

UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Ingegneria Industriale

Corso di Laurea Magistrale in Ingegneria Meccanica

Tesi di Laurea Magistrale

Determinazione sperimentale della soglia di propagazione a fatica di cricche corte soggette a carichi multiassiali di modo I+II

Relatore: Prof. Giovanni Meneghetti *Correlatori:* Prof. Alberto Campagnolo Luca Vecchiato

Laureando: Alberto Battistello

Matricola: 2055003

ANNO ACCADEMICO 2022/2023

INDICE

ABSTRACT	7
CAPITOLO 1. INTRODUZIONE ALLA CURVA R	9
1.1 Motivazione del lavoro	9
1.2 Teoria classica	. 10
1.3 La meccanica della frattura lineare elastica	. 12
1.4 Le cricche corte	. 17
1.5 Determinazione sperimentale della soglia di propagazione ΔKth	. 21
1.6 La curva R ciclica	. 23
CAPITOLO 2. ADDESTRAMENTO ALLE ANALISI NUMERICHE 1: CALCOLO DELLO Stress Intensity Factor	. 33
2.1 Metodo Analitico	. 34
2.2 Definizione di Gross-Mendelson	. 35
2.3 FEM – Peak Stress Method (Plane Strain)	. 38
2.4 FEM – WorkBench Fracture Tool	. 47
CAPITOLO 3.ADDESTRAMENTO ALLE ANALISI NUMERICHE 2: ANALISI ELETTRICHE	. 53
3.1 Il metodo DCPD	. 53
3.2 Metodo analitico	. 54
3.3 FEM Elettrico – ANSYS Mechanical APDL	. 55
3.4 FEM strutturale-elettrico – ANSYS WorkBench	. 58
3.5 Conclusioni e commenti.	61
3.6 Metodo DCPD nella prova sperimentale	61
3.6.1 Correzione dell'effetto della temperatura con due misure di potenziale	. 61
CAPITOLO 4. ANALISI DI CONFIGURAZIONI A MODO MISTO I+II	. 63
4.1 Soglia di propagazione ΔKth a modo I e modo II	. 64
4.2 Modello FEM	. 69
4.3 Configurazione Three point bending A	. 70
4.3 Configurazione Four Point Bending A	. 72
4.4 Configurazione Three Point Bending B	. 74
4.5 Configurazione Four Point Bending-B (geometria 108x25x15mm)	. 77
4.6 4PB-B geometria 108x16x10.	. 84
4.7 Conclusioni e commenti finali	. 89
4.8 Verifica del calcolo di K _I in ANSYS Mechanical APDL	. 89

4 9 Rimozione del vincolo di plane strain	92
CAPITOL O 5 [•] CRITERI DI PROPAGAZIONE A MODO MISTO I+II	
5 1 Criterio della Tensione tangenziale massima (MTS)	95
5.2 Criterio della Densità di energia di deformazione (SED)	
5.3 Criterio di Richard [34]	
5.4 Criterio dell'Energy release rate	100
5.5 Confronto e commenti	102
CAPITOL O 6: Curva R a modo I su provino SENB HAZ17	105
6.1 Attrezzatura sperimentale	105
6.2 Fase preliminare	106
6.3 Calibrazione dell'α	113
6.4 Montaggio dell'attrezzatura a flessione	116
6.5 R-Curve test	129
6.6 Post processing	138
6.7 Conclusioni e commenti	142
CAPITOLO 7. Curva R a modo I su provino SENB AN05	143
7 1 Fase preliminare	143
7.2 Calibrazione dell'α, parametri DCPD e acquisizione	146
7 3 R-Curve test	147
7 4 Post processing	156
7.5 Conclusioni e commenti	160
CAPITOLO 8: Curva R a modo misto I+II	161
8 1 Analisi FEM	161
8.2 Prova sperimentale su SENB con groove	167
8.3 Controllo della prova a Modo misto I+II	169
8 4 R curve test	174
8 5 Conclusioni e commenti	192
CONCLUSIONI	161
APPENDICE A. Script MATLAB	195
APPENDICE B: Sviluppo della modalità di controllo in SIF KI	203
BIBLIOGRAFIA	

ABSTRACT

L'obbiettivo del progetto di tesi è quello di determinare sperimentalmente la curva R ciclica su provini SENB in acciaio soggetti a sollecitazioni di modo misto I+II. La curva R ciclica è uno strumento per progettare a fatica componenti dove è richiesta estrema sicurezza in esercizio. Applicando un metodo di progettazione tollerante al danno "damage tolerant", se si ipotizzano difetti all'interno del componente, questi riducono inevitabilmente la resistenza a fatica di quest'ultimo. Nelle applicazioni reali i difetti e le incrusioni formatesi durante il processo di produzione del getto di materiale costituiscono dei punti di innesco per cricche corte che indeboliscono il componente. La curva R ciclica studia la soglia di propagazione delle cricche corte al variare della loro lunghezza di propagazione. Le cricche corte, oltre a propagare per condizioni di carico realmente percepito dalla cricca, questi fenomeni influenzano la propagazione delle cricche corte rallentandole e quindi sono fondamentali anche per la resistenza del componente.

Nel presente lavoro si è inizialmente studiato il problema attraverso simulazioni numeriche agli elementi finiti nel software ANSYS[®], confrontando diversi metodi, analitici e numerici, per calcolare il Fattore di intensificazione delle tensioni (SIF) applicato all'apice della cricca, inizialmente solo a modo I. Per quanto riguarda i metodi numerici si è studiata l'influenza di diverse condizioni di vincolo e l'influenza della dimensione di elemento sui risultati finali.

Le prove sperimentali di curva R ciclica prevedono un preciso monitoraggio della lunghezza di cricca in real time usando il metodo non distruttivo della caduta di potenziale a corrente continua (DCPD), dove la lunghezza di cricca viene ricavata da una lettura di potenziale grazie a opportune curve di calibrazione. Si è quindi proceduto con ulteriori analisi elettriche agli elementi finiti in ANSYS[®], per confrontare diverse curve di calibrazione del metodo DCPD ottenute con diversi tipi di elementi elettrici.

Nei componenti reali è raro che una cricca sia sollecitata a puro modo I, generalmente le sollecitazioni sono miste di modo I+II+III. Per ampliare le conoscenze sulla curva R ciclica verso il modo misto, si è scelto di iniziare lo studio del modo misto I+II. Si sono quindi fatti studi preliminari agli elementi finiti per scegliere una configurazione di carico e vincolo in grado di creare una sollecitazione di modo misto sulla cricca, compatibilmente ai limiti tecnologici delle attrezzature sperimentali a disposizione. La configurazione migliore trovata è stata quella di flessione a quattro punti asimmetrica (Four point bending asimmetrico), che è stata studiata nel dettaglio con analisi FEM parametriche per conoscere l'influenza di ogni parametro dimensionale sulle sollecitazioni all'apice della cricca. A questo punto si è scelta una configurazione ottimale per condurre le prove sperimentali.

Terminate le analisi numeriche si è iniziato con la prima prova sperimentale a puto modo I. Questa prima prova è da ritenersi un prototipo per migliorare e consolidare il metodo sperimentale. Si sono infatti progettati nuovi supporti per trattenere il provino in macchina ed è stato testato un metodo per mantenere l'isolamento elettrico del provino durante tutto il corso della prova, garantendo il corretto funzionamento del metodo DCPD. È stata inoltre implementata una nuova modalità di controllo della prova in Stress intensity Factor (SIF), da inserire nel controller della macchina di prova. Una seconda prova a modo I è stata svolta per consolidare e confermare le modifiche apportate alla procedura sperimentale e all'attrezzatura.

Prima di procedere con le prove sperimentali a modo misto si è studiata la propagazione della cricca in condizioni di sollecitazioni di modo I+II, se condo diversi criteri della letteratura e con analisi di propagazione agli elementi finiti con il pacchetto Smart Crack Growth di ANSYS[®]. Visto il diverso percorso di cricca rispetto alle prove a puro modo I è stato necessario definire un nuovo metodo per calcolare i SIF applicati alla cricca e una nuova curva di calibrazione del metodo DCPD. Il metodo per condurre prove di curva R ciclica a modo misto è stato implementato numericamente e applicato alle due prove a modo misto svolte. Il metodo creato è del tutto generale, consente di condurre prove di propagazione su qualsiasi geometria di provino e per qualsiasi condizione di vincolo e carico.

Una volta definita la procedura per condurre prove a modo misto si sono svolte due prove analoghe a modo misto I+II sfruttando la configurazione di carico ottimale studiata con le analisi numeriche agli elementi finiti. I risultati sono stati infine analizzati e confrontati con le curve R cicliche ottenute con la configurazione standard per il puro modo I.

CAPITOLO 1 INTRODUZIONE ALLA CURVA R

1.1 Motivazione del lavoro.

La fatica è un fenomeno di danneggiamento progressivo dovuto a sollecitazioni ripetute nel tempo; queste possono portare alla rottura del componente anche se molto inferiori ai valori di tensione critici del materiale. La rottura per fatica è un fenomeno pericoloso per diverse ragioni: generalmente si osserva una rottura di schianto (istantanea, senza segni premonitori) anche per materiali duttili come gli acciai; la rottura inoltre avviene nel tempo, durante l'esercizio del componente, quando questo si ritiene ormai collaudato. Appare subito evidente il forte interesse del progettista nello studio del danneggiamento per fatica: i carichi ciclici rompono componenti in assoluta sicurezza statica e vanno quindi trattati diversamente.

Per la progettazione a fatica secondo la teoria classica si usano le curve di Whoeler (Figura 1.1), che descrivono in scala logaritmica il numero di cicli a rottura al variare della tensione applicata. Il numero di cicli a rottura è rappresentato dalla retta di pendenza k, lineare in scala doppio-logaritmica, la vita a fatica del materiale aumenta al ridursi della tensione applicata, finché si arriva a vita infinita sotto un certo valore di tensione (retta orizzontale). Questo valore di tensione è detto limite di fatica e indica quel valore di sforzo per cui il componente presenta vita infinita. Da normativa UNI10011[1] si considera un componente sollecitato al limite di fatica quando questo presenta un numero di cicli a rottura pari a 10⁸ cicli.

Figura 1.1: ciclo di carico sinusoidale con tensione massima σ_{max} , tensione minima σ_{min} , ampiezza σ_a , rensione media σ_0 (a); schema delle curve di Whoeler per acciai da normativa UNI 10011 [1] (b)

Di particolare interesse in ambito progettuale è lo studio della resistenza in presenza di cricche. Quando il componente è indebolito da cricche i criteri di progettazione della teoria classica non sono più applicabili, è necessario un nuovo metodo definito dalla Meccanica Della Frattura Lineare Elastica (MFLE). In caso di cricche o intagli a spigolo vivo il campo di tensione in prossimità dell'apice tende a infinito e tutti gli approcci classici perdono di significato. Secondo la MFLE un componente criccato deve essere soggetto a carichi tali

da non permettere l'ulteriore propagazione della cricca, le tensioni devono essere quindi inferiori a una certa soglia di propagazione che dipende dalla lunghezza di cricca e dalla geometria del componente. In caso di cricche "corte" il valore di soglia di propagazione definito dalla MFLE non può essere usato come parametro di verifica del componente perché è stato notato che cricche corte possono comunque propagare anche per condizioni di carico tali da essere sollecitate sotto la soglia di propagazione. Questi fenomeni sono stati osservati sperimentalmente da Forst nel 1957 [2], che sollecitando al limite di fatica un componente con intaglio acuto ha osservato la propagazione e successivo arresto di una cricca di fatica. La soglia di propagazione della MFLE non è infatti costante, ma dipende dalla lunghezza di propagazione di cricca, se viene utilizzata in presenza di cricche corte porta a errori in svantaggio di sicurezza che possono portare alla rottura del componente in esercizio, perché per cricche corte il valore di soglia è più basso.

Figura 1.2: cricca non propagante innescata dal fondo di un intaglio[2] (a); propagazione di cricche corte sotto la soglia di propagazione "long crack" [3] (b)

Per strutture dove è richiesta una particolare sicurezza già in fase di progettazione, si pensi ad esempio al settore civile o aeronautico, non si può trascurare la diminuzione della resistenza dovuta a cricche corte presenti nel materiale. Spesso queste possono innescare da difetti "crack like" già presenti nel getto di materiale, inevitabili, originati durante il processo produttivo del materiale stesso. Per questo motivo è necessario conoscere in fase di progettazione l'andamento della soglia di propagazione al variare della dimensione del difetto, un metodo sperimentale per determinare questi valori è quello della curva R ciclica. Questo metodo di progettazione è detto "damage tolerant" perché ammette la presenza di difetti nel materiale, attraverso la curva R si studia la propagazione e l'arresto delle cricche che hanno origine da questi difetti fino ad arrivare al valore di soglia di propagazione delle cricche lunghe definito dalla MFLE.

1.2 Teoria classica

La forma del componente sollecitato influenza molto la sua resistenza a carichi ciclici [4]. Si consideri ad esempio una piastra sollecitata con cicli di trazione; si possono immaginare con una analogia flu idodinamica le linee di flusso che attraversano la piastra in maniera uniforme, senza deviazioni. Se invece la piastra presenta un foro centrale le linee di flusso saranno deviate e più compatte nella zona a sezione resistente minima. La variazione della forma crea un effetto di intaglio che aumenta la tensione locale rispetto a quella nominale della piastra non forata (Figura 1.3). In questo caso si possono definire i fattori adimensionali K_{tn} (fattore teorico di concentrazione delle tensioni) e K_f (fattore di forma). Il fattore K_{tn} è definito (1.1) come il rapporto tra la tensione di picco elastico (σ_{max} in Figura 1.3) e la tensione nominale netta (σ_x in Figura 1.3), permette di ricavare la tensione di picco nota quella netta, facile da calcolare con le formule della meccanica dei solidi. Il fattore K_f è definito (1.2) come il rapporto tra il limite di fatica del provino liscio e quello del provino intagliato, definisce la riduzione della resistenza a fatica dovuta all'effetto di intaglio.

$$K_{tn} = \frac{\sigma_{Pel}}{\sigma_{nn}} \tag{1.1}$$

$$K_f = \frac{\sigma_{a\infty}}{\sigma_{a\infty}^*} \tag{1.2}$$

Con σ_{Pel} tensione di picco elastico, σ_{nn} tensione nominale netta, $\sigma_{a\infty}$ ampiezza di tensione limite di fatica del provino liscio, $\sigma_{a\infty}^*$ ampiezza di tensione limite di fatica del provino intagliato.

I valori di K_t dipendono esclusivamente da geometria e modalità di carico, sono diagrammati in forma normalizzata nel manuale del Peterson [4]. Note quindi geometria e modalità di carico si ricava dal manuale il valore di K_t si calcola la tensione netta e si ricava la tensione di picco all'apice dell'intaglio. Per stimare il valore di K_f si usano invece le equazioni del Peterson (1.3), (1.4). Noto K_t si possono usare le equazioni:

$$K_f - 1 = q(K_t - 1)$$
 (1.3)
 $q = \frac{1}{1 + \frac{a}{r}}$

dove q è definito come Indice di sensibilità all'intaglio e varia tra 0 e 1, r è il raggio di raccordo dell'intaglio, *a* è funzione della tensione di rottura del materiale (materiali resistenti hanno valori di *a* ridotti). Il parametro *q* si può ricavare anche graficamente (Figura 1.4), è rappresentato al variare del raggio di raccordo r con parametro *a*. All'aumentare del raggio di raccordo q tende a 1, in questo caso la resistenza è dovuta unicamente al capo di tensione dell'intaglio (piena sensibilità all'intaglio). Al ridursi del raggio di raccordo *q* diminuisce e tende a valori molto piccoli, in questo caso si parla di sensibilità all'intaglio nulla, con $K_f = 1$. Si noti già come le curve del Peterson non siano nemmeno rappresentate per *q* che tende a zero. Per componenti intagliati quindi il fattore K_f permette di calcolare un nuovo limite di fatica, ridotto rispetto al precedente, in quanto il componente è stato indebolito.

Figura 1.3: piastra con foro centrale sollecitata a trazione [4]

Figura 1.4: diagramma del Peterson [4]

Si consideri ora un componente intagliato con raggio di raccordo che tende a zero, in presenza quindi di una vera e propria cricca. Nella formula del Peterson il fattore di concentrazione delle tensioni K_t tende a infinito,

mentre l'indice di sensibilità all'intaglio q tende a zero (1.5). Questo caso porta a una forma indeterminata nella formula del Peterson per il calcolo di K_f e quindi non è applicabile.

$$K_f - 1 = 0 \cdot \infty \tag{1.5}$$

Come si era osservato nel paragrafo precedente, i diagrammi del Peterson non erano nemmeno stati rappresentati per piccoli raggi di raccordo, proprio perché già allora era apparso questo problema e non vi era al momento soluzione. In presenza di cricche la formula del Peterson sbaglia e in generale non sono più v alidi gli approcci della meccanica classica.

In caso di materiali fragili la meccanica classica propone un criterio di resistenza di picco [5], se la tensione di picco elastico è inferiore o al limite uguale a una certa tensione limite allora il componente è verificato. In presenza di cricche la tensione di picco elastico è infinita quindi un componente fragile criccato avrebbe inevitabilmente resistenza nulla. Questo non è vero, la meccanica classica non è applicabile.

In caso di materiali duttili la meccanica classica propone un criterio di resistenza basato sulla tensione nominale netta [5], se questa tensione è inferiore o uguale a una certa tensione limite allora il componente è verificato. Con cricche però anche i materiali duttili possono avere rottura fragile. La meccanica classica anche in questo caso non è applicabile.

Da qui sorge la necessità di una nuova teoria che permetta di studiare i componenti criccati. La scienza che studia i fenomeni di resistenza di materiali indeboliti da cricche e intagli è detta Meccanica della frattura. In questo ambito le cricche sono definite come difetti, interruzioni della continuità del materiale. La presenza di una cricca va a influenzare pesantemente la resistenza del componente perché, come si vedrà in seguito, le tensioni aumentano in maniera esponenziale avvicinandosi all'apice della cricca. Una cricca propagante può portare al collasso della struttura, è quindi compito del progettista studiare e approfondire questi fenomeni di danneggiamento al fine di prevederli ed evitarli.

1.3 La meccanica della frattura lineare elastica

1.3.1 Le cricche.

Le cricche sono interruzioni della continuità del materiale e possono avere diverse origini [5]:

- Cricche formate in esercizio. È il caso di cricche dovute a errori di progettazione o a errato utilizzo del componente, dove le tensioni superano il limite di fatica.
- Cricche ipotizzate. Questo tipo di progettazione è detto "damage tolerant" (tollerante al danno), è un metodo di estrema sicurezza nato nel settore aeronautico che suppone la presenza di cricche di una certa lunghezza. Di conseguenza si stima la frequenza di eventuali manutenzioni in base alla propagazione delle cricche ipotizzate.
- Cricche dovute a difettosità del materiale. Nessun processo produttivo è ad oggi in grado di garantire la completa assenza di difetti interni. Questi sono spesso approssimabili a cricche e vanno a ridurre la resistenza del materiale.

È questo il caso di interesse del progetto. Nessun processo produttivo è esente da difetti, quindi, in fase di progettazione diventa fondamentale andare a considerare la riduzione del limite di fatica dovuta a questi ultimi. Le cricche possono essere soggette a tre diversi modi di carico (schematizzati in Figura 1.5) e a tutte le loro possibili combinazioni:

- Modo I. Cricca sollecitata ad apertura;
- Modo II. Cricca sollecitata a taglio;
- Modo III. Cricca sollecitata a strappo.

Il modo I e modo II vengono detti modi piani perché le sollecitazioni agiscono nel piano della cricca.

Figura 1.5: modi di carico I, II, III [6]

È raro che nei componenti reali in esercizio vi siano sollecitazioni di puro modo I, II, o III (nemmeno in laboratorio è banale condurre, ad esempio, prove di propagazione a puro modo I, proprio per la compresenza degli altri modi). Generalmente le sollecitazioni reali comprendono due o più modi sulle cricche, per questo motivo è ragionevole ampliare gli studi sul puro modo I considerando, ad esempio, anche sollecitazioni di modo II. Questa scelta, motivata da esigenze pratiche industriali è anche legata all'attrezzatura disponibile in laboratorio, come si vedrà nei prossimi capitoli.

1.3.2 Campo di tensione lineare-elastico di Irwin [7].

Come anticipato nel paragrafo 1.2.1, la forma di un componente influenza la sua resistenza a fatica. Nel caso di componenti intagliati, al ridursi del raggio di raccordo dell'intaglio, aumenta la tensione di picco all'apice dell'intaglio. Quando il raggio di raccordo tende a zero si ha una cricca vera e propria e in questo caso il campo di tensione è singolare. Avvicinandosi all'apice della cricca la tensione continua a crescere in mani era indefinita. La meccanica della frattura permette di studiare i campi di tensione singolari dovuti alle cricche, completando le lacune della meccanica classica.

Si consideri ad esempio il campo di tensione al variare della distanza *x* dall'apice della cricca in una piastra sollecitata a trazione con cricca centrale in apertura (Figura 1.6). La lineare elasticità deriva da una ipotesi fondamentale di "piccola" zona plastica localizzata vicino all'apice di cricca[6]. Un campo di tensione lineare elastico aumenta indefinitamente al ridursi della distanza dall'apice della cricca. Un campo di tensione elastoplastico ha invece un primo tratto costante alla tensione di snervamento e in seguito decresce. Entrambi i campi di tensione, lontani dalla discontinuità, hanno lo stesso valore di tensione pari a quella nominale. Se la zona a tensione costante è sufficientemente ridotta il campo di tensione elastico plastico si può approssimare con quello lineare elastico. Se la tensione applicata aumenta, il campo di tensione aumenta in maniera omotetica fino a raggiungere il valore del campo limite (Figura 1.7). La meccanica della frattura propone quindi un approccio di campo, diversamente dall'approccio classico puntuale.

Figura 1.6: piastra infinita criccata sollecitata a modo I[6](a), ipotesi della MFLE di piccola zona plastica [6](b)

Figura 1.7: campo di tensione omotetico

Nel 1957 Irwin [7] ha proposto una formulazione analitica per studiare il campo di tensione singo lare (1.6), (1.7), (1.8). Si consideri una piastra con cricca centrale soggetta a puro modo I (apertura della cricca) e si consideri un sistema di riferimento posizionato all'apice della cricca. Un generico volumetto di materiale è definito dal raggio vettore di modulo r e l'angolo θ (Figura 1.8).

Figura 1.8: sistema di riferimento all'apice della cricca con volumetto di materiale[6]

Le tensioni al variare di r e θ sono definite dalle seguenti equazioni:

$$\sigma_{xx}(r,\theta) = \frac{K_I}{\sqrt{2\pi r}} \cos\frac{\theta}{2} (1 - \sin\frac{\theta}{2}\sin\frac{3}{2}\theta)$$
(1.6)

$$\sigma_{yy}(r,\theta) = \frac{K_I}{\sqrt{2\pi r}} \cos\frac{\theta}{2} \left(1 + \sin\frac{\theta}{2}\sin\frac{3}{2}\theta\right)$$
(1.7)

$$\tau_{xy}(r,\theta) = \frac{K_I}{\sqrt{2\pi r}} \sin\frac{\theta}{2} (\cos\frac{\theta}{2}\cos\frac{3}{2}\theta)$$
(1.8)

Il fattore K_I è detto Fattore di intensificazione delle tensioni (Stress intensity factor SIF) ed è definito come:

$$K_{I} = \sqrt{2\pi} \lim_{r \to 0} (\sigma_{yy}(r, \theta = 0) \cdot r^{\frac{1}{2}})$$
(1.9)

Quando r (distanza dall'apice di cricca) tende a zero, la tensione tende a infinito e il SIF diventa una forma

indeterminata $0 \cdot \infty$ che ammette soluzione finita. Questa soluzione è valida per:

- cricche soggette ad apertura (modo I);
- problemi piani;
- zona "vicino" all'apice della cricca;
- tensioni applicate sufficientemente inferiori a quella di snervamento del materiale σ_s (1.10).

$$\sigma_n \le 0.5\sigma_s \tag{1.10}$$

I problemi piani possono essere di due tipi: Plane stress (tensione piana) o Plane strain (deformazione piana), in entrambi i casi un valore di tensione o deformazione lungo una delle direzioni x,y,z deve essere nullo. Se le formule di Irwin vengono utilizzate per studiare campi di tensione lontani dall'apice di cricca e quindi non influenzati dalla presenza della cricca, commettono errori. Per r che aumenta i valori di tensione tendono infatti a zero, mentre, lontano dalla cricca la tensione non è nulla ma pari a quella lorda σ_g . Questo è dovuto al fatto che le equazioni sopra presentate sono limitate ai termini del primo ordine, l'espressione completa permette di descrivere tutto il campo di tensione. La condizione di tensione lorda limitata (inferiore alla metà della tensione di snervamento) è fondamentale per soddisfare le condizioni della MF lineare elastica. Tensioni troppo elevate comporterebbero eccessive deformazioni plastiche e quindi cadrebbe l'ipotesi fondamentale della MFLE.

L'obbiettivo pratico della MFLE è quello di studiare la resistenza dei componenti criccati. Il criterio di resistenza (1.11) è un criterio di campo e il componente risulta verificato staticamente quando il campo di tensione è inferiore a un certo campo limite (Figura 1.7). Essendo la tensione proporzionale al SIF il criterio di resistenza si può riscrivere anche in termini di K_I:

$$K_I \le K_L = K_c \tag{1.11}$$

dove K_1 dipende da geometria, lunghezza di cricca e carico applicato; K_c è proprietà del materiale detta Tenacità a frattura.

1.3.3 MFLE applicata ai casi di Fatica: la curva di Paris

Il calcolo del SIF può essere semplificato usando una formula ingegneristica (1.12), alternativa a quella della definizione [5].

$$K_I = \alpha \sigma_g \sqrt{\pi a} \tag{1.12}$$

dove a è la lunghezza di cricca e $\alpha(a)$ il fattore di forma, costante che dipende da geometria e modalità di carico, σ_a la tensione lorda applicata.

La MFLE è applicabile anche ai casi di fatica (1.13). Se si considera un provino soggetto a un range di tensione lorda $\Delta \sigma_g$ con cricca di lunghezza iniziale a_i si può definire il Range di variazione del Fattore di intensificazione delle tensioni ΔK_I .

$$\Delta K_I = \alpha \Delta \sigma_g \sqrt{\pi a} \tag{1.13}$$

Se il range di tensione applicato resta costante nei vari cicli, allora la lunghezza di cricca aumenta, il fattore di forma aumenta e il ΔK_I aumenta. La cricca, se ha già iniziato a propagare, sarà quindi destinata a continuare la propagazione fino a rompere il componente. Paris nel 1963 [8] ha dimostrato (1.14) che la velocità di propagazione della cricca (in mm di propagazione su numero di cicli) dipende solo dal range di variazione del SIF.

$$\frac{aa}{dN} = f(\Delta K_I) \tag{1.14}$$

Questa osservazione ha permesso di riassumere l'andamento della velocità di propagazione al variare del ΔK_I nella curva di Paris (Figura 1.9). La velocità di propagazione si calcola usando l'equazione di Paris (1.15):

$$\frac{da}{dN} = C(\Delta K_I)^m \tag{1.15}$$

con C e m costanti del materiale.

La curva può essere suddivisa in tre parti. Nella prima parte $\Delta K < \Delta K_{th}$ il range di SIF applicato alla cricca è minore della soglia di propagazione e quindi la cricca non propaga. Nella parte centrale $\Delta K_{th} < \Delta K < \Delta K_c$ il range di SIF applicato è compreso tra la soglia di propagazione e la rottura statica. Nella terza parte $\Delta K > \Delta K_c$ il range di SIF applicato è superiore a quello critico del materiale e il componente rompe istantaneamente. L'andamento crescente della curva nella zona centrale mostra graficamente quanto anticipato; mantenendo costante la tensione lorda applicata, il ΔK_I aumenta e di conseguenza aumenta anche la velocità di propagazione della cricca, in questo caso si è in una zona di vita a termine. Percorrendo il tratto crescente della cricca si arriva a un asintoto verticale che corrisponde a velocità di propagazione infinita ovvero rottura immediata del componente. Il valore corrispondente di ΔK_I è detto "critico" ΔK_C . Per velocità di propagazione ridotte è presente un altro asintoto verticale sotto al quale la cricca non propaga. Il valore corrispondente di ΔK_I è detto "soglia di propagazione" (*threshold*) ΔK_{th} , in questo caso si è in una zona di vita infinita.

1.3.4 La soglia di propagazione: diagramma di Kitagawa.

Si consideri un provino criccato sollecitato al limite di fatica, per semplicità si trascuri il fattore di forma, posto pari a uno. In questo caso dalla formula della MFLE si ricava che il range di tensione di soglia dipende esclusivamente dalla lunghezza di cricca *a*, in quanto la soglia di propagazione ΔK_{th} è una proprietà del materiale. Secondo la (1.16), al ridursi della lunghezza di cricca *a*, il range di tensione di soglia aumenta indefinitamente e il materiale ha potenzialmente resistenza a fatica infinita. Questo chiaramente non è vero, da prove sperimentali è stato dimostrato [10] come al ridursi della lunghezza di cricca il range di tensione di soglia abbia invece un valore finito e pari al limite di fatica del provino liscio (non criccato) $\Delta \sigma_0$.

$$\Delta \sigma_{gth} = \frac{\Delta K_{th}}{\sqrt{\pi a}} \tag{1.16}$$

Sotto una certa lunghezza di cricca quindi la MFLE non solo è sbagliata, ma in svantaggio di sicurezza, l'applicazione della formula porta infatti a sovrastimare il limite di fatica e quindi a una possibile rottura del componente. La MFLE è valida solo per cricche lunghe. Il parametro a_0 è una proprietà del materiale e delimita le cricche lunghe da quelle corte. Il parametro $\Delta K_{th,LC}$ è detto quindi soglia di propagazione delle cricche lunghe, le cricche corte vanno studiate con le formule della meccanica classica dove la soglia di propagazione è quella del provino liscio $\Delta \sigma_0$. Queste conclusioni sono rappresentate nella curva di Kitagawa-Takahashi [10] e sono state formulate analiticamente da El Haddad-Smith-Topper (1979) [11].

Figura 1.10: diagramma di Kitagawa [9]

$$\Delta K_{th} = \Delta \sigma_{g_{th}} \sqrt{\pi (a + a_0)}$$
(1.17)

Nel diagramma in Figura 1.10 vengono riassunti i due limiti di fatica in range di tensione e range di variazione del SIF, viene inoltre definito il parametro a_0 . Per cricche lunghe vale $a >> a_0$, che di conseguenza diventa trascurabile (1.17), si ricade quindi nella formula della MFLE. Per cricche corte vale $a << a_0$ e il campo di tensione di soglia coincide con quello del provino liscio. Il parametro a_0 , per una fissata geometria e modalità di carico, dipende dal tipo di materiale e varia circa tra $0.001mm \le a_0 \le 1mm$ (come ordini di grandezza), rispettivamernte per acciai ad alta resistenza e acciai dolci.

1.4 Le cricche corte

In letteratura sono presenti diverse definizioni di cricche corte (Figura 1.12), correlate alla loro modalità di propagazione [9]

1.4.1 Cricche microstrutturalmente corte (microstructurally short crack)

Sono cricche che hanno dimensioni confrontabili con quelle dei grani. Queste non possono essere analizzate con la meccanica del continuo, la loro propagazione iniziale è fortemente influenzata dalla microstruttura del materiale, che può accelerarla o rallentarla. La propagazione di questa tipologia di cricche è stata studiata da Keith Miller che ha introdotto la meccanica della frattura micro-meccanica, il limite di fatica può essere definito come il range di tensione applicata che non fa propagare la cricca microstrutturalmente corta di lunghezza maggiore. Se una cricca microstrutturalmente corta è sollecitata oltre il proprio limite di fatica allora evolve in una cricca meccanicamente corta. Una cricca cessa di essere microstrutturalmente costa quando la sua propagazione diventa più regolare e diminuisce l'influenza delle barriere di bordo grano. In Figura 1.11 si può vedere l'andamento della velocità di propagazione di una cricca corta in una lega di alluminio 2024-T3. Dal grafico si può notare che nei primi istanti di propagazione la velocità presenta dei picchi e solo in seguito va a stabilizzarsi. Secondo Capelli et al, che hanno condotto questo studio, il limite in termini di numero di grani intersecati per stabilizzare la velocità di propagazione è circa 15.

Figura 1.11: propagazione di cricche microstrutturalmente corte innescate da un'incrusione in lega di alluminio 2024-T3 [12]

1.4.2 Cricche meccanicamente corte (mechanically short crack)

Sono cricche con dimensioni confrontabili rispetto alla zona plastica all'apice. Possono essere descritte dalla meccanica del continuo ma non dalla MFLE, riservata alle cricche lunghe (long crack). Queste cricche sono molto più regolari, non solo dal punto di vista della velocità, ma anche per quanto riguarda il crack path che non subisce brusche deviazioni dovute ai grani. La propagazione di queste cricche è difficile da studiare. La dimensione ridotta della zona plastica all'apice della cricca non permette di usare la meccanica elasto-plastica e nemmeno il SIF lineare elastico. Un parametro più significativo sarebbe il Cyclic Crack Tip Opening Displacement (CTOD) ovvero lo spostamento delle estremità dell'apice di cricca, ma per cricche così piccole questo spostamento è assai contenuto e difficile da controllare sperimentalmente.

1.4.3 Cricche fisicamente corte (phisically short cracks)

Sono cricche con dimensioni all'apice ridotte rispetto alla zona influenzata da effetti di "closure". I range di lunghezze delle cricche meccanicamente corte e fisicamente corte si sovrappongono e non sono ben distinti, nella pratica si possono trattare allo stesso modo. Questa definizione indica il fatto che lungo la zona dove la cricca è propagata si formano *effetti di closure* che modificano il SIF effettivamente percepito dalla cricca, rendendo meno intensa la sollecitazione applicata.

Alcuni autori fanno una ulteriore distinzione tra cricche corte (short cracks) e piccole (small cracks). Le prime hanno una estensione monodimensionale, solo in lunghezza; le seconde hanno una estensione bidimensionale, per esempio semi-ellittica. Per la gran parte degli autori *short* e *small* cracks restano comunque sinonimi. Emerge quindi già da un primo studio della letteratura una vasta gamma di definizioni che non sono sinonimi e non possono quindi essere intercambiate.

Figura 1.12: cricche microstrutturalmente corte (a), cricche meccanicamente corte (b), cricche lunghe (c)[9]

1.4.4 Effetti di closure

Quando una cricca fisicamente corta inizialmente sollecitata ad apertura viene scaricata, questa può non tornare del tutto chiusa. La chiusura di una cricca può avvenire a valori di tensione maggiori [9]. Questo fenomeno è definito come Effetto di Closure (Figura 1.13). Di conseguenza il range di variazione del SIF non è uguale alla differenza tra K_{max} e K_{min} (1.18) ma bisogna considerare un certo SIF $K_{op} > 0$ corrispondente alla tensione di apertura della cricca (Figura 1.14).

$$\Delta K_{eff} = K_{max} - K_{op} \tag{1.18}$$

Questi effetti influenzano la propagazione delle cricche nel materiale, è quindi importante conoscerli anche in vista delle prove sperimentali (come si vedrà in seguito sono fondamentali nell'arrestare la propagazione della cricca nella curva R ciclica). Le principali tipologie di effetti di closure sono tre e sono mostrati in figura:

Figura 1.13: effetti di closure [9]. Plasticity-induced (b), Roughness induced (c), Oxide-induced (c).

- Plasticity-induced crack closure effect. In caso di carichi ciclici si genera una zona plastica che conserva delle tensioni residue quando il carico si inverte. Il materiale all'apice di cricca può essere plasticamente compresso o stirato. A causa di queste deformazioni plastiche, durante l'inversione del carico si creano delle interferenze tra le superfici della cricca, che, essendo stati plasticamente deformati, non combaciano più perfettamente. La cricca non si apre o chiude più con tensione nulla applicata, è quindi necessario definire una nuova tensione σ_{op} non nulla che garantisce l'apertura della cricca. Da questa deriva il SIF sopra definito K_{op} . È bene precisare che nel momento in cui la cricca è in condizioni di incipiente apertura (σ_{op} applicata) non vi è ancora un effetto di intensificazione delle tensioni. Le tensioni di apertura e chiusura sono soggette a isteresi, la tensione σ_{op} a cui la cricca inizia ad aprirsi è maggiore della tensione σ_{cl} dove le due superfici tornano a contatto, questo non avviene per le deformazioni, che sono praticamente uguali.

Figura 1.14: ΔK_{eff} effettivamente applicato al netto dei fenomeni di closure [9].

- Roughness-induced crack closure effect. Le superfici di cricca create durante la propagazione non sono lisce e nemmeno parallele, presentano delle asperità dovute proprio alla deformazione plastica. La rugosità microscopica e la diramazione delle superfici rende possibile un modo di taglio (locale modo II) anche se il componente è globalmente sollecitato a puro modo I. Questo fenomeno influenza la propagazione soprattutto per bassi carichi, vicini al valore di soglia, in quanto l'apertura della cricca ha lo stesso ordine di grandezza della rugosità delle superfici.
- Oxide-induce crack closure effect. Lungo i piani di cricca si possono generare ossidi superficiali che durante i cicli di apertura e chiusura possono staccarsi e addensarsi in agglomerati più grandi. La formazione di ossidi superficiali non va vista come un fenomeno particolare o negativo, è infatti una caratteristica comune degli acciai sviluppare strati superficiali di ossido, basti pensare ad esempio all'ossido di Cromo negli acciai INOX. Questo fenomeno è più intenso a rapporti di ciclo bassi perché chiudendo la cricca si rompe e riforma lo strato di ossido a causa delle forze di attrito (Figura 1.15). Questo comporta uno strato complessivo molto maggiore rispetto a quello iniziale (circa 20 volte in atmosfera con40% di umidità). In questicasi lo spostamento di apertura all'apice della cricca (CTOD) è dello stesso ordine di grandezza dello strato di ossido formato e si causa quindi il contatto tra le due superfici con il conseguente effetto di closure.

Figura 1.15: spessore dello strato di ossido al variare del rapporto di ciclo R[9]

Questo effetto di closure può essere descritto analiticamente (1.19) definendo il coefficiente adimensionale U (efficency ratio):

$$U = \frac{\Delta K_{eff}}{\Delta K} \tag{1.19}$$

Il valore di U diminuisce all'aumentare della lunghezza di cricca fino al valore di saturazione U_{LC} , per cricche appena innescate la superfice esposta all'atmosfera non è sufficientemente ampia da creare un effetto di closure sensibile (Figura 1.16). Un valore tipico di estensione di cricca per arrivare a U costante è di circa 0.5-2 mm.

Figura 1.16: andamento di Ual variare della lunghezza di cricca negli effetti di closure dovuti a ossidazione [9]

1.5 Determinazione sperimentale della soglia di propagazione ΔK_{th}

Una cricca propagante si dice in soglia quando questa raggiunge un limite di velocità sufficientemente basso. Questo valore critico di velocità non è univocamente determinato. La normativa ASTM E 647 [13] pone questo limite a $\left(\frac{da}{dN}\right)_{th} = 10^{-7} mm/ciclo$, mentre la ISO 12108 [14] sceglie $\left(\frac{da}{dN}\right)_{th} = 10^{-8} mm/ciclo$.

1. **5**. **1** ΔK decrescente.

La procedura standard per determinare la soglia di propagazione è riportata in normativa ASTM E 647 [13]o UNI 12108 [14]. Queste suggeriscono di generare inizialmente una pre-cricca e in seguito ridurre gradualmente ΔK mantenendo il rapporto di ciclo R costante (Figura 1.17°). Il gradiente di riduzione C è riportato nella (1.20) e generalmente viene scelto tra 0.1-0.08 mm⁻¹. Il valore di C viene scelto sperimentalmente e dipende dal materiale e dalle condizioni ambientali della prova.

$$C = \frac{1}{\Delta K} \left(\frac{d(\Delta K)}{da} \right)$$
(1.20)

Il gradiente di riduzione di ΔK deve essere scelto in modo da evitare valori fittizi di soglia a causa di effetti di closure dovuti a plasticizzazione. Per valori di riduzione $d\Delta K/da$ troppo bassi gli effetti di plasticizzazione tendono ad aumentare la soglia di propagazione, al contrario, gli altri effetti di closure aumentano il valore della soglia di propagazione all'aumentare di $d\Delta K/da$. Il minimo di ΔK_{th} dipende fortemente dal materiale testato (Figura 1.17b) in particolare se la superficie di cricca è frastagliata e soggetta ossidazione e corrosione. L'ascissa del minimo ΔK_{th} dipende invece dal valore scelto di $d\Delta K/da$. Il metodo è soggetto a errori, se il tasso di decrescita non è corretto la soglia di propagazione viene sovrastimata rispetto al reale valore del materiale [9].

Figura 1.17: schema di carico con ΔK decrescente (a), valore della soglia ΔK_{th} al variare del gradiente dK/da (b)[9]

1.5.2 K_{max} costante

Un metodo alternativo approvato dalla ASTM consiste nel condurre la prova a K_{max} costante, riducendo il range di variazione di ΔK attraverso l'aumento del K_{min} (Figura 1.18a). Questo metodo è vantaggioso rispetto al precedente in quanto riduce molto i tempi di prova grazie al rapporto di ciclo estremamente elevato nella parte finale (K_{min} aumenta, K_{max} resta costante e $R \propto K_{min}/K_{max}$), e consente di trovare un valore di soglia praticamente non influenzato dagli effetti di closure. Il valore di soglia così ottenuto può essere considerato una proprietà del materiale, in quanto non dipende dagli effetti di closure, ed è generalmente diverso da quello trovato con il precedente metodo. Lo svantaggio però consiste nel non poter controllare il rapporto di ciclo R. Un'estensione del metodo proposta da Tesch et al [15] consiste in una serie di prove a K_{max} costante con R che aumenta gradualmente (Figura 1.18b). Il K_{max} viene successivamente aumentato e la prova continua per vari step. I risultati sono in accordo con la prova standard proposta dalla ASTM.

Figura 1.18: schema di carico a K_{max} costante (a), variante di Tesch (b) [9]

1.5.3 Compressione ciclica "far field"

Questo metodo basato sul Compression pre-cracking (CPC) consente di produrre cricche evitando effetti di closure e quindi l'influenza della storia di carico precedente sulla cricca [6]. Il CPC è un processo dove un intaglio severo viene sottoposto a cicli di globale compressione, con carico massimo e minimo entrambi di compressione, per creare una cricca vera e propria. La propagazione della cricca con queste condizioni di carico potrebbe sembrare contraddittoria, in quanto sembra che questa sia sempre chiusa. Sebbene l'intaglio venga di fatto chiuso, all'apice è comunque in apertura in una regione limitata. All'apice dell'intaglio si forma una zona plastica monotona (Figura 1.20) la cui dimensione controlla la propagazione della cricca grazie alle tensioni residue di apertura. All'apice della cricca appena formata vi è una zona plastica ciclica che avanza con la cricca. Al contrario, la posizione della zona plastica ciclica all'apice di cricca non esce dalla zona plastica monotona,

che mantiene aperto l'apice. Quando l'apice di cricca esce dalla zona plastica monotona le tensioni residue non sono sufficienti a mantenere l'apertura della cricca. La dimensione della zona plastica monotona si può calcolare con la (1.21) proposta da Tabernig e Pippan [16]:

$$\omega_c = \frac{\pi}{8} \cdot \left(\frac{|K_{cp}|}{\sigma_f}\right)^2 \tag{1.21}$$

dove σ_f è la media tra la tensione di snervamento e la tensione di rottura del materiale, e K_{cp} (1.22) è il SIF in compressione. K_{CT} è un valore standard di K per provini di tipo CT.

$$|K_{cp}| = \left[1 + 2.5\left(1 - \frac{a}{W}\right)^{10}\right] \cdot K_{CT}$$
(1.22)

Affinché la zona plastica residua non vada a influenzare la successiva propagazione di cricca in apertura è necessario che il ΔK applicato durante il CPC sia contenuto (ad esempio minore di 8 MPa m^{0.5} per leghe di alluminio). Per escludere l'effetto dell'intaglio sull'apice di cricca questa deve essere sufficientemente lunga, si consiglia una pre-cricca di lunghezza tale da uscire da un settore circolare di 30° che contiene l'intaglio (Figura 1.19).

In ogni caso dopo la fase di CPC è consigliato con un blocco di carico finale a un valore di carico leggermente superiore a quello della soglia. In questo modo si elimina ogni influenza dei cicli di compressione sulla successiva propagazione della cricca.

Figura 1.19: dimensione minima di cricca formata per CPC [9]

Figura 1.20: zona plastica monotona all'apice dell'intaglio (a), zona plastica ciclica all'apice della cricca (b), posizione reciproca tra le zone plastiche (c) [9].

Sono presenti due varianti di questo metodo:

- CPCA. Il valore di ΔK aumenta finchè la cricca inizia a propagare (tensione costante), in seguito passa dal valore di soglia fino al regime di Paris.
- CPLR. Questa variante parte da un carico più elevato per poi ridurre gradualmente ΔK . È analogo alla procedura standard ma grazie ai carichi ridotti non è affetto da fenomeni di closure.

1.6 La curva R ciclica

Come riportato nella parte introduttiva, la curva R ciclica è uno strumento fondamentale per la progettazione, ed è un ulteriore metodo per determinare la soglia di propagazione ΔK_{th} . Se si assume erroneamente un

materiale privo di difetti microscopici o incrusioni, assumendo il ΔK_{th} delle cricche lunghe si incorre in un valore sovrastimato della soglia di propagazione, in svantaggio di sicurezza. In tal caso le cricch e corte, che hanno una soglia inferiore inizieranno a propagare nel componente danneggiandolo.

I fenomeni di closure descritti in precedenza vanno a modificare il range di SIF realmente percepito dalla cricca e quindi influiscono sulla sua propagazione. Un metodo per visualizzare l'influenza di tali fenomeni sulla soglia di propagazione è proprio quello della curva R, detta curva R ciclica nei casi di fatica. Questa descrive il valore di soglia ΔK_{th} al variare della lunghezza di propagazione Δa . Per cricche corte la curva R cresce a causa dei fenomeni di closure e poi si stabilizza per lunghezze di cricca più ele vate al valore di soglia *long crack* mostrato nella curva di Paris. L'aumento del valore di soglia per cricche corte non è dovuto a un vero e proprio aumento di resistenza del materiale, ma proprio al fatto che a causa dei fenomeni di closure sviluppati lungo i lati della cricca (*crack wake*) e il range di tensioni che aprono l'apice di cricca si riduce. Per questo motivo la curva R non viene descritta in termini di lunghezza di cricca *a*, ma proprio di variazione della lunghezza di cricca, in quanto è durante la propagazione che si sviluppano i fenomeni di closure lungo i fianchi della cricca. L'espressione analitica di ΔK_{th} può essere riscritta suddividendola in due componenti (1.23), una proprietà del materiale, l'altra che dipende dai fenomeni di closure.

$$\Delta K_{th} = \Delta K_{th,eff} + \Delta K_{th,op} \tag{1.23}$$

La prima componente $\Delta K_{th,eff}$ è una proprietà del materiale che dipende dalla microstruttura, costante al variare della lunghezza di cricca, e rappresenta il range di SIF in condizioni di soglia per cricca ancora prova di effetti di *closure*. La seconda componente $\Delta K_{th,op}$ è quella dovuta agli effetti di closure e aumenta con l'estensione della cricca perché aumentano gli effetti di closure legati alla lunghezza del *crack wake*. Entrambe le componenti si posso vedere nella curva R in Figura 1.21. Un difetto "*closure free*" avrà inizialmente solo la componente intrinseca, con l'inizio della propagazione il valore di ΔK_{th} aumenta perché aumenta la componente estrinseca fino a raggiungere la saturazione. Il valore di saturazione raggiunto corrisponde alla soglia di propagazione delle cricche lunghe $\Delta K_{th LC}$.

Figura 1.21: curva R qualitativa con componenti si soglia intrinseca e di opening [9]

1.6.1 Driving e Resistance

La propagazione delle cricche nel materiale può essere studiata analizzando la relazione tra la curva di *Driving* e la curva di *Resistance* (curva R) [17]. La curva di *driving* (G) riassumetutti i parametri energetici che tendono a far propagare la cricca, al contrario la curva R riassume la resistenza che il materiale oppone alla propagazione della cricca. G (1.24) è stato definito da Irwin (1948) [17] come Forza di estensione della cricca e si può esprimere come:

$$G = -\frac{dW_E}{d_C} \tag{1.24}$$

con $W_E(1.25)$ energia rilasciata nella propagazione cricca. R è definito come Resistenza all'estensione della cricca e si può esprimere come:

$$R = \frac{dW_D}{dc} \tag{1.25}$$

Con W_D energia dissipata. Per propagare spontaneamente la cricca deve avere G maggiore di R; quindi, nel punto critico dove si innesca la propagazione i due parametri sono uguali (1.26):

$$G = G_c = R \tag{1.26}$$

La teoria di Irwin considera il fatto che, se la cricca per una certa lunghezza avanza (G > R), può comunque arrivare ad una nuova lunghezza di cricca con propagazione stabile (G < R). Questo perché i parametri G, R non sono costanti ma dipendono dalla lunghezza di cricca. Durante la propagazione gli effetti di *closure* variano la pendenza della curva R e quindi possono portare all'arresto della cricca. Per la propagazione spontanea non è sufficiente la disuguaglianza dei parametri ma deve anche valere la disuguaglianza tra le derivate (1.27):

$$\frac{dG}{dc} > \frac{dR}{dc} \tag{1.27}$$

Nei materiali con curva R costante (Figura 1.22) all'aumentare della tensione applicata la pendenza di G aumenta, finché questa non interseca R per la lunghezza di cricca critica a_0 . Per valori di tensione superiori a quello critico la cricca propaga in modo instabile perché coesistono entrambe le disuguaglianze sopra descritte.

