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Introduction

Compressible wall-bounded turbulent flows are of major relevance in the aerospace industry and have
been extensively studied with both experimental and numerical techniques. They can be described by
the Navier-Stokes equations, for which an analytical solution does not exist: a complete description of a
turbulent flow, therefore, can only be obtained by numerically solving the equations. During the years,
computational fluid dynamics (CFD) has gained importance because of the fast-paced increase and
availability of computational power and its main three ways to deal with the Navier-Stokes equations
are the direct numerical simulation (DNS), Reynolds-averaged Navier-Stokes method (RANS) and
large-eddy simulation (LES).

The DNS method presupposes direct discretisation and resolution of the Navier-Stokes system of
equations without a mathematical model for turbulence. As many reports from the 1900s point out
([42], [43], [44], [45]), acceptable DNS of real-life scenarios would have been generally impossible at the
time due to the different time- and space-scales simultaneously at play. For this reason, the evolution
of the flow had to be studied statistically, through RANS or LES.

After the pioneering work of Reynolds, Prandtl and von Kármán ([46], [50], [51]), the earliest
computational approach to these complex flows was the Reynolds-averaged Navier-Stokes (RANS)
method, which deals with the mean properties of the fluid. First successfully implemented by Launder
and Spalding (1974) [47], the method was still inaccurate because of its severe constraints in terms
of grid points positioning [48]. Later improved by a number of other studies, the RANS technique
has been the prevalent one until the last decade [49], but it is still not accurate enough to deal with
more delicate problems such as stall in turbomachinery and aircraft, atmospheric re-entry, or other
situations where there is a strong interaction between turbulent plumes and wall-related phenomena;
in these situations of vital importance, detailed flow-field predictions are strictly required.

A LES is intermediate in computational complexity between DNS and RANS. Used originally for
weather forecasting [43], it directly computes the larger vortices while employing a mathematical model
to represent the smaller energy-containing scales. The strength of a LES is that it requires far less
grid points and computational time than a DNS to yield its results, and having a tool which is able to
capture and forecast such extremely complex phenomena without introducing a massive computational
burden is paramount in order to further advance the knowledge and study possibilities of turbulent
flows. Of course, as will be discussed in Section 3, the accuracy provided by this approach is not at
the same level as that of a DNS, but the savings in computational time and overall burden could be
worth the approximations.

For what concerns wall turbulence, as discussed in Section 2, there was no consensus until recently
on the effect of Mach number and fluid compressibility on the typical length scales in wall turbulence.
In this respect, Demetriades and Martindale (1983) [50] found the streamwise length scales in a com-
pressible fluid to be about half as in incompressible ones; moreover, Smits et al. (1989) [51] observed
that the length scales sensibly decrease with increasing Mach numbers. On the other hand, Spina et
al (1994) claimed the exact opposite, as well as Ganapathisubramani et al (2006) [53]. Further studies
by Modesti, Bernardini and Pirozzoli ([49], [17]) seem to settle that typical length scales are in fact
substantially insensitive to the Mach number.

In this work a numerical approach based on the LES technique has been followed. This was made
possible by the development of the Unsteady Robust All-around Navier-StOkes Solver (URANOS),
a tool which enables the LES study — as well as DNS — of turbulent compressible flows with the
possibility to include immersed bodies and shock waves. The URANOS software was developed by
Francesco de Vanna at the Department of Industrial Engineering of the University of Padova.



Since turbulent flows are rather chaotic in their nature and it is not always clear if the fluctuations
they present are due to physical reasons or numerical instabilities, all the data obtained from the sim-
ulations has been transformed, using the various mathematical tools presented in Section 4, to match
an equivalent incompressible flow for which accurate DNS analysis [30] has already been provided. By
doing this, flows at different friction Reynolds numbers Reτ could be compared using a solid common
ground.





1 Navier-Stokes Equations

1.1 Standard Navier-Stokes Equations

The majority of aerospace fluxes are compressible and turbulent in nature. In the case of a turbulent
flow, particularly a turbulent boundary layer flow, the need for computational fluid dynamics (CFD)
arises. Since turbulence is not yet fully understood nor predictable, there is the call for models and
approximations. A compressible viscous flow is described by the Navier-Stokes equations, a set of five
non-linear equations. The Navier-Stokes equations for a perfect heat-conducting gas that will be used
in this work are:

∂ρ

∂t
= −∂(ρui)

∂xi
(1.1)

∂(ρui)

∂t
= −∂(ρuiuj)

∂xj
− ∂pδij

∂xj
+
∂σij
∂xj

(1.2)

∂(ρE)

∂t
= −∂(ρujH)

∂xj
+
∂(σijui)

∂xj
− ∂qj
∂xj

(1.3)

These represent the conservation of mass, momentum and energy respectively. Here i = 1, 2, 3, H =
E + p/ρ is the fluid enthalpy; total energy E can be expressed as

E = e+
uiui

2
(1.4)

with the second addendum equalling the kinetic energy and e representing the internal energy

e = cvT =
pR

(γ − 1)
(1.5)

Finally, σij and qj are the components of the viscous stress tensor resulting from the relative motion
between elementary Newtonian fluid volumes (Reynolds stresses), and heat flux vector respectively,
prescribed as

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
(1.6)

qj = −λ ∂T
∂xj

(1.7)

where λ = cpµ/Pr with Pr = 0.71 (i.e. air at T ' 273K). Since it is known that cp is essentially
constant up to T ' 1000K, the working fluid has been assumed perfect. The resulting system consists
of five equations and seven unknown variables (ρ, ρui, ρE, p, T ) so it has to be completed with two
closure equations. The first closure equation chosen was the thermodynamic equation of state for the
perfect gases

p = ρRT (1.8)

The second closure equation, for the viscosity µ, is Sutherland’s law

µ(T ) = T
3/2

(
T0 + S

T + S

)
(1.9)

where T0 = 273.15K and S = 110.4K, the empirical value for air.
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1.2 Non-dimensional Navier-Stokes equations

It is self-evident that the main difference between a compressible boundary layer and an incompressible
one is the presence of density fluctuations

ρ = ρ̄+ ρ′ (1.10)

where ρ̄ is the average density and ρ′ the fluctuating value (Reynolds decomposition). All three
conservation relations (1.1-1.3) contain the product ρui so additional time-averaged quantities are
obtained, involving products of fluctuating variables, as seen in (1.10):

ρu = ρ̄ū+ ρ′u′ (1.11)

The same, naturally, occurs for the other components of the velocity. Another effect of fluctuating
density is the variability of temperature through the equation of state. This has repercussions for other
entities such as viscosity µ, specific heat ratio γ, pressure-fixed specific heat cp and Prandtl number
Pr, which all theoretically depend on T . For these reasons, Equation (1.3) is not the byproduct of
(1.1) and (1.2) as it was in the incompressible case, but it has to be used alongside the other two, thus
increasing the computational complexity of the problem.

In order to treat the compressible boundary layer, the Navier-Stokes equations are non-dimensionalised:
as a result, the number of independent parameters is the minimum possible and they will be on the
same order of magnitude, relieving CPU stress. Through the Buckingham theorem, a certain number
of independent fundamental dimensional groups can be identified. The theorem states

Ng = Np − (Nd +Nr) (1.12)

that is, for a phenomenon governed by Np dimensional parameters, Nd fundamental dimensions and
Nr relations, Ng independent fundamental groups can fully describe the system; of course, Ng is the
minimum number of unknowns needed to solve the problem. In the present closed system Np = 15
(t0, L0, ρ0, u0, p0, T0, E0, µ0, λ0, R0, cp0, cv0, e0, P r0, γ0), Nd = 4 (time [s], length [m], mass [kg],
temperature [K]), and Nr = 7

p0 = ρ0R0T0 µ0 = T
3/2
0

(
T0 + S

T0 + S

)
λ0 =

µ0cp0
Pr0

e0 = cv0T0

E0 = e0 +
1

2
u2

0 cv0 =
R0

γ0 − 1
cp0 =

γR0

γ0 − 1
(1.13)

So, according to (1.12), Ng = 4. The choice of the four independent groups among the fifteen available
is completely arbitrary. In this work, L0 is the reference length, ρ0 the reference density, p0 the
reference pressure and u0 =

√
p0/ρ0 the reference velocity, i.e. the speed of sound without the already

non-dimensional √γ0 =
√
cp0/cv0. Using these new variables, the remaining variables can be rewritten

as
x = L0x

′ ui = u0u
′
i t =

L0

u0
t′ ρ = ρ0ρ

′ T = T0T
′

e =
p0

ρ0
e′ Etot =

p0

ρ0
E′tot µ = µ0µ

′ λ = λ0λ
′ (1.14)
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where apexes indicate non-dimensional quantities. Substituting the newly found groups into Equation
(1.1), the non-dimensional mass conservation equation can be found

∂(ρ0ρ
′)

∂(L0

u0
t′)

= −∂(ρ0ρ
′u0u

′
i)

∂(L0x′i)
(1.15)

∂ρ′

∂t′
= −∂(ρ′u′i)

∂x′i
(1.16)

which is formally identical to its dimensional counterpart. For the momentum conservation

∂(ρ′u′i)

∂t′
ρ0u

2
0

L0
= −

∂(ρ′u′iu
′
j)

∂x′j

ρ0u
2
0

L0
− ∂p′iδij

∂x′j

p0

L0
+
∂σij
∂xj

(1.17)

where
∂σij
∂xj

=
∂

∂x′j

(
µ′

(
∂u′i
∂x′j

+
∂u′j
∂x′i
− 2

3

∂u′k
∂x′k

δij

))
µ0u0

L2
0

(1.18)

After dividing by ρ0u
2
0/L0 Equation (1.2) becomes

∂(ρ′u′i)

∂t′
= −

∂(ρ′u′iu
′
j)

∂x′j
− ∂p′iδij

∂x′j

p0

ρ0u2
0

+
∂

∂x′j

(
µ′

(
∂u′i
∂x′j

+
∂u′j
∂x′i
− 2

3

∂u′k
∂x′k

δij

))
µ0

ρ0u0L0
(1.19)

