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The focus of this work is to show how some tools from algebraic topology can have
useful applications to group theory. In order to do this in the first chapter we give a
brief overview of some basic concepts that we are going to need in the subsequent
discussion, like free groups, fundamental groups and covering spaces. In the sec-
ond chapter we discuss graphs as topological spaces. In the third chapter we then
proceed to introduce CW-complexes and we discuss some of their properties. In the
last chapter we give some classical topological proofs of two important theorems on
free groups and free products of groups.
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Introduction

The main goal of the work we present here is to provide an insightful view on how
some basic concepts of algebraic topology can find an application in the field of
group theory.

The main topological concept we are going to use in order to do so is the fun-
damental group. We recollect its definition in chapter 1 together with the most im-
portant tool at our disposal when dealing with it, the Seifert-Van Kampen theorem
(Seifert, 1931, Van Kampen, 1933). Along side these two topics, we will also review
some basic ideas of topology, mainly regarding the concept of covering spaces, and
of key concepts of group theory with a focus on free groups and free products of
groups.

After this first chapter, we will take care of some theory on graphs which will
serve as an introduction to some of the concepts we will develop later on. More
in detail, we will start by defining graphs as topological spaces and we will study
some of their basic properties. Afterwards, we will dedicate some pages to dwell
deeper into a special family of graphs, namely trees, which will serve as a base for
all the question regarding paths and fundamental groups of graphs which will be
the next thing we are going to investigate. We will then close this chapter with a
characterization for the covering spaces of graphs.

With the end of the second chapter we also conclude the broader introduction
and we begin approaching the main concepts and results present in this work. We
will begin by introducing CW-complexes, where C stands for closure finite and W
for weak topology, an idea from Whitehead, 1949, that gives us a class of spaces
which, while still remaining quite general for the purposes of homotopy theory, has
some nice properties that lead to easy computation. After getting an idea of some
characteristic properties of these spaces form a topological standpoint we will delve
into how this class of complexes will be useful to study ideas from group theory. In
this sense we will apply Seifert-Van Kampen theorem to them and thanks to this we
will find that, given any group G, it is quite easy to construct a CW-complex such
that its fundamental group is isomorphic to G.

We will then get to the last chapter where by applying what we learned so far we
will give two topological proofs of two theorems, the first is the following:

Theorem. Let H be a subgroup of the free product G = ∗λ Gλ. Then H is a free product
itself

H = F ∗ (∗
ν

Hν)

Where F is a free group and each Hν is conjugate in G to a subgroup of one of the Gλ.

It was forulated first Kurosch, 1934 and the proof we give is modeled after the
one in Baer and Levi, 1936.

The second is from Gruschko, 1940 and this is the statement:

Theorem. Let φ : F → ∗λ Gλ be an epimorphism of the free group F onto an arbitrary
free product of groups. Then, there exists a decomposition of F as a free product, ∗λ Fλ, such
that φ(Fλ) ⊆ Gλ for all λ ∈ Λ.



2 Contents

The proof we give follows the one from Stallings, 1965.



3

Chapter 1

Prerequisites

1.1 Free product of groups and free groups

The need for this construction arises from the necessity of finding a group that con-
tains a given collection of groups Gα as subgroups. Probably, the most natural way
to find it is to consider the product group ∏α Gα, whose elements are the functions
α → gα ∈ Gα or the direct sum

⊕
α Gα in which the elements are the functions taking

on non-identity values at most finitely often. Both this constructions produce groups
containing all the Gα as subgroups, but they also have the property that elements of
different Gα commute with each other. This commutativity, when working with non-
abelian groups, becomes unnatural, so we need to find a ’nonabelian’ version of of
∏α Gα or

⊕
α Gα.

Definition 1.1. The precise construction of the free product∗α Gα is as follows: as a
set is the collection of the words g1g2...gm of arbitrary finite length m where each gi
belongs to a Gαi and it is not the identity element of Gαi , and adjacent letters gi and
gi+1 belong to different Gα. Words satisfying this condition are called reduced, unre-
duced words can always be simplified to reduced word by writing adjacent letters
of the same Gα as a single letter and canceling the trivial letters. The empty word is
the identity element. The group operation is juxaposition: (g1g2...gm)(h1h2...hn) =
g1g2...gmh1h2...hn, if the word is unreduced we than simplify it.
We call free group the free product of any number (finite or infinite) of copies of Z

Lemma 1.1.1. Any group is homomorphic image of a free group.

1.2 The fundamental group

In this section, we will define the fundamental group of a topological space. In or-
der to do so, we first need to establish some useful notation. We will let X and set
I = [0, 1].
We define a path or an arc to be a continuous map from an interval into X. We say
that the images of the end points of the interval are the end points of the path and,
if these coincide, we call the path a loop based at the common end point.
Of the space X we say that is arcwise-connected or pathwise-connected if any two
points can be joined by an arc. We call arc components the maximal subset of X to
be arcwise-connected. We say that X is locally arcwise connected if every point has
a basic family of arcwise-connected neighborhoods.
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Definition 1.2. Let f0, f1 : [a, b] → X be two paths in X such that f0(a) = f1(a), f0(b) =
f1(b) we say that f0 and f1 are homotopic if there exists a continuous map

f : [a, b]× I → X

such that

t ∈ [a, b]
{

f (t, 0) = f0(t)
f (t, 1) = f1(t)

and

s ∈ I
{

f (a, s) = f0(a) = f1(a)
f (b, s) = f0(b) = f1(b)

We call f the homotopy between f0 and f1. It is readily seen that the relation of being
homotopic is an equivalence on the set of path in X with the same terminal points.

At this point we shall note that for every pair of intervals [a, b], [c, d] there are two
linear isomorphisms between them, one mapping a → c, b → d and one a → d, b →
d, hence, from now on, we can consider just the paths from I to X without loss of
generality.
In order to define the fundamental group we are going to need an operation between
elements of such group. So we define the product of paths.

Definition 1.3. Let f , g be paths in X such that the terminal point of f is the initial
point of g, then we define the product of paths f · g as follows:

f · g =

{
f (2t) 0 ≤ t ≤ 1

2
g(2t − 1) 1

2 ≤ t ≤ 1
(1.1)

Next we need a couple of lemmas to show the properties of this product and the
equivalence that we have defined.

Lemma 1.2.1. The equivalence relation and the product are compatible, i.e., if f0 ∼ f1 and
g0 ∼ g1 we have that f0 · g0 ∼ f1 · g1.

Lemma 1.2.2. The multiplication of equivalence classes of paths is associative.

For any point x ∈ X we denote as εx the equivalence class of the constant map of
I into x. This path class has the following fundamental property:

Lemma 1.2.3. Let α be an equivalence class of paths with initial point x and terminal point
y. Then εx · α = α · εy = α.

Now for any path f let f̄ denote the path defined by

f̄ (t) = f (1 − t)

Lemma 1.2.4. Let α and ᾱ denote the equivalence classes of f and f̄ , respectively. Then,

α · ᾱ = εx, ᾱ · α = εy,

where x and y are the initial and terminal points of f .

Now we have all we need to define the fundamental point of of the space X.
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Definition 1.4 (The fundamental Group). Let x be any point of X; it is readily seen
that the set of all loops based at x is a group with the product we have defined, we
call it fundamental group of X at the base point x and it is denoted by π1(X, x).

The last result we need for this section in the following theorem.

Theorem 1.1 (Hatcher, 2000). If X is arcwise connected, the group π1(X, x) and π1(X, y)
are isomorphic for any two points x, y ∈ X.

1.3 Seifert-Van Kampen Theorem

Theorem 1.2 (Seifert-Van Kampen Hatcher, 2000). If X is the union of path-connected
open sets Aα each containing the base point x0 ∈ X and if intersection Aα ∩ Aβ is path-
connected, then the homorphism

Φ :∗
α

π1(Aα) → π1(X)

is surjective. If in addition each intersection Aα ∩ Aβ ∩ Aγ is path-connected then the kernel
is the normal subgroup N generated by all the elements of the form iαβ(ω)iβα(ω)−1, and so
Φ induces an isomorphism ∗

α

π1(Aα)/N ≈ π1(X)

.