Figura 1.22: esempio di curva G e curva R costante [6]

Curve R crescenti (Figura 1.23, 1.24) consentono invece di stabilizzare la cricca. Per un certo valore di tensione critico σ^* la retta G* intercetta la curva R in due punti. Per un certo valore di tensione σ'' la curva G è minore della curva R e non c'è quindi propagazione. Si possono distinguere tre casi al variare della tensione applicata:

- $\sigma > \sigma^*$: per valori di tensione superiori a quello critico il materiale si comporta analogamente al caso precedente (curva R costante), con propagazione instabile.
- $\sigma^* < \sigma < \sigma''$: in questo intervallo di tensioni inferiori a quella critica la cricca propaga in maniera stabile e si arresta perché per la nuova lunghezza raggiunta la curva R è aumentata. Per alcune lunghezze di cricca quindi la tensione di rottura è variabile in funzione della lunghezza di cricca.
- $\sigma < \sigma''$: per tensioni inferiori al limite di propagazione non vi è propagazione della cricca, nemmeno stabile.

Figura 1.23: esempio di curva G e curva R variabile con la lunghezza di cricca [17]

Figura 1.24: esempio di curva R variabile con valori di tensione notevoli [17]

1.6.2 Determinazione sperimentale della curva R ciclica

Al momento non esistono procedure standardizzate per determinare la curva R ciclica. Un metodo proposto in letteratura per la determinazione sperimentale della curva R ciclica è quello di Tabernig e Pippan [16]. La fase iniziale consiste nel Compression Pre-cracking, partendo da un provino con intaglio severo si genera così una cricca priva di effetti di *closure*. Un ulteriore vantaggio del CPC iniziale è il fatto che una volta rilasciato il carico la cricca resta aperta, sarebbe necessaria una tensione di compressione per chiudere le superfici. A questo punto si può quindi aumentare il carico gradualmente fino a raggiungere la soglia delle cricche lunghe. Se il range ΔK applicato è inferiore alla soglia intrinseca ΔK_{eff} la cricca non propaga. La propagazione inizia quando il ΔK supera il valore della soglia intrinseca, che può essere quindi misurata sperimentalmente in questa parte iniziale della prova. Aumentando il carico il ΔK sarà compreso tra la soglia intrinseca del materiale e la soglia di propagazione ΔK_{th} per quella lunghezza di cricca, la cricca inizia quindi a propagare e si arresta a una lunghezza maggiore a causa degli effetti di closure formatisi. Nei punti dove la cricca arresta la forza di driving (ΔK) è uguale alla forza di resistance (ΔK_{th}) per quel particolare rapporto di ciclo e quella lunghezza di cricca. Per ogni punto dove questo si verifica si possono plottare i corrispondenti valori di $\Delta K = \Delta K_{th}$ al variare della lunghezza di cricca a, ottenendo così la curva R ciclica. Proseguendo con l'aumento dei carichi si arriva a un punto dove la cricca non arresta più, l'aumento del ΔK sulla cricca non viene più sufficientemente compensato dal formarsi di nuovi fenomeni di closure. A questo punto la prova può essere portata avanti misurando la velocità di propagazione al variare di ΔK . L'ultimo valore di ΔK_{th} dove la cricca è arrestata e il successivo valore di ΔK dove non si osserva più alcun arresto possono essere considerati come limite superiore e inferiore della soglia delle cricche lun ghe $\Delta K_{th,LC}$ del diagramma di Paris. Durante i vari step di aumento del carico (increasing), l'aumento deve essere di almeno il 10% del range precedente in

modo da evitare l'influenza dell'arresto dello step precedente. Se dopo un arresto in soglia durato per diversi milioni di cicli il carico sulla cricca viene aumentato di percentuali troppo ridotte (inferiori al 5%) non si osserva alcuna propagazione. Questo può essere dovuto alla formazione di ossidi durante la fase di arresto. Si noti come questa procedura proposta da Tabernig e Pippan non prevede di trovare la soglia delle cricche lunghe facendo arrestare la cricca, ma arriva a stimarne un valore quando la cricca non presenta più sufficienti fenomeni di *closure*, per poi andare a descrivere la soglia delle cricche lunghe misurando la velocità di propagazione (Figura 1.25).

Figura 1.25: schema di carico per la prova sperimentale [16].

1.6.3 Influenza del rapporto di ciclo R

Generalmente, l'aumento del rapporto di ciclo (definito come $R = \frac{F_{min}}{F_{max}} \propto \frac{K_{min}}{K_{max}}$) comporta una diminuzione del valore della soglia di propagazione ΔK_{th} [9]. La componente intrinseca $\Delta K_{th,eff}$ non presenta variazioni dovute al rapporto di ciclo. In Figura 1.26 si osserva come la soglia delle cricche lunghe sia invece chiaramente dipendente dal rapporto di ciclo R, al contrario i punti sperimentali relativi alla soglia intrinseca del materiale possono essere descritti da un'unica curva. Se si considera un prevalente fenomeno di *closure* dovuto a plasticizzazione, è ragionevole che oltre un certo rapporto di ciclo critico R_c, non ci sia più influenza sulla soglia di propagazione in quanto anche il K_{min} è così elevato che la cricca è sempre aperta. Tuttavia, si osserva sperimentalmente che aumentano ulteriormente R il valore di soglia tende a diminuire perché non possono essere considerati i soli effetti di *closure* per plasticizzazione.

Un ulteriore esempio della dipendenza delle curve R dal rapporto di ciclo viene riportato da Maierhofer et al. [18] dopo aver condotto prove a rapporti di ciclo positivi e negativi su provini SENB in acciaio 25CrMo4. Anche in questo caso il rapporto di ciclo è molto influente sulla soglia delle cricche lunghe, mentre non va a modificare la soglia intrinseca $\Delta K_{th,eff}$, in particolare la soglia ΔK_{th} aumenta sensibilmente (da 14 MPam⁰⁵ con R= -1 a 18 MPam^{0.5} con R= -3) all'aumentare del rapporto di ciclo (Figura 1.27).

Figura 1.26: effetto del rapporto di ciclo sulla soglia di propagazione ΔK_{th} e sulla soglia intrinseca $\Delta K_{th,eff}$ di un acciaio dolce [9].

Figura 1.27: curve R al variare del rapporto di ciclo su acciaio 25CrMo4 [18]

Il rapporto di ciclo microscopico realmente applicato all'apice della cricca può essere diverso da quello macroscopico applicato globalmente sul provino. Yamada e Newman [19] hanno svolto prove su lega di alluminio 2324-T39 misurando la deformazione locale all'apice di cricca e quella globale, con rapporti di ciclo variati da R=0.1 fino a R=0.95. Per rapporti di ciclo globali misurati R \geq 0.7, la cricca non dovrebbe presentare fenomeni di *closure* in quanto anche la tensione minima è tale da mantenere la cricca aperta. Il corrispondente rapporto di ciclo R locale, misurato all'apice di cricca, rivela che vi sono ancora fenomeni di *closure*, imprevisti a livello globale. Leggeri fenomeni di *closure* sonorilevabili fino a rapporti di ciclo pari a R=0.9, in particolare dovuti a ossidi superficiali e alla rugosità dei fianchi.

1.6.4 Influenza delle condizioni ambientali

L'ambiente circostante influenza la propagazione della cricca andando a influire sulla formazione di ossidi (che ostacolano la propagazione) e la corrosione (che favorisce la propagazione) [9]. Stimare quale dei due fenomeni sia prevalente è estremamente complesso e dipende dalle proprietà dell'aria e del materiale. I meccanismi che favoriscono la propagazione possono essere riassunti in due tipi:

- Corrosione dovuta alla rottura dello strato di ossido.
- Infragilimento dovuto alla presenza di idrogeno.

Nel primo caso, lo strato di ossido superficiale protettivo viene rotto dal contatto tra le due superfici e lo strato di materiale esposto all'apice della cricca si dissolve elettrochimicamente. Nel secondo caso, gli atomi di idrogeno che entrano a contatto con l'apice della cricca ne modificano il meccanismo di deformazione e danneggiamento.

Questi fenomeni dipendono dal tempo, in particolare dal tempo in cui l'apice di cricca è a contatto con l'aria. Infatti, le cricche più influenzate dalle condizioni ambientali sono quelle a un regime vicino alla soglia, al contrario in regime di Paris la cricca propaga velocemente e non c'è il tempo necessario a modificare le caratteristiche dell'apice di cricca. In Figura 1.28a si può osservare la differenza tra diversi valori di ΔK trovati in diverse condizioni ambientali (aria, vuoto e azoto). Si noti innanzitutto come questi tendono a convergere all'aumentare della velocità di propagazione, proprio perché l'apice è meno esposto ai fenomeni sopra citati. Particolarmente interessante è il fatto che il valore di soglia ottenuto in atmosfera umida (aria e idrogeno) è sensibilmente inferiore a quello ottenuto a vuoto. Questo dimostra che anche le particelle di idrogeno contenute nel vapore acqueo sono sufficienti ad accelerare la propagazione.

In Figura 1.28b è mostrato il confronto tra il K_{op} ottenuto a vuoto e in aria, al variare della lunghezza di cricca a. Non si nota alcuna differenza sul valore della soglia intrinseca $\Delta K_{th,eff}$, mentre K_{op} cresce più lentamente in aria rispetto al caso a vuoto, raggiungendo anche un valore di soglia per le cricche lunghe $\Delta K_{th,LC}$ più basso. Questo risultato è coerente con il precedente, l'ambiente umido favorisce la propagazione, riduce i fenomeni di closure e comporta valori di soglia più bassi.

Figura 1.28: propagazione in cristalli di Al-Zn-Mg (a), influenza dell'ambiente sulla propagazione di cricche corte in lega di alluminio 6Al-4V (b) [9].

1.6.5 Influenza del materiale

L'influenza del materiale e delle sue proprietà meccaniche sulla soglia di propagazione è fondamentale. E ben noto [9] che, se i grafici $da/dN - \Delta K$ di diversi materiali vengono plottati normalizzando il range di SIF rispetto al modulo elastico di ogni materiale ($\Delta K/E$), questi sono sovrapponibili entro una certa banda di dispersione. Questo significa che vi è una correlazione tra la soglia di propagazione e il modulo elastico del materiale. In letteratura (Wasen e Heier [20]) è stata proposta una relazione analitica (1.28) che lega la soglia intrinseca del materiale $\Delta K_{th,eff}$ al modulo elastico E:

$$\Delta K_{th,eff} \approx 1.6 \cdot 10^{-5} \cdot E \tag{1.28}$$

con $\Delta K_{th,eff}$ in MPa m^{0.5} e *E* in MPa. Il valore della soglia intrinseca è praticamente indipendente da proprietà "plastiche" del materiale come la tensione di snervamento. Questa correlazione è rappresentata in Figura 1.29a come una retta nel piano $E - \Delta K_{th,eff}$ e i punti sperimentali sono in ottimo accordo al variare del materiale testato.

Figura 1.29: andamento della soglia intrinseca $\Delta K_{th,eff}$ al variare del modulo elastico E per vari acciai (a); effetto della dimensione della grana cristallina sulle soglie $\Delta K_{th,eff}$ e ΔK_{th} per fetto ARMCO (b) [9].

La tensione di snervamento di un materiale è fortemente legata alla sua microstruttura e in particolare alla dimensione della grana cristallina. Come si è appena visto la tensione di snervamento del materiale non influenza la soglia intrinseca $\Delta K_{th.eff}$, questo però non è più vero quando si va oltre questo valore di soglia e iniziano a formarsi fenomeni di closure. In Figura 1.29b si può osservare come non vi sia effetto della dimensione della grana cristallina sulla soglia intrinseca, ma, al contrario la soglia di propagazione ΔK_{th} ne è fortemente influenzata. In particolare, questa aumenta all'aumentare della dimensione della grana cristallina, a causa di un aumento degli effetti di closure dovuti alla rigosità delle superfici di cricca. In Figura 1.30 si confrontano due superfici di frattura ottenute su una lega a base di nickel con diverse dimensioni di grana cristallina. La superficie a grana maggiore ha delle creste mediamente più alte che inducono effetti di closure. Inoltre, incursioni, bordi grano, impurità, contribuiscono a deviare la propagazione, rendendo il percorso di cricca più frastagliato e soggetto quindi anche a sollecitazioni locali di taglio. Gli effetti della rugosità delle superfici di cricca sono tanto più influenti quanto più basso è il rapporto di ciclo, in quanto le superfici sono più a contatto e anche quando la cricca si avvicina alla soglia perché più cicli di carico avvengono a una stessa posizione del fronte di cricca. A regimi di propagazione più elevati, prossimi a quello di Paris, l'influenza della grana cristallina diventa molto inferiore perché la deformazione all'apice di cricca non ha dimensioni confrontabili con quelle delle irregolarità superficiali. Al contrario, per rapporti di ciclo R altamente negativi, la superficie di frattura viene compressa e le rugosità appianate, riducendo gi effetti di *closure*.

Figura 1.30: superficie di frattura al variare della grana cristallina su leghe a base di nickel [9]

1.6.6 Influenza dell'orientazione delle fibre sulla propagazione di cricche

Nel caso di acciai che hanno subito particolari lavorazioni, ad esempio laminazione, le fibre della grana cristallina sono deformate e orientate in una direzione preferenziale. L'orientazione delle fibre può influenzare la propagazione delle cricche, in quanto l'energia richiesta per attraversare trasversalmente i grani è diversa da quella necessaria per scorrere longitudinalmente lungo i bordi. La velocità di propagazione di cricche al variare dell'orientazione delle fibre è stata studiata sperimentalmente da Chen et al. [21] con prove su provini CT in acciaio Q420. Iprovini, ottenuti da piastre di acciaio laminate a caldo, quindi con grani allungati nella direzione di laminazione, sono stati testati a fatica con rapporti di ciclo R=0.1 e R=0.3 senza precricca iniziale. La cricca è stata fatta propagare in direzione longitudinale rispetto alle fibre e i risultati confrontati con quelli di propagazioni trasversali già noti. Dai risultati sperimentali emerge che la propagazione delle cricche longitudinali sono circa il 15% più veloci rispetto a quelle trasversali (Figura 1.31). In particolare, le cricche longitudinali sono circa il 15% più veloci rispetto a quelle trasversali con rapporto di ciclo (R=0.3), la differenza di velocità aumenta fino al 22%.

Figura 1.31: effetto della direzione di propagazione. R=0.1 (a), R=0.3 (b) [21]

Per valutare i fenomeni di *closure* sviluppati durante la propagazione delle cricche nei due casi è stata misurata la forza effettiva di apertura della cricca F_{op} . Come mostrato in Figura 1.32 le cricche longitudinali hanno una Forza di *opening* maggiore rispetto a quelle trasversali. Per questo si può concludere che la propagazione in direzione della grana cristallina sviluppi maggiori fenomeni di *closure* sui fianchi della cricca.

Figura 1.32: rapporto F_{op}/F_{max} al variare della lunghezza di cricca a per propagazione longitudinale e trasversale [21]

CAPITOLO 2 ADDESTRAMENTO ALLE ANALISI NUMERICHE 1: CALCOLO DELLO Stress Intensity Factor

Come discusso nell'introduzione, l'obiettivo di questo lavoro di tesi è quello di determinare la soglia di propagazione di cricche corte mediante prove sperimentali che permettono di valutare il range di Stress Intensity Factor in condizione di soglia al variare della dimensione di cricca stessa. Per tale ragione è indispensabile avere una conoscenza approfondita sul concetto di SIF e sulle modalità di calcolo dello stesso. Con questo obiettivo parziale in mente, sono state svolte diverse simulazioni numeriche agli elementi finiti per il calcolo del SIF utilizzando diversi approcci: i risultati ottenuti sono stati poi confrontati tra loro e riassunti nel presente capitolo. Per apprendere le metodologie e le tecniche di calcolo del SIF si è studiato un provino Single Edge Notch in Bending (SENB) avente geometria uguale a quella di una delle serie di provini che verrà usata nelle prove sperimentali, i cui dettagli saranno discussi nei capitoli successivi. Si sono utilizzati in particolare ANSYS Mechanical APDL e ANSYS WorkBench. L'addestramento non si è limitato ai soli approcci per il calcolo del SIF, ma è stato composto da due parti:

- Addestramento 1: calcolo del SIF all'apice di una cricca e confronto delle soluzioni ottenute con diversi metodi FEM;
- Addestramento 2: calibrazione del metodo DPCD e confronto delle soluzioni ottenute con diversi metodi FEM (Capitolo 3);

Nel resto del capitolo sarà riportato nel dettaglio il primo addestramento. Verranno chiariti i dati iniziali, i modelli FEM utilizzati per ricavare le singole soluzioni. Infine, sarà fatto un confronto per verificare l'applicabilità dei vari metodi e l'errore commesso.

L'obbiettivo di questo primo addestramento è analizzare lo stato tensionale in un provino SENB soggetto a flessione pura e ricavare il valore del fattore di intensificazione delle tensioni (Stress Intensity Factor, SIF) K_I al variare della profondità di cricca *a* utilizzando quattro diversi approcci:

- Analitico;
- FEM Definizione Gross e Mendelson (1972) [22];
- FEM Peak Stress Method [23];
- FEM J-Integral (Fracture Tool Ansys Workbench);

La geometria di provino e lo schema di carico studiati sono riportati in Figura 2.1. Le analisi sono state svolte inizialmente per il caso di deformazione piana (Plane Strain), così da facilitare il post processing dei dati (il valore del SIF è costante lungo lo spessore nei modelli 3D in Plane Strain) ed in seguito ripetute con divers e condizioni di vincolo e carico, più simili a quelle sperimentali.

Figura 2.1: geometria del provino e schema di carico

Nelle analisi seguenti sono stati considerati i seguenti parametri geometrici (si veda Figura 2.1):

- $L_p = 108 \text{ mm} (\text{Lunghezza});$
- W = 25 mm (Altezza);

- B = 15 mm (Larghezza);
- $S_{\min} = 50 \text{ mm};$
- S_{max} = 90 mm;
- $a_i = 4 \text{ mm}$ (dimensione di cricca iniziale);
- $a_{\rm f} = 20 \, {\rm mm}$ (dimensione di cricca finale)

Materiale (acciaio):

- E = 206000 MPa;

$$-\nu = 0.3$$

Carichi: $\sigma_g = 1$ MPa

Questa geometria appartiene a una delle due serie di provini SENB a disposizione. La variante ha dimensioni 108x19x6mm con intaglio iniziale profondo 5mm.

2.1 Metodo Analitico

In questo primo caso si è usata la formula analitica (2.1) per flessione a quattro punti riportata nella normativa BS ISO 12108:2018 [[14]]. La formula calcola il valore del SIF a modo I K₁ in funzione della forza applicata e della geometria del provino. Per l'applicazione della formula è fondamentale che la distanza S_{min} sia pari almeno all'altezza del provino. In questo modo, il campo di tensione nella sezione media dove è presente la cricca è sufficientemente vicino alla distribuzione ideale di Navier. Il provino considerato e la posizione degli appoggi rispettano questo requisito. Le dimensioni geometriche differiscono da quelle riportate in normativa in quanto si sono utilizzate quelle del provino reale a disposizione in laboratorio, è quindi necessario (da normativa) utilizzare un fattore correttivo proporzionale a S_{max}-S_{min}.

$$K_{I} = \frac{F}{B\sqrt{W}} \frac{S_{max} - S_{min}}{2W} 3\left(2\tan\left(\frac{\pi a}{2W}\right)\right)^{\frac{1}{2}} \left[\frac{0.123 + 0.199\left(1 - \sin\left(\frac{\pi a}{2W}\right)\right)^{4}}{\cos\left(\frac{\pi a}{2W}\right)}\right]$$
(2.1)

Si può notare dalla relazione analitica che il carico è espresso come forza totale poi suddivisa sui due perni di carico, mentre il dato iniziale è un valore di tensione lorda. Per l'applicazione è quindi necessario ricavare la forza F. Nota la configurazione del sistema di carico si calcola il momento flettente massimo M_f (diagrammato assieme allo schema di carico in Figura 2.2), e dal confronto con il momento flettente su trave a sezione rettangolare si ottiene la forza da applicare per garantire $\sigma_a = 1$ MPa.

Figura 2.2: diagramma del momento flettente sul provino

$$M_f = \frac{F}{2} \frac{1}{2} \left(S_{max} - S_{min} \right)$$

$$M_f = \sigma_g \frac{1}{6} B W^2$$
(2.2)

(2.3)

Risolvendo il sistema di Equazioni (2.2), (2.3) si ottiene un valore di F = 156,25N. Noti tutti i valori di input si può rappresentare l'andamento del SIF al variare della lunghezza di cricca *a (Figura 2.3)*. Si è ottenuto in particolare un valore di K_I =0.11539 MPa*m^{0.5} per una lunghezza di cricca di 4mm.

Calcolo del SIF con formula analitica Tada-Paris

Figura 2.3: andamento di K1 al variare della lunghezza di cricca a secondo formula analitica di Tada-Paris-Irwin

2.2 Definizione di Gross-Mendelson

In questo caso si è usato un modello agli elementi finiti implementato nel software ANSYS Mechanical APDL per il calcolo del SIF. I risultati sono poi stati esportati in Excel per una più facile elaborazione dei dati. Questo metodo di calcolo del SIF [22] prevede di creare una mesh estremamente fitta intorno all'apice della cricca, i valori di tensione nodale calcolati vengono poi inseriti nella 2.4 per il calcolo di K₁. Plottando i valori di K₁ calcolati si osserva una zona ad andamento costante che rappresenta l'effettivo valore del K₁.

2.2.1 Preprocessing.

Per l'analisi si sono usati elementi piani a quattro nodi (PLANE182 in APDL) con impostazioni *Simplified Enhanced Strn* e *Plane Strain*. Le proprietà del materiale definite nei dati sono state riportate nella sezione *Material properties* dopo aver impostato un materiale lineare elastico, isotropo.

2.2.2 Geometria.

Per la definizione della geometria 2D si è sfruttata la simmetria longitudinale del provino. Come si vedrà in seguito è stato applicato direttamente un carico di pressione con distribuzione lineare (Figura 2.4) sulla sezione sollecitata a flessione massima; quindi, la geometria rappresentata è limitata a questa porzione di provino. Si sono poi definiti i vari *keypoints* andando a rappresentare solo la metà destra della sezione di provino di lunghezza S_{min}, a flessione massima e costante rappresentata in Figura 2.5.

Figura 2.4: provino SENB (a), parte del provino a flessione massima costante (b)

Figura 2.5: geometria del modello 2D (a), linee di costruzione all'apice della cricca (b)

2.2.3 Generazione della mesh.

Questo passo è fondamentale per il calcolo corretto del SIF all'apice della cricca. Una mesh anche leggermente irregolare o con elementi quadratici de formati può portare a sensibili errori nei risultati. In seguito, viene quindi discussa in maniera approfondita la strategia di meshatura adottata per la simulazione. Si è scelto di costruire una mesh di tipo polare con raggi che convergono tutti sul *keypoint* all'apice della cricca (Figura 2.6). Sono state necessarie quindi quattro semicirconferenze ausiliarie centrate all'apice della cricca per imporre un graduale infittimento degli elementi. Le geometrie di supporto create sono le seguenti:

- semicirconferenza di raggio 0.0001 mm con centro corrispondente all'apice della cricca e su ddivisa in 2 settori circolari (due con angolo al centro pari a 90°);
- semicirconferenza di raggio 0.28 mm con centro corrispondente all'apice della cricca e suddiviso in 2 settori circolari (due con angolo al centro pari a 90°). Si noti come questa dimensione di raggio corrisponda alla dimensione del volume strutturale per gli acciai. Questo perché questo metodo di meshatura si può utilizzare anche per modelli che calcolano il la densità di energia di deformazione nel volume strutturale (SED).

- semicirconferenza di raggio 1 mm con centro corrispondente all'apice della cricca e suddiviso in 2 settori circolari (due con angolo al centro pari a 90°);
- semicirconferenza di raggio 4 mm con centro corrispondente all'apice della cricca e suddiviso in 2 settori circolari (due con angolo al centro pari a 90°);
- dopo aver creato le linee si suddividono gli archi di circonferenza di 90° ognuno in 8 elementi, le linee di raggio r = 0000.1mm, r = 0.28mm, r = 1mm, r = 4 mm rispettivamente in 8, 60, 8, 6 elementi. È importante selezionare visivamente uno *spacing ratio* che consenta di avere una riduzione uniforme delle dimensioni degli elementi. In particolare, è stato usato uno *spacing ratio* unitario per il semicerchio di r = 0.0001mm e pari a 600 per r = 0.28mm.
- nel resto della geometria si è impostata una dimensione globale di elemento di 1mm.

Prima di generare la mesh (*free* nel semicerchio minore e nel resto del componente, *mapped* nei vari settori circolari) è fondamentale definire un *CONCENTRATION KEYPOINT* per guidare la mesh verso il punto di singolarità, con il comando: *MESHING* \rightarrow *SIZE CNTRLS* \rightarrow *CONCENTRAT KPS* \rightarrow *CREATE*, imponendo le seguenti opzioni:

- NPT: si seleziona il *keypoint* corrispondente all'apice dell'intaglio;
- DELR = 0.00002;
- RRAT = 1;
- NTHET = 8 (se l'angolo al centro è 90°).

Figura 2.6: mesh di elementi PLANE182 (a), particolare all'apice della cricca (b)

2.2.4 Carichi e vincoli.

Per definire la funzione di distribuzione lineare di pressione mostrata in Figura 2.7 sono stati usati i comandi: $PARAMETERS \rightarrow FUNCTIONS DEFINE/EDIT \rightarrow = -1 + 0.8 [Y]$. Come si vedrà in seguito una distribuzione di pressione così definita è applicabile sia alle linee sia alle aree, questo tornerà utile nei modelli tridimensionali. Vincoli applicati:

- Simmetria sulla linea della sezione netta, nel piano di simmetria.

Figura 2.7: vincoli (a), farfalla di pressione alla Navier (b)

2.2.5 Soluzione e post processing.

Una volta risolto il modello si crea un *path* sui nodi all'apice della cricca e si esportano i valori di tensione σ_{xx} al variare della distanza dall'apice della cricca: *POST PROCESSOR* \rightarrow *PATH OPERATIONS* \rightarrow *DEFINE PATH* \rightarrow *BY NODES*. Durante questa procedura è preferibile selezionare manualmente i nodi appartenenti al path in modo da non avere valori interpolati automaticamente dal software ma solo soluzioni nodali. I valori di tensione sono stati rappresentati in un grafico excel in scala doppio logaritmica in modo da apprezzare l'andamento singolare del campo di tensione al diminuire della distanza dall'apice della cricca. Sufficientemente lontani dalla zona di singolarità il campo di tensione tende a quello nominale per poi passare in compressione. Per il calcolo del SIF K₁ si è usata l'equazione (2.4) considerando poi graficamente il valore nel tratto costante al variare di x. In Figura 2.8 sono rappresentati i risultati ottenuti.

$$K_1 = \sigma_{xx} \sqrt{2\pi x} \tag{2.4}$$

Figura 2.8: andamento della tensione (a) e del SIF (b) al variare della distanz x dall'apice della cricca

Il valore di K₁ così calcolato per a = 4mm è di 0.1171 MPa m^{0.5}, superiore dell'1.47% rispetto al corrispondente risultato della formula analitica.

2.3 FEM – Peak Stress Method (Plane Strain)

Il Peak Stress Method (PSM) [23] è un metodo di calcolo approssimato del SIF che consente di usare una mesh relativamente grossolana rispetto a quella della definizione, calibrato per il software ANSYS[®]. Il PSM in questo caso è stato usato per calcolare il SIF lungo lo spessore del provino per la lunghezza di cricca iniziale a=4mm. Il metodo è stato applicato con varie tipologie di elemento verificando di volta in volta che l'errore percentuale rispetto alla soluzione analitica sia entro il range ammesso nell'articolo di calibrazione del metodo. Infine, sono state confrontate tra loro le soluzioni ottenute. Nel modello 2D si è sfruttata nuovamente la geometria longitudinale del provino, per i modelli 3D si è sfruttata una doppia simmetria anche lungo lo spessore (rappresentata in Figura 2.10). Analogamente al caso precedente è stata applicata anche la distribuzione di pressione lineare. Nei modelli 3D per simulare la condizione di *plane strain* si sono vincolare le traslazioni orizzontali delle facce verticali sui lati lunghi del provino, in modo da impedire le deformazioni lungo lo spessore (si veda Figura 2.9).

Figura 2.9: vincoli in plane stress (a) vincoli in plane strain (b)

Il PSM consente di stimare entro il range di errore il K_I calcolando nel modello FEM la tensione di picco all'apice della cricca σ_P secondo la (2.5):

$$K_I = K_{FE} \sigma_P d^{1-\lambda_1} \tag{2.5}$$

dove K_{FE} è la costante di calibrazione del tipo di elemento considerato, σ_P la tensione di picco elastico sul nodo all'apice della cricca, *d* la dimensione di elemento e λ_1 una funzione dell'angolo di apertura (nel caso di cricche $2\alpha = 0$, $\lambda_1 = 0.5$).

Figura 2.10: provino SENB con coordinata z che descrive lo spessore e piani di simmetria.

2.3.1 Elemento piano a 4 nodi PLANE182.

Per questo tipo di elemento sono state utilizzate le impostazioni *Simple Enhanced Strn* e *Plane Strain*. Dall'articolo di calibrazione si ricava la minima dimensione di elemento con a=4mm pari a d_{max} =1.33mm, si sceglie quindi una dimensione cautelativa di d=1mm. In Figura 2.11 si può osservare la mesh con distribuzione lineare di pressione e la configurazione deformata. I risultati della simulazione sono riportati in Tabella 2.1.

Figura 2.11: mesh di PLANE182 per metodo PSM (a), configurazione deformata (b)

Element	d [n	nm]	d _{max} [mm]	a [mm]	a/d _{min} [mm]	K_{FE}	s [mm]	ор [MPa]	σ_{av}	$1-\lambda_1$
PLANE182	1		1.333333	4	3	1.38	1	2.72032	1	0.5
$K_I [MPa*m^0]$.5] Kimax		K_{Imin}	Klax		Δ+ Δ-		diff% analitico		
0.11871322	'	/	/	0.11	871322	/	/	2.8	81	

Tabella 2.1: risultati da metodo PSM con elementi PLANE182

2.3.2 Elemento Brick a 8 nodi SOLID185.

Per questo tipo di elemento è stata utilizzata l'impostazione Simple Enhanced Strn. Per eseguire una mesh tridimensionale di elementi brick correttamente (senza elementi degeneri) si è inizialmente generata una mesh

piana di elementi PLANE182 con lato d=1mm. A questo punto si estrude la mesh generata per una lunghezza pari al semispessore B/2 = 7.5mm. Nelle impostazioni dell'estrusione si sono impostati 8 elementi lungo lo spessore, in questo modo si avranno brick molto regolari con dimensioni prossime a qu elle di cubetti di lato 1mm (si veda Figura 2.12). Una meshatura direttamente sul volume avrebbe rischiato di fare degenerare i *brick* in elementi tetragonali a 4 nodi. Il software ANSYS, infatti, quando rileva geometrie irregolari automaticamente modifica il tipo di elemento pur avendo inizialmente impostato un brick. È ragionevole quindi procedere in questo modo per non rischiare soluzioni errate in quanto lo scarto % dei tetra a 4 nodi (*brick* degenerati da ANSYS) è generalmente superiore ai brick a 8 nodi. Essendo questo un caso 3D si è calcolato il valore del K₁ su ogni nodo del semispessore, il risultato è stato poi esteso per simmetria all'intero spessore B del provino. Il K₁ è costante lungo lo spessore e pari a 0.1187 MPa m^{0.5} e l'errore massimo ammesso è del ±3% (si veda il grafico in Figura 2.13).

Figura 2.12: mesh di elementi SOLID185 per PSM (a), configurazione deformata (b)

Figura 2.13: andamento del SIF lungo lo spessore da metodo PSM con elementi brick a 8 nodi

2.3.3 Elemento tetraedrico a 10 nodi SOLID187

Questa tipologia di elemento tetraedrico con funzioni di forma quadratiche si adatta bene alla meshatura di volumi anche irregolari, non è quindi necessario procedere all'estrusione di un'aria pre-meshata (si veda la mesh in Figura 2.14 a). Nell'applicazione del PSM si sono eliminati dalla soluzione i risultati di tensione calcolati nei nodi intermedi appartenenti ai lati dei tetraedri (come descritto nell'articolo di calibrazione del metodo). Si sono inoltre esclusi i risultati dei nodi di estremità. I nodi adiacenti a quelli estremi possono essere utilizzati per calcolare il valore di tensione media sui tre nodi successivi, ma non per il calcolo di K₁ in quel nodo. In Figura 2.14 b sono rappresentati i nodi validi ed esclusi lungo l'apice di cricca. Nella rappresentazione dei risultati si sono evidenziati solo i risultati del SIF calcolati nei nodi dove questo può essere definito. A causa della simmetria i valori del SIF nei nodi al cuore del provino non sono definiti, per la rappresentazione grafica dei risultati sono stati in prima approssimazione ritenuti uguali a quelli dei nodi adiacenti. L'errore

massimo ammesso è del $\pm 15\%$ (si veda Figura 2.15). Nella Tabella 2.2 si mostrano i risultati con i valori di tensione dei nodi sui lati già trascurati.

Figura 2.14: mesh di elementi SOLID187 per PSM (a), selezione/eliminazione dei nodi all'apice di cricca (b)

Element	d [mm]	Z [mm]	σ _p [MPa]	σ_{av}	K1 [MPa*m^0.5]	KIav	diff% analitico
SOLID187	1	0	3.255	escluso		0.119362	3.442838
		0.9375	3.159	solo media			
		1.875	3.7699	3.488067	0.115817		
		2.8125	3.5353	3.608533	0.119817		
		3.75	3.5204	3.571167	0.118577		
		4.6875	3.6578	3.7143	0.123329		
		5.625	3.9647	3.591967	0.119267		
		6.5625	3.1534	solo media			
		7.5	3.5122	escluso			
		8.4375	3.1534	solo media			
		9.375	3.9647	3.591967	0.119267		
		10.3125	3.6578	3.7143	0.123329		
		11.25	3.5204	3.571167	0.118577		
		12.1875	3.5353	3.608533	0.119817		
		13.125	3.7699	3.488067	0.115817		
		14.0625	3.159	solo media			
		15	3.255	escluso			

Tabella 2.2: risultati da metodo PSM con elementi SOLID18

Figura 2.15: andamento del SIF lungo lo spessore da metodo PSM con elementi tetra a 10 nodi

2.3.4 Elemento tetraedrico a 4 nodi SOLID285.

Si procede direttamente alla meshatura del volume come nel caso Tetra 10 (Figura 2.14). I tetraedri a quattro nodi non hanno nodi lungo i lati da escludere, bisogna però procedere analogamente al caso precedente considerando solo i nodi dove K_1 è determinato (si veda Tabella 2.3). Questi elementi hanno funzioni di forma lineari e sono sconsigliati per questo tipo di analisi, si può notare dalla tabella 2.3 l'errore % superiore a quello degli altri casi. L'errore massimo ammesso, rappresentato nel grafico in Figura 2.16 è del $\pm 22\%$.

Element	d [mm]	Z [mm]	$\sigma_p [MPa]$	σ_{av}	K _I [MPa*m^0.5]	K_{Iav}	diff% con analitico
SOLID285	1	0	2.2767	escluso		0.122203	5.9055
		0.9375	1.8201	solo media			
		1.875	2.1711	2.008233	0.111135		
		2.8125	2.0335	2.221233	0.122923		
		3.75	2.4591	2.237533	0.123825		
		4.6875	2.22	2.3749	0.131427		
		5.625	2.4456	2.199267	0.121707		
		6.5625	1.9322	solo media			
		7.5	1.6422	escluso			
		8.4375	1.9322	solo media			
		9.375	2.4456	2.199267	0.121707		
		10.3125	2.22	2.3749	0.131427		
		11.25	2.4591	2.237533	0.123825		
		12.1875	2.0335	2.221233	0.122923		
		13.125	2.1711	2.008233	0.111135		
		14.0625	1.8201	solo media			
		15	2.2767	escluso			

Tabella 2.3: risultati da metodo PSM con elementi SOLID285

Figura 2.16: andamento del SIF lungo lo spessore da metodo PSM con elementi tetra a 4 nodi

2.3.5 Infittimento della mesh.

Come si può notare dai diagrammi in Figura 2.17, tutti i risultati rientrano nel range di errore am messo rispetto al risultato della formula analitica. Nel caso degli elementi tetraedrici i punti effettivamente a disposizione sono pochi, l'eliminazione dei nodi di bordo porta a non conoscere parte dell'effettivo andamento del SIF lungo lo spessore e la parte nota è molto irregolare. Per avere più informazioni e plottare più accuratamente i diagrammi la mesh è stata affinata, ripetendo le simulazioni con dimensione di elemento d=0.75mm. Questa soluzione consente, oltre ad aumentare la densità dei punti, di ridurre gli errori percentuali rispetto alla soluzione analitica di Tada-Paris. Lo studio è stato fatto per confronto anche sugli elementi brick a 8 nodi che non presentano i problemi appena descritti. Dalla Figura 2.17 si può notare come le curve di elementi tetraedrici abbiano un andamento più regolare nella regione di punti calcolati rispetto ai corrispondenti casi di mesh grossolana. In tutti i casi l'errore percentuale viene ridotto (si veda Tabella 2.4).

Confronto PSM con diverse dimensioni di elemento (Plane Strain)

Figura 2.17: andamento del SIF lungo lo spessore in PlaneStrain da metodo PSM al variare della dimensione di elemento d

d=1mm	K1[MPa*m^0.5]	diff% con analitico	d=1mm	K1[MPa*m^0.5]	diff% con analitico
analitico	0.11539	1	analitico	0.11539	1
PSM-SOLID185	0.11871	2.880	PSM-SOLID185	0.11871	2.880
PSM-SOLID187	0.11936	3.443	PSM-SOLID187	0.11936	3.443
PSM-SOLID295	0.12220	5.906	PSM-SOLID295	0.12220	5.906

Tabella 2.4: risultati da metodo PSM con elementi PLANE182

2.3.6 FEM – Peak Stress Method (Plane Stress).

Le simulazioni con il PSM sono state ripetute con uno schema di vincolo più simile al caso reale. I modelli precedenti simulavano uno stato di deformazione piana grazie al doppio vincolo simmetrico sulle superfici laterali del provino (si vedano gli schemi di vincolo in Figura 2.18). Questo impediva qualsiasi effetto di deformazione di Poisson lungo lo spessore. Per passare al vincolo di Plane stress:

- Nei modelli 2D (PLANE182) è sufficiente modificare le impostazioni di elemento passando a *Full* Integration e Plane Stress.
- Nei modelli 3D è stato modificato il vincolo sulla superficie esterna, rimuovendo il vincolo sulle traslazioni.

Si noti che in realtà lo stato di tensione piana vale solo per le superfici esterne del provino, al centro lo stato tensionale è più simile alla deformazione piana. Per semplicità e per distinguerlo dal precedente si è deciso di chiamare comunque questo diverso tipo di vincolo *Plane Stress*.

Figura 2.18: vincoli in plane stress (a) vincoli in plane strain (b)

Analogamente al caso precedente si sono confrontati i risultati per mesh con dimensione di elementi d=1mm e d=0.75mm, i risultati sono riportati in Figura 2.19 e Tabella 2.5. Un ulteriore approfondimento è stato fatto sugli elementi brick a 8 nodi per analizzare l'andamento del SIF in corrispondenza dei nodi di bordo. Come si nota dai grafici in figura 2.20 i risultati dei nodi esterni differiscono molto dal cuore del materiale. Si è visto dalle simulazioni che al diminuire della dimensione di elemento d il K₁ nei nodi esterni continua a diminuire e questi diventano sempre più influenti sul risultato mediato. Dai confronti degli errori % si può notare come nonostante la dimensione di elemento ridotte, quindi, sarebbe opportuno escludere dalla media i risultati dei nodi alle estremità. Nella Tabella 2.6 seguenti si sono mediati i risultati mantenendo tutti i nodi in modo da apprezzare l'aumento dell'errore % nonostante la diminuzione di elemento di risultati con vincoli di Plane Stress e Plane Strain (Figura 2.21, Tabella 2.7).

Figura 2.19: andamento del SIF lungo lo spessore in PlaneStress da metodo PSM al variare della dimensione di elemento d

d=1mm	K1 [MPa*m^0.5]	diff% con analitico	d=0.75mm	$K_I[MPa*m^0.5]$	diff% con analitico
analitico	0.11539	/	analitico	0.11539	/
PSM-SOLID185	0.12001	4.004	PSM-SOLID185	0.11785	2.134
PSM-SOLID187	0.12410	7.546	PSM-SOLID187	0.11917	3.277
PSM-SOLID295	0.12572	8.575	PSM-SOLID295	0.11465	-0.644

Tabella 2.5: risultati da metodo PSM in PlaneStress con dimensione di elemento d=1mm (a), d=0.75mm (b)

Figura 2.20: andamento del SIF alle estremità dello spessore in PlaneStress da metodo PSM con mesh fitta

Tabella 2.6: risultati da metodo PSM in PlaneSress al variare della dimensione di elemento d

Figura 2.21: andamento del SIF lungo lo spessore in PlaneStress e PlainStrain da metodo PSM

	I	Plane Strain	Pla	ne Stress
MODELLI 2D	KI	diff% con analitico	KI	diff% con analitico
analitico	0.11539	/	/	/
definizione	0.11709	1.47393	0.116833	1.2517
PSM PLANE182	0.118713	2.88088	0.126308	9.4629

Tabella 2.7: confronto risultati da metodo PSM in PlaneStrain e PlaneStress

2.3.7 PSM: conclusioni e commenti.

Dall'analisi dei risultati si è osservato come il metodo fornisca ottimi risultati sul calcolodi K_I ; gli errori, infatti, sono sempre inferiori a quelli massimi previsti dall'articolo di calibrazione anche usando la massima dimensione di elemento consentita. Riducendo la dimensione di elemento gli errori percentuali rispetto alla soluzione analitica diminuiscono sensibilmente. Nei modelli in Plane Stress il K_I è variabile lungo lo spessore e si riduce verso le estremità libere, questo porta ad aumentare la differenza percentuale rispetto alla soluzione analitica. Con vincolo di Plane Stress la diminuzione della dimensione di elemento porta alla conseguente diminuzione dei valori di SIF calcolati sulle superfici libere; perciò, sarebbe opportuno trascurarli nel calcolo dell'errore percentuale. I risultati al cuore del provino invece si avvicinano alla stima analitica di K_I .

2.4 FEM – WorkBench Fracture Tool

In questo ultimo caso è stato implementato un modello agli elementi finiti tridimensionale sul software Ansys WorkBench, con l'obbiettivo di valutare il K₁ lungo lo spessore per la lunghezza di cricca iniziale a=4mm. In seguito, il modello è stato parametrizzato per calcolare il valor medio del SIF a diverse estensioni di cricca a, fino alla lunghezza finale a=20mm con passo 1mm. Il *Fracture Tool* è uno strumento già presente in WorkBench chepermette di modellizzare una cricca partendo da unageometria ausiliaria. Il valore del K₁ viene calcolato risolvendo numericamente un integrale di linea lungo vari *Contours*, circonferenze chiuse nell'intorno dell'apice della cricca. Questo metodo di calcolo è detto J-Integral e sfrutta le seguenti formule analitiche (2.6, 2.7):

Ì

$$t_I = \frac{K_I^2}{E^I} \tag{2.6}$$

$$E^{I} = \frac{E}{1 - \nu^2} \tag{2.7}$$

2.4.1 Proprietà del materiale.

Nella sezione *Engeneering Data* è stato scelto un comportamento lineare elastico isotropo definendo modulo di Young e coefficiente di Poisson. Le altre proprietà non necessarie possono essere eliminate.

2.4.2 Geometria.

Per la definizione della geometria (si veda Figura 2.22) è stata usata l'estensione grafica 3D SpaceClaim, già presente in WorkBench. Nella modellazione si è trascurata ogni simmetria del provino, rappresentando quindi il modello completo. Nella geometria sono state aggiunte le linee di applicazione di vincoli e carichi e un piano che rappresenta la cricca di lunghezza iniziale a=4mm, necessario per l'applicazione del *FractureTool*. La dimensione verticale del piano è stata parametrizzata per andare in seguito a simulare diverse lunghezze di cricca.

Figura 2.22: geometria 3D (a), sistema di riferimento della cricca (b)

2.4.3 Generazione della Mesh.

Il *Fracture Tool* richiede elementi tetraedrici con funzioni di forma quadratiche. Dopo aver selezionato il tipo di elemento si imposta una mesh grossolana globale dimensione pari a 3mm, questa non verrà utilizzata per il calcolo del SIF in quanto il FractureTool andrà poi a rimeshare la zona circostante alla cricca. Prima di applicare il tool è necessario definire un sistema di riferimento apposito solidale al piano della cricca e in p articolare con asse x in direzione della propagazione, y normale al piano di cricca. Una volta inserito il *FractureTool* con impostazione *Arbitrary Crack* si definiscono il materiale criccato e il piano della cricca. La dimensione dei nuovi elementi all'apice della cricca non viene scelta direttamente ma si modificano le dimensioni del *Largest Contour Radius*. Per la simulazione è stata scelta una dimensione di raggio pari a 5mm che comporta una dimensione di elemento nella zona di infittimento locale lungo la cricca di 0.5mm (si veda Figura 2.23).

Figura 2.23: mesh di elementi tetra 10, con infittimento locale lungo l'apice di cricca

2.4.4 Vincoli e carichi.

Lo schema di vincoli e carichi è rappresentato in Figura 2.24, 2.25. Sulla prima linea dell'appoggio inferiore si vincola la traslazione lungo Z (carrello), sulla seconda si vincolano traslazioni lungo X e Z (cerniera). Per

vincolare il grado di libertà ancora labile lungo Y si bloccano entrambe le facce laterali del provino simulando una condizione di Plane Strain. Infine, si applicano due forze pari a F/2 in corrispondenza delle linee sulla faccia superiore.

La simulazione è stata in seguito ripetuta in condizioni di Plane Stress. Sono stati quindi rimossi i vincoli sulle superfici laterali. Per eliminare la labilità lungo y è stata vincolata la linea appartenente al piano medio del provino, lasciando così il volume libero di deformarsi.

Figura 2.24: vincoli e carichi applicati in PlaneStrain

Figura 2.25: vincolo sulle traslazioni in direzione y in PlaneStress

2.4.5 Soluzione e post processing.

Una volta risolta la simulazione si è innanzitutto verificata la corrispondenza della deformata con carichi e vincoli applicati (si veda un esempio di configurazione deformata in figura 2.26). Dall'output del *Fracture Tool SIFS(K1)* si può leggere l'andamento del SIF lungo lo spessore calcolato sui vari *contour radius*. Nella lettura dei risultati si è considerato l'ultimo contour, a convergenza.

Gli output sono stati esportati su Excel per analizzarne l'andamento lungo lo spessore e confrontarlo con gli altri metodi FEM già descritti. In seguito (Figura 2.27, Tabella 2.8) si riportano gli andamenti del K₁ lungo lo spessore e le differenze % calcolate rispetto alla formula analitica.

Figura 2.26: configurazione deformata

Figura 2.27: andamento del SIF lungo lo spessore da Fracture Tool in PlaneStress e PlaneStrain

	Plane Strain		Pla	ne Stress
a=4mm	KI	diff% con analitico	KI	diff% con analitico
analitico	0.11539	1	0.11539	1
J-INT	0.11763	1.949	0.1216	5.134

Tabella 2.8: valori medi del SIF lungo lo spessore da metodo J-INT in PlaneStress e PlaneStrain

2.4.6 Infittimento della mesh.

Analogamente a quanto fatto per il modello PSM con elementi *brick* si è studiata l'influenza della dimensione di elemento *d* sul valore di SIF sulle superfici libere dello spessore in caso di Plane stress. Dal grafico in Figura 2.28 si può osservare come agli estremi dello spessore il valore del SIF tenda ad avvicinarsi a quello della formula analitica. Inizialmente si è ipotizzato che infittendo la mesh i due risultati tendessero ad essere coincidenti. Dopo alcune simulazioni si è visto che l'andamento della curva è analogo a quello già visto per elementi brick a 8 nodi con valori numerici di K₁ alle estremità che tendono a diminuire con la dimensione di elemento d. Il valore al cuore del provino resta invece costante. Se si vuole quindi conoscere il valore del SIF al cuore del materiale è bene quindi trascurare gli elementi alle estremità durante il calcolo della media in quanto influenzano sempre di più il risultato al diminuire della dimensione di elemento.

