
DEPARTMENT OF INFORMATION ENGINEERING
MASTER DEGREE IN ICT FOR INTERNET & MULTIMEDIA

Design, Implementation and Evaluation of
Learning Algorithms for Predictive Quality of

Service in Teleoperated Driving Scenarios

MASTER CANDIDATE SUPERVISOR

Giacomo Avanzi Prof. Michele Zorzi
Student ID 2088615 University of Padova

CO-SUPERVISORS

Prof. Marco Giordani, Dr. Filippo Bragato
University of Padova

ACADEMIC YEAR 2023/2024
Graduation date 03/09/2024

Ai miei genitori
A mio fratello

Abstract

In the Teleoperated Driving (TD) scenario strict constraints in Quality of Ser-
vice (QoS) indicators, especially end-to-end (E2E) latency and reliability, of the
communication between vehicles and remote drivers must be satisfied. Predic-
tive Quality of Service (PQoS) is a tool to predict network degradation and react
accordingly. In this context, Artificial Intelligence (AI) can be used to optimize
PQoS operations. However, there are several trade-offs between centralized and
decentralized Reinforcement Learning (RL) solutions, which call for additional
work in this area. The first goal of this thesis is the introduction of realism in
the learning phase with respect to data and metrics (from the 5G protocol stack)
gathered by the intelligent agent at the Radio Access Network (RAN) (central-
ized case) or at the vehicle (decentralized case), including the modelling of com-
munication and computational mechanisms to obtain those metrics in the ns-3
simulator. To further investigate the trade-off between performance and com-
munication overhead, a federated learning framework is evaluated under differ-
ent strategies of parameters aggregation based on the vehicles status, involving
also compression (pruning, quantization and clustering) of the parameters in the
agent’s model to optimize the channel burden. The second objective is the im-
plementation of a new meta-learning agent that can dynamically choose when
to perform the centralized vs. decentralized learning models, depending on the
network status. Starting from the global condition of the vehicles described in
terms of network metrics, the optimal learning approach is chosen to maximize
at the same time QoS and Quality of Experience (QoE). In a scenario with 3 ve-
hicles, the centralized learning approach achieves the best compromise between
QoS, with an average E2E delay of nearly 25 ms, and QoE, with an averagemean
average precision (mAP) of 0.68, considering the best realistic configuration. The
distributed approach is able to reduce further the latency by 1 ms, at the cost
of poorer mAP (0.67) and more violations of the maximum tolerated E2E delay.
The federated approach increases the total delay by 3ms due to themodels shar-
ing, while the QoE shows a significant improvement, exceeding 0.68 with mAP.
The meta-learning agent achieves outstanding results, selecting autonomously
the centralized approach in good channel conditions and the decentralized ap-
proach in a degraded network state.

Sommario

Nello scenario della Guida Teleoperata (GT), ci sono stringenti requisiti di Qual-
ità del Servizio (QS), in particolare la latenza end-to-end (E2E) e l’affidabilità,
della comunicazione tra i veicoli e i guidatori remoti. La Predizione della Qual-
ità del Servizio (PQS) è uno strumento per prevedere il degrado della rete
e reagire di conseguenza. L’Intelligenza Artificiale (IA) può essere utilizzata
per ottimizzare le operazioni di PQS. Tuttavia, esistono diversi compromessi
tra l’apprendimento per rinforzo con approccio centralizzato e decentralizzato,
che richiedono un ulteriore lavoro in quest’area. Il primo obiettivo della tesi è
l’introduzione di realismo nella fase di raccolta dei dati e delle metriche (dello
stack protocollare del 5G) da parte dell’agente intelligente durante la fase di ap-
prendimento, alla Radio Access Network (RAN) (caso centralizzato) o al veicolo
(caso decentralizzato), compresa la modellazione dei meccanismi di comuni-
cazione e di calcolo per ottenere tali metriche nel simulatore ns-3. Per studi-
are il compromesso tra prestazioni e costi di comunicazione, si valuta un ap-
proccio federato con diverse strategie di aggregazione dei parametri in base allo
stato dei veicoli, coinvolgendo anche la compressione (pruning, quantizzazione
e clustering) dei parametri del modello dell’agente per ottimizzare il carico sul
canale. Il secondo obiettivo è l’implementazione di un nuovo agente di meta-
apprendimento che può scegliere dinamicamente quando adottare un modello
centralizzato vs. decentralizzato. Partendo dalla condizione dei veicoli, in ter-
mini di metriche di rete, il modello di apprendimento ottimale viene scelto per
massimizzare allo stesso tempo la QS e la Qualità dell’Esperienza (QE). In uno
scenario con 3 veicoli, l’approccio di apprendimento centralizzato raggiunge il
miglior compromesso traQS, con un ritardomedio E2E di quasi 25ms, e QE, con
una precisionemedia di 0.68, considerando lamigliore configurazione realistica.
L’approccio distribuito è in grado di ridurre ulteriormente la latenza di 1 ms, al
costo di una minore precisione media (0.67) e di maggiori violazioni del ritardo
massimo E2E tollerato. L’approccio federato aumenta il ritardo totale di 3 ms
a causa della condivisione dei modelli, mentre la QE mostra un miglioramento
significativo, con 0.68 di precisione media. L’agente di meta-apprendimento ot-
tiene risultati ottimi, selezionando autonomamente la centralizzazione in buone
condizioni di canale e la decentralizzazione in condizioni di rete degradate.

Contents

List of Figures xi

List of Tables xv

List of Algorithms xvii

List of Acronyms xix

1 Introduction 1
1.1 Teleoperated Driving Scenario . 1
1.2 Predictive Quality of Service . 3

1.2.1 Reinforcement Learning for PQoS in V2X Networks 4
1.3 Thesis contribution and structure 5

2 Centralized and Distributed PQoS 9
2.1 V2X communication: PQoS for TD scenario 10
2.2 5G NR System Architecture . 12

2.2.1 CN . 12
2.2.2 RAN . 14
2.2.3 Protocol Architecture [14][15] 14

2.3 Reinforcement Learning . 16
2.4 PQoS Framework . 20

2.4.1 Simulation parameters . 20
2.4.2 Ns-3 entities . 22

2.5 Centralized Approach . 22
2.5.1 RAN-AI . 22
2.5.2 RL framework . 24
2.5.3 Proposed Solutions and Implementation 26

ix

CONTENTS

2.5.4 Performance Evaluation . 31
2.6 Distributed Approach . 39

2.6.1 UE-AI . 39
2.6.2 RL framework . 40
2.6.3 Proposed Solutions and Implementation 41
2.6.4 Performance Evaluation . 44

3 Federated PQoS 51
3.1 Problem Formulation . 52
3.2 Simulation Framework . 53
3.3 Adaptive Federated Optimization Methods 54

3.3.1 Implementation and Results 56
3.4 Model compression . 58

3.4.1 Pruning . 59
3.4.2 Post-Training Quantization 63
3.4.3 Clustering . 68

3.5 Utility Functions . 71

4 Meta-learning agent for PQoS 77
4.1 Centralized vs. Distributed vs. Federated Results 78
4.2 Meta-learning Agent Model . 83

4.2.1 State . 83
4.2.2 Action . 84
4.2.3 Reward . 84

4.3 Double Deep Q-Learning Algorithm 84
4.3.1 Implementation and Parameters 86

4.4 Performance Evaluation . 87
4.4.1 Good Channel . 88
4.4.2 Bad Channel . 90

5 Conclusions and Future Works 93

References 95

Acknowledgments 101

x

List of Figures

2.1 NR DL user-plane protocol stack [14] 13
2.2 RL framework [16] . 17
2.3 Portion of the city of Bologna used in the simulations 19
2.4 OFDM symbols usage over the total number of slots inside a sim-

ulation with (a) 1 vehicle, (b) 5 vehicles and (c) 10 vehicles. 29
2.5 Results training of centralized RL agent with Proposed State 1

vs. baseline (1 vehicle) . 34
2.6 AverageE2EDelay from the trainingwith Proposed State 1 vs. base-

line (1 vehicle) . 34
2.7 Results training of centralized RL agent with Proposed State 2

vs. baseline (1 vehicle) . 36
2.8 Average E2E from the training with Proposed State 2 vs. baseline

(1 vehicle) . 36
2.9 Results training of centralized RL agent with Proposed State 1

vs. baseline (3 vehicles) . 37
2.10 AverageE2EDelay from the trainingwith Proposed State 1 vs. base-

line (3 vehicles) . 38
2.11 Results training of distributedRLmulti-agentwith Proposed State

1 vs. baseline (3 vehicles) . 46
2.12 Average E2E Delay from the distributed training with Proposed

State 1 vs. baseline (3 vehicles) . 47
2.13 Average E2E Delay from the distributed training with Proposed

State 1 with 3 vehicles vs. 6 vehicles 48
2.14 Results training of distributedRLmulti-agentwith Proposed State

2 vs. baseline (3 vehicles) . 49
2.15 Action probability of RL agent with Proposed State 2 vs. baseline

(3 vehicles) . 50

xi

LIST OF FIGURES

3.1 Results training of federated RL agent with FedAdam vs. FedAvg
(baseline) . 57

3.2 Average E2E Delay from the federated training with FedAdam
vs. FedAdvg (baseline) . 57

3.3 Average E2E Delay of the federated training with idealized vs. re-
alistic exchange of federated updates 58

3.4 Results training of federated RL multi-agent with FedAdam and
Pruning (0.5) vs. FedAdam (baseline) 61

3.5 Average E2E Delay from the federated training with FedAdam
and Pruning (0.5) vs. FedAdam (baseline) 61

3.6 Results training of federated RL multi-agent with FedAdam and
Pruning with sparsity ratio 0.5 vs. 0.7 62

3.7 Average E2E Delay from the federated training with FedAdam
and Pruning with sparsity ratio 0.5 vs. 0.7 63

3.8 Results training of federated RL multi-agent with FedAdam and
quantization vs. FedAdam (baseline) 66

3.9 Action probability of federated RL multi-agent with FedAdam
and quantization vs. FedAdam (baseline) 67

3.10 Results training of federated RL multi-agent with FedAdam and
clustering vs. FedAdam (baseline) 69

3.11 Action probability of federated RL multi-agent with FedAdam
and clustering vs. FedAdam (baseline) 70

3.12 Action probability of federated RL multi-agent with FedAdam
and clustering (4 clusters) . 70

3.13 Results training of federated RLmulti-agentwith utility functions
(3 vehicles) . 73

3.14 Results training of federated RLmulti-agentwith utility functions
(6 vehicles) . 74

3.15 Average mAP of the federated RL multi-agent with utility func-
tions (6 vehicles) . 75

4.1 Average E2E Delay (QoS) achieved by the proposed configura-
tions in centralized, distributed and federated approaches (3 ve-
hicles) in the last 30 episodes . 78

xii

LIST OF FIGURES

4.2 Average mAP (QoE) achieved by the proposed configurations in
centralized, distributed and federated approaches (3 vehicles) in
the last 30 episodes . 78

4.3 Number of violations of the maximum tolerated E2E delay 𝛿𝑀
during the last 10000 learning steps in centralized, distributed
and federated approaches (3 vehicles) 81

4.4 Top 1% values of the E2E delay during the last 10000 learning
steps in centralized, distributed and federated approaches (3 ve-
hicles) . 82

4.5 Results training ofmeta-learning agent vs. static approaches (base-
line) in good channel conditions 88

4.6 QoS andQoE indicators achieved bymeta-learning agent vs. static
approaches (baseline) in good channel conditions 88

4.7 Results training ofmeta-learning agent vs. static approaches (base-
line) in bad channel conditions . 90

4.8 QoS andQoE indicators achieved bymeta-learning agent vs. static
approaches (baseline) in bad channel conditions 90

xiii

List of Tables

2.1 Average mAP achieved by the object detector PointPillars on the
SELMA dataset, depending on the compression mode 25

xv

List of Algorithms

1 Server’s federated update with adaptive optimizers 56
2 Federated update with quantization 65

xvii

List of Acronyms

3GPP Third Generation Partnership Project

5G Fifth Generation

5GAA 5G Automotive Association

5G NR Fifth Generation New Radio

6G Sixth Generation

ACK Acknowledgment

AI Artificial Intelligence

ARQ Automatic Repeat Request

BER Bit Error Rate

BLER BLock Error Rate

BSR Buffer Status Report

CN Core Network

CSI Channel State Information

CQI Channel Quality Indicator

DQL Deep Q-Learning

DDQL Double Deep Q-Learning

DL Downlink

E2E End-to-end

xix

LIST OF ALGORITHMS

ER Experience Reply

FCNN Fully Connected Neural Network

gNB Next Generation Node B

IID Independent and Identically Distributed

IoT Internet of Things

ITS Intelligent Transportation System

KPI Key Performance Indicator

LGC Logical Channel Group

LiDAR Light Detection and Ranging

MAC Medium Access Control

mAP mean Average Precision

MDP Markov Decision Process

MCS Modulation and Coding Scheme

ML Machine Learning

NN Neural Network

ns-3 Network Simulator 3

OFDM Orthogonal Frequency Division Multiplexing

PDCP Packet Data Convergence Protocol

PDU Protocol Data Unit

PQoS Predictive Quality of Service

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

xx

LIST OF ALGORITHMS

RL Reinforcement Learning

RLC Radio Link Control

RRC Radio Resource Control

SDU Service Data Unit

SE Spectral Efficiency

SGD Stochastic Gradient Descent

SINR Signal-to-Interference-plus-Noise Ratio

TB Transport Block

TBS Transport Block Size

TD Teleoperated Driving

TTI Transmission Time Interval

UE User Equipment

UL Uplink

URLLC Ultra-Realiable Low-Latency Communication

V2X Vehicle-To-Everything

xxi

1
Introduction

The advent of Sixth Generation (6G) Networks meets the needs of a society
evolving towards a data-centric, data-dependent and automated model. Com-
munication networks will need to transfer massive amounts of data at higher
speeds, where the human communication will represent a minimal fraction of
the traffic. The Internet of Things (IoT) scenario will be the main source of data,
involving not just people devices, but sensors, e-health devices, smart cities and
vehicular networks [1].

One of the most revolutionary changes of 6G is the transformation of tra-
ditional transportation networks into fully Intelligent Transportation Systems
(ITSs). Autonomous and/or teleoperated vehicles with onboard sensors gener-
ating high data rates (terabytes per driving hour [2]) will be interconnected en-
suring unprecedented levels of reliability and low latency (up to 99.99999% and
less than 1 ms, respectively), even in ultra-high mobility scenarios (up to 1000
km/h), thus calling for Ultra-Reliable Low-Latency Communication (URLLC)
[1].

Furthermore, the huge development in the areas ofArtificial Intelligence (AI)
and Machine Learning (ML) enables powerful techniques to intelligently opti-
mize 6G networks, also in the context of teleoperated driving applications [3].

1.1 TELEOPERATED DRIVING SCENARIO

During the past years many advances have been made in the automotive
field. However, pure autonomous driving with no human interaction presents

1

1.1. TELEOPERATED DRIVING SCENARIO

critical technical challenges.
Being able to recognize and interact with many different objects (vehicles,

pedestrians, obstacles, traffic signs, etc.) and conditions (weather, traffic, visibil-
ity, etc) along public roads is complex for a self-driving car. ML can support the
car in automated driving functions, e.g., for environment perception or decision-
making, relying on a sufficient amount of training data from different scenarios
and sensors. However, it is quite difficult to generalize beyondwhat the training
set statistically represents and the unrealistic completeness of the training sam-
ples are hard obstacles to overcome in the fully autonomous driving scenario [4].

Therefore, the research community is focusing onTeleoperatedDriving (TD),
where a remote driver controls the car exploiting measurements received from
the vehicle, generated by onboard sensors, such as high-resolution cameras,
depth cameras, and Light Detection and Ranging (LiDAR) sensors.

Initially, the teleoperator will be a human, with the support of a cloud driv-
ing architecture, which provides a computing and networking environment for
an intelligent teleoperation. As the driving automation level of the cloud sys-
tem evolves, the tasks of the human operator will be progressively handed over
to a cloud driving system software, which will assume complete control of the
vehicle [4].

The performance of TD depends strongly on the network conditions where
the autonomous vehicles are deployed, since the transmission of high-resolution
sensors’ data from the vehicle to the remote control center can be source of hun-
dreds of megabits per second data rates. In particular, strict requirements must
be satisfied in terms of Quality of Service (QoS):

• lowend-to-end (E2E) latency, to not reduce the responsiveness of the driver;

• high reliability, to send accurate perceptions and receive accurate com-
mands.

More precisely, according to the Fifth Generation (5G) specifications of 5G
Automotive Association (5GAA), inside an Infrastructure-Based Tele-Operated
Driving, the service level latency between vehicle and remote driver is fixed to 50
ms (both in uplink [UL] and downlink [DL]). The service level reliability is fixed
to 99% from sensors to the remote host, for the reverse direction to 99.999%, be-
cause commands from the remote driver require an higher level of reliability [5].

2

CHAPTER 1. INTRODUCTION

However, due to the highly dynamic environment inwhich the vehicles oper-
ate, the satisfaction of these strict QoS requirements becomes very challenging.
Furthermore, unanticipated degradation of QoS may compromise the adoption
of TD, given the catastrophic consequences that a communication failure could
have on the reliability of the system. In this context, Predictive QoS (PQoS) [6] is
exploited as a mechanism to notify autonomous vehicles in advance about the
upcoming QoS changes.

1.2 PREDICTIVE QUALITY OF SERVICE

The predictive approach of PQoS allows applications (e.g., TD) to predict
unanticipated events and adapt accordingly, in contrast to the reactive mecha-
nisms, where the QoS degradation is only addressed after it has already hap-
pened. Therefore, PQoS is fundamental in Vehicle-To-Everything (V2X) net-
works to preemptively evaluate the risks of QoS deterioration and ensure the
satisfaction of requirements, especially latency and reliability, in the driving.

At the beginning, filter-based models (e.g., Kalman filters) and linear regres-
sionwere explored in order to predict network changes, but they are not feasible
in autonomous driving systems since a priori knowledge of the process to learn
is required [7]. Moreover, these methods are not able to process large amount
of input data or to predict nonlinear relationships between input features and
output prediction.

Recently, many studies focused on ML models to predict and optimize wire-
less networks [8]. Indeed, these tools, starting from samples representing dif-
ferent networks observations (e.g., network metrics, available resources, chan-
nel usage, etc.), learn useful relationship to predict a suitable action, aiming to
maintain QoS in case of unseen changes. Notably, ML does not require a priori
rules, which is the common assumption for PQoS. [9].

In the TD scenario, PQoS can exploit predictions to ensure a high level of
safety, by gently entering a safe mode if the QoS parameters become sensibly de-
graded. In particular, PQoS should predict possible network degradationwhere
data transmissions to/from the remote control center will be slow or unfeasible,
e.g., in a congested area or if the link quality is poor: the following principles [4]
must be achieved.

3

1.2. PREDICTIVE QUALITY OF SERVICE

1. Awareness: the PQoS mechanism should predict when the network status
may lead the driver to lose the control of the vehicle, such that there is time
for the remote center to react accordingly;

2. Precautions: before losing the control, the PQoSmechanism should tell the
car to adopt safetymeasures, as reducing speed or pulling over, depending
also on the environment;

3. Self-Survival: PQoSmechanism should assist the vehicle in what behavior
to maintain until the network is re-established with the remote driver.

1.2.1 REINFORCEMENT LEARNING FOR PQOS IN V2X NETWORKS

Among all techniques, Reinforcement Learning (RL) has emerged as a pow-
erful tool to support PQoS inside V2X environments, specifically in the TD sce-
nario.

In [9], a RL agent is designed in order to identify appropriate countermea-
sures if the QoS requirements are not satisfied, starting from a meaningful state
for the network status. More precisely, the agent must choose the optimal size of
the data (in this case point clouds fromLiDAR sensors) generated by the applica-
tion layer, in the vehicle to optimize data transmission. A suitable compression
of sensors data can alleviate the channel usage, but an optimal trade-off between
QoS and Quality of Experience (QoE) has to be reached. The reward function is
strictly related to QoS, to meet the requirements of TD (latency and reliability),
as well as to QoE, to ensure that the quality of transmitted data is good enough
to perform TD operations.

The agent is implemented in a centralized approach at the Radio Access Net-
work (RAN), so the following measurements, both from the environment and
the RAN itself, can be gathered to represent the state.

• Context information: operational scenario, road elements, network archi-
tecture, time of the day, etc.

• Users trajectories

• Traffic information

• Network metrics: measurements from the 5G protocol stack (Physical
[PHY], Medium Access Control [MAC], Radio Link Control [RLC], Packet
Data Convergence Protocol [PDCP] layers)

4

CHAPTER 1. INTRODUCTION

• Higher layers metrics: E2E performance indicators (e.g., application la-
tency and throughput)

However, the centralization requires all the vehicles to share local data and
measurements (e.g. Signal-to-Interference-plus-Noise Ratio [SINR]) with the
Next Generation Node B (gNB) in the RAN; in addition the commands must
be sent from the agent to the vehicles. This exchange potentially leads to over-
head and congestion, resulting in higher latency in the network. Moreover, it
may expose end vehicles to security threads since sensitive raw data must be
shared with the network.

Considering the drawbacks of the centralizedmodel, decentralized solutions
for PQoS are investigated in [10]. Specifically, the distributed and federated ap-
proaches.

