear plane wave; the magnitude is:

e =
q
e2x + e2y . (2.53)

The angle between ~✏ and ~✏x is:

✓ = arctan

✓
ey
ex

◆
. (2.54)
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Circular polarization: The circular polarization is obtained when Ex and Ey has the
same modulus, that we call e 2 R, but differ by a phase of ⇡/2, i.e. Ex = e exp(i�)
and Ey = e exp(i� ± i⇡/2) = ±ie exp(i�). Then the wave (2.51) reads:

~E =
⇣
~✏x ± i~✏y

⌘
e exp[i(kz � !t+ �)] . (2.55)

In this case the physical field Re( ~E) has components:

Ephys

x = Re(Ex) = Re(e exp[i(kz � !t+ �)]) (2.56)
= e cos(kz � !t+ �) , (2.57)

Ephys

y = Re(Ey) = Re(±ie exp[i(kz � !t+ �)]) (2.58)
= ⌥e sin(kz � !t+ �) , (2.59)

indeed the electric field spans a circle with frequency !.

Polarization theory uses the Stokes parameters that are functions of the complex-valued
electric field components Ei; again considering a wave propagating along z-axis, they are:

I ⌘ E2
x + E2

y , (2.60a)
Q ⌘ E2

x � E2
y , (2.60b)

U ⌘ 2Re(E⇤
xEy) , (2.60c)

V ⌘ 2 Im(E⇤
xEy) , (2.60d)

where ⇤ indicates complex conjugate. Squared quantities are computed using the scalar
product for complex numbers: E2

i = E⇤
i Ei. Indeed Stokes parameters are real numbers.

Here I is the intensity of the electric field, Q,U describe a linear polarization, and V
describes a circular polarization. We convince ourself that such names are appropriate
observing that if we perform a counterclockwise rotation of our reference frame by an angle
✓ around the z-axis (i.e. a counterclockwise rotation of the x, y-axes, or equivalently a
clockwise rotation of electric field) the Stokes parameters that feel the rotation are Q and
U only. Let us show it, such a rotation affects the component of the electric field:

✓
Ex

Ey

◆
!
✓
E0

x

E0
y

◆
=

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆✓
Ex

Ey

◆
, (2.61)

Stokes parameters transform as:

I ! I 0 = I , (2.62)
Q ! Q0 = cos(2✓)Q+ sin(2✓)U , (2.63)
U ! U 0 = � sin(2✓)Q+ cos(2✓)U , (2.64)
V ! V 0 = V . (2.65)

Indeed parameters I and V remain untouched, only Q,U feel the rotation. If we define the
quantity Q± iU the rotation translates into an additional phase:

(Q± iU) !
�
Q0 ± iU 0� = Q(cos(2✓)⌥ i sin(2✓)) + U(sin(2✓)± i cos(2✓)) (2.66a)

= Q(cos(2✓)⌥ i sin(2✓))± iU(cos(2✓)⌥ i sin(2✓)) (2.66b)
= (Q± iU) exp(⌥i2✓) (2.66c)
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i.e. if the electric field rotates clockwise by an angle ✓, the quantity (Q± iU) rotates in the
plane (Q, iU) by an angle ⌥2✓.

Since (Q± iU) 2 C we can write it using an amplitude P and a phase 2 :

(Q± iU) = P exp(±i2 ) , (2.67)

where

P ⌘
⇥
Q2 + U2

⇤1/2
, (2.68)

2 ⌘ arctan(U/Q) . (2.69)

In light of the relation between the electric field orientation and Q± iU , the quantity  
is the initial angle of ~E with respect to x-axis in the (x, y) plane. Since  is the physical
angle, we have defined the phase of Q± iU with the factor 2.

The clockwise rotation by ✓ of the electric field performed in (2.61) changes the con-
figuration to a new angle  !  =  � ✓. Consequently, the quantity (2.67) changes as
follow:

P exp(±i2 ) ! P exp(±i2 ) = P exp[±i2( � ✓)] . (2.70)

The new angle  can be computed as a function of the electric field components through
the definition (2.69) (having  !  ):

 =
1

2
arctan

✓
U 0

Q0

◆
=

1

2
arctan

 
2Re(E0

x
⇤E0

y)

E0
x
2 � E0

y
2

!
, (2.71)

where primes denote quantities after the rotation. So, if we know the evolution of electric
field components of a plane wave we can compute the Stokes parameter Q0, U 0 and obtain
the orientation angle  of the linear polarization.

Example. Let us make an example considering a linear-polarized plane wave propagating
along z-axis:

~E = ~E exp[i(kz � !t)] (2.72)
= ~✏ e exp[i(kz � !t+ �)] , (2.73)

where ~✏ is the polarization vector, e = (e2x + e2y)
1/2 2 R is the amplitude. Stokes parameters

Q,U are

Q = E2
x � E2

y = e2x � e2y , (2.74)
U = 2E⇤

xEy = 2exey . (2.75)

They are constant, indeed the phase 2 = arctan(U/Q) is constant during the propagation
too. This means the wave starts with the electric field counterclockwise rotated by an angle
 with respect to the x-axis and propagates without modifying it.

The example above allows us to predict that a rotation of the linear polarization will be
possible when U and/or Q changes. Being more general as possible, the rotation happens
in a plane wave where any component has different initial phase, frequency and wave-vector.
For example, the electric field of such a plane wave propagating along z-axis is:

~E(~x, t) =

0

@
Ex exp[i(kxz � !xt)]
Ey exp[i(kyz � !yt)]

0

1

A =

0

@
ex exp(i�x) exp[i(kxz � !xt)]
ey exp(i�y) exp[i(kyz � !yt)]

0

1

A , (2.76)
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Figure 2.1: Example of the most-general plane-wave electric field (2.76). Here we used (ex, ey) =
(4, 3), (�x, �y) = (0.1, 0.3), (!x,!y) = (1, 5) but we kept constant the wave-vector to k = 2. We also

chained z and t together, for simplicity. Notice the electric field is still periodic because we have

chosen constant frequencies !x,!y. If they were not constant, the periodicity property would be

lost.

where �x, �y are the initial phases and ex, ey 2 R. The physical electric field Re( ~E) of the
most general plane-wave (2.76) will span a curve more complicated than an ellipse because
of kx 6= ky,!x 6= !y and �x 6= �y; look at figure 2.1 for an example. Stokes parameters can
still be used with the same definitions given in (2.60). Even more, rotation properties we
have obtained before are still valid, since they are obtained at the level of the components
of the electric field ~E using only properties of complex numbers with no link to the values
of the components of Ei.

2.2.1 CMB photons

Photons we are interested in the CMB photons, they have propagated from the last-
scattering surface (LSS) up to the present time moving, indeed, toward us. Let us introduce
right-handed coordinates with the z-axis taken in the direction of observer’s lines of sight
(these are the coordinates used by the CMB community [16]), the consequence is the
replacement of (Q± iU) ! (Q⌥ iU), which translates into a minus sign in the angle  of
(2.67):

 ! � ⌘ � in CMB community . (2.77)

We called the new angle � as in [16]. Let us recall the definition of � using equation (2.69):

� = �1

2
arctan

✓
U

Q

◆
. (2.78)

Notice that since  > 0 was a counterclockwise rotation of the electric field and  < 0 a
clockwise rotation, in the coordinates of CMB community an angle � > 0 will be a clockwise
rotation and � < 0 a counterclockwise rotation.
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2.2.2 Helicity states

For a generic plane wave propagating along z-axis, instead of the Cartesian basis Ex, Ey

we can use the helicity basis (also called helicity states):1

E+ = Ex � iEy , (2.79)
E� = Ex + iEy . (2.80)

The inverse relation (i.e. the Cartesian coordinates written as the function of the helicity
ones) is:

Ex =
1

2
(E+ + E�) , (2.81)

Ey =
i

2
(E+ � E�) . (2.82)

We can write the Stokes parameters in the helicity states:

I = E2
+ + E2

� , (2.83)
Q = Re(E⇤

+E�) , (2.84)
U = Im(E⇤

+E�) , (2.85)
V = E2

+ � E2
� . (2.86)

The constancy of I is not a surprise: the intensity has no dependence on the direction, so a
change of the basis cannot affect it.

We can still define the quantity Q ± iU , and write it using the Euler formula as
P exp(±i2 ). Rotation properties, as (2.66), still hold using helicity states. Let us apply
the CMB community notation, calling the rotation angle with �, its value is given in
equation (2.78). In terms of the helicity states

� = �1

2
arctan

✓
U

Q

◆
= �1

2
arctan

✓
Im(E⇤

+E�)

Re(E⇤
+E�)

◆
. (2.87)

In the following chapter we will present a cosmological framework in which we expect a
rotation in time of the linear polarization of photons, i.e. a non-zero angle � = �(t).

1
In [2] coefficients are different but the idea is the same.



Chapter 3

Cosmic birefringence

From a cosmological point of view a birefringence phenomenon is a rotation of the linear
polarization plane of photons during propagation in the universe. This phenomenon arises,
for instance, if Maxwell electrodynamics includes an interaction between the electromagnetic
field and an external field [16]; the coupling will produce a non-trivial dispersion relation for
polarization modes resulting in a rotation of the polarization plane as photons propagate.
The external field indeed behaves as a birefringent material. Usually the field is an axion-like
particle (ALP) coupled to photons via the so-called Chern-Simons (CS) term (see e.g. [16–19,
40] for recent works):

L � ga�aFµ⌫F̃
µ⌫ , (3.1)

here ga� is the common notation for the coupling constant between the ALP, denoted with
a, and photons.

ALPs are pseudo Nambu-Goldstone bosons which arose in various extensions of the
Standard Model, as in string theory where they might have a broad range of mass and
couplings to gauge fields [23, 41, 42]. The idea of ALPs comes from a generalization of axions
that are theoretical particles firstly proposed by Peccei and Quinn to solve the problem
of strong CP-violation [43, 44]. ALPs are not yet observed, despite various experiments
driven to catch them.

In cosmology, ALPs are candidates to the dark sector: depending on the ALP mass,
they may be dark energy or dark matter (see [23] for a review). The signature of their
coupling to photons, via a CS term, was sought in the CMB polarization maps collected
by WMAP and Planck space missions. CMB photons were released at the surface of last
scattering with an imprinted polarization marked by the scattering with electrons of the
cosmic plasma, then they have propagated along 14 billions years. If they interacted with
the ALP external field, they are the most natural target to observe the cosmic birefringence
since the rotation of their polarization plane has accumulated during the propagation
period. Thus, cosmic birefringence is an interesting test to go beyond the Standard Model
of particle physics.

Let us keep the notation � for the rotation angle, as used in the Polarization theory
section 2.2. From the third public realise of Planck maps the estimated value of � is
� = 0.35� ± 0.14� (68% C.L.), which excludes a null angle at 99.2% C.L. [45]. Time after,
the same treatment was extended to the fourth public release of Planck maps estimating
� = 0.30� ± 0.11� (68% C.L.) [46]. The latest measurements of cosmic birefringence came
from a joint analysis of polarization data from Planck and WMAP giving

� = 0.342� +0.094�
�0.091� (68%C.L.) (3.2)

34
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and excluding � = 0 at 99.987% C.L. In addition, they found no evidence of an angle �
being dependent on photon frequency [1].

Such precise estimations were possible by correlating the CMB measurements with
measurements of the Galactic foregrounds emission. This analysis was introduced by
Komatsu and Minami [45] and allowed to mitigate the systematic uncertanty coming from
the miscalibration of the Planck polarization angle detectors which was a limit in the
previous analysis.

From the experimental estimation of � it was possible to constrain the coupling constant
of ALP-photons [17]. Physicists also carried out astrophysical observations and terrestrial
experiments in order to detect these particles, for instance let us mention the Chandra and
CAST (CERN Axion Solar Telescope) collaborations in this respect, and we will say more
about them at the end of the chapter [47, 48].

An interesting thing to extrapolate from the ALPs phenomenology is their allowed huge
mass range.

3.1 Axion-induced cosmic birefringence

The simplest way to predict cosmic birefringence is implementing Maxwell electrodynamics
with a CS term considering an external pseudoscalar ALP field. Let us call it by �(t, ~x)
and we denote the resulting theory as axion-Maxwell electrodynamics, its action is [49]:

S = SM + SCS =

Z
d4x

p
�gS +

Z
d4x

p
�g

↵

2f
�P , (3.3)

where g is the determinant of the metric, ↵ is a dimensionless coupling constant, f is the
decay-constant and has the dimension of energy. Here we have parametrized the coupling
ga� of the CS term with ↵ and f .

In the paradigm of ⇤CDM model of cosmology we consider a flat-FLRW spacetime in
conformal coordinates [50]:

ds2 = a2(⌘)
⇥
� d⌘2 + �ij dx

i dxj
⇤
, (3.4)

where d⌘ = dt /a(t) is the conformal time and t is the cosmic time. The determinant of
this metric is g = �a8. Such framework was treated by Komatsu in [16].

Note that P = �1
4FF̃ violates parity symmetry, therefore � must be a pseudoscalar

field in order for the term �FF̃ to be parity-invariant.
Let us derive the EoM for the 4-potential as the EL equations:

0 =
@L

@A↵
�rµ


@L

@(rµA↵)

�
, (3.5)

where the Lagrangian density is:

L = S +
↵

2f
�P . (3.6)

Indeed the EoM are:

0 = rµ


Fµ⌫ +

↵

2f
�F̃µ⌫

�
(3.7a)

= rµF
µ⌫ +

↵

2f
rµ�F̃

µ⌫ , (3.7b)
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where the covariant derivative of F̃µ⌫ was set to zero because of the Bianchi identity.
Opening the Faraday tensor:

0 = rµ(rµA⌫ �r⌫Aµ) +
↵

2f
rµ�

1

2
✏µ⌫⇢�(r⇢A� �r�A⇢) (3.8a)

= rµrµA⌫ � (r⌫rµA
µ +R⌫

µA
µ) +

↵

2f
rµ�✏

µ⌫⇢�r⇢A� . (3.8b)

In the last line we have recalled that covariant derivatives of a vector do not commute
introducing the Ricci tensor.