Figura 2.28: andamento del SIF lungo lo spessore da Fracture Tool al variare della dimensione di elemento d

2.4.7 Modello FEM parametrico.

Come descritto nel paragrafo 2.4.2 il piano che rappresenta la lunghezza di cricca è stato parametrizzato per poter ripetere la simulazione a lunghezze di cricca diverse. I modelli utilizzati non sono stati modificati in alcun modo. Dal Fracture Tool si sono scelti come parametri di output i valori di K₁ massimo e minimo lungo lo spessore. In Figura 2.29, Tabella 2.9 sono rappresentati i valori del SIF a varie lunghezze di cricca (da a_i=4mm ad a_f=20mm con passo 1mm) per caso di Plane Stress e Plane Strain, confrontati con i risultati analitici di Tada-Paris [7].

Figura 2.29: andamento del SIF al variare della lunghezza di cricca a

	Plane Strain		Plane Stress	
a	K _{Iavg} [MPa*m ^{0.5}]	diff% con analitico	K _{Iavg} [MPa*m ^{0.5}]	diff% con analitico
4	0.1179	2.183	0.11949	3.552
5	0.1327	2.248	0.13468	3.778
6	0.1482	2.602	0.15033	4.055
7	0.1641	2.493	0.16615	3.755
8	0.1815	2.346	0.18411	3.814
9	0.2005	1.933	0.20274	3.081
10	0.2225	1.703	0.22461	2.652
11	0.2476	1.243	0.24983	2.164
12	0.2779	1.057	0.27987	1.790
13	0.3121	0.196	0.31379	0.738
14	0.3567	0.132	0.35699	0.223
15	0.4109	-0.277	0.41096	-0.267
16	0.4804	-0.663	0.47763	-1.229
17	0.5726	-0.898	0.56688	-1.895
18	0.6975	-1.292	0.69022	-2.324
19	0.8787	-1.378	0.86688	-2.709
20	1.1480	-2.023	1.12904	-3.641

Tabella 2.9: valori medi del SIF al variare della lunghezza di cricca a secondo il metodo J-INT

2.4.8 Fracture Tool - Conclusioni e commenti.

Il J-Integral di ANSYS WorkBench costituisce un ottimo metodo di calcolo per il K₁ con errori inferiori al 2% nel caso di vincolo di *Plane Strain* e inferiore al 6% con vincolo di *Plane Stress*. L'aumento dell'errore è dovuto al fatto che il risultato cambia lungo lo spessore e i valori di estremità sono molto dipendenti dalla dimensione di elemento (analogamente al PSM). Dalla figura 2.28 si osserva infatti l'analogia con il PSM rispetto ai valori della superficie libera che continuano a diminuire con la dimensione di elemento d. Le analisi parametriche per varie lunghezze di cricca diverse da quella iniziale hanno fornito ottimi risultati in accordo con la stima analitica di K₁ a meno del 4%.

CAPITOLO 3 ADDESTRAMENTO ALLE ANALISI NUMERICHE 2: ANALISI ELETTRICHE

In questo secondo addestramento si sono usato modelli elettrici 2D e 3D in ANSYS APDL e WorkBench per stimare la caduta di potenziale tra due punti nel provino al variare della lunghezza di cricca. Le analisi fatte in seguito servono al calcolo delle curve di calibrazione usate durante la prova di propagazione per ottenere con precisione la lunghezza di cricca a partire da una lettura di potenziale elettrico. I vari modelli utilizzati sono stati infine confrontati e sono state calcolate le relative differenze percentuali.

L'obbiettivo è ricavare le differenze di potenziale ΔV in funzione della dimensione di cricca *a*, ovvero la curva di calibrazione del metodo Direct Current Potential Drop (DCPD), in un provino SENB, utilizzando tre diversi approcci:

- Analitico
- Analisi elettriche agli elementi finiti
- Analisi accoppiate strutturali/elettriche agli elementi finiti

Lo schema elettrico e le geometrie del provino sono rappresentati in Figura 3.1.

Figura 3.1: geometria e schema elettrico del provino [3]

Geometria:

- L_p = 108 mm;
- W = 25 mm;
- B = 15 mm (Larghezza);
- 2y = 8 mm;
- $a_i = 4 \text{ mm}$ (dimensione di cricca iniziale);
- $a_{\rm f} = 20 \, {\rm mm}$ (dimensione di cricca finale)

Materiale (acciaio):

- $\rho = 2.10^{-7} \Omega m$ (valida alla temperatura T=20 °C)

Carichi:

- I = 50 A

3.1 Il metodo DCPD

Il metodo DCPD è un metodo non distruttivo che consente di monitorare la lunghezza di cricca attraverso una misura di potenziale [24], lo schema geometrico ed elettrico è rappresentato in Figura 3.1. Facendo fluire la corrente I (50A valore usato nelle prove sperimentali su questa geometria) si misura la differenza di potenziale tra i pin per la configurazione iniziale (a=4mm). La misurazione viene mantenuta durante tutta la propagazione della cricca. All'aumentare della lunghezza di cricca diminuisce la sezione di materiale integra, di conseguenza

aumenta la resistenza (3.2) e per consentire il flusso di corrente (mantenuta costante) si crea una maggiore differenza di potenziale tra monte e valle della cricca (3.1). I risultati vengono rapportati alla differenza di potenziale iniziale.

$$\Delta V = IR \tag{3.1}$$

$$R = \frac{\rho L}{A} \tag{3.2}$$

Queste relazioni valgono per conduttori filiformi con sezione costante e privi di discontinuità. Il parametro ρ è la resistività elettrica (proprietà del materiale e della temperatura), A la sezione di passaggio della corrente e L la lunghezza del conduttore. Una riduzione dell'area di passaggio, essendo questa a denominatore, comporta un aumento della resistenza R e quindi della differenza di potenziale ΔV .

Prima di poter applicare il metodo è necessario conoscere la relativa curva di calibrazione, ovvero la relazione che collega il valore di potenziale misurato a una determinata lunghezza di cricca. La curva deve essere calibrata per una precisa geometria del provino, che comprende anche le posizioni dei pin di corrente e potenziale. Come si vedrà nel seguito del capitolo le curve di calibrazione possono essere relazioni analitiche riportate in letteratura o si possono determinare con analisi FE riportando per ogni lungh ezza di cricca la differenza di potenziale ottenuta dalla simulazione.

In seguito, si riassume con grafici qualitativi lo schema logico su cui è basata la calibrazione del metodo (Figura 3.2). Durante la prova vengono misurate direttamente la differenza di potenziale tra i pin ΔV e il numero di cicli N. La curva di calibrazione contiene l'andamento della differenza di potenziale al variare della lunghezza di cricca *a*. Entrando nella curva di calibrazione con un ΔV noto si ottiene la lunghezza di cricca *a* corrispondente. A questo punto ad ogni valore di potenziale (che era associato a un certo numero di cicli N) corrisponde una certa lunghezza di cricca *a*. Si ottiene così quindi l'andamento della lunghezza di cricca al variare del numero di cicli.

Figura 3.2: schema qualitativo del metodo DCPD

3.2 Metodo analitico

In questo primo caso si è utilizzata la formula analitica di Johnson [25] (3.3) scritta al variare della lunghezza di cricca a (3.4), dove ΔV_0 è la differenza di potenziale elettrico riferita ad una cricca $a = a_0$, mentre ΔV è la

differenza di potenziale elettrico riferita ad una generica cricca di dimensione pari ad a. Le grandezze sono tutte note, sostituendole nella formula si ricava l'andamento del rapporto tra potenziali con la lunghezza di cricca a (Figura 3.3).

$$a = \frac{2W}{\pi} \cos^{-1} \left[\frac{\left(\cosh\left(\frac{\pi y}{2W}\right) \right)}{\cosh\left[\frac{\Delta V}{\Delta V_0} \cosh^{-1} \left(\frac{\cosh\left(\frac{\pi y}{2W}\right)}{\cos\left(\frac{\pi a_0}{2W}\right)} \right) \right]} \right]$$

$$\frac{\Delta V}{\Delta V_0} = \frac{\cosh^{-1} \left[\frac{\cosh\left(\frac{\pi y}{2W}\right)}{\cosh\left(\frac{\pi a}{2W}\right)} \right]}{\cosh^{-1} \left[\frac{\cosh\left(\frac{\pi y}{2W}\right)}{\cosh\left(\frac{\pi a}{2W}\right)} \right]}$$
(3.3)
(3.4)

Figura 3.3: rapporto tra la differenza di potenziale iniziale e quella misurata al variare della lunghezza di cricca

3.3 FEM Elettrico – ANSYS Mechanical APDL

Questa prima simulazione agli elementi finiti è stata implementata in APDL che consente di eseguire analisi elettrice analogamente a quelle meccaniche. I risultati ottenuti per diversi tipi di elemento sono stati confrontati tra loro ed è stato verificato che questi rispettino l'equazione di calibrazione. Le simulazioni sono state ripetute per lunghezze di cricca da $a_0=4$ mm ad $a_f=20$ mm con passo 1 mm.

3.3.1 FEM 2D – Elementi quadrangolari a 8 nodi PLANE230

Preprocessing. Nella sezione *Element Type* si seleziona l'elemento PLANE230 con impostazione *PlaneThickness*, in questo modo si va a simulare con elementi 2D la sezione di attraversamento della corrente. Nella sezione *Material Props* si seleziona: *Material models* \rightarrow *Electromagnetics* \rightarrow *Resistivity* \rightarrow *RSVX=2E-*07. Dalla sezione *Real Constants* si va poi a impostare uno spessore di 15mm.

Geometria. Per definire la geometria si sfrutta la simmetria del provino modellando solo la metà sinistra.

Generazione della mesh. Si è impostata innanzitutto una dimensione globale di elemento di 1mm. I problemi elettrici generalmente non richiedono mesh estremamente fitte come quelli strutturali (si veda la mesh costruita

per ricavare il SIF applicando la definizione, mostrata al paragrafo 2.2.3), tuttavia per la convergenza sono stati fatti due *refinement* lungo la linea di cricca e la linea che separa la cricca dal pin destro (si veda Figura 3.4).

Figura 3.4: mesh di elementi PLANE230 (a), infittimento nella zona di misura del potenziale (b)

Carichi e vincoli. Nelle analisi FEM elettriche ai carichi corrispondono le correnti, ai vincoli i potenziali. Sono stati applicati un vincolo di potenziale *V*=0 V lungo la linea della sezione integra e un carico di corrente I=50A nella linea della superficie esterna (APDL non consente di applicare correnti sulle linee, si è dunque applicata a un keypoint appartenente alla linea e poi è stato fatto un *coupling* dei gradi di libertà lungo quella linea). Vincoli e carichi elettrici sono rappresentati in figura 3.5.

Figura 3.5: carichi e vincoli elettrici

Soluzione e Post processing. A una distanza di y=4mm dalla cricca si misura un potenziale di 304μ V. Per ottenere la differenza di potenziale tra i due pin bisogna considerare anche il potenziale tra la cricca e l'altro pin simmetrico, uguale in valore e opposto in segno, seguendo l'equazione (3.5).

$$\Delta V = V_1 - (-V_2) = 2V_1 \tag{3.5}$$

In seguito (Figura 3.6, Tabella 3.1), si riportano i valori di differenza di potenziale ottenuti per le varie lunghezze di cricca.

Figura 3.6: and amento di ΔV al variare della lunghezza di cricca a

а	∆V [µV]	Diff % WB	Diff % APDL 3D
4	304	0.230	0.257
5	346	0.173	0.000
6	394	0.508	0.508
7	444	0.360	0.450
8	498	0.382	0.402
9	554	0.144	0.000
10	616	0.390	0.325
11	680	0.294	0.294
12	748	0.227	0.267
13	822	0.328	0.243
14	900	0.233	0.222
15	986	0.284	0.203
16	1080	0.324	0.370
17	1184	0.363	0.338
18	1300	0.315	0.308
19	1434	0.356	0.418
20	1590	0.321	0.252

Tabella 3.1: risultati da FEM con elementi PLANE230 con differenze % rispetto agli altri metodi

3.3.2 FEM 3D – Elementi tetraedrici a 10 nodi SOLID232

Per creare il modello si è proceduto analogamente al caso 2D precedente con alcune modifiche. La selezione dell'elemento PLANE232 vincola ad un modello tridimensionale, non è quindi necessario impostare uno spessore di elemento, ma basta estrudere la geometria 2D dello spessore desiderato. Per la modellazione della geometria si è sfruttata la doppia simmetria longitudinale e lungo lo spessore, modellando quindi un quarto del provino SENB. Il vincolo di potenziale nullo è stato esteso all'area integra del provino, quello di corrente è stato esteso all'area di ingresso (Figura 3.7). È fondamentale per misurare la stessa ΔV dimezzare la corrente iniettata nel materiale, poiché sfruttando la simmetria si sta modellando una sezione dimezzata e quindi a resistenza doppia di quella reale (3.6). Si imposta quindi I=25A.

$$\Delta V = \frac{1}{2}I \cdot 2R = I_0 R_0 = \Delta V_0$$
(3.6)

Figura 3.7: vincoli e carichi elettrici

In seguito (Figura 3.7, Tabella 3.2) si riportano i valori di differenza di potenziale ottenuti per le varie lunghezze di cricca.

Tabella 3.2: risultati da FEM con elementi SOLID232

3.4 FEM strutturale-elettrico – ANSYS WorkBench

Il modello elettrico riceve i dati geometrici in input direttamente da quello strutturale (come mostrato nello schema in Figura 3.9, 3.10, 3.11), generalmente anche la mesh viene mantenuta in quanto se è sufficientemente raffinata da soddisfare una analisi strutturale è anche adatta per quella elettrica. Il modello strutturale presentato nel paragrafo 2.4 diventa quindi parte integrante della simulazione elettrica. Con la parametrizzazione della lunghezza di cricca definita in precedenza si sono calcolate le differenze di potenziale per *a* da 4mm a 20mm con passo 1mm.

Figura 3.9: input e output del modello

Figura 3.10: modello strutturale-elettrico in ANSYS WorkBench

Outline	of All Parameters			
	A	В	с	D
1	ID	Parameter Name	Value	Unit
2	🖃 Input Parameters			
3	🖃 📴 Parametrico Fracture Too PlaneSTRAIN (E1)			
4	(p P6	Parameter 1	0	mm 💌
*	lp New input parameter	New name	New expression	
6	Output Parameters			
7	🖃 🚾 Parametrico Fracture Too PlaneSTRAIN (E1)			
8	P7	SIFS (K1) Minimum	1,1729E+05	Pa m^0.5
9	P8	SIFS (K1) Maximum	1,1852E+05	Pa m^0.5
10	🖃 🥘 Electric (F1)			
11	P12	Electric Voltage 2 Average	0,0016049	V
12	P13	Electric Voltage 3 Average	0,0013016	V
*	New output parameter		New expression	
14	Charts			

Figura 3.11: parametri strutturali ed elettrici in ANSYS WorkBench

3.4.1 Proprietà del materiale

Il materiale è lo stesso acciaio utilizzato nella simulazione strutturale a cui viene aggiunta la resistività elettrica $\rho = 2 \cdot 10^{-7} \Omega m$.

3.4.2 Geometria e Mesh

La geometria viene importata dal modello meccanico assieme alla mesh. Si usano elementi tetragonali a 10 nodi con funzioni di forma quadratiche e viene trascurata ogni simmetria. La superficie della cricca resta associata al *Fracture Tool* con impostazione *Arbitrary Crack*. Si noti come la misura del potenziale non avvenga nella zona di mesh molto fitta all'apice della cricca, ma a 4mm dal piano di simmetria. In questa regione la dimensione di elemento è maggiore, ma come si vedrà in seguito la soluzione è sufficientemente accurata.

3.4.3 Carichi e vincoli

Si è applicato un carico di corrente I=50 A sulla faccia all'estremità destra e un vincolo di potenziale nullo sulla faccia all'estremità sinistra (Figura 3.12). Si noti come nei modelli che sfruttavano la simmetria longitudinale il vincolo di potenziale era posizionato sul piano medio. Questo non cambia in alcun modo la soluzione in quanto il risultato cercato è una differenza di potenziale che si mantiene costante.

Figura 3.12: vincoli e carichi elettrici

3.4.4 Soluzione e Post processing

I valori di potenziale mostrati in Figura 3.13 (costanti lungo lo spessore) sono stati confrontati con quelli degli altri modelli. Dal grafico in Figura 3.14 si può notare come gli indicatori siano quasi sovrapposti, la differenza % più elevata è dello 0.5% (Tabella 3.3). La linea continua rappresentata non è un output diretto del modello elettrico ma è stata calcolata inserendo il valore di potenziale iniziale nella formula analitica per ricavare l'andamento di ΔV secondo l'equazione di Johnson.

Figura 3.13: andamento del potenziale lungo il provino

Tabella 3.3: risultati da FEM strutturale-elettrico

1428.9

1584.9

19

20

3.5 Conclusioni e commenti.

Le analisi elettriche svolte con i tre metodi sono in ottimo accordo tra loro. I risultati hanno differenze percentuali contenute sotto all'1%, nei grafici riassuntivi i punti calcolati sono praticamente sovrapposti e coincidenti alla soluzione analitica. La correttezza dei risultati viene mantenuta per tutte le lunghezze di cricca. Si può concludere inoltre che la mesh utilizzata nei casi strutturali è valida anche nei casi elettrici, i problemi strutturali sono più onerosi dal punto di vista computazionale e richiedono mesh più accurate.

3.6 Metodo DCPD nella prova sperimentale.

Nella prova sperimentale si procede esattamente come mostrato nell'addestramento, è necessaria però una ulteriore considerazione. Il segnale di potenziale misurato è influenzato dalle variazioni di temperatura e questo porta quindi a stimare variazioni fittizie della lunghezza di cricca, dovute in realtà a variazioni di temperatura. Vista la durata della prova di propagazione in soglia (circa venti giorni), sono presenti inevitabili variazioni di temperatura el potenziale rispetto alle variazioni di temperatura. Per fare questo si possono usare due metodi:

- applicare il metodo DCPD a due canali di potenziale e fare poi il rapporto tra le misure;
- monitorare la temperatura del provino con una termocoppia e compensare poi la misura di potenziale letto.

3.6.1 Correzione dell'effetto della temperatura con due misure di potenziale.

Figura 3.15: collegamenti dei pin di potenziale

Per quanto riguarda il primo metodo, oltre al primo canale di potenziale X è presente anche un secondo canale Y (Figura 3.15). Il rapporto tra le misure X/Y (3.7) non dipende dalla resistività elettrica, funzione della temperatura.

$$\frac{X}{Y} = \frac{\Delta V_{PD}}{\Delta V_T}$$
(3.7)

Applicando in serie la prima e la seconda legge di Ohm (3.8, 3.9, 3.10) si ottiene un rapporto costante con la temperatura, che dipende solamente dalla geometria del provino.

$$\frac{X}{Y} = \frac{\Delta V_{PD}}{\Delta V_T} = \frac{IR_{PD}}{IR_T}$$
(3.8)

$$\frac{IR_{PD}}{IR_T} = \frac{I\rho\Delta v_{PD}}{I\rho\Delta v_T}$$
(3.9)

Semplificando si ottiene:

$$\frac{X}{Y} = \frac{R_{PD}}{R_T} = \frac{\Delta v_{PD}}{\Delta v_T}$$
(3.10)

3.6.2 Correzione dell'effetto della temperatura con termocoppia.

Prima dell'inizio della prova il provino viene collegato ai cavi di corrente e potenziale e la termocoppia viene posizionata in prossimità dei pin di potenziale. Si avvia l'acquisizione di temperatura e di potenziale X che deve durare per almeno una notte. Il potenziale misurato ΔV_{PD} viene poi diviso rispetto al potenziale iniziale ΔV_0 (3.14) e graficato al variare della temperatura.

$$\Delta V_0 = \rho_0 I \Delta v$$

$$\Delta V_{PD} = \rho I \Delta v \tag{3.11}$$

$$\rho = \rho_0 (1 + \alpha \Delta T) \tag{3.12}$$

$$\frac{\Delta V_{PD}}{\Delta V_0} = 1 + \alpha (T - T_0) = \alpha T + (1 - \alpha T_0)$$
(3.13)

(3.14)

Si noti l'analogia con l'equazione della retta y = mx + q. Da una interpolazione (si veda il codice MATLAB in Appendice A) si ricava il coefficiente α (pendenza del grafico) da inserire nella formula della resistività elettrica per calcolare il valore corretto del potenziale X (3.15).

$$X_{C} = X/(1 + \alpha(T - T_{0}))$$
(3.15)

CAPITOLO 4 ANALISI DI CONFIGURAZIONI A MODO MISTO I+II

Come presentato nel Capitolo 1 è di estremo interesse applicativo studiare la propagazione di cricche a modo misto, è infatti improbabile che un componente reale complesso sia soggetto a carichi esclusivamente monoassiali. I risultati delle prove di propagazione a puro modo I su provini SENB sono già noti e si vuole quindi approfondire lo studio del modo misto I+II.

In letteratura è stato studiato il puro modo I su provini SENB [14] ma non vi sono informazioni sul modo misto per la stessa geometria di provino. Per questo motivo è stato necessario affrontare il problema dall'inizio, per capire con diverse analisi quale sia il metodo più efficace per applicare modo misto sul provino. Un primo ragionamento è stato fatto in termini tensionali, per avere modo I e modo II sulla cricca è infatti necessario che questa sia soggetta a una componente tensionale di flessione assieme a una di taglio. Questa prima idea intuitiva è stata in seguito verificata con simulazioni agli elementi finiti per verificare la corrisp ondenza tra tensioni e SIF. Un ulteriore problema è stato quello di capire le rispettive quantità di modo I e modo II da applicare al provino. In letteratura le informazioni sono poche. Quelle studiate suggeriscono che gli acciai sono similmente sensibili al modo I e al modo II, sebbene i dati a modo II siano molto influenzati dal tipo di prova. Appare quindi ragionevole considerare quali configurazioni a flessione possano fornire valori confrontabili dei SIF K_I e K_{II}.

In questo capitolo si riassume quindi una serie di analisi condotte al fine di determinare la configurazione di prova ottimale per effettuare i test sperimentali di propagazione a fatica in condizioni di sollecitazione multiassiale a modo misto I+II. L'obbiettivo ideale è quello di ottenere una uguale e consistente quantità di modo I e modo II nella sezione della cricca. Con simulazioni FEM si sono calcolati i valori dei SIF per lunghezza di cricca iniziale (a=4mm) per diverse configurazioni di prova. Al termine di questo primo studio teorico si è passati alla valutazione tecnologica dello schema di carico, al fine di verificare l'applicabilità delle soluzioni proposte in ambito sperimentale. Per lo svolgimento dei test di propagazione a modo misto è fondamentale tenere conto delle attrezzature disponibili e delle procedure sperimentali, con tutti i vincoli che queste introducono a una soluzione idealmente ottima.

Tra i requisiti tecnologici per lo svolgimento della prova sono stati considerati:

- 1. Forza necessaria limitata. Il primo limite tecnologico è legato al fatto che le macchine di prova hanno forza massima limitata; pertanto, i carichi per sollecitare il provino vanno opportunamente contenuti entro questo limite. Inoltre, le prove di propagazione a fatica in condizioni di soglia sono molto dispendiose in termini di tempo, essendo la propagazione molto lenta. Usualmente si cerca di contenere i tempi di prova alzando la frequenza; tuttavia, per alzare la frequenza di applicazione del carico è necessario che la corsa dell'attuatore sia limitata. Poiché la corsa dell'attuatore è legata più o meno proporzionalmente alla forza applicata, la condizione di massima frequenza di prova si riassume ancora una volta in una limitazione del carico applicato, questa volta ben al di sotto rispetto a quello massimo consentito dalla macchina. Questo confronto è stato fatto andando a calcolare per ogni configurazione la forza necessaria per avere $K_1 = 1MPa m^{0.5}$ all'apice della cricca.
- 2. Influenza di eventuali errori di posizionamento. Il preciso posizionamento del provino nella macchina di prova è un'operazione complessa e affetta da diversi tipi di errore, ad esempio: disallineamenti della macchina, disallineamenti degli afferraggi, tolleranze dimensionali, vibrazioni. Si è quindi pensato di cercare una configurazione di carico quanto più possibile robusta, capace di minimizzare l'influenza di inevitabili errori. Per questo è da preferirsi una configurazione dove i valori dei SIF sono poco influenzati dalle altre variabili (i.e. sono idealmente costanti al variare dei possibili errori di posizionamento).
- 3. Applicabilità del metodo DCPD. Il metodo DCPD prevede di monitorare la propagazione della cricca da una misura di differenza di potenziale tra monte e valle della sezione criccata. I pin per la misura di potenziale devono essere installati vicini alla cricca (entro circa 4mm) perciò gli appoggi non potranno occupare questa zona. Si è stimata una distanza minima dell'appoggio dalla cricca di 15mm. Questa, oltre a consentire l'installazione sicura dei pin di potenziale, previene effetti di bordo dovuti all'interazione del campo di tensione locale dell'appoggio con la cricca, difficili da studiare.
- 4. Allineamento dell'asse di carico. La macchina di prova è in grado di applicare una forza puramente assiale. Di conseguenza, le forze esercitate sull'attrezzatura dovranno essere inevitabilmente equilibrate. La macchina non è in grado di reagire con una coppia concentrata e bilanciare configurazioni di forze non auto-equilibrate.

Per ciascuna configurazione analizzata è stato riportato un confronto tra i risultati in termini di K delle

simulazioni FEM e gli andamenti di flessione e taglio calcolati con le formule analitiche. Questo per valutare se in prima approssimazione sia sufficiente fare considerazioni sugli andamenti di flessione e taglio per scegliere uno schema di carico, senza ricorrere da subito a simulazioni FEM per calcolare i SIF. Le configurazioni di carico analizzate (Figura 4.1) sono:

- 1. Three point bending-A;
- Four point bending-A;
- 3. Three point bending-B;
- 4. Four point bending-B.

Figura 4.1: configurazioni di carico analizzate. 3PB-A (a), 4PB-A (b), 3PB-B (c); 4PB-B (d)

4.1 Soglia di propagazione ΔK_{th} a modo I e modo II

L'obiettivo di avere una quantità simile di modo I e modo II è ragionevole solo se le soglie di propagazione per cricche a modo I ($\Delta K_{th,I}$) e modo II ($\Delta K_{th,II}$) sono simili. Se ad esempio una soglia è molto maggiore rispetto all'altra, avendo una uguale quantità di modo I e modo II, il materiale sarà sensibile so lo al modo con soglia più bassa e praticamente non risentirà del modo con soglia elevata. In letteratura sono presenti diversi valori sperimentali delle soglie di propagazione per gli acciai. Nel seguito del paragrafo verranno presentati alcuni studi sui valori di soglia tratti dalla letteratura, per verificare se effettivamente i ΔK_{th} sono simili per entrambi i modi, e quindi è ragionevole considerare una configurazione a modo misto ottimale che garantisca una quantità simile di modo I e modo II. Per completezza, quando riportati, si sono inclusi anche i risultati relativi alla soglia di propagazione a modo III.

4.1.1 Vojtek et al. (2013) [26].

Nel paper vengono riportati i risultati sperimentali di diverse geometrie di provino con carichi di modo II e modo misto II+III. In particolare, sono stati utilizzati provini Compact Tension Shear CTS (Figura 4.2) per studiare il modo II e provini cilindrici intagliati per il modo misto II+III (Figura 4.3). Le prove a modo II sono state svolte con rapporto di ciclo R=0.1.

Figura 4.2: provino CTS per prove a modo II [26]

Figura 4.3: provini cilindrici per prove a modo II+III [26]

Nel corso delle prove sperimentali si è osservato come cricche sollecitate a modo II tendano a deviare verso un carico di puro modo I in tutti i tipi di acciaio. I valori di soglia a modo II e modo III sono stati misurati per acciai ferritici e austenitici e confrontati con valori di soglia già noti per modo I. Dai risultati (Tabella 4.1) si può osservare come il comportamento del materiale sia diverso tra i due tipi di acciaio e tra i due modi di carico, in particolare il modo III ha sempre il valore di soglia più elevato e l'acciaio austenitico è più resistente alla propagazione rispetto a quello ferritico. Nell'acciaio austenitico la cricca a modo II ramifica subito verso il modo I, nell'acciaio ferritico invece la cricca a modo II mantiene prevalentemente la direzione iniziale con minimi contributi di modo I. Secondo un modello teorico basato sullo studio della propagazione a modo II e pari a:

$$K_I = 1.15 K_{II}$$
 (4.1)

e assumendo la stessa probabilità di propagare a modo I o modo II vale:

$$\Delta K_{I,th} = 1.15 \Delta K_{II,th} \tag{4.2}$$

Considerando un valore sperimentale di $\Delta K_{I,th} = 2.3 MPa m^{0.5}$ il modello (4.2) fornisce un valore di $\Delta K_{II,th} = 2 MPa m^{0.5}$ vicino a quello misurato sperimentalmente.

$\Delta K_{\text{Heff,th}}$	Ferrite	1.5
$(MPa m^{1/2})$	Austenite	2.5
$\Delta K_{\rm III eff. th}$	Ferrite	2.6
$(MPa m^{1/2})$	Austenite	4.2

Tabella 4.1: risultati sperimentali [26]

I rapporti tra le soglie di propagazione sperimentali trattate nell'articolo sono quindi:

$$\frac{\Delta K_{II_{eff,th}}}{\Delta K_{III_{eff,th}}} = 0.57 \ (ferrite); \quad \frac{\Delta K_{II_{eff,th}}}{\Delta K_{III_{eff,th}}} = 0.59 \ (austenite); \quad \frac{\Delta K_{II_{eff,th}}}{\Delta K_{I_{eff,th}}} = 1.15 \ (austenite)$$
(4.3)

Pokluda et al. (2013) [28].

Il paper riassume i risultati sperimentali di una serie di prove a modo I, modo II e modo III svolte su diverse geometrie di provino per diversi materiali (ferro ARMCO, titanio, nickel, acciaio AISI 4340), tra cui acciaio inossidabile. In particolare, sono stati utilizzati provini con cricche laterali inclinate per il modo misto I+II (Figura 4.4a) e provini a sezione rettangolare sottoposti a four-point bending per il modo misto II+III (Figura 4.4b).

Figura 4.4: piastra con cricche laterali inclinate per prove a modo I+II (a); provino a sezione rettangolare per modo II+III (b) [28]

Dalle prove sperimentali (Tabella 4.2) emerge che per tutti i materiali testati la soglia di propagazione per modo II è circa 1.7 volte inferiore alla corrispondente soglia a modo III. La soglia di propagazione a modo I è generalmente inferiore a quella a modo II, per acciai inossidabili i due valori sperimentali sono molto simili. La propagazione della cricca a modo II e modo III è sensibilmente diversa. Nel caso di prove a modo II, una ulteriore componente di modo I dovuta alla deviazione della cricca dal piano iniziale, accelera la propagazione della cricca verso il modo I dovuta alla deviazione. Gli autori fanno notare inoltre come la determinazione sperimentale della soglia di propagazione a modo II sia particolarmente delicata, in quanto i risultati sono estremamente sensibili a fattori estrinsechi dovuti al tipo di prova sperimentale. In seguito (Tabella 4.3), si riportano i risultati quantitativi delle soglie di propagazione misurate sperimentalmente, di particolare interesse sono quelli relativi all'acciaio inossidabile di cui vengono calcolati i rapporti tra valori di soglia (4.4).

Material	$\Delta K_{\text{IIth,eff}} (\text{MPam}^{1/2})$	$\Delta K_{\rm IIIth, eff} ({\rm MPa}{ m m}^{1/2})$
ARMCO iron	1.5	2.6
Titanium	1.7	2.8
Stainless steel	2.5	4.2
Nickel	2.9	4.3

Tabella	4.2:	risultati	sperimentali	[28]
---------	------	-----------	--------------	------

Material	$\Delta K_{\rm Ieff,th}~({\rm MPam^{1/2}})$		$\Delta K_{\text{IIeff,th}}$ (MPa m ^{1/2})	
	Experiment	Equation ((10a))	Experiment	Equation ((11a))
ARMCO iron	2.7 ⁸⁶	2.5	1.5	1.4
Titanium	2.087,88	2.0	1.7	1.7
Nickel		2.3	2.9	3.1
Stainless steel	2.385	2.5	2.5	2.5*

Table 6 Experimental and theoretical effective thresholds

*Equation (10a).

Tabella 4.3: confronto tra risultati sperimentali e modelli teorici [28]

I rapporti tra le soglie di propagazione sperimentali trattate nel paper per acciaio inossidabile sono quindi:

$$\frac{\Delta K_{IIeff,th}}{\Delta K_{III_{eff,th}}} = 0.59; \quad \frac{\Delta K_{IIeff,th}}{\Delta K_{Ieff,th}} = 1.08$$
(4.4)

4.1.2 Hellier & Zarrabi (2011) [29].

Lo studio riporta i risultati sperimentali di prove a modo II su acciaio dolce, su provini a barra a sezione quadrata con intaglio acuto (Figura 4.5). Le prove sono state svolte con rapporto di ciclo R=0.29 e R=0.15.

Figura 4.5: provini a sezione quadrata [29]

Dalle prove a modo II appaiono due diversi valori di soglia (Figura 4.6). Su un totale di 9 provini, 7 hanno rotto per deviazione della cricca verso il modo I, con un angolo di circa 70° dal piano dell'intaglio. In questo caso è stato misurato un valore della soglia a modo II pari a $\Delta K_{IIth} = 7.3 \pm 1.3 MPa m^{0.5}$. Nei restanti due provini la cricca è propagata a modo II nel piano dell'intaglio e il valore di soglia mostrato è sensibilmente minore, pari a $\Delta K_{IIth} = 3.2 MPa m^{0.5}$.

Figura 4.6: risultati sperimentali [29]

Nella lettera [29] si confrontano poi i valori di soglia trovati sperimentalmente con quelli già ottenuti da altri autori. Il valore di soglia misurato di 7.3 MPa m^{0.5} è in ottimo accordo con altri risultati sperimentali portati da Pook (1977) che stima una soglia a modo II pari a $\Delta K_{IIth} = 7.6 MPa m^{0.5}$ su provini CT con rapporto di ciclo R=0.05. Pook e Greenan (1976) hanno inoltre misurato sperimentalmente la soglia di propagazione di cricche a modo I con rapporto di ciclo R=0.13, pari a $\Delta K_{Ith} = 6.6 MPa m^{0.5}$. Per cricche propaganti nel piano dell'intaglio, i risultati sono in ottimo accordo con Otsuka et al. (1981) che ha ottenuto una soglia di propagazione pari a $\Delta K_{IIth} = 3.7 MPa m^{0.5}$. La soglia di propagaziona a modo II dipende quindi dalla direzione di propagazione della cricca che influenza l'attrito tra le superfici, in seguito (4.5) si riportano i rapporti tra soglia di propagazione a modo I e modo II per i due tipi di propagazione:

$$\frac{\Delta K_{II_{th}}}{\Delta K_{I_{th}}} = 1.15 \text{ (cricche deviate a modo I); } \frac{\Delta K_{II_{eff,th}}}{\Delta K_{I_{eff,th}}} = 0.42 \text{ (cricche rimaste nell'intaglio)}$$

$$(4.5)$$

4.1.3 Pook (1976) [30].

Nell'articolo viene ricavata sperimentalmente la soglia di propagazione a modo II per acciaio dolce, su provini CT a doppio intaglio, con rapporto di ciclo R=0.05.

Figura 4.7: provini CT a doppio intaglio con sistema di afferraggio [30]

La soglia di propagazione a modo II misurata è pari a $\Delta K_{IIth} = 13.6 MPa m^{0.5}$. Durante le prove ci sono state diverse deviazioni delle cricche verso il modo I. La cricca già nella fase di precracking tende a deviare verso il lato esterno del provino, questo introduce errori nella stima di ΔK_{IIth} . A puro modo II le superfici di cricca scorrono l'una sull'altra generando notevoli attriti, specialmente vicino all'apice della cricca. Si è notato che i provini rotti per deviazione della cricca a modo I hanno un limite di fatica più basso in quanto sono presenti meno fenomeni di attrito interno. In questo caso la soglia di propagazione è pari a $\Delta K_{IIth} = 7.6 MPa m^{0.5}$ simile a quella a puro modo I $\Delta K_{Ith} = 6.6 MPa m^{0.5}$. La direzione della cricca durante la prova di propagazione è molto influenzata dalla fase iniziale di precracking. Sono stati fatti quindi test ulteriori senza precracking, con intaglio da elettroerosione, i risultati della soglia a modo II sono leggermente diversi dai precedenti e più simili a quelli relativi al modo I: $\Delta K_{IIth} = 7.0 MPa m^{0.5}$. Questo è imputabile al fatto che l'elettroerosione causa difetti orientati casualmente che potrebbero deviare la cricca verso il modo I. I rapporti tra i valori di soglia misurati sono quindi:

$$\frac{\Delta K_{II_{eff,th}}}{\Delta K_{I_{eff,th}}} = 2.06 \text{ (propagazione a modo II)}; \\ \frac{\Delta K_{II_{eff,th}}}{\Delta K_{I_{eff,th}}} = 1.15 \text{ (cricche deviate a modo I)};$$

$$\frac{\Delta K_{II_{eff,th}}}{\Delta K_{I_{eff,th}}} = 0.92 \ (cricche \ deviate \ senza \ precricca \ iniziale)$$

(4.6)

4.1.4 Conclusioni.

Dai risultati sperimentali presenti in letteratura appare evidente che i valori di soglia (in particolare quella a modo II) sono tutt'altro che univoci, dipendono molto dal tipo di prova con cui sono stati determinati. In generale si può però concludere che è ragionevole considerare un valore simile della soglia di propagazione per modo I e modo II (con soglia a modo II leggermente più alta). Nella seguente ricerca di una configurazione di carico per condurre prove a modo misto I+II si assume quindi come ottima quella che garantisce una uguale quantità di modo I e modo II. Un altro punto fondamentale che emerge dai paper è il fatto che la cricca anche se soggetta a carichi iniziali di modo misto I+II tende a propagare verso una condizione di prevalente modo I. Sarà perciò necessario approfondire le modalità di propagazione di cricche a modo misto, in quanto si vuole mantenere la componente di modo II il più a lungo possibile nel corso della prova. In seguito, vengono riportate le analisi agli elementi finiti svolte per cercare uno schema di carico ottimale.

4.2 Modello FEM

Le analisi agli elementi finiti sono state implementate nel software ANSYS WorkBench e i dati di output elaborati in Excel. Si sono utilizzati modelli geometrici 3D senza sfruttare le simmetrie del provino, la cricca è stata modellata attraverso il *Fracture Tool* di WorkBench.

4.2.1 Geometria e mesh.

La geometria è stata definita in *SpaceClaim*; oltre al provino SENB 108x25x15 è necessario modellare la cricca come piano ausiliario, posto a metà del provino. Si è impostata una mesh grossolana (3mm) di elementi tetraedrici a 10 nodi. Il *Fracture Tool* esegue poi un infittimento automatico (fino a 0.2mm) localizzato lungo l'apice della cricca (Figura 4.8).

Figura 4.8: mesh con Fracture Tool

4.2.2 Vincoli e carichi.

Le forze sono state applicate lungo linee, la cui posizione varia in funzione della configurazione studiata, analogamente per i vincoli in direzione X, Y di appoggio e carrello. Le superfici laterali del provino sono state vincolate lungo la direzione Z per simulare una condizione di deformazione piana (Figura 4.9).

Figura 4.9: esempio di vincoli e carichi

4.2.3 Soluzione e post processing.

Il *Fracture Tool* è stato inserito anche nella soluzione, in modo da ottenere l'andamento dei SIF lungo lo spessore. Questi, visto il vincolo di Plane strain, sono costanti lungo lo spessore (a meno di rumore numerico), si sono quindi impostati come parametri di output output i valori massimi e minimi dei SIF. Questi sono stati poi rielaborati su Excel per ottenere i grafici mostrati in seguito. In Figura 4.10 è mostrata una configurazione deformata presa da uno dei modelli parametrici.

Figura 4.10: esempio di configurazione deformata

4.3 Configurazione Three point bending A

4.3.1 Schema.

In questo primo caso si considera il provino SENB di dimensioni 108x25x15mm con cricca centrale di 4mm. Gli appoggi sono posti simmetricamente rispetto alla cricca ognuno a 45mm dalla cricca (Figura 4.11). Il problema è stato studiato al variare di X, posizione della forza rispetto al piano di simmetria del provino. La forza è costante pari a 1kN.

Figura 4.11: schema 3PB-A

4.3.2 Risultati.

Dalle simulazioni FEM parametriche si calcola il valore dei SIF K_I e K_{II} al variare della posizione della forza, mantenendo il modulo costante pari a 1kN. In Figura 4.12 si riportano i risultati ottenuti per K_I , K_{II} , K

4.3.3 Commenti e conclusioni.

Dai risultati si nota subito come il K_{II} sia molto minore rispetto al K_{I} , praticamente trascurabile. Questa modalità di carico non è ottimale per condurre prove a modo misto, il massimo rapporto tra i SIF è infatti di circa di 1 a 20. Si procede quindi oltre scartando da subito questa configurazione.

4.3.4 Confronto SIF-tensioni.

Nei grafici in Figura 4.13 si riportano gli andamenti normalizzati di tensioni e SIF per valutare se questi corrispondono. Le tensioni sono state calcolate con le formule della meccanica dei solidi per trave a sezione rettangolare priva di cricca. Tutti i valori sono stati normalizzati rispetto a quelli in posizione x=30mm in quanto sufficientemente distanti dalla sezione di cricca, e quindi poco influenzati da effetti di bordo. Si può notare come la tensione flettente abbia un andamento analogo al K₁ mentre il K₁₁ differisce dal taglio intorno

all'origine. A differenza del taglio, il K_{II} calcolato da FEM non presenta una discontinuità ma continua a crescere fino a raggiungere poi la pendenza della retta del taglio. Dai grafici si nota quindi come la sezione di cricca crei effetti di bordo non previsti dalle formule analitiche. In particolare, la formula di Jourawsky per il taglio non permette di cogliere il punto a pura flessione x=0 e sovrastima il taglio sulla sezione della cricca rispetto al modello FEM, che ha un andamento continuo.

4.3 Configurazione Four Point Bending A

4.3.1 Schema.

Si considera il provino SENB di dimensioni 108x25x15mm con cricca centrale di 4mm. Gli appoggi sono posti simmetricamente rispetto alla cricca ognuno a 45mm dalla cricca. Le forze sono poste a 25mm simmetricamente rispetto alla cricca (Figura 4.14). La variabile studiata è il rapporto $C = F_1/F$, mantenendo la forza totale costante F = 1kN.

Figura 4.14: schema 4PB-A

4.3.2 Risultati.

Dalle simulazioni FEM parametriche si calcola il valore dei SIF K_I e K_{II} al variare del rapporto C, mantenendo un modulo di forza costante pari a 1 kN e le posizioni degli appoggi costanti. In Figura 4.15, si riportano i risultati ottenuti per K_I, K_{II}, K_{II}, F.

4.3.3 Commenti e conclusioni.

Dai risultati si nota innanzitutto come il K_{II} è molto minore rispetto al K_{I} , si può già concludere che lo schema di carico non è adatto a studiare il modo misto.

Per un rapporto $F_1/F = 0.5$ la configurazione è equivalente a un 4PB simmetrico, quindi con puro modo I. I casi estremi con $F_1/F = 0 e F_1/F = 1$ equivalgono a configurazioni 3PB con un'unica forza applicata a 25mm dal piano della cricca (Figura 4.16). Il valore di K_I resta costante a variare del rapporto F_1/F in quanto la forza totale è la stessa, e al variare di F_1/F cambia solo la sua distribuzione tra i due punti di carico. Il valore di

tensione nella sezione della cricca resta quindi invariato.

Figura 4.16: equivalenza con 3PB-A

4.3.4 Confronto SIF-tensioni.

Per quanto riguarda il confronto tra tensioni normalizzate e SIF normalizzati del modello FEM, c'è perfetto accordo con gli andamenti, indipendentemente dal punto scelto per la normalizzazione (Figura 4.17). Questo avviene perché i punti di applicazione delle forze restano sempre gli stessi (cambia il modulo) e sono sufficientemente lontani dalla cricca per evitare effetti di bordo.

Figura 4.17: confronto SIF-tensioni

4.4 Configurazione Three Point Bending B

4.4.1 Schema.

In questo caso si considera il provino SENB di dimensioni 108x25x15 mm con cricca centrale di 4mm. L'appoggio di destra è fissato a 45mm dalla cricca mentre la posizione dell'appoggio di sinistra è definita dalla variabile *Y*, con origine fissata a 45mm dalla cricca (Figura 4.18). La posizione della forza rispetto all'asse di cricca è definita dalla variabile *X*, il modulo della forza è costante pari a 1kN.

Figura 4.18: schema 3PB-B

4.4.2 Risultati.

Dalle simulazioni FEM parametriche si calcola il valore dei SIF K_I e K_{II} al variare della posizione della forza e dell'appoggio sinistro, mantenendo un modulo di forza costante pari a 1 kN e la posizione dell'appoggio destro. In Figura 4.19, si riportano i risultati ottenuti per K_I, K_{II}, K_{II}/K_I, F. I risultati sono stati graficati al variare di *Y* in quanto più influente sugli andamenti studiati rispetto a *X* (parametro nei grafici).

4.4.3 Commenti.

Dall'analisi dei risultati si nota come, diversamente dalle precedenti, questa configurazione di 3PB consenta di ottenere valori consistenti dei SIF per modo I e II. In particolare, il K₁ diminuisce all'aumentare di *Y* perché l'appoggio è sempre più vicino alla cricca, e diminuisce all'aumentare di *X* perché la forza si allontana dalla cricca. La variazione dovuta a Xè di secondaria importanza rispetto a quella della variabile *Y*. Il SIF K_{II} aumenta esponenzialmente con *Y* e analogamente al K₁ diminuisce con *X*. Con questa configurazione si potrebbe

idealmente ottenere un rapporto tra i SIF che varia tra zero e infinito; quindi, da una prima analisi la configurazione appare promettente per condurre prove a modo misto. Si prosegue quindi analizzandone l'effettiva applicabilità tecnologica.

4.4.4 Conclusioni.

L'andamento di entrambi i SIF è molto sensibile alla variazione di Y(anche K_{II} in quanto l'unico tratto utile è quello a Y elevate). Eventuali errori di posizionamento porterebbero quindi a errori non trascurabili in K₁ e ancora più grandi in K_{II} che cresce esponenzialmente nella regione di interesse. Da questo punto di vista il tratto a bassa pendenza di K_{II} sarebbe migliore ma di scarso interesse vista l'intenzione di eseguire prove a modo misto. All'aumentare di Y inoltre crescono notevolmente le forze necessarie a parità di K₁. Sebbene queste possano sembrare relativamente contenute bisogna considerare che le prove possono richiedere anche $K = 8 \div 10 MPa \cdot m^{0.5}$, questo comporta forze troppo elevate per mantenere frequenze sufficientemente alte, e quindi durata delle prove quanto più ridotta possibile. Per avere K_{II} elevato è necessario aumentare Y e quindi avvicinare l'appoggio alla cricca, dal grafico del rapporto tra i SIF si nota come per Y<45mm questo sia ancora basso (circa 0.2). Non sarebbe quindi possibile installare il collegamento dei cavi per la misura di potenziale del DCPD (Figura 4.21). In Figura 4.20 si può apprezzare dal modello CAD 3D la posizione reciproca di provino e appoggio.

La configurazione viene scartata. Questo metodo di carico tuttavia (con il dovuto approfondimento sul campo di tensione locale creato dall'appoggio nei pressi della cricca) può rivelarsi utile per studi diversi da quello in esame, visto il possibile consistente modo II rispetto al modo I.

Figura 4.20: interferenza tra appoggio e collegamento dei pin di potenziale

Figura 4.21: SENB 108x25x15 con pin di potenziale

4.4.5 Confronto SIF-tensioni.

In questo caso gli andamenti di SIF normalizzati e tensioni normalizzate sono coerenti. I grafici sono stati normalizzati rispetto ai valori a Y=0mm, ben distanti dalla cricca. Si noti come l'andamento dei SIF (Figura 4.22) coincide con quello delle tensioni finché calcolati lontani dalla cricca, per Y elevate l'effetto di bordo è molto influente e non vale più il campo di tensione nominale.