Defining the free-stream Mach number and the Reynolds number as

M∞ =
u∞√
γp0/ρ0

Re =
ρ0u∞L0

µ∞
(1.20)

Equation (1.2) can be recast as

∂(ρ′u′i)

∂t′
= −

∂(ρ′u′iu
′
j + p′iδij)

∂x′j
+

√
γM∞

Re

∂

∂x′j

(
µ′

(
∂u′i
∂x′j

+
∂u′j
∂x′i
− 2

3

∂u′k
∂x′k

δij

))
(1.21)

Similarly, the energy equation can be transformed as

∂(ρ′E′)

∂t′
ρ0u0

L0

p0

ρ0
= − ∂

∂x′j
((ρ′E′ + p′)u′j)

ρ0u0

L0

p0

ρ0
+
∂(σijui)

∂xj
+

∂

∂x′j

(
λ′
∂T ′

∂x′j

)
λ0T0

L2
0

(1.22)

where, again,
∂(σijui)

∂xj
=

∂

∂x′j

(
µ′

(
∂u′i
∂x′j

+
∂u′j
∂x′i
− 2

3

∂u′k
∂x′k

δij

)
u′i

)
µ0u

2
0

L2
0

(1.23)

Dividing Equation (1.22) by ρ0u0

L0

p0
ρ0

it becomes

∂(ρ′E′)

∂t′
= − ∂

∂x′j
((ρ′E′ + p′)u′j) +

∂

∂x′j

(
µ′

(
∂u′i
∂x′j

+
∂u′j
∂x′i
− 2

3

∂u′k
∂x′k

δij

)
u′i

)
µ0u

2
0

L2
0

L0ρ0

ρ0u0p0
+

+
∂

∂x′j

(
λ′
∂T ′

∂x′j

)
λ0T0

L2
0

L0ρ0

ρ0u0p0
(1.24)
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Knowing that

Pr =
γR0

γ − 1

µ∞
λ∞

(1.25)

and remembering the definitions of Mach and Reynolds numbers (1.20), the non-dimensional form of
(1.3) is

∂(ρ′E′)

∂t′
= − ∂

∂x′j
((ρ′E′ + p′)u′j)+

+

√
γM∞

Re

(
γR0

γ − 1

1

Pr

∂

∂x′j

(
λ′
∂T ′

∂x′j

)
+

∂

∂x′j

(
µ′

(
∂u′i
∂x′j

+
∂u′j
∂x′i
− 2

3

∂u′k
∂x′k

δij

)
u′i

))
(1.26)

Equations (1.16), (1.21) and (1.26) represent the non-dimensional Navier-Stokes equations that were
implemented in the code. Since L0, ρ0, p0, T0 do not appear in the main non-dimensional groups
γ, M∞, Re or Pr, they have all been set to an unitary value; for this reason R0 = p0/(ρ0T0) = 1 as
well. At the same time a definition for the other dimensional groups can be formulated using the
non-dimensional ones

γ =
cp0
cv0

u∞ =
√
γM∞

µ∞ =

√
γM∞

Re
λ∞ =

γ

γ − 1

1

Pr

√
γM∞

Re
(1.27)

Lastly, a non-dimensional form for the closure equations (1.4), (1.8) and (1.9) has to be provided:

p′ = ρ′T ′ (1.28)

E′ =
1

γ − 1

p′

ρ′
+

1

2
(u′iu

′
i)

2 (1.29)

µ′(T ′) = T ′
3/2

(
1 + S/T0

T ′ + S/T0

)
(1.30)

In equations (1.16), (1.21) and (1.26) three common entities can be identified:

• A temporal contribution ∂φ
∂t due to the temporal variation of physical fields;

• A convective contribution −∂Fj(φ)
∂xj

, related to the transport phenomena associated to velocity
and pressure fields;

• A diffusive contribution ∂Fvj(φ)
∂xj

resulting from the thermodynamic behaviour of the gas and the
forces exchanged by elementary fluid volumes.
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2 Turbulent channel

The first approach, historically, to the problem of wall turbulence could not but be experimental;
however, the fast-paced advancement in computational power has made numerical studies, especially
DNS, more feasible and affordable. The most common configurations implemented to study this phe-
nomenon are the turbulent pipe and the turbulent channel, the two offering universal and concordant
statistics. A typical and distinctive feature of wall turbulence is the presence of so called “turbulence
streaks” near the wall, as seen in Figure 2.1 below, depicting different cases

Figure 2.1: Representation of the mean velocity near the bottom wall using a dynamical Smagorinsky
(DSMG) model at Reτ = 215 (top left), Reτ = 500 (bottom left) and the unresolved approach (ILES)
at Reτ = 215 (top right) and Reτ = 500 (bottom right).

The expression “turbulent channel” identifies the flow throughout a rectangular duct which is long
and has a sufficiently large width-to-height ratio. Most natural and artificial turbulent flows are
considered to be bounded, at least in part, to at least one or more solid surfaces. The mean flow is
predominantly in the axial direction x while the most relevant mean velocity variations occur especially
in the wall-normal direction y. At the same time the flow is statistically independent of z. The wall
locations are located at y = 0, 2h, so that the channel height is 2h. Because only the fully developed
flow is relevant for the statistics and the first part of the channel, from x = 0 to approximately x = 5h,
is a development region, the boundary condition forces the fluid to recirculate so that the x coordinate
can be limited to, say, 2π. The Reynolds number used in association with the channel is

Re =
2hū

ν
(2.1)

where ū is the bulk velocity

ū =
1

h

∫ h

0

〈u〉 dy (2.2)

5



and 〈u〉 is defined in Equation (3.3). The flow is considered turbulent without observable transitional
effects when Re > 3000 and in the present study the two examined Reynolds numbers were Re = 5365
and Re = 14386.

A fully developed channel flow can be defined by the sole variables ρ, ν = µ
ρ , h and uτ =

√
−hρ

dpw
dx =√

τw
ρw

, which can form the two non-dimensional groups y/h and Reτ = uτh/ν; the mean velocity profile
can therefore be written as

〈u〉 = uτF0

(y
h
,Reτ

)
(2.3)

where F0 is a non-dimensional function to be determined. However, since the dynamically relevant
quantity is d〈u〉/dy, and it depends on only two non-dimensional parameters, Equation (2.3) can be
restated as

d 〈u〉
dy

=
uτ
y

Φ

(
y

δv
,
y

h

)
(2.4)

where δv = νw/uτ represents the viscous length scale, which will surely be smaller than h, the length
scale in the outer layer. After performing the calculations it is clear that Reτ = ( y

δv
)/( yh ) so that the

two formulations are conceptually related.
In the next two sections, the two fundamental laws that drive the flow — the law-of the wall and

the logarithmic law — will be discussed.

2.1 Law-of-the-wall

Ludwig von Prandtl [39] asserted that in the near-wall region (y/h � 1) the mean velocity profile is
governed by the viscous scales alone. In this case then

d 〈u〉
dy

=
uτ
y

ΦI

(
y

δv

)
(2.5)

where
ΦI

(
y

δv

)
= lim

y/h→0
Φ

(
y

δv
,
y

h

)
(2.6)

In this case y+ = y/δv is the only quantity that drives the velocity in this part of the channel [41]. The
normalised velocity, later used for compressibility transformations and results, is defined as

u+ =
〈u〉
uτ

(2.7)

Using these definitions, Equation (2.5) can be rewritten as

du+

dy+
=

1

y+
ΦI
(
y+
)

(2.8)

The law of the wall is obtained by integrating Equation (2.8) in y+:

u+ = Fw(y+) (2.9)

with

Fw(y+) =

∫ y+

0

1

y′
ΦI (y′) dy′ (2.10)
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This result obtained by Prandtl is very meaningful in that it shows a dependency of u+ = u/uτ solely
on the scaled coordinate y+, and in particular u+ = y+. During the years, and in this work as well,
the law of the wall has been largely proven valid not only in the region strictly adjacent to the wall,
but in the viscous sublayer as well, i.e. y+ < 5.

2.2 Logarithmic law

Moving away from the wall, the importance of viscosity increasingly fades and ΦI depends more on
y
h and less on y

δv
. Considering again Equation (2.5) ΦI tends to a constant. Indeed, for y/h � 1 and

y+ � 1

ΦI(t
+) =

1

κ
(2.11)

where κ ≈ 0.41 is the von Kármán constant. Therefore, from Equation (2.11)

du+

dy+
=

1

κy+
(2.12)

By means of integration the mean scaled velocity profile becomes

u+ =
1

κ
ln y+ +B (2.13)

This logarithmic law of the wall, ideated by von Kármán (1930) [40], works well with the generally
agreed upon constants κ = 0.41 and B = 0.52. In Figure 2.2 it is clear how the mean velocity curve
follows the linear law of the wall up to y+ ' 5 and the logarithmic law from greater values of y+,
roughly y+ > 40. The region in between the two is commonly referred to as the “overlap layer”.
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Figure 2.2: Mean velocity curve at M = 0.1 and Reτ = 180 employing the dynamical Smagorinsky
(DSMG) model. The dashed lines denote the law-of-the-wall (y+ < 10) and the logarithmic law
(20 < y+ < 100).

In the outer layer another law can be considered: given the fact that Φ is practically independent
of y/δv, it tends asymptotically to a function of y/h, here called Φ0:

lim
y/δv→∞

Φ

(
y

δv
,
y

h

)
= Φ0

(y
h

)
(2.14)

Inserting Φ0 in Equation (2.5) and integrating in y yields

u0 − 〈u〉
uτ

= FD

(y
h

)
(2.15)

where u0 is the center-line velocity and

FD

(y
h

)
=

∫ 1

y/h

1

y′
Φ0 (y′) dy′ (2.16)

Equation (2.15) is called the velocity-defect law for obvious reasons. Unlike in the previous laws, FD
is not universal and may depend on the flow and its characteristics. In the buffer layer, as Millikan
pointed out, the values provided by the two laws should be overlapping as well.