The effect of the CS term vanishes if � is constant. This can be seen also at the level of
the action since

p
�gF F̃ is a total derivative: � must depend on spacetime. In general �

depends on both time and space, however in order to keep the coarse grain description of
the universe as homogeneous and isotropic let a field depending only on time: � = �(⌘). We
can think of this assumption as if we were using a space-averaged field i.e. its homogeneous
part. Another approximation we use is the geometric-optic approximation, it is valuable
since we are studying light propagating in cosmological scales, then we can drop out terms
containing Ricci and Riemann tensors with respect to terms having the derivative of the
4-potential [51]. With these assumptions the EoM reads:

0 = ⇤A⌫ �r⌫(rµA
µ) +

↵

2f
�0✏0⌫⇢�r⇢A� , (3.9)

where ⇤ ⌘ rµrµ, and prime denotes a conformal time derivative.
Let us impose on the four-potential the Coulomb gauge: A0 = 0 and ~r · ~A = 0 (namely

we deal with 3-vector transverse waves). Thus, EoM are:

~A00 �

r2 ~A+

↵

f
�0~r⇥ ~A

�
= 0 . (3.10)

As expected they are a generalization of the EoM for the free vector-field Aµ minimally
coupled with gravity, i.e. the EL equation obtained varying the action SM alone with respect
to the 4potential would be

~A00 �r2 ~A = 0 . (3.11)

The EoM takes the same form as in Minkowski spacetime, this should not be a surprise
since a massless vector field, as Aµ, is conformally coupled to gravity.

Let us expand the 4potential with respect to a basis:

~A(⌘, ~x) =

Z
d3k Tk(⌘)~Sk(~x) , (3.12)

where ~k is the comoving wavevector as ~x is the comoving spatial coordinate. The physical
wavevector is ~kphys = ~k/a, thus the physical wavelength is �phys / 1/kphys = a/k. Here T
stands for time and S for space, recalling what their dependencies are. We choose a set of
plane waves as a basis for the spatial part:

~Sk(~x) = ~Nk exp
⇣
i~k · ~x

⌘
, (3.13)

where ~Nk is a normalization vector with no dependence on spacetime. Then:

~A(⌘, ~x) =

Z
d3k Tk(⌘) ~Nk exp

⇣
i~k · ~x

⌘
⌘
Z

d3k ~Ak(⌘) exp
⇣
i~k · ~x

⌘
, (3.14)
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where we have collected the time component Tk(⌘) and the normalization vector ~Nk into a
unique term called ~Ak.

Let us consider a single wavevector k and the corresponding mode to the 4-potential:

~Ak(⌘, ~x) = ~Ak(⌘) exp
⇣
i~k · ~x

⌘
. (3.15)

Inserting it into the EoM (3.10) we find the EoM for ~Ak(⌘) in the Fourier space:

0 = ~A00
k + k2 ~Ak � i

↵

f
�0~k ⇥ ~Ak . (3.16)

Recall the gauge ~r · ~A = 0, which means we are dealing with waves whose polarization
is orthogonal to the propagation direction ~k. With no loss of generality, let us consider a
reference frame in which ~k is oriented along z-axes, then Az = 0 and the third component
of ~Ak is also zero. EoM in the Fourier space reduces to a system of two equations for first
and second components of ~Ak. In order to keep a light notation, we drop the subscript k

and use subscripts x,y to denote the first and second component of ~Ak. So, the EoM in
Fourier space can be written as follows:

A00
x + k2Ax = �i

↵

f
�0kAy , (3.17)

A00
y + k2Ay = i

↵

f
�0kAx . (3.18)

Let us introduce new helicity states, the circular helicity states:
✓
Ax

Ay

◆
!
✓
A+

A�

◆
=

✓
Ax � iAy

Ax + iAy

◆
. (3.19)

Inserting them into the system we find:

A00
+ + k2A+ =

↵

f
�0kA+ , (3.20)

A00
� + k2A� = �↵

f
�0kA� , (3.21)

that in a compact form can be written as:

A00
± +


k2 ⌥ k

↵

f
�0
�
A± = 0 . (3.22)

Let us call the quantity in the square brackets as:

!2
± ⌘ k2 ⌥ k

↵

f
�0 . (3.23)

If we assume that !± is a constant quantity, a solution of (3.22) is:

A± = C± exp(�i!±⌘ + �±) , (3.24)

where C± 2 R is an amplitude and �± is an initial phase; note ! is a comoving quantity as
also k is.

Now we can rewrite the single k-mode (3.15) in the helicity basis:

A±(⌘, ~x) = A± exp
⇣
i~k · ~x

⌘
(3.25a)

= C± exp[i(�!±⌘ + kz + �±)] . (3.25b)
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In other words, a plane wave with a pulsation equal to !± = const (by hypotesis) is an
exact solution of the EoM (3.22) for the 4potential in the helicity basis.

However, the hypothesis of a constant !± implies �0 = const which is a stringent
requirement. We can relax the initial assumption allowing !± of equation (3.23) to change,
but slowly; this implies that also the field �0 changes slowly. To be more precise, we
assume that the effective angular velocity of (3.23) varies slowly with time within a period,
i.e. |!0|/!2 ⌧ 1 [16]. It is the assumption of the WKB method to find an approximated
solution of a differential equation of the type (3.22). So, using the WKB method we find
the approximated solution [16]:

A± ⇡ (2!±)
�1/2 exp


�i

Z
d⌘ !± + i�±

�
, (3.26)

here the integral ranges from an initial time ⌘i up to a time ⌘0, the term �± is the initial
phase that the helicity state A± had at the initial time ⌘i. So the WKB solution considers
the evolutionary history of the slowly-varying !± through the integral, where !± is defined
in equation (3.23). Let us take the square root of (3.23) and expand it up to the linear
term in �0 (it is sufficient since it is small by assumption):

!± = k


1⌥ ↵�0

fk

�1/2
⇡ k


1⌥ 1

2

↵�0

fk

�
. (3.27)

When we took the square root we considered only the plus solution, then we expanded
the square root since �0/k ⌧ 1: the conformal time derivative is of the order of the visible
universe 0 ⇠ ⌘�1 while k�1 is of the order of the photon wavelength, so the overall term
is small. The CS coupling produces indeed non-trivial dispersion relations, modifying the
Maxwell one !± = k adding the term ⌥↵�0/(2f).

Since the additional term is small and we are interested more in the variation in phase
than a variation in amplitude, we keep !± in the exponent of the WKB solution (3.26)
while we set !± ⇠ k (constant by hypothesis) in the amplitude [16]. So the dependence in
the WKB solution becomes:

A± / exp


�i

Z ⌘0

⌘i

d⌘ !± + i�±

�
. (3.28)

Group and phase velocity From (3.27) we compute the corresponding phase velocity:

vp,± ⌘ !±
k

⇡ 1⌥ 1

2

↵�0

fk
. (3.29)

It can be bigger or smaller than 1, i.e. greater than the speed of light in vacuum. However
this is not problematic.

Regarding the group velocity, we see from equation (3.27) that the CS coupling does
not contribute at first order: computing vg,± ⌘ d!±/dk from (3.27) we would obtain a
unitary group velocity, as in Maxwell theory. Therefore, let us expand !± up to the second
order in �0:

!± ⇡ k

"
1⌥ 1

2

↵�0

fk
� 1

8

✓
↵�0

fk

◆2
#
. (3.30)

Now the group velocity reads:

vg,± ⇡ 1 +
1

8

✓
↵�0

fk

◆2

(3.31)
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and the CS coupling modifies it adding a tiny positive contribution, making the group
velocity bigger than one.1

3.1.1 Birefringence angle

As we can see in (3.27) the Maxwell-Chern-Simons theory breaks parity predicting different
pulsations for the helicity states of a plane wave: !+ 6= !�. In light of what polarization
theory tells us it migth be that in the Maxwell-CS theory the polarization plane of a
linearly-polarized light gets rotated during its propagation. Let us compute the rotation
angle from (2.69). We consider CMB photons, using the CMB community convention for
coordinates: right-handed coordinates with the z-axis in the direction of observer’s line of
sight. Since we worked in helicity states to solve the EoM, we will use the definition (2.87)
where the rotation angle � is given with helicity states; we recall here its formula:

� = �1

2
arctan

✓
Im(E⇤

+E�)

Re(E⇤
+E�)

◆
. (3.32)

The electric field components are:

E± = r0A± / r0

⇣
A±(⌘) exp

⇣
i~k · ~x

⌘⌘
(3.33a)

/ exp


�i

Z
d⌘ !± + i�±

�
, (3.33b)

where we did not write the spatial derivative of A0 since we are in the Coulomb gauge
choice. In the second line we have used equation (3.28) neglecting the amplitude: the
rotation angle � is defined as a ratio of electric field components thus the amplitude does
not contribute. In fact:

� = �1

2
arctan

 
Im(exp

⇥
i
R
d⌘ !+ � i�+

⇤
exp
⇥
�i
R
d⌘ !� + i��

⇤
)

Re(exp
⇥
i
R
d⌘ !+ � i�+

⇤
exp
⇥
�i
R
d⌘ !� + i��

⇤
)

!
(3.34a)

= �1

2
arctan

 
sin
�R

d⌘ (!+ � !�)� (�+ � ��)
�

cos
�R

d⌘ (!+ � !�)� (�+ � ��)
�
!

(3.34b)

= �1

2

Z
d⌘ (!+ � !�) +

1

2
(�+ � ��) . (3.34c)

The plane of linear polarization is rotated relative to the initial angle (�+ � ��)/2 at the
surface of last scattering by a quantity �

R
d⌘ (!+ � !�)/2. Without loss of generality, we

set �+ � �� = 0 from now on, so the the polarization plane rotates by an angle:

� = �1

2

Z
d⌘ (!+ � !�) . (3.35)

The integration window is the conformal time interval of propagation, that for the oldest
observable photons, the CMB photons, goes from the time of last-scattering surface to
today. It is a range of 14 billions years, so even if the difference between !+ and !� is
small the effect accumulates because of the presence of the integral.

1
The meaning of having a group velocity bigger than c is a long historical debate, see e.g. [52].
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Figure 3.1: The picture shows a pictorial idea of a rotation angle for linear polarization of photons

that are propagating in the universe and interacting with a background field. The orange arrow on

the rigth-top of the figure represents the rotation angle �. Credits: Y. Minami.

We now insert the frequency of helicity states in Maxwell-CS theory (3.27):

� = �1

2

Z 0

i
d⌘

✓
k � ↵�0

2f

◆
�
✓
k +

↵�0

2f

◆�
(3.36a)

=
1

2

Z 0

i
d⌘

↵

f
�0 (3.36b)

=
↵

2f
[�(⌘0)� �(⌘i)] . (3.36c)

Therefore in order to quantify the cosmic birefringence through the rotation angle �
we must know the evolution of the ALP field �. For a pictorial visualization of the cosmic
birefringence angle we report the representation made by Y. Minami in figure 3.1.

This was the general description of cosmic birefringence proposed in literature [16, 18,
49, 53–55]. If we were to consider the most general pseudoscalar field � = �(⌘, ~x), it would
produce a rotation angle dependent also on the direction of observation giving rise to an
anisotropic cosmic birefringence, see e.g. [56].

If the field � is the real player on the observed cosmic birefringence the consequences
are remarkable: first of all � will be a new ingredient beyond SM, then it might play the
role of dark energy or dark matter as an axion-like particle [23].

3.1.2 Bounds on parameters

A coupling between photons and ALPs can give rise to different phenomena and it is a while
people try to observe them experimentally, thus constraining the axion-photon coupling
ga� ⌘ ↵/(2f).

The CERN Axion Solar Telescope (CAST) collaboration searched for axions coming
from the solar core: a 9T refurbished Large Hadron Collider test magnet is directed towards
the Sun with the purpose to observe solar axions converting to X-ray photons in the strong
magnetic field and then record the photon by X-ray detectors. They claimed the upper
bound ga� < 0.66⇥ 10�10GeV�1 for m . 0.02 eV at 95% C.L. [47].

Chandra collaboration had observed the active galactic nucleus NGC 1275 at the
center of the Perseus cluster and from the data analysis it has been provides the limit
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ga� < 10�13GeV�1 for m < 10�12 eV depending on the magnetic field, at 99.7% C.L. [48].
Fedderke et al. [57] proposed two observables from low-mass axions, playing the role of

dark matter, using CMB polarization measurements. The first is an overall suppression
of CMB polarization, which is referred to as the washout effect. It is due to early-time
oscillations of the axion field that wash out the polarization produced at last scattering,
reducing the polarized fraction with respect to the standard prediction. The second is due
to late-time oscillations of the axion field which cause the CMB polarization to oscillate in
phase, it is a local effect since it depends on how the local ALP oscillates. The effect is called
AC oscillation (or time-variable cosmic birefringence) and makes distant static polarized
sources to appear to oscillate. Since the oscillation is in phase, the frequency is proportional
to the ALP mass. Both effects are sensitive to the axion-photon coupling constant. The
BICEP/Keck collaboration [58] focused on AC oscillation using data from the 2012-2015
observing seasons of the Keck Array, they found ga� < 4.5⇥ 10�12GeV�1⇥ (m/(10�21 eV))
for a mass range 10�23 eV  m  10�18 eV, in the hypothesis that ALPs covers the whole
dark matter.

The SPT-3G Collaboration (third survey receiver operating on the South Pole Telescope)
set a similar bound ga� < 1.18⇥10�12GeV�1⇥(m/(10�21 eV)) for a mass range 10�22 eV 
m  10�20 eV, still assuming dark matter comprises a single ALP [59].

In figure 3.2 we report the plot elaborated in [58] where it is shown the parameter space
of ga�(m) for axion-like dark matter from Keck and other collaborations.

The analysis performed in [60] uses the CMB cosmic birefringence phenomenon and
assumes ultra-light ALP with ma ⇠ (10�27 � 10�24)eV, it was found a coupling ga� .
(10�17 � 10�12)GeV�1.

The experimental observation of a cosmic birefringence angle �exp ⇡ 0.342 deg [1] is a
new channel to constrain axion-photon coupling and other parameters of ALPs. In [17]
authors investigate the possibility that (ALPs) with various potentials account for the
isotropic birefringence. They also study the case of ALPs working as early dark energy2 and
simultaneously producing the observed isotropic cosmic birefringence. Same investigation
is carried on in [55]. The cosmic birefringence opens a window in the search of ultra-light
ALP field, in fact we expect axions to have a small enough mass not to oscillate until the
last scattering epoch.3 Otherwise, if the field rapidly oscillate during the photon decoupling
epoch, its effective background value during this epoch is an average over oscillations and
gets suppressed; in this case, as shown in (3.36), what mainly contributes to birefringence
angle is the ALP field value today, and hence the isotropic birefringence is significantly
suppressed [17].