Figura 4.22: confronto SIF-tensioni (a), (b), effetto di bordo (c), (d)

4.5 Configurazione Four Point Bending-B (geometria 108x25x15mm)

4.5.1 Schema.

In questo caso si considera il provino SENB di dimensioni 108x25x15 mm con cricca centrale di 4mm. Le forze applicate sono diverse in modulo e asimmetriche rispetto al provino, gli appoggi sono asimmetrici. Le posizioni delle forze e degli appoggi variano e di conseguenza varia la posizione dell'asse di carico rispetto a quello della cricca (Figura 4.23). Sono state identificate le seguenti grandezze che descrivono il problema:

- **x**: distanza tra asse della cricca e asse di carico;
- S_{max}: distanza tra punto di applicazione della forza e appoggio alle estremità del provino
- S_{min}: distanza tra punto di applicazione della forza e appoggio interni.

Con riferimento allo schema in Figura 4.23 si possono scrivere:

$$S_{max} = \xi_1 + \xi_4 \tag{4.7}$$

$$S_{min} = \xi_2 + \xi_3 \tag{4.8}$$

Figura 4.23: schema 4PB-B

Dalle simulazioni FEM parametriche si calcolano i valori dei SIF K_I e K_{II} al variare delle grandezze sopra descritte, mantenendo un modulo di forza totale costante pari a 1 kN. Le simulazioni sono state svolte in maniera parametrica andando a mappare l'andamento dei SIF al variare dei tre parametri. La variabile più importante x è stata scelta come ascissa e le distanze S_{max} e S_{min} come parametri. Le forze applicate sono state calcolate in modo da garantire una certa distanza x tra asse di carico e asse di simmetria, con la regola della leva inversa. Per garantire l'equilibrio anche le distanze tra forze, appoggi e l'asse di carico devono essere simmetriche. I requisiti dimensionali per l'equilibrio sono riassunti in seguito nelle equazioni (4.9-4.16). Equilibrio delle forze:

 $\xi_2 + x = \xi_3 - x$

$$F_1 = F_4 \tag{4.9}$$

$$F_2 = F_3 \tag{4.10}$$

$$F_1 + F_2 = F_3 + F_4 \tag{4.11}$$

Equilibrio dei momenti:

$$\xi_4 + x = \xi_1 - x \tag{4.12}$$

$$\xi_t + \xi_2 = \xi_2 + \xi_t \tag{4.13}$$

$$F_1(\xi_1 - x) = F_2(\xi_2 + x)$$
(4.15)

$$F_3(\xi_3 - x) = F_4(\xi_4 + x)$$

Si è scelto un intervallo di variabilità per x [1-20] mm, S_{max} [50-100] mm, S_{min} [30-80] mm. La lunghezza del provino di 108 mm limita i possibili valori di x e S_{max} in quanto gli appoggi esterni rischiano di scivolare dal provino se questi sono posizionati troppo vicino al bordo. La dimensione S_{min} minima è invece dovuta alla possibilità di installare i pin per la misura di potenziale necessari per l'applicazione del metodo DCPD. Non si sono quindi studiati valori oltre questi limiti dimensionali del provino.

4.5.2 Risultati.

Come detto in precedenza la variabile x è stata riportata come ascissa in quanto di maggiore rilevanza sui risultati. Il parametro S_{min} è graficato con diversi colori, il parametro S_{max} è graficato con diversi indicatori. Si noti già come in alcuni casi risulta difficile distinguere le varie curve vista la minima influenza di alcuni parametri (Figura 4.24, 4.25).

Figura 4.24: risultati 4PB-B geometria 108x25x15, K_I (a), K_{II} (b)

Figura 4.25: risultati 4PB-B geometria 108x25x15, $K_{II}/K_I(a)$, $F_K_I(b)$

4.5.3 Commenti.

Nelle Figure 4.24, 4.25 si può osservare l'andamento completo di tutti e le variabili.

- Il SIF K_I (Figura 4.24a) aumenta linearmente con x, partendo da valori circa nulli. Si nota inoltre al crescere di x una dipendenza anche dagli altri parametri, K₁ aumenta al crescere di S_{max} e diminuisce al crescere di S_{min}. Da queste considerazioni si può concludere che per massimizzare il K₁ è necessario il minimo S_{min} e il massimo S_{max}. Con forza applicata di 1kN si ottengono valori di K₁ al massimo di circa 0.4 MPa m^{0.5}.
- Il SIF K_{II} (Figura 4.24b) è praticamente costante con x, trascurando una leggera variazione per x elevati dovuta a effetti di bordo. K_{II} inoltre aumenta al crescere di S_{max} e diminuisce al crescere di S_{min}. Visto l'andamento costante i valori di K_{II} massimi sono intorno ai 0.09 MPam^{0.5}. Questo valore può sembrare molto inferiore se comparato al massimo K_{II}, però per valori di x contenuti i due SIF diventano confrontabili. Questo non viene subito colto dai grafici che per facilitare la visualizzazione dei vari parametri hanno due scale in ordinata diverse. In seguito si riportano per confronto anche due casi di esempio con stessa scala per apprezzare anche graficamente la relazione tra le due grandezze (Figura 4.26).
- Il rapporto tra K_{II}/K_I (Figura 4.25a) ha un andamento esponenziale e cresce al diminuire di x, idealmente può variare da valori nulli fino a infinito. Il valore infinito del rapporto non deve però fa pensare a SIF elevati, questo è invece dovuto al K_I che tende ad annullarsi per x ridotti. L'andamento di K_{II}/K_I è poco influenzato daglialtri parametri, e la dipendenza si fa sempre meno forte all'aumentare di x. Si noti comunque che K_{II}/K_I aumenta al crescere di S_{min} e diminuisce al crescere di S_{max}
- Il valore di forza F_K_I (4.25b) necessaria per avere K₁ unitario all'apice di cricca ha andamento esponenziale e cresce al diminuire di x. La dipendenza dagli altri parametri è molto forte. La forza aumenta con S_{min} e diminuisce con S_{max}. Da questo si può concludere che per minimizzare le forze necessarie è necessario assimizzare x, massimizzare S_{max}, minimizzare S_{min}. La minima forza raggiungibile con questa configurazione è di circa 3 kN.

In tutti i grafici si noti come il numero di punti calcolati diminuisce all'aumentare di S_{max}. Questo avviene perché valori sempre più elevati di S_{max} limitano i possibili disallineamenti, altrimenti gli appoggi escono dal provino.

Figura 4.26: confronto tra i SIF con uguale scala in ordinata

4.5.4 Conclusioni.

I risultati sembrano promettenti, non solo la configurazione consente di variare molto il rapporto tra i SIF, ma il K_{II} resta costante per buona parte dell'intervallo di *x*, eventuali errori di allineamento andrebbero quindi a influenzare solo il K_I. I risutati ottimali si hanno scegliendo i valori estremi di S_{max} massimo e S_{min} minimo, mentre resta da scegliere il valore di x. In odirdine di importanza le variabili sono: *x*, S_{min}, S_{max}. Variando *x* non cambia la pendenza di K_I e quindi l'influenza di eventuali errori, ma diminuisce molto la forza necessaria. L'installazione dei cavi per il DCPD è garantita dal limite inferiore di S_{min} scelto pari a 30mm, considerando poi anche lo spostamento x dell'asse di carico (e quindi dell'appoggio) rispetto all'asse di simmetria aumenterebbe ulteriormente lo spazio a disposizione.

Con questa geometria di provino appare però evidente (Figura 4.27) che le forze sono troppo elevate: anche sacrificando il K_{II} rispetto a K_I (x elevati) si ottengono forze troppo alte, che limiterebbero molto la frequenza della macchina di prova. Si sceglie quindi una geometria alternativa, più sottile, in modo da ridurre le forze necessarie a parità di K. Le simulazioni vengono ripetute allo stesso modo con una geometria di provino

108x16x10 mm, di cui si riportano i risultati nel prossimo paragrafo.

4.5.5 Confronto SIF-tensioni.

Gli andamenti normalizzati di SIF e tensioni sono coerenti (Figura 4.28), in particolare per x ridotti. All'aumentare di x la cricca si avvicina sempre più al punto di applicazione della forza, con conseguenti effetti di bordo.

Figura 4.28: confronto SIF-tensioni

4.6 4PB-B geometria 108x16x10.

4.6.1 Commenti e conclusioni.

Gli andamenti visibili in Figura 4.29, 4.30 sono gli stessi del caso precedente per tutte le variabili studiate. In particolare, il rapporto K_{II}/K_{II} ha un'influenza praticamente trascurabile rispetto a S_{max} e S_{min} e anche i valori dei SIF sono più compatti. Le differenze più significative sono quelle sui valori assoluti. A parità di forza applicata (F=1kN) aumentano i K massimi: $K_{I max} = 1.3$ MPa*m^{0.5}, $K_{II max} = 0.3$ MPa*m^{0.5}. Di conseguenza si riducono anche le forze a parità di K, con una forza minima intorno a 1kN, molto minore del caso precedente. Come già discusso, l'andamento dei SIF è accettabile, (K_{II} è addirittura costante), il DCPD è applicabile, la configurazione è in equilibrio e la forza può essere ridotta a valori tecnologicamente applicabili senza rivista è quindi **la migliore tra quelle proposte** per una prova di propagazione a modo misto.

A questo punto appare evidente (Figura 4.31) come le soluzioni migliori per questa particolare prova siano quelle con $S_{min}=30$ mm in quanto riducono le forze necessarie, si procede quindi andando a selezionare tra queste quella ottimale.

Figura 4.29: risultati 4PB-B geometria 108x16x10, K_I (a), K_{II} (b)

Figura 4.30: risultati 4PB-B geometria 108x16x10, $K_{II}/K_I(a)$, $F_K_I(b)$

Per definire le altre variabili si osserva che quella più importante è x, in quanto varia molto i valori dei SIF e di conseguenza la forza necessaria. La variabile S_{max} invece è poco rilevante, in particolare per bassi x. La scelta di x è un compromesso tra riduzione della forza necessaria ma anche del rapporto tra i SIF. Scegliendo x molto basso (ad esempio x=2) si ottiene K₁ circa uguale a K₁₁, ma la forza cresce esponenzialmente. Al contrario, scegliendo x più alto (ad esempio x=10) si ottiene una forza molto ridotta ma K₁ molto maggiore di K₁₁. Si sceglie quindi x=5mme S_{max}=90mm. Con questa particolare configurazione si ottiene un rapporto K₁₁/K₁=0.42 e una forza a parità di K di F=1.33 kN. Si noti dalla Figura 4.32 come le forze siano sensibilmente ridotte rispetto al caso precedente.

Figura 4.32: forza limite F=3kN per geometria 108x16x10

4.6.2 Scelta finale.

In seguito (Figura 4.33), vengono riportati nel dettaglio gli andamenti della configurazione di carichi e appoggi scelta al variare di x.

Figura 4.33: risultati per S_{min} =30mm, S_{max} =30mm con geometria 108x16x10

Nei grafici in Figura 4.34 sono rappresentati gli andamenti delle variabili studiate in un intorno di x=5mm con passo 0.1 mm per simulare la variazione di K_I, K_{II}, K_{II}/K_I, F dovuta a piccoli errori di disallineamento. Da questi grafici si può apprezzare ancora meglio la bontà della soluzione in termini di K_{II}, in quanto è praticamente insensibile a eventuali errori del setup sperimentale. Si noti inoltre che le scelte fatte sugli S hanno consentito di ridurre le forze agenti (rendendo tecnologicamente possibile la prova) ma hanno portato a scegliere le rette di K_I a maggiore pendenza, quindi le più sensibili a eventuali errori. Altri valori di S_{min} sono comunque assolutamente da scartare perché rendono necessarie forze quasi doppie.

Figura 4.34: influenza sui parametri degli errori in x

4.7 Conclusioni e commenti finali

Tra le configurazioni studiate il 3PB-A e 4PB-A sono state scartate subito in quanto il modo II era praticamente trascurabile rispetto al modo I. La configurazione 3PB-B pur essendo teoricamente possibile (garantisce valori dei SIF molto variabili) di fatto non può essere applicata nella realtà sperimentale ed è stata quindi scartata. Tra le configurazioni proposte quella valutata come migliore dal punto di vista teorico e applicativo è il Four Point bending-B con geometria 108x16x10 mm. Questa soddisfa i requisiti della prova e del macchinario utilizzato: le forze sono equilibrate, c'è sufficiente spazio per i pin di potenziale, la forza necessaria è raggiungibile. Bisogna però tenere presente che questa è una soluzione di compromesso. La forza necessaria è comunque elevata in quanto nella prova sperimentale si andranno ad applicare $K \cong 8 \div 10$ MPa \sqrt{m} . Il K_{II} non è influenzato da errori di posizionamento ma K_I è molto variabile e la soluzione che minimizza la forza contribuisce ad aumentare ulteriormente la pendenza di K_I.

Dal confronto tra gli andamenti dei SIF e delle tensioni nelle varie configurazioni si può concludere che l'analisi delle tensioni generalmente permette di studiare l'andamento di K₁ e K₁₁ ancora prima di condurre analisi FEM. Bisogna fare però particolare attenzione agli effetti di bordo che modificano sensibilmente l'andamento dei K rispetto alle tensioni nominali.

4.8 Verifica del calcolo di K_I in ANSYS Mechanical APDL

Per verificare la correttezza dei SIF calcolati con il *Fracture Tool* di ANSYS WorkBench si è fatto un confronto ripetendo l'analisi in un modello 2D in APDL. Si sono scelte a titolo di esempio due configurazioni: la prima è quella di 4PB scelta in precedenza (*x*=5mm), la seconda è lo stesso 4PB con *x*=0mm.

4.8.1 Preprocessing.

Si sono innanzitutto definite le proprietà del materiale E=206000 MPa e ν =0.3. Si sono scelti elementi quadrangolari a quattro nodi PLANE182 impostando uno spessore di 10mm.

4.8.2 Geometria e Mesh.

Si è rappresentato il provino SENB 108x15mm (Smax=90mm, Smin=30mm) in 2D senza sfruttare alcuna

simmetria. La cricca è stata modellata a partire dall'apice con un angolo di apertura di 0.1°. Per la generazione della mesh si è impostata una dimensione di elemento globale di 0,75mm, mentre nella zona intorno all'apice della cricca si è ripetuto il metodo di meshatura polare (riportato per esteso nel paragrafo 2.2.3), fino ad una dimensione minima della circonferenza di centro l'apice di cricca di 0.01mm (Figura 4.35).

Figura 4.35: mesh con infittimento polare all'apice della cricca

4.8.3 Carichi e vincoli.

Vincoli e carichi sono stati applicati sui *keypoints* che rappresentano le posizioni degli appoggi. Si sono applicate $F_1=250N$ e $F_2=750N$. Per il vincolo di appoggio si sono vincolati tutti i gradi di libertà del *keypoint* (X=0, Y=0), per il vincolo di carrello si sono vincolate le traslazioni lungo Y. Si veda lo schema di vincoli e carichi in Figura 4.36.

Figura 4.36: carichi e vincoli applicati

4.8.4 Solution e Post processing.

Una volta risolto il modello si è creato un path lungo la direzione *s* della cricca partendo dall'apice e avendo cura di selezionare manualmente solo i nodi (Figura 4.37). Il path così creato conterrà solo soluzioni nodali esatte e non interpolate. Si procede quindi mappando i valori di tensione in direzione *X* sul path appena creato ed esportando i risultati in Excel (Figura 4.38).

Figura 4.37: schema del modello con coordinata s

Figura 4.38: confronto tra K_1 calcolati da Fracture Tool e con definizione con relative differenze % per geometria 4PB con x=5mm e x=0mm

4.8.5 Commenti.

Dall'analisi dei risultati si nota come i valori di K_1 calcolati applicando la definizione in APDL siano in ottimo accordo con il K_1 calcolato dal Fracture Tool per entrambe le configurazioni. Visto che i SIF sono graficati in scala logaritmica si è preferito rappresentare al contempo la differenza percentual e tra le due soluzioni sull'asse secondario (lineare). Si noti come nella zona di interesse l'errore commesso è ben inferiore all'1% in entrambi i casi. Si può quindi concludere che il K_1 calcolato è corretto.

4.9 Rimozione del vincolo di plane strain

I modelli FEM utilizzati prevedevano che il provino avesse un vincolo di appoggio, carrello e un vincolo sulle traslazioni delle superfici laterali (Figura 4.9). Questo ultimo vincolo simula uno stato di deformazione piana ed è stato scelto per semplificare le analisi parametriche. Visto però lo spessore ridotto del provino SENB si è fatto per confronto uno studio sulla configurazione ottimale con un vincolo più simile alle condizioni reali.

4.9.1 Vincoli aggiornati.

Il modello è il medesimo ma viene rimosso il vincolo di spostamento sulle superfici laterali e sostituito con un vincolo analogo lungo una linea sul piano di simmetria del provino (Figura 4.39). In questo modo i SIF non sono più costanti lungo lo spessore perché questo non è vincolato. La superficie esterna di materiale si trova in uno stato tensionale simile alla tensione piana mentre procedendo all'interno dello spessore lo stato tensionale è sempre più simile alla deformazione piana.

Figura 4.39: confronto tra vecchio e nuovo vincolo in direzione z

4.9.1 Risultati e commenti.

Come previsto i valori dei SIF variano lungo lo spessore del provino. In particolare, si osservano sensibili variazioni agli estremi dello spessore. Questi punti, come visto nel paragrafo 2.4.6 non sono da ritenersi affidabili in quanto correlati alla dimensione di elemento della mesh, al diminuire della dimensione di elemento i valori nell'intorno della superficie libera diminuiscono. Al cuore del provino i risultati sono comunque costanti a meno di rumori numerici. Nei grafici in Figura 4.40 si è riportato per confronto l'andamento dei SIF e del loro rapporto lungo lo spessore con le rette dei risultati con vincoli di plane strain.

Figura 4.40: confronto con risultati costanti in Plane Strain (a), zoom al cuore e in superficie (b)

In Tabella 4.1, si riportano per confronto le differenze percentuali tra i valori di K e del rapporto calcolato con vincolo di plane strain e con il vincolo aggiornato. Una prima stima è stata fatta considerando i valori estremi K_{I max} e K_{II min} (che a meno di rumore numerico corrispondono a quelli al cuore del materiale). Un secondo confronto è stato fatto calcolando un valore di K_I e K_{II} mediato tra i punti al cuore del provino (si è scelto uno spessore di 2mm da 4mm a 6mm).

	$K_I [MPa m^{0,5}]$	$K_{II}[MPa m^{0,5}]$	K_{II}/K_I	diff% K1	$diff\%K_{II}$	diff% K _{II} /K _I
plane strain valori estremi valori medi	0,757	0,308	0,406	/	/	/
	0,709	0,321	0,452	-6,399	4,215	11,340
	0,704	0,325	0,462	-7,109	5,633	13,721

Tabella 4.1: valori di K con relative differenze percentuali rispetto al caso di Plane Strain

Nella tabella dei risultati si osserva in maniera quantitativa quanto già visibile nei grafici. Modificando il tipo di vincolo il K₁ diminuisce e al contrario il K₁₁ aumenta. Il rapporto tra i K varia al massimo dell'11% rispetto al valore precedente. Questa variazione per quanto consistente è positiva per gli obbiettivi del progetto; il rapporto infatti aumenta in quanto si ha una maggiore quantità di modo Il rispetto al modo I. Bisogna comunque tenere presenta che grazie alla modifica dei vincoli l'andamento dei SIF si avvicina a quello reale ma non è il medesimo. Il valore delle differenze percentuali calcolate, come si può notare nella tabella, è molto influenzato da quale K si considera lungo lo spessore.

CAPITOLO 5 CRITERI DI PROPAGAZIONE A MODO MISTO I+II

Una cricca sollecitata a puro modo Itende a propagare dritta, seguendo la sua direzione iniziale. Quando questa viene sollecitata anche a modo II, la direzione di propagazione non è più banale in quanto dipende dalla combinazione dei due modi di carico. In vista di una prova a modo misto I+II è fondamentale conoscere prima il problema almeno dal punto di vista teorico. Per questo motivo nel presente capitolo saranno approfonditi criteri di propagazione e di resistenza, statici e a fatica, riportati da diversi autori nella letteratura. In seguito, si confronteranno tra loro i criteri analizzati in termini di sicurezza del criterio e direzione di propagazione prevista.

5.1 Criterio della Tensione tangenziale massima (MTS)

Questo criterio di propagazione proposto da Erdogan e Sih [31] fornisce un metodo per calcolare un SIF equivalente K_{eq} (che dipende dai contributi di modo I e modo II) e l'angolo di propagazione della cricca rispetto alla direzione iniziale. Se si considera una cricca di lunghezza *a* descritta rispetto a un sistema di coordinate cilindriche con origine all'apice della cricca, il campo tensionale si può calcolare dalla (5.1), riportata in seguito:

$$\begin{pmatrix} \sigma_r \\ \sigma_{\theta} \\ \tau_{r\theta} \end{pmatrix} = \frac{K_I}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \begin{pmatrix} 1 + \sin^2\left(\frac{\theta}{2}\right) \\ \cos^2\left(\frac{\theta}{2}\right) \\ \sin\theta \end{pmatrix} + \frac{K_{II}}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \begin{pmatrix} \frac{3}{2}\sin(\theta) - 2\tan\left(\frac{\theta}{2}\right) \\ -\frac{3}{2}\sin\theta \\ (3\cos\theta - 1) \end{pmatrix}$$
(5.1)

dove K_I e K_{II} sono i SIF presenti sulla cricca, θ l'angolo di inclinazione del raggio vettore *r*. Secondo il criterio la propagazione della cricca avviene radialmente, partendo dall'apice, con direzione normale a quella della massima tensione tangenziale $\sigma_{\theta,max}$. Il paper di Erdogan e Sih tratta esclusivamente il caso statico, ma il criterio è stato verificato sperimentalmente anche nei casi a fatica [32]. Questo criterio è implementato di default nel modulo *Smart Crack Growth* del software ANSYS per simulare numericamente la propagazione di cricche. Staticamente la propagazione della cricca diventa instabile quando la tensione tangenziale massima diventa maggiore di un certo valore critico $\sigma_{\theta,max} > \sigma_{\theta,c}$ oppure $K_{eq} > K_{Ic}$. In questa condizione il K equivalente (5.2) proposto dal criterio coincide con il SIF critico K_{IC}.

$$K_{eq} = \cos\left(\frac{\theta_0}{2}\right) \left[K_I \cos^2\left(\frac{\theta_0}{2}\right) - \frac{3}{2} K_{II} \sin\theta_0 \right]$$
(5.2)

Attraverso passaggi algebrici, imponendo nulla la derivata prima (5.3), si calcola il massimo della tensione tangenziale. Isolando l'angolo (5.4) si ottiene la formula per calcolare l'angolo di propagazione noti i valori dei SIF.

$$K_I \sin\theta_0 + K_{II} (3\cos\theta_0 - 1) = 0$$

$$\theta_0 = \arccos\left(\frac{3K_{II}^2 + K_I\sqrt{K_I^2 + 8K_{II}^2}}{K_I^2 + 9K_{II}^2}\right)$$
(5.4)

Nei grafici seguenti (Figura 5.1) viene quindi riportato l'andamento dell'angolo di propagazione al variare del rapporto tra i SIF K_{II}/K_I, ovvero passando da una condizione di puro modo I (K_{II}/K_I=0) a una di puro modo II (K_{II}/K_I= ∞). I valori estremi per puro modo II possono anche essere calcolati analiticamente e corrispondono al lim $\theta_0 = 70.5^\circ$. Il segno dell'angolo di propagazione dipende da una convenzione scelta per questo criterio, $K_I \rightarrow 0$

per K_{II} negativi si avrà un angolo positivo e viceversa (Figura 5.2). Come si vedrà in seguito l'andamento dell'angolo e il valore estremo dipendono dal criterio di propagazione considerato.

(5.3)

Figura 5.1: andamento dell'angolo di propagazione al variare del rapporto K_{II}/K_I con criterio MTS (a), valori estremi (b)

Figura 5.2: convenzione sul segno dell'angolo di propagazione secondo il criterio MTS [32]

Dal momento che diversi criteri forniscono una formula analitica per calcolare il K_{eq} un ulteriore confronto consiste nel valutare quale tra questi è il più sicuro, andando a studiare la variazione del K_{eq} nel caso critico, quindi con $\sigma_{\theta,max} = \sigma_{\theta,c}$ e $K_{eq} = K_{Ic}$. Per normalizzare il problema si è studiato l'andamento del rapporto K_{II}/K_{Ic} al variare di K₁/K_{Ic}, andando prima a sostituire K_{eq} con K_{Ic} e poi isolando i rapporti, per questo primo criterio la procedura è interamente riportata nelle equazioni (5.5-5.7).

$$K_{Ic} = \cos\left(\frac{\theta_0}{2}\right) \left[K_I \cos^2\left(\frac{\theta_0}{2}\right) - \frac{3}{2} K_{II} \sin\theta_0 \right]$$

$$\frac{K_I}{K_I} = \frac{1}{1 - 1}$$
(5.5)

$$\frac{1}{K_{Ic}} = \frac{1}{\left(\cos^2\left(\frac{\theta}{2}\right) - \frac{3}{2}\frac{K_{II}}{K_I}\sin\theta\cos\left(\frac{\theta}{2}\right)\right)}$$
(5.6)

$$\frac{K_{II}}{K_{Ic}} = \frac{\frac{K_{I}}{K_{Ic}}\cos^{3}(\frac{\theta}{2}) - 1}{\frac{3}{2}\sin\theta\cos\left(\frac{\theta}{2}\right)}$$
(5.7)

L'andamento del grafico in Figura 5.3 mostra come il materiale sia più resistente a puro modo I. I punti colorati sono punti notevoli e mostrano i SIF massimi normalizzati rispetto a quello critico in una condizione di incipiente rottura statica. In particolare, la soglia statica a modo II (asse delle ordinate) è pari a 0.866 volte quella a modo I.

Figura 5.3: soglia di propagazione statica secondo criterio MTS

5.2 Criterio della Densità di energia di deformazione (SED)

Questo criterio proposto da Sih [33] è basato sulla densità di energia elastica S. Analogamente al precedente fornisce un metodo per distinguere le condizioni di propagazione stabile o instabile; propone come direzione di propagazione quella della minore densità di energia di propagazione. L'espressione analitica di S (5.8) dipende dai SIF applicati alla cricca e dalla direzione di propagazione. Per trovare l'angolo θ_0 che minimizza S, si pone nulla la derivata di S rispetto θ . Per calcolare i grafici riportati in Figura 5.4 l'equazione è stata risolta numericamente trovando soluzioni che annullano la derivata comprese tra $-\pi < \phi_0 < \pi$.

$$S = a_{11}K_I^2 + 2a_{12}K_IK_{II} + a_{22}K_{II}^2$$
(5.8)

con:

$$a_{11} = \frac{1}{16\pi\mu} (3 - 4\nu - \cos\phi)(1 + \cos\phi)$$
(5.9)

$$a_{12} = \frac{1}{16\pi\mu} \sin\phi(\cos\phi - 1 + 2\nu)$$
(5.10)

$$a_{22} = \frac{1}{16\pi\mu} \Big(4(1-\nu)(1+\cos\phi) + (3\cos\phi-1)(1+\cos\phi) \Big)$$
(5.11)

La costante ν è il coefficiente di Poisson del materiale mentre μ si ricava dalla formula:

$$\mu = \frac{E}{2(1-\nu)}\tag{5.12}$$

Il criterio viene riportato in letteratura per casi statici, il valore critico di densità di energia di propagazione che porta a rottura statica dipende dal materiale e si calcola con la (5.13) dove $k = (3 - \nu)/(1 + \nu)$.

$$S = S_{crit} = \frac{(k-1)K_{lc}^2}{8\mu\pi}$$
(5.13)

Nei grafici in Figura 5.4, analogamente al caso precedente, è mostrato l'andamento dell'angolo di propagazione al variare del rapporto tra i SIF K_{II}/K_{I} . I valori estremi per puro modo II possono anche essere calcolati analiticamente e corrispondono al limite per K_{I} che tende a zero. In seguito, (5.14) si riporta l'equazione

risolvente che permette di trovare l'angolo di propagazione, ovvero la derivata prima di S posta uguale a zero. L'equazione risolvente è scritta in funzione del rapporto tra i SIF di modo II e modo I in modo da poterla valutare lungo tutto il range da puro modo I a puro modo II.

$$2\cos\theta \sin\theta - \sin\theta(2 - 4\nu) + 4\frac{K_{II}}{K_{I}}\left(\cos^{2}\theta - \sin^{2}\theta + \cos\theta(2\nu - 1)\right) + \left(\frac{K_{II}}{K_{I}}\right)^{2}\left(-\sin\theta(4\nu - 2) - 6\sin\theta\cos\theta\right) = 0$$

$$(5.14)$$

$$\cos K_{I} \to 0, \ \theta = 82,3^{\circ}$$

Figura 5.4: andamento dell'angolo di propagazione al variare del rapporto K₁₁/K₁ con criterio SED (a), valori estremi (b)

Data l'equazione di *S* critico si può ricavare il rapporto tra K_I/K_{Ic} e K_{II}/K_{Ic} , esplicitando l'espressione analitica di S. In seguito (5.15-5.17) vengono riportate per esteso le formule analitiche usare per ricavare il grafico.

$$\frac{(k-1)K_{lc}^2}{8\pi\mu} = a_{11}K_l^2 + a_{12}K_lK_{ll} + a_{22}K_{ll}^2$$
(5.15)

$$\frac{K_{I}}{K_{Ic}} = \sqrt{\frac{2(k-1)}{(3-4\nu-\cos\theta)(1+\cos\theta)+2sen\theta(\cos\theta-1+2\nu)\left(\frac{K_{II}}{K_{I}}\right) + \left(4(1-\nu)(1+\cos\theta)+(3\cos\theta-1)(1+\cos\theta)\right)\left(\frac{K_{II}}{K_{I}}\right)^{2}}$$
(5.16)

$$\frac{K_{II}}{K_{Ic}} = \sqrt{\frac{2(k-1)}{(3-4\nu-\cos\theta)(1+\cos\theta)\left(\frac{K_{II}}{K_{I}}\right)^{-2} + 2sen\theta\left(\cos\theta - 1 + 2\nu\right)\left(\frac{K_{II}}{K_{I}}\right)^{-1} + (4(1-\nu)(1+\cos\theta) + (3\cos\theta - 1)(1+\cos\theta))}}$$
(5.17)

Figura 5.5: soglia di propagazione statica secondo criterio MTS

L'andamento del grafico in Figura 5.5 mostra come il materiale sia più resistente a puro modo I. La soglia statica a modo II (asse delle ordinate) è pari a 0.745 volte quella a modo I, minore rispetto al caso precedente.

5.3 Criterio di Richard [34]

Il criterio è definito in letteratura sia per casi statici sia a fatica. È basato sulla definizione di un K equivalente (5.18) e un angolo di propagazione (5.19) funzioni dei soli SIF per modo I e modo II. La propagazione della cricca soggetta a modo misto diventa instabile quando $K_{eq} > K_{Ic}$ (proprietà del materiale).

$$K_{eq} = \frac{K_I}{2} + \frac{1}{2}\sqrt{K_I^2 + 4(\alpha_1 K_{II})^2} ; \ \alpha_1 = \frac{K_{Ic}}{K_{IIc}}$$
(5.18)

Il coefficiente α_1 esprime il rapporto tra i valori di K critici per modo I e modo II, questo come si vedrà in seguito permette di studiare come varia la zona di propagazione statica al variare delle caratteristiche di resistenza del materiale. Secondo Richard con $\alpha_1 = 1.155$ il criterio approssima bene i risultati sperimentali ed è coerente con gli altri. La formula analitica per il calcolo dell'angolo di propagazione non dipende dal segno dei SIF che compaiono sempre in modulo, l'angolo si assume per convenzione positivo quanto K_{II} è negativo e viceversa.

$$\theta_0 = \pm \left[155.5^{\circ} \left(\frac{|K_{II}|}{|K_I| + |K_{II}|} \right) - 83.4^{\circ} \left(\frac{|K_{II}|}{|K_I| + |K_{II}|} \right)^2 \right]$$
(5.19)

Per puro modo II l'angolo calcolato con il criterio di Richard è $\theta_0 = 72.1^\circ$. In Figura 5.6 è rappresentato l'andamento dell'angolo di propagazione secondo questo criterio.

Figura 5.6: and amento dell'angolo di propagazione al variare del rapporto K_{II}/K_I con criterio di Richard (a), valori estremi (b)

Le formule relative alla propagazione a fatica (5.20, 5.21) sono analoghe a quelle statiche, ma sostituiscono K_I con ΔK_I e K_{II} con ΔK_{II} .

$$\Delta K_{eq} = \frac{\Delta K_I}{2} + \frac{1}{2} \sqrt{\Delta K_I^2 + 4(\alpha_1 \Delta K_{II})^2}$$
(5.20)

$$\theta_{0} = \pm \left[155.5^{\circ} \left(\frac{|\Delta K_{II}|}{|\Delta K_{I}| + |\Delta K_{II}|} \right) - 83.4^{\circ} \left(\frac{|\Delta K_{II}|}{|\Delta K_{I}| + |\Delta K_{II}|} \right)^{2} \right]$$
(5.21)

L'equazione del K equivalente proposta dal criterio contiene il parametro α che permette di parametrizzare il grafico della zona di resistenza statica al variare del rapporto K_{Ic}/K_{IIc}(Figura 5.7). In seguito, si riportano per chiarezza le formule utilizzate per ricavare il grafico (5.22, 5.23). La soglia statica a modo II varia al variare di α .

$$\frac{K_{I}}{K_{Ic}} = \frac{1}{\frac{1}{\frac{1}{2} + \frac{1}{2}\sqrt{1 + 4\alpha^{2}\left(\frac{K_{II}}{K_{I}}\right)^{2}}}}$$

$$\frac{K_{II}}{\frac{K_{II}}{K_{Ic}}} = \frac{2 - \frac{K_{I}}{K_{Ic}}}{\sqrt{\left(\frac{K_{II}}{K_{I}}\right)^{-2} + 4\alpha^{2}}}$$
(5.23)

Figura 5.7: soglia di propagazione secondo criterio di Richard (a), andamento della soglia al variare di α (b)

All'aumentare di $\alpha = K_{Ic}/K_{IIc}$ il K critico per modo II diminuiscerispetto a quello per modo I, ovvero il materiale diventa meno resistente a modo II. Questo andamento si può notare anche nel grafico dove le curve intersecano l'asse delle ordinate per valori sempre minori del rapporto K_{II}/K_{Ic} . Se α è unitario il materiale ha la stessa resistenza alla propagazione a modo I e modo II.

5.4 Criterio dell'Energy release rate

Il criterio [35] ipotizza una cricca iniziale soggetta a modo I e modo II che propaga deviando rispetto alla direzione iniziale delle superfici di cricca (Figura 5.8). Le valutazioni sull'angolo di propagazione dipendono dai SIF applicati all'apice della cricca deviata ("*kincked crack*") $k_I^* e k_{II}^*$. I valori di $k_I^* e k_{II}^*$ si calcolano noti $K_I e K_{II}$ utilizzando la seguente equazione:

$$\binom{k_{1}^{*}}{k_{2}^{*}} = \binom{K_{11} \quad K_{12}}{K_{21} \quad K_{22}} \binom{K_{I}}{K_{II}}$$

$$K_{1}^{*}, K_{II}^{*}$$

$$(5.24)$$

Figura 5.8: SIF all'apice della cricca deviata [32]

a

 K_1, K_1

I parametri K_{II} sono funzioni dell'angolo di propagazione θ . Le formule analitiche fornite in letteratura (5.25, 5.28) sono state implementate in Excel per graficare per intero l'andamento di K₁₁, K₁₂, K₂₁, K₂₂ in funzione di θ (Figura 5.9).

$$K_{11} = \left(\frac{1-m}{1+m}\right)^{\frac{m}{2}} \left(\cos(\pi m) - \frac{\sin(\pi m) \cdot L}{2\pi}\right)$$
(5.25)

$$K_{12} = \left(\frac{1-m}{1+m}\right)^{\frac{m}{2}} \left(-\frac{3}{2}\sin\left(\pi m\right)\right)$$
(5.26)

$$K_{21} = \left(\frac{1-m}{1+m}\right)^{\frac{m}{2}} \left(\frac{1}{2}\sin(\pi m)\right)$$
(5.27)

$$K_{22} = \left(\frac{1-m}{1+m}\right)^{\frac{m}{2}} \left(\cos(\pi m) + \frac{\sin(\pi m) \cdot L}{2\pi}\right)$$
(5.28)

Figura 5.9: andamento dei parametri K_{ij} al variare dell'angolo di propagazione θ

Una volta calcolati i valori dei SIF all'apice della cricca deviata è possibile calcolare l'energy release rate G.

$$G(\theta) = \frac{1 - \nu^2}{E} (k_{\rm I}^{*2} + k_{\rm II}^{*2})$$
(5.29)

In letteratura sono proposti due metodi per calcolare l'angolo di propagazione della cricca. Secondo il metodo di Nuismer [34] la cricca propaga nella direzione di G massimo, che in termini di k corrisponde alla condizione $k_1^*(\theta) = 0$ (derivata prima di k_1^* nulla). Secondo il metodo proposto da Amestory [34] la cricca propaga nella direzione di puro modo I ovvero quando $K_{II} = 0$ e quindi $k_2^*(\phi) = 0$. Dai grafici in Figura 5.10 si può notare come i due autori forniscano valori molto simili dell'angolo di propagazione al variare della quantità di modo I e modo II applicati sulla cricca iniziale. Gli angoli di propagazione a puto modo II sono di 71.9° nell'ipotesi di Amestory e 74° nell'ipotesi di Nuismer.

Figura 5.10: andamento dell'angolo di propagazione al variare del rapporto K_{II}/K_I con criterio ERR secondo ipotesi di Nuismer e Amestory (a), valori estremi (b)

In seguito (Figura 5.11) si riassume lo schema logico per applicare il criterio dell Energy Release Rate.

Figura 5.11: schema logico per l'applicazione del criterio ERR

5.5 Confronto e commenti

Tutti i criteri studiati permettono di calcolare l'angolo di propagazione di una cricca soggetta a modo misto I+II. Per confronto gli angoli di propagazione visti in precedenza vengono graficati assieme (Figura 5.12). Si può notare subito come gli andamenti proposti dai vari criteri siano coerenti. La differenza aumenta quando la condizione di carico tende al puro modo II, in Figura 5.13 si riporta lo stesso grafico con un maggiore range di ascisse per apprezzare gli asintoti orizzontali. In Tabella 5.1 si riportano i valori di angolo di propagazione a puro modo II secondo i criteri studiati. Questo confronto è da ritenersi un confronto statico tra i criteri, in quanto non tutti sono definiti anche per i casi a fatica.

Figura 5.12: confronto angolo di propagazione secondo i vari criteri

Figura 5.13: confronto tra angolo di propagazione a puro modo II secondo i vari criteri

Autore	Criterio	θ _{lim} [°]
Erdogan e Sih	MTS	70.5
Sih	SED	82.3
Richard	/	72.1
Nuismer	ERR	71.9
Amestory	ERR	74.0

Tabella 5.1: angoli di propagazione a puro modo II

Per quanto riguarda la resistenza statica alla propagazione, i criteri che forniscono un metodo per calcolare un SIF critico sono: MTS, Richard, SED. Dal confronto tra l'area limite di propagazione si può osservare come il criterio di Richard con α =1.155 sia praticamente coincidente con quella dell'MTS. Questo è coerente con quanto riportato nel paper di Richard, infatti, il coefficiente a proposto è scelto volutamente per avvicinarsi al criterio MTS. Il criterio del SED è invece più cautelativo perché calcola un'area limite di propagazione più ridotta rispetto agli altri due. In tabella (5.2) si riportano i valori di intersezione del limite di propagazione statica a puro modo II.

	MTS	SED	Richard
1/α	0.866	0.745	0.866
α	1.155	1.342	1.155

Tabella 5.2: rapporto tra K critici a modo I e modo II

Figura 5.14: confronto tra soglie di propagazione statica

CAPITOLO 6 Curva R a modo I su provino SENB HAZ17

Questo capitolo, oltre a riportare i risultati sperimentali della prima prova a modo I con rapporto di ciclo R=0.1, vuole essere un manuale da seguire per avviare e condurre correttamente una prova di propagazione in soglia a puro modo I. Con questo scopo verranno riportate nel dettaglio l'attrezzatura utilizzata e la procedura sperimentale seguita, con problemi riscontrati durante la prova ed eventuali miglioramenti. In Figura 6.1 si riporta lo schema concettuale seguito nel presente capitolo, ma anche in tutte le altre prove sperimentali. Nel resto del capitolo verranno affrontati nel dettaglio tutti i blocchi principali.

Figura 6.1: schema del capitolo

6.1 Attrezzatura sperimentale

Le prove sono state svolte con la macchina di prova assiale servo-idraulica Schenck Hydropuls® PSA, con capacità di carico pari a 100 kN ed equipaggiata con un controllore digitale "Triosistemi RT3". Per monitorare la propagazione della cricca usando il metodo DCPD si utilizza il dispositivo Matelect® che inietta corrente continua nel provino e misura la differenza di potenziale tra i probes. Per monitorare la temperatura del provino durante tutta la prova è stata usata la termocoppia NI USB-9162. La macchina di prova viene controllata da un PC dedicato con il software del controller. Termocoppia e dispositivo Matelect sono collegate entrambe a un secondo PC che controlla il funzionamento della Matelect e acquisisce i segnali di potenziale e di temperatura. Il setup sperimentale completo è mostrato in Figura 6.2.

Figura 6.2: set up sperimentale

6.2 Fase preliminare

6.2.1 Misurazione del provino (pre-RB)

Il provino utilizzato durante la prova è un provino SENB in acciaio S355 J2+N ricavato da due piastre saldate e in seguito tagliate per formare i provini. Come si può notare dalla Figura 6.3 la zona della saldatura è al centro del provino, le piastre sono saldate testa a testa e una presenta una cianfrinatura da entrambi i lati. Il provino di dimensioni nominali 108x19x6mm presenta un intaglio ottenuto per elettro-erosione a filo profondo 5mm (Figura 6.5), due fori per alloggiare i pin di potenziale ai lati dell'intaglio e due fori filettati M3 alle estremità per collegare i cavi di corrente. Con queste stesse dimensioni nominali sono disponibili due serie di provini, una di provini saldati (HAZ) e una di provini non saldati (AN), che verrà utilizzata nella prova successiva. In Figura 6.4 viene mostrato anche un provino SENB della serie AN, di uguale geometria ma senza saldatura.

Figura 6.3: provino SENB HAZ17

Figura 6.4: provino SENB AN05

Figura 6.5: provino SENB, disegni CAD con particolare dell'intaglio e dei fori di potenziale

Le misure sono composte di due parti: una prima serie di misure sulle dimensioni principali del provino fatta con il calibro e una seconda serie di misure dell'intaglio e dei fori per i pin di potenziale fatta al Dino-lite[®]. Le misure al calibro sono state prese con un calibro centesimale, in particolare nella zona adiacente all'intaglio, seguendo lo schema mostrato in Figura 6.6. Le misure dello spessore e dell'altezza sono state mediate per ottenere un'unica misura per ogni parametro.

Figura 6.6: provino SENB, misure al calibro

Una volta terminata la misurazione al calibro si procede misurando l'intaglio con il microscopio Dino-lite[®] (Figura 6.7). Le dimensioni di interesse sono: profondità a_N , altezza h, raggio di raccordo ρ dell'intaglio, distanza tra i fori di misura del potenziale $2y_0$.

Prima di procedere con le misure il microscopio deve essere calibrato. Innanzitutto, è necessario scaricare il software gratuito *DinoCapture2.0* disponibile online, con cui si può controllare lo strumento. Per la calibrazione si può usare l'apposita basetta di calibrazione (Figura 6.8) o carta millimetrata, regolando lo zoom in modo che la lunghezza della sbarretta in basso a destra corrisponda a quella reale della basetta di calibrazione. Così facendo le dimensioni misurate dal microscopio corrispondono a quelle reali. Poi per regolare la messa a fuoco bisogna variare solo l'altezza del microscopio senza più modificare lo zoom. Una alternativa consiste nel prendere a prescindere le misure al microscopio e in seguito correggerle facendo una proporzione tra lunghezza della basetta di calibrazione (reale) e lunghezza misurata al microscopio, in modo da correggere tutte le misure e ricavare le lunghezze reali. In generale nelle misure è bene evitare riflessi regolando il filtro della luce e la luminosità dei LED, inoltre è bene che la misura venga eseguita nella zona centrale dell'immagine evitando così le deformazioni dei pixel sui bordi.

Figura 6.7: microscopio Dino-lite®

Figura 6.8: basetta di calibrazione

Una volta calibrato il microscopio le misure dell'intaglio vengono eseguite da entrambi i lati del provino (Figura 6.9) e in seguito mediate. Si considerano come misure dei parametri quelli risultanti dalla media aritmetica tra i due lati (ad esempio se h_A =0.256mm, h_B =0.252mm, h=0.254mm). In Tabella 6.1 si riportano i risultati della misurazione preliminare.

Figura 6.9: lati del provino

W	L	В	a _N	h	ρ	2y ₀
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
19.00	107.51	6.01	4.999	0.254	0.116	2.362

Tabella 6.1: misure pre-Razor Blading

Figura 6.10: intaglio pre RB side A (a), zoom intaglio pre RB side A (b)

Figura 6.11: fori per misura di potenziale

6.2.2 Razor Blading

L'intaglio presente sul provino ha un raggio di raccordo appena misurato pari a 0.116mm (Figura 6.10). L'obbiettivo di questa fase è di rendere più severo l'intaglio andando a creare un solco a V sul fondo dell'intaglio da elettroerosione. In questo modo si riducono i carichi da CPC e si facilità l'innesco della cricca su un unico fronte, coincidente con l'apice dell'intaglio. La procedura viene svolta utilizzando un'apposita macchina per Razor Blading (RB) (Figura 6.12), dove l'intaglio viene lavorato con una lametta da barba. La macchina è composta da una traversa ad altezza regolabile su cui è montato un motore elettrico, che attraverso una camma muove di moto alternativo il sostegno della lametta. Sulla base vi è una morsa che trattiene il provino e una barra filettata per regolare la posizione longitudinale del provino.

Figura 6.12: macchina per Razor Blading

In seguito, si riassume la procedura utilizzata per realizzare il RB al provino:

1. Fuori dalla macchina si applica la pasta diamantata nell'intaglio del provino (Figura 6.13), utilizzando un'altra lametta, possibilmente usata, per accompagnare la pasta fino al fondo dell'intaglio. In questa prima fase è importante sia non strisciare la lama sul fondo dell'intaglio (per non generare più di un solco sul fondo dell'intaglio), sia non sporcare i fori per i pin di potenziale, in quanto la pasta è

isolante. Per non contaminare i fori si suggerisce di appoggiare due pin senza incastrarli per interferenza, in modo da chiudere i fori. Si è usata in particolare la pasta diamantata *Size 3*.

Figura 6.13: intaglio con pasta diamantata e pin per proteggere i fori

2. Fuori dalla macchina si inserisce la lametta nel supporto e si stringono le viti (Figura 6.14). In questa fase è fondamentale posizionare la lametta il più orizzontale possibile altrimenti l'intaglio sul provino non sarà regolare. Questo diventa particolarmente complesso per intagli iniziali di 5mm in quanto la lametta posta in battuta sul supporto non riesce a raggiungere il fondo dell'intaglio e lavorarlo, diventa quindi necessario posizionarla correttamente "a occhio".

Figura 6.14: montaggio della lametta sul supporto

3. Posizionare il provino nella morsa senza chiuderla in maniera definitiva (Figura 6.15).

Figura 6.15: posizionamento del provino nella morsa

4. A traversa alzata inserire le molle sulle spine del supporto lametta e inserire il tutto negli appositi fori appoggiando le viti (6.16). Le molle servono a precaricare la lametta di un precarico noto.

Figura 6.16: montaggio della lametta nella macchina da RB

5. Con uno spessore noto selezionare il precarico e, una volta posizionato il supporto alla giusta distanza, chiudere le viti (6.17). Si è scelto in particolare un precarico di 6mm.

Figura 6.17: precarico delle molle con uno spessore noto

- 6. Abbassare lentamente la traversa e regolare la posizione del provino in modo che la lametta cada esattamente al centro dell'intaglio. Quando la lametta è a sfioro sul fondo dell'intaglio chiudere le viti della traversa e fissare la morsa.
- 7. Rilasciare gradualmente le viti (Figura 6.18) del supporto lametta in modo da usare il precarico selezionato e in seguito appoggiare le viti, in questo modo la forza applicata durante la lavorazione sarà sempre minore, in quanto la lametta è trattenuta dalle viti.

Figura 6.18: avvicinamento (a) e inserimento (b) della lametta nell'intaglio

8. Avviare il controller Pulse Width Modulation (PWM), aumentare gradualmente fino al 100% e attendere per 10 minuti (Figura 6.19).

Figura 6.19: controller PWM

9. Ultimato il Razor Blading, pulire l'intaglio.

Durata	Precarico molle	Pasta diamantata	f	a _{N+RB}	δa _{RB}	
[min]	[mm]	[/]	[Hz]	[mm]	[min]	
10	6	Size 3	2	5.045	0.046	
Tabella 6.2: parametri RB						

Una volta terminato il RB e pulito il provino si procede misurando l'intaglio per verificare che la procedura di RB sia stata fatta correttamente e abbia reso più severo l'intaglio. Analogamente alla misura pre-RB si misurano entrambi i lati del provino, dall'inizio dell'intaglio EDM fino alla punta dell'intaglio a V da RB, e poi si fa la media tra i valori misurati. In questo caso la procedura di RB ha reso l'intaglio più profondo di 0.056mm (Tabella 6.2).

