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Abstract

English

It is well established that a regular physical activity offers important benefits in both

healthy and subjects with diabetes. For the latter, however, the best conditions in terms

of intensity, duration and insulin therapy to reach a good glucose control are not clear yet.

Despite the numerous studies conducted in this area, none of them allows to accurately

describe the effects of exercise on endogenous glucose production. The quantification of

these effects can be extremely important, especially for diabetic individuals, since this

information could be incorporated in the control algorithms of open-and closed loop (ar-

tificial pancreas), thus improving the therapy of this disease.

The goal of this work is to develop a mathematical model which is able to describe the

effects of physical activity on endogenous glucose production in different experimental

conditions in both healthy and type 1 diabetic subjects. To address this task, data of

12 individuals (6 healthy and 6 with type 1 diabetes) were examined. They performed

three visits in random order in different glycemic and insulinemic levels using the clamp

technique: the first visit was in euglycemia and low insulin, the second visit was in eu-

glycemia and high insulin, while the third visit was in hyperglycemia and low insulin.

In each visit, a session of 60 minutes of moderate physical exercise was performed. The

glucose fluxes (production and disposal) were estimated through glucose tracer infusions

using the tracer-to-tracee clamp technique.

The starting point of this work, has been a model which is already known in literature that

provides a good prediction for EGP profile that occurs after food ingestion (Dalla Man

et al. [7]). This model, which does not include exercise, has been modified and adapted

to our experimental conditions in order to incorporate the effect of physical activity and,

therefore, to provide a good prediction of EGP.

The best model selected, assumes a delayed effect of exercise on insulin sensitivity, a direct

effect of glucose, a delayed effect of insulin and a direct effect of glucagon on EGP. De-

spite the satisfactory results obtained with ND subjects, furhter investigation is necessary,

especially for subjects with diabetes.



Italiano

È scientificamente provato che una regolare attività fisica comporti importanti benefici

sia in soggetti sani che diabetici. In questi ultimi però non sono ancora state definite le

condizioni ottimali in termini di intensità, durata e terapia insulinica per un buon controllo

del glucosio. Nonostante i numerosi studi condotti in quest’ambito, gli effetti dell’esercizio

fisico sulla produzione endogena di glucosio, in diverse condizioni sperimentali, non sono

ancora stati esaminati. La quantificazione di questi effetti può risultare estremamente

importante soprattutto per i soggetti diabetici dato che tale informazione potrebbe in

futuro essere incorporata in algoritmi di controllo di sitemi open e closed-loop (pancreas

artificiale).

Lo scopo di questa tesi è quello di sviluppare un modello che descriva gli effetti dell’attività

fisica sulla produzione endogena di glucosio in diverse condizioni sperimentali sia in soggetti

sani che diabetici di tipo 1. Per lo sviluppo sono stati esaminati i dati di 12 soggetti (6

sani e 6 diabetici) i quali hanno effettuato 3 visite in ordine casuale con livelli glicemici e

insulinemici differenti utilizzando la tecnica del clamp: la prima visita è stata condotta in

normoglicemia e bassa insulina, la seconda visita in normoglicemia e alta insulina, mentre

la terza visita in iperglicemia e bassa insulina. In ognuna di esse è stata prevista una ses-

sione di esercizio fisico moderato della durata di 60 minuti. I flussi di glucosio disponibili

(produzione ed utilizzazzione) sono stati ottenuti utilizzando le infusioni di un tracciante

del glucosio secondo la tecnica del clamp del rapporto tracciante-tracciato.

Il punto di partenza di questa tesi è stato lo studio di un modello già presente in letteratura

che fornisce une buona predizione della produzione endogena di glucosio susseguente ad

un pasto (Dalla Man et al. [7]) . Questo modello, che non considera l’esercizio, è stato

successivamente modificato e adattato alle nostre condizioni sperimentali al fine di incor-

porare l’effetto dell’attività fisica e fornire quindi una buona descrizione di EGP.

Il modello risultato migliore incorpora un effetto ritardato dell’esercizio sulla sensibilità

insulinica, un effetto immediato del glucosio, un effetto ritardato dell’insulina, e un effetto

immediato del glucagone su EGP. Nonostante i buoni risultati ottenuti per i soggetti sani,

ulteriori studi sono necessari per la validazione del modello selezionato, soprattutto nel

caso dei soggetti diabetici.



Glossary

T1D Type 1 diabetes

ND Non-diabetic subject

PA Physical activity

BMI Body mass index

FFA Free fatty acid

EGP Endogenous glucose production

Rd Rate of glucose disposal

TTR Tracer-to-tracee ratio

CV Coefficient of variation

AICc Corrected Akaike information criterion





Chapter 1

Introduction

1.1 Background

Glucose is the most abundant monosaccharide in nature and the main source of en-

ergy for living organisms. In our body many tissues can also use fat or protein as an

energy source but others, such as the brain and red blood cells, can only use glucose.

In healthy subjects glucose level is maintained in a narrow range (70 - 110 mg/dL)

thanks a complex control system which includes organs such as liver, pancreas and

kidneys. The liver is the main organ involved in glucose production, while kidneys

are responsible in a minor part. As regard the pancreas, it secretes two important

hormones that act in an opposite sense: insulin and glucagon. Insulin is produced

by β-cells in response to high levels of plasma glucose and it promotes glucose uti-

lization and inhibits the endogenous glucose production. Glucagon is produced by

α-cells in response to a fall in plasma glucose below the hypoglycemic threshold (70

mg/dL). It stimulates glucose production promoting glycogenolysis and gluconeoge-

nesis, with a consequently increase of glucose concentration.

Impairment of the glucose regulatory system can lead to a several metabolic dis-

orders such as glucose intolerance and, at worst, to diabetes. Hypoglycemia is the

condition in which glucose level is lower than its normal range, while the opposite

condition is called hyperglycemia. The first one is dangerous in the short term

because it can cause important complications to the dependent-glucose organs, in

particular in the brain for which glucose is the predominant energy source. There-

fore, if it is not treated in time, can lead to hypoglycemic coma. The second one

is dangerous in the long term and the main complications are: limb loss, blindness,

ischemic heart disease and renal disease. In presence of chronic hyperglycemia we
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Chapter 1

talk about diabetes. Diabetes is estimated to currently affect 415 million of peo-

ple in the world, number that is supposed to increase, and according to the World

Health Organization it caused an estimated 1.6 million deaths in 2016. There are

two type of diabetes: type 1 and type 2. The type 2 is the most common form of

diabetes and it affects 90% of cases and it is characterized by high blood glucose and

insulin resistance. The type 1 of diabetes is characterized by no insulin production

and therefore affected individuals need exogenous insulin injections to compensate

the lack of secretion from the pancreas.

It is well established that physical activity promotes a healthy lifestyle, with sig-

nificant benefits for both healthy and diabetic subjects. Physical exercise, in fact,

reduces blood pressure, controls the level of blood sugar, positively modulates choles-

terol in the blood, helps to prevent metabolic, cardiovascular, neoplastic diseases.

A lot of studies have been conducted in order to understand glucose metabolism

during physical activity in both healthy and diabetics subjects. It is well known

that exercise increases glucose utilization (Rd) and, therefore, EGP must increase

to meet the increased metabolic demands of the muscle to minimize risks of hypo-

glycemia [6]. It has been observed that in healthy subjects, in the postprandial state

(2 hours after a mixed meal), glucose concentration falls during moderate-intensity

exercise due to an increase of its demands; this change is facilitated by falling insulin

and rising glucagon and catecholamine levels. The result is an almost eightfold rise

in rates of EGP and an increase by 75% of insulin sensitivity (the ability of insulin

to promote glucose uptake and inhibit EGP) [34].

Physical exercise can contribute to improve the quality of life even for diabetic sub-

jects, but the optimal operating conditionsare still unclear. In particular, physical

activity can lower blood glucose in both the short and long term with the risk of hy-

poglycaemia which represents the main barrier to exercise for these individuals [2].

Hypoglycemia can occur during, immediately after, or many hours after physical

activity and this requires that the patient has both an adequate knowledge of its

metabolic and hormonal responses to exercise as weel as well-tuned self-management

skills [1]. Another study was conducted to determine the effects of exercise (75min

of moderate-intensity exercise) on postprandial glucose metabolism and insulin ac-

tion in type 1 diabetic subjects with the triple tracer technique [25]. T1D subjects

appeared to be insulin resistant in the postprandial state and particularly during

exercise since both plasma insulin and glucose concentrations were higher than in

healthy subjects. The raising of EGP during exercise occurs also in T1D diabetic
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individuals: in healthy subjects this was facilitated by falling insulin and glucose

levels and rising glucagon concentrations. The equally rapid increase in EGP in

T1D during exercise despite higher glucose levels and lower glucagon implies that

robust exercise induced hepatic responsivity despite adverse hormonal and substrate

milieu, but it is necessary further investigation.

Factors that could contribute to the raising of EGP could be related to the increases

in net hepatic glycogenolysis and/or increases in gluconeogenesis. In [28] it has been

discussed the role of these two processes during physical activity: the major findings

are that in healthy subjects the rate of glucose production increased in proportion

to the intensity of exercise, which can be entirely attributed to increases in net hep-

atic glycogenolysis. In contrast, diabetic subjects exhibit increased rates of glucose

production both at rest and during exercise, which can be entirely accounted for by

increased gluconeogenesis.

1.2 Aim and outline of the thesis

Although numerous studies have been conducted in order to improve the under-

standing of glucose metabolism during exercise in both healthy and diabetic sub-

jects [15, 26, 34], none of them has allowed to quantify the effects of exercise on

endogenous glucose production. It is known that EGP increases during exercise

but the way in which it increases and if there are some differences between heathy

and diabetic subjects is not clear yet. This represents an important knowledge gap,

especially in type 1 diabetes, because this information could be incorporated into

open-and closed loop (artificial pancreas) control algorithms, and therefore helping

the treatment of the disease.

The aim of this thesis is to develop a model which is able to describe the effects

of moderate physical activity on endogenous glucose production in both healthy and

type 1 diabetic subjects in different experimental conditions.

The thesis is articulated as follows:

Chapter 2 presents a brief overview on glucose homeostasis and diabetes disease.

Moreover, exercise effects on glucose metabolism are described in order to better

understand the results of the thesis.

Chapter 3 provides the reader a brief description about the protocol and the clamp

study realized.

15
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Chapter 4 presents some mathematical models developed to describe endogenous

glucose production during physical activity.