1.4 Covering spaces

1.4.1 Definition and basic properties

Definition 1.5. A covering space of a topological space X consists in a pair (X̃, p),
where X̃ is a space and p : X̃ → X is a continuous map such that for each x ∈ X
exists an arcwise-connected open neighborhood U such that each of the components
of p−1(U) is mapped topologically onto U by p. A neighborhood U that satisfies this
condition is called elementary neighborhood and the map p is called projection.

1.4.2 The fundamental group of a covering space

Theorem 1.3 (Massey, 1967). Let (X̃, p) be a covering space of X and x0 ∈ X. Then, the
subgroups p∗π1(X̃, x̃) for x̃ ∈ p−1(xo) are a conjugacy class of subgroups of π1(X, x0).

1.4.3 The action of π1(X, x) on p−1(x)

Definition 1.6. An automorphism of a covering space (X̃, p) of X is an invertible
continuous map ϕ : X̃ → X̃ such that for every x ∈ X̃ we have that p(ϕ(x)) = p(x).
The set of all automorphisms of (X̃, p) together with the composition of maps form
a group for which we use the notation A(X̃, p).

Definition 1.7. Let X̃, p be a covering space of X and x ∈ X. For any x̃ ∈ p−1(x) and
any α ∈ π1(X, x) we define x̃ · α as the terminal point of the unique path class α̃ ∈ X̃
with initial point x̃ and such that p∗(α̃) = α. With this definition of "·" π1(X, x) is a
group of right set operators on p−1(x).

Theorem 1.4 (Massey, 1967). Let (X̃, p) be a covering space of X. Then, A(X̃, p) is nat-
urally isomorphic to the group of automorphisms of p−1(x) considered as a right π1(X, x)-
space.
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1.4.4 Existence theorem for covering spaces

Theorem 1.5 (Massey, 1967). Let X be a topological space which is connected, locally
arcwise-connected and semilocally simply connected. Then, given any conjugacy class of
subgroups of π1(X, x) there exists a covering space corresponding to the given conjugacy
class.

1.4.5 Induced covering spaces

Theorem 1.6 (Massey, 1967). Let (X̃, p) be a covering space of X, let A be a connected
subspace of X locally arc-wise connected and let Ã an arc component of p−1(A). We use the
notation: ã ∈
tildeA, a = p(ã), p′ = p|A, i : A → X the inclusion map. Then:

p′∗(π1(Ã, ã)) = i−1
∗
[
p∗(π1(X̃, ã))

]
.

1.4.6 Point set topology on covering spaces

Lemma 1.4.1. Let (Ỹ, p) be a covering space of Y, both connected and locally arc-wise
connected and we also assume Y to be regular Hausdorff. Let {Xλ}λ∈Λ be a family of
compact Hausdorff spaces which are locally arc-wise connected, simply connected, and let
{ fλ : Xλ → Y}λ∈Λ a family of continuous maps. Let now

{ fλ : Xλ → Ỹ | λ ∈ Λ, i ∈ Mλ}

the family of liftings of fλ such that fλ = p fλi. Then if Y has the largest topology that makes
fλ continuous then Ỹ has the largest topology that makes fλi continuous.
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Chapter 2

Topology of graphs

2.1 Definition and basic properties

Definition 2.1. A graph is a pair consisting of an Hausdorf space X and a subset X0,
called the set of vertices of X, such that the following conditions hold:

1. X0 is a discrete, closed subspace of X. Points of X0 are called vertices.

2. X \ X0 is the disjoint union of open subsets ei, where each ei is homeomorphic
to an open interval of the real line. The set ei are called edges.

3. For each ei, its boundary ei \ ei is either one or two points. If ei \ ei consist in
two points the pair (ei, ei) is homeomorphic to the pair ([0, 1], (0, 1)); if ei \ ei
consist in one point then (ei, ei) is homeomorphic to (S1, S1 \ {1}).

4. X has the weak topology: A ⊂ X is closed (open) if and only if A ∩ ei is closed
for every edge ei.

Now that we have a formal definition of a graph as a topological space, it is
useful to have some basic nomenclature for simple properties of graphs. We say that
a graph is finite if it has only finite vertices and edges. A finite graph is compact as it
is a finite union of compact subset. A graph is locally finite if each vertex is incident
with a finite number of edges. A graph is locally compact if and only if is locally
finite.
The next thing we need in order to make working with graphs easier we need the
following lemma.

Lemma 2.1.1. Every point of a graph has a basic family of contractible neighborhoods.

Proof. It is clear that this property holds for all isolated vertices and for the interior
points of an edge. So let v be a non isolated vertex and let U be an open set containing
v, we need to show a contractible neighborhood V of v such that V ⊆ U. For every
edge e incident in v we have that U ∩ e is open. We choose V so that V ∩ e is a
contractible open neighborhood of v in e, V ∩ e ⊆ U ∩ e and so that for every non
incident edge e′, V ∩ e′ = ∅. This choice is possible thanks to the third condition of
the definition. From the fourth condition it follows that V is open, so we only need
to prove that it is contractible.
For each edge e we now choose a contracting homotopy

φe :V ∩ e × I → V ∩ e
(x, 0) 7→ x
(x, 1) 7→ v
(v, t) 7→ v.
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Then if we define f : V × I → V so that f |V∩e×I = φe we will have the desired
contracting homotopy, whose continuity depends on the continuity of each φe and
the weak topology.

From this lemma follows that a graph is locally arc-wise connected and semilo-
cally simply connected, hence the theory of covering spaces is applicable to graphs.
As we covered the basic topological properties of graphs, we now want to give a
precise definition of what paths are on a graph in order to study their fundamental
group.
By definition, an edge e is homeomorphic to (0, 1), let h0, h1 : e → (0, 1), we say that
the two are equivalent if the composite homeomorphism h0h−1

1 : (0, 1) → (0, 1) is a
monotone increasing map. It is clear that there are two equivalence classes and to
orient an edge is to choose one of them.
If (e, e) is homeomorphic to ([0, 1], (0, 1)), we may choose an homeomorphism h :
e → [0, 1] such that h|e is of the preferred equivalence class determined by the orien-
tation of e. We call h−1(0), h−1(1) initial and terminal vertices of e, respectively. In
the case where (e, e) is homeomorphic to (S1, S1 − {1}) the one vertex is both initial
and terminal.
We define an edge path to be a finite sequence of oriented edges (e1, e2, ..., en) such
that the terminal vertex of ei−1 is the initial vertex of ei, for i = 2, 3, ..., n. The edge
path is called reduced if it is not the case that edges ei, ei−1 are the same edge with
opposite orientations for any i = 2, 3, ..., n. We call the initial vertex of the path the
initial vertex of e1 and the terminal vertex of the path the terminal vertex of en.

2.2 Trees

A tree is a connected graph that contains no closed reduced edge paths. This kind of
graphs will be really useful in the computation of the fundamental group of graphs
in general. We will understand why with the following results.

Theorem 2.1 (Massey, 1967). Any tree is contractible.

Proof. The first thing to do is to prove the statement for finite tree. We will do so by
induction on the number of edges. For either 0 or 1 edges is obvious.
Now we assume to have proved the statement for every graph with less than n
edges. In a connected finite graph T if every vertex is connected with two ore more
edges we can find a closed loop, therefore in a tree there must be a vertex v connected
with only one edge e. We can consider the subgraph given by

T′ = T \ (e ∪ {v}).

This subgraph is connected, hence is a tree itself and since it has one less edge is also
contractible. Therefore, T in contractible since it deforms retracts onto T′.
Now let T be an arbitrary tree and let v0 be one of its vertices, our goal will be to
define an homotopy such that

φe :T × I → T
(x, 0) 7→ x
(x, 1) 7→ v0

(v0, t) 7→ v0.
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First, for each vertex v ∈ T we choose a finite subgraph T(v) containing both v and
v0. For each such subgraph, we choose a path t → f (v, t) with initial point v and
terminal point v0 in T(v). We also define f (v0, t) = v0 for all t. In this way we have
defined a function

f : T0 × I → T

where T0 is the set of the vertices in T.
The next step is to extend f to the edges. Let v1, v2 be two vertices in T connected
by e, then T(V1) ∪ T(V2) ∪ e is a connected subgraph of T and therefore a tree. By
the first part of the proof this tree is contractible and so it is simply connected. The
set e × I is homeomorphic to a square on which the map f is already defined on two
sides, and on the other two the only choices are

f (x, 0) = x
f (x, 1) = v0.