Figura 6.20: intaglio post RB side A

6.3 Calibrazione dell'α

Prima di procedere alla prova sperimentale è necessario calibrare il coefficiente di resistenza alla temperatura del provino α , per la corretta applicazione del metodo DCPD. Come trattato nel Capitolo 3.6 Il segnale di potenziale misurato deve essere corretto in quanto dipende dalle variazioni di temperatura, per misurare la lunghezza di cricca deve essere utilizzato il segnale corretto in modo da non misurare variazioni fittizie della lunghezza di cricca dovute a variazioni di temperatura. La fase di calibrazione precede quindi l'effettiva prova sperimentale in macchina e viene riportata in seguito.

6.3.1 Collegamento cavi

Fuori dalla macchina si alloggiano i pin di potenziale negli appositi fori ai lati dell'intaglio, per interferenza, battendoli con un martello, cercando di mantenerli il puù dritti possibile o con le estremità leggermente distanziate. Mentre si battono i pin nelle sedi è importante vincolare il provino (trattenendolo con una morsa o anche a mano) dalla stessa parte dove viene incastrato il pin (Figura 6.21), in questo modo si sollecita il meno possibile la zona dell'intaglio.

Figura 6.21: schema per il corretto inserimento dei pin di potenziale

A questi verranno poi stagnati i cavi di misura del potenziale dal lato esterno, per evitare cortocircuiti. In seguito si avvitano i cavi di corrente negli appositi fori. Ogni cavo principale di potenziale (blu e arancio) contengono al loro interno due cavetti, uno nero e uno rosso (Figura 6.22). Il filo nero del cavo blu viene stagnato direttamente sul pin del provino, analogamente per il filo rosso del cavo arancio. I rimanenti fili (nero del cavo arancio e rosso del cavo blu) vengono collegati assieme e arrivano al provino con un unico filo (in questo caso grigio).

Figura 6.22: schema dei cavi di potenziale

Per leggere un segnale di potenziale X positivo è necessario che il cavo rosso di corrente sia dallo stesso lato del cavo grigio di potenziale (in questo caso i cavi rosso e nero di potenziale sono stagnati assieme in quanto il provino non presenta il terzo foro per misurare il potenziale Y). Una volta collegati i cavi alla MATELECT si può posizionare il provino su una superficie isolante e attaccare la termocoppia con del nastro isolante (Figura 6.23). Una volta collegati i cavi al provino si collegano i terminali agli appositi ingressi del dispositivo Matelect (Figura 6.24).

Figura 6.23: collegamento cavi al provino

Figura 6.24: collegamento dei cavi alla Matelect

6.3.2 Parametri DCPD e acquisizione

Una volta assicurati i cavi al provino e alla Matelect si può attivare il passaggio di corrente e l'acquisizione della misura di temperatura e potenziale X. Per questa tipologia di provino si è scelta una intensità di corrente I=15 A. L'acquisizione del segnale di potenziale è impostata per avere il filtraggio massimo con parametri *Number of readings* = 64 e *Number of samples* = 8. In questo modo ogni punto salvato è ottenuto dalla media di 64 acquisizioni ripetuta per 8 volte.

L'acquisizione viene fatta proseguire per almeno una notte in modo da avere un sufficiente numero di punti. In seguito, i dati salvati vengono elaborati dal codice MATLAB (Figura 6.25) riportato in appendice A.1 che fornisce i valori della temperatura media T₀, del potenziale alla temperatura media X₀, e del coefficiente di resistenza alla temperatura α (Tabella6.3). Dal grafico in Figura 6.26 si può notare come il segnale di potenziale non corretto X abbia un andamento analogo a quello della temperatura, dopo la correzione invece il segnale è più stabile e non più influenzato da gradienti di temperatura. In seguito, si riportano le equazioni usate per compensare l'effetto della temperatura. Il rapporto tra il potenziale misurato ΔV_{PD} e il potenziale ΔV_0 alla temperatura di riferimento T₀ è una retta il cui coefficiente angolare è proprio la costante α (6.4).

$$\Delta V_0 = \rho_0 I \Delta v \tag{6.1}$$

$$\Delta V_{PD} = \rho I \Delta v$$

$$\rho = \rho_0 (1 + \alpha \Delta T)$$

$$\frac{\Delta V_{PD}}{\Delta V_0} = 1 + \alpha (T - T_0) = \alpha T + (1 - \alpha T_0)$$
(6.4)

Si noti l'analogia con l'equazione della retta y = mx + q. Dall' interpolazione si ricava il coefficiente α (pendenza del grafico in Figura 6.25) da inserire nella formula della resistività elettrica per calcolare il valore corretto del potenziale X (6.5).

$$X_{c} = X/(1 + \alpha(T - T_{0}))$$
(6.5)

α	T ₀	X ₀		
[°C-1]	[°C]	$[\mu V]$		
0.0025	30.2469	330.3996		

Tabella 6.3: risultati della calibrazione

(6.2)

(6.3)

Figura 6.25: calcolo di a, pendenza della retta fittata

Figura 6.26: confronto tra potenziale corretto e potenziale non corretto (a); andamento della temperatura (b)

6.4 Montaggio dell'attrezzatura a flessione

In questo paragrafo sarà descritta la procedura di montaggio e montaggio in macchina dell'attrezzatura a flessione utilizzata per la prova (6.27). La prima parte consiste nel montaggio dell'attrezzatura allineando i punti di applicazione del carico rispetto all'asse della macchina di prova, per evitare asimmetrie. Una volta fissate le distanze tra gli appoggi si procede montando l'attrezzatura nella macchina di prova. Nel corso della

prima prova sperimentale si è notato che per condurre correttamente la prova è necessario isolare elettricamente il provino dall'attrezzatura. Viene quindi mostrata una procedura definitiva che considera anche questo requisito; le soluzioni trovate per isolare il provino sono presentate a parte (Paragrafo 6.4.2).

Figura 6.27: attrezzatura a flessione smontata

- 1) Traversa superiore
- 2) Traversa inferiore
- 3) Slitte di alloggiamento dei perni di carico (rivestite in Kapton)
- 4) Guide delle slitte
- 5) Viti a brugola
- 6) Perni di carico
- 7) Supporti laterali del provino
- 8) Inserti in teflon
- 9) Perni di allineamento forati
- 10) Perno di afferraggio in macchina
- 11) 11+ 12+13 Cerniera (perno + afferraggio + collegamento alla traversa)
- 14) Spessori in alluminio 0.05mm
- 15) Perno di allinemento assiale
- 16) Nastro in Kapton 0.05mm
- 17) Piastrine laterali
- 18) Foglio in Kapton 0.12mm
- 19) Dime di allineamento

6.4.1 Montaggio

L'attrezzatura è composta da due traverse (superiore e inferiore) dove vengono montate quattro slitte (due per ognuna) per alloggiare i perni di carico. L'attrezzatura carica il provino attraverso i perni e garantisce l'allineamento del provino durante il corso della prova grazie a due supporti laterali collegati alle slitte. Il metodo per allineare al meglio le slitte (e quindi i perni di carico) con l'asse della macchina è basato su una dima di centraggio di dimensioni note e pari alla distanza desiderata tra i perni di carico. In seguito, viene riassunta per punti la procedura di montaggio. Le immagini che descrivono il montaggio hanno l'obbiettivo di mostrare al meglio l'inserimento dei vari pezzi e per questo la struttura è disposta in orizzontale su un tavolo. Il montaggio va invece svolto mantenendo l'attrezzatura verticale, incastrata in una morsa, e impilando i componenti dall'alto.

1. Avvitare alla traversa inferiore (1) il perno inferiore forato (9). Questo perno non serve al montaggio della traversa in macchina, ma presenta un foro cieco per infilare il perno di allineamento assiale (15).

Figura 6.28: traversa inferiore e perno di centraggio forato

2. Posizionare il perno assiale e la dima di centraggio

Figura 6.29: traversa inferiore con perno e dima di centraggio

- 3. Posizionare le guide (4) e le slitte (3) puntando le viti a brugola (5) senza stringerle.
- 4. Posizionare i perni di carico (6) sulle slitte e farle scorrere regolando la posizione finché i perni di carico finiscono negli scavi a V della dima di allineamento (19).

Figura 6.30: guida vite a brugola e slitta con cava per i perni di carico

Figura 6.31: posizionamento degli appoggi inferiori

5. Se necessario eliminare i giochi tra slitte e traversa con spessori calibrati (14).

Figura 6.32: spessori per l'eliminazione dei giochi

- 6. Stringere le viti a brugola e fissare la posizione degli appoggi inferiori.
- 7. Avvitare alla traversa superiore il perno forato (19).

Figura 6.33: traversa superiore con perno di allineamento forato

- 8. Posizionare le guide e le slitte puntando le viti a brugola senza stringerle.
- 9. Infilare la traversa superiore (2) nel perno assiale dove sono già presenti traversa inferiore e dima di centraggio.
- 10. Posizionare i perni di carico superiori sulla dima e allineare le slitte.

Figura 6.34: posizionamento di appoggi superiori e inferiori

- 11. Stringere le viti a brugola e fissare la posizione degli appoggi superiori.
- 12. Se necessario eliminare i giochi tra slitte e traversa con spessori calibrati.
- 13. Sfilare le traverse, rimuovere il perno assiale e la dima di centraggio
- 14. Rivestire le cave a V con nastro di Kapton (16).

Figura 6.35: rivestimento delle cave a V con nastro di Kapton

15. Avvitare le piastrine di alluminio (17) per trattenere i perni di carico superiori. Questo serve a facilitare il montaggio in macchina tenendo vincolati i perni senza che questi cadano per gravità finché non sono a contatto sul provino.

Figura 6.36: montaggio delle piastrine di alluminio

16. Sostituire i perni forati con quelli per l'afferraggio in macchina (10). Per la traversa superiore è necessario avvitare la cerniera (11-12-13).

Figura 6.37: perno cilindrico per l'afferraggio in macchina

Figura 6.38: cerniera superiore

- 17. Montare la traversa inferiore in macchina, senza afferrarla.
- 18. Montare la traversa superiore in macchina allineandola in modo che non sia ruotata rispetto alle colonne della macchina e afferrandola.
- 19. Avvitare i supporti laterali per il provino (7).
- 20. Avvitare le barre laterali per impedire la rotazione della traversa inferiore. ATTENZIONE: queste sono tenute leggermente inclinate per non toccare e danneggiare i tubi della macchina contenenti olio in pressione (Figura 6.39).
- 21. Afferrare la traversa inferiore.

Figura 6.39: attrezzatura montata con piastre laterali

- 22. Posizionare il provino (con tutti i cavi per il DCPD già collegati) e i fogli di Kapton (18) tra provino e perni di carico.
- 23. Verificare l'isolamento elettrico.

6.4.2 Isolamento elettrico del provino

Per la corretta applicazione del metodo DCPD è fondamentale riuscire a ottenere una misura della differenza di potenziale tra monte e valle della cricca precisa e stabile. Errori anche ridotti sulla misura di potenziale portano a errori grossolani sulla misura della lunghezza di cricca. Durante le precedenti prove sperimentali sulle curve R svolti all'università di Padova un problema ricorrente era la forte oscillazione del segnale di potenziale durante il cambiamento di carico medio applicato dalla macchina sul provino. Queste oscillazioni complicano poi il lavoro di post processing perché non si sa a quale valore di potenziale attribuire una certa lunghezza di cricca.

Questo problema si è ripresentato anche nella fase iniziale della prova su HAZ17, in seguito saranno descritte le variazioni sul segnale di potenziale correlate agli input della macchina di prova, le conclusioni tratte e le possibili soluzioni al problema.

Ancora prima di iniziare la prova, con provino appoggiato alla traversa inferiore dell'attrezzatura a flessione (in posizione di CPC) si è notato un primo calo del segnale di potenziale, del tutto incoerente con la natura fisica della misura. Una diminuzione del potenziale misurato significa una maggiore continuità del materiale e quindi un intaglio di dimensioni ridotte rispetto alla condizione precedente senza applicare alcuna forza. Una volta montata anche la traversa superiore si è avvicinato il provino in controllo di spostamento fino a impattare con l'attrezzatura a flessione superiore, registrando un ulteriore calo del potenziale. In seguito per avviare il CPC si è aumentata a step la forza sul provino e ad ogni step crescente di carico si è misurata una diminuzione del segnale di potenziale. In Figura 6.40 si mostra l'andamento della caduta di potenziale al variare della forza applicata dalla macchina. I primi due punti a forza nulla rappresentano il potenziale misurato durante la calibrazione e successivamente quello misurato con il solo contatto tra provino e traversa inferiore.

Figura 6.40: valore di potenziale letto al variare della forza applicata dalla macchina

Figura 6.41: andamento del segnale di potenziale X nel tempo

In Figura 6.41 è mostrato l'effettivo andamento del potenziale X al variare del tempo (già corretto con la temperatura), dove si possono notare i gradini dovuti all'aumento di carico. L'aumento del carico di compressione sul provino fa aumentare l'area di contatto tra questo e gli appoggi cilindrici. Si è quindi ipotizzato che la maggiore area di contatto favorisca il cortocircuito tra attrezzatura e provino. Se parte della corrente fluisce all'interno dell'attrezzatura è di conseguenza necessaria una minore differenza di potenziale per permettere il passaggio della corrente rimasta attraverso il provino, e per questo si leggono segnali X sempre più bassi. Inoltre, già appoggiando il provino alla traversa inferiore si nota una leggera caduta di potenziale in quanto la corrente fluisce solo nella parte inferiore.

Per confermare questa ipotesi si è isolato il provino ricoprendo di nastro isolante le aree degli appoggi a contatto con il provino e portando poi in battuta il provino con la traversa superiore. I percorsi di cortocircuito sono tre (Figura 6.42):

- 1) appoggio-traversa inferiore-appoggio
- 2) appoggio-traversa superiore-appoggio
- 3) supporto-taversa inferiore-supporto

Figura 6.42: schema dei percorsi di cortocircuito

I primi due vengono neutralizzati dal nastro isolante, ma resta la possibilità del passaggio di corrente attraverso i supporti di alluminio. Per verificare che la caduta di potenziale sia effettivamente dovuta al cortocircuito uno dei supporti è stato rimosso e rimontato dopo pochi secondi. Questo test è stato ripetuto in seguito per varie volte. Dalle acquisizioni in Figura 6.43 si può notare come questo disturbi molto il segnale facendo oscillare la misura di potenziale. Inoltre, si può osservare come togliendo un supporto il segnale X torni sempre allo stesso livello. La caduta di potenziale dipende da quanto è stata avvitata la vite che collega il supporto in alluminio all'alloggiamento dei perni di carico. La filettatura completamente avvitata aumental'area di contatto tra i due componenti favorendo il flusso di corrente, al contrario il supporto solo appoggiato causa una modesta diminuzione del segnale X.

L'ipotesi del cortocircuito appare quindi ragionevole. Per avere una misura di potenziale X stabile è quindi necessario garantire l'isolamento elettrico del provino durante tutto il corso della prova.

Figura 6.43: valore di potenziale X con supporto rimosso in posizione o rimosso

6.3.3 Soluzioni

Si noti fin da subito che il problema principale non è tanto quello di rendere il provino isolato elettricamente dall'attrezzatura di prova, ma di trovare un sistema di isolamento resistente ai carichi applicati per tutta la durata della prova.

Proposta 1: nastro isolante

Una prima soluzione è stata quella di isolare i perni di carico con nastro adesivo isolante, posizionando quattro pezzi di nastro ognuno nei punti di appoggio tra provino e perno di carico. Sebbene valida (il segnale di potenziale X è stabile) il nastro non è sufficientemente resistente (Figura 6.44) e garantisce l'isolamento solo per pochi minuti, in quanto viene tagliato dalla pressione applicata dal provino. Si noti come (Figura 6.45) questa soluzione sia durata per circa 25 minuti con un carico molto ridotto ($\Delta F = 1.765 \ kN, R = 0.1$). In questa soluzione, come nelle successive il percorso di cortocircuito attraverso i supporti è stato interrotto togliento uno dei supporti. Al contempo si è iniziata la progettazione di supporti in materiale polimerico isolante che verranno mostrati in seguito.

Figura 6.44: nastro isolante forato tra provino e perni di carico

Figura 6.45: caduta di potenziale dovuta alla rottura del nastro isolante

Proposta 2: carta vetrata.

Vista la resistenza troppo ridotta del nastro isolante, lo step successivo è stato quello di isolare completamente i perni di carico ponendo due strisce di nastro isolante in ogni cava a V e quattro pezzi di carta abrasiva telata tra gli appoggi e il provino. Questa soluzione si è rivelata molto migliore sella precedente in quanto la carta abrasiva è più resistente del nastro tra provino e appoggi. Le vibrazioni dei perni di carico inducono piccole rotazioni sui perni stessi che trascinano il nastro isolante, esponendo la cava in acciaio. Si può notare dalla foto in Figura 6.46 come il perno di carico abbia un alone di colla, proprio dovuto alla rotazione e al contatto con il nastro isolante. Il contatto tra provino e appoggio resta il punto più critico, la carta telata dopo diversi giorni è stata comunque forata (Figura 6.47).

Figura 6.46: nuovo setup con nastro isolante nella cava a V e carta abrasiva telata tra provino e perni di carico

Figura 6.47: carta abrasiva tagliata dal provino

Proposta 3: isolante in Kapton.

Con l'obbiettivo di trovare un materiale sufficientemente resistente si è ripetuto il rivestimento delle cave e l'isolamento del provino sui punti di carico con un nastro isolante in Kapton (poliimmide) con spessore pari a 50µm (Figura 6.48). Questa soluzione si è rivelata durevole fino al termine della prova su HAZ17. Si ipotizza quindi che un rivestimento in Kapton di spessore maggiore possa, assieme ai supporti in plastica, garantire il completo isolamento del provino durante tutto il corso della prova.

Figura 6.48: provino isolato con nastro in Kapton

Proposta 4: Supporti isolanti.

Per quanto riguarda la riprogettazione dei supporti laterali del provino gli obbiettivi sono stati i seguenti:

- garantire l'isolamento elettrico;
- rendere i supporti versatili per diversi spessori di provino e distanze dei supporti

Per fare questo è stata scelta una soluzione con inserti intercambiabili in teflon incastrati in supporti in alluminio (Figura 6.49-6.52). Gli inserti in teflon garantiscono il completo isolamento elettrico e il materiale può essere facilmente lavorato per costruire diverse coppie di inserti dedicati per una particolare prova. Gli inserti sono accoppiati al supporto per interferenza e non è necessario alcun ulteriore sistema per trattenerli. In questo modo eventuali impuntamenti del provino nella cava dell'inserto resteranno praticamente ininfluenti in quanto l'inserto può comunque muoversi verticalmente all'interno del supporto. L'isolamento dei supporti laterali è il meno critico, quindi questa soluzione può considerarsi definitiva.

Figura 6.49: supporti riprogettati con inserti in teflon, CAD 3D

Figura 6.50: supporti in alluminio, disegno tecnico

Figura 6.51: inserti in teflon da 6mm, disegno tecnico

Figura 6.52: supporto in alluminio con inserto in teflon

6.5 R-Curve test

6.5.1 Compression Pre-Cracking (CPC)

Una volta avviate tutte le apparecchiature sperimentali si procede con il Compression pre-cracking. L'obbiettivo di questa fase è quello di generare una vera e propria cricca priva di effetti di *closure* che parte dall'intaglio da razor blading. Il provino viene montato con intaglio rivolto verso l'alto, soggetto quindi a uno stato tensionale macroscopico di compressione ma con tensione di trazione localizzata all'apice dell'intaglio (Figura 6.53, 6.54). La fase di CPC si considera terminata quando il segnale di potenziale corretto smette di crescere, ovvero quanto la propagazione della cricca si arresta. In seguito, si riassumono i parametri scelti per il CPC e le relazioni analitiche usate per calcolarli. Per condurre correttamente la prova è fondamentale rifarsi al file Excel dovetutte le seguenti relazioni sono implementate e automatizzate. In Tabella 6.4 vengono riportati i dettagli relativi alla procedura di CPC. Partendo da sinistra si possono leggere: data e ora di inizio, modalità di controllo, rapporto di ciclo, frequenza, ampiezza di forza, forza media, potenziale corretto misurato al termine del CPC, lunghezza di cricca totale, numero di cicli di CPC, incremento di lunghezza di cricca, K₁ massimo e minimo applicato, distanza massima e minima dei perni di carico, forza massima e minima applicate.

Date	Time	Mode	R	ΔK_{I}	f	Fa	F _{mean}	$\Delta V(T_0)$	a _{CPC}	Ν	Δa_{CPC}
[-]	[-]	[-]	[-]	[MPa m ^{0.5}]	[Hz]	[kN]	[kN]	[µV]	[mm]	[cycles]	[mm]
26/06/2023	11:35	ΔF cost	20	15	38	5.367	-5.932	338.6	5.145	757344	0.100

K _{I,max}	K _{I,min}	S _{max}	S _{min}	F _{max}	F _{min}
[MPa m ^{0.5}]	[MPa m ^{0.5}]	[mm]	[mm]	[kN]	[kN]
-0.789	-15.789	65	50	-0.565	-11.298

Tabella 6.4: parametri CPC

Figura 6.53: schema di carico per CPC (a), momento flettente per CPC (b)

Figura 6.54: provino HAZ17 montato in macchina per CPC

Per calcolare la lunghezza di cricca si usa l'equazione di Johnson [25] (6.6) con a lunghezza di cricca W altezza del provino, y semi-distanza tra i pin di potenziale, ΔV differenza di potenziale e ΔV_0 differenza di potenziale alla lunghezza di cricca iniziale a₀:

$$a = \frac{2W}{\pi} \cos^{-1} \left\{ \frac{\cosh\left(\frac{\pi y}{2W}\right)}{\cosh\left[\frac{\Delta V}{\Delta V_0} \cosh^{-1}\left(\frac{\cosh\left(\frac{\pi y}{2W}\right)}{\cos\left(\frac{\pi a_0}{2W}\right)}\right)\right]} \right\}$$
(6.6)

Il valore di potenziale usato nell'equazione di Johnson è già corretto con la temperatura utilizzando l'equazione (6.7) dove $\Delta V(T_0)$ è il potenziale alla temperatura di riferimento T_0 , ΔV il potenziale misurato alla temperatura T e α il coefficiente di resistenza con la temperatura.

$$\Delta V(T_0) = \Delta V(T) / (1 + \alpha (T - T_0))$$
(6.7)

Le seguenti equazioni (6.8-6.11), proposte dalla normativa ISO12108:2018[36], servono a calcolare il SIF K_I in configurazione di Four point bending simmetrico. S_{max} e S_{min} sono le distanze tra gli appoggi superiori e inferiori, W l'altezza del provino, *a* la lunghezza di cricca, B lo spessore del provino e F la forza totale applicata.

θ

$$C = \frac{S_{max} - S_{min}}{2W}$$
(6.8)

$$=\frac{\pi a}{2W} \tag{6.9}$$

$$g\left(\frac{a}{W}\right) = 3C(2tan\theta)^{\frac{1}{2}} \left[\frac{0.923 + 0.199(1 - sin\theta)^4}{cos\theta}\right]$$
(6.10)

$$K_I = \frac{F}{BW^{\frac{1}{2}}}g\left(\frac{a}{W}\right) \tag{6.11}$$

Una volta calcolato il SIF è sufficiente invertire l'equazione per calcolare la forza da applicare per ottenere un certo K_I (6.12), scelto poi il rapporto di ciclo R sono note anche la forza massima F_{max} , la forza minima F_{min} , l'ampiezza in forza F_a e la forza media F_{mean} (6.13, 6.14).

$$\Delta F = \Delta K (BW^{\frac{1}{2}}) / g(\frac{a}{W})$$
(6.12)

$$F_{max} = \Delta F / (1 - R) \quad ; \quad F_{min} = F_{max} \cdot R \tag{6.13}$$

$$F_a = \frac{\Delta F}{2}$$
 ; $F_{mean} = (F_{max} + F_{min})/2$ (6.14)

Per monitorare la propagazione della cricca durante la prova si è usato oltre al file Excel anche uno script MATLAB riportato in appendice A.2 che va a graficare l'andamento del potenziale corretto in tempo reale e di conseguenza l'estensione di cricca (Figura 6.55). Come si nota dalla Tabella 6.4 la fase di CPC può considerarsi terminata dopo 757.344 cicli con un aumento della lunghezza di cricca di 0,100mm.

Figura 6.55: potenziale acquisito durante CPC, andamento grezzo X e corretto con la temperatura Xc

6.5.2 Curva R ciclica

Una volta innescata la cricca con il CPC si procede con la vera e propria prova di curva R con rapporto di ciclo R=0.1 a puro modo I. Il provino viene girato di 180° ponendo la cricca in trazione e mantenendo le stesse distanze dei perni di carico di 65mm e 50mm (Figura 6.57, 6.58). Usando guanti protettivi si può svolgere questa operazione senza interrompere il flusso di corrente e le acquisizioni. L'obbiettivo della prova è quello di trovare sperimentalmente i punti in soglia ovvero dove la cricca arresta la sua propagazione. Sperimentalmente i punti di arresto si riconoscono osservando l'andamento del potenziale corretto che resta orizzontale (di conseguenza anche la lunghezza di cricca resta costante), si riporta un esempio in Figura 6.56b. Questa procedura per determinare sperimentalmente la curva R ciclica è quella riportata in letteratura da Tabernig e Pippan [16]. Se per determinati carichi la cricca arriva ad arrestarsi allora è in soglia e il valore di ΔK applicato è un punto della curva R. Si procede quindi aumentato il carico sul provino e facendo proseguire la propagazione della cricca finché questa raggiunge un ulteriore arresto. Lo schema della prova si può vedere in Figura 6.56a, dove le rette rappresentano la storia di carico della prova e i punti sono i punti di arresto in soglia. Come si può notare dallo schema la curva R viene trovata per punti.

Figura 6.56: schema della prova sperimentale [3] (a), segnale di potenziale di un arresto in soglia (b)

Nello schema di Figura 6.56 i primi punti in soglia vengono ottenuti in tempi brevi in controllo di forza (blu). Per lunghezze di cricca più elevate l'andamento della curva R è più orizzontale e per intercettarla può essere utile passare alla modalità di controllo a ΔK costante (azzurro), in quanto il controllo di forza rischia di non essere tangente alla curva R, allontanandosi dalle condizioni di soglia. Infine, per la parte orizzontale, è necessario fare degli step di Increasing e Decreasing (verde). Soprattutto nella fase di decreasing è fondamentale ridurre gradualmente il ΔK applicato (del 10% al massimo) per evitare arresti indesiderati della cricca. Questi non sono infatti dovuti al raggiungimento delle condizioni di soglia ma al fatto che la propagazione è ostacolata dalla zona plastica creata all'apice della cricca esca dallo step di carico precedente. Nel decreasing, infatti, prima di scalare il carico è necessario che la cricca esca dalla zona alterata dallo step precedente. Per avere una stima del raggio plastico durante la prova si può usare la seguente equazione (6.15) dove MAXKI è il massimo tra i moduli di KImax e KImin, σ_y la tensione di snervamento del materiale. Il risultato che si ottiene è in mm inserendo il SIF in MPam^{0.5} e la tensione di snervamento in MPa.

$$r_P = \frac{1000}{2\pi} \left(\frac{maxK_I}{\sigma_y}\right)^2 \tag{6.15}$$

I valori delle forze da inserire nel controller della macchina di prova sono stati calcolati con le stesse formule riportate nel paragrafo 6.5.1 Come si vedrà in seguito la prova è stata condotta con due diverse modalità di controllo. Una prima modalità convenzionale in controllo di forza è stata usata per la parte della prova dove la curva R è crescente. Una seconda modalità in controllo di SIF K_I è stata appositamente implementata e utilizzata per la seconda parte della prova. La procedura seguita per implementare il nuovo controllo in SIF è riportata per esteso in appendice B. Nella gran parte della prova l'obbiettivo è trovare punti sulla parte orizzontale della curva R, ovvero nella zona della soglia per le cricche lunghe. Quanto si ottiene un numero sufficiente di punti in questa zona la prova può essere interrotta e il provino tagliato manualmente.

Figura 6.57: schema di carico per curva R (a), momento flettente (b)

Figura 6.58: provino montato in macchina per la prova di curva R ciclica

In seguito(Tabella 6.5), si riportano i dati principali di ogni step di carico ottenuti dall'apposito foglio Excel di controllo della prova. Ogni input di ΔK è stato scelto osservando l'andamento del potenziale corretto e degli eventuali punti in soglia già raggiunti. Si noti come nel primo step di carico la lunghezza di cricca finale sia minore di quella iniziale. Questo è chiaramente impossibile ed è dovuto all'instabilità del segnale di potenziale a causa di cortocircuiti, trattata nel paragrafo 6.4.2. Il problema è stato risolto negli step di carico successivi. Nell'ultima riga di ogni tabella viene riportato se al termine dello step di carico la cricca è arrestata o meno. In figura 6.59 vengono riportati tutti i punti in soglia dove la cricca è arrestata.

Step	[-]	1	2	3	4	5	6
Date	[-]	26/06/2023	27/06/2023	27/06/2023	28/06/2023	28/06/2023	29/06/2023
Time	[-]	18:20:00	10:35:00	13:52:00	9:10.00	16:31:00	14:35:00
Mode	[-]	DF-Cost	DF-Cost	DF-Cost	DF-Cost	DF-Cost	DK-Cost
ai	[mm]	5.145	5.112	5.122	5.146	5.154	5.333
R	[-]	0.1	0.1	0.1	0.1	0.1	0.1
ΔK _I	$[MPa m^{0.5}]$	2.50	3.00	3.50	4.00	4.50	5.00
f	[Hz]	20	32	30	30	30	30
K _{I.max}	$[MPa m^{0.5}]$	2.778	3.333	3.889	4.444	5.000	5.556
K _{I.min}	$[MPa m^{0.5}]$	0.278	0.333	0.389	0.444	0.500	0.556
K _{La}	$[MPa m^{0.5}]$	1.250	1.500	1.750	2.000	2.250	2.500
K _{I.mean}	$[MPa m^{0.5}]$	1.528	1.833	2.139	2.444	2.750	3.056
a _i /W	[-]	0.271	0.269	0.270	0.271	0.271	0.281
θi	[-]	0.425	0.423	0.423	0.425	0.426	0.441
g(a _i /W)	[-]	1.171	1.166	1.168	1.172	1.173	1.202
ΔF	[kN]	1.765	2.127	2.479	2.824	3.173	3.442
F _{max}	[kN]	1.961	2.364	2.754	3.137	3.526	3.824
F _{min}	[kN]	0.196	0.236	0.275	0.314	0.353	0.382
Fa	[kN]	0.882	1.064	1.239	1.412	1.587	1.721
Fmean	[kN]	1.079	1.300	1.515	1.726	1.939	2.103
(W-a _i)	[mm]	13.855	13.888	13.878	13.854	13.846	13.667
SSY	[mm]	4.551	4.997	5.394	5.757	6.103	6.356
a _{i.max}	[mm]	14.449	14.003	13.606	13.243	12.897	12.644
r _p	[mm]	0.010	0.014	0.019	0.025	0.032	0.039
Check SSY	[-]	3.044	2.779	2.573	2.407	2.269	2.150
Ν	[cycles]	1.80E+06	2.17E+06	4.25E+06	5.03E+06	7.40E+06	9.41E+06
ΔN	[cycles]	1.04E+06	3.68E+05	2.08E+06	7.87E+05	2.37E+06	2.01E+06
$\Delta V(T)$	[µV]	338.90	339.10	339.00	341.00	352.70	352.10
Т	[°C]	33.17	32.64	30.60	32.32	31.91	31.36
$\Delta V(T_0)$	[µV]	336.44	337.08	338.70	339.24	351.24	351.12
a _f	[mm]	5.112	5.122	5.146	5.154	5.333	5.332
Δa	[mm]	0.000	0.010	0.034	0.042	0.222	#N/D
a _f /W	[-]	0.269	0.270	0.271	0.271	0.281	0.281
$\theta_{\rm f}$	[-]	0.423	0.423	0.425	0.426	0.441	0.441
g(a _f /W)	[-]	1.166	1.168	1.172	1.173	1.202	1.201
ΔK _{Lth}	$[MPa m^{0.5}]$	2.489	3.004	3.511	4.004	4.610	5.000
K _{I.max th}	$[MPa m^{0.5}]$	2.766	3.338	3.902	4.449	5.122	5.556
K _{I.min th}	$[MPa m^{0.5}]$	0.277	0.334	0.390	0.445	0.512	0.556
ΔF_{f}	[kN]	1.765	2.127	2.479	2.824	3.173	3.442
F _{max.f}	[kN]	1.961	2.364	2.754	3.137	3.526	3.825
F _{min.f}	[kN]	0.196	0.236	0.275	0.314	0.353	0.382
F _{a.f}	[kN]	0.882	1.064	1.239	1.412	1.587	1.721
F _{mean.f}	[kN]	1.079	1.300	1.515	1.726	1.939	2.104
(W-a _f)	[mm]	13.888	13.878	13.854	13.846	13.667	13.668
SSY	[mm]	4.551	4.997	5.394	5.757	6.103	6.356
a _{f.max}	[mm]	14.449	14.003	13.606	13.243	12.897	12.644
r _{p.th}	[mm]	0.010	0.014	0.019	0.025	0.033	0.039
Check SSY	[-]	3.051	2.777	2.569	2.405	2.239	2.150
Arrested?	[-]	Y	Y	Y	Y	Y	Ν

Tabella 6.5: foglio di calcolo per prova sperimentale HAZ_17. Celle gialle: input. Celle marroni: valori calcolati. Celle verdi-rosse: OK-NO.

Step	7	8	9	10	11	12	13
Date	30/06/2023	30/06/2023	05/07/2023	05/07/2023	05/07/2023	06/07/2023	06/07/2023
Time	09:20:00	14:51:00	10:35:00	13:40:00	17:20:00	08:50:00	12:15:00
Mode	DK-Cost						
a _i	5.332	5.335	5.984	6.113	6.504	7.959	8.221
R	0.1	0.1	0.1	0.1	0.1	0.1	0.1
ΔK_{I}	5.50	6.00	8.00	10.00	9.00	8.00	7.00
f	30	30	30	30	30	30	30
K _{I.max}	6.111	6.667	8.889	11.111	10.000	8.889	7.778
K _{I.min}	0.611	0.667	0.889	1.111	1.000	0.889	0.778
K _{La}	2.750	3.000	4.000	5.000	4.500	4.000	3.500
K _{I.mean}	3.361	3.667	4.889	6.111	5.500	4.889	4.278
a _i /W	0.281	0.281	0.315	0.322	0.342	0.419	0.433
θ_{i}	0.441	0.441	0.495	0.505	0.538	0.658	0.680
g(a _i /W)	1.201	1.202	1.311	1.334	1.407	1.726	1.794
ΔF	3.787	4.129	5.046	6.199	5.291	3.833	3.227
F _{max}	4.207	4.588	5.606	6.887	5.879	4.259	3.586
F _{min}	0.421	0.459	0.561	0.689	0.588	0.426	0.359
Fa	1.893	2.064	2.523	3.099	2.645	1.917	1.614
F _{mean}	2.314	2.523	3.084	3.788	3.233	2.342	1.972
(W-a _i)	13.668	13.665	13.016	12.887	12.496	11.041	10.779
SSY	6.667	6.961	7.696	8.530	7.880	6.707	6.154
a _{i.max}	12.333	12.039	11.304	10.470	11.120	12.293	12.846
r _p	0.047	0.056	0.100	0.156	0.126	0.100	0.076
Check SSY	2.050	1.963	1.691	1.511	1.586	1.646	1.751
N	1.00E+07	1.96E+07	2.00E+07	2.04E+07	2.20E+07	2.24E+07	2.29E+07
ΔN	5.94E+05	9.63E+06	3.15E+05	4.92E+05	1.55E+06	3.62E+05	5.66E+05
$\Delta V(T)$	352.50	392.50	404.10	433.70	539.30	559.70	581.30
T	31.54	27.06	29.74	31.64	29.46	29.39	30.87
$\Delta V(T_0)$	351.36	395.65	404.61	432.19	540.36	560.90	580.40
a _f	5.335	5.984	6.113	6.504	7.959	8.221	8.465
	#N/D						
$a_{\rm f}/W$	0.281	0.315	0.322	0.342	0.419	0.433	0.446
	0.441	0.495	0.505	0.538	0.658	0.680	0.700
$g(a_f/W)$	1.202	1.311	1.334	1.40/	1./26	1./94	1.801
Δ K _{L,th}	5.500	6.000	8.000	10.000	9.000	8.000	7.000
K _{Lmax th}	0.111	0.00/	8.889		1,000	8.889	/.//8
<u>NLmin th</u>	2 795	2 794	0.009	5.870	1.000	2.699	0.776
ΔΓ _f Γ	<u> </u>	<u> </u>	4.939	6.522	4.512	3.088	3.111
Г _{max.f} Г	4.203	4.203	0.551	0.552	4./91	4.098	0.246
Г _{min.f} Г	1.802	1.802	2 470	2 0 2 0	0.479	1.844	1 5 5 6
Г _{а.f} Г	2 2 1 2	2 2 1 2	2.479	2.939	2.130	1.044	1.550
T _{mean.f}	12.515	12.016	12.887	12/06	2.055	10 770	10.535
(W-a _f) SSV	6.665	6.665	7.620	8 207	7 114	6 5 7 0	6.043
9.	12 335	12 335	11 371	10.693	11 886	12 421	12 957
a _{f.max}	0.047	0.056	0.100	0.156	0.126	0.100	0.076
Check SSV	2 050	1 953	1 689	1 504	1 552	1 638	1 743
Arrested?	N	N	N	N	N	N	N