Chapter 5 presents the results of the models proposed in the previous chapter.

Chapter 6 provides to the reader some conclusions of this work and proposals for

future research.

16



Chapter 2

Glucose metabolism and physical activity

This chapter introduces the reader to the functioning of the glucose regulatory sys-

tem and, in particular, it describes the role of the main organs involved such as the

liver, kidneys and pancreas. In addition, the diabetes disease is briefly described,

especially type 1 diabetes, and the effects of physical activity on glucose metabolism.

2.1 The glucose-insulin regulatory system

In healthy subjects, blood glucose concentration is controlled and kept close to its

normal range (70-110mg
dL

, 3.9-6.7 µmol
mL

) thanks to a complex glucose-insulin system

which includes organs, metabolic and nervous controls that act to maintain blood

sugar into this range within 24 hours after a perturbation.

The main organs involved in the endogenous glucose production are the liver and

kidneys. The liver provides glucose for all the tissues either by gluconeogenesis or by

glycogenolysis. The first process involves the formation of glucose-6-phosphate from

precursors such as lactate, glycerol, and amino acids with its subsequent hydrolysis

to glucose, while glycogenolysis involves the breakdown of glycogen to glucose-6-

phosphate and its subsequent hydrolysis to free glucose. Moreover the liver is the

only organ that contains appreciable glycogen and glucose-6-phosphate, and there-

fore the only organ that can directly release glucose as result of glycogenolysis.

During a meal the food is absorbed in its different parts: carbohydrates, proteins,

fats, vitamins and other nutrients. The carbohydrates consumed turn into blood

sugar which is absorbed by the gastrointestinal wall; one part goes to the brain and

the other part is stored in the liver as glycogen through a process called glycogen-

esis. Hence the liver both stores and produces glucose depending upon the body’s

need. In this way, the liver can release glucose during periods of food deprivation

17
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by glycogenolysis [5].

Glucose does not require any digestive processing and its absorption is therefore

rapid: blood sugar usually starts to rise 10 − 15 minutes after a meal and reaches

its peak after an hour. However, these are just some approximate features because

it depends on several factors, such as the type of food consumed.

Figure 2.1: Daily glycemic pattern

Until recently it was though that glucose production occurred almost entirely

in the liver and that the human kidney played a minor role in glucose homeosta-

sis [3, 37]. Most recent studies [27, 36] demonstrated that in postabsorptive state

the kidney simultaneously takes up and releases appreciable amounts of glucose.

The kidneys contributions to maintaining glucose homeostasis include production of

glucose via gluconeogenesis, uptake of glucose from the circulation to satisfy their

energy needs, and reabsorption of glucose at the level of the proximal tubule.

The pancreas is another important organ involved in the regulation of glucose

homeostasis. In particular the islets of Langerhans, a specific region of the pancreas,

contain endocrine cells among which alpha and beta cells. When blood glucose level

is high, beta-cells secrete insulin which is released into the bloodstream by the portal

vein and then reaches the liver where about 50% is degraded. The remaining part is

released into the bloodstream through the hepatic vein and then can reach tissues

where it carries out its functions. The most important are:

• to stimulate the storage of glucose as glycogen in the liver, muscle and fat

cells;

• to promote glucose utilization by insulin-dependent tissues (muscle and adi-

pose tissue);

18



Glucose metabolism and physical activity

• to inhibit the endogenous glucose production (EGP).

Insulin is primarily secreted in response to elevated glucose levels, such as those

occurring after a meal. It enables the insulin-dependent uptake of glucose into muscle

and adipose tissue and is the only known hormone lowering blood glucose [22].

Figure 2.2: Daily insulin pattern

This hormone allows the blood glucose to be transported from the blood into

the cells thanks some transmembrane proteins. Currently, there are five established

functional facilitative glucose transporter isoforms (GLUT1-4 and GLUTX1), with

GLUT5 being a fructose transporter. The GLUT4 isoform is the major insulin-

responsive transporter that is predominantly restricted to striated muscle and adi-

pose tissue. These transporter proteins are sequestered into specialized storage vesi-

cles that remain within the cell’s interior under basal conditions. As postprandial

glucose level rises, the subsequent increase in circulating insulin activates intracel-

lular signaling cascades that ultimately result in the translocation of the GLUT4

storage compartments to the plasma membrane. This process is reversible so that

when circulating insulin levels decline, GLUT4 transporters are removed from the

plasma membrane by endocytosis and are recycled back to their intracellular storage

compartments [39].

On the other hand, alpha cells are responsible for glucagon secretion which plays

the primary role in counter-regulation to hypoglycemia [22]. Glucagon effects are

the opposite of the effects induced by insulin: it is released in response to low blood

glucose levels and to events where the body needs additional glucose, such as in

response to physical activity. It acts on the liver in several ways:

• stimulating the conversion of stored glycogen in the liver to glucose, which can

be released into the bloodstream (glycogenesis).

19
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• promoting the production of glucose from amino acid molecules (gluconeoge-

nesis).

• reducing glucose consumption by the liver so that as much glucose as possible

can be secreted into the bloodstream to maintain blood glucose levels.

Thus, glucagon and insulin are part of a feedback system that keeps blood glu-

cose levels stable. Glucagon acts to prevent hypoglycemia (glucose under 50mg/dL)

by promoting endogenous glucose production, while insulin acts to prevent hyper-

glycemia (glucose up to 200mg/dL) by promoting storage and utilization of glucose.

Figure 2.3: Maintenance of blood glucose levels by glucagon and insulin. When blood glucose

levels are low, the pancreas secretes glucagon, which increases endogenous blood

glucose levels through glycogenolysis. After a meal, when exogenous blood glucose

levels are high, insulin is released to trigger glucose uptake into insulin-dependent

muscle and adipose tissues as well as to promote glycogenesis [31].

Also catecholamines, a family of neurotransmitter and hormones, act to regu-

late blood glucose level. They include epinephrine, dopamine, and norepinephrine.

Epinephrine, also called adrenaline, is produced by the adrenal glands and certain

neurons and one of their function is to prevent hypoglycaemia. It sends signals to the

liver and kidneys to produce more glucose, keeps tissues, such as muscle, from using

as much glucose from the bloodstream, and works to reduce insulin secretion. The

norepinephrine is similar to epinephrine since it acts by promoting glycogenolysis,

gluconeogenesis, reducing insulin and increasing glucagon secretion.
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2.2 Diabetes

As regard diabetic subjects, there are important differences in the regulation of

glucose homeostasis. There are two type of diabetes: type 1 diabetes is a chronic

autoimmune disease in which no insulin is produced, while with type 2 diabetes

the body either resists the effects of insulin or does not produce enough insulin

to maintain normal glucose levels. In particular, type 1 diabetes is caused by the

production of antibodies that attack the β-cells inside the pancreas responsible for

the insulin secretion. In this way wherever blood glucose is high there is no natural

mechanism which can reduce its level and therefore a condition of hyperglycemia

occurs. Hyperglycemia has no immediate damaging consequence on the organism,

but if this state persists for long time it becomes critical and can lead to a variety

of serious complications, such as nerve damage, eye problems, kidney damage, car-

diovascular damage, feet and legs problems. In order to avoid these complications

diabetes therapy attempts to keep blood glucose level within the euglycemic range.

The therapy consists in dietary management, physical activity and the administra-

tion of exogenous insulin with subcutaneous injections before meals which is able to

mimic the endogenous insulin secretion by β- cells.

An optimal control of diabetes requires frequent self-monitoring of blood glucose

level and the consequent adaptation of the exogenous insulin doses. But for dia-

betic subjects avoiding high blood sugar is not enough. A danger is also represented

by low blood sugar (under 70mg
dL

) which can lead to a condition of hypoglycemia

which is critical into the short-term. It mostly occurs in the interval between meals

or overnight and is also usually associated with fasting, physical activity or stress. It

represents a serious risk since if the blood glucose level continues to drop, the brain

does not get enough glucose and stops functioning. Hypoglycemia is a condition

generally perceived by the subject, especially when glucose falls below 50mg
dL

. This

condition causes the release of a series of hormones that, after the appearance of a

general sense of weakness due to the suffering of the central nervous system, stim-

ulate the body to react. Treatment of hypoglycaemia is by eating foods or taking

sugar. If a person is not able to take food, an injection of glucagon may help. If

not treated in time, hypoglycaemia can lead to hypoglycaemic coma , which usually

appears when the concentration of glucose in the blood falls below 20 mg
dL

.
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Chapter 2

2.3 Physical activity

It is well established that performing a regular physical activity promotes a healthy

lifestyle, with significant benefits. At any age, regular physical activity, even moder-

ate, contributes to improving the quality of life as it positively affects both the state

of health (helping to prevent and alleviate many of the chronic diseases) and the

degree of personal satisfaction (helping to develop social relationships and helping

psycological well-being). Physical exercise, in fact, reduces blood pressure, controls

the level of blood sugar, positively modulates cholesterol in the blood, helps to pre-

vent metabolic, cardiovascular, neoplastic diseases. It also reduces the symptoms of

anxiety, stress, depression and reduces the risk of several types of cancer [23].

During physical activity, whole-body oxygen consumption may increase by as much

as 20-fold, and even greater increases may occur in the working muscles. Carbo-

hydrates and lipids are generally considered the most important substrates during

exercise. Although amino acids are used during exercise as well, their quantitative

role in the energy provision to exercising muscle is limited under most circum-

stances [24].

Substrate metabolism during exercise depends on its intensity and duration, together

with the training status of the exercising individual. Muscle and liver glycogen be-

come more important to energy provision with increasing exercise intensity, while

the relative contribution of plasma free fatty acids (FFA) decrease. In addition, in-

tramuscular triglycerides (IMTG) play a role in muscle metabolism during moderate

to intense exercise, but probably not at very low intensities [11]. When exercise is

prolonged (> 60 min), muscle glycogen stores eventually become depleted, and, con-

sequently, the contribution of plasma substrates to total energy expenditure must

increase if power output is to be sustained [32].

In general, glucose utilization increases during exercise and therefore endogenous

glucose production must increase to meet the increased metabolic demands of the

muscle to minimize risks of hypoglycemia [2]. Liver glycogenolysis accounts for ap-

proximately 75% of glucose output at the onset of exercise. Since liver glycogen

stores after an overnight fast are approximately 75 - 100 g, after 40 min of strenuous

exercise as much as 20 - 25% of pre-exercise liver glycogen will have been mobi-

lized. As liver glycogen becomes increasingly depleted, the rate of glycogenolysis

will fall, and gluconeogenesis will contribute up to 50% of total glucose output.