2
Early dark energy is a possible solution to the Hubble tension problem based on a dynamical dark

energy field that can be a scalar field [63].
3
The dynamics of a free scalar field in FLRW predicts that the field starts oscillate when m ⇠ H, we

will justify this claim in section 4.4.
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Figure 3.2: Parameter space for the axion-photon coupling g�� as a function of the axion mass m�,

assuming ALPs are dark matter. Allowed values are below the curves, where the allowed region

is restricted to larger masses and smaller coupling constants, i.e. toward the bottom right of the

figure. The blue line is the constraint found in [58] from which we have taken the figure; a smoothed

approximation is shown in cyan color. The results of the same analysis performed to BK-XII are

shown in purple and magenta. The orange dot-dashed and dotted lines show the constraints that

would be achieved if the rotation amplitude were constrained to 0.1 deg and 0.01 deg, respectively.

The green solid line shows the constraint set by Fedderke et al. [57] from the washout effect in

Planck power spectra. The dashed green line shows the cosmic-variance limit for the washout effect.

The dashed grey horizontal line shows the limit from the lack of a gamma-ray excess from SN1987A

[61]. The solid grey horizontal line is the limit set by the CAST experiment [47]. The dotted grey

vertical line is a constraint on the minimum axion mass (with axion as fuzzy dark matter) from

observations of small-scale structure in the Lyman-↵ forest [62]. The figure (and almost all of the

caption) is taken from [58].



Chapter 4

Reformulation of ModMax

Lagrangian

We have seen how a CS coupling in the Maxwell’s theory can produce a rotation of the
polarization plane. What happens if we consider a NED theory coupled to external fields?
Refs. [21],[22] show a procedure of building a general Lagrangian of electromagnetism
coupled to a scalar and a pseudoscalar field. The authors of those papers have called the
resulting theory as nonlinear axion-dilaton electrodynamics. Surprisingly the ModMax
Lagrangian has similarities with this general theory.

4.1 ModMax and other fields

The idea of the nonlinear axion-dilaton electrodynamics in 4-dimension is to start from
the building blocks of a Lorentz-invariant NED, S and P , and couple them to new fields.
The electromagnetic field can be coupled to a scalar field ' in a easy way through a term
I = f(')S where the function f(') depends on the model; this term is linear in S and
may be nonlinear in the scalar field (depending on f). Theories with L = L (I) have
been denoted as dilaton electrodynamics (see e.g. [64–66]). To add also a pseudoscalar
field �, the easiest term to introduce is a CS coupling �P , which can be generalized to
J = g(�)P where g(�) is a function depending on the model. Electromagnetic theories
having pseudoscalar fields are called axion electrodynamics [67–69].

A unification of the dilaton and axion electrodynaimcs can be described by a Lagrangian
which is a function of the four invariants S, P, I and J . This unification is a trend
started some decades ago when people tried to unify the Maxwell-dilaton theory and axion
electrodynamics [70–72], and then extended the procedure to formulate nonlinear versions
of this unified theory [28, 73–75].

Using the spirit of Occam’s razor concept, as done in [21], one can define the generalized
invariant I = I(S, P, I, J) and build a nonlinear axion-dilaton electrodynamics having a
Lagrangian L = L (I). In [21], the authors have used the internal symmetry of classical
electrodynamics to motivate the following proposal for I:

I = S cos�+ P sin� , (4.1)

where �(x, t) is a pseudoscalar field. They argued that a single field is sufficient to mimic
both axion and dilaton contributions into I because:

1. using trigonometric functions the theory will be invariant under the discrete symmetry
�! �+ 2⇡n, where n is an integer, as required for axion electrodynamics;

43
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2. the cosine is an even function of �, so S cos� can be interpreted as a dilaton-like
coupling to the electromagnetic field;

3. the sine is an odd function and so P sin� is a true invariant, it describes a nonlinear
photon-axion interaction.

Finally, it is reasonable to assume that for small I the Lagragian tends to L (I) ! I, so
that for �! 0 one recovers the classical Lagrangian of axion electrodynamics: L = S+�P .
at first order in �.

ModMax theory can be reformulated in a form similar to the axion-dilaton electrody-
namics. In [20] it was proposed a Lagrangian density classically equivalent to ModMax
obtained through the tool of auxiliary fields. The aim of the reformulation was to take out
the square root in (1.96). The reformulated Lagrangian density is:

L = cosh �S + sinh �(S 1 + P 2)�
1

2
⇢2
�
 2
1 +  2

2 � 1
�
, (4.2)

where  1, 2 and ⇢ are three auxiliary scalar fields. The equivalence of this Lagrangian
with (1.96) is explicit computing the Eulero-Lagrange EoM for the auxiliary fields:

sinh �S = ⇢2 1 , (4.3a)
sinh �P = ⇢2 2 , (4.3b)

⇢
�
 2
1 +  2

2 � 1
�
= 0 . (4.3c)

For ⇢ = 0, equations (4.3a), (4.3b) implies S = P = 0: the null configuration. In this
case the Lagrangian density reduces to the BB Lagrangian density.

In the case of ⇢ 6= 0, we insert equations (4.3a), (4.3b) into the Lagrangian density
obtaining:

L = cosh �S +
1

2

�
⇢�2 sinh2 �

�
S2 + P 2

�
+ ⇢2

�
(4.4)

and into the EoM for ⇢ (4.3c) finding:

⇢4 = sinh2 �
�
S2 + P 2

�
. (4.5)

Substituting this back into equation (4.4) one gets the original ModMax Lagrangian:

LMM = cosh �S + sinh �
p
S2 + P 2 (4.6)

Using the square of ⇢ into equation (4.2) ensures that equation (4.5) has the only positive
solution for ⇢2, assuming � > 0.

An alternative solution for equation (4.3c) is given by  1 = cos� and  2 = sin�, where
� is a single auxiliary field. Substituting these solutions into (4.2) one finds:

L = S cosh � + sinh �(S cos�+ P sin�) . (4.7)

To go back to the original ModMax Lagrangian, one computes the EoM for � and substitutes
it into (4.7). The formulation (4.7) is interesting and it will be the building block of the
work we are going to present in the next pages.

Based on its derivation, (4.7) is an equivalent, classical reformulation of ModMax
Lagrangian, where � is an auxiliary pseudoscalar field. The parenthesis in (4.7) are
equivalent to the invariant I introduced in [21, 22]; the difference is that in an axion-dilaton
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electrodynamics the fields are dynamical. Therefore let us promote the auxiliary field �
to be an external pseudoscalar field and look what are the consequences. Doing so, we
assume that ModMax might be an effective field theory originating from the �-parametrized
axion-dilaton electrodynamics theory (4.7), with the nonlinearity features of ModMax being
symptoms of the axion-dilaton-photon coupling.

The invariant I of [21, 22] was built having in mind the SO(2) duality of Maxwell.
Thus we also expect similarities between (4.7) and other duality-invariant electrodynamics.

4.1.1 Duality symmetry and other fields

As a refresh, we recall that duality in electromagnetism was first observed in the Maxwell
theory as the invariance of the EoM under a SO(2) rotation of the doublet (Fµ⌫ , F̃µ⌫) [2].

Let us consider the linearized-ModMax Lagrangian density (4.7) and apply the following
field redefinition:

a = � sinh � sin� , (4.8a)

e�� = cosh � + sinh � cos� . (4.8b)

Then the Lagrangian (4.7) becomes:

L = e��S � aP . (4.9)

This is formally the Lagrangian density of the Maxwell’s theory coupled to an axion a and
a dilaton � [20]. In such a theory the fields a,� represent two degrees of freedom, thus the
redefinition of (4.8) would be correct if we promote also � to be a dynamical scalar field
� = �(t, ~x), in addition to the promotion done for the field �.

The axion-dilaton Maxwell electrodynamics (4.9) is interesting because its EoM are
SL(2,R) invariant rather than SO(2). This generalization is possible thanks to the coupling
with the scalar field � and the pseudoscalar field a. In [76] the authors found that the
SL(2,R) duality-invariance is achieved, at the level of the EoM, for the action

S =

Z
d4x

p
�g


R� 2(@�)2 � 1

2
e4�(@a)2 � e�2�F 2 � aF F̃

�
, (4.10)

which includes the kinetic terms for the axion and dilaton:

Lkin-ax-dil = �1

2
(r�)2 � 1

2
e2�(ra)2 . (4.11)

Kinetic terms are themselves SL(2,R) invariant. The Ricci scalar is not a problem as long
the SL(2,R) transformation of the electromagnetic and scalar fields does not produces a
variation of the stress-energy tensor since it would be a source of variations of the metric.
It can be shown that the stress-energy tensor derived from (4.10) is SL(2,R) invariant [74,
76].

From these results we can see an analogy between the ModMax reformulation (4.7) and
dilaton-axion Maxwell electrodynamics from the point of view of the duality symmetry.
Dilaton-axion Maxwell electrodynamics has SL(2,R)-invariant EoM and this symmetry
holds also for the theory (4.7) since it is preserved by the field redefinition (4.8), as long as
� is a dynamical field. But, in the ModMax theory � is assumed to be a constant and this
breaks SL(2,R) to SO(2).

For the sake of completeness we also introduce the history of the duality symmetry
for NED theories. Few years after the result of [76], the SO(2) duality was extended to
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SL(2,R) for NED theories by Gibbons & Rasheed [74].1 The main result of their work
is that, given a NED theory with Lagrangian density LNED = LNED(g, F ) with SO(2)
duality EoM (here g indicates the metric and F the field strength of a gauge vector field),
one can build a new theory with Lagrangian density:

L = R� 1

2
(r�)2 � 1

2
e2�(ra)2 � aP + LNED

⇣
g, e�

1
2�F

⌘
+ const (4.12)

and the new theory has SL(2,R) duality EoM. Here, as before, � is a scalar field and a is a
pseudoscalar field. Notice that the NED Lagrangian LNED has a rescaled Faraday tensor
as an argument: Fµ⌫ ! e�

1
2�Fµ⌫ .

As one would expect the two results (4.10) and (4.12) are analogous in form.
Our discussion concerns a duality at the level of the EoM. Having a theory duality-

invariant at the level of the action is nontrivial. SL(2,R) duality-invariant actions for an
electromagnetic theory were constructed e.g. in [75, 77].

On the dilaton field We now give a very introductory comment about dilation in the
context of high-energy physics and extra-dimensional theories, the aim to get an idea about
one possible origin of these degrees of freedom.

In string theory axions and dilatons arise as low-energy degrees of freedom of the string
[64]. The exponential coupling of the dilaton � with a gauge field introduced above appears
in a critical superstring theory in the low energy limit and after reduction from ten to four
space-time dimensions. The effective action contains the following terms [64, 78]:

S �
Z

d4x
p
�g̃ e�2�

h
R+ 4(@�)2 � F 2

i
. (4.13)

The 4-dimensional dilaton field � is defined by a combination of its 10-dimensional counter-
part and the volume of the 6-dimensional compact internal space [64].

The above action is written with respect to the string metric g̃ab (also referred to as the
Jordan frame [78]). If one applies a Weyl transformation gab = e�2�g̃ab at the level of the
action, moving to the so-called Einstein frame, then [78–80]:

S �
Z

d4x
p
�g
h
R� 2(@�)2 � e�2�F 2

i
. (4.14)

If we consider the gauge vector field to be the photon, the term e�2�F 2 defines the
dilaton-Maxwell theory. Thus the exponential coupling of the dilaton has an origin from
compactification of string theories.

4.1.2 The ModMax precursor and its limits

In light of the above discussion, we will work with the “upgraded” ModMax theory with
Lagrangian density (4.7) in which we have introduced a new degree of freedom: the
pseudoscalar field �(t, ~x). Since here we consider � as a physical field, we add its kinetic
term and a potential to the Lagrangian density. Then the (new) theory is described by:

L = S cosh � + sinh �

✓
S cos

✓
�

g

◆
+ P sin

✓
�

g

◆◆
� 1

2
gµ⌫rµ�r⌫�� V (�) . (4.15)

The � parameter still parametrizes the family of ModMax-like theories, with Maxwell
electrodynamics at � = 0. Do note the argument of trigonometric functions in (4.18) must

1
Their work was published some months later their results on the SO(2) duality of a NED theory [28].
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be dimensionless, thus we introduced a rescaled field �/g, where g is a quantity with the
dimension of an energy and so the overall term �/g is dimensionless.

In [20] it was pointed out that the "original" Lagrangian density of ModMax, as stated
in (1.96), predicts a rescaled electric charge by a factor e�� with respect to the one of
Maxwell’s theory. Consequences are, for example, a screening of the Coulomb field of an
electric particle at rest [20],

~E = e�� e

4⇡

~r

r3
, (4.16)

and thus of the Coulomb force. Here e is the electric charge and ~r is the position vector in
space with the particle placed at ~r = 0, r is the modulus.

This difference is a matter of convention on the overall coefficient of ModMax Lagrangian
(1.96), if one rescales it by a factor e�� then the field equations, the charge and Coulomb
law will be the same as in Maxwell’s theory [20]. This tuning on the electric sector is
balanced out by the magnetic sector which acquires a rescaling by e� [20].2 Therefore, we
choose to work with the rescaled ModMax Lagrangian:

LMM = e��
h
cosh �S + sinh �

p
S2 + P 2

i
, (4.17)

then going through the same machinery that furnish us the Lagrangian (4.15), we obtain
its rescaled formulation:

L = e��


S cosh � + sinh �

✓
S cos

✓
�

g

◆
+ P sin

✓
�

g

◆◆�
� 1

2
gµ⌫rµ�r⌫�� V (�) . (4.18)

We call this theory ModMax precursor. Let us now see if there is some interesting limits of
this theory.

Limits of the ModMax precursor Let us consider the electrodynamics part of the
ModMax precursor (4.18). Interesting limits of this theory are achieved by �/g ! 0 and
� ! 0. The former limit should give an electrodynamics theory with polynomial couplings
P�/g, S(�/g)2, . . . because of the expansion of the trigonometric functions. The latter
limit should drive the theory towards axion-dilaton Maxwell electrodynamics since ModMax
parameter � going to zero points to Maxwell but external scalar fields are kept. Finally
taking both limits together we should find the Maxwell’s theory.