Step	14	15	16	17	18	19
Date	06/07/2023	07/07/2023	07/07/2023	10/07/2023	10/07/2023	11/07/2023
Time	17:30:00	09:36:00	10:58:00	08:50:00	17:30:00	08:50:00
Mode	DK-Cost	DK-Cost	DK-Cost	DK-Cost	DK-Cost	DK-Cost
ai	8.465	8.485	8.499	9.802	9.975	10.192
R	0.1	0.1	0.1	0.1	0.1	0.1
ΔK _I	6.00	7.00	7.00	8.00	7.50	7.00
f	30	30	30	30	30	30
K _{Lmax}	6.667	7.778	7.778	8.889	8.333	7.778
K _{Lmin}	0.667	0.778	0.778	0.889	0.833	0.778
K _{La}	3.000	3.500	3.500	4.000	3.750	3.500
K _{Lmean}	3.667	4.278	4.278	4.889	4.583	4.278
a _i /W	0.446	0.447	0.447	0.516	0.525	0.536
θ	0.700	0.701	0.703	0.810	0.825	0.843
g(a _i /W)	1.861	1.866	1.870	2.302	2.371	2.462
ΔF	2.667	3.102	3.095	2.874	2.616	2.351
F _{max}	2.963	3.447	3.439	3.193	2.907	2.613
F _{min}	0.296	0.345	0.344	0.319	0.291	0.261
Fa	1.333	1.551	1.548	1.437	1.308	1.176
F _{mean}	1.630	1.896	1.892	1.756	1.599	1.437
(W-a _i)	10.535	10.515	10.501	9.198	9.025	8.808
SSY	5.595	6.034	6.027	5.808	5.541	5.253
a _{i.max}	13.405	12.966	12.973	13.192	13.459	13.747
r _p	0.056	0.076	0.076	0.100	0.088	0.076
Chook SSV	1 0 0 7	1 7 4 2	1 7 4 0	1 50 4	1 (20)	1 (77
CHECK 55 I	1.883	1./43	1./42	1.584	1.629	1.6//
N	1.883 2.47E+07	1.743 2.48E+07	1.742 3.23E+07	1.584 3.33E+07	1.629 3.49E+07	1.6// 3.53E+07
N ΔN	2.47E+07 1.73E+06	1.743 2.48E+07 1.46E+05	1.742 3.23E+07 7.53E+06	1.584 3.33E+07 9.27E+05	1.629 3.49E+07 1.65E+06	1.677 3.53E+07 4.16E+05
N ΔN ΔV(T)	1.885 2.47E+07 1.73E+06 581.60	1.743 2.48E+07 1.46E+05 583.40	1.742 3.23E+07 7.53E+06 699.80	1.584 3.33E+07 9.27E+05 717.70	1.629 3.49E+07 1.65E+06 736.70	1.677 3.53E+07 4.16E+05 739.20
N ΔN ΔV(T) T	1.885 2.47E+07 1.73E+06 581.60 30.01	1.745 2.48E+07 1.46E+05 583.40 30.43	1.742 3.23E+07 7.53E+06 699.80 33.75	1.584 3.33E+07 9.27E+05 717.70 34.95	1.629 3.49E+07 1.65E+06 736.70 34.29	1.677 3.53E+07 4.16E+05 739.20 35.22
	1.883 2.47E+07 1.73E+06 581.60 30.01 581.94	1.743 2.48E+07 1.46E+05 583.40 30.43 583.13	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33	1.677 3.53E+07 4.16E+05 739.20 35.22 730.12
$ \begin{array}{c} $	1.883 2.47E+07 1.73E+06 581.60 30.01 581.94 8.485	1.743 2.48E+07 1.46E+05 583.40 30.43 583.13 8.499	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192	1.677 3.53E+07 4.16E+05 739.20 35.22 730.12 10.201
$ \begin{array}{c} \text{N} \\ \underline{\Delta N} \\ \underline{\Delta V(T)} \\ \underline{T} \\ \underline{\Delta V(T_0)} \\ \underline{a_f} \\ \underline{\Delta a} \end{array} $	1.883 2.47E+07 1.73E+06 581.60 30.01 581.94 8.485 3.373	1.743 2.48E+07 1.46E+05 583.40 30.43 583.13 8.499 #N/D	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802 4.690	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975 #N/D	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192 #N/D	1.677 3.53E+07 4.16E+05 739.20 35.22 730.12 10.201 5.089
$ \begin{array}{c} \text{N} \\ \underline{\Delta N} \\ \underline{\Delta V(T)} \\ T \\ \underline{\Delta V(T_0)} \\ \underline{a_f} \\ \underline{\Delta a} \\ \underline{a_f/W} \end{array} $	1.883 2.47E+07 1.73E+06 581.60 30.01 581.94 8.485 3.373 0.447	1./43 2.48E+07 1.46E+05 583.40 30.43 583.13 8.499 #N/D 0.447	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802 4.690 0.516	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975 #N/D 0.525	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192 #N/D 0.536	1.677 3.53E+07 4.16E+05 739.20 35.22 730.12 10.201 5.089 0.537
$ \begin{array}{c} \text{N} \\ \hline \text{N} \\ \Delta \text{N} \\ \hline \Delta \text{V}(\text{T}) \\ \hline \text{T} \\ \hline \Delta \text{V}(\text{T}_0) \\ \hline a_{\text{f}} \\ \hline \Delta a \\ \hline a_{\text{f}}/\text{W} \\ \hline \theta_{\text{f}} \\ \end{array} $	1.883 2.47E+07 1.73E+06 581.60 30.01 581.94 8.485 3.373 0.447 0.701	1./43 2.48E+07 1.46E+05 583.40 30.43 583.13 8.499 #N/D 0.447 0.703	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802 4.690 0.516 0.810	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975 #N/D 0.525 0.825	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192 #N/D 0.536 0.843	1.677 3.53E+07 4.16E+05 739.20 35.22 730.12 10.201 5.089 0.537 0.843
$ \begin{array}{c} \text{N} \\ \hline \text{N} \\ \Delta \text{N} \\ \hline \Delta \text{V}(\text{T}) \\ \hline \text{T} \\ \hline \Delta \text{V}(\text{T}_0) \\ \hline a_{\text{f}} \\ \hline \Delta a \\ \hline a_{\text{f}}/\text{W} \\ \hline \theta_{\text{f}} \\ \hline g(a_{\text{f}}/\text{W}) \\ \end{array} $	1.883 2.47E+07 1.73E+06 581.60 30.01 581.94 8.485 3.373 0.447 0.701 1.866	1./43 2.48E+07 1.46E+05 583.40 30.43 583.13 8.499 #N/D 0.447 0.703 1.870	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802 4.690 0.516 0.810 2.302	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975 #N/D 0.525 0.825 2.371	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192 #N/D 0.536 0.843 2.462	1.677 3.53E+07 4.16E+05 739.20 35.22 730.12 10.201 5.089 0.537 0.843 2.466
$ \begin{array}{c} \text{Check SST} \\ \hline \text{N} \\ \Delta \text{N} \\ \hline \Delta \text{V}(\text{T}) \\ \hline \text{T} \\ \hline \Delta \text{V}(\text{T}_0) \\ \hline a_{\text{f}} \\ \hline \Delta a \\ \hline a_{\text{f}}/\text{W} \\ \hline \theta_{\text{f}} \\ \hline g(a_{\text{f}}/\text{W}) \\ \hline \Delta K_{\text{Lth}} \\ \hline \end{array} $	1.883 2.47E+07 1.73E+06 581.60 30.01 581.94 8.485 3.373 0.447 0.701 1.866 6.000	1./43 2.48E+07 1.46E+05 583.40 30.43 583.13 8.499 #N/D 0.447 0.703 1.870 7.000	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802 4.690 0.516 0.810 2.302 7.000	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975 #N/D 0.525 0.825 2.371 8.000	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192 #N/D 0.536 0.843 2.462 7.500	1.677 3.53E+07 4.16E+05 739.20 35.22 730.12 10.201 5.089 0.537 0.843 2.466 7.000
$ \begin{array}{c} \text{Check SST} \\ \hline \text{N} \\ \hline \Delta \text{N} \\ \hline \Delta \text{V}(\text{T}) \\ \hline \text{T} \\ \hline \Delta \text{V}(\text{T}_0) \\ \hline a_{\text{f}} \\ \hline \Delta a \\ \hline a_{\text{f}}/\text{W} \\ \hline \theta_{\text{f}} \\ \hline g(a_{\text{f}}/\text{W}) \\ \hline \Delta K_{\text{L,th}} \\ \hline K_{\text{L,max th}} \\ \end{array} $	1.883 2.47E+07 1.73E+06 581.60 30.01 581.94 8.485 3.373 0.447 0.701 1.866 6.000 6.667	1./43 2.48E+07 1.46E+05 583.40 30.43 583.13 8.499 #N/D 0.447 0.703 1.870 7.000 7.778	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802 4.690 0.516 0.810 2.302 7.000 7.778	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975 #N/D 0.525 0.825 2.371 8.000 8.889	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192 #N/D 0.536 0.843 2.462 7.500 8.333	1.677 3.53E+07 4.16E+05 739.20 35.22 730.12 10.201 5.089 0.537 0.843 2.466 7.000 7.778
$ \begin{array}{c} \text{Check SST} \\ \hline \text{N} \\ \hline \Delta \text{N} \\ \hline \Delta \text{V}(\text{T}) \\ \hline \text{T} \\ \hline \Delta \text{V}(\text{T}_0) \\ \hline a_{\text{f}} \\ \hline \Delta a \\ \hline a_{\text{f}}/\text{W} \\ \hline \theta_{\text{f}} \\ \hline g(a_{\text{f}}/\text{W}) \\ \hline \Delta K_{\text{Lth}} \\ \hline K_{\text{Lmax th}} \\ \hline K_{\text{Lmin th}} \end{array} $	1.883 2.47E+07 1.73E+06 581.60 30.01 581.94 8.485 3.373 0.447 0.701 1.866 6.000 6.667 0.667	1./43 2.48E+07 1.46E+05 583.40 30.43 583.13 8.499 #N/D 0.447 0.703 1.870 7.000 7.778 0.778 0.778	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802 4.690 0.516 0.810 2.302 7.000 7.778 0.778	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975 #N/D 0.525 0.825 2.371 8.000 8.889 0.889	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192 #N/D 0.536 0.843 2.462 7.500 8.333 0.833	1.677 3.53E+07 4.16E+05 739.20 35.22 730.12 10.201 5.089 0.537 0.843 2.466 7.000 7.778 0.778
$ \begin{array}{c} \text{Check SST} \\ \hline \text{N} \\ \hline \Delta \text{N} \\ \hline \Delta \text{V}(\text{T}) \\ \hline \text{T} \\ \hline \Delta \text{V}(\text{T}_0) \\ \hline a_{\text{f}} \\ \hline \Delta \text{A} \\ \hline a_{\text{f}} / W \\ \hline \theta_{\text{f}} \\ \hline g(a_{\text{f}} / W) \\ \hline \Delta K_{\text{Lth}} \\ \hline K_{\text{Lmax th}} \\ \hline K_{\text{Lmin th}} \\ \hline \Delta F_{\text{f}} \\ \hline \end{array} $	1.883 2.47E+07 1.73E+06 581.60 30.01 581.94 8.485 3.373 0.447 0.701 1.866 6.000 6.667 0.667 2.659	1./43 2.48E+07 1.46E+05 583.40 30.43 583.13 8.499 #N/D 0.447 0.703 1.870 7.000 7.778 0.778 0.778 3.095	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802 4.690 0.516 0.810 2.302 7.000 7.778 0.778 0.778 2.515	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975 #N/D 0.525 0.825 2.371 8.000 8.889 0.889 0.889 2.791	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192 #N/D 0.536 0.843 2.462 7.500 8.333 0.833 2.519	1.677 3.53E+07 4.16E+05 739.20 35.22 730.12 10.201 5.089 0.537 0.843 2.466 7.000 7.778 0.778 0.778 2.348
$ \begin{array}{c} \text{N} \\ \hline N \\ \hline \Delta N \\ \hline \Delta V(T) \\ \hline T \\ \hline \Delta V(T_0) \\ \hline a_f \\ \hline \Delta a \\ \hline a_f/W \\ \hline \theta_f \\ \hline g(a_f/W) \\ \hline \Delta K_{Lth} \\ \hline K_{Lmax th} \\ \hline K_{Lmin th} \\ \hline \Delta F_f \\ \hline F_{max.f} \\ \hline \end{array} $	1.883 2.47E+07 1.73E+06 581.60 30.01 581.94 8.485 3.373 0.447 0.701 1.866 6.000 6.667 0.667 2.954	1.743 2.48E+07 1.46E+05 583.40 30.43 583.13 8.499 #N/D 0.447 0.703 1.870 7.000 7.778 0.778 3.095 3.439	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802 4.690 0.516 0.810 2.302 7.000 7.778 0.778 2.515 2.794	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975 #N/D 0.525 0.825 2.371 8.000 8.889 0.889 2.791 3.101 2.246	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192 #N/D 0.536 0.843 2.462 7.500 8.333 0.833 2.519 2.799	1.677 3.53E+07 4.16E+05 739.20 35.22 730.12 10.201 5.089 0.537 0.843 2.466 7.000 7.778 0.778 0.778 2.348 2.609
$ \begin{array}{c} \text{Check SST} \\ \hline \text{N} \\ \hline \Delta \text{N} \\ \hline \Delta \text{V}(\text{T}) \\ \hline \text{T} \\ \hline \Delta \text{V}(\text{T}_0) \\ \hline a_{\text{f}} \\ \hline \Delta a \\ \hline a_{\text{f}} \\ \hline \\ \theta_{\text{f}} \\ \hline \\ g(a_{\text{f}}/\text{W}) \\ \hline \\ \hline \\ \Delta K_{\text{Lth}} \\ \hline \\ K_{\text{Lmax th}} \\ \hline \\ K_{\text{Lmin th}} \\ \hline \\ \Delta F_{\text{f}} \\ \hline \\ F_{\text{max,f}} \\ \hline \\ F_{\text{min,f}} \\ \hline \\ \end{array} $	1.883 2.47E+07 1.73E+06 581.60 30.01 581.94 8.485 3.373 0.447 0.701 1.866 6.000 6.667 0.667 2.954 0.295	1./43 2.48E+07 1.46E+05 583.40 30.43 583.13 8.499 #N/D 0.447 0.703 1.870 7.000 7.778 0.778 3.095 3.439 0.344	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802 4.690 0.516 0.810 2.302 7.000 7.778 0.778 2.515 2.794 0.279 1.257	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975 #N/D 0.525 0.825 2.371 8.000 8.889 0.889 2.791 3.101 0.310 1.225	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192 #N/D 0.536 0.843 2.462 7.500 8.333 0.833 2.519 2.799 0.280	1.677 3.53E+07 4.16E+05 739.20 35.22 730.12 10.201 5.089 0.537 0.843 2.466 7.000 7.778 0.778 2.348 2.609 0.261
$ \begin{array}{c} \text{Check SST} \\ \hline \text{N} \\ \hline \Delta \text{N} \\ \hline \Delta \text{V}(\text{T}) \\ \hline \text{T} \\ \hline \Delta \text{V}(\text{T}_0) \\ \hline a_{\text{f}} \\ \hline \Delta a \\ a_{\text{f}}/\text{W} \\ \hline \theta_{\text{f}} \\ \hline g(a_{\text{f}}/\text{W}) \\ \hline \Delta K_{\text{Lth}} \\ \hline K_{\text{Lmax th}} \\ \hline K_{\text{Lmin th}} \\ \hline \Delta F_{\text{f}} \\ \hline F_{\text{max,f}} \\ \hline F_{\text{min,f}} \\ \hline F_{a,\text{f}} \\ \hline \end{array} $	1.883 2.47E+07 1.73E+06 581.60 30.01 581.94 8.485 3.373 0.447 0.701 1.866 6.000 6.667 0.667 2.954 0.295 1.329	1./43 2.48E+07 1.46E+05 583.40 30.43 583.13 8.499 #N/D 0.447 0.703 1.870 7.000 7.778 0.778 3.095 3.439 0.344 1.548 1.622	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802 4.690 0.516 0.810 2.302 7.000 7.778 0.778 2.515 2.794 0.279 1.257	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975 #N/D 0.525 0.825 2.371 8.000 8.889 0.889 2.791 3.101 0.310 1.395 1.705	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192 #N/D 0.536 0.843 2.462 7.500 8.333 0.833 2.519 2.799 0.280 1.260	1.677 3.53E+07 4.16E+05 739.20 35.22 730.12 10.201 5.089 0.537 0.843 2.466 7.000 7.778 0.778 2.348 2.609 0.261 1.174
$ \begin{array}{c} \text{Check SST} \\ \hline \text{N} \\ \hline \Delta \text{N} \\ \hline \Delta \text{V}(\text{T}) \\ \hline \text{T} \\ \hline \Delta \text{V}(\text{T}_0) \\ \hline a_f \\ \hline \Delta a_f \\ \hline \Delta a_f \\ \hline \Delta a_f \\ \hline a_f \\ \hline \Delta K_{\text{Lth}} \\ \hline \theta_f \\ \hline g(a_f/W) \\ \hline \theta_f \\ \hline g(a_f/W) \\ \hline \Delta K_{\text{Lth}} \\ \hline K_{\text{Lmax th}} \\ \hline K_{\text{Lmin th}} \\ \hline \Delta F_f \\ \hline F_{\text{max.f}} \\ \hline F_{\text{min.f}} \\ \hline F_{a.f} \\ \hline F_{\text{men.f}} \\ \hline \end{array} $	1.883 2.47E+07 1.73E+06 581.60 30.01 581.94 8.485 3.373 0.447 0.701 1.866 6.000 6.667 0.667 2.954 0.295 1.329 1.625	2.48E+07 1.46E+05 583.40 30.43 583.13 8.499 #N/D 0.447 0.703 1.870 7.000 7.778 0.778 3.095 3.439 0.344 1.548 1.892 10.501	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802 4.690 0.516 0.810 2.302 7.000 7.778 0.778 2.515 2.794 0.279 1.257 1.537 0.100	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975 #N/D 0.525 0.825 2.371 8.000 8.889 0.889 2.791 3.101 0.310 1.395 1.705 0.025	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192 #N/D 0.536 0.843 2.462 7.500 8.333 0.833 2.519 2.799 0.280 1.260 1.540	$\begin{array}{r} 1.677 \\ \hline 3.53E+07 \\ \hline 4.16E+05 \\ \hline 739.20 \\ \hline 35.22 \\ \hline 730.12 \\ \hline 10.201 \\ \hline 5.089 \\ \hline 0.537 \\ \hline 0.843 \\ \hline 2.466 \\ \hline 7.000 \\ \hline 7.778 \\ \hline 0.778 \\ \hline 2.348 \\ \hline 2.609 \\ \hline 0.261 \\ \hline 1.174 \\ \hline 1.435 \\ \hline 8.700 \\ \end{array}$
$ \begin{array}{c} \text{Check SST} \\ \hline \text{N} \\ \hline \Delta \text{N} \\ \hline \Delta \text{V}(\text{T}) \\ \hline \text{T} \\ \hline \Delta \text{V}(\text{T}_0) \\ \hline a_{\text{f}} \\ \hline \Delta a \\ \hline a_{\text{f}}/\text{W} \\ \hline \theta_{\text{f}} \\ \hline g(a_{\text{f}}/\text{W}) \\ \hline \Delta K_{\text{Lth}} \\ \hline K_{\text{Lmax th}} \\ \hline K_{\text{Lmax th}} \\ \hline K_{\text{Lmin th}} \\ \hline \Delta F_{\text{f}} \\ \hline F_{\text{max,f}} \\ \hline F_{\text{min,f}} \\ \hline F_{\text{mean,f}} \\ \hline F_{\text{mean,f}} \\ \hline (\text{W-a_{f}}) \\ \hline \end{array} $	1.883 2.47E+07 1.73E+06 581.60 30.01 581.94 8.485 3.373 0.447 0.701 1.866 6.000 6.667 0.667 2.954 0.295 1.329 1.625 10.515	1./43 2.48E+07 1.46E+05 583.40 30.43 583.13 8.499 #N/D 0.447 0.703 1.870 7.000 7.778 0.778 3.095 3.439 0.344 1.548 1.892 10.501 (.027	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802 4.690 0.516 0.810 2.302 7.000 7.778 0.778 2.515 2.794 0.279 1.257 1.537 9.198 5.422	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975 #N/D 0.525 0.825 2.371 8.000 8.889 0.889 2.791 3.101 0.310 1.395 1.705 9.025 5.722	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192 #N/D 0.536 0.843 2.462 7.500 8.333 0.833 2.519 2.799 0.280 1.260 1.540 8.808	1.677 3.53E+07 4.16E+05 739.20 35.22 730.12 10.201 5.089 0.537 0.843 2.466 7.000 7.778 0.778 2.348 2.609 0.261 1.174 1.435 8.799
$ \begin{array}{c} \text{Check SST} \\ \hline \text{N} \\ \hline \Delta \text{N} \\ \hline \Delta \text{V}(\text{T}) \\ \hline \text{T} \\ \hline \Delta \text{V}(\text{T}_0) \\ \hline a_f \\ \hline \Delta a_f \\ \hline a_f \\ \hline \Delta \text{W} \\ \hline \theta_f \\ \hline g(a_f/\text{W}) \\ \hline \Delta K_{\text{Lth}} \\ \hline K_{\text{Lmax th}} \\ \hline K_{\text{Lmin th}} \\ \hline \Delta F_f \\ \hline F_{\text{max.f}} \\ \hline F_{\text{min.f}} \\ \hline F_{\text{a.f}} \\ \hline F_{\text{mean.f}} \\ \hline (\text{W-a_f}) \\ \hline \text{SSY} \\ \hline \end{array} $	2.47E+07 1.73E+06 581.60 30.01 581.94 8.485 3.373 0.447 0.701 1.866 6.000 6.667 0.667 2.659 2.954 0.295 1.329 1.625 10.515 5.586 12.414	1./43 2.48E+07 1.46E+05 583.40 30.43 583.13 8.499 #N/D 0.447 0.703 1.870 7.000 7.778 0.778 3.095 3.439 0.344 1.548 1.892 10.501 6.027	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802 4.690 0.516 0.810 2.302 7.000 7.778 0.778 2.515 2.794 0.279 1.257 1.537 9.198 5.433 1257	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975 #N/D 0.525 0.825 2.371 8.000 8.889 0.889 2.791 3.101 0.310 1.395 1.705 9.025 5.723 1.227	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192 #N/D 0.536 0.843 2.462 7.500 8.333 0.833 2.519 2.799 0.280 1.260 1.540 8.808 5.438	1.677 3.53E+07 4.16E+05 739.20 35.22 730.12 10.201 5.089 0.537 0.843 2.466 7.000 7.778 0.778 2.348 2.609 0.261 1.174 1.435 8.799 5.250
$ \begin{array}{c} \text{Check SST} \\ \hline \text{N} \\ \hline \Delta \text{N} \\ \hline \Delta \text{V}(\text{T}) \\ \hline \text{T} \\ \hline \Delta \text{V}(\text{T}_0) \\ \hline a_{\text{f}} \\ \hline \Delta a \\ \hline a_{\text{f}} \\ \hline \\ \hline \\ a_{\text{f}} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{r} 1.883\\ \hline 2.47E+07\\ \hline 1.73E+06\\ \hline 581.60\\ \hline 30.01\\ \hline 581.94\\ \hline 8.485\\ \hline 3.373\\ \hline 0.447\\ \hline 0.701\\ \hline 1.866\\ \hline 6.000\\ \hline 6.667\\ \hline 0.667\\ \hline 2.659\\ \hline 2.954\\ \hline 0.295\\ \hline 1.329\\ \hline 1.625\\ \hline 10.515\\ \hline 5.586\\ \hline 13.414\\ \hline 0.956\end{array}$	1./43 2.48E+07 1.46E+05 583.40 30.43 583.13 8.499 #N/D 0.447 0.703 1.870 7.000 7.778 0.778 0.778 3.095 3.439 0.344 1.548 1.892 10.501 6.027 12.973 0.676	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802 4.690 0.516 0.810 2.302 7.000 7.778 0.778 2.515 2.794 0.279 1.257 1.537 9.198 5.433 13.567 0.076	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975 #N/D 0.525 0.825 2.371 8.000 8.889 0.889 2.791 3.101 0.310 1.395 1.705 9.025 5.723 13.277	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192 #N/D 0.536 0.843 2.462 7.500 8.333 0.833 2.519 2.799 0.280 1.260 1.540 8.808 5.438 13.562 0.022	$\begin{array}{r} 1.677 \\ \hline 3.53E+07 \\ \hline 4.16E+05 \\ \hline 739.20 \\ \hline 35.22 \\ \hline 730.12 \\ \hline 10.201 \\ \hline 5.089 \\ \hline 0.537 \\ \hline 0.843 \\ \hline 2.466 \\ \hline 7.000 \\ \hline 7.778 \\ \hline 0.778 \\ \hline 2.348 \\ \hline 2.609 \\ \hline 0.261 \\ \hline 1.174 \\ \hline 1.435 \\ \hline 8.799 \\ \hline 5.250 \\ \hline 13.750 \\ \hline 0.076 \end{array}$
$ \begin{array}{c} \text{Check SST} \\ \hline \text{N} \\ \hline \Delta \text{N} \\ \hline \Delta \text{V}(\text{T}) \\ \hline \text{T} \\ \hline \Delta \text{V}(\text{T}_0) \\ \hline a_f \\ \hline \Delta a \\ a_f/\text{W} \\ \hline \theta_f \\ \hline g(a_f/\text{W}) \\ \hline \Delta K_{\text{Lth}} \\ \hline K_{\text{Lmax th}} \\ \hline K_{\text{Lmin th}} \\ \hline \Delta F_f \\ \hline F_{\text{max,f}} \\ \hline F_{\text{min,f}} \\ \hline F_{a.f} \\ \hline F_{\text{mean,f}} \\ \hline (\text{W-}a_f) \\ \hline SSY \\ \hline a_{f,\text{max}} \\ \hline r_{\text{n,th}} \\ \hline \end{array} $	$\begin{array}{r} 1.883\\ \hline 2.47E+07\\ \hline 1.73E+06\\ \hline 581.60\\ \hline 30.01\\ \hline 581.94\\ \hline 8.485\\ \hline 3.373\\ \hline 0.447\\ \hline 0.701\\ \hline 1.866\\ \hline 6.000\\ \hline 6.667\\ \hline 0.667\\ \hline 2.659\\ \hline 2.954\\ \hline 0.295\\ \hline 1.329\\ \hline 1.625\\ \hline 10.515\\ \hline 5.586\\ \hline 13.414\\ \hline 0.056\\ \hline 1.822\\ \end{array}$	1.743 2.48E+07 1.46E+05 583.40 30.43 583.13 8.499 #N/D 0.447 0.703 1.870 7.000 7.778 0.778 0.778 3.095 3.439 0.344 1.548 1.892 10.501 6.027 12.973 0.076 1.742	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802 4.690 0.516 0.810 2.302 7.000 7.778 0.778 2.515 2.794 0.279 1.257 1.537 9.198 5.433 13.567 0.076	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975 #N/D 0.525 0.825 2.371 8.000 8.889 0.889 2.791 3.101 0.310 1.395 1.705 9.025 5.723 13.277 0.100	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192 #N/D 0.536 0.843 2.462 7.500 8.333 0.833 2.519 2.799 0.280 1.260 1.540 8.808 5.438 13.562 0.088	$\begin{array}{r} 1.677 \\ \hline 3.53E+07 \\ \hline 4.16E+05 \\ \hline 739.20 \\ \hline 35.22 \\ \hline 730.12 \\ \hline 10.201 \\ \hline 5.089 \\ \hline 0.537 \\ \hline 0.843 \\ \hline 2.466 \\ \hline 7.000 \\ \hline 7.778 \\ \hline 0.778 \\ \hline 2.348 \\ \hline 2.609 \\ \hline 0.261 \\ \hline 1.174 \\ \hline 1.435 \\ \hline 8.799 \\ \hline 5.250 \\ \hline 13.750 \\ \hline 0.076 \\ \hline 1.676 \end{array}$
Check SSY N ΔN $\Delta V(T)$ T $\Delta V(T_0)$ a_f Δa a_f/W θ_f $g(a_f/W)$ ΔK_{Lth} $K_{Lmax th}$ $K_{Lmin th}$ ΔF_f $F_{max.f}$ $F_{min.f}$ $F_{a.f}$ $F_{mean.f}$ $(W-a_f)$ SSY $a_{f.max}$ $r_{n.th}$ Check SSY	1.883 2.47E+07 1.73E+06 581.60 30.01 581.94 8.485 3.373 0.447 0.701 1.866 6.000 6.667 0.667 2.954 0.295 1.329 1.625 10.515 5.586 13.414 0.056 1.882	1.743 2.48E+07 1.46E+05 583.40 30.43 583.13 8.499 #N/D 0.447 0.703 1.870 7.000 7.778 0.778 3.095 3.439 0.344 1.548 1.892 10.501 6.027 12.973 0.076 1.742	1.742 3.23E+07 7.53E+06 699.80 33.75 693.72 9.802 4.690 0.516 0.810 2.302 7.000 7.778 0.778 2.515 2.794 0.279 1.257 1.537 9.198 5.433 13.567 0.076 1.693	1.584 3.33E+07 9.27E+05 717.70 34.95 709.36 9.975 #N/D 0.525 0.825 2.371 8.000 8.889 0.889 2.791 3.101 0.310 1.395 1.705 9.025 5.723 13.277 0.100 1.577	1.629 3.49E+07 1.65E+06 736.70 34.29 729.33 10.192 #N/D 0.536 0.843 2.462 7.500 8.333 0.833 2.519 2.799 0.280 1.260 1.540 8.808 5.438 13.562 0.088 1.620	1.677 3.53E+07 4.16E+05 739.20 35.22 730.12 10.201 5.089 0.537 0.843 2.466 7.000 7.778 0.778 2.348 2.609 0.261 1.174 1.435 8.799 5.250 13.750 0.076 1.676

Come si può osservare dalla tabella degli step di carico, in controllo di forza il SIF applicato al termine dello step di carico è maggiore di quello iniziale, perché a forza costante se la lunghezza di cricca aumenta il K₁ aumenta. Al contrario, in controllo di SIF, il K₁ applicato è vincolato ad essere costante e di conseguenza con la propagazione della cricca sarà necessaria una forza sempre minore. Per questo motivo durante un cambio carico in controllo di forza bisogna sempre scegliere la varazione facendo riferimento al ΔK_1 finale, perché questo sarà diverso da quello iniziale.

Si pensi ad esempio a una fase di decreasing. Come detto in precedenza per evitare arresti fittizi della cricca il Δ K applicato va ridotto al massimo del 10% o di 0.5 MPa m^{0.5} (si consiglia il minore tra i due). In controllo di forza sottraendo erroneamente 0.5 MPa m^{0.5} al SIF iniziale si finisce inevitabilmente per ridurre di una quantità maggiore il SIF veramente applicato alla fine dello step di carico (perché questo sarà au mentato), con conseguente arresto della propagazione dovuto alla zona deformata plasticamente. Esempi molto evidenti sono riportati negli step di carico della prova a modo misto I+II (Capitolo 8) condotta per intero in controllo di forza.

Figura 6.59: curva R HAZ 17. Modo I, R=0.1. Risultati grezzi senza post-processing.

Figura 6.60: segnale di potenziale e lunghezza di cricca durante la prova HAZ 17

Una volta terminata la prova si interrompono le acquisizioni, si toglie il provino dalla macchina e si separano i due conci tagliando con un seghetto a mano la sezione resistente rimasta.

6.6 Post processing

In questa fase le misure fatte dal DCPD durante la prova vengono verificate ed eventualmente corrette misurando la reale estensione di cricca al microscopio a provino rotto. Di conseguenza si ricalcolano i vari Δa e ΔK per ottenere il grafico della curva R corretta dopo il post-processing.

6.6.1 Misure al microscopio

Una volta separato il provino, si procede misurando la lunghezza di cricca iniziale e finale in più punti equispaziati lungo lo spessore (Figura 6.65). La scelta del concio è indifferente in quanto le due superfici di frattura sono simmetriche (Figura 6.62). Anche la fase di Post-processing è supportata da un apposito foglio Excel. Come si può notare dalla Tabella 6.6 Il DCPD è un ottimo metodo per misurare con precisione la lunghezza di cricca durante la prova.

Figura 6.61: schema di conci e facce del provino

Figura 6.62: provino rotto (a), zoom sulla superficie di frattura (b)

Figura 6.63: intaglio da RB. Side A (a), Side B (b)

Figura 6.64: Side A. Concio 1 (a), concio 2 (b)

Figura 6.65: misure al DinoLite

a ₀	a _{0 post}	$\Delta\% a_0$	a _f	a _{f post}	Δ % a _f
[mm]	[mm]	[%]	[mm]	[mm]	[%]
5.045	5.036	-0.2	10.201	10.390	1.9

Tabella 6.6: confronto tra misure DCPD e misure DinoLite

6.6.2 Requisiti ISO 12108 [14]

Le equazioni per il calcolo del SIF proposte dalla normativa sono valide solo se la cricca rispetta i seguenti requisiti geometrici (Figura 6.66):

- La dimensione di cricca misurata ai due lati del provino deve differire al massimo di 0.25B;
- La cricca deve propagare entro uno spessore di 0.05W dal piano dell'intaglio iniziale.

Come si può leggere in Tabella 6.7 entrambi i requisiti sono rispettati.

Figura 6.66: requisiti ISO. Differenza tra lunghezze di cricca sui due lati (a), deviazione della cricca rispetto al piano dell'intaglio (b).

Verifiche ISO		limite	reale	risultato
Differenza tra lunghezze di cricca	[mm]	1.500	0.067	OK
Deviazione rispetto al piano dell'intaglio	[mm]	0.950	0.287	OK
Tabella 6 7: rea	wisiti ISO na	r prova H_{1717}		

Tabella 6./: requisiti ISO per prova HAZI /

6.6.3 Fitting e correzione

La misura delle lunghezze di cricca reali al microscopio è necessaria per andare a correggere le misure derivanti dall'acquisizione del DCPD. Attraverso un codice MATLAB (riportato in appendice A.3) l'equazione di Johnson, usata per calcolare la lunghezza di cricca dato il potenziale, viene fittata imponendo come valori iniziali e finali quelli reali misurati, e correggendo di conseguenza il parametro 2y (distanza tra i probes di potenziale). Dal fitting si ottiene quindi un nuovo valore del parametro 2y da utilizzare per ricalcolare tutte le lunghezze di cricca tra a_0 e a_0 applicando nuovamente l'equazione di Johnson con i nuovi parametri corretti. Di conseguenza andranno ricalcolati anche i SIF perché cambieranno le lunghezze di cricca a parità di forze applicate (Tabella 6.9). La Curva R corretta in post processing sarà quindi quella ottenuta dagli incrementi di cricca corretti e i valori di soglia corretti, in genere consiste in una traslazione dei punti "grezzi" in ascissa e in ordinata (Figura 6.68). Anche per la fase di post-processing si è utilizzato l'apposito foglio di calcolo Excel.

2y	2y _{post}	Δ% 2y
[mm]	[mm]	[%]
2.362	3.500	+48.2

Tabella 6.8: confronto tra distanza tra i probe misurata e corretta in post-processing

Figura 6.67: andamento della lunghezza di cricca durante la prova e corretto in post-processing

ΔK_{th}	[MPa m ^{0.5}]	2.489	3.004	3.511	4.004	4.610	6.000	7.000	7.000
ΔK_{th} post	[MPa m ^{0.5}]	2.493	3.008	3.517	4.011	4.624	6.129	7.204	7.221
Δ	[%]	0.1	0.2	0.2	0.2	0.3	2.1	2.8	3.1
Δa	[mm]	0.000	0.010	0.034	0.042	0.222	3.373	4.690	5.089
∆a post	[mm]	0.000	0.010	0.036	0.044	0.233	3.502	4.848	5.254
Δ	[%]	0.0	0.0	5.2	5.2	5.1	3.7	3.3	3.1

Tabella 6.9: confronto tra lunghezze di cricca e soglie di propagazione prima e dopo post-processing

6.7 Conclusioni e commenti

Dai risultati ottenuti si può concludere che i miglioramenti apportati all'attrezzatura sperimentale sono stati utili: i problemi di cortocircuito sono stati risolti grazie all'isolante in Kapton e ai nuovi supporti in teflon, la riprogettazione dei supporti ha reso il provino molto più stabile permettendo la propagazione a puro modo I senza modi indesiderati. La superficie di frattura è infatti conforme alla normativa ISO e non presenta particolari irregolarità dovute a sollecitazioni di modo II o modo III. Questo significa che l'allineamento del provino in macchina era corretto e stabile durante tutto il corso della prova. La soluzione portata per isolare il provino ha consentito una corretta lettura del segnale di potenziale e quindi della lunghezza di cricca, le correzioni in post-processing fatte sulle misure DCPD sono minime (al massimo del 5.2% per la lunghezza di cricca che comporta correzioni massime del 3.1% sul valore di ΔK_{th}). I punti sperimentali in soglia hanno un andamento coerente alle aspettative nella fase iniziale, con la curva che gradualmente si porta al valore di soglia per le cricche lunghe. Il punto a lunghezza di cricca $\Delta a=3.3$ mm presenta un valore di soglia leggermente inferiore ai successivi. Questo può essere dovuto al fatto che il provino testato è un provino saldato e quindi la cricca propagando si porta all'interno di zone del materiale con diversa microstruttura. Un possibile miglioramento in vista delle prove successive consiste nel cercare un punto in soglia nella zona di transizione tra cricche lunghe e cricche corte per avere una distribuzione più uniforme di punti sperimentali. Inoltre, è di notevole interesse trovare il valore di soglia per le cricche lunghe anche per lunghezze di cricca molto elevate $(a/W \approx 0.8)$ e verificare la corrispondenza con i valori trovati a lunghezze di cricca minori, confermando quindi che i fenomeni di "closure" sono regimati.

CAPITOLO 7 Curva R a modo I su provino SENB AN05

In questo capitolo verrà descritta la prova sperimentale di curva R ciclica a puro modo I con rapporto di ciclo R=0.1 sul provino AN05, in maniera del tutto analoga alla prova HAZ17 riportata nel dettaglio nel capitolo 6.

7.1 Fase preliminare

7.1.1 Misurazione del provino (pre-RB)

Il provino utilizzato durante la prova è un provino SENB in acciaio S355 J2+N laminato e con successivo trattamento termico per il rilassamento delle tensioni residue (Figure 7.1, 7.2). Il provino di dimensioni nominali 108x19x6mm presenta un intaglio ottenuto per elettro-erosione a filo profondo 5mm, due fori per alloggiare i pin di potenziale ai lati dell'intaglio e due fori filettati M3 alle estremità per collegare i cavi di corrente (Figura 7.3). Diversamente dal provino saldato HAZ17 che appartiene alla serie HAZ questo appartiene alla serie AN ovvero di provini non saldati che hanno subito trattamento termico di distensione delle tensioni residue.

Figura 7.1: provino SENB AN05 lato A

Figura 7.2: provino SENB AN05 lato B

Figura 7.3: provino SENB, disegni CAD con particolare dell'intaglio e dei fori di potenziale

Figura 7.4: provino SENB, misure al calibro (a), lati del provino (b)

W	L	В	a _N	h	ρ	2y ₀
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
18.995	108.12	5.993	4.942	0.249	0.119	2.292

Tabella 7.1: misure pre-Razor Blading

Figura 7.5: intaglio pre RB side A (a), zoom intaglio pre RB side A (b)

Figura 7.6: fori per misura di potenziale

7.1.2 Razor Blading

In Tabella 7.2 si riportano i parametri utilizzati per la lavorazione di Razor Blading.

Durata	Precarico molle	Pasta diamantata	f	a _{N+RB}	δa _{RB}
[min]	[mm]	[/]	[Hz]	[mm]	[min]
5	6	Size 3	2	5.005	0.062
	T 1	11 7 2	מו		

Tabella 7.2: parametri RB

La procedura di RB è stata efficace e ha creato un intaglio a V sul fondo dell'intaglio per elettro-erosione a filo, la lunghezza totale dell'intaglio è di 5.005mm con un aumento di 0.062mm.

Figura 7.7: intaglio post RB side B

7.2 Calibrazione dell'a, parametri DCPD e acquisizione

Anche in questo caso si è scelta una intensità di corrente I=15 A. L'acquisizione del segnale di potenziale è impostata per avere il filtraggio massimo con parametri *Number of readings* = 64 e *Number of samples* = 8. In Tabella 7.3, si riportano i valori della temperatura media T₀, del potenziale alla temperatura media X₀, e del coefficiente di resistenza alla temperatura α , ottenuti dallo script MATLAB riportato in appendice A.1 (Figura 7.8).

Figura 7.8: calcolo di a, pendenza della retta fittata

Figura 7.9: confronto tra potenziale corretto e potenziale non corretto (a); andamento della temperatura (b)

7.3 R-Curve test

7.3.1 Compression Pre-Cracking (CPC).

Una volta avviate tutte le apparecchiature sperimentali si procede con il Compression pre-cracking (schema in Figura 7.10, prova sperimentale in Figura 7.11). Anche in questo caso per condurre correttamente la prova è fondamentale rifarsi al file Excel AN05 dove tutte le relazioni analitiche sono implementate e automatizzate. In Tabella 7.4 vengono riportati i dettagli relativi alla procedura di CPC. Partendo da sinistra si possono leggere: data e ora di inizio, modalità di controllo, rapporto di ciclo, frequenza, ampiezza di forza, forza media, potenziale corretto misurato al termine del CPC, lunghezza di cricca totale, numero di cicli di CPC, incremento di lunghezza di cricca, K₁ massimo e minimo applicato, distanza massima e minima dei perni di carico, forza massima e minima applicate.

Date	Time	Mode	R	ΔK_{I}	f	Fa	F _{mean}	$\Delta V(T_0)$	a _{CPC}	Ν	Δa_{CPC}
[-]	[-]	[-]	[-]	[MPa m ^{0.5}]	[Hz]	[kN]	[kN]	[µV]	[mm]	[cycles]	[mm]
14/07/2023	09:00	$\Delta F \text{ cost}$	20	15	30	5.386	-5.953	279.2	5.075	398838	0.070

K _{I,max}	K _{I,min}	S _{max}	S _{min}	F _{max}	F _{min}
[MPa m ^{0.5}]	[MPa m ^{0.5}]	[mm]	[mm]	[kN]	[kN]
-0.789	-15.789	65	50	-0.567	-11.340

Figura 7.10: schema di carico per CPC (a), momento flettente per CPC (b)

Figura 7.11: provino AN05 montato in macchina per CPC

Analogamente alla prova precedente per calcolare la lunghezza di cricca si usa l'equazione di Johnson (7.1) con a lunghezza di cricca W altezza del provino, y semi-distanza tra i pin di potenziale, ΔV differenza di potenziale alla lunghezza di cricca iniziale a₀:

$$a = \frac{2W}{\pi} \cos^{-1} \left\{ \frac{\cosh\left(\frac{\pi y}{2W}\right)}{\cosh\left[\frac{\Delta V}{\Delta V_0} \cosh^{-1}\left(\frac{\cosh\left(\frac{\pi y}{2W}\right)}{\cos\left(\frac{\pi a_0}{2W}\right)}\right)\right]} \right\}$$
(7.1)

Il valore di potenziale usato nell'equazione di Johnsonè già corretto con la temperatura utilizzando l'equazione (7.2) dove $\Delta V(T_0)$ è il potenziale alla temperatura di riferimento T_0 , ΔV il potenziale misurato alla temperatura T e α il coefficiente di resistenza con la temperatura.

$$\Delta V(T_0) = \Delta V(T) / (1 + \alpha (T - T_0))$$
(7.2)

Le seguenti equazioni (7.3-7.6), proposte dalla normativa ISO12108:2018 [14], servono a calcolare il SIF K_I in configurazione di Four point bending simmetrico. S_{max} e S_{min} sono le distanze tra gli appoggi superiori e inferiori, Wl'altezza del provino, *a* la lunghezza di cricca, Blo spessore del provino e Fla forza totale applicata.

$$C = \frac{S_{max} - S_{min}}{2W}$$
(7.3)

$$\theta = \frac{\pi a}{2W} \tag{7.4}$$

$$g\left(\frac{a}{W}\right) = 3C(2tan\theta)^{\frac{1}{2}} \left[\frac{0.923 + 0.199(1 - sin\theta)^4}{cos\theta}\right]$$
(7.5)

$$K_{I} = \frac{F}{BW^{\frac{1}{2}}}g\left(\frac{a}{W}\right)$$
(7.6)

Una volta calcolato il SIF è sufficiente invertire l'equazione (7.6) per calcolare la forza da applicare per ottenere un certo K_I (7.7), scelto poi il rapporto di ciclo R sono note anche la forza massima F_{max} , la forza minima F_{min} , l'ampiezza in forza F_a e la forza media F_{mean} .

$$\Delta F = \Delta K \left(B W^{\frac{1}{2}} \right) / g(\frac{a}{W})$$
(7.7)

$$F_{max} = \Delta F / (1 - R) \quad ; \quad F_{min} = F_{max} \cdot R \tag{7.8}$$

$$F_a = \frac{\Delta F}{2} \quad ; \quad F_{mean} = (F_{max} + F_{min})/2 \tag{7.9}$$

In Figura 7.12 è mostrato l'andamento del potenziale grezzo e di quello corretto con la temperatura durante la fase di CPC, l'andamento è stato corretto utilizzando lo script MATLAB riportato in appendice A.2.

Figura 7.12: potenziale acquisito durante CPC, andamento grezzo X e corretto con la temperatura Xc

7.3.2 Curva R ciclica.

Una volta innescata la cricca con il CPC si procede con la vera e propria prova di curva R con rapporto di ciclo R=0.1 a puro modo I. Il provino viene girato di 180° ponendo la cricca in trazione e mantenendo le stesse distanze dei perni di carico di 65mm e 50mm (Figura 7.13). I valori delle forze da inserire nel controller della macchina di prova sono stati calcolati con le stesse formule riportate nel 7.3.1. La procedura sperimentale per ricavare la curva R ciclica è la medesima riportata nel paragrafo 6.4.2. Anche in questo caso per la seconda parte della prova è stato utilizzato il controllo in SIF (si veda appendice B). Quanto si ottiene un numero sufficiente di punti la prova può essere interrotta e il provino tagliato manualmente.

Figura 7.13: schema di carico per curva R (a), momento flettente (b)

In seguito (Tabella 7.5), si riportano tutti i dati di ogni step di carico ottenuti dall'apposito foglio Excel di controllo della prova. Nell'ultima riga di ogni tabella viene riportato se al termine dello step di carico la cricca è arrestata o meno.