Subsequently, a decline in plasma insulin levels is probably the most important

factor stimulating glucose production by the liver and is likely due to epinephrine

which suppresses insulin secretion. A lot of studies have been conducted to under-
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stand the role of catecholamines during exercise. Epinephrine and norepinephrine

in fact, are responsible for many adaptations both at rest and during exercise and

they are the main hormones whose concentrations increase markedly during physical

activity (many researchers reported 1.5 to > 20 times basal concentrations depend-

ing on exercise characteristics as duration and intensity) [41]. Moreover, several

studies have shown that adrenaline and noradrenaline are involved in cardiovascular

and respiratory adjustments and in substrate mobilization and utilization. Many

studies [13, 18, 21] reported that for a given duration the circulating noradrenaline

concentrations increases exponentially with the intensity of exercise. Most find-

ings then reported a higher adrenaline response to exercise in endurance-trained

compared with untrained subjects in response to intense exercise at the same rel-

ative intensity as all-out exercise. This phenomenon is referred to as the “sports

adrenal medulla” and for some authors it can partly explain the higher physical

performance observed in trained compared to untrained subjects. Many studies

have also focused on gender effects on catecholamine response to exercise to verify

if significant differences in catecholamine responses could be partly responsible for

the different performances observed between trained men and women. However, the

fact that there are differences in catecholamine response between men and women

does not achieve unanimity since there are studies which do not report gender dif-

ferences and studies which observe significantly higher catecholamine concentration

in men than in women. Another important consideration is the intensity of exercise

which is known to have a greater effect on catecholamine response. Moreover, pa-

rameters such as age, nutritional and emotional state have been found to influence

catecholamine concentrations.

Glucagon also plays an important role during physical activity and its concentra-

tions is correlated significantly with norepinephrine and epinephrine concentrations

during prolonged and with epinephrine during graded exercise. Although increments

in catecholamines were similar, the glucagon secretion was larger during prolonged

than during graded exercise. While increments in catecholamines might explain in-

creased glucagon secretion during graded exercise, they cannot account completely

for the rise of glucagon during prolonged exercise [14].

Similarly to insulin, a single bout of exercise increases the rate of glucose uptake into

the contracting skeletal muscles, a process that is regulated by the translocation of

GLUT4 glucose transporters to the plasma membrane and transverse tubules [16].

Despite the fact that the result is an increased content of GLUT4 in the plasma

membrane, insulin and exercise act through two different mechanisms. Some stud-

ies suggest there are different intracellular ”pools” of GLUT4, one stimulated by
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insulin and one stimulated by exercise which perhaps explains why humans with

insulin resistance can increase muscle glucose transport in response to an acute

bout of exercise [17]. Insulin signaling involves the rapid phosphorylation of the

insulin receptor, insulin receptor substrate-1/2 (IRS-1/2) on tyrosine residues, and

the activation of phosphatidylinositol 3-kinase (PI3-K) [10, 20]. Muscle contraction

is initiated by a necessary release of calcium to permit cross bridge formation. In-

tracellular calcium activates PKC serine kinases which have been hypothesized to

stimulate GLUT4 recruitment by unknown mechanisms [Figure: 2.4 ].

Figure 2.4: Mechanisms involved in the stimulation of glucose transport by exercise. Muscle

contractile activity induces a recruitment of a separate pool of intracellular GLUT4 to

the plasma membrane and a subsequent increase in glucose transport [40].

Physical exercise can contribute to improve the quality of life even for diabetic

subjects, but the optimal conditions in which operate in terms of intensity, duration

and insulin therapy are still unclear. In particular, physical activity can lower blood

glucose in both the short and long term with the risk of hypoglycaemia which rep-

resents the main barrier to exercise for these individuals [2]. In fact, is well known

that physical activity in T1D patients influences glucose concentrations not only

during exercise, but also several hours after, leading to late evening and nocturnal

hypoglycemia [19]. The glycemic response depends largely on the type, intensity

and duration of the activity, as well as the circulating insulin and glucose counter-

regulatory hormone concentrations [29].
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Experimental Protocol

In this chapter it is briefly described the glucose clamp technique and how it has

been realized for the study. It is also presented the experimental protocol used

for the estimation of glucose fluxes during physical activity. Finally, concentration

profiles of glucose, insulin, glucagon and glucose fluxes are shown.

3.1 Subjects

In this thesis we want to develop a model which can describe the effects of physical

activity on the endogenous glucose production. The data comes from a study con-

ducted at Mayo Clinic Rochester Minnesota on 12 subjects, 6 ND and 6 T1D, with

age between 18 and 65 years, and body mass index (BMI) of 19-40 kg
m2 .

The inclusion criteria for both ND and T1D participants are:

• Age 18-65 years;

• BMI of 19-40 kg
m2 ;

• Creatinine ≤ 1.5 mg
dL

;

• Normotensive; hypertension controlled on meds;

• No acute disease;

• No history of current substance abuse;

• Negative pregnancy test in premenopausal woman;

• No history of macrovascular disease;
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For only T1D diabetic subjects:

• HbA1c ≤ 11%;

• On insulin pump or multiple daily injection therapies;

• No history of diabetic microvascular complications except for stable back-

ground retinopathy.

Figure 3.1: Anthropometric characteristics of healthy subjects: mean and standard deviation

(SD).

Figure 3.2: Anthropometric characteristics of subjects with type 1 diabetes: mean and standard

deviation (SD).

3.2 Clamp study

This study is based on the clamp technique which is, in general, a method for

quantifying insulin secretion and resistance [8]. In this case, the clamp technique

was realized to avoid confusing effects of glucose and insulin in the regulation of the

dynamics occurring during the experiment.

There are two types of clamp:

- hyperglycemic clamp: the goal is to raise the plasma glucose concentra-

tion to a fixed hyperglycemic plateau. The desired plateau is maintained by

adjustment of a variable glucose infusion, based on the negative feedback prin-

ciple. Because the plasma glucose concentration is held constant, the glucose

infusion rate is an index of insulin secretion and glucose metabolism [8].
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- euglycemic clamp: the plasma insulin concentration is raised and keep con-

stant to a new plateau by a prime-continuous infusion of insulin. The plasma

glucose concentration is held constant at basal levels by a variable glucose

infusion. At steady-state, the glucose infusion rate equals glucose uptake by

tissues. Basically, the test measures the amount of glucose needed to compen-

sate for the increased insulin levels.

As we will see in section (3.3), each subject performed three visits in different con-

dition of glucose and insulin. In particular, in the first and second visit is realized

the euglycemic clamp while in the third visit is realized the hyperglycemic clamp.

In this study three types of infusion are used to realize the glucose clamp:

1. Insulin infusion using a syringe pump through a peripheral vein. The rates of

insulin infusion are chosen in order to replace the basal insulin in T1D subjects

or to maintain a high physiological insulin level.

2. Intravenous glucose infusion: is used to raise the glucose level in plasma to the

desired plateau. The maintenance dose is frequently adjusted so that if the

actual glucose concentration is higher than the goal, the infusion is decreased

and vice versa. The glucose infusion rate is called GIR and represents the

amount of glucose needed to compensate for the increased insulin levels. If a

high glucose rate is required it means that the subject is insulin-sensitive; on

the other hand, very low glucose rate indicates insulin resistance (this is not

always true since it depends by the experimental conditions). Hence, under

this steady-state conditions of glycemia, GIR equals glucose uptake by all

tissues.

3. Tracer infusion: it is necessary to estimate glucose fluxes. A metabolic tracer

is, by definition, a substance used to follow the biological transformation of an

endogenous substrate (tracee).Tracer properties are:

• Principle of indistinguishability: glucose and tracer must be sepa-

rately measurable. Usually it means that glucose is isotopically labelled.

• Kinetic equivalence: from a kinetic standpoint, the tracer must be

indistinguishable from glucose.

• Quantitatively negligible: the quantities of tracer administrated have

to be small since they have not to perturb the system [30].
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The tracer used for the estimation of EGP was a stable isotope of glucose: [6,6 -
2H2]glucose. It was administered together with an exogenous glucose infusion (GIR).

The rate of this infusion is called Ginf and is used to reduce TTR oscillation.

The rate of infusion of [6,6 -2H2]glucose is obtained by sampling glucose before the

start of the experiment in one visit only, since it can be assumed that glucose kinetics

does not change between visits.

The use of the glucose tracer is fundamental for the estimation of glucose fluxes: the

idea is to use “intelligent” infusions of this tracer aiming to estimate in a“model-

independent” manner the EGP. The estimates generally depend on the chosen model

in terms of model order and parameters values. This dependence is minimizing by

tracer infusions which try to mimic the expected pattern of EGP, which leads to

minimize TTR time variations (tracert-to-tracee ratio). This technique is called

tracer-to-tracee clamp [7].

3.3 Experimental design

Each subject performed 3 visits in different glycemic and insulin levels with a session

of moderate physical activity. The three visits are chosen in order to reproduce the

various conditions that can occur in real life, and in each one is used the clamp

technique:

1. Euglycemic and low insulin clamp: this kind of visit was chosen to eval-

uate the effects of physical activity in standard conditions.

2. Euglycemic and high insulin clamp: this kind of visit was chosen in order

to evaluate the effects of physical activity on a condition characterized by high

insulin level. With this visit we can evaluate glucose response, such as glucose

utilization and suppression of EGP due to high insulin levels.

3. Hyperglycemic and low insulin clamp: this kind of visit was chosen in

order to evaluate the effects of exercise on a condition characterized by high

glucose values. With this visit we can evaluate glucose response, such as glu-

cose utilization and suppression of EGP due to high glucose levels. Moreover,

this visit can be very important for T1D subjects since it reproduces what

happens in real life.

The three visits are in random order, which ensure that any differences between

ND and T1D subjects results are only due to differences in treatment. Furthermore,

these visits reproduce what can happen in real llife: for a hyperglycemia condition,
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a T1D subject may also decide to perform physical activity (third visit), or he/she

may decide to inject a bolus of insulin first (second visit).

The rates of insulin infusion to ensure a clamp study are chosen in order to re-

spect the real insulin levels: for the first and third visit (low insulin) a rate of

0.25 mU/Kg/min is fixed. This value is chosen to replace the basal insulin in

T1D subjects. For the second visit (high insulin) the infusion rate is fixed to 0.75

mU/Kg/min. This value was chosen in order to suppress endogenous insulin secre-

tion still respecting the insulin physiological range.