In figure 4.1 we sketch these limits approximating up to first order in � and �, namely
neglecting any contribution O(�2, (�/g)2, ��/g). These limits reflect exactly the expecta-
tions. From the figure we can see the role of �: it parametrizes families of electrodynamics
theories and, depending on the value of �/g, the theory shows an axion or an axion-dilaton
behavior. Only for � = 0 Maxwell’s theory is restored.

From figure 4.1 we see the convenience of using the rescaled Lagrangian (4.18): in any
limit the theory reduces to a Lagrangian with the first term that is exactly the Maxwell
Lagrangian plus corrections at first order.

Taking �,�/g ! 0 we see that the theory (4.18) reduces to Maxwell with no corrections
up to first order; so let us see what is the first signature of ModMax going up to second

2
The idea is to fix the coefficients such that the electric sector equal to the Maxwell one and this is

balanced by the magnetic sector which acquires the opposite rescaling. In fact the rescaled theory has a

modified duality-invariance condition, Gµ⌫G̃
µ⌫ = �e�2�Fµ⌫ F̃

µ⌫
, and so the doublet which maintains the

SO(2) duality will be (G̃µ⌫ , e�� F̃µ⌫) instead of (G̃µ⌫ , F̃µ⌫) [20] (notice our formulas are lightly different

with respect to [20] because of we used a different definition for G̃ and the doublet).
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L = e��


S cosh � + sinh �

⇣
S cos �

g + P sin �
g

⌘�

L ⇡ S + e�� sinh(�) P �
g

ModMax precursor ansatz

�-family of axion ED

�
/g

⌧
1

� ! 0

L ⇡ S � �


S �

⇣
S cos �

g + P sin �
g

⌘�

�
/g

⌧
1

L ⇡ S
� ! 0

Maxwell ED

axion-dilaton ED

Figure 4.1: Relavant limits of the ModMax precursor theory (4.18). Lagrangians are expanded up

to first order in � and �/g, neglecting O(�2, (�/g)2, ��/g).

order:

L ⇡
✓
1� � +

�2

2

◆"✓
1 +

�2

2

◆
S + �

 
S

 
1� 1

2

✓
�

g

◆2
!
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�

g

!#
(4.19a)

⇡
✓
1� � +

�2

2

◆✓
1 + � +

�2

2

◆
S + �

�

g
P

�
(4.19b)

⇡ S

✓
1� � +

�2

2

◆✓
1 + � +

�2

2

◆
+ �

�

g
P (4.19c)

⇡ S + �P
�

g
. (4.19d)

This is exactly the Lagrangian of the Maxwell-CS theory, that has usually the following
Lagrangian density:

LM-CS = S +
↵

2f
P� . (4.20)

We conclude that the ModMax precursor theory (4.18) mimics the Maxwell-CS electrody-
namics in the limits of small � and �/g. In these limits:

�

g
⇠ ↵

2f
. (4.21)

In Section 4.3 we will study the cosmic birefringence in the theory (4.18) make some
comments about the well-known results of the cosmic birefringence in the Maxwell-CS
theory.

4.2 Stress-energy tensor of the theory

Let us compute the stress-energy tensor of the theory (4.18). We can identify three
Lagrangian densities: the Maxwell Lagrangian times a function of the ModMax parameter,
an interaction Lagrangian and a free-scalar field Lagrangian:

L = L�M + Lint + L� , (4.22)
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where

L�M = e�� cosh �S , (4.23)

Lint = e�� sinh �

✓
S cos

✓
�

g

◆
+ P sin

✓
�

g

◆◆
, (4.24)

L� = �1

2
gµ⌫rµ�r⌫�� V (�) . (4.25)

From the definition of the stress-energy tensor we expect that the total stress-energy tensor
of the theory will be the sum of three terms, one per each Lagrangian density:

Tµ⌫ ⌘ � 2p
�g

�S
�gµ⌫

= T (�M)
µ⌫ + T (int)

µ⌫ + T (�)
µ⌫ (4.26a)

Let us compute each stress-energy tensor individually:

T (�M)
µ⌫ = e�� cosh �

✓
� 2p

�g

◆
�

�gµ⌫

Z
d4x

p
�gS (4.27a)

= e�� cosh �

✓
� 2p

�g

◆Z
d4x


�
p
�g

�gµ⌫
S +

p
�g

�

�gµ⌫

✓
�1

4
g↵�g�⇢F↵�F�⇢

◆�
(4.27b)

= e�� cosh �

✓
� 2p

�g

◆Z
d4x


�
p
�g

2
gµ⌫S +

p
�g

✓
�1

2
Fµ

↵F⌫↵

◆�
�(x� y)

(4.27c)
= e�� cosh �(gµ⌫S + Fµ

↵F↵⌫) (4.27d)

that is the Maxwell’s stress-energy tensor in curved spacetime with a factor cosh �, which
keep tracks of the ModMax model. The stress-energy tensor coming from the interaction
part of the Lagrangian density is:

T (int)
µ⌫ = � 2p

�g

�

�gµ⌫

Z
d4x

p
�ge�� sinh �

✓
S cos

✓
�

g

◆
+ P sin

✓
�

g

◆◆
(4.28a)

= �2e�� sinh �p
�g

Z
d4x

"
�
p
�g

�gµ⌫

✓
S cos

✓
�

g

◆
+ P sin

✓
�

g

◆◆

+
p
�g

✓
�S

�gµ⌫
cos

✓
�

g

◆
+

�P

�gµ⌫
sin

✓
�

g

◆◆#
. (4.28b)

Let us evaluate the variation of the Lorentz-invariant P = �F̃↵�F↵�/4. We recall that in a
general spacetime with metric gµ⌫ , the Levi-Civita tenosr is ✏µ⌫⇢� =

p
�g"µ⌫⇢� with "µ⌫⇢�

the Levi-Civita symbol, i.e. the total antisymmetric object so that "0123 = 1. Thus:

�P

�gµ⌫
= �1

4

�

�gµ⌫


1

2

"↵�⇢�p
�g

F⇢�F↵�

�
(4.29a)

= �1

4

�(
p
�g)�1

�gµ⌫


1

2
"↵�⇢�F⇢�F↵�

�
(4.29b)

= �1

4

✓
� 1

2
p
�g

◆
gµ⌫"

↵�⇢�F⇢�F↵��(x� y) (4.29c)

=
1

2
gµ⌫P �(x� y) . (4.29d)
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The stress-energy tensor from the interaction part reads:

T (int)
µ⌫ = �2e�� sinh �p

�g

Z
d4x

"
�

p
�g

2
gµ⌫

✓
S cos

✓
�

g

◆
+ P sin

✓
�

g

◆◆
(4.30a)

+
p
�g

✓
�1

2
Fµ

↵F⌫↵ cos

✓
�

g

◆
+

1

2
gµ⌫P sin

✓
�

g

◆◆#
�(x� y) (4.30b)

= e�� sinh �


gµ⌫

✓
S cos

✓
�

g

◆
+ P sin

✓
�

g

◆◆
+ Fµ

↵F⌫↵ cos

✓
�

g

◆
� gµ⌫P sin

✓
�

g

◆�

(4.30c)

= e�� sinh �


gµ⌫S cos

✓
�

g

◆
+ Fµ

↵F⌫↵ cos

✓
�

g

◆�
(4.30d)

= e�� sinh �[gµ⌫S + Fµ
↵F⌫↵] cos

✓
�

g

◆
. (4.30e)

The last contribution is

T (�)
µ⌫ = � 2p

�g

�

�gµ⌫

Z
d4x

p
�g

✓
�1

2
g↵�@↵�@��� V (�)

◆
(4.31a)

= � 2p
�g

Z
d4x


�
p
�g

�gµ⌫

✓
�1

2
g↵�@↵�@��� V (�)

◆
� 1

2

p
�g

�g↵�

�gµ⌫
@↵�@��

�
(4.31b)

= @µ�@⌫�� gµ⌫

✓
1

2
g↵�@↵�@��+ V (�)

◆
, (4.31c)

where in the second line we have assumed that the potential does not depend on the metric.
The result is the stress-energy tensor of a scalar field in a spacetime with metric gµ⌫ .

Along these computations we have used the well-known results:

�
p
�g

�gµ⌫
=
@
p
�g

@g↵�
�g↵�

�gµ⌫
= �

p
�g

2
gµ⌫�(x� y) , (4.32)

�g⇢�(x)

�gµ⌫(y)
= �⇢µ�

�
⌫�(x� y) , (4.33)

the first two deltas are Kronecker type, while the third one is a 4-dimensional Dirac delta.
Putting all together, the stress-energy tensor for the theory (4.18) reads:3

Tµ⌫ =e�� cosh �(gµ⌫S � Fµ
↵F↵⌫) (4.35a)

+e�� sinh �
⇣
gµ⌫S + Fµ

↵F⌫↵

⌘
cos

✓
�

g

◆
(4.35b)

+@µ�@⌫�� gµ⌫

✓
1

2
g↵�@↵�@��+ V (�)

◆
. (4.35c)

3
Same result can be obtained using the definition

Tµ⌫ ⌘ �
2

p
�g

�
p
�gL

�gµ⌫
(4.34)

of the stress-energy tensor. This formulation does not require to pass through the integral.
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4.3 ModMax cosmic birefringence

The theory (4.18) is linear in the Lorentz-invariant electromagnetic scalars S and P and
they are coupled to an ALP, then we saw that it is able to mimic the Maxwell-CS theory.
These are hints that (4.18) might generate cosmic birefringence. We investigate this scenario
with the same prescription used to derive � for the Maxwell-CS theory.

Let us consider a flat-FLRW spacetime and start computing EoM for the 4vector Aµ:

0 =
@L

@A⌫
�rµ


@L

@(rµA⌫)

�
(4.36a)

= �rµ


cosh �

@S

@F↵�

@F↵�

@(rµA⌫)
+ sinh �

✓
@S

@F↵�

@F↵�

@(rµA⌫)
cos

✓
�

g

◆
+

@P

@F↵�

@F↵�

@(rµA⌫)
sin

✓
�

g

◆◆�

(4.36b)

= �rµ


� cosh �Fµ⌫ + sinh �

✓
�Fµ⌫ cos

✓
�

g

◆
� F̃µ⌫ sin

✓
�

g

◆◆�
, (4.36c)

then differentiating:

0 =


cosh � + sinh � cos

✓
�

g

◆�
rµF

µ⌫ + sinh �

✓
rµ cos

✓
�

g

◆◆
Fµ⌫ +

✓
rµ sin

✓
�

g

◆◆
F̃µ⌫

�
,

(4.37)

where we used the Bianchi identity rµF̃µ⌫ = 0. Let us now define the following 4-vectors:

Cµ ⌘ rµ cos

✓
�

g

◆
, (4.38a)

Sµ ⌘ rµ sin

✓
�

g

◆
, (4.38b)

and the following scalar quantity:

D(�,�/g) ⌘ cosh � + sinh � cos

✓
�

g

◆
. (4.39)

Then the EoM reduces to the more readable form:

D(�,�/g)rµF
µ⌫ = � sinh �

h
CµF

µ⌫ + SµF̃
µ⌫
i
. (4.40)

As done for the Maxwell-CS theory, let us use the Coulomb gauge rµAµ = 0 together
with A0 = 0, and consider a pseudoscalar field � = �(⌘) which depends only on the
conformal time. The 4vectors Cµ, Sµ have only the zeroth component different from zero.
The EoM of the 4potential reads:

D(�,�/g)⇤ ~A = sinh �
h
C0

~A0 � 2S0
~r⇥ ~A

i
, (4.41)

where ⇤ ⌘ rµrµ. Here we have a new contribution C0
~A0 with respect to the Maxwell-CS

theory due to the dilaton-like coupling, some coefficients that depend on � coming from
the ModMax theory and the function D(�,�/g).
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Consistency check Let us make a comparison between EoM (4.40) and the Maxwell-CS
EoM (3.7), with no gauge fixing chosen yet. First of all � must be a dynamical (i.e.
non-constant) field, otherwise EoM reduces to Maxwell equations. When the field � is
small, EoM (4.40) reduces to:

e�rµF
µ⌫ = � sinh �rµ

✓
�

g

◆
F̃µ⌫ (4.42)

that is a ModMax (i.e. �-dependent) generalization of standard Maxwell-axion electro-
dynamics rµFµ⌫ = �rµaF̃µ⌫ where a is the axion field [81]. Now, if we take the limit
�/g ⌧ 1 we find the EoM of the Maxwell-CS theory:

(1 + �)rµF
µ⌫ = ��rµ

✓
�

g

◆
F̃µ⌫ . (4.43)

For � = 0 we get the free-Maxwell equations, no �-photon coupling survives as expected.

Now, let us use the same decomposition introduced in section 3, namely we consider a
k-mode of the 4potential of the form:

~Ak(⌘, ~x) = ~Ak(⌘) exp
⇣
i~k · ~x

⌘
. (4.44)

Thus, EoM in Fourier space reads:

D(�,�/g)
h
~A00 + k2 ~A

i
= � sinh �

h
C0

~A0 � 2iS0
~k ⇥ ~A

i
. (4.45)

It takes the same form as in Minkowski spacetime because of the 4potential is massless.
Assume a propagation along z-axis and let us forget the pedix k, even if we are still

working with a single mode. Recall we are in the Coulomb gauge, thus components of ~A
different from zero are Ax,Ay only. So the EoM by components is:

D(�,�/g)
⇥
A00

x + k2Ax
⇤
= � sinh �

⇥
C0A0

x � 2iS0(�kAy)
⇤
, (4.46a)

D(�,�/g)
⇥
A00

y + k2Ay
⇤
= � sinh �

⇥
C0A0

y � 2iS0(kAx)
⇤
. (4.46b)

As done before, we introduce the helicity states A+,A�. In this new basis, the system
reads:

D(�,�/g)
⇥
A00

+ + k2A+
⇤
+ sinh �C0A0

+ � 2 sinh �S0kA+ = 0 , (4.47a)
D(�,�/g)

⇥
A00

� + k2A�
⇤
+ sinh �C0A0

� + 2 sinh �S0kA� = 0 . (4.47b)

that we write in the following compact form:

D(�,�/g)
⇥
A00

± + k2A±
⇤
+ sinh �C0A0

± ⌥ 2 sinh �S0kA± = 0 . (4.48)

Equation (4.48) is the EoM for the k-mode of the Fourier decomposition of the 4potential
written with helicity states in the Coulomb gauge for the ModMax precursor theory (4.18).