Since the four squares of the triangle are mapped to the simply connected T(V1) ∪
T(V2) ∪ e, the map can be extended to the interior of the square, and by doing this
for every edge of T we get an extension of f : T0 × I → T to f : T × I → T. The fact
that the map is continuous follows from the continuity on every edge and the weak
topology.

Every graph contains trees as subgraphs, for example subgraphs consisting of a
single vertex, so we can order the set of this subgraphs contained in a given graph
by inclusion.

Theorem 2.2 (Massey, 1967). Let X be a graph; then any tree contained in X is contained
in a maximal tree in X.

Proof. If X is a finite graph then it is obvious. If X is not finite we consider a family
of trees {Tλ}λ∈Λ linearly ordered by inclusion. Since⋃

λ∈Λ

Tλ

is also a tree we can conclude by applying Zorn’s lemma.

We can get an insight of the precise structure of maximal trees by the following
condition.

Theorem 2.3 (Massey, 1967). Let X be a graph and let T be a a subgraph of X which is
also a tree. Then, T is maximal if and only if contains all the vertices.

Proof. Let T be a maximal tree that does not contain all the vertices. Since X is con-
nected we find an edge path e1, ..., en from an initial vertex in T and its final one not
in T. it is obvious that at least one of the edges is not in T, so we choose the mini-
mum i for which this happens. Then T ∪ ei is a tree that strictly contains T, therefore
T is not maximal.
For the other implication, let T be a tree containing all vertices, and let e be an edge
connecting the vertices v1, v2. Since there is a unique path from v2 to v1 in T adjoin-
ing e would result in a closed loop, hence no edge can be adjoined and therefore T is
maximal.
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2.3 Fundamental group of a graph

Let X be a connected graph, v0 a vertex of X, and let T be a maximal tree of X,
containing v0. Let {eλ : λ ∈ Λ} be the set of edges of X not contained in T. Choose
an orientation for each of the eλ; let aλ, bλ denote the initial and terminal vertices of
eλ. To each eλ, we associate a path class αλ ∈ as follows: in T we have a unique
reduced edge path Aλ from v0 to aλ and a unique edge path Bλ from bλ to v0. Then
αλ is the path class associated with the edge path (Aλ, eλ, Bλ). With the established
notation we have the following theorem.

Theorem 2.4 (Massey, 1967). The fundamental group π1(X, v0) is the free group on the
set of generators {αλ : λ ∈ Λ}.

Proof. The first step will be the case where where Λ has only one element, i.e. There
is only one edge not contained in T. We call this edge e1. It is clear that every
closed path in X must involve e1. We now give e1 an orientation. There must exists
a reduced, closed edge path starting with e1 which we indicate with (e1, ..., en). Of
such paths we choose the shortest, and therefore there will be no repetition of edges
or vertices, so it will be a simple path. We denote such path as

C =
n⋃

i=1

ei.

C is a subgraph of X homeomorphic to a circle. Now we consider the complemen-
tary subgraph X \C, each of its components Yi is a subgraph of T, hence a tree. Each
Yi has exactly one vertex in common with C, if they had none X would be discon-
nected and if they they had more than one there we would find that Λ has more than
one element. We can contract each Yi to such vertex and therefore we obtain that C
is a deformation retract of X hence the fundamental groups are isomorphic and it is
clear that the generator of π1(C) is mapped by the inclusion in α1.
The general case follows by applying Seifert Van Kampen theorem in the right way.
Let xλ be a point of e − λ for each λ ∈ Λ, then the set {xλ | λ ∈ Λ} is closed and dis-
crete since X has the weak topology. Let U be the complementary of this set, then U
deforms retract onto T and therefore is contractible. For any index λ let Vλ = U ∪ xλ.
We have that

Vλ ∩ Vµ = U

if λ 6= µ. Vλ clearly deform retracts on T ∪ eλ and therefore its fundamental group is
the free group on the generator αλ. We now apply Seifert Van Kampen to all Vλ and
U which constitute an open covering of X and we obtain that

π1(X) = ∗
λ∈Λ

π1(Vλ)

and therefore it is the free group on the generators αλ.

2.4 Covering space of a graph

Theorem 2.5 (Massey, 1967). Let X be a connected graph with vertex set X0 and let (Y, p)
be a covering space of X. Then Y is a graph with vertex set Y0 = p−1(X0).

Proof. We need to show the properties of the definition 2.1, so in order:

1. It is clear that Y0 is a closed discrete subset of Y.
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2. Each component of p−1(e) is a covering space of e and, since e is simply con-
nected, each component is mapped homeomorphicly onto e. Also each com-
ponent of p−1(e) is open in p−1(e) by local connectivity, and this gives us the
second property.

3. If e is homeomorphic to [0, 1, ] than each component of p−1(e) is mapped home-
omorphicly. If e is homeomorphic to S1 then we apply the know results on the
coverings of a circle.

4. The last property is a direct consequence of lemma 1.4.1.
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Chapter 3

CW-complexes

3.1 Basic definitions

After recalling the basic definitions and properties of free groups, we now need to
introduce the other main mathematical object: the CW-complexes (where C and
W refer respectivly to the closure-finiteness property and the weak topology that
characterise them). They are constructed by the following procedure:

1. Start with a discrete space X0, whose points are regarded as 0 cells.

2. Inductively, form the n-skeleton Xn from Xn−1 by attaching n-cells en
α via maps

φ : Sn−1 → Xn−1. This means that Xn is the quotient space of the disjoint union
Xn−1 ⨿α Dn

α of Xn−1 with a collection of n-disks Dn
α under the identification of

x ∼ φα(x) for every x ∈ ∂Dn
α . Thus as a setXn−1 ⨿α en

α where each en
α is an open

n-disk.

3. One can either stop the process at a finite stage setting X = Xn or one can
continue indefinitely, setting X =

⋃
n Xn. In the latter case X is given the weak

topology: A set A ⊂ X is open (closed) iff A ∩ Xn is open (closed) for every n.

Now, is better to give some general definition and establish some notation that
will result helpful in the following paragraphs.
Each cell en

α in a cell complex X has a characteristic map Φ : Dn
α which extends the

attaching map φα and is an homeomorphism of Dn
α onto en

α , namely we can take Φα

to be the composition Dn
α ↪→ Xn−1 ⨿α en

α → Xn ↪→ X where the middle map is the
quotient defining Xn.
A subcomplex of a cell complex X is a closed subspace of A ⊂ X that is a union of
cells of X. Since A is closed, the characteristic map of cell in A has image in A, in
particular the attaching map of each cell in A has image in A, so A is a cell complex
itself. A pair (X, A) consisting of a complex X and a subcomplex A is called a CW
pair.
The unique cell e containing a given point x ∈ X is called the carrier of x.

3.1.1 Collaring

Sometimes, when dealing with an adjunctions of n-cells (X, A), it is useful to be able
to enlarge an open set of A to an open set of X, this can be done by collaring.
Let φ̄ : ⨿ Bλ ∈ X be a characteristic map and let φ be the corresponding attaching
map. We assume that every ball Bλ is a copy of Bn so that for each point in s ∈ Bλ

can be multiplied for a scalar t ∈ I (as a vector of R) and the product ts is still a point
of Bλ. The φ̄ collar of set V ⊆ A is defined to be

Cφ̄(V) = V ∪ φ̄({ts : s ∈ φ−1(V) ∧ 1
2 < t ≤ 1})
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From this definition we can trivially deduce the consequences that we summa-
rize in this lemma.

Lemma 3.1.1. Let (X, A) be an adjunction of n-cells, let φ̄ be a characteristic map for the
adjunction and le V be a subset of A. Then

1. Cφ̄(V) ∩ A = V.

2. φ̄−1(Cφ̄(V)) = {ts : s ∈ φ−1(V) ∧ 1
2 < t ≤ 1}.

3. Cφ̄(V) is open in X iff V is open in A.

4. If V is closed in A, then the closure of Cφ̄(V) is

Cφ̄(V) = V ∪ φ̄({ts : s ∈ φ−1(V) ∧ 1
2 ≤ t ≤ 1}).

5. if e is an n-cell of (X, A) then

e ∩ Cφ̄(V) 6= ∅ ⇔ e ∩ Cφ̄(V) 6= ∅ ⇔ ē ∩ V 6= ∅.

6. Cφ̄(V) contains V as a strong deformation retract.

7. If (Vλ) is a locally finite family of subsets of A (respectively a family of pairwise disjoint
subsets of A), then Cφ̄(Vλ) is a locally finite family of subsets of X (respectively a
family of pairwise disjoint subsets of X).