In the distributed approach, each vehicle implements an independent and
autonomous agent, which learns exploiting only data and measurements gath-
ered locally. Therefore, the communication overhead and delays for transmis-
sionwith the gNB are reduced, while the convergence becomes slower since less
data are available for the training and each vehicle is not aware of global status
of the communication scenario.

In order to speed up the convergence to an optimal policy, in the federated
approach, vehicles periodically share their ownmodel parameters with a central
server (e.g, in the gNB). The aim is training collaboratively a globalmodel aggre-
gating the localmodels (at the vehicles) in an iterativeway. This approach can be
considered as an hybrid solution between centralized and distributed solutions,
since the training is still mostly local but, at the same time, global model up-
dates are periodically exchanged to the network. As a consequence, the agent’s
convergence is faster than in distributed learning, even though the exchange of
model parameters may have a negative impact in terms of latency.

1.3 THESIS CONTRIBUTION AND STRUCTURE

The objective of this thesis is to design, implement and evaluate optimized
learning solutions for PQoS in the TD scenario. In the context of RL, the agent
has to performoptimal actions in order to preserveQoS indicators, especially the
E2E latency: the more accurate and complete the state description, the more the

5

1.3. THESIS CONTRIBUTION AND STRUCTURE

agent will have full understanding of network conditions, and optimize driv-
ing decisions accordingly. Nevertheless, the availability of measurements the
agent can gather depends on the specific learning approach (i.e., centralized or
decentralized) which has been implemented in the V2X scenario.

Network simulator 3 (ns-3), an open source discrete-event network simula-
tor, is the main tool used to carry out full stack E2E simulation campaigns in
vehicular networks and gather data to train online the RL agent using a Double
Deep Q-Learning (DDQL). The benchmark mmwave module [11] is extended to
incorporate the proposed realistic solutions in the TD scenario. Moreover, the
RAN-AI [12] and the UE-AI [10] entities are modified in order to gather and share
with the RL framework the proposed metrics. Simulation results are evaluated
in terms of QoS (i.e., E2E delay) and QoE (i.e., mean Average Precision [mAP]),
checking if the Key Performance Indicators (KPIs) of TD are satisfied.

In Chapter 2, the goal is to introduce realism in the learning phase with re-
spect to data and metrics available at the RAN infrastructure (centralized case)
or at the vehicle (distributed case). This requires a deep analysis of the 5G net-
works protocol stack to identify which measurements are collected and which
are not by the RAN and the users (i.e., the vehicles). Then, in the implementa-
tion phase, metrics already provided by the 5G architecture will be exploited,
especially scheduling-related control mechanisms at the MAC layer. Moreover,
additional traffic to exchange local data between gNB and UE is modelled in
order to generate realistic overhead in acquisition of the metrics needed for the
learning of PQoS countermeasures.

Specifically, in the centralized case with 3 vehicles, the first proposed state
presents a concrete policy of transmission of the SINR perceived by the UE, en-
larging consequently the E2E delay of 6% with respect to the idealized state.
In this configuration, a new learning evolution slightly improves the QoE. The
second proposal employs the Channel Quality Indicator (CQI) reporting mech-
anism in place of SINR: the delay is comparable with the original state result,
the average mAP reaches a value of 0.68, slightly larger than the value obtained
in the previous proposal.

In the distributed case, a new state monitoring RLC buffers and involving
the transmission of ACKs at the application layer to compute the latency is im-
plemented. The first proposed state generates a very large degradation of the
QoS with respect to the original idealized state. This approach does not scale

6

CHAPTER 1. INTRODUCTION

with a large number of vehicles, for this reason a new state is proposed. It tries
to estimate the latency, looking at the transmitted bytes and theModulation and
Coding Scheme (MCS). Very good results are achieved in terms of delay (24ms),
aligned with the idealized configuration, while the mAP is a bit smaller.

In Chapter 3, several approaches are tested to improve the hybrid approach
of the federated learning. More precisely, the performance of the RL agent
is evaluated following the implementation of three distinct techniques in the
federated_update function: adaptive federated optimization methods in the
parameters aggregation, compression techniques (threshold, quantization and
clustering) on the model parameters to share and different utilities of the clients
during the federated step.

Best performance is achieved by the FedAdam optimizer with respect to Fe-
dAvg, it is able to optimize the overall reward, improving the QoS at the expense
of the QoE. Adopting quantization, outstanding results are reached in terms of
delay (27 ms) and mAP (more than 0.68), being able to compress efficiently the
model updates, without deteriorating the learning convergence. Binary quan-
tization slightly outperforms the ternary one in terms of QoE because smaller
packets of 33% are shared. Withmany vehicles, there are appreciable differences
among the different utility definitions. Specifically, the sample-based approach
involving the loss value improves the QoS.

In Chapter 4, after a comparison between the results achieved by the pro-
posed solutions in centralized, distributed and federated approaches, a new
meta-learning agent that can dynamically choose when to perform centralized
vs. decentralized learning models is implemented, jointly optimizing the QoS
and the QoE. The DDQL algorithm is exploited and a new RL framework (state,
action, reward) is implemented to manage the learning during the simulation
campaign in ns-3.

• A centralized approach is more appropriate if the channel is good and the
network is not congested, in thisway each vehicle is able to perceive the full
network state, increasing the accuracy of the decisions. On the other side,
the impact of the overhead to communicate with the gNB is significant,
and shall be taken into careful consideration..

• A distributed approach is more convenient if the channel is bad and the

7

1.3. THESIS CONTRIBUTION AND STRUCTURE

network is congested so that the communication overhead for the state
aggregation is lower. On the other side, only local metrics are naturally
available during the learning.

• The federated approach represents an hybrid solution between centralized
and distributed paradigms since it emulates the distributed approach for
the inference, but involves federated updates for faster convergence at the
cost of higher communication resource usage during the training.

The meta-learning agent shows very promising results, being able to switch
autonomously in time between centralized vs. decentralized learning models.
More precisely, in good channel conditions, the centralized approach produces
the best results, because of low delay and full perception of the network state.
Indeed, the meta-agent prefers clearly the centralization (80%) over the decen-
tralization (20%). On the contrary, when the channel becomes more degraded
and the probability of outages increases, the decentralized federated approach is
preferred (75%) over the centralized case (25%). When the communication with
the gNB is not feasible, the centralized agent is not able to gather local metrics
related the vehicles to build the state.

8

2
Centralized and Distributed PQoS

The objective of this chapter is to introduce realism in the collection of met-
rics to describe the network state to the RL agent. First, a phase of understand-
ing which metrics to collect in the state are available at the centralized and dis-
tributed agents is required, looking at the 5G protocol stack. There are many
measurements that are available at the RAN and/or the gNBwithout overhead,
there are other metrics that can be collected in the simulation in an idealized
way, i.e., these metrics are assumed to be available at the RAN with no addi-
tional overhead. In this case, the implementation of realistic communication
and computational mechanisms in ns-3 for obtaining those metrics is required
to build the network state.

First of all, a description of the V2X scenario, and use cases, requirements
and technologies of the PQoS techniques, with an important focus on the TD,
is presented. An analysis of the 5G New Radio (5G NR) system architecture
is provided, in order to explore protocols and relative mechanisms at different
layers of the V2X network stack. Subsequently, new definitions for centralized
and distributed learning approaches are proposed, based on realistic knowledge
gathered exploiting the following sources:

• local metrics;

• reporting systems;

• additional exchange mechanisms.

9

2.1. V2X COMMUNICATION: PQOS FOR TD SCENARIO

Finally, a comparison between different state configurations and their impact on
the performance of the agent is presented, with a detailed focus on the QoS and
the QoE.

2.1 V2X COMMUNICATION: PQOS FOR TD SCENARIO

V2X communication is a key component of ITSs, where vehicles are intercon-
nected with other vehicles, infrastructures, pedestrians and networks. Vehicu-
lar networks represent an extreme and dynamic environment due to the high
mobility of nodes and especially the very strict requirements in QoS, particu-
larly latency and reliability [13]. The recent advent of innovative communication
technologies and network architectures, integrating AI and ML functionalities,
enables the development of fully autonomous systems capable of meeting QoS
demands and optimizing network resource management [1].

In this critical environment, being able to anticipate and notify upcoming
network degradation and react accordingly is fundamental to preserve an high
QoS in the V2X applications. This mechanism is called PQoS [6].

PQoS has a crucial role in improving the safety and reliability of V2X appli-
cations, particularly in scenarios involving high-definition map sharing, TD and
high-density platooning. By network predictions, PQoS can anticipate andmiti-
gate potential issues, ensuring that autonomous driving systems satisfy latency
and reliability constraints even in challenging conditions.

Focusing on the TD, a remote operator, human or software, is required to
control a vehicle. In this scenario, there is the transmission of high-resolution
video data from the vehicle’s onboard sensors, with data rates reaching hun-
dreds of Mbps [2], to the control center. In addition, ultra-low latency (≤50 ms)
and extreme reliability (99% in UL and 99.999% in DL) must be satisfied by the
driving commands communication. The former to ensure responsiveness dur-
ing vehicle control, the latter to ensure the accurate execution of commands and
maintain safety.

In this scenario, PQoS chooses countermeasures to deal with network pre-
dictions, eventually facing QoS degradation. If this is the case, the system could
gently enter in a safe mode or, in the worst case, require the human takeover if
QoS is extremely poor and not sufficient to support safely the TD. For instance, if
a route becomes congested, the control center can adjust the vehicle’s speed and

10

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

path tomaintain safety with the assist of PQoS, based on the network conditions
[6].

In general, PQoS can be implemented at RAN or Core Network (CN) side of
cellular infrastructure. Looking at RAN-based solutions, radio map prediction,
predictive adaption of radio parameters and predictive scheduling are the main
approaches to achieve PQoS [6]. Radio map prediction consists in predicting
the radio signal propagation, i.e., the path loss or SINR, starting from measure-
ment collection and then applying ML techniques to analyze and forecast the
radio environment in foreseen locations. Predictive adaptation of radio param-
eters consists in dynamically optimizing network parameters based on QoS es-
timates. For instance, lower-layer decisions related to the transmission power,
system numerology, radio resource allocation ad scheduling can be adapted in
real-time to match the foreseen network conditions. Moreover, higher-layer ac-
tions can be tuned, e.g., the compression of data generated by the application
layer. Predictive scheduling refers to the allocation of network resources in time
and frequency, based on predicted mobility patterns and network conditions,
before of the network changes. Depending on the coverage, the base station or
directly the users can schedule resources in a more efficient way, reducing the
latency and improving the service quality.

The most advanced method for generating PQoS predictions is through the
neural networks (NNs), which exploit input features related to the network con-
ditions, resource availability, predicted mobility patterns, or other network ob-
servations. The output consists in the action/countermeasure to adopt to pre-
serveQoS, especially in case of degradation,without static rules or a-priori knowl-
edge [6]. From the other side, a rich training dataset is required to build a robust
predictor, together with computational power and time. Traditional predictors
as linear regression or filter-based model are not suitable for large amount of
data with non-linear relationships [7].

Recently, RLmethods are investigated to achieve PQoS in TD scenario [9][10].
A RL agent, capturing network conditions and QoS indicators, learns how to
select the optimal compression mode (i.e., PQoS action) to apply on vehicle’s
data in order to satisfy TD constraints. In this case, the training is performed
online, so a continuous learning is performed by the agent, with a good effect
on data distribution variability due to the dynamic environment. In addition, a
huge training set is not required.

11

2.2. 5G NR SYSTEM ARCHITECTURE

2.2 5G NR SYSTEM ARCHITECTURE

The 5G NR architecture is made up of two main components: the RAN and
the CN. The split of functions between RAN and CN is necessary to have the
same CN serving different radio-access technologies [14].

The RAN interconnects user terminals (e.g., mobile phones, vehicles, sen-
sors, etc.) to the 5G CN. It mainly manages all the radio resource management
function of the whole network: dynamic resource allocation (scheduling), radio
bearer and admission control, connection mobility control [15].

The CN manages functions related to access authentication and authoriza-
tion, mobility management control, Packet Data Unit (PDU) handling and ses-
sion control. It also provides sessionmanagement and network slicing functions
[15].

2.2.1 CN

The CN offers both control plane and user plane functions. The control plane
carries signaling messages to control the connection between user equipments
and the network, the user plane carries user traffic.

The user plane involves theUser Plane Function: it is in charge of routing and
forwarding packets, packet inspection, policy rule enforcement, QoS handling,
traffic reporting and verification [15].

The control-plane functions are divided in the following parts [14][15] .

• The Session Management Function is responsible of session management,
IP address allocation for UEs, policy enforcement, and general manage-
ment of UP function

• The Access and Mobility Management Function controls signalling be-
tween the CN and the device and manages data security, reachability of
idle UEs, access authentication and authorization, and mobility manage-
ment control (both intra-system and inter-system)

• The Policy Control Function manages policy rules framework, including
QoS, filtering and other decisions

• The Unified Data Management manages authentication credentials and
handles access authorization to subscribers’ data

12

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

Figure 2.1: NR DL user-plane protocol stack [14]

• TheNetwork Exposure Function exposes network services and capabilities
to third-party applications in a secure way

• The NR Repository Function manages a repository of available network
functions and relative profiles

• The Authentication Server Function manages the authentication process

• TheNetwork Slice Selection Function selects the appropriate network slice,
which is a collection of logical network functions supporting the require-
ments of a specific use case, to serve a device

• The Unified Data Repository manages subscriber information

13

2.2. 5G NR SYSTEM ARCHITECTURE

• theApplication Function controls traffic routing and interactswith the Pol-
icy Control Function to request policy control decisions

2.2.2 RAN

The RAN is composed by an arbitrary number of gNBs, interconnecting in-
dividual devices (UEs) to the CN. The gNB is in charge of all radio-related func-
tions, as radio resource management, admission control, connection establish-
ment, routing of user/control-plane data and QoS flow management [14].

2.2.3 PROTOCOL ARCHITECTURE [14][15]

After the brief explanation of the 5G NR system architecture, now the RAN
protocol stack is illustrated. The case of interest for this thesis is about the user-
plane protocols, since the measurement collected by the agent are linked to the
data traffic between vehicle and RAN. This reflects on analyzing how the data
is transmitted, received, and managed through the different layers of the user-
plane protocol stack.

The RAN user-plane architecture (Fig. 2.1) is made up of the following pro-
tocols.

• The Service Data Application Protocol (SDAP) is responsible for mapping
QoS flows to data radio bearers according to relative QoS requirements,
multiple QoS flows can result in the same data radio bearer. Previously,
theUDF function inside theCNmapped IP packets to the properQoS flow.

• The PDCP is responsible for the transfer of user plane data and the IP
header compression and decompression, employing specific protocols. It
ensures the encryption and decryption of packets, as well as their integrity
protection and verification. Furthermore, the PDCP is in charge of the dis-
carding and reordering of duplicated packets and in-order delivery.

The number of PDCP entities is equal to the number of radio bearers con-
figured for the device.

• The RLC is responsible for the transfer of PDCP PDUs and the segmenta-
tion of RLC SDUs from PDCP layer into smaller RLC PDUs and reassem-
bly. It ensures the retransmission of corrupted received PDUs and the de-
tection and removal of duplicated PDUs.

14

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

RLC protocol does not ensure in-sequence delivery and forwards imme-
diately packets to higher layers, in order to reduce the latency due to the
reordering mechanisms. If needed, PDCP protocol can provide this ser-
vice. In addition, to reduce the overall latency, no concatenation is per-
formed by RLC, so RLC PDUs can be reassembled without waiting for the
UL scheduling decision.

For each RLC channel, which provides services to the PDCP layer, there is
one RLC entity established when a radio bearer is set up.

There are three modes in which a RLC entity can operate: transparent
mode, unacknowledged mode, acknowledged mode.

– In transparent mode, no RLC headers are added to the packet and
buffering is done only at transmission. Segmentation and reception
feedbacks are not present.

– In unacknowledged mode, RLC headers are added and buffering is
done both in transmission and in reception. Segmentation and du-
plicate detection is supported, while feedbacks are still not imple-
mented.

– In acknowledged mode, in addition to the UM features, retransmis-
sion of erroneous packets is supported.

• The MAC layer is responsible for the scheduling functions, logical chan-
nel multiplexing and hybrid-Automatic Repeat Request (ARQ) error cor-
rection. In case of carrier aggregation, it manages the multiplexing and
demultiplexing of data across component carriers.

Scheduling is the most critical task performed by the MAC layer, since
many users share resources of the transmission channel in time and fre-
quency. The scheduler at the gNB must decide how to assign, both in UL
and DL, the resource blocks (frequency domain) and OFDM symbol slots
(time domain) in an efficient way, and this decision will have a strong im-
pact on the E2E latency.

The are mainly two approaches: semi-static scheduling and dynamic
scheduling [15]. In the first approach, referred to as semi-persistent
scheduling (SPS), the radio resources are pre-assigned periodically to the
UEs, where the periodicity is controlled by the Radio Resource Control

15

2.3. REINFORCEMENT LEARNING

(RRC). As a consequence, the allocation is fixed for a period, reducing con-
trol plane overhead but, at the same time, decreasing the flexibility in the
scheduler decisions.

In the dynamic scheduling, the scheduler (typically) at every slot de-
cides how to schedule the resources based on the channel state, prefer-
ring devices with advantageous conditions (channel-dependent schedul-
ing). More precisely, in DL direction, the device reports its channel quality
to the gNB sending frequently a control signal, the Channel State Informa-
tion (CSI). In the UL direction, the scheduler exploits a sounding reference
control signal transmitted from each UE for which the gNB wants to esti-
mate the channel quality.

The MAC provides services to the RLC through logical channels. A logi-
cal channel can be classified as a control channel, if controls and configu-
ration information are transmitted, or as a traffic channel, if user data are
exchanged.

• The PHY layer is responsible for a large number of functions, includ-
ing modulation and demodulation, coding and decoding, physical-layer
hybrid-ARQ, multiantenna processing and mapping signals to physical
time-frequency resources.

The PHY provides services to the MAC through transport channels. Each
transport channel is mapped to a physical channel, which is a set of re-
sources in time and frequency.

2.3 REINFORCEMENT LEARNING

RL is a ML technique where an agent interacts with an environment to learn
how to maximize the cumulative future reward 𝑅. Considering 𝑡 = 0 as the
initial time step, the (infinite-horizon) discounted 𝑅 is defined as the following
sum over time

𝑅 =
∞∑
𝑡=0

𝛾𝑡𝑅𝑡 , (2.1)

where 𝛾 determines the present value of future rewards. A 𝛾 = 0 means that
only the immediate reward is important, whichmakes the agentmyopic towards
the future; instead, the agent takes into account future rewards with 𝛾 value

16

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

Figure 2.2: RL framework [16]

close to 1.
The RL framework can be formalized mathematically as a Markov Decision

Process (MDP). A MDP is defined by the tuple < 𝒮 ,𝒜 ,𝒫 ,ℛ , 𝛾 >, such that:

• 𝒮 is the finite set of states

• 𝒜 is the finite set of actions

• 𝒫 is the state transition probability matrix, where the elements are

𝒫 𝑎𝑠𝑠′ = 𝑃[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

• ℛ is the reward function, where

ℛ 𝑎𝑠 = 𝐸[𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

• 𝛾 ∈ [0, 1] is the discount factor

There are several elements which define the entire RL framework, repre-
sented in Fig 2.2.

• Agent: intelligent entity with a task to learn, following a certain policy 𝜋

• Environment: element with which the agent interacts, it gives at each time
step a reward and moves the agent into a new condition (depending on
the state-action pair)

• State: meaningful and representative description of the system (agent and
environment) where the agent is located

• Action: decision taken by the agent from a certain state

17

2.3. REINFORCEMENT LEARNING

• Reward: scalar value representing how well the agent is doing

More precisely, at each time step 𝑡 (discrete time is assumed, the same con-
cepts can be extended to continuous time), the agent interacts with the envi-
ronment and observes the state 𝑆𝑡 , then it decides to take action 𝐴𝑡 . The envi-
ronment, based on (𝑆𝑡 , 𝐴𝑡), provides the agent with reward 𝑅𝑡+1 and moves the
agent in state 𝑆𝑡+1.

The agent follows a policy, i.e. a mapping of the state into an action: it can
be deterministic, 𝐴𝑡 = 𝜋(𝑆𝑡), or stochastic, 𝜋(𝑎|𝑠) = 𝑃[𝐴𝑡 = 𝑎, 𝑆𝑡 = 𝑠].

The agent goal is to find the optimal policy 𝜋∗ that maximizes the expected
return 𝐺𝑡 , defined as the discounted R from time 𝑡

𝐺𝑡 =
∞∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 . (2.2)

The (state-)value function of a state 𝑠 under a policy 𝜋 is the expected re-
turnSS from state 𝑠 and following 𝜋. In a MDP, it is defined as follows.

𝑣𝜋(𝑠) = 𝐸𝜋[𝐺𝑡 |𝑆𝑡 = 𝑠] (2.3)

The action-value function of taking action 𝑎 from state 𝑠 under a policy 𝜋 is
the expected return from state 𝑠, taking action 𝑎 and following 𝜋. In a MDP, it
is defined as follows.

𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋[𝐺𝑡 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.4)

Knowing the optimal action-value function, it is possible to derive directly the
optimal policy selecting the action which maximizes this function.

A MDP underlies every RL problem, however, in typical real-world scenar-
ios (as the TD), the model of the environment is unknown a priori. As a con-
sequence, the MDP can’t be fully defined because there is no knowledge about
𝒫 (the state transition probabilities) and ℛ (the reward function). Dynamic pro-
grammingmethods, which rely on Bellman equations, cannot be exploited since
a complete and accurate model of the environment is required.