4.3.1 Solution with constant frequency

A linear polarized plane-wave of the form

A±(⌘) = C± exp[i(�!⌘ + �±)] (4.49)
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with constant pulsation !± = const is a simple solution of the EoM (4.48). To find the
pulsation we insert our ansatz into the EoM. From now on we just write D(�,�) as D to
simplify the notation:

0 = D
⇥
(�i!)2A± + k2A±

⇤
+ sinh �C0(�i!)A± ⌥ 2 sinh �S0kA± (4.50a)

=
⇥
�!2D � i! sinh �C0 ⌥ 2k sinh �S0 + k2D

⇤
A± . (4.50b)

Indeed the pulsation ! must solve:

!2D + i! sinh �C0 ± 2k sinh �S0 � k2D = 0 . (4.51)

Solutions to this equation are complex numbers and this is a consequence of the presence
of a first-derivative in the EoM. We consider an ansatz ! = A+ iB where A,B are real
functions. To simplify notations we use the following definitions:

sinh �C0 ⌘ C , (4.52)
2 sinh �S0 ⌘ Z . (4.53)

Then the equation for ! reads:

0 = D(A+ iB)2 + iC(A+ iB)± Zk �Dk2 (4.54a)
= D(A2 + 2iAB �B2) + iCA� CB ± Zk �Dk2 (4.54b)
= (DA2 �DB2 � CB ± Zk �Dk2) + i(2DAB + CA) . (4.54c)

The equation is satisfied when both the real and imaginary contributions are zero:

2DAB + CA = 0 , (4.55)
DA2 �DB2 � CB ± Zk �Dk2 = 0 . (4.56)

Solutions of the system are:

B = � C

2D
, (4.57)

A2 = k2 ⌥ Z

D
k � C2

4D2
. (4.58)

Let us take the square root and consider only the plus solution for A2:

A = k

"
1⌥ 1

D

✓
Z

k

◆
� 1

4D2

✓
C

k

◆2
#1/2

⇡ k

"
1⌥ 1

2D

✓
Z

k

◆
� 1

8D2

✓
C

k

◆2
#
, (4.59)

where we have approximated the square root since Z/k ⌧ 1 and C/k ⌧ 1. The reason is
the same exposed in [16]: the conformal time derivative present in Z and C is of the order
of the visible universe while k�1 is of the order of the photon wavelength.

Putting all together we obtain that the pulsation of the states A+ and A� is:

!± = A+ iB = k

"
1⌥ 1

2D

✓
Z

k

◆
� 1

8D2

✓
C

k

◆2
#
� i

C

2D
. (4.60)
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Recalling how we defined C,D,Z, we have

!± =k

"
1⌥ 1

2(cosh � + sinh � cos(�/g))

✓
2 sinh �r0 sin(�/g)

k

◆

� 1

8(cosh � + sinh � cos(�/g))2

✓
sinh �r0 cos(�/g)

k

◆2
#

� i
sinh �r0 cos(�/g)

2(cosh � + sinh � cos(�/g))
. (4.61)

These are the pulsations for a linear polarized plane-wave Aµ written in the + and �
polarization basis. Each mode k has a different pulsation !+ and !� respectively, and as a
consequence the condition for cosmic birefringence is achieved.

The imaginary part �iC/(2D) corresponds to an exponential modulation of the ampli-
tude of the 4potential. Notice the denominator D is always positive by definition, since
� > 0 and cosh � � 1 and cosh � � sinh �; the numerator will determine the sign of the
exponential, i.e. the dynamics of �.

This contribution is due to the first-derivative in the EoM, which comes from the
dilaton-like photon coupling. This does not happen for the axion-photon coupling because
of the antisymmetric nature of Fµ⌫ (i.e. Bianchi identity). It is interesting to notice that
the imaginary part does not depend on the wavelength ⇠ k�1.

If we observe the result (4.61) we see that the only difference between the pulsation
of the + and � polarization state comes from the ± sign in front of the second term of
(4.61). It is due to the axion-photon coupling (in fact it is / r0 sin(�/g)) that contains
the Levi-Civita tensor ✏µ⌫⇢� into P , it mixes cartesian components Ai in an antisymmetric
way using a vector product, as shown in equation (4.45), and the result is the ⌥ sign. On
the other hand the dilaton-like photon coupling does not distinguish between + and �
polarization.

To conclude, we recall that equation (4.61) holds with the stringent assumption of
!± = const. This assumption binds the dynamics of � since it constraints its first derivative
making the ansatz of a plane wave with constant frequency unrealistic.

Consistency check It is interesting to expand the pulsation !± of equation (4.61) in the
cases of small �/g and �, up to first order for example. Assuming a small field �/g in the
Lagrangian density (4.7) means to consider a theory with a linear axion-photon interaction
P sin(�/g) ⇠ P�/g and a negligible dilaton-like photon interaction S cos(�/g) ⇠ S. In this
case the pulsation (4.61) reads:

!± ⇡ k


1⌥ 1

2 exp(2�)

✓
2
�0

g

sinh �

k

◆�
, (4.62)

where r0 sin(�/g) ⇠ @⌘(�/g) ⌘ �0/g and r0 cos(�/g) ⇠ 0 in our expansion. It is easy to
see that when � = 0 Maxwell dispersion relation ! = k is restored, as expected.

In the extreme limit of no pseudoscalar field, namely � = 0, we find the usual dispersion
relation !2

± = k2.

We now compute the phase and group velocity from equation (4.61). The phase velocity
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is:

vp,± ⌘ !±
k

=

"
1⌥ 1

2(cosh � + sinh � cos(�/g))

✓
2 sinh �r0 sin(�/g)

k

◆

� 1

8(cosh � + sinh � cos(�/g))2

✓
sinh �r0 cos(�/g)

k

◆2
#

� i

k

sinh �r0 cos(�/g)

2(cosh � + sinh � cos(�/g))
, (4.63)

where a complex part was expected because of !± 2 C. However, the imaginary part of the
pulsation does not depend on k and so we foresee a real group velocity. Computing it:

vg,± ⌘ d!±
dk

= 1 +
1

8(cosh � + sinh � cos(�/g))2

✓
sinh �r0 cos(�/g)

k

◆2

. (4.64)

Let us now make a comment regarding the comparison between the group velocity
(4.64), which holds for the ModMax precursor theory, and the group velocity (3.31) that
we have computed from the Maxwell-CS theory. In the Maxwell-CS theory we had to
expand the dispersion relation up to second order in �0 to find the first signature from
the axion in the group velocity. Now, in the ModMax precursor theory, we have found a
group velocity deriving the pulsation (4.61) that was obtained expanding up to first order
in �0 the dispersion relation: into (4.64) we used the ansatz !± = A+ iB where A is an
expansion up to first order.

The reason of this difference is the following: in the Maxwell-CS theory the first non-
trivial contribution to the group velocity comes from the axion and it is of second order; in
the ModMax precursor theory the first non-trivial contribution comes from the dilaton and
it is of first order. If we had expanded up to second order (4.61), we would have seen an
axion correction too.

In addition, the group velocity (4.64) up to first order is bigger than 1.

4.3.2 Solution with slowly varying frequency

Up to now we have considered linearly polarized plane wave solutions of the EoM (4.48),

D
⇥
A00

± + k2A±
⇤
+ sinh �C0A0

± ⌥ 2 sinh �S0kA± = 0 , (4.65)

with a pulsation !± = const. The aim of this section is to give a more physical ansatz
allowing a slowly-varying frequency. We will look for an approximated solution as done
in the Maxwell-CS theory. Firstly, let us use the definitions (4.52) in order to ease the
notation:

sinh �C0 ⌘ C , (4.66)
2 sinh �S0 ⌘ Z . (4.67)

Then the differential equation (4.48) reads:

D
⇥
A00

± + k2A±
⇤
+ CA0

± ⌥ ZkA± = 0 . (4.68)

This equation is of the form:

y00 + f(⌘)y0 + g±(⌘)y = 0 , (4.69)
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where:

y = A± , (4.70a)
f = C/D , (4.70b)

g± = k2 ⌥ kZ/D . (4.70c)

An approximated solution for this equation is suggested in [82]: The idea is to assume that

y = v(⌘)p(⌘) , (4.71)

and to separate the differential equation for y into two equations for v and p. In fact,
inserting y = vp into the differential equations one obtains:

0 =
⇥
v0p+ vp0

⇤0
+ f

⇥
v0p+ vp0

⇤
+ g±vp (4.72a)

= v00p+ v0
⇥
2p0 + pf

⇤
+ v
⇥
p00 + fp0 + g±p

⇤
(4.72b)

and, under the assumption that p 6= 0, we can divide by it finding:

0 = v00 + v0

2
p0

p
+ f

�
+ v


p00

p
+ f

p0

p
+ g±

�
. (4.73)

If the function p is such that the first square bracket is set to zero, equation (4.73) reduces
to a wave equation v00 + !2

±v = 0, where

!2
± ⌘ p00

p
+ f

p0

p
+ g± , (4.74)

that has the form needed to apply the WKB approximation. In our case the frequency
depends on g± and so it also carries the index ±.4

Going step by step, we first have to find a solution of:

2
p0

p
+ f = 0 , (4.75)

which is

p = exp


�1

2

Z
f(⌘) d⌘

�
. (4.76)

Now we can assume that
��!0

±
�� ⌧ !2

± and use the WKB approximation considering an
approximated solution of the form:

v± ⇡ (2!±)
�1/2 exp


�i

Z
d⌘ !± + i�±

�
. (4.77)

We can rewrite the frequency using (4.75) to substitute p0 and p00:

!2
± =

(�pf/2)0

p
+

(�pf/2)f

p
+ g± = �1

4
f2 + f 0 + g± . (4.78)

4
We point out that (4.69) is the equation of a dampled harmonic oscillator with time-dependent friction

and time-dependent frequency. The assumption we took allows us to find a solution that is consistent with

the ansatz generally proposed for the cosmic birefringence in Maxwell-CS [16], however a general solution

of (4.69) can be found.
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Putting all together, a solution of the differential equation (4.69) is:

y± = v±p ⇡ (2!±)
�1/2 exp


�i

Z
d⌘ !± + i�±

�
exp


�1

2

Z
f(⌘) d⌘

�
, (4.79)

and it holds under the assumptions that the integral of f does not diverge and !± changes
slowly in time.

Let us use this method to solve the ModMax EoM (4.48). The solution will be

A± ⇡ (2!±)
�1/2 exp


�i

Z
d⌘ !± + i�±

�
exp


�1

2

Z
C

D
d⌘

�
, (4.80)

with a pulsation:

!2
± = �1

4

✓
C

D

◆2

+

✓
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✓
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(4.81a)

= k2
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1⌥ Z

kD

◆
� 1

4

✓
C

kD

◆2

+

✓
C 0D � CD0

k2D2

◆#
, (4.81b)

where we used the definitions (4.70). We take the square root of the pulsation and expand
recalling that d⌘ ⇠ visible universe and k�1 ⇠ photon wavelength, so k�1/ d⌘ ⌧ 1. This
means:

Z

k
,
C

k
,
C 0

k2
,
CD0

k2
⌧ 1 . (4.82)

So we are authorized to expand the square root. Then the pulsation reads:

!± ⇡ k

"
1⌥ 1

2D

✓
Z

k

◆
� 1

8D2

✓
C

k

◆2

+
1

2D
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C 0
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� 1
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✓
D0C

k2

◆#
. (4.83)

Substituting the definitions of C,D,Z in (4.80) and (4.83) (and computing the conformal
time derivatives) we get:

A± ⇡ (2!±)
�1/2 exp


�i

Z
d⌘ !± + i�±

�
exp

Z ✓
�sinh �r0 cos(�/g)

2(cosh � + sinh �)

◆
d⌘

�
, (4.84)

with a pulsation:

!± = k

"
1⌥ 1

2(cosh � + sinh � cos(�/g))

✓
2 sinh �r0 sin(�/g)

k

◆

� 1

8(cosh � + sinh � cos(�/g))2

✓
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k

◆2

+
1

2(cosh � + sinh � cos(�/g))

✓
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0 cos(�/g)

k2

◆

� 1

2(cosh � + sinh � cos(�/g))2

 
sinh �(r0 cos(�/g))

2

k2

!#
. (4.85)

This is our result for the pulsation of a linear-polarized plane wave for the ModMax
reformulated theory (4.7) in the WKB approximation.
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Consistency check Notice the first derivative in the EoM (4.48) gives arise to the p
modulation of the wave solution y±, i.e. the dilaton-photon coupling implies a correction to
the solution for an axion-photon theory. The modulation is related to the amplitude of the
solution which is multiplied by an exponential factor:

p = exp


�1

2

Z
C

D
d⌘

�
= exp

Z ✓
�sinh �r0 cos(�/g)

2(cosh � + sinh �)

◆
d⌘

�
. (4.86)

The integrand is exactly the imaginary part of the pulsation (4.61) that we found for
a canonical plane-wave solution with !± = const (an imaginary pulsation implies an
exponential modulation of the amplitude). However now we integrate over conformal time
because we assumed !0

± small but different from zero.
The dilaton-like photon coupling S cos(�/g) modifies the pulsation !2

± adding all terms
proportional to C, however these terms do not track the ± distinction: the dilaton-like
coupling does not distinguish the photon polarizations. The first term proportional to C of
(4.85) is:

� k

8D2

✓
C

k

◆2

= � k

8(cosh � + sinh � cos(�/g))2

✓
sinh �r0 cos(�/g)

k

◆2

(4.87)

that is exactly the third term of (4.61). The fourth and fifth term of (4.85) are new features
coming from the dilaton-like coupling, in fact they are respectively proportional to:

4th term / r2
0 cos

✓
�

g

◆
= �

"✓
�0

g

◆2

cos

✓
�

g

◆
+
�00

g
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✓
�
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◆#
, (4.88)

5th term /

r0 cos

✓
�

g

◆�2
=

✓
�0

g

◆2

sin2
✓
�

g

◆
, (4.89)

and both come from the C term.
As expected, in the limit of !± ! const (which implies a slow dynamical field �) we can

discard O((�0/g)2) and O(�00/g) terms and pulsation (4.85) tends to (4.61). If we further
assume �/g ⌧ 1 and � ⌧ 1 we recover the Maxwell theory.