We now state a lemma that we are going to use later on to prove some topological
properties of CW-complexes.

Proposition 3.1.1 (Fritsch and Piccinini, 1990). Let (X,A) be an adjunction of n-cells, V a
closed subset of A and U be an open subset of X containing V. Then there is a characteristic
map φ̄ for the adjunction of A such that Cφ̄(V) is still contained in U.

Proof. Choose arbitrarily a characteristic map f̄ : ⨿ Be → X where the index e runs
trough all the cells of the adjunction. The map f̄ determines an attaching map f :
Se → A whose restriction to a sphere Se will be denote by fe. We now construct
cellwise a ’transformation of coordinate’ for which the attaching map is invariant.
This transformation is needed only for cells such that

f̄ ({ts : s ∈ Be ∧ f (s) ∈ V ∧ 1
2 ≤ t ≤ 1}) 6⊂ U. (?)

Let e be such cell. Then Ve = f−1
e (V) is non empty and f̄ (Be) is not fully contained

in U. Hence the set Ue = Be \ f−1(U) is a non-empty closed subset of Be which does
not meet the closed set Ve. The distance δe between Ue and Be is well defined and
greater than 0 as these two closed set are compact subsets of a metric space. From
(?) we can conclude that δe ≤ 1

2 . Now we choose an homeomorphism he : Be → Be
such that it coincide with the identity on the boundary and shrinks radially the ball
{s ∈ Be | |s| ≤ 1 − δe} into {s ∈ Be | |s| ≤ 1

3}. Now we define

φ̄|Be = f̄ |Be ◦ he

φ̄ is characteristic map we needed.

Since in general CW-complexes may not have a finite dimension, we need to gen-
eralize inductively the construction of collaring. In practice what we are going to do
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is to see the complex as iterated attachments of (n+ 1)-cells to its n-skeleton for each
n creating a the infinite collar C∞(V).

Definition 3.1. Let X be a CW-complex, let {Xn : n ∈ N} be the sequence its skele-
tons and let {Φn : n ∈ N} be the sequence of characteristic maps of for the adjunc-
tions (Xn, Xn−1). If Vm ⊂ Xm we define its infinite collar as follows. For every n ≥ m
we define

Vn+1 = CΦn+1(Vn)

and then we take
C∞(Vm) =

⋃
n≥m

Vn

The main properties of these objects are similar to the ones their finite dimen-
sional counterpart and are reassumed in the following proposition.

Proposition 3.1.2 (Fritsch and Piccinini, 1990). Let X be a CW-complex, let {Xn : n ∈
N} be the sequence its skeletons, let {Φn : n ∈ N} be the sequence of characteristic maps of
for the adjunctions (Xn, Xn−1) and let V be an open or closed subset of an m-skeleton Xm.
Then the infinite collar C∞(V)

1. Intersects Xm in V

2. Is open in X iff V is open in Xm

3. Cφ̄(V) is open in X iff V is open in A

4. Has as closure the union in X the union of the intermediate collars

5. Is the union space of the expanding sequence of intermediate collars

6. Contains V as a strong deformation retract

7. If (Vλ) is a locally finite family of subsets of Xm (respectively a family of pairwise
disjoint subsets of Xm), then the family of their infinite collars is again locally finite
(respectively a family of pairwise disjoint subsets of X)

Proof. Properties 1, 2 and 6 are trivial. Properties 3, 4 follows from the normality of
X. Property 5 follows from the fact that each Vn is a strong deformation retract of its
succesor.

3.2 Topological properties of CW-complexes

Proposition 3.2.1 (Whitehead, 1949). A CW-complex is a paracompact.

Proof. Let X be a CW-complex and let {Uλ : λ ∈ Λ} be an open covering. Our
objective is to construct inductively a graded indexed set

Γ =
∞

⨿
n=0

Γn

and subsets Vγ,n for every γ ∈ Γ such that the family {Vγ : γ ∈ Γ}, where

Vγ =
∞⋃

n=0

Vγ,n
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is an open, locally finite refinement of the covering {Uλ}. Moreover we will show
that, for a fixed m ∈ N {Vγ,m} is an open, locally finite refinement of the covering
Uλ ∩ Xm of the m-skeleton Xm.
We say that an index γ has degree n if γ inΓ. As soon as we construct an index γ, we
will also select an index λ = λ(γ) and we will also construct Vγ,n such that Vγ,n ⊆
Uλ(γ). Furthermore the set Vγ,m will be taken as a non empty subset of Xm \ Xm−1

for m = deg γ, Vγ,m = ∅ for m < deg γ and Vγ,m ⊃ Vγ,deg γ for m > deg γ.
We start the construction of Γ by taking Γ0 = X0; the for every γ ∈ Γ we choose an
index λ(γ) such that γ ∈ Uλ(γ) ∩ X0 and for these γ we define

Vγ,0 = {γ}.

Now we assume that we have constructed all the Γn up to Γm−1 included, and all
the corresponding Vγ,n and the corresponding indexes λ(γ). First we describe Vγ,m
for γ ∈ Γ1, Γ2, . . . , Γm − 1. We choose a characteristic map Φ for the adjunction
(Xm, Xm−1) and for any γ we define

Vγ,m = CΦ(Vγ,m−1) ∩ Uλ(γ).

Because of the induction hypothesis the family {Vλ,m−1} is open and locally finite,
and so is {Vλ,m} (Proposition 3.1.2 (3),(7)). Note that Vm =

⋃
γ Vγ,m for γ ∈ Γ1, . . . Γm−1

is an open set in Xm which contains Xm−1. With the right choice of coordinates
(proposition 3.1.1) we can arrange so that also the closure of the collar of Xm−1 is
contained in Vm.
Let e be an m-cell and let Φe : Bm → X be its characteristic map. The family
{U′

λ : Φ−1(Uλ)} covers the m-ball B′ = {s ∈ Bm : |s| ≤ 3
4}; since B′ is compact

finitely many elements of this family, U′
λ1

, U′
λ2

, . . . , U′
λk

, suffice to cover it. So we
define

Γe = {λ1, λ2, . . . , λk}

and for every γ ∈ Γe we define
λ(γ) = γ

and
Vγ,m = Φ(B̊′ ∩ U′

γ)

Finally we define
Γm = ⨿

e
Γe

where e runs over the set of all m-cells of X.
This completes our construction, now we need to verify that it behaves as it is sup-
posed to.
First we prove that the family {Vγ,m : deg γ ≤ m is locally finite. In order to do
this, we choose a point x ∈ X whose carrier is the m-cell e. We know that x has a
neighborhood U that meets only finitely many sets Vγ,m, with deg γ < m and we
also know that e meets only finitely many sets Vγ,m, with deg γ = m, the ones with
index γ ∈ Γe; then U ∩ e is a neighborhood of x which meets only finitely many Vγ,m
with deg γ ≤ m.
Suppose now that x ∈ Xm−1. We need to show that any open neighborhood U of
x in Xm−1 meeting only finitely many Vγ,m−1 with degγ < m can be enlarged to a
neighborhood U′ of x in Xm that meets only finitely many Vγ,m with deg γ ≤ m. We
do this by analysing the various collaring processes.
Let Φ be one of the characteristic maps used in the construction of Vm; then for 3.1.1
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CΦ(U) intersects only finitely many Vγ,m with deg γ < m. Notice that B̃ =
⋃

e Φe(B̊′)
is a closed subset of Xm which does not meet Xm−1. Therefore, U′ = CΦ(U) B̃ is a
neighborhood of x in Xm having the desired property.
We also notice that U′ intersects Vγ,m iff U intersects Vγ,m−1, this will be useful later
on.
The last step of the proof follows in this way. Fore every index γ

Vγ ∩ Xm = Vγ,m

and therefore Vγ is open. Moreover the inclusion Vγ ⊂ Uλ(γ) shows that the family
{Vγ} is a refinement of {Uλ}. For an arbitrary point x, take a non-negative integer m
such that x ∈ Xm and choose a neighborhood Um that intersects only finitely many
Vγ. As proved before Um can be enlarged to neighborhoods of x Un in Xn, all of
which intersect a finite number of Vγ, which already intersect Um. Thus

∞⋃
n=m

Un

is a neighborhood of x in X that intersects only finitely many Vγ; this proves that the
family {Vγ} is locally finite.