2.3 Reynolds stresses

In order to coherently study the Reynolds stresses, the flow is better divided into three regions: the
viscous wall region, y+ < 50, the log-law region, 50 < y+ < 120 and the core, y+ > 120. The scaled
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Reynolds stresses are represented as

Rij = τij =
u′′i u

′′
j

u2
τ

(2.17)

where the numerator is obtained using the Favre decomposition, explicited in Equation (3.20), and the
denominator scales the stress to make it non-dimensional. In Figure 2.3 a non-logarithmic representa-
tion of the Reynolds stresses is shown.

Figure 2.3: Typical Reynolds stresses, obtained at M = 0.1 and Reτ = 180 employing the dynamical
Smagorinsky (DSMG) model.

The most intense turbulent activity can be found in the viscous wall region, all the peaks occurring
before y+ = 60. In this region, for fixed x, z and t, and for small y, the fluctuating velocity components
can be rewritten using Taylor expansions

u = a1 + b1y + c1y
2 + ... (2.18)

v = a2 + b2y + c2y
2 + ... (2.19)

w = a3 + b3y + c3y
2 + ... (2.20)

At the boundary location y = 0, the no-slip condition yields u = a1 = 0 and w = a3 = 0, whereas
the impermeability one v = a3 = 0; at the same time, from the no-slip condition, (∂u/∂x)y=0 and
(∂w/∂x)y=0 are zero: the continuity equation then becomes(

∂v

∂y

)
y=0

= b2 = 0 (2.21)
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What this means is that, very close to the wall, the flow just has the u and w components, resulting in
a motion parallel to the wall. Keeping in mind the coefficient values, after applying the Favre filtering
to Equations (2.18-2.20), multiplying them in the proper way and ignoring higher-order terms, the
non-scaled Reynolds stresses can be found:

ũ′′u′′ ' b̃21y2 (2.22)

ṽ′′v′′ ' c̃22y4 (2.23)

w̃′′w′′ ' b̃23y2 (2.24)

ũ′′v′′ ' b̃1c2y3 (2.25)

The coefficients are not known beforehand but the order of the various y terms is useful to understand
how the curves will behave: the Ruu and Rww terms increase from zero with y2, the absolute value of
Ruv with y3 and finally Rvv is governed by y4. Since in this region y < 1 (y+ = 50 ⇒ y ' 0.29), the
first two components of the tensor will increase the fastest, while the latter will be the slowest. These
considerations are confirmed by the trends shown in Figure 2.3.

2.4 Compressible wall turbulence

Possible effects of flow compressibility on the typical length scales associated to wall turbulence have
been widely discussed since the introduction of the problem and still are an open issue. For example,
while the characteristic length scales seem to not vary with the Reynolds number sufficiently away from
the wall, dependence on the Mach number are still unclear. Actually, contrasting or even opposite
results have been found for the dimension of characteristic streamwise length scales with respect
to increasing Mach numbers. Traditionally, in an incompressible flow the characteristic length scales
should increase linearly with the wall distance in the outer layer (y+ > 50) and in particular, according
to Mizuno and Jiménez (2011) [37], it should scale with the local mean shear:

lMJ ∼ uτ
(
dū

dy

)−1

(2.26)

According to Pirozzoli (2012) [38], however, the incompressible length scales should read

lP ∼ (uτh)

(
dū

dy

)−1/2

(2.27)

This formulation has been shown by Pirozzoli himself to be more accurate than the one by Mizuno and
Jiménez. This scaling can be easily adapted to the compressible case provided the main compressibility
effects are included in the variation of the local friction velocity:

l∗P ∼ (u∗τh)

(
dũ

dy

)−1/2

(2.28)

where u∗τ = uτ
√
ρw/ρ.
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3 DNS, RANS & LES

3.1 DNS

Computationally speaking, there are three main approaches to the problem of turbulent channel flows.
In a Direct Numerical Simulation (DNS), Equations (1.16), (1.21) and (1.26) are implemented and
solved without any turbulence model, meaning every single temporal and spatial scale, from Kol-
mogorov’s microscale to the integral scale, must be resolved in the computational mesh. Needless to
say, this method is the most accurate one but it requires the largest amount of time with respect to the
other two; both the spatial and the temporal resolutions required by this method exceed the commonly
available resources.

3.2 RANS

At the other end of the spectrum are the Reynolds-Averaged Navier-Stokes equations (RANS), a set
of averaged equations which again will be directly solved; this method can be implemented using
a relatively coarse mesh but it requires “invasive” closure models for the Reynolds stresses and the
dissipated energy which can affect the results especially in the boundary layer. Nevertheless, the
RANS results are widely known and can represent a useful tool for further understanding the problem
of wall turbulence. This approach describes the turbulent flow through its mean behaviour. Let’s
consider a set of incompressible RANS equations

∂ 〈uj〉
∂xj

= 0 (3.1)

∂ 〈ui〉
∂t

+ 〈uj〉
∂ 〈ui〉
∂xj

= −1

ρ

∂ 〈p〉 δij
∂xj

+
µ

ρ

∂2 〈ui〉
∂xj∂xj

−
∂
〈
u′iu
′
j

〉
∂xj

(3.2)

where 〈φ〉 represents the Reynolds-average of a flow variable φ expressed as

〈φ〉 = lim
t→∞

1

∆t

∫ t0+∆t

t0

φ (t∗) dt∗ (3.3)

and φ′ its turbulent fluctuation
φ′ = φ− 〈φ〉 (3.4)

Since the channel presents its interesting features mainly in the wall-normal direction, the x and
z dimension are here considered to be much greater, tending to infinity. In this scenario, where also
the mean flow is considered stationary and planar (〈w〉 = 0), both the temporal derivatives and the
spatial derivatives along those directions can be neglected:

∂ 〈φ〉
∂t

= 0 (3.5)

∂ 〈φ〉
∂x

=
∂ 〈φ〉
∂z

= 0 (3.6)
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the resulting mass conservation equation
∂ 〈v〉
∂y

= 0 (3.7)

along with the boundary condition for which 〈v〉y=0,2h = 0 at the wall, makes sure that 〈v〉 = 0 in the
whole domain. Knowing this, the momentum conservation equations reduce to

−1

ρ

∂ 〈p〉
∂x

+
µ

ρ

∂2 〈u〉
∂y2

− ∂ 〈u′v′〉
∂y

= 0 (3.8)

−1

ρ

∂ 〈p〉
∂y
−
∂
〈
v′2
〉

∂y
= 0 (3.9)

If the fields in Equation (3.9) do not depend on y, then

〈p〉+ ρ
〈
v′2
〉

= f(x) (3.10)

which becomes, at the wall location y = 0 where 〈v〉 = 0,

〈p〉/ρ +
〈
v′2
〉

= pw(x)/ρ (3.11)

Here pw = 〈p (x, 0, 0)〉 represents the mean pressure on the bottom wall. Computing the derivative of
f(x) with respect to x at the wall locations y = 0, 2h yields

df(x)

dx
=

d

dx

(
〈p〉+ ρ

〈
v′2
〉)
y=0,2h

=
d 〈p〉
dx

=
dpw
dx

(3.12)

The latter expression indicates that the mean pressure gradient at the wall locations only depends on
x. Using this result in Equation (3.8) gives

d 〈p〉
dx

=
∂

∂y

(
µ
∂ 〈u〉
∂y
− ρ 〈u′v′〉

)
(3.13)

The term in the brackets is dimensionally a shear stress, so

d 〈p〉
dx

=
∂τ(y)

∂y
(3.14)

which means that that the axial normal stress gradient is balanced by the cross-stream shear stress
gradient. Equation (3.14) can be integrated to obtain

τ(y) =
d 〈p〉
dx

y + c1 (3.15)

where c1 = 0 due to the symmetry of the domain along y. Because τ(y) depends solely on y, ∂τ(y)
∂y

must be constant; since it is also known that τ(h) = 0, it must be τ(0) = τw and τ(2h) = −τw.
Therefore the solution to Equation (3.14) is

τw
h

= −dpw
dx

(3.16)
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and
τ(y) = −d 〈p〉

dx

|y|
h

(3.17)

It is now clear that the mean pressure gradient is the entity that counterbalances the wall shear stress
and ensures the continuous motion of the fluid. In order to correctly simulate the motion of the fluid
in the channel, the mean pressure gradient, in the form of an equivalent force or a given friction, must
be introduced as a parameter. In this case the former solution has been adopted: the Direct Forcing
method keeps the fluid moving while at the same time setting the flow rate value. By expressing the
bulk velocity as

ub =

∫
V
ρudV∫

V
ρdV

(3.18)

the mean pressure gradient can be written as a function of the deficit between a target speed u∞ and
the actual bulk velocity ub:

d 〈p〉
dx

= u∞ − ub = F (3.19)

The speed deficit F was in fact used as a forcing term in the Navier-Stokes equations. Thus, the
periodic boundary conditions of Section 5.4 could be implemented.