4.3.3 Computing the birefringence angle

We have found the time-dependent contribution to the k-mode of the 4potential, Ak(⌘), in
an axion dilaton-like photon theory with a FLRW metric: it is given by equation (4.84).
Then the full k-mode is:

A±(⌘, ~x) = A±(⌘) exp
⇣
i~k · ~x

⌘
. (4.90)

Our purpose now is to compute the electric field and then the birefringence angle predicted
by this theory, according to definition (2.87). So let us proceed computing the electric field:

E± = r0A± / exp


�i

Z
d⌘ !± + i�±

�
, (4.91)

where we are neglecting any term contributing to the amplitude since it does not contribute
to the birefringence angle. The electric field in this theory is equivalent in form to the
electric field of a Maxwell-CS theory, indeed the birefringence angle will be also equal in
form:

� = �1

2

Z
d⌘ (!+ � !�) (4.92)
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setting �+ � �� = 0. The pulsation is defined in equation (4.85). So the birefringence angle
reads:

� =

Z
d⌘

sinh �r0 sin(�/g)

cosh � + sinh � cos(�/g)
. (4.93)

Terms proportional to C do not contribute since the dilaton-like coupling is insensible to +
and � polarizations.

On the generality of our result We never took into account the specific behaviour of
�(⌘). Indeed, what we have found up to now, holds in general for a theory with Lagrangian
density:

L = cosh �S + sinh �(Sf(�) + Ph(�)) . (4.94)

The results that we obtained hold in form with the substitution:

C = sinh �r0f(�) , (4.95)
Z = 2 sinh �r0h(�) . (4.96)

Functions f(�) and h(�) must respect some constraints in order to deal with a physical
theory: f(�) should be an even function of � and h(�) an odd one. In addition they should
reduce to the Maxwell theory in the limits of small � and �.

The generality of our results allow us to make the following claim: since a dilaton-like
coupling Sf(�) does not contribute to the modification of the pulsation of one polarization
mode with respect to the other, it is not a player in the cosmic birefringence phenomenon.
This means that the ALP-photon interaction is the only term one should focus on in
computing the birefringence angle of an electromagnetic theory. The dilaton-like coupling
modifies the amplitude of a photon, and how this may be important for observations is left
for future discussions.

Let us now go on with the computation of the birefringence angle (4.93), deriving the
sine:

� =

Z
d⌘

sinh � cos(�/g)

cosh � + sinh � cos(�/g)

�0

g
(4.97a)

=

Z
d

✓
�

g

◆
sinh � cos(�/g)

cosh � + sinh � cos(�/g)
. (4.97b)

The integral ranges from an initial value �i/g to a final value �0/g, therefore we must know
the dynamics of the field � in order to calculate the birefringence angle.

The integral can be written as follows:

� =

Z
d
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g

◆
tanh � cos(�/g)

1 + tanh � cos(�/g)
(4.98a)
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(4.98b)
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1 + tanh � cos(�/g)
. (4.98c)

The first term is formally equal to birefringence angle that one obtains in a Maxwell-CS
theory; however, while in Maxwell-CS the field is modulated by the coupling ↵/(2f), here
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it is dimensionally normalized by g. Then the magnitude of the first term is “corrected” by
the second term which we expect to be similar to the first since � should be small.

There is an analytic solution for the undetermined integral:
Z

d

✓
�

g

◆
1� 1

1 + tanh � cos(�/g)

�
=
�

g
� 2 cosh(�)arccot


exp(�) cot

✓
�

2g

◆�
+ const .

(4.99)

The procedure to obtain such result uses Weierstrass’ substitutions. So before using solution
(4.99) to evalute the integrand in a range [�i/g,�0/g] we should verify that the Weierstrass’
substitutions are well defined in the domain [83].

Consistency check At the beginning of the chapter we talked about the limits of
ModMax precursor and we found that when � ⌧ 1 and �/g ⌧ 1 we recover the Maxwell-CS
theory up to second order. Let us see whether we recover the usual formulation for the
cosmic birefringence angle,

�CS =
↵

2f

Z
d� , (4.100)

taking these limits into our result (4.98c). We will expand the integrand up to first order
such that the overall integral is of second order because of the measure:
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It is exactly what we hoped to find, thus the ModMax cosmic birefringence angle is consistent
with the limit of its Lagrangian.

4.4 Evolution of the pseudoscalar field

In order to compute the birefringence angle we must know the evolution of the pseudoscalar
field �. We recall the Lagrangian (4.18) we are working with:

L = e��


S cosh � + sinh �

✓
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✓
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g

◆
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� 1
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gµ⌫rµ�r⌫�� V (�) . (4.102)

The dynamics of � will depend on the model chosen, i.e. on the potential. For the time
being we do not specify it and we just compute the EoM as the EL equations:

0 =
@L

@�
�rµ


@L

@(rµ�)

�
. (4.103)
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Using the identity that holds for a generic 4vector V µ:

rµV
µ =

1p
�g

@µ
�p

�gV µ
�
, (4.104)

we rewrite the EL equations as:
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. (4.105)

Then for our Lagrangian density (4.18) they read:
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We are working with a flat-FLRW metric written in conformal coordinates (⌘, ~x), sop
�g = a4, and we keep the assumption to deal with a homogeneous field � = �(⌘). Then

the only non-vanishing coordinate derivatives are with respect to the conformal time. So
EoM reads:
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We recall that prime denotes a derivative with respect to the conformal time. Defining the
conformal Hubble parameter as:

H(⌘) ⌘ a0(⌘)

a(⌘)
(4.108)

and rearranging terms, EoM is:
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= 0 . (4.109)

The time window on which we focus on is from the recombination era up to today,
assuming a simplified universe where all CMB photons were emitted simultaneously at
recombination time. If we woule be more accurate, we should consider the photon emission
with a statistical distribution (called photon visibility function in literature, see e.g. [17,
19]). Such a distribution will peak at the recombination and reionization era, but for the
time being we consider a simultaneous photon emission at the recombination era, with
redshift zrec ⇠ 1090 [50].

An alternative way to write equation (4.109) is changing variable from the conformal
time ⌘ to the scale factor a. The measure changes as follows:
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d⌘ =) d
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. (4.110)

Using it we are able to find how each term of the EoM changes under the change of variable
from ⌘ to a:
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, (4.111)
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and so equation (4.109) parameterized with the scale factor reads:
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(4.114)

Let us write the differential equation in the form y00 = f(y0, y) that is useful for numerical
purpose:
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(4.115)

To solve this equation we must know the dynamics of the conformal Hubble parameter and
the dynamics of electromagnetic fields since they appear through the Lorentz-invariants S
and P .

The range of the scale factor we are interested in goes from the scale factor value at
recombination epoch up to the today scale factor. The redshift at recombination era is
zrec ⇠ 1090 that corresponds to a scale factor arec = a0/(1 + zrec) ⇠ 1/1091 since a0 = 1
is the scale factor today. Therefore we will study the dynamics of the field � in a range
[arec, a0] = [1/1091, 1].

4.4.1 Dynamics of electromagnetic fields

EoM (4.115) contains the Lorentz-electromagnetic invariants:

S = �1

4
Fµ⌫Fµ⌫ =

1

2

⇣
~E2 � ~B2

⌘
, (4.116)

P = �1

4
Fµ⌫F̃µ⌫ = ~E · ~B . (4.117)

How is their dynamics in function of the scale factor a? Let us recall the definitions of
electric and magnetic fields (using Coulomb gauge):

Ei = F 0i = @0Ai , (4.118)

Bi =
1

2
✏ijkFjk = ✏ijk@jAk . (4.119)

In a FLRW spacetime ds2 = a2(⌘)(� d⌘2 + dx2), the 4-potential is conformally coupled to
gravity, i.e. it does not feel the universe expansion; however the physical electromagnetic
fields ~E and ~B do:

Ei = @0Ai = g00@0A
i = �Ai0

a2
, (4.120)
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. (4.122)

They go as / a�2. We can define �Ai0 ⌘ E i and (~r⇥ ~A)i ⌘ Bi as the electric and magnetic
field measured in a Minkowski framework respectively, so:

Ei =
E i

a2
, (4.123a)

Bi =
Bi

a2
. (4.123b)
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Now the problem moves to how do ~E and ~B evolve? Before proceeding, let us point out
what exactly we need into the EoM (4.115): it is a differential equation for a homogeneous
field � in a FLRW spacetime, therefore we are interested in any homogeneous contribution
from the cosmic species. In order to respect this, we consider electric and magnetic fields
averaged in space5 and their value is:

hEii = 0 , hBii = 0 , hEiBji = 0 , (4.125)

because of a lack of phase relation between waves that makes equally probable to have a
positive or negative magnitude. This is an old approach to vector field in cosmology (for
example we find it into the paper [85] from the ’30). While electric and magnetic fields
squared are nonvanishing:

hEiEji =
�ij
3

⌦
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↵
=
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3
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↵

a4
, (4.126)

hBiBji =
�ij
3

⌦
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↵
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�ij
3

⌦
B2
↵

a4
, (4.127)

where E2 = ⌘ijEiEj and analogously for B2, with ⌘ij the Minkowski metric because of our
parametrization (4.123).

In light of these results, we see that the averaged value for S can be different from zero,
while for P is vanishing:

hSi = 1

2

 ⌦
E2
↵

3a4
�
⌦
B2
↵

3a4

!
, (4.128)

hP i = 0 . (4.129)

Therefore the electromagnetic configuration P and its couplings, i.e. what we have called
axion-photon coupling, do not contribute to the dynamics of the background field �(⌘)
(i.e. to the coarse grained homogeneous and isotropic universe). If one relaxes the isotropy
assumption, interactions of the axion-dilaton-photon type are allowed producing anisotropic
effects.6

Regarding the configuration hSi, if we allow a small degree of anisotropy we should
consider a 4potential of the form Aµ = Aµ

(0) + �Aµ, where Aµ
(0) = 0 is the background

4potential which must be zero since the observable anisotropy is small [88], and �Aµ is a
small correction. Then, any EM field that can arise from the 4potential will be proportional
to @(�Aµ) contributing to the invariants S, and also P , with (@(�Aµ))2. So

⌦
E2
↵

and
⌦
B2
↵

will be very small and their difference in hSi even more. In addition, its value dilutes along
the cosmic time as / a�4. Therefore it is negligible for our purpose and we set:

hSi = 0 . (4.130)

With this line of reasoning, we have lost any trace of electromagnetic fields in the EoM
for the field �. Proceeding as we are doing is equivalent to neglect the electromagnetic

5
Given a quantity X, its average hXi at a time t can be assumed to be as defined in [84]:

hXi ⌘ lim
V !V0

1
V

Z
d3x

p
�g X , (4.124)

where V =
R
d3x

p
�g and V0 is a sufficiently large time-dependent volume.

6
In the inflationary scenario anisotropic signature of couplings f(�)S and f(�)P were extensively studied,

see e.g. [86, 87].
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backreaction on the dynamics of �. However the ModMax theory has left its signature
in the dynamics of 4potential (4.48) and in its phenomenology of the birefringence angle
(4.97) through the parameter �.

Therefore, we reduced the EoM of the pseudoscalar field � to the well-known Klein-
Gordon equation in a FLRW metric:7
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H
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� 1

H2

@V

@�
. (4.133)

Qualitative description of the dynamics Equation (4.133) describes the dynamics of
a field under the influence of a friction term (/ d�/da) and a classic force (/ @V /@�).
The first term on the RHS is called Hubble friction since it is due to the universe expansion,
and brakes the field producing the damping. If the potential is a parabola, then (4.133)
describes a damped harmonic oscillator equation.

let us suppose the field � is near the minimum of the potential that has a parabola
shape. � seeks to roll towards the minimum, at early times the friction term dominates the
dynamics and the field slowly rolls down the potential suffering a damping. Then because
of the Hubble parameter is a decreasing function, there will be a time, and equivalently a
scale factor, at which the slope starts to dominate, the field runs to the potential minimum
and starts oscillate around it.

Equation (4.133) derives from the Lagrangian density of a free field, L� = �(@�)2/2�
V (�), propagating in a FLRW spacetime; in fact we assumed to neglect any backreaction.
From the Lagrangian density we can compute the stress-energy tensor:8

Tµ⌫ = @µ�@⌫�� gµ⌫

✓
1

2
g↵�@↵�@��+ V (�)

◆
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and obtain the EoS of �:

w� ⌘ P�

⇢�
=

T ii

T 00
=
�02/(2a2)� V (�)

�02/(2a2) + V (�)
=

H2(d�/da)2/2� V (�)

H2(d�/da)2/2 + V (�)
, (4.135)

where we switched from conformal time derivative to scale factor derivative using (4.111).
Going on with the qualitative discussion on the dynamics of � from the EoM (4.133),

we note that as long as the friction term dominates the dynamics and the field slowly rolls
down the potential with a small �0 its EoS reduces to w� ⇠ �1. If this condition holds up
to today, the ALP behaves as dark energy and may comprise all or part of it; this scenario
is called thawing quintessence [89] since the EoS may move from �1 by today times.

On the other hand, when the slope of the potential becomes bigger than the friction
term and the field oscillates its EoS is averaged over oscillations and evolves to a value ⇠ 0,
there the ALP behaves as dust and becomes a component of the dark matter sector.