Proposition 3.2.2 (Whitehead, 1949). A CW-complex is locally contractible.

Proof. Let X be a CW-complex, x0 ∈ X and U an open neighborhood of x0 in X.
Now let the m-cell e be the carrier of x0 and let c̄ : Bm → X a characteristic map for e.
We notice that the point y = c̄−1(x0) lies in the interior of Bm and that c̄−1(U) is an
open neighborhood of y in Bm. Now we choose a smaller m-ball B ⊆ B̊m such that
y ∈ B ⊆ c̄−1(U). Since the interior B̊ = B \ ∂B is a contractible neighborhood of y in
B̊m the set Vm = c̄(B̊) is a contractible open neighborhood of x0 in Xm, whose closure
Vm is contained in U. Selecting inductively the right coordinates (as in proposition
3.1.1) we obtain an infinite collar V = C∞(Vm) that is still contained in U. By the
properties (2) and (5) of proposition 3.1.2 we conclude that V is open in X and that
V contracts to Vm hence to X0.

Proposition 3.2.3 (Whitehead, 1949). Any covering space K̃ of a CW-complex K is a
CW-complex.

Proof. Since K̃ is locally connected, each of its component will be both open and
close, and is a covering of a component of K. Since K̃ will be a CW-complex if and
only if all of its connected components are CW-complexes we can restrict our proof
to connected complexes. We also assume K̃ to be a regular covering complex. We
say that the open subset U ⊆ K is an elementary neighborhood if p maps each
component of p−1(U) topologically onto U. We call an elementary neighborhood
basic if its closure is contained in an elementary neighborhood. We call Ũ ⊆ K̃ a
basic neighborhood in K̃ if it is a connected component of p−1(U) for some U basic
neighborhood in K. Let G be the group of covering transformations and let Ũ ⊆ K̃
be a basic neighborhood, then

p−1(p(Ũ)) =
{

T(Ũ) | T ∈ G
}

.

From the definition of K̃ and the normality of K it follows that basic neighborhoods
are a basis for open sets both in K̃ and in K.
Now we consider a basic neighborhood U and a elemntary neighborhood V con-
taining its closure, the connected components of p−1(V) are disjoint open sets in K̃.
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Now let Q ⊆ p−1(U) be a set of points, such that there is at most one of them in each
component of p−1(U). Q is closed and discrete because if there was a limit point
q we would have p(q) ∈ V and therefore q would be in ove of the components of
p−1(V) but there is at most one point of Q in each of them, absurd.
Now we show that for Ũ ⊆ K̃ basic neighborhood, U∗ its closure and C ⊆ K̃ compact
the set

{T ∈ G | U∗ ∩ T(C) 6= ∅}

is finite. If U∗ ∩ T(C) 6= ∅ then C ∩ T−1(U∗) 6= ∅ and we choose qT ∈ C ∩ T−1(U∗).
Since T1(U∗) ∩ T1(U∗) = ∅ for T1 6= T2 it follows from the previous paragraph that
the set {qT} is discrete and closed and since C is compact it is also finite.
We now prove that K̃ has the weak topology. Let X̃ ⊆ K̃ such that X̃ ∩ e∗ is closed
for every cell ẽ ∈ K̃. In order to prove that X̃ is closed it suffices to prove that X̃ ∩U∗

is closed for any basic neighborhood Ũ, since this would imply the openness of

Ũ \ X̃ = Ũ \ (X̃ ∩ U∗)

and as a consequence the openness of K̃ \ X̃. To simplify the notation we assume
X̃ ⊆ U∗. Let now X = p(X̃) and let e be a given cell in K. We have

X ∩ e = p(X̃ ∩ p−1(e)).

Let now ẽ be a cell in K̃ that covers e, then

p−1(e) =
⋃

T∈G

T(e∗).

Since e∗ is compact it follows that only a finite number {Ti(e∗) ∩ U?}1≤i≤k are non
empty. We call Pi = X̃ ∩ Ti(e∗). We will then have

X ∩ e = p(X̃ ∩ p−1(e)) = X ∩ p

(
k⋃

i=1

Pi

)
.

Now we observe that Pi is closed for the hypothesis on X̃ and therefore is compact
thanks to the compactness of Ti(e∗). It follows then that

⋃k
i=1 Pi is compact an so it

is X ∩ e. Since e is arbitrary it follows that X is closed and therefore p−1(X) is closed
too. Since U∗ ∩ T(U∗) = ∅ for T 6= 1 wi will have that:

X̃ = U∗ ∩
( ⋃

T∈G

T(X̃)

)
= U∗ ∩ p−1(X)

hence X̃ is closed and K̃ has the weak topology.
Since K0 is discrete it follows that K̃0 = p−1(K0) is a discrete set of points, and so it
has the weak topology. If n > 0 than Kn is connected and K̃n is a covering complex.
The injection homomorphism π1(Kn) ↪→ pi1(K) is onto whence K̃n is connected.
Obviously T(Kn) = Kn for any T ∈ G and it follows that K̃n is a regular covering
complex of Kn therefore K̃n has the weak topology and from this it follows that K̃ is
a CW-complex.
Now assume that K̃ is not regular, and let K̂ be a universal covering complex of K̃
and therefore of K, let p : K̂ → K̃ be a covering map. Since p is open, it induces an
identification topology on K̃. It easy to show that K̃ is closure finite and that from
this follows that K̃ is a CW − complex.
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Proposition 3.2.4 (Whitehead, 1949). Any compact subset of a CW-complex meets only a
finite number of cells and it is contained in a finite subcomplex.

Proof. Let X be a CW-complex and let K be a compact subset of X. Let E denote the
set of all cells of X which intersects K. We choose a point xe ∈ K for each cell e ∈ E
and we denote the set of this points as Z. Now we show inductively that Z intersects
any skeleton in a finite number of points, thus Z is a discrete closed subset of X and
also of K. Then we recall that a discrete closed subset of a compact space is finite,
and so Z is finite.
Clearly Z ∩ X0 = K ∩ X0 is a discrete and closed subset of K and so it is finite. Now
we assume that Z ∩ Xn−1 is finite. Since Z meets any n-cell just in a finite number of
points, and Xn is determined by the family of Xn−1 and all closed n-cells, Z ∩ Xn is
discrete, hence it is finite.
We have now shown that E is finite, we just need to prove that for any cell e the
subcomplex X(e) is finite since it is clear that X(E) ⊆ ⋃

e∈E X(e) and the latter is
finite if every Xe is.
We prove this part by induction on the dimension of the cells. If e is a 0-cell then
X(e) = e. We now assume that X(e) is finite for every cell of every dimension
strictly less than n. Let e be an n-cell then ē \ e is compact and contained in Xn−1 and
from the first part of the proof we deduce that it is contained in the union of a finite
number of cells e1, e2, . . . , en. From the induction hypothesis we know that each Xei

is finite and moreover

X̃ = e ∪
(

n⋃
i=1

X(ei)

)
is a finte subcomplex of X and X(e) ⊆ X̃.

3.3 Operations on spaces

We will now describe some useful constructions that come in hand when dealing
with cell complexes:

• Products.
If X and Y are cell complexes then the space X × Y has the structure of a CW-
complex with cells em

α × en
β, where em

α ranges over the cells of X and en
α ranges

over Y. We shall notice that the topology of this space is slightly different from
the product topology in general, we have a few more open cells. The two
topologies are the same if X or Y has finitely many cells or if both X and Y
have countably many cells.

• Quotients.
Let (X, A) be a CW pair consisting of a cell complex X and a subcomplex A.
Then, the quotient space Q/A has a natural cell structure. X/A consists of the
cells X \ A plus a new 0-cell that is the image of A. For a cell en

α attached by φα :
Sn−1 → Xn−1 we have that the corresponding cell in X/A is the composition
Sn−1 → Xn−1 → X/A.

• Suspension.
For a space X, the suspension SX is the quotient of X × I obtained by collaps-
ing to one point X × {0} and X × {1}.

• Join.
Given two spaces X and Y we can define the join X ∗ Y as the quotient of the
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space X × Y × I under the identifications (x, y1, 0) ∼ (x, y2, 0) and (x1, y, 1) ∼
(x2, y, 1).
The first useful case of this is the cone CX that arise from X × {v} × I where
v becomes the vertex of the cone. The second is the join of n points which in
general is a convex polyhedron of dimension n − 1 called a simplex.