To address this problem, model-free approaches (e.g., Monte Carlo meth-
ods, temporal-difference learning, etc.) can be explored in order to solve the RL

18

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

problem. Differently from the model-based case, these methods learn from ex-
perience by sampling sequences of states, actions and reward, so real world data
are gathered interacting with the environment, without any requirement on its
model.

In this thesis, model-free value-based algorithms are explored, meaning that
the agent tries to estimate the optimal action-value function and learn a policy
based on that. Q-Learning [17], SARSA [18] and Deep Q-Learning [DQN] are
examples of value-based methods. The counterpart approaches are base on a
policy-based strategy, where the agent tries to learn directly the optimal policy,
without taking into account the value function.

However, in the TD scenario, the state space becomes continuous and enor-
mous: finding the optimal value function for each state (and the policy) is not
feasible. The main problem is related to the lack of generalization of tabular
methods, and, as a consequence, it is impossible to require the system to expe-
rience an infinite number of states. In the absence of generalization, the agent
cannot exploit knowledge learned from one state to make decisions in similar
states. Thus, tabular methods are not the best choice in this context [16].

The new objective is to find a good approximate solution, being able to gen-
eralize from previously visited states that are similar to the current one. A func-
tion approximator is required in order to take samples of the value function and
attempt to generalize, building an approximation of the entire function [16]. In
practical terms, the value function depends on a vector of parameters, accord-

Figure 2.3: Portion of the city of Bologna used in the simulations

19

2.4. PQOS FRAMEWORK

ing to a definition based on the approximation approach. The state of the art for
function approximation is represented by the powerful Deep Neural Networks,
but there are also approaches based on linear combinations of feature, decision
tree, multivariate regression, etc.

2.4 PQOS FRAMEWORK

The PQoS framework is applied to the TD service, involving a vehicular sce-
nario set in a portion of the city of Bologna (Fig. 2.3). The parameters of the
simulation are described, beginning with the network topology and its param-
eters, continuing with the channel model and the application layer description.
Subsequently, a focus on the ns-3 entities is presented. These parameters are
fixed in every PQoS learning approach.

2.4.1 SIMULATION PARAMETERS

NETWORK

In the simulated TD scenario, the centralized PQoS framework involves a
V2X network composed by:

• a gNB

• a remote host (teleoperator/driving application)

• 𝑛 vehicles (i.e., UEs).

A wired channel connects the remote host to the gNB, with a propagation
delay 𝜏 of 10 ms and a transfer data rate 𝑅 of 100 Gbps. The gNB communicates
with the vehicles through the 5GNR technology. The systemoperates at a carrier
frequency 𝑓𝑐 of 3.5 GHz (NR band n78) and with an available bandwidth 𝐵 of 50
MHz. The numerology adopted is the 3rd. The gNB has a transmission power
of 30 dBm, while the UEs have a tranmission power of 23 dBm.

CHANNEL

The mobility of the vehicles is simulated by Simulation of Urban Mobility
(SUMO) [19], in an area of the city of Bologna. The channel propagation loss

20

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

model is directly computed by GEMV [20], a geometry-based propagation sim-
ulator. GEMV traces describe the received powers of 50 different vehicles, for
a total time of 90 s and with an interval of 100 ms between consecutive acquisi-
tions. As a consequence, the path loss is not calculated using ns-3 methods, but
it is directly acquired by reading the GEMV traces.

VEHICLE DATA

Each vehicle is equipped with on-board sensors, as RGB cameras and Li-
DARs, to track the city environment and share it with the remote teleoperator.
In particular, each LiDAR perception generates a 3D representation of the sur-
roundings in the form of a point cloud. If the resolution and the sampling fre-
quency are very high, the average data rate to exchange these point clouds can
reach hundreds of Mbps. For this simulation, the application installed at the UE
produces point clouds at a frequency of 30 Hz.

COMPRESSION

The frequent transmission of huge point clouds could be challenging for the
network infrastructure, especially if high standards relative to E2E latency must
be achieved in TD. Thus, compression techniques can be applied to the point
clouds in order to reduce their size, decreasing the overall data rate and conse-
quently the burden on the transmission channel.

Draco [21] is exploited to achieve a real-time compression of LiDAR percep-
tions. Draco is an open-source library, developed by Google, for compressing
and decompressing 3D geometric data, especially meshes and point clouds. The
compression can be tuned setting two parameters:

• the number of quantization bits 𝑞 ∈ [1, 31],
• the number of compression levels 𝑐 ∈ [0, 10].

Operating on 𝑞 and 𝑐, a trade-off between compression ratio and decoding per-
formance can be achieved. More precisely, 𝑞 determines the amount of bits used
to encode each coordinate of the point cloud, affecting in a strong way the size
and the quality of the compression. The other main parameter 𝑐 controls the op-
erations performed during the compression, affecting heavily the time required
for the point cloud compression and decompression.

21

2.5. CENTRALIZED APPROACH

2.4.2 NS-3 ENTITIES

A full-stack E2E simulation is provided exploiting the network simulator ns-
3.

mmwave MODULE

The open-source mmwave module [11] is exploited for simulating 5G NR net-
works, supporting communication both in Frequency Range 1 and in Frequency
Range 2 (millimeter waves). This module is integrated with RAN-AI and UE-AI
classes and functionalities to enable PQoS during the simulation.

APPLICATIONS

At the vehicle an application to model the transmission in UL of LiDAR data
to the remote driving application installed at the remote host. The traffic model
is managed by the SelmaTraceBurstGenerator, which controls at runtime the
type of DRACO compression applied to the real point cloud, extracted from the
SELMAdataset [22]. Then, the BurstyApplication and BurstSink are in charge
of transmitting the compressed point cloud, through fragments of smaller size
(1200 byte), and receiving all the packets doing an aggregation at the destination,
respectively.

In the DL direction, the UdpClient at the transmitter and the PacketSink
at the receiver are in charge of exchanging the remote driver commands to the
vehicles. A data rate of 0.32 Mbps per vehicle is generated.

In both directions, the applications run based on the connectionless UDP
transport, to reduce the overhead of flow control and congestion control. Error
correction features and reliability are ensured by lower layers (RLC, MAC and
PHY) mechanisms.

2.5 CENTRALIZED APPROACH

2.5.1 RAN-AI

In the centralized approach, the RAN-AI entity [12] can be defined as an in-
telligent network controller, installed in the gNB and connected to all the RAN
and CN components. The role of the RAN-AI is to collect networksmetrics from

22

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

different sources in order to take decisions (i.e., the compression mode) ensur-
ing PQoS, to optimize the V2X network status in a predictive way. This task
is computed exploiting AI functionalities, i.e. the RL agent incorporated in the
learning framework.

More precisely, the RAN-AI operations are performed through the following
steps.

1. Collection of the network measurements from the RAN, related to each
vehicles

2. Creation of the states representations from the gatheredmetrics for the RL
agent

3. Estimation of the PQoS countermeasures, based on the RL agent

4. Delivering of the actions to the vehicles

The class RanAI implements the RAN-AI functionalities, so an instance of
that class must be included in the gNB class (MmWaveEnbNetDevice). The follow-
ing key methods of the gNB enables the RAN-AI to operate.

1. InstallRanAI() is in charge of initializing the RAN-AI instance and rel-
ative calculators at RLC and PDCP layers and APP layer. In addition, it
schedules the collection of the measurements by the RAN-AI entity.

2. SendStatusUpdate() is in charge of gathering and assembling the full-
stack network statistics for each vehicle to share with the RL agent.

3. ReportMeasures() is in charge of transferring the metrics to the agent and
letting it to compute the optimal action(s) for the given input state(s). Then,
the decision(s) is (are) read from the same shared memory and set in the
traffic generator at the vehicle(s).

4. NotifyActionIdeal() is in charge of propagating the RL agent’s decisions
to the application on each vehicle, where the compression mode has to be
configured accordingly.

The communication between ns-3 simulations and RL Python algorithms is in-
tegrated inside the ns3-ai module [23].

23

2.5. CENTRALIZED APPROACH

2.5.2 RL FRAMEWORK

For the centralized scenario, the RL framework involves the following defi-
nitions of state space 𝒮, action space𝒜 and reward function ℛ.

Original State The discrete state space contains vectors s ∈ 𝑅18 of measure-
ments from the entire protocol stack of a user (i.e., vehicle), related to the UL
direction. For completeness, they are reported in the underlying list.

PHY layer

• SINR perceived at the gNB;

• MCS of the transmission;

• Number of Orthogonal Frequency-Division Multiplexing (OFDM) sym-
bols used in a slot.

RLC and PDCP layers

• Average delay of PDUs;

• Standard deviation of delay of PDUs;

• Minimum delay of PDUs;

• Maximum delay of PDUs;

• Packet Reception Rate (PRR), computed from the number of transmitted
PDUs and the number of received PDUs.

APP layer

• Average delay of bursts;

• Standard deviation of delay of bursts;

• Minimum delay of bursts;

• Maximum delay of bursts;

• PRR, computed from the number of transmitted burst and the number of
received burst.

24

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

(q, c) Average mAP
(8, 0) 0.257
(8, 5) 0.257
(8, 10) 0.257
(9, 0) 0.580
(9, 5) 0.572
(9, 10) 0.574
(10, 0) 0.686
(10, 5) 0.683
(10, 10) 0.683

Table 2.1: Average mAP achieved by the object detector PointPillars on the
SELMA dataset, depending on the compression mode

Actions The discrete action space involves 9 possible choices for the PQoS
countermeasure to adopt, i.e. the compression mode. They represent all the
combinations of the 2 main DRACO parameters, the number of quantization
bits and the number of compression levels, restricted to 𝑞 ∈ {8, 9, 10} and 𝑐 ∈
{0, 5, 10}, since they are the most representative values for the purposes of this
thesis.

Reward The reward function at time 𝑡, 𝑅𝑡(𝑠, 𝑎), depends on two contributions:

• The QoS to ensure the satisfaction of TD requirements in terms of Key
Performance Indicators (KPIs); in this work, only the E2E delay 𝛿𝑡 is con-
sidered. 𝛿𝑀 is the maximum tolerated E2E delay, fixed to 50 ms from the
5GAA.

• The QoE to ensure that the transmitted data is accurate enough to perform
remote driving operations, as the object detection. The mean average pre-
cision (mAP) 𝑚𝑎 achieved by the object detector PointPillars [24] on the
SELMA dataset, with compression mode 𝑎 is considered as metric to eval-
uate the accuracy of the object detection. The average values achieved are
reported in Tab. 2.1.

The formula of 𝑅𝑡(𝑠, 𝑎) is defined as:

𝑅𝑡(𝑠, 𝑎) =

𝑚𝑎 if 𝛿𝑡 ≤ 𝛿𝑀

− 𝛿𝑡
100 otherwise

(2.5)

25

2.5. CENTRALIZED APPROACH

2.5.3 PROPOSED SOLUTIONS AND IMPLEMENTATION

The original state, described in Sec. 2.5.2, presents several limitations and
assumptions that are too strong for a realistic centralized scenario.

PHY layer The state does not capture the BLock Error Rate (BLER) and the
Transport Block Size (TBS), two important metrics related to the Transport Block
(TB), i.e. the packet exchanged between the MAC and PHY layers. The BLER,
defined as the ratio between the number of TB received with errors and the total
number of received TB, can help the agent to evaluate the physical layer per-
formance of the vehicle, together with PRR values at the RLC, PDCP and APP
layers, already present in the state. As far as the TBS size is concerned, it is di-
rectly linked to the amount of data that can be transmitted at PHY layer over a
Transmission Time Interval (TTI) slot. A large TBS indicates that the channel can
support higher data rates, due to an higherMCS, while a small TBS reflects poor
channel conditions requiring more robustness [25]. As far as the implementa-
tion is concerned, inside the mmwave module, the RxPacketTraceEnbCallback()
method in the MmWaveEnbNetDevice class is modified to store over time (between
two consecutive state acquisition) TBS and BLER values every time a TB is re-
ceived by the PHY layer at the gNB.

Furthermore, the SINR value present in the state is directly computed at the
gNB, without any mechanism to evaluate it involving an exchange of control
signals with the user. There are scheduling-related control mechanisms at the
MAC layer, specified by the Third Generation Partnership Project (3GPP) stan-
dards, that can be exploited to get the SINR perceived at the UE, but just in a
quantized value. For example, via the Channel Quality Indicator (CQI).

The implementation of a newadditional controlmessage is provided in order
to have a fine-grained value of the SINR perceived by the UE.

RLC and PDCP layers The state is not able to describe the situation of the
transmission buffer at the user and the overhead to transmit such information
must be avoided. Therefore, another scheduling-related control mechanism of
the MAC allows the gNB to make an estimation of the vehicle buffer, without
explicit interaction with the UE. The Buffer Status Report (BSR) provides fre-
quently the gNB with UL data volume of RLC and PDCP layers.

26

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

CQI

The CQI [25] is part of the CSI, which contains other measurements essential
for an efficient and adaptive scheduling of the available resources, such as the
Rank Indicator (RI) and the Precoding Matrix Indicator (PMI).

In particular, the CQI reflects the quality of the data communication channel
between the UE and the base station (i.e., the gNB) and it is computed starting
from the SINR measured at the UE. At the scheduler, the CQI impacts also on
the type of MCS adopted for the transmission to the UE in order to achieve the
required BLER.

More precisely, theCQI notificationprocess goes through the following steps.

1. CQI computation

Knowing the SINR value at the UE, the spectral efficiency (SE) achieved
with the target Bit Error Rate (BER) is computed. Exploiting the tables
mapping CQI indexes to SE (plus code rate and modulation) reported in
3GPP standards [25], the highest CQI indexwhich ensures a SE not greater
than the SE achievable is chosen. CQI indexes are integer values in [0, 15].

The following formula is exploited inside the mmwave module to compute
the SE from the SINR and the BER.

SE = log2

(
1 + SINR
− ln(5·BER)

1.5

)
(2.6)

2. CQI reporting
The time scheduling of the reporting mechanism is specified by the higher
layer parameter reportConfigType of Radio Resource Control (RRC) [25] and
it can be:

• aperiodic;

• semi-persistent on the physical uplink control channel;

• semi-persistent on the physical uplink shared channel;

• periodic.

Inside the mmwave module, after that data packets are received, the PHY
layer at the UE generates the CQI and reports it to the gNB in control slots

27

2.5. CENTRALIZED APPROACH

[11]. Anyway, it is always enabled the periodic approach, where the peri-
odicity is fixed in number of slots. The available values are 4, 5, 8, 10, 16,
20, 40, 80, 160, 320. More precisely, the attribute CqiReportPeriod in the
MmWaveUePhy class allows to tune the CQI periodic reporting.

In the simulations, the period is set to 10 slots, which corresponds to a time
interval of 1.25 ms in numerology 3. In this way, a sufficient granularity in
the updates to the gNB, then acquired by the RL agent, is ensured.

3. Adaptive Modulation and Coding

The gNB uses the reported CQI to set the transmission parameters, in par-
ticular the MCS, based on real-time channel conditions.

• High CQI: higher-order modulations and higher code rates are em-
ployed.

• LowCQI: lower-ordermodulations and lower code rates are employed.

These steps creates a feedback loopwhere the UE frequently shares the chan-
nel condition with the gNB, so that the gNB can adapt its transmission strategy
accordingly.

PROPOSED SINR CONTROL MESSAGE

The CQI value could be not sufficient to fully describe the channel status at
the vehicle, so it is reasonable to transmit to the gNB the original value of the
SINR perceived by the UE. The exchange of this additional metric is not present
in the simulator, so a new control message MmWaveDlSinrMessage (extending the
MmWaveControlMessage class) and relative overhead have been modelled.

To model this exchange, an additional symbol with respect to the one al-
ready dedicated to the UL control is reserved. As a consequence, among the
14 OFDM symbols inside a slot, 11 remain for data transmission and the other 3
symbols are used for the control (1 inDL, 2 inUL). The addition of a control sym-
bol, which corresponds to the removal of a data symbol, makes sense if all the
data symbols have been previously employed for the transmission of application
data, otherwise this choice has no impact on the network performance. As far
as the implementation is concerned, inside the mmwave module, when the slots
allocation is initialized in InitializeSlotAllocation() of the MmWaveUePhy

28

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

(a)

(b)

(c)

Figure 2.4: OFDM symbols usage over the total number of slots inside a simula-
tion with (a) 1 vehicle, (b) 5 vehicles and (c) 10 vehicles.

class, two symbols are reserved for UL control by SetSlotCtrlStructure()
(MmWavePhy) and SetUlCtrlSymbols() (MmWavePhyMacCommon).

Since the BurstyApplication generates burst transmissions of point clouds,
all symbols are utilized immediately in the same way, independently by the
number of vehicles. As a consequence, the additional symbol reserved to the
control represents an important overhead for the communication. However, the
congestion of the network due to many vehicles impacts for sure the evolution
in time of the channel resources: the usage of data symbol increases, resulting
in fewer slots reserved solely for control during the simulation. The usage of
OFDM symbols (over the total number of slots) with a different number of
vehicles is shown in Fig. 2.4.

The easiest approach is sending the control message every time a packet
(with data or control) is sent in DL. A more realistic strategy can be exploited
following the policy described below.

1. If the SINR is below a certain threshold, this means that the channel is too

29

2.5. CENTRALIZED APPROACH

degraded. An outage occurs and the gNB does not receive the SINR report
from the UE.

2. If the SINR is similar to the previously sent value according to a certain
threshold, the UE does not transmit the SINR report to the gNB. As a con-
sequence, the gNB reuses the old SINR value.

3. If the SINR is similar to the previously transmitted value but an update
timer has expired, the new value is sent to the gNB anyway (unless an
outage is occured). A minimum of synchronization with the gNB must be
ensured.

The generation of the control message with the continuos value of
the SINR, according to the described policy, is implemented by the
GenerateDlSinrReport() method in the MmWaveUePhy class.

BSR

The BSR is a reporting procedure to inform the gNB about the volume of UL
data in the MAC entity. The amount of data should consider both the RLC and
the PDCP buffers [26].

The RLC data volume [27] involves the following contributions:

• RLC SDUs and RLC SDU segments not included in an RLC data PDU;

• RLC data PDUs pending for initial transmission;

• RLC data PDUs pending for retransmission (RLC AM mode).

The PDCP data volume [28] involves the following contributions:

• PDCP SDUs not included in an PDCP Data PDUs;

• PDCP Data PDUs not submitted to lower layers;

• PDCP Control PDUs;

• PDCP SDUs to be retransmitted in particular cases (RLC AM mode).

The buffer status is reported for each Logical Channel Group (LCG), i.e., a group
of logical channels. Each LCG has an identifier called LCG ID.

These pieces of information are packed inside the BSR Control Element,
which can be in a short or long format. The short format is used only when

30

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

one LCG has data to transmit when the MAC PDU with the BSR is to be built,
otherwise the long format is exploited in presence of multiple LCGs with data
ready for transmission. There is also a truncated version of these formats that
must be used when the number of padding bits is larger than the short BSR but
smaller than the long BSR, and there are more LCGs with data available [26].

The fields inside the BSR MAC Control Element are the LCG ID and the
buffer size, which is quantized according to tables provided by the 3GPP [26].
The LCG ID requires 3 bits, the buffer size requires 5 bits in the short format or
8 bits in the long format. In addition, the long format contains for each LCG a
field to indicate the presence of the buffer size for that channel group.

The BSR reporting mechanism [26] is regulated by 3 timers, unless a trigger-
ing event occurs:

• periodic timer, to define the periodicity of the BSR message;

• retransmission timer, to define the maximum interval to wait before the
retransmission of the BSR;

• logical channel scheduling request timer (optional), to define the delay the
UE must wait before sending a new scheduling request after it has data to
transmit.

In the simulations, the periodicity of BSR is set to 20 ms by the attribute
ReportBufferStatusTimer in the LteRlcAm class, unless no data are available
on the LCGs. In addition, every time a RLC PDU is transmitted, the BSR is
reported. In this way, a sufficient granularity in the updates to the gNB, then
acquired by the RL agent, is ensured.

2.5.4 PERFORMANCE EVALUATION

The performances of the proposed realistic solutions are evaluated though
a simulation campaign in ns-3, where the centralized RL agent learns dynami-
cally how to maximize the reward from the metrics perceived at the RAN. The
reward takes into account both the QoS and the QoE. The analysis starts from
the results achieved by the different state definitions in terms of (average) re-
ward, E2E maximum delay and actions probability. In RL a dataset for training
and then testing the performance of the algorithm is not available. So, the agent
with the original state is considered as the baseline for the following evaluation
of the results.

31

2.5. CENTRALIZED APPROACH

Simulation campaign structure The simulation campaign is made up of 800
episodes, where each episode is an independent simulation of nearly 25 s in ns-
3. Inside every episode, 500 acquisitions of the RAN state are performed by the
agent every 50 ms, exactly the maximum tolerated E2E delay in the TD scenario.
As a consequence, the agent has to decide 500 actions about the compression
mode to adopt.

RL algorithm and parameters The DDQL algorithm is implemented to solve
the RL problem. An extensive description of this RL algorithm is provided in
Ch. 4.

Since the centralized approach is considered, all the state observations re-
lated to the vehicle(s) are given in input to a single agent installed in the RAN.
The discount factor 𝜆 is set to 0.95 so that the agent takes into account the pre-
vious history. DDQL stores the learning transitions (state, action, reward, next
state) in an Experience Replay (ER) buffer with a capacity B = 80000, when it is
full, the learning phase can start. In the DDQL algorithm, the weights of the Tar-
get Network are replaced every 8000 steps with the weights of the Q Network.
During the training of the agent, a batch-approach is exploited, with a batch size
set to 32.