Step	[-]	1	2	3	4	5	6
Date	[-]	14/07/2023	14/07/2023	14/07/2023	15/07/2023	17/07/2023	17/07/2023
Time	[-]	13:40:00	15:18:00	16:55:00	00:55:00	09:40:00	14:35:00
Mode	[-]	DF - Cost	DF - Cost	DF - Cost	DF - Cost	DF - Cost	DF - Cost
ai	[mm]	5.075	5.084	5.084	5.087	5.105	5.102
R	[-]	0.1	0.1	0.1	0.1	0.1	0.1
AKI	[MPa m0.5]	2.50	3.00	4.00	5.00	6.00	6.00
f	[Hz]	30.00	30.00	30.00	30.00	30.00	30.00
KLmax	[MPa m0 5]	2.778	3 3 3 3	4 4 4 4	5 5 5 6	6 667	6 667
KLmin	[MPa m0 5]	0.278	0 333	0 444	0.556	0.667	0.667
KLa	[MPa m0 5]	1 250	1 500	2,000	2,500	3 000	3 000
KI.mean	[MPa m0 5]	1.528	1.833	2 4 4 4	3.056	3 667	3 667
ai/W	[-]	0.267	0.268	0.268	0.268	0.269	0.269
Ai	[_]	0.420	0.420	0.420	0.421	0.422	0.422
	[_]	1 16095	1 16242	1 16246	1 16284	1 16573	1 16529
	[kN]	1.10095	2 1 3 2	2 8/2	3 5 5 2	1.10575	1.10525
Emay		1.775	2.152	3 1 5 8	3.946	<u> </u>	4.725
Fmin		0.198	0.237	0.316	0.395	0.472	0.473
Fa		0.190	1.066	1 421	1 776	2 126	2 126
Fmean	[kN]	1.087	1 303	1.737	2 1 7 0	2.120	2.120
(W-ai)	[mm]	13.92	13.91	13.91	13.91	13.89	13.89
SSV	[mm]	4 57	5.00	5 78	6.46	7.07	7.07
ai may	[mm]	1/ /2	13.00	13.22	12 53	11.07	11.07
rn	[mm]	0.010	0.014	0.025	0.039	0.056	0.056
1p rA	[mm]	0.010	0.014	0.025	0.037	0.030	0.030
r A 2	[mm]	0.002	0.003	0.003	0.008	0.001	0.003
Check SSV		2.04	2.78	2.41	0.002	1.07	1.07
		3 114	/ / ^	/41	/ / /)	197	19/
N	[cvcles]	5.04	$\frac{2.78}{7.10E+05}$	2.41	2.13	1.97	1.97
N AN	[cycles]	5.41E+05	<u>7.10E+05</u> 1.69E+05	2.41 <u>1.57E+06</u> 8.62E+05	2.15 5.59E+06 4.02E+06	1.97 6.08E+06 4.93E+05	1.97 6.28E+06 2.00E+05
$\frac{N}{\Delta N}$	[cycles] [cycles] [uV]	5.04 5.41E+05 1.42E+05 282.30	2.78 7.10E+05 1.69E+05 282.90	2.41 1.57E+06 8.62E+05 283.40	2.13 5.59E+06 4.02E+06 283.40	1.97 6.08E+06 4.93E+05 285.60	6.28E+06 2.00E+05 285.60
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$	[cycles] [cycles] [μV] [°C]	5.04 5.41E+05 1.42E+05 282.30 33.06	2.78 7.10E+05 1.69E+05 282.90 33.66	2.41 1.57E+06 8.62E+05 283.40 34.03	2.13 5.59E+06 4.02E+06 283.40 32.97	1.97 6.08E+06 4.93E+05 285.60 35.37	6.28E+06 2.00E+05 285.60 36.27
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{V(T0)}{\Delta V(T0)}$	[cycles] [cycles] [μV] [°C] [μV]	5.04 5.41E+05 1.42E+05 282.30 33.06 279.8	7.10E+05 1.69E+05 282.90 33.66 279.8	2.41 1.57E+06 8.62E+05 283.40 34.03 279.9	2.15 5.59E+06 4.02E+06 283.40 32.97 280.9	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T0)}{af}$	[cycles] [cycles] [μV] [°C] [μV] [mm]	5.04 5.41E+05 1.42E+05 282.30 33.06 279.8 5.084	2.78 7.10E+05 1.69E+05 282.90 33.66 279.8 5.084	2.41 1.57E+06 8.62E+05 283.40 34.03 279.9 5.087	2.15 5.59E+06 4.02E+06 283.40 32.97 280.9 5.105	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8 5.102	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087
N ΔN ΔV(T) T ΔV(T0) af Δa	[cycles] [cycles] [μV] [°C] [μV] [mm]	5.04 5.41E+05 1.42E+05 282.30 33.06 279.8 5.084 0.000	2.78 7.10E+05 1.69E+05 282.90 33.66 279.8 5.084 0.000	2.41 1.57E+06 8.62E+05 283.40 34.03 279.9 5.087 0.003	2.13 5.59E+06 4.02E+06 283.40 32.97 280.9 5.105 0.021	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8 5.102 0.018	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T0)}{af}$ $\frac{\Delta a}{af'W}$	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm]	5.04 5.41E+05 1.42E+05 282.30 33.06 279.8 5.084 0.000 0.268	2.78 7.10E+05 1.69E+05 282.90 33.66 279.8 5.084 0.000 0.268	2.41 1.57E+06 8.62E+05 283.40 34.03 279.9 5.087 0.003 0.268	2.13 5.59E+06 4.02E+06 283.40 32.97 280.9 5.105 0.021 0.269	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8 5.102 0.018 0.269	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T0)}{af}$ $\frac{\Delta a}{af/W}$ θf	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [-]	5.04 5.41E+05 1.42E+05 282.30 33.06 279.8 5.084 0.000 0.268 0.420	2.78 7.10E+05 1.69E+05 282.90 33.66 279.8 5.084 0.000 0.268 0.420	2.41 1.57E+06 8.62E+05 283.40 34.03 279.9 5.087 0.003 0.268 0.421	2.13 5.59E+06 4.02E+06 283.40 32.97 280.9 5.105 0.021 0.269 0.422	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8 5.102 0.018 0.269 0.422	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268 0.421
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T0)}{af}$ $\frac{\Delta a}{af/W}$ $\frac{\theta f}{g(af/W)}$	[-] [cycles] [μV] [°C] [μV] [mm] [mm] [-] [-]	5.04 5.41E+05 1.42E+05 282.30 33.06 279.8 5.084 0.000 0.268 0.420 1.16242	2.78 7.10E+05 1.69E+05 282.90 33.66 279.8 5.084 0.000 0.268 0.420 1.16246	2.41 1.57E+06 8.62E+05 283.40 34.03 279.9 5.087 0.003 0.268 0.421 1.16284	2.13 5.59E+06 4.02E+06 283.40 32.97 280.9 5.105 0.021 0.269 0.422 1.16573	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8 5.102 0.018 0.269 0.422 1.16529	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268 0.421 1.16285
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T0)}{af}$ $\frac{Aa}{af/W}$ $\frac{\theta f}{g(af/W)}$ $\Delta KLth$	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [-] [-] [-] [-]	5.04 5.41E+05 1.42E+05 282.30 33.06 279.8 5.084 0.000 0.268 0.420 1.16242 2.50	7.10E+05 1.69E+05 282.90 33.66 279.8 5.084 0.000 0.268 0.420 1.16246 3.00	2.41 1.57E+06 8.62E+05 283.40 34.03 279.9 5.087 0.003 0.268 0.421 1.16284 4.00	2.13 5.59E+06 4.02E+06 283.40 32.97 280.9 5.105 0.021 0.269 0.422 1.16573 5.01	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8 5.102 0.018 0.269 0.422 1.16529 6.00	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268 0.421 1.16285 5.99
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{T}{\Delta V(T0)}$ af Δa af/W θf $g(af/W)$ $\Delta Kl,th$ $Kl,max th$	[cycles] [cycles] [μV] [°C] [μV] [mm] [-] [-] [-] [-] [MPa m0.5] [MPa m0.5]	5.04 5.41E+05 1.42E+05 282.30 33.06 279.8 5.084 0.000 0.268 0.420 1.16242 2.50 2.78	2.78 7.10E+05 1.69E+05 282.90 33.66 279.8 5.084 0.000 0.268 0.420 1.16246 3.00 3.33	2.41 1.57E+06 8.62E+05 283.40 34.03 279.9 5.087 0.003 0.268 0.421 1.16284 4.00 4.45	2.13 5.59E+06 4.02E+06 283.40 32.97 280.9 5.105 0.021 0.269 0.422 1.16573 5.01 5.57	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8 5.102 0.018 0.269 0.422 1.16529 6.00 6.66	6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268 0.421 1.16285 5.99 6.65
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T0)}{af}$ $\frac{Aa}{af/W}$ $\frac{\partial f}{\partial f}$ $\frac{g(af/W)}{\Delta Kl,th}$ $Kl,max th$ $Kl,min th$	[-] [cycles] [μV] [°C] [μV] [mm] [mm]	5.04 5.41E+05 1.42E+05 282.30 33.06 279.8 5.084 0.000 0.268 0.420 1.16242 2.50 2.78 0.28	2.78 7.10E+05 1.69E+05 282.90 33.66 279.8 5.084 0.000 0.268 0.420 1.16246 3.00 3.33 0.33	$\begin{array}{r} 2.41\\ \hline 1.57E+06\\ \hline 8.62E+05\\ \hline 283.40\\ \hline 34.03\\ \hline 279.9\\ \hline 5.087\\ \hline 0.003\\ \hline 0.268\\ \hline 0.421\\ \hline 1.16284\\ \hline 4.00\\ \hline 4.45\\ \hline 0.44\\ \end{array}$	2.13 5.59E+06 4.02E+06 283.40 32.97 280.9 5.105 0.021 0.269 0.422 1.16573 5.01 5.57 0.56	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8 5.102 0.018 0.269 0.422 1.16529 6.00 6.66 0.67	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268 0.421 1.16285 5.99 6.65 0.67
N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th	[-] [cycles] [μV] [°C] [μV] [mm] [mm]	5.04 5.41E+05 1.42E+05 282.30 33.06 279.8 5.084 0.000 0.268 0.420 1.16242 2.50 2.78 0.28 1.779	2.78 7.10E+05 1.69E+05 282.90 33.66 279.8 5.084 0.000 0.268 0.420 1.16246 3.00 3.33 0.33 2.132	$\begin{array}{r} 2.41\\ \hline 1.57E+06\\ \hline 8.62E+05\\ \hline 283.40\\ \hline 34.03\\ \hline 279.9\\ \hline 5.087\\ \hline 0.003\\ \hline 0.268\\ \hline 0.421\\ \hline 1.16284\\ \hline 4.00\\ \hline 4.45\\ \hline 0.44\\ \hline 2.842\\ \end{array}$	2.13 5.59E+06 4.02E+06 283.40 32.97 280.9 5.105 0.021 0.269 0.422 1.16573 5.01 5.57 0.56 3.552	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8 5.102 0.018 0.269 0.422 1.16529 6.00 6.66 0.67 4.251	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268 0.421 1.16285 5.99 6.65 0.67 4.253
N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th ΔFf Fmax,f	[-] [cycles] [μV] [°C] [μV] [mm] [mm] [mm] [MPa m0.5] [MN]	5.04 5.41E+05 1.42E+05 282.30 33.06 279.8 5.084 0.000 0.268 0.420 1.16242 2.50 2.78 0.28 1.779 1.976	2.78 7.10E+05 1.69E+05 282.90 33.66 279.8 5.084 0.000 0.268 0.420 1.16246 3.00 3.33 0.33 2.132 2.369	$\begin{array}{r} 2.41\\ \hline 1.57E+06\\ \hline 8.62E+05\\ \hline 283.40\\ \hline 34.03\\ \hline 279.9\\ \hline 5.087\\ \hline 0.003\\ \hline 0.268\\ \hline 0.421\\ \hline 1.16284\\ \hline 4.00\\ \hline 4.45\\ \hline 0.44\\ \hline 2.842\\ \hline 3.158\\ \end{array}$	2.13 5.59E+06 4.02E+06 283.40 32.97 280.9 5.105 0.021 0.269 0.422 1.16573 5.01 5.57 0.56 3.552 3.946	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8 5.102 0.018 0.269 0.422 1.16529 6.00 6.66 0.67 4.251 4.724	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268 0.421 1.16285 5.99 6.65 0.67 4.253 4.725
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T0)}{af}$ $\frac{Aa}{af/W}$ $\frac{\partial f}{\partial f}$ $\frac{g(af/W)}{\Delta Kl,th}$ $\frac{Kl,max th}{Kl,min th}$ $\frac{\Delta Ff}{Fmax,f}$ Fmin,f	[-] [cycles] [μV] [°C] [μV] [mm] [mm] [mm] [MPa m0.5] [kN] [kN]	5.41E+05 1.42E+05 282.30 33.06 279.8 5.084 0.000 0.268 0.420 1.16242 2.50 2.78 0.28 1.779 1.976 0.198	2.78 7.10E+05 1.69E+05 282.90 33.66 279.8 5.084 0.000 0.268 0.420 1.16246 3.00 3.33 0.33 2.132 2.369 0.237	2.41 1.57E+06 8.62E+05 283.40 34.03 279.9 5.087 0.003 0.268 0.421 1.16284 4.00 4.45 0.44 2.842 3.158 0.316	2.13 5.59E+06 4.02E+06 283.40 32.97 280.9 5.105 0.021 0.269 0.422 1.16573 5.01 5.57 0.56 3.552 3.946 0.395	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8 5.102 0.018 0.269 0.422 1.16529 6.00 6.66 0.67 4.251 4.724 0.472	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268 0.421 1.16285 5.99 6.65 0.67 4.253 4.725 0.473
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T0)}{af}$ $\frac{Aa}{af/W}$ $\frac{\partial f}{\partial f}$ $\frac{g(af/W)}{\Delta Kl,th}$ $\frac{Kl,max th}{Kl,min th}$ $\frac{\Delta Ff}{Fmax,f}$ $\frac{Fmin,f}{Fa,f}$	[-] [cycles] [wV] [°C] [µV] [mm] [kN] [kN] [kN] [kN]	5.41E+05 1.42E+05 282.30 33.06 279.8 5.084 0.000 0.268 0.420 1.16242 2.50 2.78 0.28 1.779 1.976 0.198 0.889	2.78 7.10E+05 1.69E+05 282.90 33.66 279.8 5.084 0.000 0.268 0.420 1.16246 3.00 3.33 0.33 2.132 2.369 0.237 1.066	$\begin{array}{r} 2.41\\ \hline 1.57E+06\\ \hline 8.62E+05\\ \hline 283.40\\ \hline 34.03\\ \hline 279.9\\ \hline 5.087\\ \hline 0.003\\ \hline 0.268\\ \hline 0.421\\ \hline 1.16284\\ \hline 4.00\\ \hline 4.45\\ \hline 0.44\\ \hline 2.842\\ \hline 3.158\\ \hline 0.316\\ \hline 1.421\\ \end{array}$	2.13 5.59E+06 4.02E+06 283.40 32.97 280.9 5.105 0.021 0.269 0.422 1.16573 5.01 5.57 0.56 3.552 3.946 0.395 1.776	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8 5.102 0.018 0.269 0.422 1.16529 6.00 6.66 0.67 4.251 4.724 0.472 2.126	6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268 0.421 1.16285 5.99 6.65 0.67 4.253 4.725 0.473 2.126
$\frac{N}{AN}$ $\frac{\Delta V(T)}{T}$ $\frac{T}{\Delta V(T0)}$ af $\frac{\Delta a}{af/W}$ $\frac{\theta f}{\theta f}$ $g(af/W)$ $\Delta Kl,th$ $Kl,max th$ $Kl,min th$ $\frac{\Delta Ff}{Fmax,f}$ $\frac{Fmin,f}{Fa,f}$ $\frac{Fa,f}{Fmean,f}$	[-] [cycles] [μV] [°C] [μV] [°C] [μV] [mm] [mm]	$\begin{array}{r} 5.04\\ \hline 5.41E+05\\ \hline 1.42E+05\\ \hline 282.30\\ \hline 33.06\\ \hline 279.8\\ \hline 5.084\\ \hline 0.000\\ \hline 0.268\\ \hline 0.420\\ \hline 1.16242\\ \hline 2.50\\ \hline 2.78\\ \hline 0.28\\ \hline 1.779\\ \hline 1.976\\ \hline 0.198\\ \hline 0.889\\ \hline 1.087\\ \end{array}$	$\begin{array}{r} 2.78 \\ \hline 7.10E+05 \\ \hline 1.69E+05 \\ \hline 282.90 \\ \hline 33.66 \\ 279.8 \\ \hline 5.084 \\ \hline 0.000 \\ \hline 0.268 \\ \hline 0.420 \\ \hline 1.16246 \\ \hline 3.00 \\ \hline 3.33 \\ \hline 0.33 \\ \hline 2.132 \\ \hline 2.369 \\ \hline 0.237 \\ \hline 1.066 \\ \hline 1.303 \end{array}$	$\begin{array}{r} 2.41\\ \hline 1.57E+06\\ \hline 8.62E+05\\ \hline 283.40\\ \hline 34.03\\ \hline 279.9\\ \hline 5.087\\ \hline 0.003\\ \hline 0.268\\ \hline 0.421\\ \hline 1.16284\\ \hline 4.00\\ \hline 4.45\\ \hline 0.44\\ \hline 2.842\\ \hline 3.158\\ \hline 0.316\\ \hline 1.421\\ \hline 1.737\\ \end{array}$	$\begin{array}{r} 2.13\\ \hline 5.59E+06\\ \hline 4.02E+06\\ \hline 283.40\\ \hline 32.97\\ \hline 280.9\\ \hline 5.105\\ \hline 0.021\\ \hline 0.269\\ \hline 0.422\\ \hline 1.16573\\ \hline 5.01\\ \hline 5.57\\ \hline 0.56\\ \hline 3.552\\ \hline 3.946\\ \hline 0.395\\ \hline 1.776\\ \hline 2.170\\ \end{array}$	$\begin{array}{r} 1.97\\ \hline 6.08E+06\\ \hline 4.93E+05\\ \hline 285.60\\ \hline 35.37\\ \hline 280.8\\ \hline 5.102\\ \hline 0.018\\ \hline 0.269\\ \hline 0.422\\ \hline 1.16529\\ \hline 6.00\\ \hline 6.66\\ \hline 0.67\\ \hline 4.251\\ \hline 4.724\\ \hline 0.472\\ \hline 2.126\\ \hline 2.598\\ \end{array}$	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268 0.421 1.16285 5.99 6.65 0.67 4.253 4.725 0.473 2.126 2.599
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T0)}{af}$ $\frac{Aa}{af/W}$ $\frac{\theta f}{\theta f}$ $\frac{g(af/W)}{\Delta Kl,th}$ $\frac{Kl,max th}{Kl,max th}$ $\frac{Kl,min th}{\Delta Ff}$ $\frac{Fmax,f}{Fmin,f}$ $\frac{Fa,f}{Fmean,f}$ $(W-af)$	[-] [cycles] [ψV] [°C] [µV] [mm] [kN]	5.41E+05 1.42E+05 282.30 33.06 279.8 5.084 0.000 0.268 0.420 1.16242 2.50 2.78 0.28 1.779 1.976 0.198 0.889 1.087 13.91	$\begin{array}{r} 2.78\\ \hline 7.10E+05\\ \hline 1.69E+05\\ \hline 282.90\\ \hline 33.66\\ \hline 279.8\\ \hline 5.084\\ \hline 0.000\\ \hline 0.268\\ \hline 0.420\\ \hline 1.16246\\ \hline 3.00\\ \hline 3.33\\ \hline 0.33\\ \hline 2.132\\ \hline 2.369\\ \hline 0.237\\ \hline 1.066\\ \hline 1.303\\ \hline 13.91\\ \end{array}$	$\begin{array}{r} 2.41\\ \hline 1.57E+06\\ \hline 8.62E+05\\ \hline 283.40\\ \hline 34.03\\ \hline 279.9\\ \hline 5.087\\ \hline 0.003\\ \hline 0.268\\ \hline 0.421\\ \hline 1.16284\\ \hline 4.00\\ \hline 4.45\\ \hline 0.44\\ \hline 2.842\\ \hline 3.158\\ \hline 0.316\\ \hline 1.421\\ \hline 1.737\\ \hline 13.91\\ \end{array}$	2.13 5.59E+06 4.02E+06 283.40 32.97 280.9 5.105 0.021 0.269 0.422 1.16573 5.01 5.57 0.56 3.552 3.946 0.395 1.776 2.170 13.89	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8 5.102 0.018 0.269 0.422 1.16529 6.00 6.66 0.67 4.251 4.724 0.472 2.126 2.598 13.89	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268 0.421 1.16285 5.99 6.65 0.67 4.253 4.725 0.473 2.126 2.599 13.91
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T0)}{af}$ $\frac{Aa}{af/W}$ $\frac{\partial f}{\partial f}$ $\frac{g(af/W)}{\Delta Kl,th}$ $\frac{Kl,max th}{Kl,max th}$ $\frac{Kl,min th}{\Delta Ff}$ $\frac{Fmax,f}{Fmin,f}$ $\frac{Fa,f}{Fmean,f}$ $\frac{(W-af)}{SSY}$	[-] [cycles] [ψV] [°C] [µV] [mm] [kN] [kN] [kN] [kN] [kN] [kN] [mm] [mm] [mm]	3.04 5.41E+05 1.42E+05 282.30 33.06 279.8 5.084 0.000 0.268 0.420 1.16242 2.50 2.78 0.28 1.779 1.976 0.198 0.889 1.087 13.91 4.57	$\begin{array}{r} 2.78\\ \hline 7.10E+05\\ \hline 1.69E+05\\ \hline 282.90\\ \hline 33.66\\ \hline 279.8\\ \hline 5.084\\ \hline 0.000\\ \hline 0.268\\ \hline 0.420\\ \hline 1.16246\\ \hline 3.00\\ \hline 3.33\\ \hline 0.33\\ \hline 2.132\\ \hline 2.369\\ \hline 0.237\\ \hline 1.066\\ \hline 1.303\\ \hline 13.91\\ \hline 5.00\\ \end{array}$	$\begin{array}{r} 2.41\\ \hline 1.57E+06\\ \hline 8.62E+05\\ \hline 283.40\\ \hline 34.03\\ \hline 279.9\\ \hline 5.087\\ \hline 0.003\\ \hline 0.268\\ \hline 0.421\\ \hline 1.16284\\ \hline 4.00\\ \hline 4.45\\ \hline 0.44\\ \hline 2.842\\ \hline 3.158\\ \hline 0.316\\ \hline 1.421\\ \hline 1.737\\ \hline 13.91\\ \hline 5.78\\ \end{array}$	2.13 5.59E+06 4.02E+06 283.40 32.97 280.9 5.105 0.021 0.269 0.422 1.16573 5.01 5.57 0.56 3.552 3.946 0.395 1.776 2.170 13.89 6.46	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8 5.102 0.018 0.269 0.422 1.16529 6.00 6.66 0.67 4.724 0.472 2.126 2.598 13.89 7.07	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268 0.421 1.16285 5.99 6.65 0.67 4.253 4.725 0.473 2.126 2.599 13.91 7.07
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T0)}{af}$ $\frac{\Delta a}{af/W}$ $\frac{\partial f}{\partial f}$ $\frac{g(af/W)}{\Delta Kl,th}$ $\frac{Kl,max th}{Kl,max th}$ $\frac{Kl,min th}{\Delta Ff}$ $\frac{Fmin,f}{Fmin,f}$ $\frac{Fa,f}{Fmean,f}$ $\frac{(W-af)}{SSY}$ $\frac{af,max}{af,max}$	[-] [cycles] [wV] [°C] [mm] [m] [kN] [kN] [kN] [kN] [kN] [mm] [mm] [mm] [mm] [mm] [mm]	5.41E+05 1.42E+05 282.30 33.06 279.8 5.084 0.000 0.268 0.420 1.16242 2.50 2.78 0.28 1.779 1.976 0.198 0.889 1.087 13.91 4.57 14.42	2.78 7.10E+05 1.69E+05 282.90 33.66 279.8 5.084 0.000 0.268 0.420 1.16246 3.00 3.33 0.33 2.132 2.369 0.237 1.066 1.303 13.91 5.00 13.99	$\begin{array}{r} 2.41\\ \hline 1.57E+06\\ \hline 8.62E+05\\ \hline 283.40\\ \hline 34.03\\ \hline 279.9\\ \hline 5.087\\ \hline 0.003\\ \hline 0.268\\ \hline 0.421\\ \hline 1.16284\\ \hline 4.00\\ \hline 4.45\\ \hline 0.44\\ \hline 2.842\\ \hline 3.158\\ \hline 0.316\\ \hline 1.421\\ \hline 1.737\\ \hline 13.91\\ \hline 5.78\\ \hline 13.22\\ \end{array}$	2.13 5.59E+06 4.02E+06 283.40 32.97 280.9 5.105 0.021 0.269 0.422 1.16573 5.01 5.57 0.56 3.552 3.946 0.395 1.776 2.170 13.89 6.46 12.53	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8 5.102 0.018 0.269 0.422 1.16529 6.00 6.66 0.67 4.724 0.472 2.126 2.598 13.89 7.07 11.93	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268 0.421 1.16285 5.99 6.65 0.67 4.253 4.725 0.473 2.126 2.599 13.91 7.07 11.93
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{T}{\Delta V(T0)}$ af $\frac{\Delta a}{af/W}$ θf $g(af/W)$ $\frac{\Delta KI,th}{KI,max th}$ $KI,min th$ $\frac{\Delta Ff}{Fmax,f}$ $\frac{Fmin,f}{Fmax,f}$ $\frac{Fmax,f}{Fmax,f}$ $\frac{Fmax,f}{Fmax,f}$ $\frac{Fmax,f}{Fmax,f}$ $\frac{Fmax,f}{Fmax,f}$ $\frac{Fmax,f}{Fmax,f}$ $\frac{Fmax,f}{Fmax,f}$ $\frac{Fmax,f}{Fmax,f}$	[-] [cycles] [wV] [°C] [mm] [m] [kN] [kN] [kN] [kN] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.41E+05 1.42E+05 282.30 33.06 279.8 5.084 0.000 0.268 0.420 1.16242 2.50 2.78 0.28 1.779 1.976 0.198 0.889 1.087 13.91 4.57 14.42 0.010	2.78 7.10E+05 1.69E+05 282.90 33.66 279.8 5.084 0.000 0.268 0.420 1.16246 3.00 3.33 0.33 2.132 2.369 0.237 1.066 1.303 13.91 5.00 13.99 0.014	$\begin{array}{r} 2.41\\ \hline 1.57E+06\\ \hline 8.62E+05\\ \hline 283.40\\ \hline 34.03\\ \hline 279.9\\ \hline 5.087\\ \hline 0.003\\ \hline 0.268\\ \hline 0.421\\ \hline 1.16284\\ \hline 4.00\\ \hline 4.45\\ \hline 0.44\\ \hline 2.842\\ \hline 3.158\\ \hline 0.316\\ \hline 1.421\\ \hline 1.737\\ \hline 13.91\\ \hline 5.78\\ \hline 13.22\\ \hline 0.025\\ \end{array}$	$\begin{array}{r} 2.13\\ \hline 5.59E+06\\ \hline 4.02E+06\\ \hline 283.40\\ \hline 32.97\\ \hline 280.9\\ \hline 5.105\\ \hline 0.021\\ \hline 0.269\\ \hline 0.422\\ \hline 1.16573\\ \hline 5.01\\ \hline 5.57\\ \hline 0.56\\ \hline 3.552\\ \hline 3.946\\ \hline 0.395\\ \hline 1.776\\ \hline 2.170\\ \hline 13.89\\ \hline 6.46\\ \hline 12.53\\ \hline 0.039\end{array}$	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8 5.102 0.018 0.269 0.422 1.16529 6.00 6.66 0.67 4.251 4.724 0.472 2.126 2.598 13.89 7.07 11.93 0.056	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268 0.421 1.16285 5.99 6.65 0.67 4.253 4.725 0.473 2.126 2.599 13.91 7.07 11.93 0.056
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{T}{\Delta V(T0)}$ af $\frac{\Delta a}{af/W}$ θf $g(af/W)$ $\frac{\Delta KI,th}{KI,max th}$ $KI,min th$ $\frac{\Delta Ff}{Fmax,f}$ $\frac{Fmin,f}{Fmin,f}$ $\frac{Fa,f}{Fmean,f}$ $(W-af)$ $\frac{SSY}{af,max}$ rp,th $r\Delta,th$	[-] [cycles] [wV] [°C] [µV] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [kN] [kN] [kN] [mm]	$\begin{array}{r} 5.04\\ \hline 5.41E+05\\ \hline 1.42E+05\\ \hline 282.30\\ \hline 33.06\\ \hline 279.8\\ \hline 5.084\\ \hline 0.000\\ \hline 0.268\\ \hline 0.420\\ \hline 1.16242\\ \hline 2.50\\ \hline 2.78\\ \hline 0.28\\ \hline 1.779\\ \hline 1.976\\ \hline 0.198\\ \hline 0.889\\ \hline 1.087\\ \hline 13.91\\ \hline 4.57\\ \hline 14.42\\ \hline 0.010\\ \hline 0.002\\ \end{array}$	2.78 7.10E+05 1.69E+05 282.90 33.66 279.8 5.084 0.000 0.268 0.420 1.16246 3.00 3.33 0.33 2.132 2.369 0.237 1.066 1.303 13.91 5.00 13.99 0.014 0.003	$\begin{array}{r} 2.41\\ \hline 1.57E+06\\ \hline 8.62E+05\\ \hline 283.40\\ \hline 34.03\\ \hline 279.9\\ \hline 5.087\\ \hline 0.003\\ \hline 0.268\\ \hline 0.421\\ \hline 1.16284\\ \hline 4.00\\ \hline 4.45\\ \hline 0.44\\ \hline 2.842\\ \hline 3.158\\ \hline 0.316\\ \hline 1.421\\ \hline 1.737\\ \hline 13.91\\ \hline 5.78\\ \hline 13.22\\ \hline 0.025\\ \hline 0.005\\ \end{array}$	$\begin{array}{r} 2.13\\ \hline 5.59E+06\\ \hline 4.02E+06\\ \hline 283.40\\ \hline 32.97\\ \hline 280.9\\ \hline 5.105\\ \hline 0.021\\ \hline 0.269\\ \hline 0.422\\ \hline 1.16573\\ \hline 5.01\\ \hline 5.57\\ \hline 0.56\\ \hline 3.552\\ \hline 3.946\\ \hline 0.395\\ \hline 1.776\\ \hline 2.170\\ \hline 13.89\\ \hline 6.46\\ \hline 12.53\\ \hline 0.039\\ \hline 0.008\\ \end{array}$	$\begin{array}{r} 1.97\\ \hline 6.08E+06\\ \hline 4.93E+05\\ \hline 285.60\\ \hline 35.37\\ \hline 280.8\\ \hline 5.102\\ \hline 0.018\\ \hline 0.269\\ \hline 0.422\\ \hline 1.16529\\ \hline 6.00\\ \hline 6.66\\ \hline 0.67\\ \hline 4.251\\ \hline 4.724\\ \hline 0.472\\ \hline 2.126\\ \hline 2.598\\ \hline 13.89\\ \hline 7.07\\ \hline 11.93\\ \hline 0.056\\ \hline 0.011\\ \hline \end{array}$	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268 0.421 1.16285 5.99 6.65 0.67 4.253 4.725 0.473 2.126 2.599 13.91 7.07 11.93 0.056 0.011
Cincer SST N $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta KI,th$ KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f Fmean,f (W-af) SSY af,max rp,th r\Delta,th r\Delta2,th	[-] [cycles] [wV] [°C] [µV] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [kN] [kN] [kN] [mm]	$\begin{array}{r} 5.04\\ \hline 5.41E+05\\ \hline 1.42E+05\\ \hline 282.30\\ \hline 33.06\\ \hline 279.8\\ \hline 5.084\\ \hline 0.000\\ \hline 0.268\\ \hline 0.420\\ \hline 1.16242\\ \hline 2.50\\ \hline 2.78\\ \hline 0.28\\ \hline 1.779\\ \hline 1.976\\ \hline 0.198\\ \hline 0.889\\ \hline 1.087\\ \hline 13.91\\ \hline 4.57\\ \hline 14.42\\ \hline 0.010\\ \hline 0.002\\ \hline 0.001\\ \hline \end{array}$	$\begin{array}{r} 2.78\\ \hline 7.10E+05\\ \hline 1.69E+05\\ \hline 282.90\\ \hline 33.66\\ \hline 279.8\\ \hline 5.084\\ \hline 0.000\\ \hline 0.268\\ \hline 0.420\\ \hline 1.16246\\ \hline 3.00\\ \hline 3.33\\ \hline 0.33\\ \hline 2.132\\ \hline 2.369\\ \hline 0.237\\ \hline 1.066\\ \hline 1.303\\ \hline 13.91\\ \hline 5.00\\ \hline 13.99\\ \hline 0.014\\ \hline 0.003\\ \hline 0.001\\ \hline \end{array}$	$\begin{array}{r} 2.41\\ \hline 1.57E+06\\ \hline 8.62E+05\\ \hline 283.40\\ \hline 34.03\\ \hline 279.9\\ \hline 5.087\\ \hline 0.003\\ \hline 0.268\\ \hline 0.421\\ \hline 1.16284\\ \hline 4.00\\ \hline 4.45\\ \hline 0.44\\ \hline 2.842\\ \hline 3.158\\ \hline 0.316\\ \hline 1.421\\ \hline 1.737\\ \hline 13.91\\ \hline 5.78\\ \hline 13.22\\ \hline 0.025\\ \hline 0.005\\ \hline 0.001\\ \hline \end{array}$	2.13 5.59E+06 4.02E+06 283.40 32.97 280.9 5.105 0.021 0.269 0.422 1.16573 5.01 5.57 0.56 3.552 3.946 0.395 1.776 2.170 13.89 6.46 12.53 0.039 0.008	$\begin{array}{r} 1.97\\ \hline 6.08E+06\\ \hline 4.93E+05\\ \hline 285.60\\ \hline 35.37\\ \hline 280.8\\ \hline 5.102\\ \hline 0.018\\ \hline 0.269\\ \hline 0.422\\ \hline 1.16529\\ \hline 6.00\\ \hline 6.66\\ \hline 0.67\\ \hline 4.251\\ \hline 4.724\\ \hline 0.472\\ \hline 2.126\\ \hline 2.598\\ \hline 13.89\\ \hline 7.07\\ \hline 11.93\\ \hline 0.056\\ \hline 0.011\\ \hline 0.003\\ \hline \end{array}$	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268 0.421 1.16285 5.99 6.65 0.67 4.253 4.725 0.473 2.126 2.599 13.91 7.07 11.93 0.056 0.011 0.003
Cincer SST N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta Kl, th$ Kl, max th Kl, min th ΔFf Fmax, f Fmin, f Fa, f Fmean, f (W-af) SSY af, max rp, th $r\Delta, th$ $r\Delta, th$ $r\Delta2, th$ Check SSY	[-] [cycles] [ψV] [°C] [µV] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [kN] [kN] [kN] [mm]	$\begin{array}{r} 5.04\\ \hline 5.41E+05\\ \hline 1.42E+05\\ \hline 282.30\\ \hline 33.06\\ \hline 279.8\\ \hline 5.084\\ \hline 0.000\\ \hline 0.268\\ \hline 0.420\\ \hline 1.16242\\ \hline 2.50\\ \hline 2.78\\ \hline 0.28\\ \hline 1.779\\ \hline 1.976\\ \hline 0.198\\ \hline 0.889\\ \hline 1.087\\ \hline 13.91\\ \hline 4.57\\ \hline 14.42\\ \hline 0.010\\ \hline 0.002\\ \hline 0.001\\ \hline 3.04\\ \end{array}$	2.78 7.10E+05 1.69E+05 282.90 33.66 279.8 5.084 0.000 0.268 0.420 1.16246 3.00 3.33 0.33 2.132 2.369 0.237 1.066 1.303 13.91 5.00 13.99 0.014 0.003 0.001 2.78	$\begin{array}{r} 2.41\\ \hline 1.57E+06\\ \hline 8.62E+05\\ \hline 283.40\\ \hline 34.03\\ \hline 279.9\\ \hline 5.087\\ \hline 0.003\\ \hline 0.268\\ \hline 0.421\\ \hline 1.16284\\ \hline 4.00\\ \hline 4.45\\ \hline 0.44\\ \hline 2.842\\ \hline 3.158\\ \hline 0.316\\ \hline 1.421\\ \hline 1.737\\ \hline 13.91\\ \hline 5.78\\ \hline 13.22\\ \hline 0.025\\ \hline 0.005\\ \hline 0.001\\ \hline 2.41\\ \end{array}$	2.13 5.59E+06 4.02E+06 283.40 32.97 280.9 5.105 0.021 0.269 0.422 1.16573 5.01 5.57 0.56 3.552 3.946 0.395 1.776 2.170 13.89 6.46 12.53 0.039 0.008 0.002 2.15	1.97 6.08E+06 4.93E+05 285.60 35.37 280.8 5.102 0.018 0.269 0.422 1.16529 6.00 6.66 0.67 4.251 4.724 0.472 2.126 2.598 13.89 7.07 11.93 0.056 0.011 0.003 1.97	1.97 6.28E+06 2.00E+05 285.60 36.27 279.9 5.087 #N/D 0.268 0.421 1.16285 5.99 6.65 0.67 4.253 4.725 0.473 2.126 2.599 13.91 7.07 11.93 0.056 0.011 0.003 1.97

Tabella 7.5: foglio di calcolo per prova sperimentale AN05. Celle gialle: input. Celle marroni: valori calcolati. Celle verdi-rosse: OK-NO.
Step	7	8	9	10	11	12	13
Date	17/07/2023	18/07/2023	18/07/2023	18/07/2023	19/07/2023	20/07/2023	20/07/2023
Time	16:40:00	08:40:00	17:15:00	18:04:00	08:30:00	08:50:00	12:45:00
Mode	DF - Cost	DF - Cost	DF - Cost	DF - Cost	DF - Cost	DF - Cost	DF - Cost
ai	5.087	5.119	6.043	6.045	7.067	7.132	7.135
R	0.1	0.1	0.1	0.1	0.1	0.1	0.1
AKI	8.00	10.00	8.00	9.00	8.50	9.00	9.50
f	30.00	30.00	30.00	30.00	30.00	30.00	30.00
KI.max	8.889	11.111	8.889	10.000	9.444	10.000	10.556
KI.min	0.889	1.111	0.889	1.000	0.944	1.000	1.056
KI.a	4.000	5.000	4.000	4.500	4.250	4.500	4.750
KI.mean	4.889	6.111	4.889	5.500	5,194	5.500	5.806
ai/W	0.268	0.269	0.318	0.318	0.372	0.375	0.376
θi	0.421	0.423	0.500	0.500	0.584	0.590	0.590
g(ai/W)	1.16285	1.16788	1.32225	1.32268	1.52086	1.53470	1.53528
	5.682	7.072	4.997	5.620	4.616	4.844	5.111
Fmax	6 314	7 858	5 5 5 3	6 2 4 5	5 1 2 9	5 382	5 679
Fmin	0.631	0.786	0.555	0.624	0.513	0.538	0.568
Fa	2.841	3.536	2.499	2.810	2.308	2.422	2.555
Fmean	3.473	4.322	3.054	3.435	2.821	2.960	3.123
(W-ai)	13.91	13.88	12.95	12.95	11.93	11.86	11.86
SSY	8.17	9.12	7.66	8.13	7.37	7.54	7.75
ai.max	10.82	9.88	11.33	10.87	11.63	11.45	11.25
rp	0.100	0.156	0.100	0.126	0.113	0.126	0.141
rΛ	0.020	0.032	0.020	0.026	0.023	0.026	0.028
rA2	0.005	0.008	0.005	0.007	0.006	0.007	0.008
~		1.50	1.60				1.50
Check SSY	1.70	1.52	1.69	1.59	1.62	1.57	1.53
Check SSY N	1.70 8.02E+06	1.52 8.94E+06	1.69 9.03E+06	1.59 1.06E+07	1.62 1.32E+07	1.57 1.36E+07	1.53 1.45E+07
Check SSY N AN	1.70 8.02E+06 1.74E+06	1.52 8.94E+06 9.18E+05	1.69 9.03E+06 8.93E+04	1.59 <u>1.06E+07</u> 1.55E+06	1.62 1.32E+07 2.63E+06	1.57 <u>1.36E+07</u> 4.20E+05	1.53 <u>1.45E+07</u> 9.19E+05
Check SSY N ΔN ΔV(T)	1.70 8.02E+06 1.74E+06 287.10	1.52 8.94E+06 9.18E+05 341.50	1.69 9.03E+06 8.93E+04 341.40	1.59 1.06E+07 1.55E+06 401.60	1.62 1.32E+07 2.63E+06 404.70	1.57 1.36E+07 4.20E+05 404.80	1.53 1.45E+07 9.19E+05 447.70
Check SSY N ΔN ΔV(T) T	1.70 8.02E+06 1.74E+06 287.10 35.94	1.52 8.94E+06 9.18E+05 341.50 36.43	1.69 9.03E+06 8.93E+04 341.40 36.22	1.59 1.06E+07 1.55E+06 401.60 34.48	1.62 1.32E+07 2.63E+06 404.70 33.78	1.57 1.36E+07 4.20E+05 404.80 33.73	1.53 1.45E+07 9.19E+05 447.70 35.06
Check SSY N ΔN ΔV(T) T ΔV(T0)	1.70 8.02E+06 1.74E+06 287.10 35.94 281.7	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1	1.57 1.36E+07 4.20E+05 404.80 33.73 400.2	1.53 1.45E+07 9.19E+05 447.70 35.06 440.6
Check SSY N ΔN ΔV(T) T ΔV(T0) af	1.70 8.02E+06 1.74E+06 287.10 35.94 281.7 5.119	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132	1.57 1.36E+07 4.20E+05 404.80 33.73 400.2 7.135	1.53 1.45E+07 9.19E+05 447.70 35.06 440.6 7.773
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa	1.70 8.02E+06 1.74E+06 287.10 35.94 281.7 5.119 #N/D	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D	1.57 1.36E+07 4.20E+05 404.80 33.73 400.2 7.135 2.050	1.53 1.45E+07 9.19E+05 447.70 35.06 440.6 7.773 #N/D
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W	1.70 8.02E+06 1.74E+06 287.10 35.94 281.7 5.119 #N/D 0.269	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375	1.57 1.36E+07 4.20E+05 404.80 33.73 400.2 7.135 2.050 0.376	1.53 1.45E+07 9.19E+05 447.70 35.06 440.6 7.773 #N/D 0.409
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf	1.70 8.02E+06 1.74E+06 287.10 35.94 281.7 5.119 #N/D 0.269 0.423	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318 0.500	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318 0.500	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372 0.584	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375 0.590	1.57 1.36E+07 4.20E+05 404.80 33.73 400.2 7.135 2.050 0.376 0.590	1.53 1.45E+07 9.19E+05 447.70 35.06 440.6 7.773 #N/D 0.409 0.643
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W)	1.70 8.02E+06 1.74E+06 287.10 35.94 281.7 5.119 #N/D 0.269 0.423 1.16788	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318 0.500 1.32225	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318 0.500 1.32268	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372 0.584 1.52086	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375 0.590 1.53470	1.57 1.36E+07 4.20E+05 404.80 33.73 400.2 7.135 2.050 0.376 0.590 1.53528	1.53 1.45E+07 9.19E+05 447.70 35.06 440.6 7.773 #N/D 0.409 0.643 1.68089
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th	1.70 8.02E+06 1.74E+06 287.10 35.94 281.7 5.119 #N/D 0.269 0.423 1.16788 8.03	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318 0.500 1.32225 11.32	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318 0.500 1.32268 8.00	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372 0.584 1.52086 10.35	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375 0.590 1.53470 8.58	1.57 1.36E+07 4.20E+05 404.80 33.73 400.2 7.135 2.050 0.376 0.590 1.53528 9.00	1.53 1.45E+07 9.19E+05 447.70 35.06 440.6 7.773 #N/D 0.409 0.643 1.68089 10.40
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th	1.70 8.02E+06 1.74E+06 287.10 35.94 281.7 5.119 #N/D 0.269 0.423 1.16788 8.03 8.93	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318 0.500 1.32225 11.32 12.58	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318 0.500 1.32268 8.00 8.89	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372 0.584 1.52086 10.35 11.50	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375 0.590 1.53470 8.58 9.53	1.57 1.36E+07 4.20E+05 404.80 33.73 400.2 7.135 2.050 0.376 0.590 1.53528 9.00 10.00	1.53 1.45E+07 9.19E+05 447.70 35.06 440.6 7.773 #N/D 0.409 0.643 1.68089 10.40 11.56
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th	1.70 8.02E+06 1.74E+06 287.10 35.94 281.7 5.119 #N/D 0.269 0.423 1.16788 8.03 8.93 0.89	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318 0.500 1.32225 11.32 12.58 1.26	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318 0.500 1.32268 8.00 8.89 0.89	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372 0.584 1.52086 10.35 11.50 1.15	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375 0.590 1.53470 8.58 9.53 0.95	1.57 1.36E+07 4.20E+05 404.80 33.73 400.2 7.135 2.050 0.376 0.590 1.53528 9.00 10.00 1.00	1.53 1.45E+07 9.19E+05 447.70 35.06 440.6 7.773 #N/D 0.409 0.643 1.68089 10.40 11.56 1.16
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th ΔFf	1.70 8.02E+06 1.74E+06 287.10 35.94 281.7 5.119 #N/D 0.269 0.423 1.16788 8.03 8.93 0.89 5.682	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318 0.500 1.32225 11.32 12.58 1.26 7.072	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318 0.500 1.32268 8.00 8.89 0.89 4.997	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372 0.584 1.52086 10.35 11.50 1.15 5.620	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375 0.590 1.53470 8.58 9.53 0.95 4.616	1.57 1.36E+07 4.20E+05 404.80 33.73 400.2 7.135 2.050 0.376 0.590 1.53528 9.00 10.00 4.844	1.53 1.45E+07 9.19E+05 447.70 35.06 440.6 7.773 #N/D 0.409 0.643 1.68089 10.40 11.56 1.16 5.111
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th ΔFf Fmax,f	1.70 8.02E+06 1.74E+06 287.10 35.94 281.7 5.119 #N/D 0.269 0.423 1.16788 8.03 8.93 0.89 5.682 6.314	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318 0.500 1.32225 11.32 12.58 1.26 7.072 7.858	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318 0.500 1.32268 8.00 8.89 0.89 4.997 5.553	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372 0.584 1.52086 10.35 11.50 1.15 5.620 6.245	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375 0.590 1.53470 8.58 9.53 0.95 4.616 5.129	$\begin{array}{r} 1.57\\ \hline 1.36E+07\\ \hline 4.20E+05\\ \hline 404.80\\ \hline 33.73\\ \hline 400.2\\ \hline 7.135\\ \hline 2.050\\ \hline 0.376\\ \hline 0.590\\ \hline 1.53528\\ \hline 9.00\\ \hline 10.00\\ \hline 1.00\\ \hline 4.844\\ \hline 5.382\\ \end{array}$	1.53 1.45E+07 9.19E+05 447.70 35.06 440.6 7.773 #N/D 0.409 0.643 1.68089 10.40 11.56 1.16 5.111 5.679
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th ΔFf Fmax,f Fmin,f	1.70 8.02E+06 1.74E+06 287.10 35.94 281.7 5.119 #N/D 0.269 0.423 1.16788 8.03 8.93 0.89 5.682 6.314 0.631	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318 0.500 1.32225 11.32 12.58 1.26 7.072 7.858 0.786	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318 0.500 1.32268 8.00 8.89 0.89 4.997 5.553 0.555	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372 0.584 1.52086 10.35 11.50 1.15 5.620 6.245 0.624	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375 0.590 1.53470 8.58 9.53 0.95 4.616 5.129 0.513	$\begin{array}{r} 1.57\\ \hline 1.36E+07\\ \hline 4.20E+05\\ \hline 404.80\\ \hline 33.73\\ \hline 400.2\\ \hline 7.135\\ \hline 2.050\\ \hline 0.376\\ \hline 0.590\\ \hline 1.53528\\ \hline 9.00\\ \hline 10.00\\ \hline 1.00\\ \hline 4.844\\ \hline 5.382\\ \hline 0.538\\ \end{array}$	1.53 1.45E+07 9.19E+05 447.70 35.06 440.6 7.773 #N/D 0.409 0.643 1.68089 10.40 11.56 1.16 5.111 5.679 0.568
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f	1.70 8.02E+06 1.74E+06 287.10 35.94 281.7 5.119 #N/D 0.269 0.423 1.16788 8.03 8.93 0.89 5.682 6.314 0.631 2.841	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318 0.500 1.32225 11.32 12.58 1.26 7.072 7.858 0.786 3.536	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318 0.500 1.32268 8.00 8.89 0.89 4.997 5.553 0.555 2.499	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372 0.584 1.52086 10.35 11.50 1.15 5.620 6.245 0.624 2.810	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375 0.590 1.53470 8.58 9.53 0.95 4.616 5.129 0.513 2.308	$\begin{array}{r} 1.57\\ \hline 1.36E+07\\ \hline 4.20E+05\\ \hline 404.80\\ \hline 33.73\\ \hline 400.2\\ \hline 7.135\\ \hline 2.050\\ \hline 0.376\\ \hline 0.590\\ \hline 1.53528\\ \hline 9.00\\ \hline 10.00\\ \hline 1.00\\ \hline 4.844\\ \hline 5.382\\ \hline 0.538\\ \hline 2.422\\ \end{array}$	1.53 1.45E+07 9.19E+05 447.70 35.06 440.6 7.773 #N/D 0.409 0.643 1.68089 10.40 11.56 1.16 5.111 5.679 0.568 2.555
Check SSY N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta KI,th$ KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f Fmean,f	1.70 8.02E+06 1.74E+06 287.10 35.94 281.7 5.119 #N/D 0.269 0.423 1.16788 8.03 8.93 0.89 5.682 6.314 0.631 2.841 3.473	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318 0.500 1.32225 11.32 12.58 1.26 7.072 7.858 0.786 3.536 4.322	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318 0.500 1.32268 8.00 8.89 0.89 4.997 5.553 0.555 2.499 3.054	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372 0.584 1.52086 10.35 11.50 1.15 5.620 6.245 0.624 2.810 3.435	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375 0.590 1.53470 8.58 9.53 0.95 4.616 5.129 0.513 2.308 2.821	$\begin{array}{r} 1.57\\ \hline 1.36E+07\\ \hline 4.20E+05\\ \hline 404.80\\ \hline 33.73\\ \hline 400.2\\ \hline 7.135\\ \hline 2.050\\ \hline 0.376\\ \hline 0.590\\ \hline 1.53528\\ \hline 9.00\\ \hline 10.00\\ \hline 1.00\\ \hline 4.844\\ \hline 5.382\\ \hline 0.538\\ \hline 2.422\\ \hline 2.960\\ \hline \end{array}$	1.53 1.45E+07 9.19E+05 447.70 35.06 440.6 7.773 #N/D 0.409 0.643 1.68089 10.40 11.56 1.16 5.111 5.679 0.568 2.555 3.123
Check SSY N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta Kl,th$ Kl,max th Kl,min th ΔFf Fmax,f Fmin,f Fa,f Fmean,f (W-af)	$\begin{array}{r} 1.70\\ \hline 8.02E+06\\ \hline 1.74E+06\\ \hline 287.10\\ \hline 35.94\\ \hline 281.7\\ \hline 5.119\\ \# N/D\\ \hline 0.269\\ \hline 0.423\\ \hline 1.16788\\ \hline 8.03\\ \hline 8.93\\ \hline 0.89\\ \hline 5.682\\ \hline 6.314\\ \hline 0.631\\ \hline 2.841\\ \hline 3.473\\ \hline 13.88\\ \end{array}$	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318 0.500 1.32225 11.32 12.58 1.26 7.072 7.858 0.786 3.536 4.322 12.95	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318 0.500 1.32268 8.00 8.89 0.89 4.997 5.553 0.555 2.499 3.054 12.95	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372 0.584 1.52086 10.35 11.50 1.15 5.620 6.245 0.624 2.810 3.435 11.93	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375 0.590 1.53470 8.58 9.53 0.95 4.616 5.129 0.513 2.308 2.821 11.86	$\begin{array}{r} 1.57\\ \hline 1.36E+07\\ \hline 4.20E+05\\ \hline 404.80\\ \hline 33.73\\ \hline 400.2\\ \hline 7.135\\ \hline 2.050\\ \hline 0.376\\ \hline 0.590\\ \hline 1.53528\\ \hline 9.00\\ \hline 10.00\\ \hline 1.00\\ \hline 4.844\\ \hline 5.382\\ \hline 0.538\\ \hline 2.422\\ \hline 2.960\\ \hline 11.86\\ \hline \end{array}$	1.53 1.45E+07 9.19E+05 447.70 35.06 440.6 7.773 #N/D 0.409 0.643 1.68089 10.40 11.56 1.16 5.111 5.679 0.568 2.555 3.123 11.22
Check SSY N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta Kl,th$ Kl,max th Kl,min th ΔFf Fmax,f Fmin,f Fa,f Fmean,f (W-af) SSY	$\begin{array}{r} 1.70\\ \hline 8.02E+06\\ \hline 1.74E+06\\ \hline 287.10\\ \hline 35.94\\ \hline 281.7\\ \hline 5.119\\ \# N/D\\ \hline 0.269\\ \hline 0.423\\ \hline 1.16788\\ \hline 8.03\\ \hline 8.93\\ \hline 0.89\\ \hline 5.682\\ \hline 6.314\\ \hline 0.631\\ \hline 2.841\\ \hline 3.473\\ \hline 13.88\\ \hline 8.17\\ \end{array}$	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318 0.500 1.32225 11.32 12.58 1.26 7.072 7.858 0.786 3.536 4.322 12.95 9.12	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318 0.500 1.32268 8.00 8.89 0.89 4.997 5.553 0.555 2.499 3.054 12.95 7.66	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372 0.584 1.52086 10.35 11.50 1.15 5.620 6.245 0.624 2.810 3.435 11.93 8.13	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375 0.590 1.53470 8.58 9.53 0.95 4.616 5.129 0.513 2.308 2.821 11.86 7.37	$\begin{array}{r} 1.57\\ \hline 1.36E+07\\ \hline 4.20E+05\\ \hline 404.80\\ \hline 33.73\\ \hline 400.2\\ \hline 7.135\\ \hline 2.050\\ \hline 0.376\\ \hline 0.590\\ \hline 1.53528\\ \hline 9.00\\ \hline 10.00\\ \hline 1.00\\ \hline 4.844\\ \hline 5.382\\ \hline 0.538\\ \hline 2.422\\ \hline 2.960\\ \hline 11.86\\ \hline 7.54\\ \hline \end{array}$	1.33 1.45E+07 9.19E+05 447.70 35.06 440.6 7.773 #N/D 0.409 0.643 1.68089 10.40 11.56 1.16 5.111 5.679 0.568 2.555 3.123 11.22 7.75
Check SSY N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta KI,th$ KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f Fmean,f (W-af) SSY af,max	1.70 8.02E+06 1.74E+06 287.10 35.94 281.7 5.119 #N/D 0.269 0.423 1.16788 8.03 8.93 0.89 5.682 6.314 0.631 2.841 3.473 13.88 8.17 10.82	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318 0.500 1.32225 11.32 12.58 1.26 7.072 7.858 0.786 3.536 4.322 12.95 9.12 9.88	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318 0.500 1.32268 8.00 8.89 0.89 4.997 5.553 0.555 2.499 3.054 12.95 7.66 11.33	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372 0.584 1.52086 10.35 11.50 1.15 5.620 6.245 0.624 2.810 3.435 11.93 8.13 10.87	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375 0.590 1.53470 8.58 9.53 0.95 4.616 5.129 0.513 2.308 2.821 11.86 7.37 11.63	$\begin{array}{r} 1.57\\ \hline 1.36E+07\\ \hline 4.20E+05\\ \hline 404.80\\ \hline 33.73\\ \hline 400.2\\ \hline 7.135\\ \hline 2.050\\ \hline 0.376\\ \hline 0.590\\ \hline 1.53528\\ \hline 9.00\\ \hline 10.00\\ \hline 1.00\\ \hline 4.844\\ \hline 5.382\\ \hline 0.538\\ \hline 2.422\\ \hline 2.960\\ \hline 11.86\\ \hline 7.54\\ \hline 11.45\\ \end{array}$	1.53 1.45E+07 9.19E+05 447.70 35.06 440.6 7.773 #N/D 0.409 0.643 1.68089 10.40 11.56 1.16 5.111 5.679 0.568 2.555 3.123 11.22 7.75 11.25
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f SSY af,max rp,th	$\begin{array}{r} 1.70\\ \hline 8.02E+06\\ \hline 1.74E+06\\ \hline 287.10\\ \hline 35.94\\ \hline 281.7\\ \hline 5.119\\ \# N/D\\ \hline 0.269\\ \hline 0.423\\ \hline 1.16788\\ \hline 8.03\\ \hline 8.93\\ \hline 0.89\\ \hline 5.682\\ \hline 6.314\\ \hline 0.631\\ \hline 2.841\\ \hline 3.473\\ \hline 13.88\\ \hline 8.17\\ \hline 10.82\\ \hline 0.101\\ \hline \end{array}$	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318 0.500 1.32225 11.32 12.58 1.26 7.072 7.858 0.786 3.536 4.322 12.95 9.12 9.88 0.200	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318 0.500 1.32268 8.00 8.89 0.89 4.997 5.553 0.555 2.499 3.054 12.95 7.66 11.33 0.100	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372 0.584 1.52086 10.35 11.50 1.15 5.620 6.245 0.624 2.810 3.435 11.93 8.13 10.87 0.167	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375 0.590 1.53470 8.58 9.53 0.95 4.616 5.129 0.513 2.308 2.821 11.86 7.37 11.63 0.115	$\begin{array}{r} 1.57\\ \hline 1.36E+07\\ \hline 4.20E+05\\ \hline 404.80\\ \hline 33.73\\ \hline 400.2\\ \hline 7.135\\ \hline 2.050\\ \hline 0.376\\ \hline 0.590\\ \hline 1.53528\\ \hline 9.00\\ \hline 10.00\\ \hline 1.00\\ \hline 4.844\\ \hline 5.382\\ \hline 0.538\\ \hline 2.422\\ \hline 2.960\\ \hline 11.86\\ \hline 7.54\\ \hline 11.45\\ \hline 0.126\\ \hline \end{array}$	$\begin{array}{r} 1.53\\ \hline 1.45E+07\\ \hline 9.19E+05\\ \hline 447.70\\ \hline 35.06\\ \hline 440.6\\ \hline 7.773\\ \hline \#N/D\\ \hline 0.409\\ \hline 0.643\\ \hline 1.68089\\ \hline 10.40\\ \hline 11.56\\ \hline 1.16\\ \hline 5.111\\ \hline 5.679\\ \hline 0.568\\ \hline 2.555\\ \hline 3.123\\ \hline 11.22\\ \hline 7.75\\ \hline 11.25\\ \hline 0.169\\ \hline \end{array}$
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th ΔFf Fmax,f Fmean,f (W-af) SSY af,max rp,th rΔ,th	$\begin{array}{r} 1.70\\ \hline 8.02E+06\\ \hline 1.74E+06\\ \hline 287.10\\ \hline 35.94\\ \hline 281.7\\ \hline 5.119\\ \# N/D\\ \hline 0.269\\ \hline 0.423\\ \hline 1.16788\\ \hline 8.03\\ \hline 8.93\\ \hline 0.89\\ \hline 5.682\\ \hline 6.314\\ \hline 0.631\\ \hline 2.841\\ \hline 3.473\\ \hline 13.88\\ \hline 8.17\\ \hline 10.82\\ \hline 0.101\\ \hline 0.020\\ \end{array}$	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318 0.500 1.32225 11.32 12.58 1.26 7.072 7.858 0.786 3.536 4.322 12.95 9.12 9.88 0.200 0.040	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318 0.500 1.32268 8.00 8.89 0.89 4.997 5.553 0.555 2.499 3.054 12.95 7.66 11.33 0.100 0.020	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372 0.584 1.52086 10.35 11.50 1.15 5.620 6.245 0.624 2.810 3.435 11.93 8.13 10.87 0.167 0.034	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375 0.590 1.53470 8.58 9.53 0.95 4.616 5.129 0.513 2.308 2.821 11.86 7.37 11.63 0.115 0.023	$\begin{array}{r} 1.57\\ \hline 1.36E+07\\ \hline 4.20E+05\\ \hline 404.80\\ \hline 33.73\\ \hline 400.2\\ \hline 7.135\\ \hline 2.050\\ \hline 0.376\\ \hline 0.590\\ \hline 1.53528\\ \hline 9.00\\ \hline 10.00\\ \hline 1.00\\ \hline 4.844\\ \hline 5.382\\ \hline 0.538\\ \hline 2.422\\ \hline 2.960\\ \hline 11.86\\ \hline 7.54\\ \hline 11.45\\ \hline 0.126\\ \hline 0.026\\ \end{array}$	$\begin{array}{r} 1.53\\ \hline 1.45E+07\\ \hline 9.19E+05\\ \hline 447.70\\ \hline 35.06\\ \hline 440.6\\ \hline 7.773\\ \hline \#N/D\\ \hline 0.409\\ \hline 0.643\\ \hline 1.68089\\ \hline 10.40\\ \hline 11.56\\ \hline 1.16\\ \hline 5.111\\ \hline 5.679\\ \hline 0.568\\ \hline 2.555\\ \hline 3.123\\ \hline 11.22\\ \hline 7.75\\ \hline 11.25\\ \hline 0.169\\ \hline 0.034\\ \end{array}$
Check SSY N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta KI,th$ KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f Fmean,f (W-af) SSY af,max rp,th r\Delta,th r\Delta2,th	1.70 8.02E+06 1.74E+06 287.10 35.94 281.7 5.119 #N/D 0.269 0.423 1.16788 8.03 8.93 0.89 5.682 6.314 0.631 2.841 3.473 13.88 8.17 10.82 0.101 0.020 0.005	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318 0.500 1.32225 11.32 12.58 1.26 7.072 7.858 0.786 3.536 4.322 12.95 9.12 9.88 0.200 0.040 0.011	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318 0.500 1.32268 8.00 8.89 0.89 4.997 5.553 0.555 2.499 3.054 12.95 7.66 11.33 0.100 0.020 0.005	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372 0.584 1.52086 10.35 11.50 1.15 5.620 6.245 0.624 2.810 3.435 11.93 8.13 10.87 0.167 0.034 0.009	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375 0.590 1.53470 8.58 9.53 0.95 4.616 5.129 0.513 2.308 2.821 11.86 7.37 11.63 0.115 0.023 0.006	$\begin{array}{r} 1.57\\ \hline 1.36E+07\\ \hline 4.20E+05\\ \hline 404.80\\ \hline 33.73\\ \hline 400.2\\ \hline 7.135\\ \hline 2.050\\ \hline 0.376\\ \hline 0.590\\ \hline 1.53528\\ \hline 9.00\\ \hline 10.00\\ \hline 1.00\\ \hline 4.844\\ \hline 5.382\\ \hline 0.538\\ \hline 2.422\\ \hline 2.960\\ \hline 11.86\\ \hline 7.54\\ \hline 11.45\\ \hline 0.126\\ \hline 0.026\\ \hline 0.007\\ \end{array}$	$\begin{array}{r} 1.53\\ \hline 1.45E+07\\ \hline 9.19E+05\\ \hline 447.70\\ \hline 35.06\\ \hline 440.6\\ \hline 7.773\\ \hline \#N/D\\ \hline 0.409\\ \hline 0.643\\ \hline 1.68089\\ \hline 10.40\\ \hline 11.56\\ \hline 1.16\\ \hline 5.111\\ \hline 5.679\\ \hline 0.568\\ \hline 2.555\\ \hline 3.123\\ \hline 11.22\\ \hline 7.75\\ \hline 11.25\\ \hline 0.169\\ \hline 0.034\\ \hline 0.009\\ \end{array}$
Check SSY N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta KI,th$ KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f Fmean,f (W-af) SSY af,max rp,th r\Delta,th r\Delta2,th Check SSY	1.70 8.02E+06 1.74E+06 287.10 35.94 281.7 5.119 #N/D 0.269 0.423 1.16788 8.03 8.93 0.89 5.682 6.314 0.631 2.841 3.473 13.88 8.17 10.82 0.101 0.020 0.005 1.70	1.52 8.94E+06 9.18E+05 341.50 36.43 334.5 6.043 #N/D 0.318 0.500 1.32225 11.32 12.58 1.26 7.072 7.858 0.786 3.536 4.322 12.95 9.12 9.88 0.200 0.040 0.011 1.42	1.69 9.03E+06 8.93E+04 341.40 36.22 334.7 6.045 #N/D 0.318 0.500 1.32268 8.00 8.89 0.89 4.997 5.553 0.555 2.499 3.054 12.95 7.66 11.33 0.100 0.020 0.005 1.69	1.59 1.06E+07 1.55E+06 401.60 34.48 396.0 7.067 #N/D 0.372 0.584 1.52086 10.35 11.50 1.15 5.620 6.245 0.624 2.810 3.435 11.93 8.13 10.87 0.167 0.034 0.009 1.47	1.62 1.32E+07 2.63E+06 404.70 33.78 400.1 7.132 #N/D 0.375 0.590 1.53470 8.58 9.53 0.95 4.616 5.129 0.513 2.308 2.821 11.86 7.37 11.63 0.115 0.023 0.006 1.61	$\begin{array}{r} 1.57\\ \hline 1.36E+07\\ \hline 4.20E+05\\ \hline 404.80\\ \hline 33.73\\ \hline 400.2\\ \hline 7.135\\ \hline 2.050\\ \hline 0.376\\ \hline 0.590\\ \hline 1.53528\\ \hline 9.00\\ \hline 10.00\\ \hline 1.00\\ \hline 4.844\\ \hline 5.382\\ \hline 0.538\\ \hline 2.422\\ \hline 2.960\\ \hline 11.86\\ \hline 7.54\\ \hline 11.45\\ \hline 0.126\\ \hline 0.026\\ \hline 0.007\\ \hline 1.57\\ \end{array}$	$\begin{array}{r} 1.53\\ \hline 1.45E+07\\ \hline 9.19E+05\\ \hline 447.70\\ \hline 35.06\\ \hline 440.6\\ \hline 7.773\\ \hline \#N/D\\ \hline 0.409\\ \hline 0.643\\ \hline 1.68089\\ \hline 10.40\\ \hline 11.56\\ \hline 1.16\\ \hline 5.111\\ \hline 5.679\\ \hline 0.568\\ \hline 2.555\\ \hline 3.123\\ \hline 11.22\\ \hline 7.75\\ \hline 11.25\\ \hline 0.169\\ \hline 0.034\\ \hline 0.009\\ \hline 1.45\\ \end{array}$