The figure below will provide the reader a schematic representation of the con-

ditions realized for each visit for both healthy and diabetic subjects.

Figure 3.3: Glucose levels and rate of insulin infusion in the three visits.

3.3.1 Screen visits

All subjects involved in this experiment gave their informed consent to participate in

the study. They reported to the Mayo CRTU in the morning after an overnight fast

where a physical examination (height, weight, waist-hip measurement, vital signs)

was performed. A negative pregnancy test was performed by all woman of child-

bearing potential. Moreover, screening tests as CBC, electrolyte panel, liver function

(AST, ALT), urinalysis were done, as well as the Paffenbarger Activity question-

naire to confirm habitual physical activity. A DXA scan was done to measure body

composition, percent body fat and fat free mass where the last one was used to de-

termine dose of infusions in the visits. T1D subjects also performed HbA1c tested.

To determine the intensity of exercise during the visits, each individual performed

a graded exercise test on bike where VO2max and heart rate response to maximum

exercise were evaluated. VO2max represents the maximum volume of oxygen that

an athlete can use and based on this value and on the watts produced to reach it,

it is possible to define a measure of the aerobic fitness for each subject.
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To monitore glucose levels in T1D subjects a fingerstick blood glucose was used be-

fore and after the exercise test. If during the study were observed some hypoglycemic

symptoms, additional blood glucose readings was done. The use of caffeinated drinks

was asked to be limited and other dietary preferences during in-patient study visits

were discussed with the dietician.

As previously said, the study includes three visits for each subject with a session of

moderate physical activity. The figure below provides the reader with an elementary

description of the visit with the three types of infusion used to realize the clamp

and then a more detailed description of each visit (V1, V2, V3) is provided.

Figure 3.4: Study Visits structure.
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V1: EUGLYCEMIC AND LOW INSULIN CLAMP

All subjects were admitted to the CRTU at 6 PM of the day prior the study and at

∼1700 of the same day were provided with a 10 kcal/kg meal which included 20%

of protein, 50% of carbohydrate and 30% of fat. T1D subjects administered their

customary bolus dose of insulin according to their insulin/carbohydrate ratio with

the evening meal. No additional food is eaten until the end of the study the next

day.

For those who are on MDI (Multiple Daily Injection) program, they will not admin-

ister their basal insulin dose that evening. In T1D subjects two intravenous cannulae

have been inserted: one was used to infuse insulin and the other to monitor blood

glucose overnight. To maintain normoglycemia, insulin infusion started at ∼2100

and continued throughout the night and the insulin pup was discontinued for those

with the insulin pump.

In case of stuff problems or preference of the subject not to be admitted the evening

before the study, then it was asked to report to the CRTU at 5 am for an outpa-

tient study day instead. In this case any instruction to follow the evening before is

given. As regard T1D subjects, the physician will discuss with the patient about

evening dose of insulin and overnight management of glucose. In the morning of

study, a venous catheter was inserted either in a retrograde fashion into a hand vein

or antegrade fashion in the arm for periodic blood draws in both T1D and healthy

subjects; then the hand is placed in a heated plexiglass box whose temperature is

kept at 55C. The IV line used for overnight blood withdrawal in T1D subjects may

be saline locked. In the morning, up to 2 intravenous cannulae may be placed in a

forearm vein for tracer infusions using aseptic technique in healthy subjects and in

subjects with type 1 diabetes.

As we can see in [Figure: 3.4 ], at -60 minutes (∼0700 hour) an infusion of the tracer

[6,6 -2H2] glucose (33 µmol/kg prime and 0.33 µmol/kg/min continuous) was started

and continued until the end of study. At time zero (approximately 0800 hour), an

infusion of insulin and glucose was started until the end of the study: insulin was in-

fused with a rate of 0.25 mU
Kg∗min while glucose containing [6,6 -2H2] glucose is infused

in amounts sufficient to clamp glucose at 5.5 mmol/L (100 mg/dl). Moreover, the

basal infusion of tracer is changed beginning at time zero in a pattern that mimics

the anticipated changes in glucose production in order to minimize the changes in

plasma glucose enrichment and tracer-to-tracee ratio TTR.

Once euglycemia is reached, the patient performed 60 minutes on a cycle ergometer

at 65% of VO2max.
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During the visit blood samples of glucose, insulin, glucagon, lactate, and [6,6 -2H2]

glucose were sampled at timed intervals. Only in this visit [6,6 -2H2]glucose was

sampled from T-60 to T0 for the estimation of glucose kinetics parameters since it

can be assumed that glucose kinetics does not change between visits.

The visit ended at ∼1300 and all infusions and blood draws have been stopped.

Figure 3.5: V1: euglycemic clamp and low insulin level.

V2: EUGLYCEMIC AND HIGH INSULIN CLAMP

In this visit, as in V1, subjects were admitted to the CRTU at 6 PM of the day prior

the study. In case of stuff problems or preference of the subject not to be admitted

the evening before the study, then it was asked to report to the CRTU at 5 am for

an outpatient study day instead and any instruction to follow the evening before is

given. All the guidelines and tests of visit 1 were repeated.

At -60 minutes (0700 hour) an infusion of the tracer [6,6 -2H2] glucose (33 µmol/kg

prime and 0.33 µmol/kg/min continuous) was started and continued until the end

of study. At time zero (approximately 0800 hour), an infusion of insulin and glu-

cose was started until the end of the study: insulin was infused with a rate of

0.75 mU
Kg∗min while glucose containing [6,6 -2H2] glucose is infused in amounts suffi-

cient to clamp glucose at 5.5 mmol/L (100 mg/dl). Moreover, the basal infusion of

tracer is changed beginning at time zero in a pattern that mimics the anticipated

changes in glucose production in order to minimize the changes in plasma glucose

enrichment and tracer-to-tracee ratio TTR. From T120 to T180 the patient per-

formed 60 minutes on a cycle ergometer at 65% of VO2max.

During the visit blood samples of glucose, insulin, glucagon, lactate, and [6,6 -2H2]

glucose have been sampled at timed intervals.

The visit ended at 1300 and all infusions and blood draws have been stopped.
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Figure 3.6: V2: euglycemic clamp and high insulin level.

V3: HYPERGLYCEMIC AND LOW INSULIN CLAMP

For this visit the only difference with V1 was glucose clamped at 180 mg/dl (10

mM) to maintain hyperglycemia. The visit ended at 1300 and all infusions and

blood draws have been stopped. A meal is provided and T1D take their customary

dose of insulin based on insulin/carbohydrate ratio, then subjects are dismissed from

CRTU.

Figure 3.7: V3: hyperglycemic clamp and low insulin level.

For each visit all blood samples are immediately placed on ice, centrifuged at

40C, separated and stored at -800C until analyses.
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3.4 Estimates of plasma glucose, insulin, glucagon

and glucose fluxes

The following section reports the concentrations of plasma glucose, insulin, glucagon

and glucose fluxes estimated during the clamp study with a single tracer approach.

For each visit, the average concentrations are reported. Each visit will be referred

as follows:

• V1 : euglycemia and low insulin

• V2: euglycemia and high insulin

• V3 : hyperglycemia and low insulin

Plasma glucose

In [Figure: 3.8] the comparison of glucose concentrations between ND and T1D

is reported, and, as we can see, glucose is generally well clamped. The easiest visit is

the V1 where glucose is clamped at 100 mg/dL to maintain euglycemia and insulin is

proximal to its basal value (0.25 µU/mL). As it is shown in [Figure: 3.8(a)], for ND

subjects glucose clamp is quickly reached in V1 and it is maintained until the end

of the study with minimal oscillations. Even in V2 glucose clamp is quickly reached

but some more oscillations are presented after exercise. Altough in V3 it was more

difficult to maintain the glucose in the desired range, the oscillations are minimized

and the results are still satisfactory. In this visit, plasma glucose concentration is

higher than V1 and V2, by design.

As regard T1D subjects [Figure: 3.8(b)], glucose at time T0 is higher with respect

healthy individuals and they show more oscillations. Even for these subjects, the

third visit was the most complicated. In general, T1D individuals have slightly

higher glucose concentration values, especially in V3.

Plasma insulin

For what concerns plasma insulin concentration, the first and third visit have the

same insulin infusion rate (0.25 mU/kg/min), but for ND individuals insulin level

in V3 is higher than in V1. This is due to the fact that no somatostatin is infused,

thus, for ND, additional endogenous insulin is secreted in V3 in response to hyper-

glycemia. This does not occur in T1D subjects since they do not produce insulin
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(a) Mean of glucose in ND subjects (b) Mean of glucose in T1D subjects

Figure 3.8: Average glucose concentration in ND (left) and T1D (right) subjects in the three

visits. Vertical bars represent the standard error.

by themselves. In V2 insulin infusion rate is 0.75 mU/kg/min and its concentration

does not exceed 70 µU/mL. This rate of infusion was chosen specificaaly to be high,

but physiologically reasonable, and it ought suppress endogenous insulin secretion.

Moreover insulin at T0 is almost equal in the three visits (around 4 µU/mL) for

ND individuals while in T1D there is more variability. Another difference between

the two groups is that insulin rises during physical activity and this can be seen es-

pecially in T1D individuals and in particular in V2. This increase may seem rather

unexpcted since insulin is infused at constant rate and T1D subjects do not produce

endogenous insulin, but this may be due to a reduction of all body insulin clearance

or a reduction of the insulin distribution volume.

In general, insulin slightly increase during exercise, despite the constant infusion.

(a) Mean insulin in ND subjects (b) Mean insulin in T1D subjects

Figure 3.9: Average insulin concentration in ND (left) and T1D (right) subjects in the three

visits. Vertical bars represent the standard error.
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Glucagon

In this study glucagon is not controlled, but we can see that its level is quite

flat before the beginning of exercise in all visits in both ND and T1D subjects. The

average concentration is in the range 40-80 pg/mL in both groups with a slight

increment during exercise especially in V1 for ND and V3 for T1D.

In general, glucagon rises during exercise for both ND and T1D individuals, even if

not always markedly, while it decreases in the recovery phase in all visits. Moreover,

glucagon concentrations are not significantly different between ND and T1D.