A Fully Connected Neural Network (FCNN) is employed to approximate the
Q-function. The input layer contains a number of neurons equal to the state
dimension, the input is normalized using a batch normalization layer, then it
goes through the hidden part, reaching the output layer that contains a number
of neurons equal to the possible actions, i.e., the 9 compression modes. The
structure of the hidden layers is the following:

1. fully connected layer with 64 neurons and ReLu activation function, fol-
lowed by a batch normalization layer;

2. fully connected layer with 128 neurons and ReLu activation function, fol-
lowed by a batch normalization layer;

3. fully connected layer with 64 neurons and ReLu activation function, fol-
lowed by a batch normalization layer;

4. fully connected layer with 16 neurons and linear activation function.

The weights of neural network are updated using the Adam algorithm, with a
learning rate 𝛼 = 10-4.

32

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

An 𝜖-greedy strategy with a linear decay factor along the learning steps is
adopted to deal with the exploitation-exploration dilemma. Specifically, the
epsilon factor decays linearly from 1.0 to 0.01 in 400 episodes.

Results Two scenarios are considered: the first involves a single vehicle, while
second scenario involves a larger number of vehicles, set to 3. Increasing the
number of vehicles in the simulations, the congestion of the network becomes
higher, this makes more challenging the satisfaction of the KPIs.

1 VEHICLE

Considering only 1 vehicle, the congestion of the network is very low. In
this way, a fair comparison of the training performance can be presented on the
basis of the proposed state definitions. First of all, the learning of the RL agent
involving a realistic collection of the SINR of the vehicle is described. Then, the
state is modified replacing the SINR value with the CQI value.

Proposed State 1 In the Proposed State 1, the idealized exchange of the SINR
is removed. Specifically, the realistic exchange and the reporting policy are im-
plemented. As far as the policy is concerned, an outage threshold under which
the SINR is not transmitted to the gNB is fixed to 0 dB (in this case, the agent col-
lects a default value, e.g., the same outage threshold), together with a similarity
threshold of 2 dB to not exchange too frequently the SINR value and an update
timer of 300 ms to support a maximum of 6 state acquisitions by the agent with-
out a SINR update. For the overhead related to the mechanism of exchanging
the SINR, 1 OFDM symbol in UL inside the transmission slot is reserved. In
addition, the TBS and the BLER are gathered as physical layer parameters.

Furthermore, all features (delay and PRR) related to the RLC and PDCP lay-
ers are removed. Only the buffer status reporting mechanism is exploited.

For completeness, the following metrics are extracted and then gathered by
the SendStatusUpdate() method in the MmWaveEnbNetDevice class to define the
state.

• SINR

• MCS

33

2.5. CENTRALIZED APPROACH

(a) Average Reward (b) Action probability

Figure 2.5: Results training of centralized RL agent with Proposed State 1
vs. baseline (1 vehicle)

Figure 2.6: Average E2E Delay from the training with Proposed State 1 vs. base-
line (1 vehicle)

• OFDM symbols

• TBS

• BLER

• BSR

• APP PRR

• Average, standard deviation, minimum and maximum of the APP delay

The results achieved by the RL agent during the training phase (Fig. 2.5)
are very impressive: the reward with this proposed state is very similar to the

34

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

reward of the baseline solution in which the state metrics are assumed to be
available at the RAN with no additional overhead. The new reward is slightly
smaller because of two main reasons: the new realistic exchange mechanism of
the SINR and the quantized estimate of the UL volume of data reported by the
BSR. In this context, the realistic policy leads to some moments in which the
SINR value is not up-to-date, or even not reported in the case of an outage.

At the end of the training phase, when 𝜖 tends to zero, the average reward
converges to a value of 0.65. As far as concern the action probability (Fig. 2.5b),
after an initial exploration, the agent prefers to choose the more conservative
compression modes, whose reward is the highest. They are less aggressive and
offer better performance in terms of mAP (i.e., QoE) at the remote driver. This
behavior happens because the agent learns that the network scenario is not con-
gested and so it can transmit without a too aggressive compression, satisfying
the TD requirements anyway.

This is a great result since the proposed state contains a smaller number of
metrics related to the network status, especially at the PDCP and RLC layers,
but the performance achieved is almost identical to the original configuration.
In this context, the idealization of the SINR exchange is removed.

The realism and frequency of the updates of the SINR at the gNB, then ac-
quired by the agent, are ensured by the proposed reporting policy. Furthermore,
an impact in the UL communication channel is present due to the overhead in-
troduced by the additional control symbols required to report the SINR at the
RAN. The effect can be noticed in Fig. 2.6, where the E2E delay of the networks
is slightly higher than the one obtained with the original state, reaching a max-
imum increment of 0.5 ms.

Proposed State 2 In this proposal, the state is identical to the Proposed State
1, unless the replacement of the SINR value with the CQI. The aim is to un-
derstand how the learning performs using a preexisting mechanism in the 5G
protocol stack. There is no additional overhead in terms of control since the CQI
is already provided by the CSI mechanism, but, on the other side, the CQI is a
discrete valuemapped from the SINR. For completeness, the following proposal
of state definition is evaluated.

• CQI

• MCS

35

2.5. CENTRALIZED APPROACH

(a) Average Reward (b) Action probability

Figure 2.7: Results training of centralized RL agent with Proposed State 2
vs. baseline (1 vehicle)

Figure 2.8: Average E2E from the training with Proposed State 2 vs. baseline (1
vehicle)

• OFDM symbols

• TBS

• BLER

• BSR

• APP PRR

• Average, standard deviation, minimum and maximum of the APP delay

The results achievedwith the Proposed State 2 (Fig. 2.7) are basically aligned
with the previous results. The reward is comparablewith the reward of the base-

36

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

line. In general, the reward gainedwith the CQI is lower than the reward consid-
ering the idealized SINR in the state. This happens because CQI is a quantized
and less granular representation of the channel quality, leading to slightly less
precise optimization. However, considering the delay obtained with the previ-
ous state, the new delay with CQI improves since it avoids the overhead associ-
ated with direct SINR reporting mechanism. By using existing CQI reports, the
learning system reduces the need for additional signaling, so the performance
in terms of delay are improved. This can be seen comparing Figures 2.8-2.6.

As far as concern the action probability (Fig. 2.7b), the situation at the end
of the learning is identical to the previous state: the actions keeping more in-
formation in the point clouds are preferred. This means that the replacement of
SINRwith CQI has no impact on the learning of the RL agent and relative action
preference.

3 VEHICLES

Considering 3 vehicles, the congestion of the network increases. As a conse-
quence, different choices in the compression mode selection can be explored in
order to keep the E2E delay below the strict constraints of the TD.

Only the results achieved by the Proposed State 1 are presented, since the
results of Proposed State 2 are very similar.

(a) Average Reward (b) Action probability

Figure 2.9: Results training of centralized RL agent with Proposed State 1
vs. baseline (3 vehicles)

37

2.5. CENTRALIZED APPROACH

Figure 2.10: Average E2EDelay from the trainingwith Proposed State 1 vs. base-
line (3 vehicles)

First of all, the reward (Fig. 2.9a) of both the baseline and the proposed solu-
tionwith 3 vehicles is smaller than the casewith just 1 vehicle. This is reasonable
because the congestion of the network is higher, as a consequence the E2E delay
goes above the maximum tolerated latency in some steps during the learning.
Therefore, in this cases, the reward mechanism is defined to penalize the agent,
such that actions with a more aggressive compression mode are less frequently
adopted. Fewer data is transmitted by the vehicles if the network status is too
overloaded.

The effects of the network congestion can be noticed also in the plot of the
delay in Fig. 2.10, where the average value of the metric is above the value
obtainedwith 1 vehicle. In addition, the action probability plot (Fig. 2.9b) shows
some peaks corresponding to most aggressive compression modes during the
learning. These are the moments in which the network is not able to satisfy the
TD requirements. However, in general, the predominant actions remain the
more conservative ones, since the network is not extremely congested with only
3 vehicles.

As far as the comparison with the baseline configuration is concerned, the
behavior of the agent is similar to the case of 1 vehicle. The realistic exchange of
the SINR and the generated overhead contribute to decrease the reward and to
increase the overall delay, as illustrated in Fig. 2.9. In this case, the delay is up to
2-3 ms higher than in the ideal baseline scheme since more data is transmitted
by the vehicles, so the impact of the additional control symbol is much greater
than the previous scenario.

38

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

2.6 DISTRIBUTED APPROACH

The simulated vehicular scenario considered in the distributed learning ap-
proach is identical to the centralized case: the network topology, the channel
and the applications are unchanged. The new aspect is the replacement of the
centralized RAN-AI with the distributed UE-AI [10] entity, which is the key el-
ement enabling the decentralized (distributed and federated) PQoS .

2.6.1 UE-AI

The UE-AI entity can be defined as a distributed controller of the network.
There is a UE-AI entity on each vehicle, which is able to collect network metrics
gathered only from a single vehicle, i.e, the one where it is installed. The objec-
tive of theUE-AI is to take optimal decisions to ensure PQoS, optimizing the V2X
network status. In order to compute this task, the RL framework is exploited, as
in the centralized case.

The major difference with respect to the centralized framework is the pres-
ence of a multi-agent RL problem: a RL agent for each UE-AI, so for each vehi-
cle, is present in this learning scenario and all the agents cooperate to provide
PQoS. This means that each RL agent deals only with metrics coming from the
local vehicle, with a limited perception of the overall network status. The learn-
ing problem becomes more challenging, also for the availability of metrics in a
distributed context (e.g., E2E delay is not directly computable at the vehicle).

The flow of the operations for each UE-AI is articulated in following steps.

1. Collection of the network measurements from the UE, related to the local
vehicle

2. Creation of the state representation from the gathered metrics for the RL
agent

3. Estimation of PQoS countermeasure by the agent

4. Sharing of the actions to the local vehicle

The class UeAI implements the UE-AI functionalities, so an instance of that
class must be included in the UE class (MmWaveUeNetDevice). Each UE entity
has a UE-AI instance. The following methods of the UE enables the UE-AI to
operate.

39

2.6. DISTRIBUTED APPROACH

1. InstallUeAI()

2. SendStatusUpdate()

3. ReportMeasures()

4. NotifyActionIdeal()

The relative descriptions are avoided because they are very similar to RAN-
AI entity. The main difference is that each UE employs these methods to take
distributed PQoS actions, instead of the gNB.

2.6.2 RL FRAMEWORK

The RL framework is identical to the centralized RL framework described in
Sec. 2.5.2. A brief recap of the state, action and reward definitions is reported
below.

• Original State

The state is a vector s ∈ 𝑅18 of following measurements from the entire
protocol stack of a user (i.e., vehicle), related to the UL direction.

PHY layer

– SINR;

– MCS;

– OFDM symbols used.

RLC and PDCP layers

– Average, standard deviation, minimum and maximum delay of
PDUs;

– PRR.

40

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

APP layer

– Average, standard deviation, minimum and maximum delay of
bursts;

– PRR.

• Action

9 possible choices for the PQoS countermeasure to adopt, i.e., the compres-
sion mode. All the combinations of DRACO parameters 𝑞 ∈ {8, 9, 10} and
𝑐 ∈ {0, 5, 10}.

• Reward

𝑅𝑡(𝑠, 𝑎) is defined as:

𝑅𝑡(𝑠, 𝑎) =

𝑚𝑎 if 𝛿𝑡 ≤ 𝛿𝑀

− 𝛿𝑡
100 otherwise

(2.7)

2.6.3 PROPOSED SOLUTIONS AND IMPLEMENTATION

The original state presents several limitations and assumptions too strong in
a realistic distributed scenario.

PHY layer The state does not capture the TBS, an important metric to express
the physical channel condition together with SINR, MCS and OFDM symbols
used. It represents the amount of bytes that can be transmitted over a TTI in
the channel. It is also linked to the modulation scheme exploited for the trans-
mission, depending on the channel conditions. As far as the implementation is
concerned, inside the mmwave module, the RxPacketTraceUeCallback() method
in the MmWaveUeNetDevice class is modified to store over time (between two con-
secutive state acquisition) TBS value every time a TB is received by the PHY layer
at the UE.

RLC, PDCP and APP layers In the original state definition, delays and PRR at
RLC, PDCP and APP layers are included. However, these metrics are gathered
in an idealized way, because they cannot be computed autonomously by the

41

2.6. DISTRIBUTED APPROACH

vehicle, without interactionwith the gNB. Indeed, calculating the delay requires
to know (at least) the timestamp of transmission (available at UE) and reception
(not available at UE). Similarly, the PRR requires to know the number of packets
transmitted by the vehicle (available at UE) and packets received at the gNB (not
available at UE).

Consequently, being realistic with the distributed approach means that each
vehicle can only exploit metrics that are locally available to it, or that a mech-
anism to exchange E2E metrics must be modelled, together with relative over-
head.

To solve the problem of calculating the delay at the application layer, which
is a key metric also for the learning of the agent since it is part of the actual
definition of the reward, a mechanisms of acknowledgments (ACKs) can be im-
plemented in the simulation. The ACK is sent to the vehicle as soon as the entire
transmitted point cloud is received by the gNB. This system is easy to implement
at the application layer. As alternative, instead of the precise value of the appli-
cation delay, a rough estimate can be calculated starting from the knowledge of
transmitted bytes and physical layer metrics, i.e., SINR or MCS. In this case, the
definition of the reward must be redesigned on the basis of this new estimate.

On the contrary, it is more difficult to build ACKs at intermediate layers (RLC
and PDCP) of the 5G protocol stack to compute the delays. For this reason, the
overall state of the transmission buffers can be monitored to understand the net-
work status at these layers, instead of computing the precise delay. It is reason-
able to think that in a network that is not extremely congested or in extreme poor
conditions, the delay at the RLC layer is a function of the amount of data inside
the buffers.

ACK AT APP LAYER

A mechanism to transmit ACKs is triggered as soon the gNB receives all the
fragments of a point cloud from that vehicle, sending back a timestamp. Only
when the ACK is received, the agent can acquire the network state, including
the application delay, and take the PQoS countermeasure. More precisely, a
timestamp can be problematic if the two systems have not an aligned clock, for
this reason the E2E delay computed by the gNB (remote host) can be directly
shared. Indeed, the gNB knows the slot when the UE starts transmitting, since
it decides the scheduling of the resources, and the moment in which the point

42

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

cloud is completely received. In the simulated scenario, the traffic generated by
a vehicle is related only to the point clouds transmission.

In the simulation, a UdpClient instance is installed in the remote host node
and a PacketSink instance in each vehicle node: every time the remote host re-
ceives a point cloud, the BurstRx trace of the BurstyApplication is triggered
and the UDP client sends a small packet with size of 40 bytes (8 bytes for the
UDP header, plus 32 bytes of data) to the vehicle. This packet contains average,
standard deviation, minimum and maximum of the perceived application de-
lay; the last three statistics are not essential, but they are useful in case a point
cloud is retransmitted. Only when the packet is received by the vehicle, i.e., the
RxWithAddresses trace of the PacketSink is called, the status update is triggered
and the metrics are shared to the RL agent.

Another improvement to this mechanism can be done on the target of the
ACKs. Indeed, since the distributed scenario makes vehicles not directly aware
of the overall networks status, the delay can be transmitted to all the vehicles
inside the simulation, not only to the one that is interested, i.e., the generator
of the point cloud. Broadcasting the ACKs can be useful in the multi-agent
learning scenario. The impact should be not so heavy because of the small size
of the ACK packets.

As far as concern the estimation of the application delay, the number of trans-
mitted bytes and the MCS are key metrics that can be exploited in this process.
The delay is directly proportional to the size of the transmitted data, instead it is
inversely proportional to the MCS. Indeed, the MCS is able to express the chan-
nel quality (as the SINR), but at the same time provides a more direct link with
the current data rate, passing through the modulation scheme. A strategy con-
sists in computing experimentally an optimal threshold to estimate a parallelism
between the ratio 𝑡𝑥 𝑏𝑦𝑡𝑒𝑠

𝑀𝐶𝑆 and a delay greater than the maximum tolerated one.

RLC BUFFERS

RLC buffers represent a very interesting source of information related to the
network status: their state can be acquired by the RL agent in the place of the
delay at this layer.

From the official model library of the ns-3 LTE module, the AM RLC entity
installed on the UE exploits 3 buffers for the transmit operations.

43

2.6. DISTRIBUTED APPROACH

• Transmission Buffer: it is the queuewhere the AMRLC entity receives and
stores SDUs from the upper PDCP entity.

• Transmitted PDUs Buffer: it is the queue of transmitted RLC PDUs for
which anACK/NACKhas not been received yet. When theAMRLC entity
sends a PDU to theMAC entity, it push a duplicate of the transmitted PDU
in the Transmitted PDUs Buffer.

• Retransmission Buffer: it is the queue of RLC PDUs to be retransmitted
(previouslyNACKed). The AMRLC entitymoves this PDU to the Retrans-
mission Buffer, when it retransmits a PDU from the Transmitted Buffer.

In the simulation, a punctual mechanism to track the volume of data inside
Transmission Buffer and Transmitted PDUs Buffer is implemented. The Retrans-
mission Buffer is not considered because several statistics representing the chan-
nel quality are already present in the state (e.g., the SINR).

Every time that a PDU is transmitted by the RLC entity, with the traces prop-
erly configured in ns-3, the MmWaveBearerStatsCalculator entity keeps track of
the size of data inside the two buffers bymonitoring the m_txPdu callback. When
the state is acquired, average, standard deviation, minimum and maximum of
the load of Transmission Buffer and Transmitted PDUs Buffer are computed.

2.6.4 PERFORMANCE EVALUATION

The performance of the proposed realistic solutions are evaluated though a
simulation campaign in ns-3, where the distributed RL multi-agent learns dy-
namically how tomaximize the reward from themetrics perceived only locally at
the vehicle. The reward takes into account both the QoS and the QoE. The anal-
ysis starts from the results achieved by the different state definitions in terms of
(average) reward, E2E delay and action probability. As in the centralized case,
the agent with the original state is considered as the baseline for the following
evaluation of the results.

Simulation campaign structure The simulation campaign is made up of 800
episodes, where each episode is an independent simulation of nearly 31 s in ns-
3. Inside every episode, 800 acquisitions of the local metrics are performed per
vehicle (UE) by the correspondent agent, every time a point cloud is received

44

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

at the remote host. As a consequence, the agent has to decide 800 actions per
vehicle about the compression mode to adopt.

The number of acquisitions of the state is larger than the centralized case
because of the reduced perception of the network status by a single vehicle, so
more inputs data are given to the agent during a single episode.

RL algorithm and parameters The same RL algorithms and the same parame-
ters of the centralized case are considered in order to keep fairness in the learn-
ing. Differently from the centralized case, there is an independent RL agent for
each vehicle, capturing only local state acquisitions. In this multi-agent RL sce-
nario, each vehicle has an independentDDQLnetwork to feedwith localmetrics.

Results Only a single scenario with 3 vehicles is considered for the distributed
approach. The objective is the exploration of the learning performance in case of
a multi-agent RL problem, focusing on the limits of the distributed case, related
to the metrics availability and to the sharing of the networks status.

3 VEHICLES

First of all, the learning of the agent involving the RLC buffers state and the
exchange of ACKs at the application layer is described. Then, the learning is
modified replacing the real application delaywith an estimate. The reward func-
tion changes accordingly.

Proposed State 1 In the Proposed State 1, the TBS is added to the state defini-
tion, among the physical layer parameters.

The metrics related to the RLC and PDCP layers are removed, specifically
the delay statistics and the PRR. They are replaced with the available statistics
related to the data volumes inside the Transmission Buffer and the Transmitted
PDUs Buffer, to consider a more realistic state.

Furthermore, the application E2E delay remains in the state, but the mecha-
nism to exchange ACKs is modelled inside the simulation. More precisely, the
ACK to compute the delay is broadcasted to all the vehicles in the simulation,
such that this information is shared by the whole network. In this context, the
number of transmitted bursts and bytes from the APP layer are inserted into the
state definition related to the APP layer, since they are freely available at the ve-

45

2.6. DISTRIBUTED APPROACH

hicle. The APP PRR is removed due to the unavailability of metrics perceived at
the remote host.

For completeness, the following metrics are extracted and then gathered by
the SendStatusUpdate() method in the MmWaveUeNetDevice class to define the
state.

• SINR

• MCS

• OFDM symbols

• TBS

• Average, standard deviation, minimum and maximum of the Transmis-
sion Buffer size

• Average, standard deviation, minimum and maximum of the Transmitted
PDUs Buffer size

• APP transmitted bursts

• APP transmitted bytes

• Average, standard deviation, minimum and maximum of the APP delay

(a) Average Reward (b) Action probability

Figure 2.11: Results training of distributed RL multi-agent with Proposed State
1 vs. baseline (3 vehicles)

46

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

Figure 2.12: Average E2E Delay from the distributed training with Proposed
State 1 vs. baseline (3 vehicles)

The results achieved by the proposed state configuration are very promising.
The reward (see Fig. 2.11a) gained by the RL agent is perfectly aligned with the
reward of the ideal baseline approach: at the end of the training, they both reach
an approximate average reward of 0.6. The main difference is that the proposed
solution does not exploit the punctual delays and reception rates of the RLC and
PDCP layers, but it monitors the buffers status.