• Wedge Sum.
Given two spaces X, Y and one point in each of them, respectively x0, y0 we
define the wedge sum X ∨ Y as the quotient of the disjoint union X q Y under
the identification of x0 and y0.

• Smash Product.
The smash product is the quotient of the product where we collapse thw wedge
sum: X ∧ Y = X × Y/X q Y.

3.4 Application of SVK to CW-Complexes

Suppose we attach a collection of 2-cells e2
α, to the path-connected space X via maps

φα : S1 → X. If s0 is a base point of S1 then φα determines a loop at φα(s0) that we
shall call φα. Since φα(s0) may change for different α we choose a base point x0 ∈ X
and a path γα from x0 to φα(s0) for every α. Then γα φαγ̄α is a loop in x0 for every α.
Let N be the normal subgroup of π1(X) generated by γα φαγ̄α.

Theorem 3.1 (Massey, 1967). Let Y be a CW-complex obtained from X by attaching n-
cells. Then

1. If Y is obtained from X by attaching 2-cells as described above then, the inclusion X ↪→
Y induces a surjection π1(X, x0) → π1(Y, x0) whose kernel is N. Thus π1(Y) ≈
π1(X)/N.

2. If Y is obtained from X by attaching n-cells with n > 2 then, the inclusion X ↪→ Y
induces an isomorphism π1(X, x0) → π1(Y, x0).

3. For a CW-complex X the inclusion of the 2-skeleton X2 ↪→ X induces an isomorphism
π1(X, x0) → π1(Y, x0).

Proof. 1. Let us expand Y to a slightly larger space Z that deformation retracts
onto Y and is more convenient for applying SVK. The space Z is obtained from
Y by attaching rectangular strips Sα = I × I, with the lower edge I × {0} at-
tached along γα, the right edge {1} × I attached to an arc of e2

α and the left
edges {0} × I identified together. In each cell eα we choose a point yα not in
the arc along which Sα is attached. Let A = Z \ ⋃α{yα} and let B = Z \ X.
Then A retracts onto X and B is contractible. Since π1(B) = 0, SVK applied to
the cover {A, B} says that π1(Z) is isomorphic to the quotient of π1(A) by the
normal subgroup generated by the image of π1(A ∩ B) → π1(A).
So it remains to prove that π1(A ∩ B) is generated by γα φαγ̄α. This can be
shown by another application of SVK, this time to the cover of A ∩ B by the
open sets Aα = A ∩ B \⋃β 6=α e2

β. Since Aα deformation retracts onto a circle in
e2

α, we have that π1(Aα) ≈ Z generated by a loop homotopic to γα φαγ̄α, and
the result follows.

2. The proof follows the same steps of the previous point, the only difference is
that Aα deformation retracts onto Sn−1 and for n > 2 we have that π1(Aα) = 0
hence π1(A ∩ B) = 0.
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3. If X is finite dimensional we simply proceed by induction using the previous
point. If X is not finite dimensional let f : I → X be a loop at basepoint
x0 ∈ X2. f (I) is compact, hence, for proposition 3.2.4 lies in some Xn. This,
because of point (2), means that f is homotopically equivalent to a loop in X2

hence we have the surjection of π1(X2) onto π1(X).
To prove it is also injective let take a loop f in X2 which is nullhomotopic
in X via homotopy F : I × I → X. This has compact image in X hence is
contained in some Xn, with n > 2 otherwise the result follows trivially. Since
from point (2) we know that π1(X2) is isomorphic to π1(Xn) we conclude that
f is nullhomotopic in X2.

Corollary 3.1.1. For every group G there is a 2-dimensional cell complex XG with π1(XG) ≈
G.

Proof. Choose a presentation of G = 〈gα | rβ〉, this exists since every group is a
quotient of a free group, so the gα’s can be taken to be the generators of this free
group with the rβ being the generators of the kernel of the map from the free group
to G. Now construct XG from

∨
α S1

α by attaching 2-cells eβ by the loops specified by
the words rβ.

Lemma 3.4.1. Let X be a connected CW-complex which is the union a the collection of
subcomplexes {Aλ : λ ∈ Λ}. Suppose that exists a non-empty tree T which is a subcomplex
of the 1-skeleton X1 and that for every λ 6= µ we have Aλ ∩ Aµ = T. Then, for any vertex
v ∈ T we have that π1(X, v) is the free product of the groups π1(Aλ, v) with respect to the
homomorphism φλ : π1(Aλ, v) → π1(X, v) induced by the inclusion Aλ ↪→ X.

Proof. If X, and consequently every Aλ, are of dimension 1, this follows from theo-
rem 2.4 applied to a maximal tree in X containing T and to each Aλ.
Now we consider the case where X is 2-dimensional. We must prove that given
any group H and any collection of homomorphism ψλ : π1(Aλ) → H, there exists
a unique homomorphism σ : π1(X) → H such that σφλ = ψλ for all λ. We de-
note with jλ : π1(A1

λ) → π1(Aλ) and j : π1(X1) → π1(X) the homomorphisms
induced by the respective inclusion maps. Then for each λ we have the following
commutative diagram:

Hπ1

(
A1

λ

)
π1

(
A1

λ

)

π1

(
X1
)

π1(X)

jλ

j

φ1
λ

φλ

ψλ

We know from what we said before that there exists a unique homomorphism
σ′ : π1(X1) → H such that

ψλ jλ = σ′φ1
λ (?)

for all λ ∈ Λ.
From theorem 3.1 that j (respectively, jλ) is an epimorphism and the generators of
its kernel are in one to one correspondence with the 2-cells of X (respectively, Aλ).
Let e2

i be any 2-cell of X and let γi the corresponding generator of the kernel of j.
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We choose an index λ such that e2
i ⊆ Aλ then γi is also a generator of the kernel of

jλ. From the equation (?) and the fact that φ1
λ is a monomorphism it follows that

σ′(γi) = 0. Because this is true for every 2-cell e2
i , it follows that exists a unique

homomorphism σ : π1(X) → H such that σ′ = σj. it is clear that σ has the required
properties. In a more general case we can apply what we have just shown to the
2-skeletons of X and Aλ thanks to theorem 3.1.



23

Chapter 4

Kurosh subgroup theorem and
Grushko’s theorem

4.1 Kurosh subgroup theorem

4.1.1 The theorem

Theorem 4.1 (Kurosch, 1934). Let H be a subgroup of the free product G = ∗λ Gλ. Then
H is a free product itself

H = F ∗ (∗
ν

Hν)

Where F is a free group and each Hν is conjugate in G to a subgroup of one of the Gλ.

Proof. For each λ ∈ Λ we choose a 2-dimensional CW-complex Xλ be with a single
vertex vλ such that its fundamental group is:

π1(Xλ, vλ) = Gλ.

Then we choose a point v0 such that for all λ ∈ Λ v0 6∈ Xλ and we join v0 to each vλ

via a path eλ. If we call X the union of of all Xλ, all eλ and v0, and we give this set a
weak topology we obtain a connected 2-dimensional CW-complex and

π1(X, v0) = G

as a consequence of 3.4.1. Now, we denote with (X̃, p) a covering space of (X, v0)
associated to the subgroup H which, thanks to 3.2.3, we know to be a CW-complex
itself. We can now choose a vertex ṽ0 ∈ p−1(v0) such that

π1(X̃, ṽ0) = H.

For each λ ∈ Λ we write the set of components of p−1(Xλ) in this way:{
X̃λµ | µ ∈ Mλ

}
.

For all λ ∈ Λ we will have that (X̃λµ, p|X̃λµ
) is a covering space of (Xλ) hence it is also

a 2−dimensional CW-complex. We now choose Tλµ maximal tree in the 1-skeleton
of X̃λµ.
The union of this trees, together with p−1(eλ) for all λ ∈ Λ gives us the connected
graph Y which is contained in the 1-skeleton of X. Now let T be a maximal tree in Y
containing each Tλµ.
Now, we are almost ready to apply the lemma 3.4.1 to conclude the proof. In order to
do so, lets consider the covering of X given by the subcomplexes Y, X̃λµ ∪ T for each
pair λ, µ. Each of this subcomplexes is connected, contains v0 and the intersection of
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any two of them is T. From lemma 3.4.1 we can conclude that

π1(X̃, v0) = π1(Y, v0) ∗
(
∗
λ,µ

π1(X̃λµ ∪ T, v0)

)
.