(a) Mean glucagon in ND subjects (b) Mean glucagon in T1D subjects

Figure 3.10: Average glucagon concentration in ND (left) and T1D (right) subjects in the three

visits. Vertical bars represent the standard error.
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Glucose fluxes

For the estimation of glucose fluxes a single tracer approach was used. The

tracer must have a unique property that allows its detection, but at the same time

be chemically identical to the tracee. Its very important that its chemical concen-

tration is insignificant in comparison to that of the tracee in order to not altered

the system.

Let’s define the tracer-to-tracee ratio (TTR) as the ratio between the concentration

of the glucose tracer ([6,6 -2H2] glucose) with respect to the total glucose concen-

tration. The idea is the adoption of an “intelligent” infusion of tracer in order to

minimize changes in the TTR and this means modifying tracer infusion rate to re-

produce the anticipated EGP pattern. As we can see in [Figure: 3.11], realizing

a perfect clamp for TTR is almost impossible, but minimizing its fluctuations is

fundamental because the larger the oscillation in the signal are, the more uncer-

tain is the estimation of glucose fluxes. When this condition is reached, at least

approximately, dTTR/dt is close to zero and a flat TTR is manteined troughout

the system. Therefore, EGP, close to the ratio between the rate of infusion and the

TTR, is minimally influenced by the choice of the model. [7]

(a) Mean of TTR in ND subjects (b) Mean of TTR in T1D subjects

Figure 3.11: Average tracer-to-tracee ratio in ND (left) and T1D (right) subjects in the three

visits. The vertical bars represent the standard error.
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Rd

As regard the rate of glucose disappearance Rd, the first consideration we can

make is that it is always higher in ND with respect to T1D, especially during physical

activity, proving extra-hepatic insulin resistance of T1D individuals. At time T0

both groups present values around 2 mg/kg/min in all visits and then Rd starts

to increase in V2 and V3 while remains quite flat in V1. In ND subjects Rd does

not increase immediately in V2 and V3 but it starts to rise after 30 minutes due to

the time needed by insulin to exert its action. As expected, Rd increases between

T120 and T180 in both groups, and it is higher in ND subjects with values around

11 mg/kg/min in V1, 16 mg/kg/min in V2, and 22 mg/kg/min in V3, against

6 mg/kg/min in V1, 10 mg/kg/min in V2, 9 mg/kg/min in V3 in T1D subjects.

During the recovery, the average of Rd decreases in both groups and in [Figure: 3.12])

we can see that it reaches values higher than the two hours before the start of the

exercise.

In general, Rd is significantly lower in V1 than V2 and V3 for ND subjects, due to

higher insulin levels in the these two visits. For T1D instead, Rd in V1 is markendly

lower than V2, but only slightly lower than V3. In summary, Rd is higher whenever

insulin is elevated: in V2 and V3 for ND, and only in V2 for T1D.

(a) Mean of Rd in ND subjects (b) Mean of Rd in T1D subjects

Figure 3.12: Average glucose disappearance in ND (left) and T1D (right) subjects in the three

visits. The vertical bars represent the standard error.

38



Experimental Protocol

EGP

Finally Figure: 3.13 shows the average of estimated EGP. Throughout the study,

EGP is higher in T1D with respect to ND in V1 and V3, while it is lower in V2.

At time T0 EGP is around 2 mg/kg/min and then decreases slightly until T120 in

both groups due to insulin and/or glucose increment as expected by design. This

drop is shown in particular in V3 for ND subjects.

During physical activity EGP increases in both groups: in ND individuals the flux

increases from 0.8 mg/kg/min at T120 to 2 mg/kg/min at T180 in V1, from 0.7

mg/kg/min at T120 to 1.6 mg/kg/min at T180 in V2, from 0.1 mg/kg/min at

T120 to 0.9 mg/kg/min at T180 in V3. In T1D individuals the flux rises from 1.1

mg/kg/min at T120 to 4 mg/kg/min at T180, from 0.6 mg/kg/min at T120 to

0.9 mg/kg/min at T180 in V2, from 1.8 mg/kg/min at T120 to 2.8 mg/kg/min

at T180 in V3. In the last two hours of the study, EGP decreases in both groups:

in ND subjects the flux seems to return to the values of the pre-exercise while in

T1D subjects we can observe that the flux reaches values lower with respect to the

pre-exercise in V2 and V3 and in particular this occurs after T230 in both visits.

In summary, as expected, EGP rises during exercise and decreases during the recov-

ery in both groups. In [Figure: 3.13(a)] we can see that the higher response of EGP

is in V1, which is reasonable as in V2 there is high insulin level and in V3 there are

high levels of both insulin and glucose. As regard T1D subjects, the rise of EGP

is more pronounced in V1 and V3. In the interval from T120 to T180 the higher

response is always in V1, but in contrast with ND, the increment is marked also in

V3 due to low insulin level in the circulation.

At the end of the exercise EGP is immediately suppressed, especially in V1 in both

groups.

(a) Mean of EGP in ND subjects (b) Mean of EGP in T1D subjects

Figure 3.13: Average glucose production in ND (left) and T1D (right) subjects in the three visits.

The vertical bars represent the standard error.
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Models

In this chapter, the models developed to describe the endogenous glucose produc-

tion during physical activity are presented. We started by considering the model 6

discussed in Dalla Man et al. [7] which provides a good prediction of EGP profiles

of 20 subjects obtained with a triple-tracer meal protocol. This model provides an

accurate assessment of the pattern of endogenous glucose production that occurs

after food ingestion. Since this model was not developed to consider the effects

of physical activity, some changes were necessary to adapt it to our experimental

conditions. The strategy adopted was to identify the models proposed during the

pre-exercise phase in order to evaluate the results in steady-state conditions and

then identify the models introducing the effects of physical activity.

Several models have been developed but in this section only the most relevant are

presented.

4.1 EGP during a meal

In this study we started by considering the model 6 of EGP proposed by [7] tested

on model-independent EGP data of 20 subjects obtained with a triple-tracer meal

protocol. The EGP estimates were obtained in a virtually model-independent man-

ner by using the TTR clamp technique. This model is able to distinguish glucose

and insulin contributions on the suppression of EGP, and therefore glucose effective-

ness and hepatic insulin sensitivity can be estimated. In particular, are considered

three control signals on the EGP suppression: the first term is XL which represents

the delayed insulin action. From the physiological point of view, the delayed insulin

action can be interpreted as a signal surrogating the suppression of FFA level, which
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leads to the suppression of EGP. The second term is XDer which accounts for glu-

cose derivative control on the fast suppression of EGP. The third control signal is

proportional to above-basal glucose concentration through a parameter kG [7].

Model equations are:

EGP (t) = EGPb − kG · [G(t) −Gb] −XL(t) −XDer(t) EGP (0) = EGPb (4.1)

with XDer(t) defined as:

XDer(t) =

kGR · dG(t)
dt

if dG(t)
dt

≥ 0

0 if dG(t)
dt

< 0
(4.2)

where:

- EGPb (mg/kg/min) is basal EGP;

- G(t) (mg/dL) is plasma glucose concentration;

- Gb (mg/dL) is basal glucose;

- kG (dL/kg/min) is the constant rate governing the magnitude of insulin se-

cretion in response to the glucose deviation from the basal;

- kGR (dL/kg) is the constant rate accounting for glucose derivative control on

the fast suppression of EGP.

Delayed insulin kinetics is described by a two-compartment model, with the

following dynamic equations:

ẊL(t) = −k1 ·XL(t) + k1 ·X1(t) XL(0) = 0

Ẋ1(t) = −k1 · [X1(t) − k2 · (I(t) − Ib)] X1(0) = 0
(4.3)

where:

- X1(t) (mg/kg/min) is delayed insulin action with respect to plasma insulin

concentration (deviation from basal);
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- I(t) (µU/mL) is plasma insulin concentration;

- Ib (µU/mL) is basal insulin;

- k1 (min−1) is a rate constant describing the dynamics of insulin action on

glucose production. It quantifies the delay between plasma insulin and delayed

insulin action;

- k2 (mg ∗mL/(µU ∗ kg ∗min)) is insulin sensitivity, a parameter governing the

magnitude of insulin action.

Figure 4.1: Insulin action model.

In summary, the model proposed assumes that EGP suppression is linearly de-

pendent on plasma glucose concentration, delayed insulin action, and glucose deriva-

tive.

Glucose and insulin concentrations are the model forcing functions assumed to be

known without error.

4.2 Model identification in the pre-exercise phase

In this section, models used for the identification in the pre-exercise phase are

presented. First, we analysed each visit alone and, then, we moved to multi-

identification of all three visits for each subject. In this step is very important

to obtain a correct estimation of the parameters in order to incorporate this infor-

mation in the model of glucose production during exercise that will be described in

the next section (4.3).

4.2.1 Single-visit identification

The first step was to consider the model above under steady-state conditions, and

therefore during the first 120 minutes. We started with a single-visit identification

and not considering XDer(t) action on EGP in order to highlight, if any, the main

differences.
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So the model is:

EGP (t) = EGPb − kG · [G(t) −Gb] −XL(t) EGP (0) = EGPb (4.4)

with insulin action described as in (4.3):

ẊL(t) = −k1 ·XL(t) + k1 ·X1(t) XL(0) = 0

Ẋ1(t) = −k1 · [X1(t) − k2 · (I(t) − Ib)] X1(0) = 0
(4.5)

The model is a priori uniquely identifiable, and was identified using the non-

linear least squares estimation, with SD constant but unknown. Model performances

were compared on the basis of several criteria: precision of the estimated parameters

(expressed as coefficient of variation CV), models ability to describe the data (ex-

pressed as the residual sum of squares RSS) , model parsimony (Corrected Akaike

information criterion AICc) and physiological plausibility.

The objective function contains the weighted residuals until T=120 minutes ob-

tained from the fit of glucose production:

R(p) =
N∑
i=1

(yi − s(p̂, ti)
2

V (s(p̂, ti), yi, v̂)
(4.6)

where:

p is the vector of parameters

R(p) is the objective function

N number of data points

yi is the i-th datum in the data set

s(p, ti) is the model value corresponding to yi at time i

v is the variance parameter in the data set

V (s(p̂, ti), yi, v̂) is the variance model for yi

Three parameters k1 (min−1), k2 (mg∗mL/(µU ∗kg∗min) and kG (dL/kg/min)

have been estimated for each visit. In particular, kG was well estimated only in V3

(CV ∼ 30%), while it was estimated with poor precision (high CV) in V1 and V2. It

is important to note that kG in this model can be interpreted as an overall measure of
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the ability of glucose to inhibit glucose production both directly and indirectly (i.e.,

by stimulating insulin secretion). Although it is known that glucose concentration

per se has an effect on glucose production [38], we have to take into account that

V1 and V2 are characterized by a condition of euglycemia and, therefore, only in V3

(condition of hyperglycemia) we can probably quantify and appreciate this effect.