Notice that the proposed realistic network state outperforms the ideal base-
line at the beginning of the training. This faster convergence can be due to the
awareness of each vehicle of the overall network status, thanks to the sharing of
application delays via the ACKs.

The removal of the idealization of the application delay is quite expensive in
terms of overall network E2E delay, as shown in Fig. 2.12. The increment with
respect to the baseline is of 4ms, on average. Indeed, even if theACKmechanism
contributes to a realistic learning procedure and a knowledge sharing between
the agents on the vehicles, from the other side it creates a higher load in the
network. Calling 𝑛 the number of vehicles, there is the transmission of 𝑛 UDP
packets every time a point cloud is received by the remote host, and there are on
average 𝑛 receptions of point clouds every 33.333 ms (generation interval). The
time required for transmitting and processing these control packets generates
congestion in the point clouds exchange.

The impact on the delay performance is for sure linked to the ACKs ex-
change, since the action probability plot (Fig. 2.11b) shows clearly that the less
aggressive compression modes (highest QoE) continue to be preferred, as in the
baseline solution where the delay is much smaller.

47

2.6. DISTRIBUTED APPROACH

Figure 2.13: Average E2E Delay from the distributed training with Proposed
State 1 with 3 vehicles vs. 6 vehicles

Increasing the number of vehicles, the overhead generated by this mecha-
nism in terms of E2E delay becomes intolerable. In Fig. 2.13, the average delay
with 3 and 6 vehicles is shown. 40ms is themaximumvalue reached considering
6 vehicles, it is much larger than the case with 3 vehicles.

Proposed State 2 The Proposed State 2 is identical to the first proposal, but the
statistics related to the application delay are removed from the state. Indeed, the
aim is to explore a new learning procedure, which involves metrics that can be
gathered only locally from the vehicle. The exchange of parameters with other
entities is not possible: a fully distributed scenario is simulated. For complete-
ness, the following proposal of state definition is evaluated.

• SINR

• MCS

• OFDM symbols

• TBS

• Average, standard deviation, minimum and maximum of the Transmis-
sion Buffer size

• Average, standard deviation, minimum and maximum of the Transmitted
PDUs Buffer size

48

CHAPTER 2. CENTRALIZED AND DISTRIBUTED PQOS

• APP transmitted bursts

• APP transmitted bytes

As mentioned in Sec. 2.6.3, to be consistent with state modification, also
the reward function must be redesigned. Since the application is not available,
the ratio between transmitted bytes and MCS is used to decide if the KPIs are
satisfied or not.

Thus, 𝑅𝑡(𝑠, 𝑎) can be redefined as:

𝑅𝑡(𝑠, 𝑎) =

𝑚𝑎 if 𝑡𝑥 𝑏𝑦𝑡𝑒𝑠𝑀𝐶𝑆 ≤ 𝛾

−
𝑡𝑥 𝑏𝑦𝑡𝑒𝑠
𝑀𝐶𝑆

10000 otherwise
(2.8)

Finding the optimal value for threshold 𝛾 is done by simulation: several sim-
ulations are executed in an idealized distributed scenario where the application
delay is known. A statistical analysis is performed on the values of the measure
𝑡𝑥 𝑏𝑦𝑡𝑒𝑠
𝑀𝐶𝑆 , only when the delay perceived is larger than the maximum tolerated

delay, fixed to 50 ms from the TD specifications.
The tuning of threshold 𝛾 is a critical aspect: a too small value could penalize

heavily the transmission of point clouds with conservative compression modes,
conversely, with a too large value, the congestion of the network is not consid-
ered, generating a weak penalization when QoS constraints are not satisfied.

(a) Average E2E Delay (b) Average mAP

Figure 2.14: Results training of distributed RL multi-agent with Proposed State
2 vs. baseline (3 vehicles)

49

2.6. DISTRIBUTED APPROACH

(a) Original state (b) Proposed state 2

Figure 2.15: Action probability of RL agent with Proposed State 2 vs. baseline (3
vehicles)

By simulating different scenarios and performing aweightedmean of 𝑡𝑥 𝑏𝑦𝑡𝑒𝑠𝑀𝐶𝑆

values (filtering out the outliers) gathered from ns-3 simulator, the optimal
threshold is 𝛾 = 10000 with 3 vehicles. Indeed, the performances in terms of
delay, action probability and transmitted bytes are very similar to the original
case (see Figures 2.14, 2.15), with the important difference that in this case the
delay is not considered by the reward function. More precisely, in the long run,
the E2E delay and the amount of transmitted APP bytes is slightly smaller than
the values obtained with the original state. This reduction can be mainly at-
tributed to the action selection mechanism that the RL agent has learned with
the new state representation and reward function, which demonstrates a larger
probability for selecting more aggressive compression modes.

This situation reflects the more conservative behavior of the RL agent. The
agent prioritizes improvements in the QoS, by reducing the transmitted bytes,
consequently, the latency and the network load, ensuring that the system can
handle higher demands with more users. However, this conservative approach
has a trade-off: it generates a small degradation in the overall QoE with respect
to the original configuration. This is due to the lowermAP achieved (Fig. 2.14b),
which indicates that the system’s final accuracy in the object detection decreases
on average. Instead, in the idealized case, where the delay is considered, the RL
agent learns better how to optimize the transmission of less compressed point
clouds, without generating critical congestion. The delay is slightly larger, but
also the QoE is improved because less compressive modes are still preferred.

50

3
Federated PQoS

In this chapter, the federated learning approach for PQoS is explored in de-
tail. This approach belongs to the decentralized scenario, as the distributed one,
involving only metrics that are gathered locally by the RL agent in the vehicle or
that are shared with it. The decisions of the agent are taken directly onboard.

In order to speed up the convergence to an optimal policy, in the federated
approach, all the vehicles periodically share their ownmodel parameters with a
central server (e.g, in the gNB or at remote host). The aim is training collabora-
tively a global model aggregating the local models (at the vehicles) in an itera-
tive way. Moreover, the availability of a global model combining the knowledge
from different heterogeneous sources contributes to generate amore robust gen-
eralization of the multi-agent policy.

This approach can be considered as an hybrid solution between centralized
and distributed cases, since local metrics are adopted by the agent and there are
updates to share the local knowledge. As a consequence, there is a limited im-
pact on the latency from the model exchange and agent’s convergence is faster.
Furthermore, as in the distributed case, since actions are computed locally, pri-
vacy of the users is ensured.

From the point of view of the simulation, the federated approach is almost
identical to the distributed learning approach. In both scenarios, the UE-AI en-
tity is a key element to enable the learning procedure.

In general, the federated learning approach offers a robust solution for decen-
tralized PQoS, collaborative learning, preserving data privacy and accelerating
the model training with parameter sharing between the vehicles.

51

3.1. PROBLEM FORMULATION

3.1 PROBLEM FORMULATION

The general federated learning problem [29] involves multiple decentralized
entities (e.g., mobile devices, vehicles, sensors), which build a single and global
model in a collaborative way. These entities are called clients, and there is a
central server that coordinates them.

However, local data of the clients is sensitive, so it cannot be sharedwith oth-
ers or with the central server. As a consequence, each client trains and computes
locally an update to the current global model in the server, and only this update
is publicly shared with the server. The server manages the training process, ag-
gregating model updates from clients to build a global model.

To formalize the problem, the goal is the minimization of the following ob-
jective function [29], where 𝑤 is the vector with parameters of the local model,
𝑛 is the number of clients, 𝐹𝑘 is the local objective function (e.g., loss function)
of the client 𝑘 and 𝑝𝑘 is the importance of the client 𝑘:

min
𝑤
𝐹(𝑤), with 𝐹(𝑤) :=

𝑛∑
𝑘=1

𝑝𝑘𝐹𝑘(𝑤). (3.1)

The state-of-the-art method for the federated learning is Federated Averag-
ing (FedAvg) [30]. The FedAvg requires that each client computes single (or
multiple) iterations of stochastic gradient descent (SGD) on the current model
using its own local dataset.

∀𝑘, 𝑤𝑘
𝑡+1← 𝑤𝑡 − 𝜂𝑔𝑘 (3.2)

Then, the server aggregates the actual parameters of each client doing a weight
average.

𝑤𝑡+1←
𝐾∑
𝑘=1

𝑝𝑘𝑤𝑘
𝑡+1 (3.3)

In this way, the global model is updated and shared again with all the clients.
The procedure is iteratively repeated.

Another important algorithm is the Federated SGD (FedSGD). It involves the
direct exchange of the gradient computed by each client on the local data. In
the following phase, the server aggregates all these gradients and applies the
update to the global model. This method is more expensive than FedAvg in

52

CHAPTER 3. FEDERATED PQOS

terms of network load, because, in general, gradients of each local model must
be transmitted at every iteration [31]. In FedAvg, the frequency of exchange can
be every few iterations.

When clients are homogeneous, i.e. Independent and Identically Distributed
(IID) assumptions are valid for local data, the FedAvg reduces to the FedSGD
[30].

The objective of this chapter is the improvement of the federated learning,
following different strategies in order to optimize the performance of the RL
agent.

• Adoption of adaptive federated optimizationmethods to aggregate the pa-
rameters: FedAdagrad, FedYogi, FedAdam

• Use of compression techniques on the model parameters to transmit:
pruning, quantization and clustering

• Assignment of different utilities/priorities to the clients during the aggre-
gation step, according to several definitions

3.2 SIMULATION FRAMEWORK

In the simulation campaigns the network scenario remains unchanged with
respect to Chapter 2.

A decentralized learning framework is enabled by the UE-AI entity installed
on each vehicle. The number of vehicles involved in the simulations is set to 3,
such that it is possible to evaluate concretely the impact of different strategies in
the model aggregation, without creating an extreme congestion where the QoS
could potentially alter the learning performance.

In this context, the assumption of knowing the application delay is con-
sidered, because a two-way communication with the central server is already
present for the federated update. It is reasonable that the computed delay is
sent to the vehicles together with the updated global model.

Federated Update The main difference with the distributed case is the imple-
mentation of the federated update to exchange and aggregatemodel parameters.
The federated update requires that each vehicle has performed an action (i.e., a

53

3.3. ADAPTIVE FEDERATED OPTIMIZATION METHODS

learning step) before the sharing of parameters. If this is not the case, vehicles
continue the learning until each vehicle has done at least one PQoS action. Only
at this moment the federated update is triggered. The unbalance of learning
steps per vehicle must be keep into account during the aggregation.

Inside the simulator, a mechanism to model the federated update is imple-
mented. A UdpClient and PacketSink are installed both at the remote host and
at each vehicle. For achieving a realistic behavior, each vehicle must share its
model every time that a local learning step (i.e., action) is performed, because it
cannot know whether or not other vehicles have already taken one action. It is
not aware of the overall status. From the other side, when the server (sink) at the
remote host has received at least one packet with model parameters from every
vehicle, it is able to compute the global model and send back the new parame-
ters to all the agents. The number of packets (i.e., actions) needed for a federated
update is a tunable parameter in the simulation.

The exchange of federated updates starts onlywhen RL agents have filled the
ER buffer. Indeed, sufficient experience tuples (state, action, reward) must be
collected by interacting with the environment to ensure that the RL agents have
a representative and complete set of data for starting the learning. In addition,
the agents have time to understand better the dynamic of the environment and
share ameaningful local model, generating amore effective and stable federated
learning.

The baseline approach used to evaluate the proposed solutions involves the
transmission of all model parameters and the importance of each client repre-
sented by the fraction of learning steps (actions) done by the client over the total
number of steps (actions) of all the vehicles since the last federated update. At
the beginning, traditional FedAvg is applied as federated algorithm.

Inside the DDQL algorithm, a FCNN with a simpler architecture is consid-
ered with respect to Chapter 2. The new network contains 2409 parameters be-
tween weights and biases. The size of this network model, assuming a floating
point of 32 bits data type, corresponds to 9636 bytes.

3.3 ADAPTIVE FEDERATED OPTIMIZATION METHODS

The main idea behind adaptive federated optimization methods [32] is the
introduction of an adaptive gradient-based optimizer at the server side, in order
to optimize the global model. This approach differs from the SGD optimizer

54

CHAPTER 3. FEDERATED PQOS

applied in FedAvg (in an IID context). Roughly speaking, the clients have to
minimize the federated objective function exploiting (Eq. 3.1) their local data,
instead the server optimizes it from a global perspective.

In [32], the following adaptive optimization methods are implemented:

• Adagrad in FedAdagrad;

• Adam in FedAdam;

• Yogi in FedYogi.

A brief description of each adaptive optimizer is provided.

Adagrad Adagrad [33] is an optimized version of the SGD, where the learning
rate is automatically decayed to control the variance of the gradient updates and
ensure convergence. Unlike SGD, which uses a unique global learning rate for
all parameters, Adagrad employs a different learning rate for each dimension of
the parameter space, based on the cumulative sum of squared gradients. This
property makes Adagrad very effective in sparse settings, but with poor per-
formance in non-convex and dense settings [34]. The accumulation of squared
gradients can result in a too aggressive decay of the learning rate, becoming ex-
tremely small and interrupting the learning procedure.

Adam Adam [35] combines the advantages of two optimizers: Adagrad and
RMSProp. Adam is an exponential moving average based adaptive method,
meaning that gradients are scaled per dimension by square roots of exponential
moving averages of squared past gradients. In this way, the learning rate tuning
depends only on the recent gradients, addressing the problem of rapid decay of
learning rate in Adagrad.

More precisely, exponential moving averages of the gradient and of the
squared gradient are computed and updated according to two hyperparame-
ters, 𝛽1 and 𝛽2 ∈ [0, 1), which control the correspondent exponential decay rates.
The moving averages are estimates of the mean (first moment estimation) and
of the uncentered variance (second moment estimation) of the gradient.

Yogi Yogi [34], as Adam, uses an adaptive gradient, keeping a controlled learn-
ing rate decay. Adam exploits the exponential moving average technique, that is
by definition amultiplicative approach. While this method can effectively adapt

55

3.3. ADAPTIVE FEDERATED OPTIMIZATION METHODS

Algorithm 1 Server’s federated update with adaptive optimizers
1: Initialization: 𝑤0, 𝛽1, 𝛽2 ∈ [0, 1), 𝜂 (learning rate), 𝜏 (adaptivity)
2: for step 𝑡 = 0, . . . , 𝑇 − 1 do
3: for each vehicle 𝑣 ∈ 𝒱 in parallel do
4: Update 𝑤𝑣 using Adam optimizer
5: Δ𝑡𝑣 = 𝑤

𝑡
𝑣 − 𝑤𝑡

6: end for
7: Δ𝑡 =

∑
𝑣∈𝒱 𝑝𝑡𝑣Δ𝑡𝑖

8: 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)Δ𝑡

9: 𝑣𝑡 =

𝑣𝑡−1 + Δ2

𝑡 FEDADAGRAD
𝑣𝑡−1 − (1 − 𝛽2)Δ2

𝑡 sign(𝑣𝑡−1 − Δ2
𝑡) FEDYOGI

𝛽2𝑣𝑡−1 + (1 − 𝛽2)Δ2
𝑡 FEDADAM

10: 𝑤𝑡+1 = 𝑤𝑡 + 𝜂 𝑚𝑡√
𝑣𝑡+𝜏

11: end for

learning rates based on recent gradients, it can also lead to a rapid vanishing of
past gradients, especially in sparse settings. The alternative approach exploited
by Yogi involves simple additive updates.

Differently from Adam’s second moment estimation, Yogi updates the sec-
ond moment considering the direction of the gradient. Specifically, the use of
the sign function ensures that the variance is updated in a controlled fashion,
preventing it from growing or decaying too rapidly.

3.3.1 IMPLEMENTATION AND RESULTS

At the server side, the adaptive optimizers are implemented in the aggrega-
tion of local models from the RL agents at the vehicles. In this V2X scenario,
vehicles represent the clients and the gNB/remote host represents the server.

The implementation of the server’s federated update to compute the global
model is reported in Alg. 1. The algorithm considers jointly 3 adaptive feder-
ated optimization methods: FedAdagrad, FedAdam and FedYogi. Their names
derive from the considered optimizer.

An offline training is executed to evaluate the optimizer with best perfor-
mance. FedAdam has reached the highest performance in terms of reward and
delay, therefore, only its results are presented. A learning rate 𝜂 of 10-4 is con-
sidered, together with 𝛽1 = 0.9, 𝛽2 = 0.99 and 𝜏 = 10-9.

FedAdagrad and FedYogi performs similarly, also with respect to FedAdam.

56

CHAPTER 3. FEDERATED PQOS

(a) Average Reward (b) Action probability

Figure 3.1: Results training of federated RL agent with FedAdam vs. FedAvg
(baseline)

Figure 3.2: Average E2E Delay from the federated training with FedAdam
vs. FedAdvg (baseline)

The main problem is that QoS becomes more degraded: the E2E delay increases
by a few milliseconds. That may be due to the fact that a different direction is
followed during the parameters optimization, thus, a new learning evolution
skewed toward QoE is globally generated. The choices of RL agent reflect a
huge preference for more conservative compression modes, so more aggressive
approaches are rarely applied. The reward should be very high, but consider-
ing the congestion created by RL choices, together with the impact of model
parameters exchange, a reduction of the reward and an increment of the latency
happen. However, the objective is to minimize the QoS degradation due to the
additional traffic in the network generated by federated updates, while keeping
a good value of QoE.

57

3.4. MODEL COMPRESSION

Figure 3.3: Average E2E Delay of the federated training with idealized vs. real-
istic exchange of federated updates

The reward achieved by FedAdam (Fig. 3.1a) is quite aligned to the reward
of FedAvg. The main benefit of using Adam optimizer in the federated update
is that the computed global model of RL agent optimizes the overall delay of the
network. The new model takes into account the overhead due to parameters ex-
change and the overall QoS in a more significant way. Indeed, in certain steps,
more aggressive compression is selected to reduce the network congestion over
time. In addition, among the more conservative compression modes maximiz-
ing the QoE, the one with the highest compression level (𝑐 = 10) is chosen. Plots
of delay and action probability are reported in Figures 3.2 and 3.1b.

3.4 MODEL COMPRESSION

The federated update generates congestion in the network because model
parameters are frequently exchanged between vehicles and remote server. In-
deed, at each learning step, every RL agent must share the weights of its model
with all the other agents. This periodic communication can be very disruptive,
especially in environments with high vehicular density.

The impact of sharing federated updates on the E2E delay can be notice in
Fig. 3.3. Obviously, the idealized transmission does not generate any effect on
the delay, reaching a value near to 24 ms, as in the distributed case. Conversely,
the curve of the simulation involving a realistic transmission mechanism shows
an increment of nearly 6 ms, due to the additional traffic in the network.

In this context, model compression techniques represent a valuable strategy

58

CHAPTER 3. FEDERATED PQOS

in order to reduce, at the source, the amount of data injected in the network
during federated updates. However, as in every compression context, a trade-off
between accuracy and compression rate must be considered. High compression
rates create significant loss of information, which can degrade the performance
and accuracy of the RLmodels. On the other side, lower compression rates keep
more information but they don’t sufficiently reduce network congestion.

There are several methods to achieve compression of a NN model [36]. In
this section, three compression techniques are applied to the weights of a RL
agent model.

• Pruning

• Post-Training Quantization

• Clustering

3.4.1 PRUNING

Pruning is a powerful compression technique to reduce the size and the com-
plexity of NN models. Especially, when dense networks are employed, such as
FCNNs.

More precisely, the unstructured pruning consists in removing weights that
are not essential for the model. This means that some connections between neu-
rons are selectively dropped, keeping ones that most affect the performance. In
this way, the original dense network is transformed into a sparser network with
fewer parameters to share.

Several criteria can be considered to perform the pruning. For example:

• magnitude-based pruning [37] [38], where weights with the smallest ab-
solute values are removed, since their small contribution to the output;

• sensitivity-based pruning [39], where the removing procedure evaluates
the contribution of each weight to the overall model accuracy.

In this work, a post-training magnitude-based approach is applied. Indeed,
more complex techniques to estimate the importance are quite expensive in
terms of time and computation, introducing additional overhead that can limit
the benefits of pruning.

Pruning is applied two times in the federated step: first of all, before the
sharing of everymodel from vehicles to the server (UL transmission), then, after

59

3.4. MODEL COMPRESSION

the aggregation at the server, before the global model is resend back to the RL
agents (DL tranmission).

Magnitude-based pruning The magnitude-based pruning requires ranking
the weights based on their absolute values and removing those with the small-
est magnitudes. The reason behind is that weights with smaller absolute values
have a lower contribution on the overall performance of the model and can be
safely pruned without significantly affecting accuracy.

In this context, the fraction of prunedweights depends on the specified spar-
sity ratio. This ratio can be either static or dynamic. In the first case, the amount
of pruning is kept fixed during the learning, instead, a dynamic sparsity ratio
changes over training episodes. This dynamism can be useful for very large and
dense networks, where a gently reduction of connections helps to not degrade
brutally the model performance at the beginning.

For completeness, the following steps are involved in the implementation:

1. a static/dynamic sparsity ratio is received in input;

2. computation of number of weights to preserve;

3. ranking of weights based on the absolute values;

4. computation of the threshold under which weights are pruned;

5. setting to 0 all pruned weights;

6. sharing of the pruned model in the federated update.

Packet Structure As far as the exchange of the pruned model is concern, it
is not possible to create trivially a packet containing only the fraction of kept
parameters in the payload. Indeed, the receiver does not know the received
values to which model parameters correspond to. That missing correspondence
between parameters must be transmitted. Otherwise, the receiving entity is not
able to reconstruct locally the shared model.