3.3 LES

In this instance various versions of a Large Eddy Simulation (LES) have been used. Proposed in 1963
by American meteorologist Joseph Smagorinsky [6] to simulate atmospheric air currents, it relies on
the famous Kolmogorov’s hypothesis (1941) [7] to obtain accurate results with less of a computational
burden. Kolmogorov ingeniously observed that in a turbulent flow, macroscopically, there is an evident
directionality but, zooming in, the vortices become substantially isotropic and homogeneous: small
scale vortices are therefore statistically universal and are not influenced by the geometry of the channel
nor any bodies immersed in the fluid. This approach simulates the bigger vortices as a DNS would
do but it requires the implementation of a model for the smaller scales that accounts for the viscous
dissipation as well. In order to implement the LES equations, a filtering operator is introduced. Since
the physical velocity of the fluid consists of different frequencies inversely proportional to the length
scales of the vortices, a low pass filter will eliminate the higher frequency “signals” and preserve the
ones generated by the bigger vortical structures. Favre filtering of a generic flow variable φ is defined
as

φ = φ̃+ φ′′ (3.20)

with

φ̃ =
ρφ

ρ̄
(3.21)

Here (·) is the generic spatially filtered variable. Applying the operator, the non-dimensional Navier-
Stokes equations (1.16), (1.21), (1.26) become

∂ρ̄

∂t
= −∂(ρ̄ũi)

∂xi
(3.22)
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∂(ρ̄ũi)

∂t
= −∂(ρ̄ũiũj + p̄iδij)

∂xj
+

√
γM∞

Re

∂

∂xj

(
µ̄d̄ij

)
− ∂

∂xj
(ρuiuj − ρ̄ũiũj) (3.23)

∂(ρ̄Ẽ)

∂t′
= − ∂

∂xj
((ρ̄Ẽ + p̃)ũj)+

+

√
γM∞

Re

(
γ

γ − 1

1

Pr

∂

∂xj

(
λ
∂T̃

∂xj

)
+

∂

∂xj

(
µ̄d̄ij ũi

))

− ∂

∂xj

(
(ρE + p)ui − (ρ̄Ẽ + p̄)ũi

)
(3.24)

where the stress tensor is defined by

d̄ij =

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3

∂ũk
∂xk

δij

)
(3.25)

It can be noted that while the first equation, once again, remains formally identical to itself,
Equations (3.23) and (3.24) present additional contributions linked to the subgrid-scale stress tensor
and subgrid-scale energy terms respectively; both these newly found entities introduce yet another
closure problem, which has been addressed in different ways, all implemented in the Unsteady Robust
All-around Navier-StOkes Solver (URANOS) and presented in this work. Comparing Equations (3.23),
(3.24) to their non-filtered counterparts, new terms concerning the divergence of subgrid-scale stress
tensor and energy, respectively, appear. These new contributions, expressed by

T
SGS

ij = ρuiuj − ρ̄ũiũj (3.26)

E
SGS

j = (ρE + p)ui − (ρ̄Ẽ + p̄)ũi = ρcpTuj − ρc̄pT̃ ũj +
1

2
T
SGS

ij ũj −
1

2
T
SGS

kk ũj (3.27)

represent the contributions that, due to the filtering process, are not resolved. The hardest challenge
in the LES approach is to find a suitable model to account for these subgrid phenomena. According to
Boussinesq’s hypothesis regarding Reynolds stresses and mean strain [7], the non-spherical components
of the stress tensor can be expressed as

T
SGS

ij − 1

3
T
SGS

kk δij = −2µSGS

(
S̃ij −

1

3
S̃kkδij

)
(3.28)

where µSGS is the subgrid turbulent eddy viscosity, the main parameter that will be modelled by the
various methods, and S̃ij represents the resolved strain-rate tensor

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(3.29)

The last version of Equation (3.27) for the energy subgrid-scale components can be modelled in similar
fashion:

E
SGS

j = −λSGS
∂T̃

∂xj
+

1

2
T
SGS

ij ũj −
1

2
T
SGS

kk ũj (3.30)
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where λSGS is the subgrid-scale turbulent diffusivity

λSGS = µSGS
c̄p
PrT

(3.31)

and PrT = 0.9. Using those previous assumption and discarding the isotropic contribution T
SGS

kk

[11, 12], the filtered Navier-Stokes that will be used in the LES are

∂ρ̄

∂t
= −∂(ρ̄ũi)

∂xi
(3.32)

∂(ρ̄ũi)

∂t
= − ∂

∂xj
(ρ̄ũiũj + p̄iδij) +

√
γM∞

Re

∂

∂xj

(
µ̄totd̄ij

)
(3.33)

∂(ρ̄Ẽ)

∂t′
= − ∂

∂xj
((ρ̄Ẽ + p̃)ũj) +

√
γM∞

Re

(
λ̄tot

∂

∂xj

(
λ
∂T̃

∂xj

)
+

∂

∂xj

(
µ̄d̄ij ũi

))
(3.34)

where
µ̄tot = µ(T̃ ) +

Re
√
γM

µSGS (3.35)

and

λ̄tot =
γ

γ − 1

(
µ(T̃ )

Pr
+

Re
√
γM

µSGS
PrT

)
(3.36)

are the total dynamic viscosity (molecular and subgrid-scale) and the total diffusivity of the flow
respectively. The most important issue about the LES approach is to find an efficient modelisation of
the new unknown µSGS at the Kolmogorov scale. The generic model employed today employs algebraic
— not differential — equations in which different entities come into play, as can be seen in Equation
(3.37)

µSGS = ρ̄(Cm∆)2Dm
[
Ū
]

(3.37)

where Cm is a tuning parameter, different for every model, ∆ = V 1/3 = (∆x∆y∆z)
1/3 is the subgrid

characteristic length and Dm
[
Ū
]
is the non-linear differential operator applied to the resolved flow

quantities Ū. Along with a non-resolved formulation for Equations (3.32, 3.33, 3.34), which will be
called “ILES” or “unresolved LES”, three different models have been taken into account: the Smagorin-
sky dynamic model (DSMG), the Wall-Adapted Large-Eddy viscosity model (WALE), the Sigma model
(SGMA) and the Mixed Time Scale model (MXTS).

3.3.1 Smagorinsky model

The Smagorinsky model is based on the assumption of the balance between the energy production and
dissipation effects in the equation for subgrid-scale kinetic energy. This modelisation is the simplest
when it comes to evaluate µSGS . In this case the differential operator is defined as (see also Equation
(3.29))

Dm
[
Ū
]

=

√
2S̃ijS̃ij (3.38)
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In the classic Smagorinsky model the coefficient C is fixed to

Cs =
1

π

(
3K0

2

)−3/4

' 0.18 (3.39)

(with K0 = 1.4), which was found to cause excessive damping of large scale fluctuations. For this
reason Germano et al. (1991) [49] proposed to dynamically compute its value at every step based on a
space and time dependent relationship. Figure 3.1-3.4 show the trends of µSGS/µ̄ up to the channel’s
center line with the different approaches at M = 1.5 and Reτ = 500.
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Figure 3.1: µSGS/µ̄ profile using a dynamical Smagorinsky (DSMG) model atM = 1.5 and Reτ = 500.

3.3.2 Wall-Adaptive Large-Eddy model

This formulation was introduced in 1999 by Nicoud and Ducros (1999) [12] and its purpose is to resolve
µSGS especially accurately in the near-wall region. In this particular model Dm

[
Ū
]
is defined as

Dm
[
Ū
]

=

(
SdijS

d
ij

)3/2
(SijSij)

5/2
+
(
SdijS

d
ij

)5/4 (3.40)

where
Sdij =

1

2

(
∂ũi
∂xl

∂ũl
∂xj

+
∂ũj
∂xl

∂ũl
∂xi

)
− 1

3

∂ũm
∂xl

∂ũl
∂xm

δij (3.41)

is the traceless symmetric part of the square of the resolved velocity gradient tensor. The tuning
parameter is given by Cw =

√
10.6Cs.
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Figure 3.2: µSGS/µ̄ profile using a wall-adaptive large-eddy (WALE) model atM = 1.5 and Reτ = 500.

3.3.3 SIGMA model

This model, formulated by Kuhn (1986) [13] aims at fulfilling three properties of the fluid:

• Dm
[
Ū
]
should be asymptotically less relevant while nearing the wall;

• µSGS should be zero in the case of a solid rotating flow and of pure shear;

• µSGS should be zero in the case of axisymmetric or isotropic contraction/expansion at the subgrid
level.

For these reasons, given the tensor

Gij =
∂ũi
∂xj

∂ũj
∂xi

(3.42)

the differential operator Dm
[
Ū
]
has been defined as

Dm
[
Ū
]

=
σ3 (σ1 − σ2) (σ2 − σ3)

σ2
1

(3.43)

where σ1 > σ2 > σ3 ≥ 0 are the square roots of the eigenvalues of the Gij tensor, which represent the
singular values of the velocity gradient.
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Figure 3.3: µSGS/µ̄ profile using a sigma (SGMA) model at M = 1.5 and Reτ = 500.

Confronting the four methods, the most noticeable difference is clearly the viscosity trend in the
Smagorinsky model, where monotonically increases until the channel mid-line. The other methods
reflect the typical course of the viscosity curve in a turbulent channel flow [14].

3.3.4 Mixed Time Scale model

Developed by Inagaki et al. (2005) [15], this model aims to avoid the use of a model parameter that
has to be adjusted according to the type of flow field, and to eliminate the subgrid-scale effect in the
laminar flow region. In order to do so, Inagaki considered the Smagorinsky expression

µSGS = ρ̄(fCs∆)2Dm
[
Ū
]

= fCν∆
√
k (3.44)

where Dm
[
Ū
]
obeys to the Smagorinsky model (3.38) and f is a wall-damping function.

√
k represents

the velocity scale as k is the subgrid-scale turbulent energy, which can be estimated by

kes = (ūk − ̂̃uk)2 (3.45)

where ̂̃uk represents a velocity filtered adopting the Simpson rule. Inagaki’s idea was to consider
1/Dm

[
Ū
]
as the time scale so that µSGS ∝ ρ̄ ∗ k/Dm

[
Ū
]
, i.e. µSGS ∝ ρ̄ ∗ (V elocity scale)2 ∗

(Time scale); by doing this, there is no need for a damping function f . This method has been shown
to agree well with other subgrid-scale models incorporated with a van Driest-type damping function.
The complete formulation of the model is

µSGS = ρ̄CMTSkesTS , (3.46)
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T−1
S =

(
∆√
kes

)−1

+

(
CT

Dm
[
Ū
])−1

(3.47)

The model parameters CMTS and CT are fixed to 0.05 and 10 respectively, according to Inagaki’s
results. As can be easily seen, the time scale is defined as the harmonic average of ∆/

√
kes, corresponding

to the small-scale turbulence, and 1/Dm[Ū], relative to the larger scales. The time scale in this model
approaches the latter formulation nearing the wall so that a wall-damping function is not required.