Individuals values of this parameter are reported in Table 4.1 with coefficient of

variation indicated in parentheses.

Table 4.1: Estimates of kG in the three visits. Number in parenthesis indicate coefficient of varia-

tion (CV %)

Subjects V1 V2 V3

1 1 · 10−5 1 · 10−5 0.020

(> 500) (> 500) (22)

2 1 · 10−5 0.006 0.015

(> 500) (99) (4)

3 0.027 0.001 0.017

(13) (> 500) (39)

4 0.007 0.027 0.025

(80) (32) (22)

5 1 · 10−5 0.013 0.041

(> 500) (23) (59)

6 1 · 10−5 1 · 10−5 0.007

(> 500) (> 500) (54)

mean 0.006 0.008 0.021

(> 500) (> 500) (33)

SD 0.011 0.011 0.011

As regard the estimates of k2, they are quite different in the three visits: as

we can see in [Figure: 4.2 ], k2 is higher in V1 and V3 with mean 0.14 and 0.20

(mg ∗ mL/(µU ∗ kg ∗ min)), respectively, while it has lower values in V2 for all

subjects with a mean of 0.03 (mg ∗mL/(µU ∗ kg ∗min)).
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Figure 4.2: Estimates of k2 in the three visits.

Due to these considerations, we then proceeded with an identification which

considered for each subject the three visits together. In addition, we decided to

exploit a priori information for kG and to estimate k2 per each one of the three

visits considered.

4.2.2 Three-visits multi-identification

As discussed above, we then proceeded with a multi-identification of all three visits,

using a priori information for kG and estimating k2 differently for each visit. The

objective function (4.6) was modified in order to consider the weighted residuals of

the whole three visits, and other terms accounting for the Bayesian information were

included.

R(p) =
J∑
j=1

Nj∑
i=1

(
(yi,j − s(p̂, ti,j))

2

Vi,j(s(p̂, ti,j), yi,j, v̂j)
) +

√
log[Vi,j(s(p̂, ti,j), yi,j, v̂j)])

+

Nb∑
k=1

(

√
(pk −mp,k)2

σ2
p,k

+
√
log(σ2

p,k))

(4.7)

The notation is:

R(p) is the objective function

p is the vector of parameters

J is the number of data set and therefore the numer of visits

Nj is the number of data points in the j-th data set

yi,j is the i-th datum in the j-th data set

s(p̂, ti,j) is the model value corrisponding to yi,j at time ti,j
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vj is the variance parameter in the j-th data set

Vi,j(s(p̂, ti,j), yi,j, v̂j) is the variance model for yi

Nb is the number of Bayesian parameters

σp,k is the standard deviation of parameter pk in that population

Different models have been developed to describe endogenous glucose production

until T=120. In this section we will present the following models:

- Model 1: Model of EGP with a double delay in insulin action.

- Model 2: Model of EGP with a single delay in insulin action.

- Model 3: Model of EGP which includes the action of XDer.

- Model 4: Model of EGP which includes the action of glucagon.

Model 1: is the model presented in section (4.1) but without the action of

XDer. Insulin action on the suppression of EGP has a double delay and its dynamic

equations are the same of (4.3), which are reported below:

ẊL(t) = −k1 ·XL(t) + k1 ·X1(t) XL(0) = 0

Ẋ1(t) = −k1 · [X1(t) − k2 · (I(t) − Ib)] X1(0) = 0
(4.8)

Hence, the parameters to be estimated are k1, k2 V 1, k2 V 2, k2 V 3, and kG.

Model 2: in this model we considered the insulin action with a single delay. The

reason was to try to provide a better estimation of EGP in those subjects in which

the fit model was overstimating the data. The equation of the model becomes:

EGP (t) = EGPb − kG · [G(t) −Gb] −X1(t) EGP (0) = EGPb (4.9)

The model of insulin action is shown in [Figure: 4.3 ], with dynamic equation:

Ẋ1(t) = −k1 · [X1(t) − k2 · (I(t) − Ib)] X1(0) = 0 (4.10)

Hence, the parameters to be estimated are k1, k2 V 1, k2 V 2, k2 V 3, and kG.
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Figure 4.3: Insulin action model.

Model 3: it includes the action of insulin XDer proportional to the glucose rate

of change as presented in section (4.1), but with a single delay in insulin action.

Model equation is:

EGP (t) = EGPb − kG · [G(t) −Gb] −X1(t) −XDer(t) EGP (0) = EGPb (4.11)

with:

Ẋ1(t) = −k1 · [X1(t) − k2 · (I(t) − Ib)] X1(0) = 0 (4.12)

The parameters to be estimated are k1, k2 V 1, k2 V 2, k2 V 3, kG and kGR.

Model 4: it includes the action of glucagon in glucose production. Like in

Model 2, we considered only one delay in insulin action.

Model equation is:

EGP (t) = EGPb−kG·[G(t)−Gb]−XL(t)+kGluca·(Gluca(t)−Glucab) EGP (0) = EGPb

(4.13)

with insulin equation as in (4.12).

The notation is:

- kGluca (mg ∗mL/(pg ∗kg ∗min)) is the constant rate governing the magnitude

of glucagon in glucose production.

- Gluca (pg/mL) is glucagon concentration.

- Glucab (pg/mL) is basal glucagon.

Hence the parameters to be estimated are k1, k2 V 1, k2 V 2, k2 V 3, kG and kGluca.
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RESULTS

Below are reported the results for ND subjects.

As summarized in Table 4.2 all the four models provided similar RSS, AICc

and SD. As we can see, Model 2 has slightly lower RSS and AICc with respect to

Model 1, and both models provide precise parameters estimates (< 50%). Due to

these considerations we decided to exclude Model 1 and always consider simpler

models with a single delay in insulin action. Model 3 and 4 provide slightly lower

RSS with respect to Model 2 essentially due to the higher number of parameters

and their AICc is only modestly higher. However, Model 3 provides very poor

precision for the parameter kGR (CV > 100% in 4 subjects). Although the inclusion

of this derivative control in Model 6 of [7] significantly improved the ability to

fit EGP data, in this case it does not seem to bring any improvement and it is

probably due to the fact that glucose is clamped. Consequently, we decided to

exclude this model. As regard Model 4, it provides poor precision for the parameter

kGluca (CV > 100% in 4 subjects) and it is probably due to the fact that glucagon

is quite flat, especially before the beginning of exercise. However, this model is

physiologically more appealing since it includes the action of glucagon and this is

the reason why we did not exclude it. Hence we selected Model 2 and 4 as the

best models to predict EGP data during the pre-exercise.

Table 4.2: Comparison of EGP model until T=120

CV, % RSS AICc SD No. of Parameters

Model 1 19 1.43 20.70 0.26 5

Model 2 22 1.31 18.61 0.25 5

Model 3 > 500 1.19 20.59 0.24 6

Model 4 > 500 1.24 21.51 0.24 6
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4.3 Models of EGP incorporating exercise

In this section, models including the effect of physical activity in the EGP models

described in section 4.2.2 are presented.

In particular, the following models exploit both the parameters estimated (k1, k2 V1,

k2 V2, k2 V3, kG) and the covariance matrix of the identification in pre-exercise as

initial a priori information.

During exercise, blood flow rises rapidly due to an increase of its demand by the

active skeletal muscle, and to an increase of the body temperature. The blood flow

rate increases by as much as 20 times the resting state, reaching the steady level

within 10-150 seconds of exercise [4, 12]. For this reason, we considered physical

activity as a forcing function, modeled as a square wave with unitary amplitude. As

we can see in [Figure: 4.4 ], the signal is equal to 0 till T120, then it increases to 1

till T121 with a step function, and, then, it is kept constant till T180. At time T181

the signal is equal to 0 and it is kept constant till the end of the study (T300 ).

Figure 4.4: Physical activity signal modeled as a square wave.

To describe the effects of physical activity on glucose effectiveness (kG) and

insulin sensitivity (k2), new parameters are included:

- p5 is the effect of exercise on kG.

- p3 (min−1) represents the delayed effect of exercise on kG.

- p6 is the effect of exercise on k2.

- p4 (min−1) represents the delayed effect of exercise on k2.
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The effect of PA on kG and k2 have been considered both instantaneous and

delayed.

Below 9 models that include the effects of physical activity on EGP are presented

. Model from 1 to 7 refer to the model of equation (4.9) with a single delay in insulin

action, which is reported below.EGP (t) = EGPb − kG · [G(t) −Gb] −X1(t) EGP (0) = EGPb

Ẋ1(t) = −k1 · [X1(t) − k2 · (I(t) − Ib)] X1(0) = 0
(4.14)

Model 1: it considers the instantaneous effect of PA on kG only. It is described

as follows:

kG = kG · (1 − p5 · PA(t)) (4.15)

Model 2: it considers the instantaneous effect of PA on k2 only. It is described

as follows:

k2 = k2 · (1 − p6 · PA(t)) (4.16)

Figure 4.5: Model 2: instantaneous action of physical activity on k2.

Model 3: it considers the instantaneous effects of PA on both kG and k2:

kG = kG · (1 − p5 · PA(t)) (4.17)

k2 = k2 · (1 − p6 · PA(t)) (4.18)
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Model 4: it considers the delayed effect of PA on kG only. The dynamic equation

describing the delayed action of exercise is:

PA′(t) = −p3 · PA′ + p3 · PA(t) (4.19)

The action on kG is described by:

kG = kG · (1 − p5 · PA′(t)) (4.20)

Model 5: it considers the delayed effect of PA on k2 only. The dynamic equation

describing the delayed action of exercise is:

PA′(t) = −p4 · PA′ + p4 · PA(t) (4.21)

The action on k2 is described by:

k2 = k2 · (1 − p6 · PA′(t)) (4.22)

Figure 4.6: Model 5: delayed action of physical activity on k2.