To solve this problem, a new header is created and encapsulated into the
packet. This header, generated by the transmitting entity, contains a binary
bitmap indicating for each parameterswhether (bit 1) or not (bit 0) it is present in
the packet. In otherwords, if that parameter is shared or not, due to the pruning.

60

CHAPTER 3. FEDERATED PQOS

(a) Average Reward (b) Action probability

Figure 3.4: Results training of federated RL multi-agent with FedAdam and
Pruning (0.5) vs. FedAdam (baseline)

Figure 3.5: Average E2E Delay from the federated training with FedAdam and
Pruning (0.5) vs. FedAdam (baseline)

RESULTS

An offline training is executed to evaluate the sparsity ratio with best perfor-
mance. It is an hyperparameter to tune in order to balance the trade-off between
accuracy and compression rate. The optimal sparsity ratio is set to 0.5.

The results (see Figures 3.4 and 3.5) achieved with FedAdam algorithm com-
bined with pruning technique are very good, considering that only half of the
weights are preserved in the RL agent. The new reward is larger than the base-
line approach. The main reason is that the halved size of the packets containing
federated updates contributes to reducing the overall traffic in the network, con-
sequently the congestion decreases. Negative rewards associated to violations of

61

3.4. MODEL COMPRESSION

TD performance indicators (i.e., delay) become less frequent since the reduction
of network congestion.

Furthermore, this fact is shown also by the action probability plot in Fig.
3.4b, where most compressive modes are practically never considered by the
RL agent. Instead, their probability is higher with full-size packets (Fig. 3.1b).
Indeed, there is a network status which requires in some conditions aggressive
actions to achieve the expected QoS because of the major impact of federated
step packets on the data traffic.

In this context, among the less compressive modes, the one with the highest
compression level (𝑐 = 10) is preferred anyway. This because there is still an
important overhead, even if it is halved, for the federated update.

In parallel, a good learning happens even if half of the model parameters are
removed. So two observations can be done:

• the contribution of smaller parameters is negligible with respect to the
model output

• the frequent sharing of model parameters, in general at every local step,
contributes to limit the divergence of the agent during learning, even if
much less parameters are present in the model.

As far as the E2E delay is concerned, an average value of 28 ms is reached. A
decrement of 2 ms with respect to the baseline learning approach with full-size
federated updates can be noticed.

(a) Average Reward (b) Action probability

Figure 3.6: Results training of federated RL multi-agent with FedAdam and
Pruning with sparsity ratio 0.5 vs. 0.7

62

CHAPTER 3. FEDERATED PQOS

Figure 3.7: Average E2E Delay from the federated training with FedAdam and
Pruning with sparsity ratio 0.5 vs. 0.7

Finally, a brief comparison with a sparsity ratio of 0.7 is presented. It seems
reasonable that if more parameters to share are removed from the model, less
overhead is generated by the federated step and the final delay decreases. How-
ever, the overall performance is not improved with respect to the sparsity ratio
of 0.5, as shown by the reward in Fig. 3.6a. In this case, the level of network re-
sources exploited to exchange the model is lower, while the latency is increased
by 7% (Fig. 3.7) because the least compressive mode (𝑞 = 10, 𝑐 = 0) is preferred
during the learning for its highest reward (Fig. 3.6b). The new pruned model
promotes the QoE, increasing the average value of mAP from 0.65 to 0.68, but,
on the other side, several violations of TD constraint on the E2E delay (QoS)
happen and are the main reason of inferior results.

3.4.2 POST-TRAINING QUANTIZATION

Quantization technique is another powerful strategy to achieve the reduction
of federated step impact. A very aggressive quantization can reduce heavily the
amount of data generated by the sharing of model parameters.

Two types of quantization exist: post-training quantization and
quantization-aware training [40]. The first approach applies the quantiza-
tion after that the model has been trained; the second approach trains the
model in full precision simulating the effect of quantization on the weights and
activation functions in the forward pass, allowing it to learn how to mitigate the
quantization errors, and only after the training the model is quantized. In this
way, the accuracy is increased but more time and computation are required.

63

3.4. MODEL COMPRESSION

Focusing on post-training quantization, a first naive approach is to select a
less-representative data type for storing the trained parameters. For example,
instead of a floating point of 32 bits (double precision), a floating point of 16 bits
(reduced precision) or an integer with 8 bits (or even smaller) can be employed.
However, despite the large gain in terms of size required by the model, a too
smaller precision of the weights can significantly compromise the learning
procedure.

Instead of exploiting a conservative quantization of themodel parameters, an
approach with an aggressive quantization of the updates of model parameters
can introduce several benefits.

At the beginning, the server shares a default global model, e.g., randomly
generated. Each vehicle, after a local training step is performed, computes the
difference of its local model parameters with respect to the current global model
parameters, i.e., the update of the global model generated by that vehicle.

Since the server knows the previous global model, it is able to compute the
current clients parameters only receiving the updates from the vehicles. Shar-
ing all the parameters is not necessary. This can be very useful because a more
aggressive quantization can be applied to the updates. Indeed, in general, the
maximum values of updates are smaller compared to the parameters, so the
quantization error is kept limited.

Furthermore, the sharing of updates is typically done at each learning step,
so the any quantization error introduced has limited time to affect the overall
training procedure. Subsequent updates can correct or mitigate the errors from
previous steps. Also, the federated updates are often averaged in the server
aggregation, this can for sure help to smooth individual quantization errors,
reducing the impact on the global model.

The same procedure can be exploited in DL, for the sharing of current global
model towards the agents in the vehicles. Only the difference with respect to
the previous global model can be transmitted. Every agent is aware of the previ-
ous global parameters. The overall algorithm of the federated update involving
quantization is shown in Alg. 2.

Two quantization approaches are exploited: binary quantization and ternary
quantization. That are very aggressive schemes.

Binary quantization The binary quantization adopted is proposed in [41].

64

CHAPTER 3. FEDERATED PQOS

Algorithm 2 Federated update with quantization
1: Initialization: global model parameters𝑤0 =𝑤0¯ (randomly generated), Δ�̄�0

𝑡
(all zeros)

2: for step 𝑡 = 1, . . . , 𝑇 do
3: for each vehicle 𝑣 ∈ 𝒱 in parallel do
4: 𝑤𝑡 = 𝑤𝑡−1 + Δ�̄�𝑡−1

𝑞
5: Update 𝑤𝑣 using Adam optimizer
6: Δ𝑤𝑡

𝑣 = 𝑤
𝑡
𝑣 − 𝑤𝑡

7: Δ𝑤𝑡
𝑣,𝑞 ← Quantize Δ𝑤𝑡

𝑣

8: Transmit to the server Δ𝑤𝑡
𝑣,𝑞

9: end for
10: 𝑤𝑡

𝑣 = �̄�𝑡−1 + Δ𝑤𝑡
𝑣,𝑞 for each 𝑣 ∈ 𝒱

11: Update �̄�𝑡 using FedAdam
12: Δ�̄�𝑡 = 𝑤𝑡¯ − �̄�𝑡−1
13: Δ�̄�𝑡

𝑞 ← Quantize Δ�̄�𝑡

14: Transmit to each vehicle Δ�̄�𝑡
𝑞

15: end for

Afirst phase of sparsification, according to a specified sparsity ratio, is neces-
sary to maintain only the largest and the smallest values of the update, the other
values are set to zero. Similarly to the pruning method described previously.

Then, the averages of largest and smallest values are computed.

• If the positive mean is greater than the negative mean, positive values are
quantized to the positive mean, while negative values are set to 0.

• If the negative mean is greater than the positive mean, negative values are
quantized to the negative mean, while positive values are set to 0.

Ternary quantization The ternary quantization adopted is proposed in [42].
A first phase of sparsification, according to a specified sparsity ratio, is nec-

essary to maintain only the values with the largest absolute magnitude. The
remaining values are discarded, so they are set to zero.

Then an overall average is computed based on the absolute values of main-
tained elements.

• The positive elements are quantized to the positive.

• The negative elements are quantized to the negative of the average.

65

3.4. MODEL COMPRESSION

(a) Average Reward (b) Average E2E Delay

Figure 3.8: Results training of federated RL multi-agent with FedAdam and
quantization vs. FedAdam (baseline)

Packet Structure A simple encodingmechanism is created in order to optimize
the size of federated updates and have an efficient transmission.

In the case of binary quantization, a packet containing only a single bit for
each parameter (in the same order of appearance in the model) is sufficient to
describe the result of the quantization, since only two values are produced. Of
course, an initial exchange of the non-zero value must take place, which is neg-
ligible with respect to all the transmission.

In the case of ternary quantization, a binary bitmap is exploited to indicate
which updates are filtered out by the sparsification andwhich are not, i,e., which
values are transmitted by the client. Therefore, a packet containing only a single
bit for each non-zero quantized parameter update (in the same order of appear-
ance in the model) is sufficient to describe the two non-zero values produced
by the quantization. Of course, also in this case, an initial exchange of non-zero
values must take place, which is negligible with respect to all the transmission.
In this context, the more aggressive the sparsification, the smaller the number
of bits required to transmit the non-zero quantized parameters.

RESULTS

In the quantization algorithms, a sparsity ratio of 0.5 is considered in order
to preserve a discrete range of values before the compression.

The results achievedwith quantization are very impressive. The reward (Fig.
3.8a) is much higher than the reward achieved with non-quantized federated

66

CHAPTER 3. FEDERATED PQOS

(a) Binary quantization (b) Ternary quantization

Figure 3.9: Action probability of federated RL multi-agent with FedAdam and
quantization vs. FedAdam (baseline)

updates, both with binary and ternary quantization. This is mainly due to the
very aggressive compression applied to the size of federated update packets.
The network status becomes much less congested thanks to lighter overhead for
the exchange of model parameters. The delay (Fig. 3.8b) reflects this condition,
with a decrement of almost 2 ms with the baseline, reaching an average of 28
ms. The action probability, plotted in Fig. 3.9, shows that only the most conser-
vative compressions are taken by the agents, without never employing the more
aggressive modes (unless for RL exploration).

The quantization of updates does not deteriorate the learning performance
of RL agents. The reasons are linked to the fact that the updates are shared very
frequently and their magnitudes are relatively small due to the low learning rate
of the RL algorithm. In addition, the aggregation done at the server contributes
to mitigate the quantization error.

Briefly comparing the binarywith ternary quantization, the binary approach
performs slightly better.

• Binary quantization is able to transmit all the updates requiring basically
only a single bit for each model parameter, optimizing both reward and
delay metrics. The less aggressive compression modes are chosen (Fig.
3.9a) because they have the largest reward and the network status is able
to manage them.

• Ternary quantization requires larger packets for updates in comparison
to the binary quantization, this creates a very minimal impact on the re-

67

3.4. MODEL COMPRESSION

ward of RL agents and network E2E delay with respect to the binary case.
The main difference can be notice in the action probability plot (Fig. 3.9b):
the less aggressive compression modes are preferred anyway, but the one
with the highest compression level is taken more frequently in the long
run. This behaviour can be explained by the larger size of the federated
updates compared to the binary quantization case. More precisely, the
size is increased by a factor of 1.5 (302 vs. 451 bytes), considering a spar-
sity ratio of 0.5. In general, depending on the sparsity ratio, the increment
can be up to a factor of 2.

Finally, in comparison to the pruning, the performance is improved because
of more aggressive compressions. The QoS contribution (i.e., the delay) on the
reward is basically unchanged, but theQoEpart increases due to the larger prob-
ability of selecting compression modes with an higher mAP.

3.4.3 CLUSTERING

Clustering technique can be very effective in limiting the dimension of fed-
erated updates and thus improving the overall network performance.

Clustering is a machine learning technique whose task is grouping a set of
objects such that similar objects belong to the same group (i.e., cluster) and dis-
similar objects are separated in different groups [43].

Clustering can be applied to compress federated updates. The local update
from each agent can be in a certain sense quantized by grouping the contained
values into clusters, and then a representative element from each cluster is com-
puted. Each component of the update takes the value of the representative value
of cluster it belongs to. In this context, it is convenient to share only the index of
the cluster for each value. This can help to reduce the communication overhead
and improve the performances of RL agents.

K-means is a suitable clustering algorithm for these compression purposes.
Indeed, it automatically computes for every cluster the relative cluster center,
called centroid. That centroid is a perfect candidate to represent all the values
in the cluster, in an average perspective.

K-means K-means [44], also known as Llyod algorithm, is the simplest
distance-based clustering algorithm. It takes in input a fixed number of clus-
ters 𝑘 to identify and the distance function (typically the Euclidean distance). It

68

CHAPTER 3. FEDERATED PQOS

(a) Average Reward (b) Average E2E Delay

Figure 3.10: Results training of federated RL multi-agent with FedAdam and
clustering vs. FedAdam (baseline)

returns cluster centers and relative value-cluster allocation. Clusters are com-
puted in order to minimize the error from the approximation of the values with
cluster centroids. An iterative algorithm is performed until convergence, with
the following steps:

1. cluster centers (centroids) are fixed, each value is assigned to the closest
cluster;

2. value-cluster allocation is fixed, new centroids are computed.

The number of clusters is a critical parameter for the performance of the algo-
rithm. Fewer clusters withmany values could not be able to capture the variance
within the data, resulting in an excessive generalization (underfitting). On the
contrary, too many clusters with a smaller amount of data for each cluster could
capture a lot of noise rather then the hidden model, resulting in a poor general-
ization (overfitting). The number of cluster has a direct impact on the trade-off
between the data compression and the accuracy of the model updates.

Packet Structure A simple encodingmechanism is created in order to optimize
the size of federated updates and have an efficient transmission.

In case of clusters, a packet containing for each parameter the number of
bits to represent the index of clusters (i.e. ⌈log2 𝑘⌉) is enough to describe the
result of clustering, since only cluster centroids are shared in place of values in
the update. Of course, an initial exchange of the centroids must happen, that is
negligible with respect to all the transmission.

69

3.4. MODEL COMPRESSION

(a) 8 clusters (b) 16 clusters

Figure 3.11: Action probability of federated RL multi-agent with FedAdam and
clustering vs. FedAdam (baseline)

Figure 3.12: Action probability of federated RL multi-agent with FedAdam and
clustering (4 clusters)

RESULTS

The results achieved with a compression by clustering of federated updates
(Fig. 3.10) are very good. The reward is increased and the delay is reduced
with respect to uncompressed updates, thanks to the smaller amount of data
injected by the federated step in the network. The reasons are similar to the ones
presented in the quantization approach. Indeed, clustering can be considered
as a variant of traditional quantization.

Three different numbers of clusters are tested: 4, 8 and 16. Thus, 2, 3, and 4
bits for each parameter are respectively required in transmission phase.

The number of clusters 𝑘 can be considered as a controller of both compres-

70

CHAPTER 3. FEDERATED PQOS

sion and accuracy of the RL learning. With a greater 𝑘, values in the updates are
representedwithmore centroids, so clusters are able to identify finer details. On
the contrary, with a too aggressive 𝑘, larger clusters impact on the granularity
of updates, as a consequence the convergence of the aggregated global model.

The effect of 𝑘 can be notice in the action probability plots. A greater num-
ber of clusters (8 and 16 in Fig. 3.11) shows a RL agent preferring less aggressive
actions, that is reasonable with a reduced dimension of the updates (i.e., less
congestion) in comparison to the uncompressed model. More precisely, a dif-
ference can be notice between 8 and 16 clusters. With more clusters, a greater
number of bits must be transmitted and aggressive compression modes (𝑞 = 8
and 𝑞 = 9) are slightly more probable. In addition, among themore conservative
actions, the ones with smaller compression level 𝑐 become less frequent.

Instead, with a smaller number of clusters (4 in Fig. 3.12), so with a smaller
size of updates, the agent starts to select mainly more compressive modes at a
certain step. It is not the expected behavior in this context. Probably, the com-
pression is too aggressive and the centroids are not well representative of the
original punctual values, so the federated update creates divergence in learning
with respect to the optimal choice of actions. For that reason, the other results
are omitted.

3.5 UTILITY FUNCTIONS

The federated aggregation performed at the server averages parameters from
each client (i.e., agent in the vehicle) in a weighted manner. In this aggregation,
each agent 𝑘 ∈ {1, ..., 𝑛} contributes to the global model according to a certain
factor 𝑝𝑘 . Consistency is maintained with the formula reported in Eq. 3.1.

The factor is related to agent’s importance: it is an estimate of the utility of
an agent’s local update for the global model. In more practical terms, this utility
factor controls the impact of each agent in the federated learning procedure.

Furthermore, the utility can be used to build a priority scheduling mecha-
nism for selecting only specific updates in a more constrained setup.

Several approaches can be exploited for defining agent’s utility [45]. In this
section, 3 different measurements of utility are explored:

• Sample-based utility;

71

3.5. UTILITY FUNCTIONS

• Model-based utility;

• System-based utility.

Sample-based utility Thismeasurement considers the amount and the quality
of data samples available to agent 𝑘 for quantifying its utility 𝑈𝑘 . Agents with
more data or higher-quality samples receive a larger utility.

A simple approach to deal with the quantity of data is considering the num-
ber of learning steps 𝑁𝑘 performed by agent 𝑘 since the last federated update.

𝑈 𝑡
𝑘 = 𝑁𝑘 (3.4)

A possible approach to deal with the quality of learning samples involves
the loss function (averaged over the batch 𝐵 of input states 𝑠𝑡𝑘) at training step
𝑡 of agent 𝑘. In this way, larger importance is assigned to the agent that more
diverges from the model in that iteration (of parameters 𝜃𝑡𝑘).

𝑈 𝑡
𝑘 =

1
|𝐵|

∑
𝑖∈𝐵

𝐿(𝜃𝑡𝑘 , 𝑠𝑡𝑘,𝑖) (3.5)

Model-based utility This measurement considers the relationship between
the global model and the local model of agent 𝑘 for quantifying its utility 𝑈𝑘 .
Agents whose weights 𝜃𝑘 are more divergent from the global parameters 𝜃𝑔 re-
ceive a larger utility.

A possible approach to deal with the divergence between global and local
model is performing the computation of the Euclidean distance (L2 norm) be-
tween the two sets of parameters. If the local model at time 𝑡 has a small di-
vergence in comparison to the global model at time 𝑡 − 1, i.e., the global model
without considering the local update at time 𝑡, its impact on the next global
model is less relevant.

𝑈 𝑡
𝑘 = ∥𝜃𝑡−1

𝑔 − 𝜃𝑡𝑘∥2 =

√√√ |𝜃|∑
𝑖=1
(𝜃𝑡−1

𝑔 − 𝜃𝑡𝑘,𝑖)2 (3.6)

System-based utility This measurement considers system-level aspects dur-
ing the training of agent 𝑘 for quantifying its utility 𝑈𝑘 . Agents whose network
conditions are better may be associated with higher utility factors.

72

CHAPTER 3. FEDERATED PQOS

A possible approach to consider system utility is taking into account the
channel condition of agent 𝑘 measured by the SINR at time 𝑡. SINR has the
advantage to be independent from the data transmission, so from the conges-
tion of the network, expressing directly the channel quality. In this context, the
network congestion has been already taken into account by the model update
through the reward mechanism.

Direct proportionality is exploited in order to reduce latency and ensure
higher reliability. Indeed, a higher SINR means a better communication link,
with faster data transmission and reduced latency. This results in a prioritized
aggregation allowing accelerated convergence of the global model. Further-
more, a higher SINR implies more robust communication with fewer transmis-
sion errors. In this way, the server gives greater weight tomore accurate updates
it receives, since they are less likely to be corrupted, generating a more stable
learning.

𝑈 𝑡
𝑘 = SINR𝑡𝑘 (3.7)

Inverse proportionality can be also employed to promote fairness among the
agents, especially for ones with poorer channel conditions. However, there is a
risk of failing to reach convergence in the learning process, as experienced by
offline tests.

RESULTS

The federated framework used in the evaluation phase involves:

(a) Average Reward (b) Average E2E Delay

Figure 3.13: Results training of federated RL multi-agent with utility functions
(3 vehicles)

73

3.5. UTILITY FUNCTIONS

(a) Average Reward (b) Average E2E Delay

Figure 3.14: Results training of federated RL multi-agent with utility functions
(6 vehicles)

• FedAdam optimizer to aggregate updates from the clients;

• binary quantization (sparsity ratio of 0.5) to reduce the overhead of ex-
changing packets with model parameters.

3 vehicles The results achieved from the learning with several utility defini-
tions are shown in Fig. 3.13. The RL multi-agent performance is quite aligned,
without revolutionary changes among the different proposals. In general, re-
ward and delay follow the curves of the baseline approach, which consists in
the simplest approach of considering the number of learning steps performed
by agent as weight factor.

This fact can be motivated by the quite small number of vehicles in the sys-
tem: the range of variability of network conditions during the learning is lim-
ited. As a consequence, similar federated updates are generated and the impact
of different utilities in the aggregation becomes minimal.

Some differences can be noticed in certain episodes where slightly better re-
sults are obtained. In these moments, temporary changes in network conditions
or in local data distribution (also due to the exploration component) could be
happened. These small variations highlight the potential for proposed utility
definitions to generate slight advantages in specific situations, especially if more
vehicles are considered.

74

CHAPTER 3. FEDERATED PQOS

Figure 3.15: AveragemAP of the federated RLmulti-agent with utility functions
(6 vehicles)

6 vehicles The results achieved from the learning with several utility defini-
tions are shown in Fig. 3.14. The RL multi-agent performance is quite heteroge-
neous among different utility definitions. In general, the increased number of
vehicles created appreciable trends during the learning.