7
Do note the second term of EoM can be rewritten as �

d
da log

�
Ha3

�
d�
da . Just for completeness, we

report the formulation of (4.133) parameterized by the conformal time and cosmic time, where the EoM

assumes the friendly formulations:

conformal time �00 + 2H�0 + a2 @V
@�

= 0 , (4.131)

cosmic time �̈+ 3H�̇+
@V
@�

= 0 . (4.132)

8
It is the third line of (4.35), namely neglecting coupling.
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4.4.2 Dynamics of Hubble parameter

The dynamics of the Hubble parameter is determined by the first Friedmann equation (FE)
that in a flat-FLRW spacetime reads:

H2 =
8⇡G

3
⇢ , (4.136)

here ⇢ is the sum of energy densities of cosmic species; in our model, the universe is filled by
non-relativistic matter, radiation, a cosmological constant ⇤ and the field �. Introducing
the reduced Planck mass mPl ⌘ (8⇡G)�1/2 we rewrite the first FE as:

H2 =
1

3m2
Pl

(⇢m + ⇢r + ⇢⇤ + ⇢�) . (4.137)

Using the assumption of describing the cosmic species as barotropic fluids with linear
EoS Pi = w⇢i, with w constant, together with the third Friedmann equation, one finds a
power-law dependence ⇢i / a�↵, with ↵ > 0. Thus, introducing the critical energy density:

⇢c(a) ⌘
3

8⇡G
H2(a) = 3m2

Pl
H2(a) (4.138)

and the energy budget ⌦ ⌘ ⇢/⇢c one can write the Hubble parameter in the following
common way:

H2 = H2
0

"
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◆�3
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a
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◆�4
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#
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The pedix 0 indicates quantities computed at today time. Our range of interest starts
at a redshift zrec ⇠ 1090 at which the universe is yet matter dominated, thus we neglect
the radiation contribution to the cosmic energy budget during all the time interval we are
considering.

The Hubble parameter today is [90]:

H0 = (67.4± 0.5) km s�1 Mpc�1 ⇡ 1.4⇥ 10�33 eV (4.140)

at 68% C.L. and thus the critical energy density today is:

⇢0c = 3m2
Pl
H2

0 ⇡ 3.7⇥ 10�11 eV4 . (4.141)

where we used mPl ⇡ 2.4 ⇥ 1027 eV. The value of today energy budget of matter and
cosmological constant is [90]:

⌦0m = (0.315± 0.007) 68% C.L. , (4.142a)
⌦⇤ = (0.679± 0.013) 68% C.L. . (4.142b)

Regarding the energy budget from the axion field, ⌦�, we take the strong assumption
that it is sub-dominant with respect to the energy densities of the other cosmic species
during the time we are interested in. So we neglect it from the energy budget that fuels the
evolution of H(a). This approximation is realizable if the field has a small enough mass
or an adequate initial condition �in = �(arec), we will come back to this later. With this
assumption the Hubble parameter simplifies to:

H = H0
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Figure 4.2: Top: the conformal Hubble parameter normalized to the Hubble constant, H(a)/H0.

Bottom: the derivative of H(a)/H0 with respect to the scale factor. Recall H0 ⇡ 1.4⇥10�33 eV, the

range goes from the recombination time arec ⇡ 1/1091 to today a0 = 1. The only relevant energy

budgets considered are matter and dark energy in the assumption that the ALP is sub-dominant.

and so the procedure to solve the dynamics of � simplifies a lot, in fact this assumption
decouples the ALP EoM from the evolution of the Hubble parameter. This simplification is
often taken in literature [19, 56, 91], see [53] for a more detailed treatment of the axion
abundance.

The first Friedmann equation furnishes an Hubble parameter H = H(a), however we
used the conformal Hubble parameter H = H(a) into EoM (4.115). Let us obtain it from
the definition:

H =
1
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da

dt
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1
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=

1

a
H =) H = aH . (4.144)

The today scale factor is a0 = 1, then the conformal Hubble parameter reads:

H(a) = aH0
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. (4.145)

Since we also need its derivative dH/da , let us compute it now:
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We plot the conformal Hubble parameter and its derivative in figure 4.2.
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A different assumption on the ALP energy budget

There are some papers citing the following upper bounds for the ALP parameter density
[17, 19, 40, 53, 92]:

⌦�  ⌦�,max =

(
0.69 for m  8.5⇥ 10�34 eV

0.006h�2 for 10�32 eV  m  10�25.5eV
(4.147)

Let us see from where they come. Consider a general potential near its minimum, thus
approximated with a parabola V ⇠ m2�2/2. The quantities that determine the dynamics
of � are the mass m (which contributes to the slope) and the Hubble parameter H (which
contributes to the friction). Requiring to be consistent with the Planck 2018 data on CMB,
it was found that for masses

m  8.5⇥ 10�34 eV (4.148)

the energy budget ⌦� has an upper bound of 0.69 i.e. for these masses the ALP can cover the
whole DE energy budget ⌦⇤ ⇡ 0.69 without spoiling out observations. While observations
of CMB and large scale structure put the constraint ⌦�h2  0.006 (where h = 0.677 is the
dimensionless Hubble constant [17]) if one requires that the EoS of � evolves toward 0 and
the mass is in the range

10�32 eV  m  1025.5eV . (4.149)

In other words, in this mass range � is a tiny fraction of dark matter. From these reasonings
the upper bound (4.147) comes out.

Works cited at the beginning of the section assume to deal with an axion model having a
mass contained into the ranges of (4.147), with a field near the minimum and with negligible
backreactions from other fields. Then they assume an ALP abundance which saturates the
bound (4.147). Doing so, � will play the role of the whole DE in the mass range indicated
in the first line, whereas it will play the role of a spectator field, covering a tiny fraction of
dark matter, in the mass range indicated in the second line. In the intermediate region
of masses the value of ⌦�,max is usually obtained interpolating the two maximum values
in the plane log(⌦�)� log(m) [17]. This is another approach to simplify the dynamics of
H(a) since its formula reduces to:

H = H0
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where ⌦⇤ ⇡ ⌦� or ⌦� ⇢ ⌦0m but negligible for the right mass ranges.
However we will not follow this road, we assume ⌦� is sub-dominant being either a part

of dark matter or a dark-energy like component.

Complement: on the general evolution of the ALP

In this paragraph we set up the system of equations which describes the evolution of � in
general, namely with no assumption on its abundance ⌦�. We just keep the assumption
that there are no important backreactions to the dynamics of �. Thus the EoM is the one
already computed in (4.133) and we recall it here below:
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It must be coupled to the first Friedmann equation:

H(a) = aH0[⌦m(a) + ⌦r(a) + ⌦⇤ + ⌦�(a)]
1/2 , (4.152)

where as anticipated we set no limits on the energy budget ⌦�(a). The abundance ⌦� is by
definition:
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#
, (4.153)

where we used the component T 00 = ⇢� of the stress-energy tensor (4.134). All these
equations together compose a system that describes the dynamics of � in general.

4.5 Numerical solutions

Summing up what we said above, we want to solve the following second-order differential
equation for �(a):

d2�

da2
= �

✓
1

H
dH
da

+ 3
1

a

◆
d�

da
� 1

H2

@V

@�
. (4.154)

We assume the ALP has a density parameter ⌦� sub-dominant with respect to the other
cosmic species, thus the Hubble parameter and its derivative are:

H(a) = aH0
�
⌦0ma�3 + ⌦⇤

�1/2
, (4.155)

dH
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=
H
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
1� 3

2

✓
⌦0m
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◆�
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Inserting them into the differential equation:

d2�

da2
= �1

a

✓
4� 3
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⌦0m

⌦0m + ⌦⇤a3

◆
d�

da
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The range of interest is:

[arec , a0] = [1/1091 , 1] . (4.158)

Having the dynamics of the field we can estimate the birefringence angle (4.97) as a function
of the ModMax parameter � which is unknown.

To proceed we must specify the potential to work with. We get inspired by the usual
axion-potential of QCD [23]:9

V (�) = m2f2


1� cos

✓
�

f

◆�
, (4.159)

where f and m have the dimension of a mass, f is the scale of the shift symmetry breaking.
This potential is not unique and without detailed knowledge of the non-perturbative physics
it cannot be predicted. For example, considering "higher order instanton corrections" the
potential evolves to V / [1� cos(�/f)]n with n > 1 [23]. These potentials have a plateau
at � ⇠ ⇡f and a power-law behavior V / �2n for � ⌧ f , citing [93] they are potentials
with power-law minima and flattened "wings".

9
However we point out the axion field we are considering is not necessary the one of QCD.
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We choose to work near the minimum of the potential, assuming �/f ⌧ 1, i.e. Taylor
expanding the potential and neglecting higher order of axion self-interactions which would
be mediated by powers of 1/f . In this limit the dominant term is the mass term, namely
the quadratic potential:

V (�) ⇡ 1

2
m2�2 . (4.160)

We consider:

f ⇠ MPl ⇡ 1.2⇥ 1028 eV , (4.161)

of the order of the Planck mass. Then the initial value of � to allow an effective description
of the model through a mass potential (4.160) must be �in ⌧ MPl.

4.5.1 Dynamics in a quadratic potential

We work with the quadratic potential:

V (�) =
1

2
m2�2 . (4.162)

In SI units there should be a factor c2 multiplying everything, the mass should be in kg
and the field should have the dimension of meter�3/2 ⇥ kg�1/2. While in natural units the
mass is [m] = [�] = eV.

The EoM for the pseudoscalar field in such a potential is:

d2�

da2
= �

✓
1

H
dH
da

+ 3
1

a

◆
d�

da
� m2

H2
� . (4.163)

Let us refresh the qualitative dynamics of the field and give some estimates: the first term
on the RHS is the Hubble friction while the second term is the potential slope. In this
model the mass m plays an important role: given a value for m, in the time interval in
which H/a � m the friction term dominates the dynamics and the field slowly rolls down
the potential suffering a damping. Then as the universe expands there will be a time at
which H/a ⇡ m and the second term in the RHS starts to dominate, consequently the field
starts oscillating and continues as long as H/a < m.

Considering our "time" interval [arec, a0] if m � Hrec/arec the field started oscillating
before the recombination epoch and keeps oscillating during its evolution, the contributions
to the birefringence angle � (4.97) get compensated resulting in a small angle. On the other
hand, if m ⌧ H0/a0 the Hubble friction dominates the dynamics and the field evolves
only a little, then the birefringence angle that depends on the field dynamics will be small.
Therefore the cosmic birefringence effect is most sensitive to the intermediate mass region:10

H0

a0
.m . Hrec

arec

(4.164a)

H0 .m . Hrec (4.164b)
10�33 eV .m . 10�29 eV . (4.164c)

10
Same discussion was proposed in [17] and [19] where authors considered a Maxwell-CS theory, however

the idea holds for out theory too since it is based on the EoM of � and as long as we neglect the photon

backreaction the EoM is a Klein-Gordon-like equation.
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Notice that for m . H0/a0 ⇠ 10�33 eV, since the field does not roll down the potential,
it would be dark energy since its EoS approaches �1. On the other hand, for higher values
of the mass the field oscillates and its EoS moves toward an averaged value of zero and �
would constitute a fraction of dark matter in the universe today.

Let us insert the Hubble parameter into the EoM, then getting:

d2�

da2
= �1

a

✓
4� 3

2

⌦0m

⌦0m + ⌦⇤a3

◆
d�

da
� m2

aH0(⌦0ma�3 + ⌦⇤)
1/2

� . (4.165)

We now proceed to numerically solve EoM (4.165). A nice way to plot the solution is
considering a normalized field X ⌘ �/�in, where �(arec) ⌘ �in. Now X is adimensional
and the initial values of the Cauchy problem are X(0) = 1 and dX(0)/da = 0. The choice
dX(0)/da = 0 is a natural choice if we want the field � to start oscillate after the initial
time; this corresponds to a field behaving as dark energy at the beginning [56] (see it from
the EoS (4.135)). We show numerical solutions in figure 4.3 with different values of the
mass. We have chosen the initial value:

�in = 0.1f ⇠ 0.1MPl ⇡ 1.2⇥ 1027 eV . (4.166)

The dynamics were obtained using the fourth-order Runge-Kutta method. The masses
considered are:

m =
⇥
10�35, 10�34, 10�33, 10�32, 10�31, 10�30

⇤
eV , (4.167)

thus taking values into the interval 10�33 eV . m . 10�29 eV from which we expect the
highest contribution to the birefringence angle because of the dynamics of �. For masses
m > 1⇥ 10�30 eV the field oscillates too much and our numerical solver is not able to track
the field evolution.11

From the dynamics of � we also calculate its EoS w�(a) (4.135) and its energy budget
⌦�(a) (4.153), both are shown together with the dynamics in figure 4.3.

From the plot of ⌦� we see its value never exceeds the 15% of the whole energy budget.
The initial condition used to find ⌦� is �in = 0.1MPl, however lowering it will lower also
the energy budget since ⌦� / �2

in
. We understand it from the definition:12
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2
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#
/ �2

in , (4.168b)

where we have introduced the normalized field X that has a dynamics independent on the
initial condition since X(arec) = 1 by definition (see first plot of fig. 4.3).

This is not a direct proof about the sub-dominance of �, it is more a consistency check
about our assumption to neglect the ALP from the cosmic energy budget.

11
See [94] (figure 1) for the dynamics of � with mass m > 10�30 eV, up to m = 10�27 eV. Notice they

used a log-scale and they parameterized by the redshift instead of the scale factor as we did.
12

This does not hold on general, a relation ⌦� / �n
in holds as long as V / �n

. For example, for the

cosine-type potential (4.159) this is not true; however, if we lower the initial condition, then the field starts

even closer to the potential minimum where the cosine potential is well described by the quadratic one,

thus ⌦� from a cosine-type potential is similar to the energy budget from a quadratic potential in the range

0  �in ⌧ f .
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Figure 4.3: First : the dynamics of the normalized field X(a) = �(a)/�in with �in ⇠ 0.1MPl and �
is solution of EoM (4.165) where a quadratic potential was considered. Notice that changing the

mass of the field, changes the time at which the field starts oscillating, as expected. The blue line

is covered by the orange one, for both cases the field is lighter than H0 thus it does not oscillate.

Second : the EoS of the ALP field, the initial point is w� = �1 for any mass because of the initial

condition d�in/da = 0. For light masses the field does not oscillate and its EoS remains at �1. For

heavy fields the EoS evolves because of the oscillations; we do not plot fields with m > 1⇥ 10�32 eV
because of the oscillation of w� is so fast to cover the other mass cases. Third and fourth: the

energy budget of �, the second picture zooms the y-axis in the range of values [0, 0.170].
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4.6 Birefringence angle and other constraints

In the previous section we have computed the dynamics of the field � in a quadratic
potential with an initial condition �in = 0.1MPl. Now we can use this result to compute
the cosmic birefringence angle � from equation (4.97), from which we get � as a function
of �, the ModMax parameter. We can get an estimate of � using the observational result
�exp ⇡ 0.342� [1]. The idea is to seek the root of the following equation:

�exp � � = �exp �
Z �0/g

�in/g
d

✓
�

g

◆
sinh � cos(�/g)

cosh � + sinh � cos(�/g)
= 0 . (4.169)

Since we got � as � = X�in, where X has discrete values coming from our numerical
solution, also � is an array of discrete values and the integral is approximated to a sum:

�exp �
�0/gX

�=�in/g

��
sinh � cos(�/g)

cosh � + sinh � cos(�/g)
= 0 , (4.170)

where �� is the step into the array of �’s values. Notice angles must be expressed in
radiants: �exp ⇡ 0.005 97 rad; and the sum ranges from the initial value of the dimensionless
field �(arec)/g = �in/g up to today value �(a0)/g = �0/g.