Model 6: it considers the instantaneous effect of PA on kG, and a delayed effect

of PA on k2:

kG = kG · (1 − p5 · PA(t)) (4.23)

PA′(t) = −p4 · PA′ + p4 · PA(t) (4.24)

k2 = k2 · (1 − p6 · PA′(t)) (4.25)
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Model 7: PA signal is modeled as a ramp between T120 and T180 as in

[Figure: 4.7 ] (in the previous models PA is modeled with a square wave signal of

unitary amplitud).

Figure 4.7: Physical activity signal modeled as a ramp.

For this model another parameter p7 (min) is estimated: it describes the time

required to rise from 0 to 1 after T120.

Model 8: it considers the action of glucagon on EGP as in (4.13).

EGP (t) = EGPb−kG·[G(t)−Gb]−X1(t)+kGluca·[Gluca(t)−Glucab] EGP (0) = EGPb

(4.26)

Also for this model we considered the delayed effect of PA on k2 and no effects

of PA on kG.

PA′(t) = −p4 · PA′ + p4 · PA(t) (4.27)

k2 = k2 · (1 − p6 · PA′(t)) (4.28)

Model 9: from the literature it is known that catecholamines are responsible

for many actions both at rest and during exercise [41]. In this model we included

the effect of epinephrine on EGP as follows:

EGP (t) = EGPb−kG ·[G(t)−Gb]−XL(t)+kEpi ·(Epi(t)−Epib) EGP (0) = EGPb

(4.29)

The notation is:

- kEpi (mg ∗mL/(pg ∗ kg ∗min)) is the constant rate governing the magnitude

of epinephrine action on EGP.
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- Epi(t) (pg/mL) is epinephrine concentration.

- Epib (pg/mL) is basal epinephrine.
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Results

This chapter describes the results of the identified models of the previous section.

The best model selected for ND, was then tasted also on T1D individuals. Clas-

sical criteria typically used in model selection were adopted: the models ability to

describe the data (RSS), the precision of the parameter estimates (CV), the physi-

ological plausibility of the estimated values and model parsimony (AICc).

5.1 ND

As regards Model 1 (instantaneous effect of PA on kG), it does not provide a good

prediction of EGP during and after exercise, especially in V1 and V2, where the

predicted profile of EGP stays quite flat in almost all subjects during exercise and

does not rise as it should. The bad performances of this model in V1 and V2 are

not surprising, since these two visits were performed in euglycemia with a quite

flat glucose level, and therefore a greater effect of PA on kG is not expected. The

parameter p5 is estimated differently for the three visits and with a poor precision

(CV > 100%) for all subjects.

Similarly, Model 4 (delayed effect of PA on kG) does not provide a good fit of the

data. Like Model 1, it provides imprecise estimates for p5 and also p3 is estimated

with poor precisions (CV > 500%).

On the other hand, Model 2 (instantaneous effect of PA on k2) provides good

precisions (CV < 50%) for all parameters in all subjects and a reasonable good

prediction of the EGP profile. This made us suppose that physical activity affects

insulin sensitivity more than glucose effectiveness in these experimental conditions,

but we have also to take into account that glucose is clamped and this makes the
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PA effects on kG more difficult to quantify.

In Model 5 the delayed effect of PA on k2 is considered. The introduction of this

delay improves the performance of the model in terms of its ability to fit the data,

while the precisions are slightly worse due to the increase in the number of param-

eters (p4 is estimated differently for each visit). The improvement in the estimated

EGP profile can be seen especially during the post-exercise and in particular in those

subjects where p4 assumes a low value (< 0.02 min−1).

In summary, Models 1, 2 and 4 were excluded, together with Models 3 and 6.

The latter two models consider the instantaneous and delayed effects of PA on both

kG and k2, respectively. They would be the most appropriate models, but they were

excluded because Model 3 collapses in Model 2 for 5 subjects, and Model 6 col-

lapses in Model 5 for 4 subjects since p5 does not bring any additional information

to the models. For these reasons we decided to consider only a delayed effect of PA

on k2 and no effects of PA on kG.

Regarding Model 7, the only difference with Model 5 is that PA is considered

as a ramp modeled through a parameter p7 which determines the time required to

rise from 0 to 1 after T120. In contrast with the square wave model, in which the

time needed to reach the target range of exercise was fixed to 1 minute, in model

7 we estimate this time which is represented by p7. However, the results are not

satisfactory: p7 is estimated with good precision (low CV ) for only three subjects

with values 34.94 min, 0.16 min, 0.12 min respectively. The latter two values are

too low and therefore no changes are observed in the EGP fit. The only evident

change in the data fit is observed for the subject whose p7 = 34.94 min, which is

an unrealistic large value. The fit of EGP for this subject is somewhat better in

V1, while in the other visits it remains the same. In addition, also p4 estimates are

worse than Model 5, so we decided to exclude Model 7.

Model 8 adds the glucagon effects on EGP. The parameter kGluca, which governs

the magnitude of glucagon action on glucose production, is precisely estimated in

four subjects (CV < 50%). In these subjects it assumes the values of 0.031, 0.009,

0.029, 0.009 mg ∗mL/(pg ∗kg ∗min) respectively. The addition of glucagon slightly

improved model performances, in particular during the recovery in V1 and V2. The

greatest effect was seen in those subjects where the prediction was higher than the

EGP data during the post-exercise, since we obtained a lower fit with a consequent

better adherence of the prediction to the data.

In section (3.4) we noted that glucagon slightly increases during exercise in ND sub-

jects, and it fell below the basal value after exercise in V1 and V2 (glucose slightly

increased). This probably cotributes to the observed reduction of glucose produc-

56



Results

tion during the recovery. In V3 no particular changes have been observed.

Like Model 5, it considers a delayed effect of PA on k2 that, as previusly said, it

markedly improves the data fit whenever it assumes values lower than 0.02 min−1.

The parameter p4 is not estimated with good precision for all subjects, and it is

worth noting that in all these cases it assumes large values (> 0.2 min−1). This

could suggest that in those individuals the instantaneous effects of PA would be

more appropriate.

Model 8 provides lower AICc in those subjects for which glucagon effect is well

estimated. Considering the slight improvement of this model and the fact that it is

more physiologically complete, we prefer it with respect to Model 5.

Table 5.1 reports the comparison between Model 5 and Model 8 in terms of RSS

and AICc for each ND subject. Subjects for which kGluca is estimated with good

precisions are Subj 1, 2, 3, 5.

Table 5.1: Comparison of model 5 and 8

RSSmodel5 AICcmodel5 RSSmodel8 AICcmodel8

Subj 1 4.60 131.85 2.85 101.92

Subj 2 2.93 100.88 2.49 92.93

Subj 3 5.17 130.74 4.94 130.82

Subj 4 5.32 141.92 5.32 144.96

Subj 5 5.48 143.98 5.38 145.63

Subj 6 15.65 216.40 15.72 219.68

mean 6.52 144.29 6.12 139.271

SD 4.57 38.54 4.87 45.12

Finally, Model 9 includes epinephrine effect on EGP. For this model some pre-

liminary considerations are necessary. Epinephrine was sampled only at time T-60,

T180, T300 and therefore we can consider only three values of concentration of

this hormone for each subject (in many cases only one or two samples are available

since the concentration value was too low and, therefore, not detectable). For this

reason, we modeled epinephrine signal as in [Figure: 5.1 ]. The value of epinephrine

sampled at time -60 is kept constant till T120. Then the signal is modeled with an

exponential growth till T180 and, then, with an exponentially decreasing function

till T300.

The parameter kEpi, which governs the magnitude of epinephrine action on glucose
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production, is estimated with good precisions in four subjects. For these subjects,

the estimated values for kEpi are 0.004, 0.007, 0.004, 0.007 mg ∗mL/(pg ∗kg ∗min),

respectively. Although is known that epinephrine plays an important role in glucose

production, Model 9 does not provide particular improvements in the fit of EGP

Figure 5.1: Epinephrine signal.

data. However, we have to consider that we have very few samples of epinephrine,

so we can not guarantee a correct estimation of its signal and, therefore, a correct

quantification of its action on EGP. Moreover, this model provides less precise esti-

mates for p4 and p6 compared to Model 8. For these reasons we excluded Model

9, even if the incorporation of this cathecolamine could be appealing.

The table below reports the comparison between Model 8 and Model 9 in terms

of RSS and AICc for each ND subject.

Table 5.2: Comparison of model 8 and 9

RSSmodel8 AICcmodel8 RSSmodel9 AICcmodel9

Subj 1 2.85 101.92 4.22 128.95

Subj 2 2.49 92.93 2.94 103.88

Subj 3 4.94 130.82 4.05 118.43

Subj 4 5.32 144.96 5.32 144.94

Subj 5 5.38 145.63 4.97 140.17

Subj 6 15.72 219.68 14.88 215.86

mean 6.12 139.271 6.06 142.04

SD 4.87 45.12 4.40 39.10
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In summary, Model 1, 3, 4, 6, and 7 were all excluded due to bad fit and

poor precision (high CV) of parameter estimates. Model 2 was excluded because

Model 5 provided a better fit of the data. Of the remaining models, Models 5, 8

and 9, Models 8 and 9 are physiologically appealing since they consider glucagon

and epinephrine action, respectively. Furthermore, they both provide lower RSS

and AICc with respect to Model 5 and, therefore, it was excluded. Because of the

few epinephrine samples and the consequent difficulty in estimating its profile, we

selected Model 8 as the best able to predict EGP pattern during physical activity

for ND subjects.

The table below summerizes the results obtained, while Table 5.4 reports the esti-

mated parameters from Model 8.

Table 5.3: Comparison of EGP models

RSS AICc SD No. of Parameters

Model 1 30.88 237.22 0.64 8

Model 2 9.71 150.01 0.34 8

Model 3 9.56 152.31 0.34 9

Model 4 40.75 240.48 0.68 9

Model 5 6.52 144.29 0.30 11

Model 6 4.85 134.84 0.27 12

Model 7 6.31 141.51 0.29 12

Model 8 6.12 139.27 0.28 12

Model 9 6.06 142.04 0.29 12

In Figure: 5.2 Model 8 is shown. It includes: glucose action on EGP propor-

tional to kG; insulin inhibition of EGP; glucagon stimulation of EGP proportional

to kGluca; effect of PA on k2.
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Figure 5.2: Model 8 which includes glucose, glucagone and insulin action on EGP, with a

delayed effect of exercise on insulin sensitivity.