Overall, the loss-based (Eq. 3.5) utility presents the best results. In compar-
ison to the baseline, the reward is quite aligned on average, while the delay is
reduced in a significant manner (nearly 1 ms, see Fig. 3.14b) towards the last
part of the training. This represents a very good result. Indeed, only tuning
the weights in the aggregation of federated updates, i.e. scaling the federated
steps, agent’s behaviour is modified such that some additional compression is
performed, without impacting the reward (on average). The reward, on average,
remains unchanged because theQoE factor decreases by a small percentage (3%)
with respect to the baseline, as it can be noticed in the mean mAP plot in Fig.
3.15. This is the usual trade-off between QoS and QoE: in this TD scenario, es-
pecially with a large number of vehicles, reducing the quality of experience is
acceptable in order to satisfy strict constraints in terms of QoS.

The other two utility definitions showworst performances. In particular, the
SINR-based utility (Eq. 3.7) has a detrimental impact on E2E delay, increasing it
up to amaximumof 3mswith respect to the baseline. This can be explainedwith
the fact that SINR is not able to capture the network congestion, so a prioritiza-
tion with mismatches between optimal QoS countermeasure based on network
status and channel quality is applied.

75

4
Meta-learning agent for PQoS

Being able to choose the proper learning approach is not a trivial task. The
decision between centralized vs. decentralized setups must consider several as-
pects:

• the quality of the channel;

• the congestion of the network;

• the TD requirements.

It is more convenient to adopt a centralized approach if the channel is good and
the network is not congested so that PQoS countermeasures taken by the RL
agent take into account the full network state, increasing the accuracy of the
decisions.

Conversely, it is more convenient to adopt a decentralized approach if
the channel is bad and the network is congested so that the communication
overhead for the state aggregation is lower. The federated update can accelerate
the overall convergence.

In this chapter, after a comparison between centralized vs. distributed
vs. federated approaches, a new meta-learning agent that can dynamically
choose when to perform centralized vs. decentralized models is implemented.
Starting from the global condition of the vehicles described in terms of network
metrics, the optimal learning approach is chosen to maximize at the same time
QoS and QoE.

77

4.1. CENTRALIZED VS. DISTRIBUTED VS. FEDERATED RESULTS

The meta-learning agent controls the learning approach for PQoS at each
time step. Two levels of control can be identified in the PQoS framework:

1. PQoS Learning Approach, to optimize the choice between centralization
and decentralization;

2. PQoS Countermeasures, to optimize the choice of the compression mode,
so as to jointly satisfy QoS and QoE requirements in the TD scenario.

4.1 CENTRALIZED VS. DISTRIBUTED VS. FEDERATED RE-
SULTS

Figure 4.1: Average E2E Delay (QoS) achieved by the proposed configurations
in centralized, distributed and federated approaches (3 vehicles) in the last 30
episodes

Figure 4.2: AveragemAP (QoE) achieved by the proposed configurations in cen-
tralized, distributed and federated approaches (3 vehicles) in the last 30 episodes

78

CHAPTER 4. META-LEARNING AGENT FOR PQOS

A comparison between the overall results achieved with centralized, dis-
tributed and federated approaches is presented. The several configurations for
the PQoS learning framework with 3 vehicles are analyzed in terms of average
E2E delay for evaluating the level of QoS, and average mAP for evaluating the
QoE. The results are shown in Figures 4.1 and 4.2.

First of all, centralized and fully decentralized (i.e., distributed) scenarios
are compared. Considering the same original idealized state (O), where all the
metrics exploited by the RL agent are supposed to be available at the agent(s)
with no additional overhead, the delay of the distributed approach is 3% smaller
than its centralized counterpart because the overhead to communicate with the
coordinator entity, i.e., the gNB, is ideally zero. Furthermore, this fact impacts
in the average QoE, where the less aggressive compression modes (with higher
mAP) are adopted more frequently. However, the reward function defined in
Ch. 2 achieves higher values in the centralized case (0.63) vs. the distributed
case (0.58), at the end of the learning. This means that the distributed approach
receives stronger penalization through the reward mechanism because TD
constraints are exceeded in some punctual steps, even if the delay is lower
on average, making slower the convergence. The choice of less aggressive
compression modes leads to an increment in the QoE but also to an increased
network load.

Two state proposals are designed to improve the realism of the simulation.
In the centralized case, the first proposed state (P1) requires the realistic

transmission of the SINR perceived at the UE, which results in an increase of
the average E2E delay by 6% compared to the baseline ideal approach (O). The
new state definition (involving TBS, BLER and BSR) generates a new learning
evolution where the average QoE is slightly improved. The second proposal
(P2) employs a state identical to P1 unless that CQI reporting mechanism is ex-
ploited in place of SINR: the delay is comparable with the original state (O), the
average mAP reaches a value of 0.68, slightly larger than the value obtained by
P1 because of less congested network status.

On the other side, in the distributed case, the unavailability of E2E delays is
solved with the monitoring of RLC buffers and the transmission of ACKs at the
application layer to compute the E2E latency. In this way, the first proposed state
(P1) generates a very large degradation of the QoS with respect to the O state,
while the QoE value remains unchanged. This approach does not scale with

79

4.1. CENTRALIZED VS. DISTRIBUTED VS. FEDERATED RESULTS

the number of vehicles, for this reason a new state is proposed (P2). P2 does
not take into account the delay metric in the learning, but it tries to estimate it,
looking at the transmitted bytes from the application layer and the MCS. Very
good results are achieved in terms of delay, pretty much similar to the original
idealized configuration with a delay of 24 ms. As far as concern the mAP, the
value is a bit smaller because the selected compression modes are on average
more aggressive: the new reward function is slightlymore conservative in terms
of amount of transmitted bytes.

The federated approach represents a compromise between the two previous
approaches, it is identical to the distributed case during the inference phase but
involves a higher cost in terms of communication resources during the training
for exchanging the model parameters. In the original idealized state (O), where
the federated update is transmitted in a idealized way, the same results of the
original distributed state for QoS and QoE are obtained. More precisely, the
delay is slightly better (0.1 ms) for the faster convergence to the optimum action
(i.e., compression mode) selection.

Then, the exchange of packets for the federated step is implemented and the
delay increases by 6 ms, considering the traditional FedAvg (F.AVG) algorithm.
Subsequently, adaptive optimizers are exploited to aggregate the global model
instead of FedAvg. Better performance is achieved by the FedAdam (F.ADAM),
which is able to optimize the overall reward, improving the QoS factor at the
expense of the QoE. The delay is decreased by 1 ms, while the average mAP gets
worst by 5%.

In this context, the exchange of model parameters creates an additional
amount of traffic impacting the network performance, for this reason a method
to compress the overhead generated by the federated steps is explored. Pruning
over model parameters, quantization and clustering over model updates are the
techniques employed in this work and they all reduce the E2E delay in the net-
work between 1.5 and 2ms. Clustering with 8 clusters (C) reaches the minimum
delay of almost 26 ms, but also the mAP is reduced to 0.66. This is a small value
if compared to the other approaches, this technique potentially results toomuch
aggressive during the learning. At the same way, pruning (P) achieves a poor
mAP because more aggressive compression is needed to counteract the addi-
tional network load due to the packets with parameters. Even if the halved size
of federated model updates reduces the delay, the federated step is still creating
congestion in the network. Therefore, quantization is the best approach to opti-

80

CHAPTER 4. META-LEARNING AGENT FOR PQOS

Figure 4.3: Number of violations of the maximum tolerated E2E delay 𝛿𝑀 dur-
ing the last 10000 learning steps in centralized, distributed and federated ap-
proaches (3 vehicles)

mize both the QoS and the QoE. The binary (BQ) and ternary (TQ) quantization
reach basically the same delay (27 ms) and mAP (more than 0.68), being able
to compress efficiently the updates, without deteriorating the learning proce-
dure. BQ slightly outperforms TQ in terms of QoE because smaller packets (302
vs. 451 bytes) are shared, in this way, the more conservative compression with
the highest compression level (smaller mAP with respect to other compression
modes with same 𝑞) is adopted less frequently in the long run due to the smaller
congestion.

In conclusion, a prioritization approach measuring the utility of each
vehicle in the federated update is adopted, considering FedAdam and binary
quantization. Several definitions are explored: sample-based, model-based and
system-based utility. With few vehicles, the performance are quite similar (Fig.
3.13) with respect to the baseline approach with the number of learning steps
as weight factor. For completeness, the system-based utility with the SINR (U)
is plotted. With more vehicles there are meaningful difference, as discussed in
Ch. 3.5. In particular, the sample-based approach involving the loss value is

81

4.1. CENTRALIZED VS. DISTRIBUTED VS. FEDERATED RESULTS

Figure 4.4: Top 1% values of the E2E delay during the last 10000 learning steps
in centralized, distributed and federated approaches (3 vehicles)

able to improve the QoS of the communication.

Comparing the best configurations for each approach, i.e., P2 for centralized
and distributed solutions, BQ for federated solution, an interesting aspect can
be noticed from the delay distribution. Notably, considering the number of vio-
lations during the last 10000 learning steps of the maximum tolerated E2E delay
𝛿𝑀 in Fig. 4.3, the distributed approach exceeds more frequently the TD con-
straint of 50 ms than the centralized approach (400 vs. 300 times), even if the de-
lay is smaller on average (24 vs. 25ms). Thismeans that the centralization results
in an improved global optimization of the QoS, because the full network state is
perceived. In contrast, the distributed setup suffers the limited perception of the
overall network: the RL multi-agent can exploit only local measurements, being
unable to fully converge to an optimal policy for all vehicles. Therefore, there is
more penalization by QoS violations from that vehicles with degraded network
conditions. Looking at Fig. 4.4, where the top 1% of E2E delay values is illus-
trated, the magnitude of the violations is comparable between centralized and

82

CHAPTER 4. META-LEARNING AGENT FOR PQOS

distributed approaches. Thus, the number of QoS violations in the distributed
scenario is larger, but the spikes reached by the delay are quite aligned to the
centralized scenario.

Considering the federated approach, there are many more violations of the
maximum tolerable delay because of the congestion generated by the federated
updates. However, the magnitude of the largest delay values is smaller than the
centralized and distributed solutions, as shown in Fig. 4.4. Thus, the number
of QoS violations is quite large, but the values of E2E delay are less critical than
the other approaches. This may be due to the accelerated convergence towards
an optimal policy selection.

To summarize, in general, the federated approach increases the QoE factor
with respect to centralized and distributed cases exploiting a more efficient gen-
eralization from the aggregation of local models. On the other hand, this hap-
pens at the cost of QoS, because the sharing of model parameters increases the
burden on the channel, generating an increment in the E2E delay. A interest-
ing direction to explore is the combination of the federated approach with the
centralized one, in order to discover the sweet point between centralization and
collaborative decentralization.

4.2 META-LEARNING AGENT MODEL

RL techniques are exploited to build the meta-learning agent. A suitable
framework involving state, actions and reward function definitions is created.
Themodel is designed to be compatiblewith the framework of RL sub-agents, i.e.,
the centralized and decentralized agents in charge of deciding for the optimal
compression modes (PQoS countermeasures).

4.2.1 STATE

The discrete state space for 𝑛 vehicles contains vectors s ∈ 𝑅11𝑛 . For each
vehicle, the state contains a set of 11 measurements related to the UL direction.
For completeness, they are reported in the underlying list.

Considering a step:

• Average E2E latency

• Average reward of the agent selecting PQoS countermeasures

83

4.3. DOUBLE DEEP Q-LEARNING ALGORITHM

• Frequency of selected actions (i.e., compression modes)

4.2.2 ACTION

The discrete action space involves 2 possible choices for the PQoS learning
approach to adopt: centralized and decentralized framework.

In the centralized case, sub-agents choosing PQoS countermeasures take into
account the metrics related to the centralized Proposed State 2.

Instead, in the decentralized case, the federated learning scenario with
FedAdam and binary quantization is considered. The accelerated convergence
to the optimal policy generates superior performance in comparison with the
distributed approach, because of the sharing of the models. In addition, the fed-
erated approach can be converted to the distributed approach by turning off the
federated updates, in case the channel load increases or the quality deteriorates
significantly.

4.2.3 REWARD

The reward function at step 𝑡, 𝑅𝑡(𝑠), depends on the average rewards 𝑅
𝑡
𝑘

of the RL agent (centralized) or RL multi-agent (decentralized) selecting PQoS
countermeasures for vehicle 𝑘 during step 𝑡. In this way, the reward of meta-
learning agent is a direct mapping of the reward of RL agent selecting compres-
sion modes, which is based on QoS and QoE parameters.

With 𝑛 vehicles, the formula of 𝑅𝑡(𝑠) is defined as:

𝑅𝑡(𝑠) =
∑𝑛
𝑘=1 𝑅

𝑡
𝑘

𝑛
(4.1)

4.3 DOUBLE DEEP Q-LEARNING ALGORITHM

A model-free RL algorithm learning from the experience, which follows a
value-based strategy and integrates also the deep NNs, is implemented: the
DDQL [46] algorithm. The DDQL is a variation of the Deep Q-Learning (DQL)
[47], which derives from the traditional effectiveQ-Learning [17]method, whose
objective is finding the optimal Q (state-action) value function. The huge dif-
ference is that DQL is not a tabular approach, so it does not require to save in
memory a table for each possible state and action: it would be not suitable and

84

CHAPTER 4. META-LEARNING AGENT FOR PQOS

quite problematic for an high-dimensional discrete spaces, both in memory and
complexity terms, as in the vehicular scenario. Instead, in DQL the table is re-
placed by a NN that approximates, according to some parameters (weights) to
train, the Q function: it produces in output a value for each action, given in input
a certain state.

With respect to the DQL, the adjective Double means that DDQL involves
two different NNs:

• Q Network to predict the Q values for the current state (of experience tu-
ple) in input

• Target Network to predict the Q values for the next state (of experience
tuple) in input

The two NNs have an identical structure, but the Target network is not updated
at each step as the Q Network, but only after some steps they are synchronized,
copying the weights of the Q Network in the Target Network. In this way the
algorithm ensures that the Target Q values, which are used in the computation
of the loss function to optimize, are kept stable for a certain period, so the target
does not change continuously decreasing the stability of the learning. After a
precise number of steps, the Target network parameters are updated in order to
improve the output estimation.

The ER technique is exploited. A circular buffer (queue) is created to collect
the experience tuples (current state, action, reward, next state, end) gathered by
the agent interaction with the environment at each step. This happens because
the buffer improves the stability of the learning. In this context, the agent
store its experience and learn by sampling at random from collected data, this
contributes to breaking the high correlation between sequence of tuples, so the
Adam optimizer can work on IID experience. Moreover, the collected samples
can be reused during the training, being more data efficient [47].

Another trick present in the implementation is considering an 𝜖-greedy
strategy to deal with the usual exploration vs exploitation dilemma: the rate of
exploration 𝜖 is updated in a exponentially decreasing manner, so at the begin-
ning the agent will explore a lot in order to discover better action combinations,
then the best action is gradually preferred. This trade-off to explore is very
important especially in the vehicles scenario, which is characterized by a huge

85

4.3. DOUBLE DEEP Q-LEARNING ALGORITHM

number of combinations state-action.

4.3.1 IMPLEMENTATION AND PARAMETERS

The implementation of the DDQL algorithm is made up of the following
steps. 𝐵 is the batch size, 𝐾 is an arbitrary positive number.

1. Initialize Q Network (weights 𝜽) and Target (T) Network (weights 𝜽′), the
replay buffer, the agent and the environment

2. For every epoch and for every step 𝑡:

(a) Choose action 𝑎𝑡 from state 𝑠𝑡 according to 𝜖-greedy policy

(b) Agent takes 𝑎𝑡 , observe reward 𝑟𝑡 and the next state 𝑠′𝑡
(c) Store in the buffer the tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠 ′𝑡 , 𝑒𝑛𝑑𝑡)
(d) If size of buffer > 𝐾 ∗ 𝐵

i. Sample a minibatch from the buffer
ii. For any tuple 𝑖 in the minibatch

A. If 𝑒𝑛𝑑𝑖 : 𝑦𝑖 = 𝑟𝑖 , else 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑚𝑎𝑥𝑎′𝑇(𝑠′𝑖 , 𝑎
′
, 𝜽

′)
B. Compute the MSE loss 𝐿 = 1

𝐵
∑𝐵
𝑖=1(𝑦𝑖 −𝑄(𝑠𝑖 , 𝑎𝑖 , 𝜽))2

C. Update 𝜽 using Adam optimizer on 𝐿
D. If 𝑡 = 𝑈𝑃𝐷𝐴𝑇𝐸 𝑆𝑇𝐸𝑃: 𝜽′ ← 𝜽

More precisely, in the code, the Q Network and the Target Network are im-
plemented using a FCNN. They take in input the state vector relative to the net-
work status of the vehicles, then the elaboration goes through several hidden
layers, the final output layer contains 2 neurons, as the number of possible ac-
tions (centralized and decentralized). In output wemust have a Q value for each
action taken from the input state. with the following structure of the hidden
part:

1. fully connected layer with 64 neurons and ReLu activation function, fol-
lowed by a batch normalization layer;

2. fully connected layer with 16 neurons and ReLu activation function, fol-
lowed by a batch normalization layer.

86

CHAPTER 4. META-LEARNING AGENT FOR PQOS

The weights of the NN are updated using the Adam algorithm, with a learning
rate 𝛼 = 10-4.

The discount factor 𝜆 is set to 0.95 so that the agent takes into account the
previous history. DDQL stores the learning transitions (state, action, reward,
next state, end) in an ER buffer with a capacity B = 5000. Inside the DDQL algo-
rithm, the weights of the Target Network are replaced every 1000 steps with the
weights of the Q Network. During the training of the agent, a batch-approach is
exploited, with a batch size set to 128.

An 𝜖-greedy strategy with an exponential decay factor along the learning
steps is adopted to deal with the exploitation-exploration dilemma. Specifically,
the epsilon factor decays exponentially from 1.0 to 0.1 in 100 episodes.

4.4 PERFORMANCE EVALUATION

The performance of the proposed meta-learning RL agent is evaluated
though two simulation campaigns in ns-3, where the agent learns dynamically
to adopt a centralized or decentralized learning approach in order to maximize
the reward. The first campaign considers a vehicle scenario with good chan-
nel conditions, i.e., high received power at the UEs, namely a high perceived
SINR. Then, the second campaign considers a scenario characterized by a more
degraded channel (on average).

Simulation campaign structure The simulation campaign of the meta-agent
is made up of 400 episodes. Each episode corresponds to an independent ns-3
simulation of nearly 90 s, where the multi-agent performs 90 steps. As a conse-
quence, it has to decide for 36000 times the PQoS learning approach to adopt.

Each step of the meta-agent is computed after that 30 steps are performed
by centralized/decentralized RL sub-agent (i.e., the one choosing PQoS coun-
termeasures). This occurs 90 times within an independent episode (simulation),
thus a MDP framework is built.

RESULTS

A PQoS scenario involving 3 vehicles is considered in the ns-3 simulation.
Furthermore, the policies of selecting statically either centralized or decentral-
ized approach are used as baseline for evaluating the meta-learning agent.

87

4.4. PERFORMANCE EVALUATION

4.4.1 GOOD CHANNEL

(a) Average Reward (b) Action probability

Figure 4.5: Results training of meta-learning agent vs. static approaches (base-
line) in good channel conditions

(a) Average E2E Delay (b) Average mAP

Figure 4.6: QoS and QoE indicators achieved by meta-learning agent vs. static
approaches (baseline) in good channel conditions

As expected, in good channel conditions, the centralized approach produces
a larger reward since the RL agent gathers more data from all the vehicles,
being able to learn and optimize the overall network status. The decentralized
federated approach generates a similar but smaller reward than the centralized
one (Fig. 4.5a). Indeed, the convergence is still quite fast thanks to the federated
updates, but a significant drawback is present in terms of impact on E2E latency
(Fig. 4.6a). However, the value of the latency still satisfies the TD constraints, so

88

CHAPTER 4. META-LEARNING AGENT FOR PQOS

there are no strong penalizing effects on the reward. In addition, the decentral-
ized learning achieves a higher QoE, in terms of mAP of selected compression
modes, with respect to the centralized case, as illustrated in Fig. 4.6b. This
fact could be linked to the different state definition and the multi-agent setup,
where the agent may learn different trajectories and strategies to achieve its
goal (i.e., maximization of long-term reward).

The meta-learning agent (denoted as M in the plots) achieves very interest-
ing results in terms of QoS (delay) and QoE (mAP) of the simulated TD sce-
nario. With respect to the static stand-alone approaches, the dynamic selection
of centralization vs. decentralization generates important improvements in the
learning performance.

The first key aspect to notice is the curve of the average reward in Fig. 4.5a.
In the first phase of the learning, after an explorationmoment, themeta-learning
agent performs very similarly to the centralized baseline, until the 250th episode.
After this moment, an important increment of the metric occurs and the intelli-
gent agent collects a reward of almost 0.6, slightly better than the best baseline,
i.e., the centralized approach. Analyzing deeply the action probability plot (Fig.
4.5b), this behaviour is associatedwith an increase in the probability of selecting
the decentralized federated approach.