10-4

10-3

10-2

10-1

100

100 101 102

µ
t

yD
+

Figure 3.4: µSGS/µ̄ profile using a mixed time scale (MXTS) model at M = 1.5 and Reτ = 500.
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4 Compressibility transformations

In the compressible flows studied in this work, compressibility effects are relevant, especially at the
high Mach number used. In order to be able to compare the results and have a common system of ref-
erence, besides making the equations non-dimensional and averaged, different types of compressibility
transformations were implemented and applied to the results. This procedure turns the compressible
results into incompressible ones, which have already been fully investigated with a DNS approach.
Over the years, a number of different transformations have been proposed, one of the first being the
Howarth-Dorodnitsyn transformation (1942), used in laminar boundary layer flows. As will be seen
later on, the Morkovin hypothesis (1962) [39] for boundary layers still holds: in his work, the Czech
engineer postulated that in non-hypersonic boundary layers compressibility effects are negligible so the
mean flow profiles are expected to collapse to the corresponding incompressible distributions with vari-
ations only in mean density and viscosity. Besides the velocity profiles, all the proposed transformation
also rescale the wall-normal coordinate, thus reducing the transformed boundary layer equations to
the incompressible ones. This method is powerful because of the basic universality of the inner layer
profiles when expressed in a local scaling. However, in turbulent wall layers, no analytical transfor-
mation can be found to rigorously transform the governing equations to the incompressible ones; the
only provable result is only valid for the viscous sublayer, i.e. y+ < 5, whose relations are shown in
Table 1. This is due to the fact that viscous heating in compressible flows causes non-uniform mean
density and viscosity, which results in a mean velocity profile that no longer satisfies the law-of-the-
wall. What different studies tried, and partially succeeded, to achieve was to generalise the already
existing transformations in order to obtain an “incompressible” mean velocity profile that would satisfy
the law-of-the-wall in the inner layer.

Using a brilliant generalisation method by Modesti and Pirozzoli (2016) [17] all the relevant trans-
formations, i.e. those by van Driest (1951) [18], Huang et al. (1995) [19], Brun et al. (2008) [20] and
most importantly Trettel and Larsson (2014) [21] can be identified. These transformations for both
the wall-normal direction and the mean velocity are described by

yI =

∫ y

0

fIdy uI =

∫ ũ

0

gIdũ (4.1)

where the generic subscript I indicates the different type of transformation, defined in Table 1:

Table 4.1: Mapping functions for wall distance, mean velocity and Reynolds stresses to be used in the
generalised transformation relations expressed in Equation (4.1).

Transformation Wall distance fI Mean velocity gI Stresses ϕI
Viscous sublayer fV = 1 gV = RN NA

Van Driest fD = 1 gD = R1/2 ϕD = R

Huang et al. fH = d
dy

(
y

R1/2N

)
gH = R1/2

(
1 + ũ

R
dR
dy

dy
dũ

)
ϕH = R

Brun et al. fB = 1
RN gB = y

R1/2N

y
yB

ϕB = 1
RN2

(
y
yB

)2

Trettel and Larsson fT = d
dy

(
y

R1/2N

)
gT = RN d

dy

(
y

R1/2N

)
ϕT = R
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where R = ρ̄/ρ̄w and N = ν̄/ν̄w. In their work, Modesti and Pirozzoli found a general rule or con-
straint which defines a class of compressibility transformations that satisfy the universality of turbulent
stresses, expressed in Equation (4.4). The result they found is

µ̄

µw

fI
gI

= 1 (4.2)

In this work the traditionally meaningful van Driest transformation and the more recent and accu-
rate Trettel and Larsson transformation were taken into account, for the reasons specified in the next
Sections.

4.1 Van Driest transformation

Since its introduction in the early 1950s, the van Driest transformation has been part of the commonly
adopted paradigm because of its well established accuracy in inner layers over adiabatic walls ([17],
[22]). As said before, assessment of the effectiveness of this transformation is easy thanks to the exis-
tence of a “law-of-the-wall” formulated by Prandtl and von Kármán ([39], [40], [23]) for incompressible
flows:

u

uτ
= f

(
yρuτ
µ

)
(4.3)

where f is a certain function and uτ =
√
τw/ρw the friction velocity. While the viscous sublayer

formulation still holds in the inner region, it loses accuracy towards the outer layer, again, because
of viscous heating. Van Driest’s idea was to ensure the mean momentum balance in the turbulent
channel flow

µ̄
dũ

dy
− ρ̄ũ′′v′′ = ρ̄wu

2
τ (1− η) = τw (1− η) (4.4)

where η = y/h is the outer-scaled wall-normal coordinate. Assuming to be sufficiently away from the
wall, molecular viscosity becomes negligible; if, at the same time, η � 1, Equation (4.4) becomes

−ũ′′v′′ ≈
(
ρ̄w
ρ̄

)
u2
τ =

τw
ρ̄

(4.5)

which shows that the “compressible” stresses, scaled by the local mean density, yield the incompressible
behaviour.

Van Driest’s transformation relies on the assumption that the main effect of compressibility is a
mere mean property variation: the scaled velocity u+ = u/uτ becomes, as pointed out in Table 1

u+
D =

∫ u+

0

(
ρ̄

ρw

)1/2

du+ (4.6)

This velocity is used in combination with the transformed coordinate y+
D = yρw

√
τw/ρw/µw to re-

compose the original law-of-the-wall in the form of u+
D = y+

D.
The transformation’s accuracy for flows over adiabatic walls has been well established during the

years in both experiments and DNS up to hypersonic velocities but it does not perform as well in the
present case, where the whirling fluid generates heat because of the friction with itself while passing
through the channel, especially at higher Mach numbers. Since the boundary conditions force the
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exiting fluid to re-enter the channel in order to sustain the turbulent flow, there is the need to dispose
of excess heat to maintain the nominal flow conditions. Thus adiabatic walls are replaced by cooled,
isothermal ones, with a negative heat transfer rate qw. The accuracy of the van Driest transformation
deteriorates for increasingly negative qw (see [22]).

4.2 Trettel and Larsson transformation

For the reasons explained above, Trettel and Larsson (see [21]) implemented a new velocity trans-
formation which would satisfy the law-of-the-wall regardless of Reynolds and Mach numbers and qw.
Their transformation focuses on finding a viable log-law condition and a valid stress balance condition.
What the “raw” compressible state and the transformed incompressible one have in common are the
values at the wall: ρw, µw and τw. This ensures that the friction velocity uτ = (τw/ρw)

1/2, the viscous
length scale lv = µw/ (ρwuτ ) and the Reynolds stress scale u2

τ are the same. While in the van Driest
transformation it was implicitly assumed that the transformed coordinate was the same as the original
one, Huang et al. (1995) [19] proposed a new coordinate transformation, later adopted by Trettel and
Larsson too. This transformation adopts a differential approach: the complete procedure to obtain
the transformed variables is given by

dU

dY
=
dU

du

du

dy

dy

dY
(4.7)

where U , Y represent the transformed, incompressible variables and u, y the “raw”, compressible ones.

4.2.1 Log-law condition

According to Bradshaw [24], since in the log-layer viscous effects are unimportant, the relevant variables
are τw, ρ̄ and y; the velocity scale is therefore

√
τw/ρ̄, while the length scale is y itself. Employing a

velocity gradient form,
du

dy
=

1

κ

1

y

(
τw
ρ̄

)1/2
dU

dY
=

1

κ

1

Y

(
τw
ρw

)1/2

(4.8)

with κ = 0.436. Upon rearrangement,

dU

dY
=

y

Y

(
ρ̄

ρw

)1/2
du

dy
(4.9)

While the implicit hypothesis of van Driest was Y = y, in this case Trettel and Larsson sought to
apply another constraint in order to account for the coordinate transformation as well.

4.2.2 Stress balance condition

The van Driest transformation adjusts the velocity gradients shown in Equation (4.7) in order to
obtain the correct slope of the curve; however, that approach does not aim to fulfill the momentum
conservation, which Trettel and Larsson found important to do, for the velocity gradients determine
the viscous stresses. Generally speaking, the stress balance equation in the inner layer is defined by

µ̄
dū

dy
− ρ̄ũ′v′ = τtotal(y) ≈ τw (4.10)
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where the first addendum represents the viscous stresses and the second one the Reynolds stresses.
Since the value of τw is the same in both the compressible and incompressible states and ũ′v′ represents
a Reynolds stress, the two scenarios can be compared as follows:

µw
dU

dY
− ρwRuv = µ̄

du

dy
− ρ̄ruv ≈ τw (4.11)

According to Morkovin’s hypothesis, “the essential dynamics of supersonic boundary layer shear flows
will follow the incompressible pattern” [25] so that the viscous addendum in both terms is negligible.
After non-dimensionalising using u2

τ and rearranging, the so called Morkovin’s scaling appears:

R+
uv =

ρ̄ruv
τw

(4.12)

The next step in Trettel and Larsson’s reasoning is that this scaling can be applied not only in the
boundary layer but in every region of the channel. So, if ρwRuv = ρ̄ruv, from Equation (4.12) it can
be easily concluded that

µw
dU

dY
= µ̄

du

dy
(4.13)

which means that, if the extension of Morkovin’s hypothesis is correct, a balance in the Reynolds
stresses implies a balance in the viscous stresses as well. From Equation (4.12) directly follows that

dU

dY
=

µ̄

µw

du

dy
(4.14)

and
dU

du
=

(
µ̄

µw

)
dY

dy
(4.15)

which collapses to the viscous sublayer transformation (see Table 1) in the case of dY/dy = 1; the only
difference is that in the viscous sublayer case, Reynolds shear stresses were assumed to be zero, while
here they are assumed to be the same in the compressible and incompressible states.