Table 5.4: Parameter estimates of Model 8. Numbers in parenthesis indicate coefficient of varia-

tion ( (**) for CV > 100% ).

k1

min−1

k2
mg∗mL

µU∗kg∗min

kG
dL

kg∗min

kGluca
mg∗mL

pg∗kg∗min

p6

[adim]

p4

min−1

V1 V2 V3 V1 V2 V3 V1 V2 V3

1 0.08

(22)

0.09

(6)

0.03

(5)

0.02

(21)

0.01

(14)

0.03

(15)

0.92

(7)

0.67

(35)

0.21

(63)

0.72

(0)

0.02

(49)

0.95

(**)

2 0.06

(15)

0.12

(5)

0.03

(4)

0.06

(6)

0.01

(10)

0.01

(27)

1.48

(4)

0.62

(12)

0.64

(62)

0.32

(62)

0.08

(46)

0.01

(85)

3 0.05

(27)

0.08

(15)

0.02

(21)

0.01

(56)

0.01

(13)

0.03

(24)

1.01

(18)

0.96

(18)

0.10

(**)

0.70

(6)

0.60

(**)

0.21

(**)

4 0.02

(23)

0.12

(10)

0.05

(8)

0.03

(13)

0.02

(10)

3*10−6

(**)

0.58

(25)

0.73

(16)

1.46

(15)

0.21

(**)

0.88

(15)

0.19

(74)

5 0.04

(20)

0.12

(7)

0.02

(10)

0.05

(11)

0.01

(16)

0.01

(30)

1.04

(10)

1.08

(11)

2.21

(40)

0.93

(**)

0.97

(0)

0.01

(55)

6 0.08

(22)

0.15

(9)

0.04

(7)

0.02

(19)

0.01

(17)

2*10−5

(**)

0.77

(17)

6.61

(57)

6.24

(25)

0.06

(50)

4*10−3

(69)

0.01

(29)

mean 0.05

(21)

0.11

(9)

0.03

(9)

0.03

(21)

0.01

(13)

0.01

(∗∗)

0.97

(13)

1.78

(25)

1.81

(**)

0.49

(95)

0.43

(**)

0.23

(**)

SD 0.02 0.02 0.01 0.02 0.003 0.01 0.31 2.37 2.31 0.34 0.45 0.37
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In [Figure: 5.3 ] average data vs prediction and average weighted residuals of

Model 8 are reported. The section between the two dashed lines (T120 and T180 )

represents the exercise period.

As we can see, V3 does not provide a good fit in the recovery phase. This is mainly

due to one subject who presented some experimental drawbacks during the third

visit. For this subject none of the models provided a good prediction of EGP profile

during and after PA in V3. Average data vs prediction and average weighted residual

of Model 8 without this subject are reported in [Figure: 5.4 ]. EGP prediction is

somewhat better in V3, while in the other two visits there are not significant changes.

Figure 5.3: Model 8 in ND subjects: average data vs model prediction (left) and weighted

residuals (right) of the three visits. Vertical bars, SE.
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Figure 5.4: Model 8 in ND subjects with subject 6 excluded: average data vs model prediction

(left) and weighted residuals (right) of the three visits. Vertical bars, SE.

5.2 T1D

The best model selected for ND subjects has been tested also in T1D subjects. As

discussed in section (3.3), we considered 6 type 1 diabetic subjects that performed

the same three visits as healthy subjects, in the same experimental conditions. It is

worth noting that, in V3, insulin concentration is lower in T1D with respect to ND

since they do not secrete endogenous insulin in response to high glucose level. For

this reason, this visit is not comparable between ND and T1D. Moreover, for ND

subjects, we considered insulin concentration at time T0 as the basal insulin, since

this value did not differ significantly from the concentration at T-60. In contrast,

for T1D subjects, the insulin level at T0 usually differs from the value at T-60,

and therefore we decided to estimate the basal insulin for these individuals with the
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consequent increase in the number of parameters of the model.

The performance of Model 8 tested on T1D are less satisfactory compared with

ND subjects. The parameter kGluca is precisely estimated in four subjects with val-

ues 0.033, 0.016, 0.010, 0.04 mg ∗mL/(pg ∗ kg ∗min), respectively, but generally,

the precisions of all the estimated parameters are poorer than those obtained with

ND. As we can see in [Figure: 5.5 ], we obtained a good prediction of EGP profile

during the pre-exercise. It is worth noting that, in all visits, the prediction at time

T0 is not well fitted, propably due to the uncertain initial conditions of insulin, as

previusly discussed. However, for what concerns the recovery, the fit is higher than

EGP data in all visits, which suggests that there may be some other effects that

could play an important role, especially during this phase. During exercise instead,

an increment of the EGP prediction is observed in all visits, even if the fit is sligthly

lower than EGP data in V1 and V3.

With Model 8, we are considering a direct effect of glucose, a delayed effect of in-

sulin, a delayed effect of PA on insulin sensitivity and a direct effect of glucagon on

glucose production which turned out to be sufficient for a good estimation of EGP

profile in ND subjects, but these results point out that further studies are necessary

to improve the prediction of EGP profile in T1D subjects.

The following figure reports the average data against the model prediction, and

the weighted residuals of Model 8 tested on T1D individuals (only four T1D sub-

jects performed V1) .
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Figure 5.5: Model 8 in T1D subjects: average data vs model prediction (left) and weighted

residuals (right) of the three visits. Vertical bars, SE.
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Conclusion

In healthy subjects, glucose level is controlled and kept close to its normal range

(70 − 110 mg
dL

) thanks to a complex glucose-insulin system that aims to maintain

blood sugar into this range after perturbations, represented, for example, by food

ingestion or physical activity. The latter, is an important component of our daily

life, since it positively affects both the state of health and the degree of personal

satisfaction.

Although it is known that even subjects with diabetes can benefit from a regular

physical activity, the optimal conditions in terms of intensity, duration and insulin

therapy are still unclear. In particular, it is well known that physical activity in T1D

patients influences glucose concentrations not only during exercise but also several

hours after, leading to late evening and nocturnal hypoglycemia, which represents

a critical problem to exercise for these individuals [2, 19].

Physical activity, in general, increases glucose utilization (Rd) and, therefore, en-

dogenous glucose production (EGP) must increases to meet the increased metabolic

demands of the muscle to prevent hypoglycemia, in both healthy and diabetic sub-

jects [2, 25, 34].

The aim of this thesis was the development of a mathematical model which can

accurately predict the EGP profile during physical activity in different experimental

conditions in subjects with and without type 1 diabetes. For this purpose, data of

12 subjects (6 healthy and 6 with type 1 diabetes) who performed three visits in

different glycemic and insulin levels with a moderate-intensity exercise session of 60

minutes have been used. The three visits are: V1 in euglycemia and low insulin, V2

in euglycemia and high insulin, V3 in hyperglycemia and low insulin, and they were

performed in random order.
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In order to provide a model able to predict the EGP pattern during physical

activity, a number of models of increasing complexity incorporating the effects of

exercise were developed. The model selection was tackled by using standard criteria

as models ability to describe the data, precision of the parameter estimates, phys-

iological plausibility of the estimated values and model parsimony. We started by

considering only the healthy subjects: direct effects of exercise were initially con-

sidered on glucose effectiveness (kG) and insulin sensitivity (k2) alone. While it is

known that glucose level affects the EGP, by adding the exercise effects on kG we

did not observe any improvement in the EGP prediction during exercise (especially

in V1 and V2), since these effects were always estimated with very poor precisions in

all subjects (CV > 100%). The results did not change even considereing a delayed

effect of PA on kG. Consequently, we decided to exclude this effect from the model.

On the other hand, the inclusion of exercise effect on insulin sensitivity markedly

improved EGP prediction, and the performances improved even more when we con-

sidered a delayed effect of exercise on k2. Moreover, the improvement was more

evident whenever the delayed effect of PA on k2 was elevated (p4 < 0.02 min−1).

This brought us to think that physical activity may affect insulin sensitivity more

than glucose effectiveness, but we have to take into account that in this study glu-

cose is clamped and this makes the PA effects on kG more difficult to quantify.

The best model selected (Model 8), includes a delayed PA effect on insulin sen-

sitivity, a delayed effect of insulin, a direct effect of glucose, and a direct effect

of glucagon on EGP. The results in terms of data fit, precision of the estimates

and model parsimony for ND subjects were satisfactory. The addition of glucagon

slightly improved the model performance, in particular during the recovery in V1

and V2. The greatest effect was seen in those subjects where the prediction was

higher than EGP data during the post-exercise, since we obtained a lower fit with

a consequent better adherence of the prediction to the data.

A model which includes epinephrine effects was also tested. Despite it is well known

that epinephrine plays an important role in glucose production [41], this model did

not show particular improvements than the model with glucagon. This is likely due

to the very few samples of available epinephrine, since we had only three samples

of this hormone per visit for each subject (in many cases only one or two samples

were available since the concentration value of this cathecolamine was too low and

therefore not detectable). However, in these conditions, we can not guarantee a

correct estimation of epinephrine signal and, therefore, a correct quantification of

its effect on EGP. For this reason, we excluded this model.
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The model selected for ND subjects was also tested in T1D subjects. The fit

obtained is able to well predict EGP profile during the pre-exercise phase in all

visits, while performances are less satisfactory during and after exercise compared

with ND subjects. Furthermore, the precisions of all the estimated parameters were

poorer (higher CV) with respect to those obtained with ND. One reason could be

the increase in the number of parameters since with T1D individuals we estimated

also the basal insulin. The reason was that, in contrast with ND individuals, insulin

value at time T0 is often different than the value at T-60. This could also lead to an

inaccurate prediction at time 0 of EGP[Figure: 5.5 ]. Furthermore, the prediction

remains above the EGP data during the recovery phase for all the visits, suggesting

that other effects may play a role on EGP for T1D subjects.

In conclusion, although Model 8 will require further validation, especially for

Type 1 diabetic individuals, the present thesis suggests that it likely provides an

accurate assessment of the pattern of EGP during physical activity for healthy in-

dividuals. Future works could also better investigate the role of epinephrine on

EGP during exercise in both healthy and T1D subjects since for this study the

available samples were not enough. However, these data show a large increase of

catecholamine concentration during exercise which supports the hypothesis that they

could give additional information to the model, but more studies are needed.
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porterò sempre con me.

Ringrazio tutti gli amici, quelli nuovi, quelli conosciuti tra i banchi di ingegneria,

quelli che c’erano prima e che continuano ad esserci.

Ringrazio gli amici di “18 state of mind” perchè siamo un bellissimo gruppo, un
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