Moreover we know that π1(Y, v0) is a free group and

π1(X̃λµ ∪ T, v0) = π1(X̃λµ, v0)

since Y is a graph and X̃λµ is a deformation retract of X̃λµ ∪ T. We can conclude that
under the monomorphism

p∗ : π1(X̃, v0) → π1(X, v0)

π1(X̃λµ ∪ T, v0) maps onto a conjugate of a subgroup π1(Xλ ∪ eλ, v0) = Gλ which
conjugate it is depends on the choice of the maximal tree T.

As it is stated, the theorem does not give to us the necessary insight in the struc-
ture of the subgroups Hν nor on to which extent they are uniquely determined by
H. In order to prove a more detailed version of the theorem, the notion of double
cosets come in handy. For any g ∈ G the double coset of the subgroups H and Gλ is
the set:

HgGλ = {hgx | h ∈ H , x ∈ Gλ}

any two of this double cosets are either disjoint or identical.

Theorem 4.2 (Kurosch, 1934). Assume that the hypotheses of 4.1. Then, for each index
λ ∈ Λ, there exists a set of rapresentatives {βλµ | µ ∈ Mλ} one from each double coset of
H and Gλ such that

H = F ∗
[
∗

λ∈Λ
∗

µ∈Mλ

(
H ∩ βλµGλβ−1

λµ

) ]

where F is a free group.

Proof. While keeping the notation established in the previous proof, we also intro-
duce, for each λ, Yλ = Xλ ∪ eλ. We observe that any Yλ is a subcomplex of X con-
taining v0.
We denote as {

Ỹλµ | µ ∈ Mλ

}
the set of connected components of p−1(Yλ) indexed so that X̃λµ ⊆ Ỹλµ for all µ.
We can think of Ỹλµ as obtained from X̃λµ by the adjunction "tails" in the same num-
ber as the covering sheets of (X̃λµ, p|X̃λµ

) onto Xλ.

For each Ỹλµ we now choose a vertex vλµ such that p(vλµ) = v0. The proof of the the-
orem follows from the commutativity, for every pair of indexes λ, µ, of the following
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diagram

π1(Ỹλµ ∪ T, vλµ) π1(Ỹλµ ∪ T, v0)

π(Ỹλµ, vλµ) π1(X̃λµ, vλµ) π1(X̃, v0)

π1(Yλ, v0) π1(X, v0) π1(X, v0)

uλµ

φλµ φλµ

jλµ

iλµ

φλµ∗

uλµ

p∗ p∗

iλ
wλµ

where pλµ = p|Yλmu and iλ, iλµ, jλµ, φλµ are all induced by inclusions maps.
For each vertex vλµ we call αλµ the path class in T from v0 to vλµ and we define

βλµ = p∗(αλµ) ∈ π1(X, v0).

The isomorphisms uλµ, βλµ are defined as:

uλµ(x) = αλµxαλµ
−1

wλµ(y) = βλµxβλµ
−1.

It is clear that jλµ is an isomorphism, wλµ is an inner automorphism and all the
homorphisms in the diagram are monomorphisms.
By construction we have

π1(X, v0) = G
p∗π1(X̃, v0) = H

iλπ1(Yλ, v0) = Gλ.

If we now call p∗(φλµ(π1(Ỹλµ ∪ T, v0))) = Hλµ we can apply theorem 4.1 and to
obtain that H is the free product of F and all the groups Hλµ.
We now apply the theorem 1.6 to the diagram and we obtain:

iλ(pλµ∗(π1(Ỹλµ, vλµ))) = [p∗(pi1(X̃, vλµ))] ∩ Gλ.

We procede to apply the isomorphisms uλµ, wλµ to this equality and we use the com-
mutativity of the graph to get

Hλµ = H ∩
(

βλµGλβλµ
−1
)

.

The last thing we need to prove is that {βλµ | µ ∈ Mλ} is a set of representatives of
HxGλ.
In order to do this, we first consider the action of G = π1(X, v0) on the set p−1(v0).
We have the subgroup H is the isotropy subgroup corresponding to v0 and so we
can identify p−1(v0) with the cosets Hx.
Then we consider the action of Gλ on p−1(v0) or equivalently on on the coset space
G/H. For any µ ∈ Mλ, Gλ permutes the points of Yλµ ∩ p−1(v0) transitively, there-
fore the set of components {Ỹλµ | µ ∈ Mλ} is in one to one correspondence with the
set of double cosets HxGλ and any choice of paths βλµ such that v0 · βλµ = vλµ ∈ Ỹλµ

is a choice oof representatives for these double cosets.
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4.2 Grushko’s theorem

Theorem 4.3 (Gruschko, 1940). Let φ : F → ∗λ Gλ be an epimorphism of the free group
F onto an arbitrary free product of groups. Then, there exists a decomposition of F as a free
product, ∗λ Fλ, such that φ(Fλ) ⊆ Gλ for all λ ∈ Λ.

Before giving a proof of the theorem, which is from Stallings, 1965, we want to
first sketch out what our strategy will be and then introduce some technical tool that
we are going to need.

The first thing we have to define is a topological equivalent of φ. We will start by
introducing the CW-complexes Bλ with a single vertex vλ and such that π(Bλ, vλ) =
Gλ. These complexes can be assumed to be pairwise disjoint without loss of gener-
ality. We define Y as the quotient space of

⋃
λ Bλ under the identification of all the

vertices vλ to a single vertex v. Y with the weak topology is itself a CW-complex
with a single vertex and

π1(Y, v) =∗
λ

Gλ.

We now le {yτ} be a basis for F. For each index τ we can represent φyτ as a unique
reduced word of ∗Gλ

φyτ = a1, ..., an.

We now choose an associated circle Sτ for every index τ and we divide it into n
segments W1, ..., Wn creating a graph with n edges and n vertices.

We can define a map f : Sτ → Y so that f |Wi is a closed path in some Bλ represent-
ing ai. After we do this for every τ we can identify all the starting points of all the Sτ

and by doing so we obtain a graph X with a single vertex which is finite, connected
and for which we have π1(X) = F. We have that the maps Sτ → Y give rise to a
continuous maps f : X → Y such that the induced morphism f∗ : π1(X) → π1(Y) is
equivalent to φ. Now we can associate every edge Wi of every Sτ to a unique index
λ such that f (Wi) ⊆ Bλ. We than denote the subgraph associated to each index λ as
Aλ. Then f maps Aλ into Bλ and

⋃
λ Aλ consists of all the vertices of X.

Now that we laid the groundwork we describe what the core strategy of the
proof is. The general idea is to create a connected 2-dimesional CW-complex X′

such that deforms retact onto X and a map f ′ : X′ → Y that extends f to X′, so that
π1(X′) ≈ π1(X) = F and f ′ is still equivalent to φ. Moreover we will construct X′

in such a way that it is the union of connected subcomplexes A′
λ such that Aλ ⊆ A′

λ

and they fit the hypothesis of 3.4.1. In order to ensure that this is always possible we
will need some technical tools. First of all we need a definition, going forward we
keep the notation already established.

Definition 4.1 (Stallings system). A Stallings system (K, {Cλ}λ∈Λ, f ) is a triplet con-
sisting of a finite 2-dimensional CW-complex K, a family of subcoplexes {Cλ}λ∈Λ
and a continuous map f : K → Y such that:

1. The complex K is the union of Cλ

K =
⋃

λ∈Λ

Cλ.

2. For any µ, ν ∈ Λ we have
Cµ ∩ Cν =

⋂
λ∈Λ

Cλ.

3. For any index λ, f (Cλ) ⊆ Bλ.
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4. f maps the n-skeleton of K into the n-skeleton of Y.

Now we give some additional conventions and nomenclature regarding Stallings
systems.

• For any Stallings system the base point is always in
⋃

λ∈Λ Cλ.

• An intuitive way to think about different λ as different colors, so we will say
that a path in K is monochromatic if it lies entirely in Cλ.

• A path in the 1-skeleton of K is called a loop if both of its end-points coincide
in a vertex.

• A path in the 1-skeleton of K is called a tie if its end-points are vertices in
different component of

⋃
λ∈Λ Cλ.