4.2.3 Complete transformation

In conclusion, equalling Equations (4.8) and (4.13) yields

y

Y

(
ρ̄

ρw

)1/2
du

dy
=

µ̄

µw

du

dy
(4.16)

from which can be obtained

Y =

(
µw
µ̄

)(
ρ̄

ρw

)1/2

y (4.17)

The dimensionless form, and the one that has been used in this work, is therefore

Y +
T =

(τwρ̄)
1/2

µ̄
y (4.18)
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Having derived Trettel and Larsson’s transformation for the y coordinate, the velocity transfor-
mation can be found by differentiating Equation (4.16) and substituting the expression for dY/dy into
Equation (4.14):

dY

dy
=
µw
µ̄

(
ρ̄

ρw

)1/2 [
1 +

1

2

1

ρ̄

dρ̄

dy
y − 1

µ̄

dµ̄

dy
y

]
(4.19)

dU

du
=

(
ρ̄

ρw

)1/2 [
1 +

1

2

1

ρ̄

dρ̄

dy
y − 1

µ̄

dµ̄

dy
y

]
(4.20)

The complete velocity transformation can be found by integrating Equation (4.19) using the dimen-
sionless compressible velocity u+:

U+
T =

∫ u+

0

(
ρ̄

ρw

)1/2 [
1 +

1

2

1

ρ̄

dρ̄

dy
y − 1

µ̄

dµ̄

dy
y

]
du+ (4.21)

The transformed Reynolds stresses are expressed in Equation (4.11) while the transformed friction
Reynolds number for the channel is

Re∗τ =
ρ
c(τw/ρc)

1/2h

µc
(4.22)

where h is the channel’s half-height.
The weakness of this transformation is that it does not provide a better result for the Reynolds

stresses with respect to the van Driest transformation; in fact, the two are the same. For this reason,
the Reynolds stresses presented in this work, which follow the van Driest transformation, are not as
accurate as the velocity profiles.
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5 Solver model

5.1 URANOS

Any ordinary differential equation can be written in the form{
y′ (t) = f (t, y (t)) t > t0

y (t0) = y0

(5.1)

y : R→ R being a real function where y (t) ∈ C1 (R). This is also the case of the Navier-Stokes
equations: f (·) becomes the non-linear differential operator N [·] and the non-dimensional equations

∂U

∂t
= −∂Fj (U)

∂xj
+
∂Fvj(U)

∂xj
(5.2)

become
dU (t)

dt
= N [t,U] (5.3)

The numerical methods employed to solve this kind of differential equation can be grossly divided into
two categories: the one-stage methods and the multi-stage methods.

In a one-stage method, the more straightforward one, the solution Un+1 at the time step tn+1 is
obtained from the solution Un at the previous time step tn. This can be done by discretising the
originally continuous time axis with

t = t0 + n∆t n ∈ N (5.4)

and seeking an approximate solution Un employing different methods, the more utilised being the
Euler, Crank-Nicolson and Runge-Kutta ones; Un+1 can then be found by means of an explicit or
implicit formulations, the two being respectively

Un+1 = Un + ∆tN [tn,Un] (5.5)

Un+1 = Un + ∆tN [tn+1,Un+1] (5.6)

As it is clear, the explicit method only employs the solution at the previous step to find Un+1, whereas
in the implicit method Un+1 is a function of both Un and Un+1.

A multi-stage method with s stages gets to the approximate solution by using s − 1 intermediate
steps between n and n+ 1: the solution becomes

Un+1 = Un + ∆t

s∑
k=s0

αkN [tn+1−k,Un+1−k] (5.7)

where s0 is the starting stage and αk the coefficients of the linear combination, whose sum must be
equal to the unity. The value of s0 makes the method explicit or implicit: if s0 = 0 the method
is implicit, if s0 > 0 it is explicit. Generally speaking, an explicit method is computationally less
burdening but its stability is bound to certain conditions, whereas an implicit method, albeit slower,
is stable for each time step.
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The Unsteady Robust All-around Navier-StOkes Solver (URANOS), developed by Francesco De
Vanna as his PhD thesis [44], [37], [38] simulates the behaviour of compressible viscous flows and is
capable of dealing with moving bodies immersed in the fluid, at various Mach and Reynolds numbers.
URANOS employs a third order explicit Runge-Kutta method to solve the Navier-Stokes equations
in their filtered, non-dimensional form. The third-order Runge-Kutta method (RK3) employed in
URANOS uses two intermediate pseudo-solutions to obtain Un+1 from Un:

U(1) = Un + ∆tN [tn,Un]

U(2) = 3
4Un + 1

4U(1) + 1
4∆tN

[
t(1) + 1

2∆t,U(1)

]
Un+1 = 1

3Un + 2
3U(2) + 2

3∆tN
[
t(2) + 1

2∆t,U(2)

] (5.8)

Being this method explicit, its stability depends on the time step chosen: it must be brief enough to
grasp the time-variation of the characteristic wave propagation. This criterion, known in the fields of
Fluid Dynamics as the CFL, Courant-Friedrichs-Lewy stability condition, is the strictest with respect
to convective fluxes; for diffusion phenomena, instead, the FO, Fourier criterion, is employed to ensure
the stability of the method. Among all the many different formulations of the CFL-required time step,
the one adopted by the maker of the URANOS tool is that of Pirozzoli (2002) [26]

∆tCFL = CFL
3

min
j=1

(
min (∆xj)

max (|uj |+ c)

)
(5.9)

where ∆xj is the grid step in the j-th direction, uj the velocity component in that same direction and
c the local speed of sound. Analysis from the fathers of this Runge-Kutta method, Gottlieb and Shu
(1998) [27] concluded that valid results are obtained for values of CFL up to 1, while an optimal choice
would roughly be 0.5 < CFL < 0.8. The Fourier criterion instead is defined with

∆tFO = FOmin

(
minj (∆xj)

2

µ∞max (µ)
,
γ/(γ−1) min (ρ)minj (∆xj)

2

λ∞max (µ)

)
(5.10)

In this instance ∆xj is like above, µ is the viscosity, ρ the density, µ∞ =
√
γM

Re the reference viscosity,
λ∞ = µ∞γ

Pr(γ−1) the reference diffusivity and FO the Fourier number, here assumed to be equal to 0.1.
Since obviously both criteria for the minimum time step have to be fulfilled, the effective ∆t considered
in the calculations has been set to

∆t = min (∆tCFL,∆tFO) (5.11)

5.2 Energy-preserving scheme

As far as time is concerned, the advancement is carried out using the Runge-Kutta approach introduced
above. In the case of compressible flows, however, in order not to make the simulation blow up, an
energy-preserving method developed by Pirozzoli (2010) [28] was employed. This central sixth-order
locally conservative method, applied to the nonlinear terms of the Navier-Stokes equations, guarantees
that the total kinetic energy is discretely conserved in the limit case of inviscid incompressible flows.
By using this approach, there is no need for an artificial viscosity for numerical stabilisation, an in
most existing compressible flow solvers. Being(

∂ρujφ

∂xj

)
i

' 1

∆xj

(
f̂i+ 1

2
− f̂i− 1

2

)
(5.12)
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a convective derivative of a generic transported scalar quantity (1 for the continuity equation, {ui}3i=1

for the momentum equations and H = γ/(γ− 1)p/ρ+u2/2 for the total energy equation), a fully split
approximation for Equation (5.12) is

∂ρujφ

∂xj
= k1

∂ρujφ

∂xj
+ k2

(
ρ
∂ujφ

∂xj
+ uj

∂ρφ

∂xj
+ φ

∂ρuj
∂xj

)
+ (1− k1 − k2)

(
ρuj

∂φ

∂xj
+ ρφ

∂uj
∂xj

+ ujφ
∂ρ

∂xj

)
(5.13)

Here, a conservative approximation is guaranteed if k1 = k2 = 1/4. The numerical flux linked to the
formulation above is given by

f̂i+ 1
2

= 2

L∑
l=1

al

l−1∑
m=0

(
ρ̃, u, φ

)
i−m,l

(5.14)

where (
ρ̃, u, φ

)
i,l

=
1

8
(ρi + ρi+l) (ui + ui+l) (φi + φi+l) (5.15)

is the discrete averaging operator for the transported variable φ. In this case (see [28]) the formal
order of accuracy is maximised by a1 = 1/60, a2 = −3/20, a3 = 3/4.

5.3 Grid

Having defined the closure equations (1.8, 1.9), a spatial discretisation of the channel must be provided.
The idea of the turbulent channel consists of a flow moving between two indefinitely extended parallel
walls. In the stream-wise direction, this is implemented by making the flow recirculate, whereas
the y and z directions have to be bounded and wide enough to accommodate the larger vortical
structures which become energetically relevant at sufficiently high Reynolds numbers. In the wall-
normal direction, the most important and computationally most challenging one, an hyperbolic grid
has been implemented: the nodes are increasingly more packed near the wall and spaced towards the
center of the channel. The goal is obviously to better capture the dynamics of the fluid in the turbulent
boundary layer. The law for the distribution of the grid nodes in the y-direction is [44]

y(ξ) = 1 +
tanh [α (ξ − 1)]

tanh (α)
(5.16)

where α is a parameter linked to the stretching of the grid and ξ is a coordinate on the uniform
grid that allows to transform the computed data to fit them into the hyperbolic grid. On the other
hand, stream- and span-wise grid distributions are uniform and the number of points is designed to
compromise between resolution and computational load.
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Figure 5.1: Distribution of the channel cells in the Reτ = 215 case, following a uniform pattern in
the stream-wise direction and Equation (5.16) in the wall-normal direction (top); detail of the cell
distribution near the bottom wall (bottom).

In Figure 5.1 the bottom part represents the wall, while the left and right parts are the inlet
and outlet respectively (see Figure 5.2 also). In the present study the number of points adopted is
32 × 64 × 32 for the case Reτ = 215 and 80 × 160 × 80 for Reτ = 500 in respectively the x, y and
z directions; the dimensions of the channel are 2π × 2 × π. The reason behind this is that in the
Reτ = 500 case, the vortices will have smaller dimensions so a better resolution is required.