The centralized approach produces the best results from the point of view of
the reward, because of low delay and rich availability of network metrics to the
agent. Indeed, the meta-agent prefers clearly the centralization, but at a certain
point the usage of federated approach becomesmore frequent. At the end of the
learning, on average, the centralized approach is chosen with 80% of probability
vs. 20% of probability of the decentralized federated approach. In this context,
the average reward goes beyond the reward of a fully centralized agent.

This happens because the decentralized federated (sub-)agent starts select-
ing compression modes with an higher mAP (on average), resulting in an larger
contribution of the QoE on the reward. The average E2E delay increases because
of the federated steps but it does not explode. Indeed, the final latency is smaller
than the federated baseline because the centralized approach remains the pre-
ferred option during the simulation. In this way, the QoS factor is not penalizing
the reward.

In conclusion, in some cases, involving dynamically the decentralization
in the centralized approach contributes to improve the performance of PQoS

89

4.4. PERFORMANCE EVALUATION

framework in the TD scenario. Furthermore, user privacy and data security are
ensured when the decentralized approach is employed.

4.4.2 BAD CHANNEL

(a) Average Reward (b) Action probability

Figure 4.7: Results training of meta-learning agent vs. static approaches (base-
line) in bad channel conditions

(a) Average E2E Delay (b) Average mAP

Figure 4.8: QoS and QoE indicators achieved by meta-learning agent vs. static
approaches (baseline) in bad channel conditions

In worst channel conditions, the centralized approach is more penalized
by outage events happening during the learning. In these moments, the
communication with the gNB is not feasible, as a consequence, the centralized
agent at the RAN is not able to gather all the local metrics and measurements

90

CHAPTER 4. META-LEARNING AGENT FOR PQOS

related to the vehicles to build the state. The penalization impacts heavily the
average reward (Fig. 4.7a). As shown in Fig. 4.8, the E2E delay is increased
and the mAP is decreased in comparison to the good channel simulation
because more retransmissions are necessary to share correctly the point clouds,
generating more congestion. Indeed, the QoE is more degraded due to the
higher probability of selecting more aggressive compression modes. On the
contrary, the decentralized federated scenario achieves better performance
(Fig. 4.7a) because local metrics are sufficient to build the state and take PQoS
countermeasures, so outages have a weak impact during the learning. Anyway,
with respect to the centralized approach, the delay (Fig. 4.8a) is higher due
to the federated updates. While the QoE (Fig. 4.8b) is improved because the
decentralization exploits local information, without relying on a continuous
communication with the gNB, and this autonomy reduces the negative effects
of poor channel conditions on the learning of the optimal compression policy.

The meta-learning agent achieves very interesting results in terms of QoS
(delay) and QoE (mAP). It learns that the decentralized approach has better per-
formances in degraded channel conditions, prioritizing this approach over the
centralized solution. Indeed, the collected reward (Fig. 4.7a) and the QoS, along
with the QoE metrics (Fig. 4.8) of the meta-agent are significantly close to the
results achieved by the static decentralized baseline.

In this context, the action probability plot (Fig. 4.7b) shows a very high prob-
ability (75%) of selecting decentralization and a smaller probability (25%) of se-
lecting centralization. There are two possible reasons why the latter is not null.
First, the exploration component (𝜖 = 0.1) allows the meta-agent to take actions
notmaximizing the immediate reward, with the aim of discovering better strate-
gies over the time (exploration vs. exploitation dilemma). The second reason
is that the centralized approach performs better in absence of outages. Conse-
quently, the meta agent prefers to select it in presence of good channel condi-
tions. Indeed, in general, the simulated scenario presents, on average, degraded
channel conditions, but not always. Otherwise, the network would be unable to
ensure the communication required by the TD application.

91

5
Conclusions and Future Works

The TD scenario is characterized by strict requirements in terms of QoS, es-
pecially E2E latency and reliability. In this context, being able to control and
predict future degradation in the network state is fundamental, as well as tak-
ing countermeasures in case QoS is not satisfied. For this reason, the PQoS tech-
nique is explored. The aim of this thesis has been the design, implementation
and evaluation of learning algorithms for improving PQoS, by exploiting RL
strategies.

In the first part, realism is introduced in the collection of metrics to describe
the network state to RL agents. Considering the centralized approach, newmet-
rics related to the 5G protocol stack are collected (BLER and TBS) and a new
mechanism to exchange the SINR perceived at the UE to the gNB, according to
a realistic policy, is implemented in ns-3. In addition, the CQI and BSR reporting
mechanism are exploited. The best results obtained considering the new state
definition with the CQI are very close to the idealized case: the E2E delay is
slightly higher, but the QoE is improved. Considering the distributed approach,
metrics that cannot be computed autonomously by the vehicle are discarded. In-
stead, PHY layer metrics and the size of transmission buffers at the RLC layer
are collected. Two solutions are proposed to collect the E2E delay: ACKs at the
APP layer and estimation based on APP transmitted bytes and MCS. The first
solution does not scale with the number of users, generating a large delay; while
the second approach presents better results in terms of QoS with respect to the
idealized setup, slightly degrading the QoE. Overall, the distributed approach
exceeds the TD limit of 50 ms more frequently than the centralized approach,

93

even if the delay is smaller on average (24 vs. 25 ms). This means that the cen-
tralization results in an improved global optimization of the QoS, because the
full network state is perceived.

Subsequently, in the federated approach, a realistic sharing of the model pa-
rameters is implemented, which heavily degrades the QoS (+6 ms in the E2E
delay) due to the larger burden on the channel. For this reason, an adaptive op-
timizer (Adam) and compression techniques are exploited to limit the overhead
generated by the federated steps, ensuring a high QoE of the optimal compres-
sion policy. In this context, the quantization technique outperforms the other
approaches. Moreover, different utility definitions are considered to measure
the importance of each vehicle in the federated update, showing interesting re-
sults with many vehicles.

In the last part, a meta-learning agent is implemented to dynamically
choose between centralized vs. decentralized learning models, jointly opti-
mizing QoS and QoE. This agent shows very promising results, being able
to switch autonomously in time to the best approach based on the network
state. More precisely, the centralized approach is preferred in good chan-
nel conditions, since the RL agent perceives the full network state. On the
contrary, the decentralized approach is preferred in degraded network condi-
tions, because outages have no impact on the state collection during the training.

As a future work, themain direction is to improve themeta-learning agent to
allow a dynamic choice between centralization vs. decentralization not only in
time, but also per vehicle. Consequently, the heterogeneity in local channel con-
ditions can be exploited. Furthermore, in this thesis, the PQoS countermeasure
(i.e., the choice of the RL agent) is restricted only to the tuning of the compres-
sion mode, at the APP layer. The PQoS action can be extended to parameters
related to the resource allocation and scheduling, e.g., adjusting the sub-band
and power level or selecting the optimal group of resource blocks.

94

References

[1] Marco Giordani et al. “Toward 6G Networks: Use Cases and Technolo-
gies”. In: IEEE Communications Magazine 58.3 (2020), pp. 55–61. DOI: 10.
1109/MCOM.001.1900411.

[2] Junil Choi et al. “Millimeter-Wave Vehicular Communication to Support
Massive Automotive Sensing”. In: IEEE Communications Magazine 54.12
(2016), pp. 160–167. DOI: 10.1109/MCOM.2016.1600071CM.

[3] Fengxiao Tang et al. “Survey on Machine Learning for Intelligent End-to-
End Communication Toward 6G: FromNetworkAccess, Routing to Traffic
Control and Streaming Adaption”. In: IEEE Communications Surveys Tuto-
rials 23.3 (2021), pp. 1578–1598. DOI: 10.1109/COMST.2021.3073009.

[4] Tao Zhang. “Toward Automated Vehicle Teleoperation: Vision, Oppor-
tunities, and Challenges”. In: IEEE Internet of Things Journal 7.12 (2020),
pp. 11347–11354. DOI: 10.1109/JIOT.2020.3028766.

[5] 5GAA. “C-V2XUse Cases Volume II: Examples and Service Level Require-
ments”. In: White Paper (Oct. 2020).

[6] Mate Boban, Marco Giordani, and Michele Zorzi. “Predictive Quality of
Service: The Next Frontier for Fully Autonomous Systems”. In: IEEE Net-
work 35.6 (2021), pp. 104–110. DOI: 10.1109/MNET.001.2100237.

[7] M. Todescato et al. “Machine Learning meets Kalman Filtering (with
proofs)”. In: 55th IEEE Conference on Decision and Control (CDC16). IEEE.
Las Vegas, Dec. 2016, pp. 4594–4599.

[8] Mowei Wang et al. “Machine Learning for Networking: Workflow, Ad-
vances and Opportunities”. In: IEEE Network 32.2 (2018), pp. 92–99. DOI:
10.1109/MNET.2017.1700200.

95

https://doi.org/10.1109/MCOM.001.1900411
https://doi.org/10.1109/MCOM.001.1900411
https://doi.org/10.1109/MCOM.2016.1600071CM
https://doi.org/10.1109/COMST.2021.3073009
https://doi.org/10.1109/JIOT.2020.3028766
https://doi.org/10.1109/MNET.001.2100237
https://doi.org/10.1109/MNET.2017.1700200

REFERENCES

[9] Federico Mason et al. “A Reinforcement Learning Framework for PQoS
in a Teleoperated Driving Scenario”. In: 2022 IEEE Wireless Communica-
tions and Networking Conference (WCNC). 2022, pp. 114–119. DOI: 10.1109/
WCNC51071.2022.9771590.

[10] FilippoBragato et al. “TowardsDecentralizedPredictiveQuality of Service
in Next-Generation Vehicular Networks”. In: IEEE Information Theory and
Applications Workshop (ITA). 2023.

[11] Marco Mezzavilla et al. “End-to-End Simulation of 5G mmWave Net-
works”. In: IEEE Communications Surveys Tutorials 20.3 (2018), pp. 2237–
2263. DOI: 10.1109/COMST.2018.2828880.

[12] MatteoDrago et al. “Artificial Intelligence inVehicularWirelessNetworks:
A Case Study Using ns-3”. In: Proceedings of the 2022 Workshop on Ns-3.
WNS3 ’22. Virtual Event, USA: Association for Computing Machinery,
2022, pp. 112–119. ISBN: 9781450396516. DOI: 10.1145/3532577.3532605.
URL: https://doi.org/10.1145/3532577.3532605.

[13] 3GPP. “Service requirements for enhanced V2X scenarios (Release 16)”.
In: TS 22.186 (Nov. 2020).

[14] E. Dahlman, S. Parkvall, and J. Skold. 5G NR: The Next Generation Wireless
Access Technology. Academic Press, 2021. ISBN: 978-0-12-822320-8. DOI: 10.
1016/C2019-0-04564-5.

[15] 3GPP. “5G NR and NG-RAN Overall description (Release 16)”. In: TS
38.300 (July 2020).

[16] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An In-
troduction (2nd ed.) 2018. URL: http : / / incompleteideas . net / book /
RLbook2020.pdf (visited on 06/20/2024).

[17] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine
learning 8 (1992), pp. 279–292. DOI: 10.1007/BF00992698.

[18] G. Rummery and Mahesan Niranjan. “On-Line Q-Learning Using Con-
nectionist Systems”. In: Technical Report CUED/F-INFENG/TR 166 (Nov.
1994).

[19] Daniel Krajzewicz et al. “SUMO (Simulation ofUrbanMObility); An open-
source traffic simulation”. In: Jan. 2002, pp. 183–187. ISBN: 90-77039-09-0.

96

https://doi.org/10.1109/WCNC51071.2022.9771590
https://doi.org/10.1109/WCNC51071.2022.9771590
https://doi.org/10.1109/COMST.2018.2828880
https://doi.org/10.1145/3532577.3532605
https://doi.org/10.1145/3532577.3532605
https://doi.org/10.1016/C2019-0-04564-5
https://doi.org/10.1016/C2019-0-04564-5
http://incompleteideas.net/book/RLbook2020.pdf
http://incompleteideas.net/book/RLbook2020.pdf
https://doi.org/10.1007/BF00992698

REFERENCES

[20] Mate Boban, João Barros, and Ozan K. Tonguz. “Geometry-Based Vehicle-
to-Vehicle Channel Modeling for Large-Scale Simulation”. In: IEEE Trans-
actions on Vehicular Technology 63.9 (2014), pp. 4146–4164. DOI: 10.1109/
TVT.2014.2317803.

[21] Google. Draco 3D Data Compression. 2017. URL: https://google.github.
io/draco/ (visited on 06/21/2024).

[22] Paolo Testolina et al. “SELMA: SEmantic Large-Scale Multimodal Acqui-
sitions in Variable Weather, Daytime and Viewpoints”. In: IEEE Transac-
tions on Intelligent Transportation Systems 24.7 (2023), pp. 7012–7024. DOI:
10.1109/TITS.2023.3257086.

[23] Hao Yin et al. “ns3-ai: Fostering Artificial Intelligence Algorithms for Net-
working Research”. In: Proceedings of the 2020 Workshop on Ns-3. WNS3
’20. Gaithersburg, MD, USA: Association for ComputingMachinery, 2020,
pp. 57–64. ISBN: 9781450375375. DOI: 10 . 1145 / 3389400 . 3389404. URL:
https://doi.org/10.1145/3389400.3389404.

[24] Alex H. Lang et al. “PointPillars: Fast Encoders for Object Detection From
Point Clouds”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2019, pp. 12689–12697. DOI: 10 . 1109 / CVPR . 2019 .
01298.

[25] 3GPP. “5G NR Physical layer procedures for data (Release 16)”. In: TS
38.214 (July 2020).

[26] 3GPP. “5G NR Medium Access Control (MAC) protocol specification (Re-
lease 16)”. In: TS 38.321 (July 2020).

[27] 3GPP. “5G NR Radio Link Control (RLC) protocol specification (Release
16)”. In: TS 38.322 (July 2020).

[28] 3GPP. “5G NR Packet Data Convergence Protocol (PDCP) specification
(Release 16)”. In: TS 38.323 (July 2020).

[29] Tian Li et al. “Federated Learning: Challenges, Methods, and Future Di-
rections”. In: IEEE Signal Processing Magazine 37.3 (2020), pp. 50–60. DOI:
10.1109/MSP.2020.2975749.

97

https://doi.org/10.1109/TVT.2014.2317803
https://doi.org/10.1109/TVT.2014.2317803
https://google.github.io/draco/
https://google.github.io/draco/
https://doi.org/10.1109/TITS.2023.3257086
https://doi.org/10.1145/3389400.3389404
https://doi.org/10.1145/3389400.3389404
https://doi.org/10.1109/CVPR.2019.01298
https://doi.org/10.1109/CVPR.2019.01298
https://doi.org/10.1109/MSP.2020.2975749

REFERENCES

[30] Brendan McMahan et al. “Communication-Efficient Learning of Deep
Networks fromDecentralizedData”. In: Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics. Ed. by Aarti Singh and
Jerry Zhu. Vol. 54. Proceedings ofMachine Learning Research. PMLR, 20–
22 Apr 2017, pp. 1273–1282. URL: https://proceedings.mlr.press/v54/
mcmahan17a.html.

[31] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating
deep network training by reducing internal covariate shift”. In: Interna-
tional conference on machine learning. pmlr. 2015, pp. 448–456.

[32] SashankReddi et al., eds.Adaptive Federated Optimization. 2021. URL: https:
//openreview.net/forum?id=LkFG3lB13U5.

[33] John Duchi, EladHazan, and Yoram Singer. “Adaptive SubgradientMeth-
ods for Online Learning and Stochastic Optimization”. In: 12.null (July
2011), pp. 2121–2159. ISSN: 1532-4435.

[34] Manzil Zaheer et al. “Adaptive methods for nonconvex optimization”. In:
NIPS’18. Montréal, Canada: Curran Associates Inc., 2018, pp. 9815–9825.

[35] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-
mization”. In: International Conference on Learning Representations (ICLR).
San Diega, CA, USA, 2015.

[36] Sunil Vadera and Salem Ameen. “Methods for Pruning Deep Neural Net-
works”. In: IEEE Access 10 (2022), pp. 63280–63300. DOI: 10.1109/ACCESS.
2022.3182659.

[37] Song Han et al. “Learning both weights and connections for efficient neu-
ral networks”. In: Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1. NIPS’15. Montreal, Canada: MIT
Press, 2015, pp. 1135–1143.

[38] Michael Zhu and Suyog Gupta. “To Prune, or Not to Prune: Exploring the
Efficacy of Pruning for Model Compression”. In: 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Workshop Track Proceedings. OpenReview.net, 2018. URL:
https://openreview.net/forum?id=Sy1iIDkPM.

[39] R. Reed. “Pruning algorithms-a survey”. In: IEEE Transactions on Neural
Networks 4.5 (1993), pp. 740–747. DOI: 10.1109/72.248452.

98

https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://openreview.net/forum?id=LkFG3lB13U5
https://openreview.net/forum?id=LkFG3lB13U5
https://doi.org/10.1109/ACCESS.2022.3182659
https://doi.org/10.1109/ACCESS.2022.3182659
https://openreview.net/forum?id=Sy1iIDkPM
https://doi.org/10.1109/72.248452

REFERENCES

[40] Xiaotian Zhao, Ruge Xu, and Xinfei Guo. “Post-training Quantization or
Quantization-aware Training? That is the Question”. In: 2023 China Semi-
conductor Technology International Conference (CSTIC). 2023, pp. 1–3. DOI:
10.1109/CSTIC58779.2023.10219214.

[41] Felix Sattler et al. “Sparse Binary Compression: Towards DistributedDeep
Learning with minimal Communication”. In: 2019 International Joint Con-
ference on Neural Networks (ĲCNN). 2019, pp. 1–8. DOI: 10.1109/IJCNN.
2019.8852172.

[42] Felix Sattler et al. “Robust and Communication-Efficient Federated Learn-
ing From Non-i.i.d. Data”. In: IEEE Transactions on Neural Networks and
Learning Systems 31.9 (2020), pp. 3400–3413. DOI: 10.1109/TNNLS.2019.
2944481.

[43] Jelili Oyelade et al. “Data Clustering: Algorithms and Its Applications”.
In: 2019 19th International Conference on Computational Science and Its Appli-
cations (ICCSA). 2019, pp. 71–81. DOI: 10.1109/ICCSA.2019.000-1.

[44] S. Lloyd. “Least squares quantization in PCM”. In: IEEE Transactions on In-
formation Theory 28.2 (1982), pp. 129–137. DOI: 10.1109/TIT.1982.1056489.

[45] Lei Fu et al. “Client Selection in Federated Learning: Principles, Chal-
lenges, and Opportunities”. In: IEEE Internet of Things Journal 10.24 (2023),
pp. 21811–21819. DOI: 10.1109/JIOT.2023.3299573.

[46] Hado van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement
learning with double Q-Learning”. In: AAAI’16. Phoenix, Arizona: AAAI
Press, 2016, pp. 2094–2100.

[47] Volodymyr Mnih et al. “Human-level control through deep reinforce-
ment learning”. In: Nature 518.7540 (2015), pp. 529–533. DOI: 10 . 1038 /
nature14236.

99

https://doi.org/10.1109/CSTIC58779.2023.10219214
https://doi.org/10.1109/IJCNN.2019.8852172
https://doi.org/10.1109/IJCNN.2019.8852172
https://doi.org/10.1109/TNNLS.2019.2944481
https://doi.org/10.1109/TNNLS.2019.2944481
https://doi.org/10.1109/ICCSA.2019.000-1
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/JIOT.2023.3299573
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236

Acknowledgments

Voglio ringraziare profondamente i miei genitori, Nicoletta e Alessandro, e
mio fratello Luca per avermi dato la possibilità di arrivare a questo traguardo
con serenità, motivazione, forza ed energia. Tanto merito è anche vostro.

Voglio ringraziare il Prof. Zorzi, il Prof. Giordani e Filippo Bragato per
avermi continuamente stimolato con le loro idee, aiutandomi a uscire da mo-
menti bui e a cogliere aspetti nuovi. Un grande ringraziamento va anche a tutti
i membri del laboratorio SIGNET che mi hanno accompagnato e supportato
durante il periodo di tesi.

Voglio ringraziare tutti i miei amici più stretti e i miei amici della pallavolo
per i momenti di allegria, gioia e divertimento.

Voglio ringraziare tutti i miei amici dell’università per aver contribuito ad
alleggerire le giornate piene di lezioni e studio a Padova, durante gli ultimi 5
anni.

101

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Teleoperated Driving Scenario
	Predictive Quality of Service
	Reinforcement Learning for PQoS in V2X Networks

	Thesis contribution and structure

	Centralized and Distributed PQoS
	V2X communication: PQoS for TD scenario
	5G NR System Architecture
	CN
	RAN
	Protocol Architecture 5gnrnr5g

	Reinforcement Learning
	PQoS Framework
	Simulation parameters
	Ns-3 entities

	Centralized Approach
	RAN-AI
	RL framework
	Proposed Solutions and Implementation
	Performance Evaluation

	Distributed Approach
	UE-AI
	RL framework
	Proposed Solutions and Implementation
	Performance Evaluation

	Federated PQoS
	Problem Formulation
	Simulation Framework
	Adaptive Federated Optimization Methods
	Implementation and Results

	Model compression
	Pruning
	Post-Training Quantization
	Clustering

	Utility Functions

	Meta-learning agent for PQoS
	Centralized vs. Distributed vs. Federated Results
	Meta-learning Agent Model
	State
	Action
	Reward

	Double Deep Q-Learning Algorithm
	Implementation and Parameters

	Performance Evaluation
	Good Channel
	Bad Channel

	Conclusions and Future Works
	References
	Acknowledgments