As one can see from (4.97), changing g is equivalent to change the initial condition �in:
they participate together as �/g into the definition of �, therefore as long as we change g
and �in keeping their ratio constant we get the same amount of �. Because of this reasoning,
we think g cannot have a physical meaning.

To proceed with the computation of (4.97) we need to fix the dynamics of �/g. We
propose the following guess: we choose �/g such that it evolves equal to the dynamics of
the ALP �, that is described by the Lagrangian density L� = �(@�)2/2� V (�). With this
choice, g is of the order of unit and has the same dimension of �. Since along the text we
have used natural units writing the dimensionality in electronvolt, we guess g ⇠ O(1) eV.
We recall it is just a trial based on the idea of inserting the same dynamics of � as the
argument of the trigonometric functions of (4.97), with no rescaling.

Since we have guessed what we want into the cosine of (4.170), let us continue finding
its roots. We solve the equation numerically using the fsolve function imported from
scipy.optimize package. We report the roots with the initial value �in = 0.1MPl in table
4.1. We should be worried about the negative values in table 4.1 since the ModMax theory
predicts � � 0, however this is a result on how the numerical solver, fsolve, works: it
accepts a root up to a certain tolerance, proposing values |�| < tolerance.

Probably, equation (4.170) is too smooth around the true root �true � 0 that is near
zero. Then, fsolve iterates roots around zero jumping from negative to positive values
up to having found a proposal that is lower than the tolerance. Thus also negative values
are accepted by fsolve and their outcome is quite random. So let us focus on the order of
magnitude of the estimates and not on the sign: the idea is to consider the modulo |�| of
any proposal from fsolve, namely the third column of table 4.1.

We have found that ModMax precursor is able to produce the observed cosmic birefrin-
gence angle with a � < 10�20 for a mass m > 10�35 eV, lowering down to � < 10�25 for
a bigger mass m > 10�32 eV. We see a predictable patter: for smaller masses � must be
bigger in order to balance the slow evolution of the field (see EoM (4.163): having a small
mass the oscillating time comes later).

To get a more robust estimate for � and to study its dependence on �in, we scan over
the initial value for each mass, i.e. we find the roots of (4.170) for different initial conditions
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mass (eV) estimation for � modulo |�|
10�30 4⇥ 10�27 10�27

10�31 1⇥ 10�25 10�25

10�32 �1⇥ 10�25 10�25

10�33 3⇥ 10�25 10�25

10�34 �1⇥ 10�22 10�22

10�35 �7⇥ 10�20 10�20

Table 4.1: Estimates of � with the ALP in a quadratic potential and initial value �in = 0.1MPl.

Figure 4.4: Values of � for different initial conditions �in in a quadratic potential. We plotted the

modulus of the root proposed by fsolve|.

in the range:

10�17MPl  �in  0.1MPl . (4.171)

We take 1000 values in this interval logarithmically separated in order to explore each
order of magnitude, and we do so for each mass considered. We plot the estimates of �
as � = �(�in) in figure 4.4, where initial conditions are sampled from (4.171) as explained
above. We see that the higher �in is and the lower � is; this is a consequence of the integral
in � (see (4.97)).

In addition, from figure 4.4 we recognize the pattern that at lower masses we get higher
�. To confirm this trend we plot the estimate of � for different masses in figure 4.5. To
do so we must choose the initial conditions; we take the initial, final and median value
of the interval (4.171) namely we consider �in =

�
10�16, 10�9, 0.1

�
MPl. Regarding the

choice of the mass, up to now we have worked with 6 different masses that are reported
in (4.167). To get a more robust result we now extend the analysis to 1000 masses taken
logarithmically from the range [10�35, 10�30]eV. We expect a decreasing � as long as m
increases, as already realized observing figure 4.4. Looking at figure 4.5 we confirm all the
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hypothesis we had.
Another interesting behavior that we infer from figure 4.5 is an apparent flatness of � in

the mass range 10�33 eV . m . 10�29 eV. The reason is that in this mass range the ALP
field starts oscillating after the recombination epoch and its amplitude dilutes. In this case
the field today, �0, has a negligible value with respect to the initial one, �in. The effective
result is a contribution to the birefringence angle, and thus to �, coming only from �in/g. In
fact, we do not see any flatness in 4.4 for the mass range 10�33 eV . m . 10�30 eV. Even
more, we see that for this mass range the points in figure 4.4 are superimposed (especially
for m > 10�32 eV) and this is a symptom of the "independence" of � from the mass in this
range.

Our final estimation In light of what we have found, we give the following conclusion:
the ModMax precursor theory (4.18) with a dynamical, background ALP �(t) in a quadratic
potential is able to rotate the linear polarization plane of CMB photons, thanks to the
coupling between them and the field �.

In order to reproduce the observed rotation angle of �exp ⇡ 0.342� [1], the ModMax
parameter � takes a value fixed by field dynamics normalized by a factor that we have
called g; as a consequence � depends on the initial condition of the ALP field �in and its
mass m.

If we consider the initial condition �in ⇡ 0.1MPl ⇠ 1027 eV and we normalize the field
dynamics just taking out the eV dimension, our analysis furnishes the range:

10�26 < � < 10�19 , (4.172)

for masses 10�35 eV . m . 1⇥ 10�30 eV.
In the particular range 10�33 eV . m . 10�30 eV where we expect the maximum

contribution to the cosmic birefringence angle from the dynamics of the ALP (see eq.
(4.164)), the range on � shrinks to:

10�26 < � < 10�23 . (4.173)

Lowering the initial condition predicts an higher �, as shown in figure 4.4. On the
other hand, exploring the range of bigger initial conditions �in � MPl will probably require
a different potential that considers the non-perturbative contributions. For this reason,
we do not extend our result (4.173) to ALPs with initial conditions bigger than the ones
considered here.

The dependence of � from the ALP mass is shown in 4.5.

What about Maxwell-Chern-Simons? From [17] we report the authors’ estimate for
ga� obtained analyzing the cosmic birefringence with a Maxwell-CS theory:

ga� > 10�29 eV�1 (4.174)

for masses 10�35 eV . m . 10�30 eV and initial condition �in < MPl (from figure 1 of [17]).
Can we compare their estimate with our result (4.172)? It will be possible if and only if

the ModMax precursor theory is in the limits by which it mimics Maxwell-CS. We recall
the result (4.19d) showing that these limits are � ⌧ 1 and �/g ⌧ 1.

Since we have obtained the range (4.172) with the guess that �/g goes as the axion
field � with an initial value �in ⇠ 0.1MPl, the quantity �/g is not small at all, and the
second limit is not achieved. So, bounds (4.174) and (4.172) cannot be compared.
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Figure 4.5: Top: the estimate value of � as a function of the 6 masses considered along the text,

their value is shown in (4.167). Bottom: a more robust result where it is shown the value of � for

1000 different masses taken from the interval [10�35, 10�30]eV with log steps (base 10) in order to

uniformly sample the masses at each order of magnitude. We see the trend that for heavier masses

we get smaller �.
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We are in a region of the space of parameters in which ModMax precursor is not

mimicking Maxwell-CS but the phenomenon of cosmic birefringence is however produced.
As equation (4.97) tells us, we are looking at a rotation angle produced by the dynamics of
an axion, background field. The dynamics is "elaborated" by a the periodic function of
cosine, instead of linearly participate as predicts by the CS term (3.1).

We conclude making in evidence that the coupling ga� of CS has some behaviors in
common with � (see figures of [17]): they both have a dependence on the initial condition
(fig. 4.4) and show a flatness in the mass range 10�33 eV . m . 10�29 eV (fig. 4.5), however
they are consequences of the integral over � in the definition of � and no claims between
our result and ga� should be driven.

One of the last assumptions we took to derive � was to consider the dynamics of the
dimensionless quantity �/g as the one of the field � with �in ⇠ 0.1MPl. This was a guess
that takes us away from the region in parameter space where ModMax precursor mimics
Maxwell-CS. The true role of g and how it should link the dynamics of � to the adimensional
argument of ModMax-precursor trigonometric functions, that we simply wrote as �/g, is
left for future study.



Conclusions

ModMax theory (1.96) is a classical, non-linear theory of electromagnetism which has the
same maximal symmetries as Maxwell’s theory, i.e. Lorentz invariance extended to the full
conformal symmetry and electric-magentic duality. It has the dimensionless parameter �
and reduces to Maxwell’s theory when � = 0. It was shown to be the unique non-linear
theory with all these properties [12]. In an attempt to quantize the theory, it was proposed
a reformulation of the ModMax Lagrangian density (see equation (4.7)) having quadratic
form for the electromagnetic fields and introducing an auxiliary field [20].

In this thesis we pointed out some similarities between the reformulated ModMax
Lagrangian (4.7) and other electrodynamics theories, based on the duality symmetry. The
reformulated ModMax theory is similar in form to the axion-dilaton electrodynamics [21,
22, 67–69] (see (4.9) for the Lagrangian density of axion-dilaton-Maxwell theory). Based
on these similarities, we promoted the reformulated ModMax theory to a new theory of
interacting electromagnetic and neutral pseudoscalar fields, that we have called ModMax
precursor.

The interaction between pseudoscalar fields and photons produces a rotation of the
linear polarization plane of photons as they propagate in the universe. This phenomenon is
called cosmic birefringence and is deserving attention after the claim of a detection of a
nonzero rotation angle at 99.987% C.L. of the polarization plane of CMB photons [1].

Usually the pseudoscalar-photon coupling is defined through the Chern-Simons term
(3.1) [15–19, 49]. We reviewed its phenomenology deriving the equation of motion for
the Maxwell electrodynamics together with the Chern-Simons term and we computed the
expression for the cosmic birefringence angle. Then we passed to the ModMax precursor
theory since it contains the ingredients to predict cosmic birefringence. Using the same
formalism adopted for the Maxwell-Chern-Simons theory we computed the equation for
the rotation angle, see (4.97). It depends on the dynamics of the pseudoscalar field, thus
we derived its equation of motion and solved it numerically considering a FLRW metric.
We focused on the time interval from the recombination epoch up to now. We assigned a
quadratic potential (4.160) to the pseudoscalar field and we used the assumption that the
energy density of the pseudoscalar field is sub-dominant with respect to the energy densities
of the other cosmic species. This allowed us to split the evolution of the Hubble parameter
from the evolution of the pseudoscalar field. We also neglected the backreactions of photons
to the dynamics of the pseudoscalar field imposing the requirement of homogeneity and
isotropy. Chosen the initial condition of the field and its mass we have been able to solve
its dynamics.

We analyzed the parameter space of the theory to reproduce the observed amount of
cosmic birefringence and estimated �.

We found ranges on � by which the ModMax precursor is able to reproduce the observed
amount of cosmic birefringence. Our result is:

10�26 < � < 10�19 , (4.175)

77
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for masses of the pseudoscalar field 10�35 eV . m . 1 ⇥ 10�30 eV. The range shrinks
to �26 < � < 10�23, for masses in 10�33 eV . m . 1 ⇥ 10�30 eV (see figure 4.4). Both
estimates were obtained considering the initial condition �in ⇡ 0.1MPl for the pseudoscalar
field; we studied the dependence of � on the initial condition and the mass in figures 4.4
and 4.5.

Our results are based on the hypothesis that the arguments of the non-linear functions
that define the rotation angle (4.97) are equal to the dynamics of the pseudoscalar field;
using our parametrization we mean g ⇠ O(1) eV (see (4.18)).

Our estimates bound � to have tiny values, somehow similar to the values of the
Maxwell-Chern-Simons coupling constant obtained with similar hypothesis [17]. However
our analysis was not performed in the region of parameter space where ModMax precursor
mimics Maxwell-Chern-Simons (condition �/g ⌧ 1 is not achieved – (4.101)). Thus, we
developed a new way to predict the phenomenon of cosmic birefringence based on the
ModMax precursor theory, that generalizes the Chern-Simons term.

Future perspectives In this thesis we performed one of the first studies of ModMax in
Cosmology. Focusing on the phenomenon of isotropic cosmic birefringence we were able to
constraint the ModMax parameter �. Keep investigating the interplay between different
theories and frameworks, as ModMax and Cosmology, will furnish new understanding of
the Universe.

An immediate upgrade of our work that one could think about is the studying of
anisotropic cosmic birefringence which allows the rotation angle � to depend on photon’s
direction (see e.g. [56]).

In this work we have chosen different assumptions and approximations, so a natural
way to improve our results is by generalizing such assumptions. Starting from technical
ones, we could improve our description of the photon emissions: we assumed a simultaneous
emission at a redshift zrec ⇠ 1090, while a more physical description should use a statistical
distribution peaked at both recombination and ionization epochs [17, 19]. We also recall
that we assumed an axion energy budget ⌦� being sub-dominant with respect to the other
cosmic species. A more general treatment would require to solve equations (4.151), (4.152)
and (4.153) all together. Doing so, we will be able to study whether the pseudoscalar field
of the ModMax precursor theory might play the role of early dark energy [55, 63]. Also a
more comprehensive discussion of the electromagnetic backreaction on the dynamics of �
should be done.13

As pointed out in section 4.3.3, the dilaton-like coupling does not participate on the
cosmic birefringence angle (we recall in the ModMax precursor theory it is S cos(�/g)).
Therefore it would be interesting to investigate effects related to such a coupling in other
phenomena and compare it with the axion-photon coupling.

The aim of these perspectives is to keep investigating the parameter space of the
ModMax theory and precursors in regions in which the theories wander away from the
commonly used Chern-Simons coupling.

13
An example in a inflationary scenario is [95], where the authors considered a generic U(1) gauge field.
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