Figure 5.2: Boundaries of the simulation domain.
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5.4 Boundary conditions

In order to treat and solve the Navier-Stokes equations a set of boundary conditions must be specified.
At the bottom of the domain, where the wall is located, the compressible case requires not only the
standard boundary condition such as isothermal and no-slip wall, but also a set of so called Navier-
Stokes characteristic boundary conditions (NSCBC), which still represent a challenge in the study of
compressible flows; this is mainly due to acoustic phenomena: the “numerical” pressure waves tend to
reflect at the boundaries of the channel and ascend the channel even if the flow is supersonic, influencing
the solution and further complicating the problem. Let’s consider a one-dimensional Navier-Stokes
problem, for the sake of simplicity, in the generalised form of

∂U

∂t
= −∂F (U)

∂x
(5.17)

where U = {uk}nk=1 is a set of variables and
{
F(j) (U)

}3

j=1
their fluxes. Following the theory of

hyperbolic PDEs, this system can be rewritten in its primitive form as

∂U

∂t
= −J

∂U

∂x
(5.18)

∂U

∂t
= −RxΛxLx

∂U

∂x
(5.19)

where Λx is the diagonal matrix containing the eigenvalues
{
λ

(j)
k

}n
k=1

of the Jacobian matrices

J
(j)
ik =

∂F
(j)
i (U)

∂uk
and Rx and Lx the right and left eigenvectors associated to those matrices. The

five characteristic waves associated with the flux component can be written as

Lx = ΛxLx
∂U

∂x
=



λ1

(
∂p
∂x − ρc

∂u
∂x

)
λ2

(
c2 ∂ρ∂x −

∂p
∂x

)
λ3

∂v
∂x

λ4
∂w
∂x

λ5

(
∂p
∂x + ρc∂u∂x

)
(5.20)

where c is the velocity of the wave. Therefore

∂U

∂t
= −RxLx (U) (5.21)

If U is replaced with the actual values taken from the Navier-Stokes equations, (5.21) reads

∂ρ
∂t = −d1
∂ρu1

∂t = −u1d1 − ρd3
∂ρu2

∂t = −u2d2 − ρd4
∂ρu3

∂t = −u3d3 − ρd3
∂ρE
∂t = − 1

2uiuid1 − d1
γ−1 − ρ (u1d3 + u2d4 + u3d5)

(5.22)
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with

d =



1
c2

(
L2 + 1

2 (L1 + L5)
)

1
2 (L1 + L5)

− 1
2ρc (L1 − L5)

L3

L4

(5.23)

According to Yoo et al. (2007) [29], some assumptions can be made about the characteristic waves Lx
(see [44]), based on the different scenarios.

Regarding the inflow and outflow conditions, in this instance there is a periodicity condition imposed
to the flow in the x and z directions: the properties of the inlet flow are exactly the same as the outlet
flow. This, in conjunction with the forcing mechanism, ensures the proper motion of the fluid within
the channel.
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6 Results

In this Chapter the results of the numerical simulations are presented and confronted. The simulations
have been conducted employing two different values for the friction Reynolds number Reτ , 215 and 500
at a Mach number of 1.5 for all. The benchmark for every graph in this chapter is the incompressible
data obtained by Vreman and Kuerten (2014) [30] with a high-resolution long-time DNS re-simulation
of a classic case studied mainly by Kim and Moser ([31], [32]). This particular set of data has been
treated like an incompressible “absolute” non-dimensional reference and therefore not subject to any
transformations, unlike the compressible data acquired from the numerical simulations performed for
this study. Moreover, visual representation of the different fields will be provided, giving an idea of how
the flow conducts itself in the channel and what the differences between the various implementations
are.

Before performing the simulations presented above, the first step has been to validate the (already
extensively tested [44], [37], [38]) URANOS through an analysis of the ILES, DSMG, and WALE
models at M∞ = 0.1 and M∞ = 0.3 and Reτ = 180 (Figure 6.1) using a van Driest transformation,
i.e. in a situation that would theoretically be very similar to an incompressible one, in accordance
with the LES model inherent accuracy. From Figure (6.1) a tendency can be seen for all models to
accurately collapse to the incompressible data in the near-wall region, whereas different behaviours are
observed towards the center of the channel. The dashed lines represent the law-of-the-wall u+ = y+

and the logarithmic law u+ = 5.2 +
log(y+)

0.41 ; the latter provides the theoretically correct slope of the
curve approaching the center of the channel.

Figure 6.1: Comparison of van Driest transformed mean velocity with different methods at M∞ = 0.3
and Reτ = 180.
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Figure 6.2: Comparison of Smagorinsky Reynolds stresses at M∞ = 0.3 and Reτ = 180 with DNS
data by Vreman (2014) [30].

The same procedure has been adopted with the Reynolds stresses, of which the Smagorinsky results
are presented in Figure (6.2). Again, the results are in sufficient accordance with the DNS, especially
the most relevant stream-wise Reynolds stress τuu.

6.1 Mean velocity fields

In this section are the velocity fields obtained by transforming the physical fields with the van Driest
method in the case of Reτ = ρwuτh

µw
= 215, i.e. the less turbulent flow. As per Table 1, the van

Driest transformation for the mean velocity is given by Equation (4.6). Figure 6.3 shows the curves
resulting from the different methods. It appears clear that the four methods slightly but visibly
undershoot the theoretical linear distribution of the viscous sublayer beyond y+

D ≈ 3 and they all
systematically overshoot the incompressible distribution away from the wall, the crossing occurring at
y+
D ≈ 30, in accordance with the DNS results of Modesti, Pirozzoli [17]. The percent error, defined as
εr =

∣∣∣ ūLES−ūDNSūDNS

∣∣∣ · 100 and calculated at y+ = 120, is around 10% for the DSMG, MXTS and WALE
methods, while it stands at 8.6% for the unresolved method.
In Figure 6.4 the same data resulting from the simulations was transformed with the method imple-
mented by Trettel and Larsson (4.21). This approach seems to solve the undershooting problem in
the near-wall region, up to y+

D ≈ 10, whereas it again overshoots the DNS results in the outer layer,
although less severely than the van Driest mean velocity fields. Because van Driest was designed for a
turbulent channel with adiabatic walls and the channel used in this study has isothermal walls instead,
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Figure 6.3: Mean velocity profiles (orange) transformed according to van Driest at M∞ = 1.5 and
Reτ = 215 using the Smagorinsky (DSMG) model (top left), the unresolved (ILES) approach (top
right), mixed time scale (MXTS) model (bottom left) and wall-adapted large-eddy (WALE) model
(bottom right). The black lines denote the DNS results by Vreman and the dashed lines represent the
law-of-the-wall and the logarithmic law respectively.
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Figure 6.4: Mean velocity profiles, transformed according to Trettel and Larsson at M∞ = 1.5 and
Reτ = 215 using the Smagorinsky (DSMG) model (top left), the unresolved (ILES) approach (top
right), mixed time scale (MXTS) model (bottom left) and wall-adapted large-eddy (WALE) model
(bottom right). The black lines denote the DNS results by Vreman and the dashed lines represent the
law-of-the-wall and the logarithmic law respectively.
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the van Driest transformation badly represents the actual velocity in the whole viscous wall region;
the more “physically-justified” transformation introduced by Trettel and Larsson, based on the equilib-
rium of stresses, works much better near the wall. In fact, the percent error is between 4.9% (WALE)
and 6.7% (MXTS), while the DSMG and ILES methods yield an error of 5% and 6% respectively, at
y+ = 70.

In the case of a more turbulent flow, Reτ = 500, the subgrid-scale becomes more important,
especially in the region near the cooled, isothermal wall. For this reason the van Driest transformation
is expected to perform worse than the Trettel and Larsson one; in Figure 6.5 the curves obtained
corroborate this hypothesis: they lose strict adherence to the Vreman data at y+

D ≈ 3 the maximum
error occurring at roughly y+ = 15, where it stands around 7% for the WALE, 8% for the DSMG, 8.5%
for the MXTS and 9% for the ILES model. This can be explained by the fact that up to y+ ≈ 3 the flow
is still greatly affected by the presence of the wall, albeit non-adiabatic, and akin to an incompressible
one. While the unresolved model performed well at the lower friction Reynolds number, and actually
arguably better than its turbulence-modelling counterparts, at Reτ = 500 the modelling starts to yield
its fruits not only in the overlap layer but towards the center of the channel as well, where the percent
error is 0.06%, 2.28%, 0.64% and 1.35% for the DSMG, ILES, MXTS and WALE methods respectively
(y+ = 100). The acute overshooting with respect to the incompressible DNS data by Vreman is not
observed in this case and the slope in the outer layer is more similar to the DNS.
Figure 6.6 shows the same results, post-processed using the Trettel and Larsson transformation. This
approach makes for a good collapse up to y+

D ≈ 10 ⇒ y ≈ 0.02, fixing the problem in the overlap
layer with respect to the van Driest-transformed data; the four models go back to undershooting the
incompressible data towards to the center line of the channel. The four methods yield similar results
there, the percent errors being 4%, 3.25%, 1.5% and 2% respectively. In this case the Smagorinsky
model performs worse than the other two resolved models not only in terms of accuracy to the DNS
data but also in terms of time.