• We say that a tie g : I → K is a binding tie if there exists a λ such that g(I) ⊆
Cλ and f ◦ g(I) is equivalent to the constant path in Bλ. Another equivalent
approach to define a binding tie is to denote with η the equivalence class of g
in Cλ and with fλ the restriction f |Cλ

and to require f∗(η) = 1 ∈ π1(Bλ). it is
also important to observe that a binding tie is always monochromatic.

Now we need to introduce a special construction that for stallings systems that will
be key in our proof. Let (K, {Cλ}λ∈Λ, f ) be a Stallings system and g : I → Cµ a
binding tie of color µ. Now we take a 2-dimensional closed disk D and we split its
boundary into two two segments c1, c2 which intersect only at their endpoints. By
identifying c1 with the unit interval we have that g act as an adjunction map of D.
By adjoining D via g we get a CW-complex K′ which has one more 2-cell D and one
additional edge c2 than K and that deforms retract onto it. Let’s now denote with C′

µ

the union of Cµ and D and for any λ 6= µ we denote with C′
λ the union of Cλ with c2.

Clearly then we will have that

⋂
λ∈Λ

C′
λ =

(⋂
λ∈Λ

Cλ

)
∪ c2.

Now we need to extend f to a map f ′ : K′ → Y, and we are going to do it this way: f ′

maps c2 onto the unique vertex v of Y and then is extended to a continuous map of D
into Bµ. This extension can always be achieved thanks to the equivalence condition
on f ◦ g(I). So we have built a new Stallings system (K′, {C′

λ}λ∈Λ, f ′).
This construction gives us the possibility of getting a new Stallings system, for

which the connected components of
⋂

λ∈Λ C′
λ are one fewer than

⋂
λ∈Λ Cλ when we

have a binding tie, is therefore natural to ask ourself if a binding tie always exist. We
show with the following lemma that this is always the case.

Lemma 4.2.1. Let (K, {Cλ}λ∈Λ, f ) be a Stallings system such that f∗ : π1(K) → π1(Y)
is an epimorphism. If ⋂

λ∈Λ

Cλ

is not connected, then there exists a binding tie.

Proof. Consider a base point for each of the connected components of
⋂

λ∈Λ Cλ and
any loop or tie g whose initial and terminal points are such base points. From what
we know about graphs follows that any such loop or ties is equivalent to a product
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of paths, each of which runs along an edge, therefore we can think of them as a
product of monochromatic paths. It follows that is possible to write

g = g1...gn

where for all 1 ≤ i < n the paths gi, gi+1 are of different colors. Hence the end points
of all gi will lie in

⋂
λ∈Λ Cλ.

For each gi we now define hi as a path joining the end point of gi to the base point of
its connected component of

⋂
λ∈Λ Cλ. We will have

g ∼ (g1h1)(h1
−1g2h2)...(hn−1

−1gn).

In this form each term is monochromatic and its end points are among the chosen
base points. This means that each loop or tie in a Stallings system is equivalent to
a product of monochromatic loops and ties each with ends points among the base
points and two consecutive terms are of different colors.
Next we show that there exists a tie g such that its class η is mapped onto 1 by f∗.
Since K is connected and

⋂
λ∈Λ Cλ is not, there exists a tie h such that it is end point

are in two different components of
⋂

λ∈Λ Cλ. Let now θ denote the equivalence class
of h. Since f∗ is an epimorphism, there will be a loop k in K based at the initial point
of of h whose equivalence class ζ satisfies f∗(θ) = f∗(ζ). The desired tie will be
k−1h = g.
It follows that we can assume

g ∼ g1...gn

to be a product of monochromatic loops and ties, and for each gi we denote with
ηi its equivalence class. Now we can omit any loop g1 such that f∗(ηi) = 1 and if
after doing this we have two consecutive ties or loops of the same color we can lump
them together. Notice that since the end-points of g are distinct this process will still
result in a tie with at least one factor.
So far we have shown that exists a tie g ∼ g1...gn, of equivalence class η = η1...ηn for
which these conditions hold:

• f∗(η) = 1.

• For all 1 ≤ i < n the ties or loops gi, gi+1 are monochromatic of different colors.

• For any i for which gi is a loop, f∗(ηi) 6= 1.

If we consider such tie we have that

1 = f∗(η) = f∗(η1)... f∗(ηn)

where each couple of terms f∗(ηi), f∗(ηi+1) belongs to a different free factors π1(λ).
Therefore there must be a gi such that f∗(ηi) = 1, otherwise we would have a re-
duced word equivalent to 1 in the free product

∗
λ∈Λ

Bλ.

Since we made sure to not have such loops in our construction gi must be a tie,
therefore binding tie since f∗(ηi) = 1 ∈ π1(Y), moreover it is monochromatic by
construction. Since π1(Y) is a free product, f f∗(ηi) = 1 ∈ π1(Bλ) for the right λ.

Now everything is in place to complete the proof of the main theorem 4.3.
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Proof of theorem 4.3. Let now (K, {Cλ}λ∈Λ, f ) be a Stallings system be the Stallings
system we constructed at the beginning of the section so that f∗ represent the epi-
morphism φ. All the vertices of X will are in⋂

λ∈Λ

Aλ.

If this intersection is disconnected we can find a binding tie thanks to 4.2.1 and then
apply the construction we have seen before to get a new Stalling system (K1, {C1

λ}λ∈Λ, f 1)
that deforms retract onto (K, {Cλ}λ∈Λ, f ), with f 1 extending f and with one less con-
nected component in ⋂

λ∈Λ

A1
λ.

Since there are a finite number of components in⋂
λ∈Λ

Aλ

after a finite number of steps n we will get (Kn, {Cn
λ}λ∈Λ, f n) for which⋂

λ∈Λ

An
λ.

is connected.





31

Bibliography

Baer, Reinhold and Friedrich Levi (1936). “Freie Produkte und ihre Untergruppen”.
In: Compositio Mathematica 3, pp. 391–398.

Braun, Gábor (2004). “A proof of Higgins’s conjecture”. In: Bulletin of the Australian
Mathematical Society 70.2, pp. 207–212.

Brown, Ronald (2006). Topology and groupoids.
Fritsch, Rudolf and Renzo Piccinini (1990). Cellular structures in topology. Vol. 19.

Cambridge University Press.
Gruschko, I. (1940). “Uber die Basen eines freien Produktes von Gruppen”. In: Rec.

Math. [Mat. Sbornik] N.S. 8, pp. 169–182.
Hatcher, Allen (2000). Algebraic topology. Cambridge: Cambridge Univ. Press.
Higgins, PJ (1966). “Grushko’s theorem”. In: Journal of Algebra 4.3, pp. 365–372.
Hilton, Peter (1953). An introduction to homotopy theory. Cambridge University Press.
Hu, Sze-Tsen (1964). Elements of general topology. Tech. rep.
Kurosch, Alexander (1934). “Die Untergruppen der freien Produkte von beliebigen

Gruppen”. In: Mathematische Annalen 109, pp. 647–660.
Massey, William S (1967). Algebraic topology: an introduction. Springer New York.
— (2019). A basic course in algebraic topology. Vol. 127. Springer.
Seifert, Herbert (1931). Konstruktion dreidimensionaler geschlossener R"aume. Hirzel.
Stallings, John R (1965). “A topological proof of Grushko’s theorem on free prod-

ucts”. In: Mathematische Zeitschrift 90.1, pp. 1–8.
Van Kampen, Egbert R (1933). “On the connection between the fundamental groups

of some related spaces”. In: American Journal of Mathematics 55.1, pp. 261–267.
Whitehead, John HC (1949). “Combinatorial homotopy. I”. In: Bulletin of the American

Mathematical Society 55.3. P1, pp. 213–245.


	Abstract
	Prerequisites
	Free product of groups and free groups
	The fundamental group
	Seifert-Van Kampen Theorem
	Covering spaces
	Definition and basic properties
	The fundamental group of a covering space
	The action of 1(X,x) on p-1(x)
	Existence theorem for covering spaces
	Induced covering spaces
	Point set topology on covering spaces


	Topology of graphs
	Definition and basic properties
	Trees
	Fundamental group of a graph
	Covering space of a graph

	CW-complexes
	Basic definitions
	Collaring

	Topological properties of CW-complexes
	Operations on spaces
	Application of SVK to CW-Complexes

	Kurosh subgroup theorem and Grushko's theorem
	Kurosh subgroup theorem
	The theorem

	Grushko's theorem