From Figure 6.7 gives an idea on how the Mach number behaves along the wall-normal direction
of the channel: at a lower friction Reynolds number, the dimension of the low-speed boundary layer is
significantly larger than in the case at Reτ = 500; in the latter case the stronger turbulence makes for
a smoother transition from the no-slip condition at the wall location and the fully developed flow at
the center of the channel. Figure 6.8 offers a visual representation of the velocity in for both Reτ = 215
and Reτ = 500: here the most evident effect of the friction Reynolds number seems to be linked to the
dimension of the vortices, smaller in the case of Reτ = 500. Another interesting aspect is the effective
dimension of the boundary layer, which appears to be thinner in the second image. Figure 6.9 shows
the behaviour of the fluid in different directions and in different areas of the channel; as one would
expect, in the more turbulent flow the nominal mean velocity is reached closer to the wall since the
viscous length scale is inversely proportional to Reτ . The vortices in Figure 6.10 were generated using
iso-contours with the Q-criterion Q = 1 and Q = 3.5 as parameters, respectively. The Q-criterion,
formulated by Hunt, Wray and Moin (1988) [39] was the first three-dimensional vortex criterion. For
a three-dimensional velocity field ū(x, t) whose gradient decomposition is

∇ū = S +Ω (6.1)

where S = 1
2

[
∇ū+ (∇ū)

T
]
is the rate-of-strain tensor and Ω = 1

2

[
∇ū− (∇ū)

T
]
the vorticity tensor,

the Q-criterion is defined as

Q =
1

2

[
|Ω|2 − |S|2

]
> 0 (6.2)
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Figure 6.5: Mean velocity profiles, transformed according to van Driest at M∞ = 1.5 and Reτ = 500
using the Smagorinsky (DSMG) model (top left), the unresolved (ILES) approach (top right), mixed
time scale (MXTS) model (bottom left) and wall-adapted large-eddy (WALE) model (bottom right).
The black lines denote the DNS results by Vreman and the dashed lines represent the law-of-the-wall
and the logarithmic law respectively.
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Figure 6.6: Mean velocity profiles, transformed according to Trettel and Larsson at M∞ = 1.5 and
Reτ = 500 using the Smagorinsky (DSMG) model (top left), the unresolved (ILES) approach (top
right), mixed time scale (MXTS) model (bottom left) and wall-adapted large-eddy (WALE) model
(bottom right). The black lines denote the DNS results by Vreman and the dashed lines represent the
law-of-the-wall and the logarithmic law respectively.
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According to Hunt, Wray and Moin, a vortex is defined as a spatial region where the Euclidean norm
of the vorticity tensor Ω dominates that of the rate of strain S [40].

Figure 6.7: Slice representing the behaviour of the Mach number with the mixed time scale (MXTS)
model at M∞ = 1.5 and Reτ = 215 (left) and Reτ = 500 (right).

Figure 6.8: Slice of the mean velocity fields obtained with the mixed time scale (MXTS) model at
M∞ = 1.5 and Reτ = 215 (left) and Reτ = 500 (right).

6.2 Reynolds stresses

As can be seen in Table 1, the Trettel and Larsson transformation for the Reynolds stresses is the same
as the van Driest one, therefore only the latter will be included in this Section, as per Equation (6.3)

τDij =
ρ̄

ρw
τij (6.3)

In Figures 6.11, 6.12 the transformed Reynolds stresses in comparison with the data by Vreman are
shown.
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Figure 6.9: Visual representation of different slices of the mean velocity fields with the mixed time
scale (MXTS) model at M∞ = 1.5 and Reτ = 215 (top) and Reτ = 500 (bottom).
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Figure 6.10: Visual representation of iso-contours vortices obtained employing the Q-criterion with the
mixed time scale (MXTS) model at M∞ = 1.5 and Reτ = 215 (left) and Reτ = 500 (right).
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Figure 6.11: Reynolds stresses (orange) transformed according to van Driest at M∞ = 1.5 and Reτ =
215 using the Smagorinsky (DSMG) model (top left), the unresolved (ILES) approach (top right),
mixed time scale (MXTS) model (bottom left) and wall-adapted large-eddy (WALE) model (bottom
right). The black lines denote the DNS results by Vreman.
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In the case of Reτ = 215 the results are not overwhelmingly accurate. In fact, a clear mismatch between
LES scaled compressible stresses and DNS data in both amplitude and shift in the position of the peaks
can be observed towards the middle of the channel for all curves, whereas closer agreement is found in
the near-wall region. Modesti and Pirozzoli (2016) [17], whose results are in agreement with the ones
in this study, show that a better collapse on the incompressible curve is achieved adopting the Brun
(2008) [20] transformation in both peak amplitude and off-wall position. The Brun transformation for
the Reynolds stresses reads

τBij =
ρ̄

ρw

(
y

yB

µw
µ

)2

τij (6.4)

where the Brun coordinate yB is given by

yB =

∫ y

0

ρw
ρ̄

νw
ν̄
dy (6.5)

As Modesti and Pirozzoli point out, Brun’s transformations seems to fail too at higher Mach numbers,
where the peak maintains its accuracy in terms of magnitude but it is clearly shifted with respect to
the incompressible data.

For Reτ = 500, Figure 6.12 there is in all methods a generally better collapse on the incompressible
data in the near-wall region and the peaks are more coherently placed, but the y+ coordinate looks
more and more “stretched” towards the center of the channel, indicating that the van Driest coordinate
scaling y+

D = yρw
√
τw/ρw/µw is more appropriate for lower Reτ . The Trettel and Larsson coordinate

transformation (4.18) mitigates the problem but tends to behave in the same manner.
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Figure 6.12: Reynolds stresses (orange) transformed according to van Driest at M∞ = 1.5 and Reτ =
500 using the Smagorinsky (DSMG) model (top left), the unresolved (ILES) approach (top right),
mixed time scale (MXTS) model (bottom left) and wall-adapted large-eddy (WALE) model (bottom
right). The black lines denote the DNS results by Vreman.
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6.3 Mean temperature

A correct assessment of the temperature is of great importance especially in the case of isothermal
walls, as it is necessary to define and predict the heat transfer coefficient at the wall qw. Moreover, an
accurate temperature-velocity relation is critical to perform the inverse of the compressibility transfor-
mations to determine the mean velocity profile in the non-transformed space. The temperature-velocity
traditionally used, derived by Walz (1959) [33]

T

Tw
= 1 +

Tr − Tw
Tw

ū

ūe
− r γ − 1

2
M2
e

Te
Tw

(
ū

ūe

)2

(6.6)

where
Tr = Te

(
1 + r

γ − 1

2
M2
e

)
(6.7)

is the recovery temperature, r = 0.89 is the recovery factor and the subscript e indicates the value at
the channel centerline. Walz derived this formulation from a simplified form of the energy equation,
obtained by making various assumptions such as the neglect of turbulent dissipation and and pressure-
strain terms. Further tests by Pirozzoli et al. (2004) [34] at M = 2.25 and by Duan et al. (2010)
[35] at M = 5 found good agreement between Walz’s formulations and DNS data at different (fixed)
wall temperatures but differences would arise in the case of isothermal walls, where an alternative
formulation of the temperature-velocity formulation which considered the heat transfer was required
(see [17]). For this reason, Zhang et al. (2014) [36] developed an alternative temperature-velocity
relation which introduced a generalised recovery factor that explicitly takes into account the wall heat
flux qw in the presence of non-adiabatic walls

T

Tw
= 1 +

Trg − Tw
Tw

u

ue
+
Te − Trg
Tw

(
u

ue

)2

(6.8)

where

Trg = Te + rg
u2
e

2cp
(6.9)

and
rg =

2cp (Tw − Te)
u2
e

− 2Prqw
ueτw

(6.10)

This formulation coincides with the Walz relation in the case of adiabatic walls, i.e. qw = 0; Figure 6.13
shows the typical trend of the temperature curve with respect to u/ue in the case of Reτ = 500 with
a Smagorinsky approach. Figures 6.14 and 6.15 represent the temperature fields, where the difference
between the cooled wall regions and the rest of the channel is very evident; the core temperature is
reached very close to the boundary.
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Figure 6.13: Temperature profile against relative velocity u/ue at M∞ = 1.5 and Reτ = 500 using the
Smagorinsky (DSMG) model.

Figure 6.14: Slice of the temperature fields at the outlet of the channel at M∞ = 1.5 and Reτ = 215
(left) and Reτ = 500 (right) using the mixed time scale (MXTS) model.
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Figure 6.15: z-normal slice of the temperature fields at the side of the channel at M∞ = 1.5 and
Reτ = 215 (top) and Reτ = 500 (bottom) using the mixed time scale (MXTS) model.
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7 Conclusions

The results presented in this work, compared to the incompressible DNS data, further confirm the role
of the van Driest transformation of Section 4.1 as an overall inaccurate tool for representing the full
inner-layer mean velocity profile, especially in the presence of a wall heat flux. On the other hand, the
relatively new and more “coherently-derived” Trettel and Larsson transformation discussed in Section
4.2 yields an improvement as it more faithfully represents the profiles in the channel for both DNS and
LES, especially closer to the wall. However, a sufficiently accurate compressibility transformation has
yet to be found for the LES of Reynolds stresses, even though the transformation by Brun et. al (2008)
[20] seems to yield better collapse to the incompressible data [17]. For what concerns the temperature
evaluation, the formulation by Zhang et al. (2014) [36] has been shown to work satisfactorily [17].

The DNS of Kim, Moin and Moser (1984, 1986) was implemented using relatively few grid points
(128x65x128) due to the technological hindrance they faced. The DNS carried out by Vreman (2014)
[30], based on the historical one and used as the main reference point in this work employed a turbulent
channel model with 512 × 256 × 256 grid points, i.e. roughly 3.355 · 107 total points in the domain.
Modesti and Pirozzoli (2016) [17] imagined many different scenarios in terms of Mach number, friction
Reynolds number and grid points; the grid points distributions they used for their 6πh × 2h × 2πh
turbulent channel ranged from 120×180×120 (i.e. 2.592·106) points for the most coarse to 2048×512×
1024 for the finest (roughly 109 total points). It is in the aspect of sheer grid point number that LES
have their strongest ally. The simulations carried out in this work using the URANOS solver employed
two grid point distributions, based on the friction Reynolds number: for the case with Reτ = 215, as
stated in Section 5.3, the number of grid points was 32× 64× 32 for a grand total of 65536 points, and
80× 160× 80 for Reτ = 500, with 1.024 · 106 points in the channel domain, which is less than half the
grid points with respect to the coarsest configuration used by Modesti and Pirozzoli.

Considering the overall accuracy of the simulations, especially at Reτ = 500 (percent error within
2% for the MXTS and WALE models transformed with Trettel and Larsson), together with the clear
advantage in terms of computational time, the LES approach may be worth using in the turbulent
channel scenario, provided a more fitting transformation for the Reynolds stresses is formulated.
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