Step	14	15	16	17	18	19	20
Date	20/07/2023	21/07/2023	21/07/2023	22/07/2023	23/07/2023	24/07/2023	24/07/2023
Time	21:20:00	16:00:00	22:55:00	09:20:00	16:47:00	09:15:00	17:28:00
Mode	DF - Cost	DF - Cost	DK - Cost	DK - Cost	DK - Cost	DK - Cost	DK - Cost
ai	7.773	7.893	7.892	7.898	8.063	8.203	8.602
R	0.1	0.1	0.1	0.1	0.1	0.1	0.1
ΔΚΙ	9.00	8.90	9.50	10.00	10.50	11.50	12.00
f	30.00	30.00	30.00	30.00	30.00	30.00	30.00
KI,max	10.000	9.889	10.556	11.111	11.667	12.778	13.333
KI,min	1.000	0.989	1.056	1.111	1.167	1.278	1.333
KI,a	4.500	4.450	4.750	5.000	5.250	5.750	6.000
KI,mean	5.500	5.439	5.806	6.111	6.417	7.028	7.333
ai/W	0.409	0.416	0.416	0.416	0.424	0.432	0.453
θi	0.643	0.653	0.653	0.653	0.667	0.678	0.711
g(ai/W)	1.68089	1.71047	1.71029	1.71173	1.75345	1.79025	1.90092
ΔF	4.422	4.298	4.588	4.825	4.946	5.306	5.214
Fmax	4.914	4.775	5.098	5.362	5.496	5.895	5.793
Fmin	0.491	0.478	0.510	0.536	0.550	0.590	0.579
Fa	2.211	2.149	2.294	2.413	2.473	2.653	2.607
Fmean	2.703	2.626	2.804	2.949	3.023	3.242	3.186
(W-ai)	11.22	11.10	11.10	11.10	10.93	10.79	10.39
SSY	7.21	7.11	7.34	7.53	7.62	7.90	7.83
ai,max	11.79	11.89	11.65	11.46	11.37	11.10	11.17
rp	0.126	0.123	0.141	0.156	0.172	0.206	0.225
rΔ	0.026	0.025	0.028	0.032	0.035	0.042	0.045
rΔ2	0.007	0.007	0.008	0.008	0.009	0.011	0.012
	1 5 6	1			1 1 2	1.05	1.00
Check SSY	1.56	1.56	1.51	1.47	1.43	1.37	1.33
N N	1.56 1.66E+07	1.56 1.73E+07	1.51 1.84E+07	1.47 2.18E+07	1.43 2.36E+07	1.37 2.45E+07	1.33 2.68E+07
Check SSY N ΔN	1.56 1.66E+07 2.01E+06	1.56 <u>1.73E+07</u> 7.51E+05	1.51 <u>1.84E+07</u> 1.84E+07	1.47 2.18E+07 3.39E+06	1.43 2.36E+07 1.77E+06	1.37 2.45E+07 8.83E+05	1.33 2.68E+07 2.38E+06
Check SSY N ΔN ΔV(T)	1.56 1.66E+07 2.01E+06 451.70	1.56 <u>1.73E+07</u> 7.51E+05 452.50	1.51 <u>1.84E+07</u> 1.84E+07 450.60	1.47 2.18E+07 3.39E+06 462.30	1.43 2.36E+07 1.77E+06 472.90	1.37 2.45E+07 8.83E+05 501.60	1.33 2.68E+07 2.38E+06 635.40
Check SSY N ΔN ΔV(T) T	1.56 1.66E+07 2.01E+06 451.70 32.56	1.56 1.73E+07 7.51E+05 452.50 33.10	1.51 1.84E+07 1.84E+07 450.60 31.65	1.47 2.18E+07 3.39E+06 462.30 32.20	1.43 2.36E+07 1.77E+06 472.90 32.96	1.37 2.45E+07 8.83E+05 501.60 33.89	1.33 2.68E+07 2.38E+06 635.40 31.91
Check SSY N ΔN ΔV(T) T ΔV(T0)	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4	1.56 1.73E+07 7.51E+05 452.50 33.10 448.4	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2
Check SSY N ΔN ΔV(T) T ΔV(T0) af	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893	1.56 1.73E+07 7.51E+05 452.50 33.10 448.4 7.892	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D	1.56 1.73E+07 7.51E+05 452.50 33.10 448.4 7.892 2.808	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416	1.56 1.73E+07 7.51E+05 452.50 33.10 448.4 7.892 2.808 0.416	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D 0.432	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416 0.653	1.56 1.73E+07 7.51E+05 452.50 33.10 448.4 7.892 2.808 0.416 0.653	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416 0.653	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424 0.667	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D 0.432 0.678	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453 0.711	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550 0.865
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W)	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416 0.653 1.71047	1.56 1.73E+07 7.51E+05 452.50 33.10 448.4 7.892 2.808 0.416 0.653 1.71029	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416 0.653 1.71173	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424 0.667 1.75345	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D 0.432 0.678 1.79025	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453 0.711 1.90092	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550 0.865 2.58112
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416 0.653 1.71047 9.16	1.56 1.73E+07 7.51E+05 452.50 33.10 448.4 7.892 2.808 0.416 0.653 1.71029 8.90	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416 0.653 1.71173 9.50	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424 0.667 1.75345 10.00	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D 0.432 0.678 1.79025 10.50	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453 0.711 1.90092 11.50	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550 0.865 2.58112 12.00
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416 0.653 1.71047 9.16 10.18	1.56 1.73E+07 7.51E+05 452.50 33.10 448.4 7.892 2.808 0.416 0.653 1.71029 8.90 9.89	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416 0.653 1.71173 9.50 10.56	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424 0.667 1.75345 10.00 11.11	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D 0.432 0.678 1.79025 10.50 11.67	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453 0.711 1.90092 11.50 12.78	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550 0.865 2.58112 12.00 13.33
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416 0.653 1.71047 9.16 10.18 1.02	1.56 1.73E+07 7.51E+05 452.50 33.10 448.4 7.892 2.808 0.416 0.653 1.71029 8.90 9.89 0.99	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416 0.653 1.71173 9.50 10.56 1.06	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424 0.667 1.75345 10.00 11.11 1.11	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D 0.432 0.678 1.79025 10.50 11.67 1.17	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453 0.711 1.90092 11.50 12.78 1.28	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550 0.865 2.58112 12.00 13.33 1.33
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th ΔFf	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416 0.653 1.71047 9.16 10.18 1.02 4.422	1.56 1.73E+07 7.51E+05 452.50 33.10 448.4 7.892 2.808 0.416 0.653 1.71029 8.90 9.89 0.99 4.298	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416 0.653 1.71173 9.50 10.56 1.06 4.584	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424 0.667 1.75345 10.00 11.11 1.11 4.711	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D 0.432 0.678 1.79025 10.50 11.67 1.17 4.844	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453 0.711 1.90092 11.50 12.78 1.28 4.997	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550 0.865 2.58112 12.00 13.33 1.33 3.840
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKl,th Kl,max th Kl,min th ΔFf Fmax,f	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416 0.653 1.71047 9.16 10.18 1.02 4.422 4.914	1.56 1.73E+07 7.51E+05 452.50 33.10 448.4 7.892 2.808 0.416 0.653 1.71029 8.90 9.89 0.99 4.298 4.775	1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416 0.653 1.71173 9.50 10.56 1.06 4.584 5.093	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424 0.667 1.75345 10.00 11.11 1.11 4.711 5.234	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D 0.432 0.678 1.79025 10.50 11.67 1.17 4.844 5.383	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453 0.711 1.90092 11.50 12.78 1.28 4.997 5.552	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550 0.865 2.58112 12.00 13.33 1.33 3.840 4.267
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416 0.653 1.71047 9.16 10.18 1.02 4.422 4.914 0.491	1.56 1.73E+07 7.51E+05 452.50 33.10 448.4 7.892 2.808 0.416 0.653 1.71029 8.90 9.89 0.99 4.298 4.775 0.478	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416 0.653 1.71173 9.50 10.56 1.06 4.584 5.093 0.509	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424 0.667 1.75345 10.00 11.11 1.11 4.711 5.234 0.523	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D 0.432 0.678 1.79025 10.50 11.67 1.17 4.844 5.383 0.538	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453 0.711 1.90092 11.50 12.78 1.28 4.997 5.552 0.555	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550 0.865 2.58112 12.00 13.33 1.33 3.840 4.267 0.427
Check SSY N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta Kl, th$ KI,max th KI,min th ΔFf Fmax, f Fmin, f Fa, f	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416 0.653 1.71047 9.16 10.18 1.02 4.422 4.914 0.491 2.211	1.56 1.73E+07 7.51E+05 452.50 33.10 448.4 7.892 2.808 0.416 0.653 1.71029 8.90 9.89 0.99 4.298 4.775 0.478 2.149	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416 0.653 1.71173 9.50 10.56 1.06 4.584 5.093 0.509 2.292	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424 0.667 1.75345 10.00 11.11 1.11 4.711 5.234 0.523 2.355	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D 0.432 0.678 1.79025 10.50 11.67 1.17 4.844 5.383 0.538 2.422	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453 0.711 1.90092 11.50 12.78 1.28 4.997 5.552 0.555 2.498	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550 0.865 2.58112 12.00 13.33 1.33 3.840 4.267 0.427 1.920
Check SSYN ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta Kl, th$ KI,max thKI,min th ΔFf Fmax, fFmin, fFa, fFmean, f	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416 0.653 1.71047 9.16 10.18 1.02 4.422 4.914 0.491 2.211 2.703	$\begin{array}{r} 1.56\\ \hline 1.73E+07\\ \hline 7.51E+05\\ \hline 452.50\\ \hline 33.10\\ \hline 448.4\\ \hline 7.892\\ \hline 2.808\\ \hline 0.416\\ \hline 0.653\\ \hline 1.71029\\ \hline 8.90\\ \hline 9.89\\ \hline 0.99\\ \hline 4.298\\ \hline 4.775\\ \hline 0.478\\ \hline 2.149\\ \hline 2.626\\ \end{array}$	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416 0.653 1.71173 9.50 10.56 1.06 4.584 5.093 0.509 2.292 2.801	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424 0.667 1.75345 10.00 11.11 1.11 4.711 5.234 0.523 2.355 2.879	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D 0.432 0.678 1.79025 10.50 11.67 1.17 4.844 5.383 0.538 2.422 2.960	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453 0.711 1.90092 11.50 12.78 1.28 4.997 5.552 0.555 2.498 3.054	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550 0.865 2.58112 12.00 13.33 1.33 3.840 4.267 0.427 1.920 2.347
Check SSY N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta KI, th$ KI,max th KI,min th ΔFf Fmax, f Fmin, f Fa, f Fmean, f (W-af)	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416 0.653 1.71047 9.16 10.18 1.02 4.422 4.914 0.491 2.211 2.703 11.10	1.56 1.73E+07 7.51E+05 452.50 33.10 448.4 7.892 2.808 0.416 0.653 1.71029 8.90 9.89 0.99 4.298 4.775 0.478 2.149 2.626 11.10	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416 0.653 1.71173 9.50 10.56 1.06 4.584 5.093 0.509 2.292 2.801 11.10	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424 0.667 1.75345 10.00 11.11 1.11 4.711 5.234 0.523 2.355 2.879 10.93	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D 0.432 0.678 1.79025 10.50 11.67 1.17 4.844 5.383 0.538 2.422 2.960 10.79	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453 0.711 1.90092 11.50 12.78 1.28 4.997 5.552 0.555 2.498 3.054 10.39	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550 0.865 2.58112 12.00 13.33 1.33 3.840 4.267 0.427 1.920 2.347 8.54
Check SSY N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta KI,th$ KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f Fmean,f (W-af) SSY	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416 0.653 1.71047 9.16 10.18 1.02 4.422 4.914 0.491 2.211 2.703 11.10 7.21	1.56 1.73E+07 7.51E+05 452.50 33.10 448.4 7.892 2.808 0.416 0.653 1.71029 8.90 9.89 0.99 4.298 4.775 0.478 2.149 2.626 11.10 7.11	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416 0.653 1.71173 9.50 10.56 1.06 4.584 5.093 0.509 2.292 2.801 11.10 7.34	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424 0.667 1.75345 10.00 11.11 1.11 4.711 5.234 0.523 2.355 2.879 10.93 7.44	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D 0.432 0.678 1.79025 10.50 11.67 1.17 4.844 5.383 0.538 2.422 2.960 10.79 7.54	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453 0.711 1.90092 11.50 12.78 1.28 4.997 5.552 0.555 2.498 3.054 10.39 7.66	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550 0.865 2.58112 12.00 13.33 1.33 3.840 4.267 0.427 1.920 2.347 8.54 6.72
Check SSY N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta KI,th$ KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f Fmean,f (W-af) SSY af,max	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416 0.653 1.71047 9.16 10.18 1.02 4.422 4.914 0.491 2.211 2.703 11.10 7.21 11.79	1.56 1.73E+07 7.51E+05 452.50 33.10 448.4 7.892 2.808 0.416 0.653 1.71029 8.90 9.89 0.99 4.298 4.775 0.478 2.149 2.626 11.10 7.11 11.89	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416 0.653 1.71173 9.50 10.56 1.06 4.584 5.093 0.509 2.292 2.801 11.10 7.34 11.66	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424 0.667 1.75345 10.00 11.11 1.11 4.711 5.234 0.523 2.355 2.879 10.93 7.44 11.56	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D 0.432 0.678 1.79025 10.50 11.67 1.17 4.844 5.383 0.538 2.422 2.960 10.79 7.54 11.45	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453 0.711 1.90092 11.50 12.78 1.28 4.997 5.552 0.555 2.498 3.054 10.39 7.66 11.33	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550 0.865 2.58112 12.00 13.33 1.33 3.840 4.267 0.427 1.920 2.347 8.54 6.72 12.28
Check SSY N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta KI,th$ KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f Fmean,f (W-af) SSY af,max rp,th	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416 0.653 1.71047 9.16 10.18 1.02 4.422 4.914 0.491 2.211 2.703 11.10 7.21 11.79 0.131	$\begin{array}{r} 1.56\\ \hline 1.73E+07\\ \hline 7.51E+05\\ \hline 452.50\\ \hline 33.10\\ \hline 448.4\\ \hline 7.892\\ \hline 2.808\\ \hline 0.416\\ \hline 0.653\\ \hline 1.71029\\ \hline 8.90\\ \hline 9.89\\ \hline 0.99\\ \hline 4.298\\ \hline 4.775\\ \hline 0.478\\ \hline 2.149\\ \hline 2.626\\ \hline 11.10\\ \hline 7.11\\ \hline 11.89\\ \hline 0.123\\ \end{array}$	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416 0.653 1.71173 9.50 10.56 1.06 4.584 5.093 0.509 2.292 2.801 11.10 7.34 11.66 0.141	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424 0.667 1.75345 10.00 11.11 1.11 4.711 5.234 0.523 2.355 2.879 10.93 7.44 11.56 0.156	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D 0.432 0.678 1.79025 10.50 11.67 1.17 4.844 5.383 0.538 2.422 2.960 10.79 7.54 11.45 0.172	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453 0.711 1.90092 11.50 12.78 1.28 4.997 5.552 0.555 2.498 3.054 10.39 7.66 11.33 0.206	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550 0.865 2.58112 12.00 13.33 1.33 3.840 4.267 0.427 1.920 2.347 8.54 6.72 12.28 0.225
Check SSY N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta KI,th$ KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f Fmean,f (W-af) SSY af,max rp,th r\Delta,th	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416 0.653 1.71047 9.16 10.18 1.02 4.422 4.914 0.491 2.211 2.703 11.10 7.21 11.79 0.131 0.026	$\begin{array}{r} 1.56\\ \hline 1.73E+07\\ \hline 7.51E+05\\ \hline 452.50\\ \hline 33.10\\ \hline 448.4\\ \hline 7.892\\ \hline 2.808\\ \hline 0.416\\ \hline 0.653\\ \hline 1.71029\\ \hline 8.90\\ \hline 9.89\\ \hline 0.99\\ \hline 4.298\\ \hline 4.775\\ \hline 0.478\\ \hline 2.149\\ \hline 2.626\\ \hline 11.10\\ \hline 7.11\\ \hline 11.89\\ \hline 0.123\\ \hline 0.025\\ \end{array}$	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416 0.653 1.71173 9.50 10.56 1.06 4.584 5.093 0.509 2.292 2.801 11.10 7.34 11.66 0.141 0.028	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424 0.667 1.75345 10.00 11.11 1.11 4.711 5.234 0.523 2.355 2.879 10.93 7.44 11.56 0.156 0.032	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D 0.432 0.678 1.79025 10.50 11.67 1.17 4.844 5.383 0.538 2.422 2.960 10.79 7.54 11.45 0.172 0.035	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453 0.711 1.90092 11.50 12.78 1.28 4.997 5.552 0.555 2.498 3.054 10.39 7.66 11.33 0.206 0.042	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550 0.865 2.58112 12.00 13.33 1.33 3.840 4.267 0.427 1.920 2.347 8.54 6.72 12.28 0.225 0.045
Check SSY N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta KI,th$ KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f Fmean,f (W-af) SSY af,max rp,th r\Delta,th r\Delta2,th	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416 0.653 1.71047 9.16 10.18 1.02 4.422 4.914 0.491 2.211 2.703 11.10 7.21 11.79 0.131 0.026 0.007	$\begin{array}{r} 1.56\\ \hline 1.73E+07\\ \hline 7.51E+05\\ \hline 452.50\\ \hline 33.10\\ \hline 448.4\\ \hline 7.892\\ \hline 2.808\\ \hline 0.416\\ \hline 0.653\\ \hline 1.71029\\ \hline 8.90\\ \hline 9.89\\ \hline 0.99\\ \hline 4.298\\ \hline 4.775\\ \hline 0.478\\ \hline 2.149\\ \hline 2.626\\ \hline 11.10\\ \hline 7.11\\ \hline 11.89\\ \hline 0.123\\ \hline 0.025\\ \hline 0.007\\ \end{array}$	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416 0.653 1.71173 9.50 10.56 1.06 4.584 5.093 0.509 2.292 2.801 11.10 7.34 11.66 0.141 0.028 0.008	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424 0.667 1.75345 10.00 11.11 1.11 4.711 5.234 0.523 2.355 2.879 10.93 7.44 11.56 0.156 0.032 0.008	$\begin{array}{r} 1.43\\ \hline 2.36E+07\\ \hline 1.77E+06\\ \hline 472.90\\ \hline 32.96\\ \hline 468.8\\ \hline 8.203\\ \# N/D\\ \hline 0.432\\ \hline 0.678\\ \hline 1.79025\\ \hline 10.50\\ \hline 11.67\\ \hline 1.17\\ \hline 4.844\\ \hline 5.383\\ \hline 0.538\\ \hline 2.422\\ \hline 2.960\\ \hline 10.79\\ \hline 7.54\\ \hline 11.45\\ \hline 0.172\\ \hline 0.035\\ \hline 0.009\\ \end{array}$	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453 0.711 1.90092 11.50 12.78 1.28 4.997 5.552 0.555 2.498 3.054 10.39 7.66 11.33 0.206 0.042 0.011	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550 0.865 2.58112 12.00 13.33 1.33 3.840 4.267 0.427 1.920 2.347 8.54 6.72 12.28 0.225 0.045 0.012
Check SSY N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta KI,th$ KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f Fmean,f (W-af) SSY af,max rp,th r\Delta,th r\Delta2,th Check SSY	1.56 1.66E+07 2.01E+06 451.70 32.56 448.4 7.893 #N/D 0.416 0.653 1.71047 9.16 10.18 1.02 4.422 4.914 0.491 2.211 2.703 11.10 7.21 11.79 0.131 0.026 0.007 1.54	$\begin{array}{r} 1.56\\ \hline 1.73E+07\\ \hline 7.51E+05\\ \hline 452.50\\ \hline 33.10\\ \hline 448.4\\ \hline 7.892\\ \hline 2.808\\ \hline 0.416\\ \hline 0.653\\ \hline 1.71029\\ \hline 8.90\\ \hline 9.89\\ \hline 0.99\\ \hline 4.298\\ \hline 4.775\\ \hline 0.478\\ \hline 2.149\\ \hline 2.626\\ \hline 11.10\\ \hline 7.11\\ \hline 11.89\\ \hline 0.123\\ \hline 0.025\\ \hline 0.007\\ \hline 1.56\\ \end{array}$	1.51 1.84E+07 1.84E+07 450.60 31.65 448.8 7.898 #N/D 0.416 0.653 1.71173 9.50 10.56 1.06 4.584 5.093 0.509 2.292 2.801 11.10 7.34 11.66 0.141 0.028 0.008 1.51	1.47 2.18E+07 3.39E+06 462.30 32.20 459.5 8.063 #N/D 0.424 0.667 1.75345 10.00 11.11 1.11 4.711 5.234 0.523 2.355 2.879 10.93 7.44 11.56 0.156 0.032 0.008 1.47	1.43 2.36E+07 1.77E+06 472.90 32.96 468.8 8.203 #N/D 0.432 0.678 1.79025 10.50 11.67 1.17 4.844 5.383 0.538 2.422 2.960 10.79 7.54 11.45 0.172 0.035 0.009 1.43	1.37 2.45E+07 8.83E+05 501.60 33.89 495.7 8.602 #N/D 0.453 0.711 1.90092 11.50 12.78 1.28 4.997 5.552 0.555 2.498 3.054 10.39 7.66 11.33 0.206 0.042 0.011 1.36	1.33 2.68E+07 2.38E+06 635.40 31.91 632.2 10.454 #N/D 0.550 0.865 2.58112 12.00 13.33 1.33 3.840 4.267 0.427 1.920 2.347 8.54 6.72 12.28 0.225 0.045 0.012 1.27

Step	21	22	23	24	25	26	27
Date	25/07/2023	25/07/2023	26/07/2023	26/07/2023	26/07/2023	26/07/2023	27/07/2023
Time	16:40:00	17:55:00	00:05:00	00:43:00	09:28:00	11:55:00	09:10:00
Mode	DK - Cost	DK - Cost	DK - Cost	DK - Cost	DK - Cost	DK - Cost	DK - Cost
ai	10.454	10.525	11.448	11.544	12.658	12.877	13.023
R	0.1	0.1	0.1	0.1	0.1	0.1	0.1
ΔΚΙ	12.00	11.50	11.00	10.50	10.00	9.50	9.50
f	30.00	30.00	30.00	30.00	30.00	30.00	30.00
KI,max	13.333	12.778	12.222	11.667	11.111	10.556	10.556
KI,min	1.333	1.278	1.222	1.167	1.111	1.056	1.056
KI,a	6.000	5.750	5.500	5.250	5.000	4.750	4.750
KI,mean	7.333	7.028	6.722	6.417	6.111	5.806	5.806
ai/W	0.550	0.554	0.603	0.608	0.666	0.678	0.686
θi	0.865	0.870	0.947	0.955	1.047	1.065	1.077
g(ai/W)	2.58112	2.61451	3.11862	3.18047	4.06453	4.28695	4.44566
ΔF	3.840	3.633	2.913	2.727	2.032	1.830	1.765
Fmax	4.267	4.037	3.237	3.030	2.258	2.034	1.961
Fmin	0.427	0.404	0.324	0.303	0.226	0.203	0.196
Fa	1.920	1.817	1.457	1.363	1.016	0.915	0.883
Fmean	2.347	2.220	1.780	1.666	1.242	1.119	1.079
(W-ai)	8.54	8.47	7.55	7.45	6.34	6.12	5.97
SSY	6.72	6.53	5.85	5.66	4.89	4.64	4.55
ai,max	12.28	12.46	13.14	13.33	14.11	14.36	14.44
rp	0.225	0.206	0.189	0.172	0.156	0.141	0.141
rΔ	0.045	0.042	0.038	0.035	0.032	0.028	0.028
rΔ2	0.012	0.011	0.010	0.009	0.008	0.008	0.008
	1.0-	1.20	1.00		1.20	1.22	1.21
Check SSY	1.27	1.30	1.29	1.32	1.30	1.32	1.31
Check SSY N	1.27 2.70E+07	1.30 2.77E+07	1.29 2.77E+07	1.32 2.87E+07	1.30 2.89E+07	1.32 2.92E+07	1.31 2.93E+07
Check SSY N ΔN	1.27 2.70E+07 1.64E+05	1.30 2.77E+07 6.70E+05	1.29 2.77E+07 6.50E+04	1.32 2.87E+07 9.28E+05	1.30 2.89E+07 2.55E+05	1.32 2.92E+07 2.33E+05	1.31 2.93E+07 1.94E+05
Check SSY N ΔN ΔV(T)	1.27 2.70E+07 1.64E+05 642.50	1.30 2.77E+07 6.70E+05 719.40	1.29 2.77E+07 6.50E+04 726.80	1.32 2.87E+07 9.28E+05 832.50	1.30 2.89E+07 2.55E+05 855.20	1.32 2.92E+07 2.33E+05 871.00	1.31 2.93E+07 1.94E+05 883.40
Check SSY N ΔN ΔV(T) T	1.27 2.70E+07 1.64E+05 642.50 32.52	1.30 2.77E+07 6.70E+05 719.40 31.86	1.29 2.77E+07 6.50E+04 726.80 31.35	1.32 2.87E+07 9.28E+05 832.50 30.64	1.30 2.89E+07 2.55E+05 855.20 30.47	1.32 2.92E+07 2.33E+05 871.00 30.47	1.31 2.93E+07 1.94E+05 883.40 28.83
Check SSY N ΔN ΔV(T) T ΔV(T0)	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5
Check SSY N ΔN ΔV(T) T ΔV(T0) af	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554 0.870	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603 0.947	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608 0.955	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666 1.047	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678 1.065	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686 1.077	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694 1.090
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W)	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554 0.870 2.61451	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603 0.947 3.11862	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608 0.955 3.18047	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666 1.047 4.06453	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678 1.065 4.28695	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686 1.077 4.44566	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694 1.090 4.62858
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554 0.870 2.61451 12.00	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603 0.947 3.11862 11.50	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608 0.955 3.18047 11.00	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666 1.047 4.06453 10.50	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678 1.065 4.28695 10.00	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686 1.077 4.44566 9.50	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694 1.090 4.62858 9.50
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554 0.870 2.61451 12.00 13.33	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603 0.947 3.11862 11.50 12.78	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608 0.955 3.18047 11.00 12.22	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666 1.047 4.06453 10.50 11.67	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678 1.065 4.28695 10.00 11.11	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686 1.077 4.44566 9.50 10.56	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694 1.090 4.62858 9.50 10.56
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554 0.870 2.61451 12.00 13.33 1.33	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603 0.947 3.11862 11.50 12.78 1.28	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608 0.955 3.18047 11.00 12.22 1.22	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666 1.047 4.06453 10.50 11.67 1.17	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678 1.065 4.28695 10.00 11.11 1.11	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686 1.077 4.44566 9.50 10.56 1.06	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694 1.090 4.62858 9.50 10.56 1.06
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th ΔFf	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554 0.870 2.61451 12.00 13.33 1.33 3.791	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603 0.947 3.11862 11.50 12.78 1.28 3.046	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608 0.955 3.18047 11.00 12.22 1.22 2.857	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666 1.047 4.06453 10.50 11.67 1.17 2.134	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678 1.065 4.28695 10.00 11.11 1.927	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686 1.077 4.44566 9.50 10.56 1.06 1.765	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694 1.090 4.62858 9.50 10.56 1.06 1.695
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th ΔFf Fmax,f	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554 0.870 2.61451 12.00 13.33 1.33 3.791 4.212	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603 0.947 3.11862 11.50 12.78 1.28 3.046 3.384	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608 0.955 3.18047 11.00 12.22 1.22 2.857 3.174	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666 1.047 4.06453 10.50 11.67 1.17 2.134 2.371	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678 1.065 4.28695 10.00 11.11 1.927 2.141	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686 1.077 4.44566 9.50 10.56 1.06 1.765 1.961	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694 1.090 4.62858 9.50 10.56 1.695 1.884
Check SSYNΔNΔV(T)TΔV(T0)afΔaaf/Wθfg(af/W)ΔKI,thKI,max thKI,min thΔFfFmax,fFmin,f	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554 0.870 2.61451 12.00 13.33 1.33 3.791 4.212 0.421	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603 0.947 3.11862 11.50 12.78 1.28 3.046 3.384 0.338	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608 0.955 3.18047 11.00 12.22 1.22 2.857 3.174 0.317	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666 1.047 4.06453 10.50 11.67 1.17 2.134 2.371 0.237	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678 1.065 4.28695 10.00 11.11 1.927 2.141 0.214	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686 1.077 4.44566 9.50 10.56 1.06 1.765 1.961 0.196	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694 1.090 4.62858 9.50 10.56 1.695 1.884 0.188
Check SSYN ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta Kl, th$ KI,max thKI,min th $\Delta F f$ Fmax, fFmin, fFa, f	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554 0.870 2.61451 12.00 13.33 1.33 3.791 4.212 0.421 1.896	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603 0.947 3.11862 11.50 12.78 1.28 3.046 3.384 0.338 1.523	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608 0.955 3.18047 11.00 12.22 1.22 3.174 0.317 1.428	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666 1.047 4.06453 10.50 11.67 1.17 2.134 2.371 0.237 1.067	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678 1.065 4.28695 10.00 11.11 1.927 2.141 0.214 0.963	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686 1.077 4.44566 9.50 10.56 1.06 1.765 1.961 0.196 0.883	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694 1.090 4.62858 9.50 10.56 1.06 1.695 1.884 0.188 0.848
Check SSYNΔNΔV(T)TΔV(T0)afΔaaf/Wθfg(af/W)ΔKI,thKI,max thKI,min thΔFfFmax,fFmin,fFa,fFmean,f	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554 0.870 2.61451 12.00 13.33 3.791 4.212 0.421 1.896 2.317	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603 0.947 3.11862 11.50 12.78 1.28 3.046 3.384 0.338 1.523 1.861	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608 0.955 3.18047 11.00 12.22 1.22 2.857 3.174 0.317 1.428 1.746	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666 1.047 4.06453 10.50 11.67 1.17 2.134 2.371 0.237 1.067 1.304	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678 1.065 4.28695 10.00 11.11 1.927 2.141 0.214 0.963 1.177	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686 1.077 4.44566 9.50 10.56 1.06 1.765 1.961 0.196 0.883 1.079	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694 1.090 4.62858 9.50 10.56 1.06 1.695 1.884 0.188 0.848 1.036
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f Fmean,f (W-af)	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554 0.870 2.61451 12.00 13.33 1.33 3.791 4.212 0.421 1.896 2.317 8.47	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603 0.947 3.11862 11.50 12.78 1.28 3.046 3.384 0.338 1.523 1.861 7.55	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608 0.955 3.18047 11.00 12.22 1.22 2.857 3.174 0.317 1.428 1.746 7.45	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666 1.047 4.06453 10.50 11.67 1.17 2.134 2.371 0.237 1.067 1.304 6.34	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678 1.065 4.28695 10.00 11.11 1.927 2.141 0.214 0.963 1.177 6.12	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686 1.077 4.44566 9.50 10.56 1.06 1.765 1.961 0.196 0.883 1.079 5.97	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694 1.090 4.62858 9.50 10.56 1.06 1.695 1.884 0.188 0.848 1.036 5.81
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f SSY	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554 0.870 2.61451 12.00 13.33 1.33 3.791 4.212 0.421 1.896 2.317 8.47 6.67	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603 0.947 3.11862 11.50 12.78 1.28 3.046 3.384 0.338 1.523 1.861 7.55 5.98	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608 0.955 3.18047 11.00 12.22 1.22 2.857 3.174 0.317 1.428 1.746 7.45 5.79	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666 1.047 4.06453 10.50 11.67 1.17 2.134 2.371 0.237 1.067 1.304 6.34 5.01	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678 1.065 4.28695 10.00 11.11 1.927 2.141 0.214 0.963 1.177 6.12 4.76	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686 1.077 4.44566 9.50 10.56 1.06 1.765 1.961 0.196 0.883 1.079 5.97 4.55	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694 1.090 4.62858 9.50 10.56 1.06 1.695 1.884 0.188 0.848 1.036 5.81 4.46
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f SSY af,max	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554 0.870 2.61451 12.00 13.33 1.33 3.791 4.212 0.421 1.896 2.317 8.47 6.67 12.32	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603 0.947 3.11862 11.50 12.78 1.28 3.046 3.384 0.338 1.523 1.861 7.55 5.98 13.01	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608 0.955 3.18047 11.00 12.22 1.22 2.857 3.174 0.317 1.428 1.746 7.45 5.79 13.20	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666 1.047 4.06453 10.50 11.67 1.17 2.134 2.371 0.237 1.067 1.304 6.34 5.01 13.99	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678 1.065 4.28695 10.00 11.11 1.927 2.141 0.214 0.963 1.177 6.12 4.76 14.24	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686 1.077 4.44566 9.50 10.56 1.06 1.765 1.961 0.196 0.883 1.079 5.97 4.55 14.44	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694 1.090 4.62858 9.50 10.56 1.06 1.695 1.884 0.188 0.848 1.036 5.81 4.46 14.53
Check SSYN ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta KI, th$ KI,max thKI,min th ΔFf Fmax, fFmin, fFa, fFmean, f(W-af)SSYaf,maxrp, th	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554 0.870 2.61451 12.00 13.33 1.33 3.791 4.212 0.421 1.896 2.317 8.47 6.67 12.32 0.225	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603 0.947 3.11862 11.50 12.78 1.28 3.046 3.384 0.338 1.523 1.861 7.55 5.98 13.01 0.206	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608 0.955 3.18047 11.00 12.22 1.22 2.857 3.174 0.317 1.428 1.746 7.45 5.79 13.20 0.189	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666 1.047 4.06453 10.50 11.67 1.17 2.134 2.371 0.237 1.067 1.304 6.34 5.01 13.99 0.172	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678 1.065 4.28695 10.00 11.11 1.927 2.141 0.214 0.963 1.177 6.12 4.76 14.24 0.156	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686 1.077 4.44566 9.50 10.56 1.06 1.765 1.961 0.196 0.883 1.079 5.97 4.55 14.44 0.141	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694 1.090 4.62858 9.50 10.56 1.06 1.695 1.884 0.188 0.848 1.036 5.81 4.46 14.53 0.141
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f SSY af,max rp,th rΔ,th	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554 0.870 2.61451 12.00 13.33 1.33 3.791 4.212 0.421 1.896 2.317 8.47 6.67 12.32 0.225 0.045	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603 0.947 3.11862 11.50 12.78 1.28 3.046 3.384 0.338 1.523 1.861 7.55 5.98 13.01 0.206 0.042	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608 0.955 3.18047 11.00 12.22 1.22 2.857 3.174 0.317 1.428 1.746 7.45 5.79 13.20 0.189 0.038	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666 1.047 4.06453 10.50 11.67 1.17 2.134 2.371 0.237 1.067 1.304 6.34 5.01 13.99 0.172 0.035	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678 1.065 4.28695 10.00 11.11 1.927 2.141 0.214 0.963 1.177 6.12 4.76 14.24 0.156 0.032	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686 1.077 4.44566 9.50 10.56 1.06 1.765 1.961 0.196 0.883 1.079 5.97 4.55 14.44 0.141 0.028	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694 1.090 4.62858 9.50 10.56 1.06 1.695 1.884 0.188 0.848 1.036 5.81 4.46 14.53 0.141 0.028
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f Fmean,f (W-af) SSY af,max rp,th rΔ,th	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554 0.870 2.61451 12.00 13.33 1.33 3.791 4.212 0.421 1.896 2.317 8.47 6.67 12.32 0.225 0.045 0.012	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603 0.947 3.11862 11.50 12.78 1.28 3.046 3.384 0.338 1.523 1.861 7.55 5.98 13.01 0.206 0.042 0.011	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608 0.955 3.18047 11.00 12.22 1.22 2.857 3.174 0.317 1.428 1.746 7.45 5.79 13.20 0.189 0.038 0.010	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666 1.047 4.06453 10.50 11.67 1.17 2.134 2.371 0.237 1.067 1.304 6.34 5.01 13.99 0.172 0.035 0.009	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678 1.065 4.28695 10.00 11.11 1.927 2.141 0.214 0.963 1.177 6.12 4.76 14.24 0.156 0.008	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686 1.077 4.44566 9.50 10.56 1.06 1.765 1.961 0.196 0.883 1.079 5.97 4.55 14.44 0.141 0.028 0.008	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694 1.090 4.62858 9.50 10.56 1.06 1.695 1.884 0.188 0.848 1.036 5.81 4.46 14.53 0.141 0.028 0.008
Check SSY N ΔN ΔV(T) T ΔV(T0) af Δa af/W θf g(af/W) ΔKI,th KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f Fmean,f (W-af) SSY af,max rp,th rΔ,th rΔ2,th Check SSY	1.27 2.70E+07 1.64E+05 642.50 32.52 637.9 10.525 #N/D 0.554 0.870 2.61451 12.00 13.33 1.33 3.791 4.212 0.421 1.896 2.317 8.47 6.67 12.32 0.225 0.045 0.012 1.27	1.30 2.77E+07 6.70E+05 719.40 31.86 715.9 11.448 #N/D 0.603 0.947 3.11862 11.50 12.78 1.28 3.046 3.384 0.338 1.523 1.861 7.55 5.98 13.01 0.206 0.042 0.011 1.26	1.29 2.77E+07 6.50E+04 726.80 31.35 724.6 11.544 #N/D 0.608 0.955 3.18047 11.00 12.22 1.22 2.857 3.174 0.317 1.428 1.746 7.45 5.79 13.20 0.189 0.038 0.010 1.29	1.32 2.87E+07 9.28E+05 832.50 30.64 832.0 12.658 #N/D 0.666 1.047 4.06453 10.50 11.67 1.17 2.134 2.371 0.237 1.067 1.304 6.34 5.01 13.99 0.172 0.035 0.009 1.27	1.30 2.89E+07 2.55E+05 855.20 30.47 855.2 12.877 #N/D 0.678 1.065 4.28695 10.00 11.11 1.927 2.141 0.214 0.963 1.177 6.12 4.76 14.24 0.156 0.008 1.29	1.32 2.92E+07 2.33E+05 871.00 30.47 871.0 13.023 #N/D 0.686 1.077 4.44566 9.50 10.56 1.06 1.765 1.961 0.196 0.883 1.079 5.97 4.55 14.44 0.141 0.028 0.008 1.31	1.31 2.93E+07 1.94E+05 883.40 28.83 888.5 13.180 #N/D 0.694 1.090 4.62858 9.50 10.56 1.06 1.695 1.884 0.188 0.848 1.036 5.81 4.46 14.53 0.141 0.028 0.008 1.30

Step	28	29	30	31	32
Date	27/07/2023	27/07/2023	27/07/2023	27/07/2023	27/07/2023
Time	11:05:00	11:40:00	12:35:00	14:35:00	17:00:00
Mode	DK - Cost	DK - Cost	DK - Cost	DK - Cost	DK - Cost
ai	13.180	13.227	13.295	13.410	13.480
R	0.1	0.1	0.1	0.1	0.1
ΔΚΙ	9.00	8.50	8.00	7.50	7.00
f	30.00	30.00	30.00	30.00	30.00
KI,max	10.000	9.444	8.889	8.333	7.778
KI,min	1.000	0.944	0.889	0.833	0.778
KI,a	4.500	4.250	4.000	3.750	3.500
KI,mean	5.500	5.194	4.889	4.583	4.278
ai/W	0.694	0.696	0.700	0.706	0.710
θi	1.090	1.094	1.099	1.109	1.115
g(ai/W)	4.62858	4.68472	4.76943	4.91840	5.01247
ΔΓ	1.606	1.499	1.385	1.260	1.153
Fmax	1.784	1.665	1.539	1.399	1.282
Fmin	0.178	0.167	0.154	0.140	0.128
Fa	0.803	0.749	0.693	0.630	0.577
Fmean	0.981	0.916	0.847	0.770	0.705
(W-ai)	5.81	5.77	5.70	5.58	5.52
SSY	4.34	4.20	4.03	3.85	3.68
ai.max	14.65	14.80	14.96	15.15	15.31
rp	0.126	0.113	0.100	0.088	0.076
rΔ	0.026	0.023	0.020	0.018	0.015
rΔ2	0.007	0.006	0.005	0.005	0.004
Check SSV	1 3/	1.27	1 / 1	1.45	1.50
	1.34	1.57	1.41	1.43	1.50
N	2.94E+07	1.57 2.95E+07	1.41 2.97E+07	1.43 3.00E+07	1.50 3.17E+07
N AN	2.94E+07 6.87E+04	2.95E+07 9.59E+04	<u>2.97E+07</u> 1.89E+05	3.00E+07 3.00E+05	3.17E+07 1.70E+06
$\frac{N}{\Delta N}$	2.94E+07 6.87E+04 890.60	2.95E+07 9.59E+04 900.20	1.41 2.97E+07 1.89E+05 915.90	3.00E+07 3.00E+05 926.40	3.17E+07 1.70E+06 926.20
N ΔN ΔV(T) T	2.94E+07 6.87E+04 890.60 29.47	1.57 2.95E+07 9.59E+04 900.20 30.06	1.41 2.97E+07 1.89E+05 915.90 30.81	3.00E+07 3.00E+05 926.40 31.52	1.50 3.17E+07 1.70E+06 926.20 30.50
N ΔN ΔV(T) T ΔV(T0)	2.94E+07 6.87E+04 890.60 29.47 893.7	2.95E+07 9.59E+04 900.20 30.06 901.5	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8	3.00E+07 3.00E+05 926.40 31.52 923.0	1.50 3.17E+07 1.70E+06 926.20 30.50 926.1
N ΔN ΔV(T) T ΔV(T0) af	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227	2.95E+07 9.59E+04 900.20 30.06 901.5 13.295	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410	3.00E+07 3.00E+05 926.40 31.52 923.0 13.480	1.50 3.17E+07 1.70E+06 926.20 30.50 926.1 13.506
N ΔN ΔV(T) T ΔV(T0) af Δa	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D	2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D	3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D	1.50 3.17E+07 1.70E+06 926.20 30.50 926.1 13.506 8.422
$\frac{\text{Circck SST}}{\text{N}}$ $\frac{\Delta \text{N}}{\Delta \text{V}(\text{T})}$ $\frac{T}{\Delta \text{V}(\text{T0})}$ af Δa af/W	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696	1.37 2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D 0.700	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706	1.43 3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710	1.50 3.17E+07 1.70E+06 926.20 30.50 926.1 13.506 8.422 0.711
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T0)}{af}$ $\frac{Aa}{af/W}$ θf	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696 1.094	1.37 2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D 0.700 1.099	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706 1.109	1.43 3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710 1.115	1.50 3.17E+07 1.70E+06 926.20 30.50 926.1 13.506 8.422 0.711 1.117
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T0)}{af}$ af $\frac{\Delta a}{af/W}$ θf $g(af/W)$	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696 1.094 4.68472	1.37 2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D 0.700 1.099 4.76943	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706 1.109 4.91840	3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710 1.115 5.01247	1.50 3.17E+07 1.70E+06 926.20 30.50 926.1 13.506 8.422 0.711 1.117 5.04848
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T0)}{af}$ $\frac{Aa}{af/W}$ $\frac{\theta f}{g(af/W)}$ $\frac{\Delta KI, th}{\Delta KI, th}$	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696 1.094 4.68472 9.00	1.37 2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D 0.700 1.099 4.76943 8.50	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706 1.109 4.91840 8.00	3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710 1.115 5.01247 7.50	1.30 3.17E+07 1.70E+06 926.20 30.50 926.1 13.506 8.422 0.711 1.117 5.04848 7.00
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T0)}{af}$ $\frac{\Delta a}{af/W}$ $\frac{\theta f}{g(af/W)}$ $\frac{\Delta KI,th}{KI,max th}$	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696 1.094 4.68472 9.00 10.00	1.37 2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D 0.700 1.099 4.76943 8.50 9.44	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706 1.109 4.91840 8.00 8.89	1.43 3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710 1.115 5.01247 7.50 8.33	1.30 3.17E+07 1.70E+06 926.20 30.50 926.1 13.506 8.422 0.711 1.117 5.04848 7.00 7.78
$\frac{\text{Clicck SST}}{\text{N}}$ $\frac{\Delta \text{N}}{\Delta \text{V}(\text{T})}$ $\frac{T}{\Delta \text{V}(\text{T0})}$ af Δa af/W θf $g(af/\text{W})$ $\Delta \text{Kl,th}$ Kl,max th Kl,min th	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696 1.094 4.68472 9.00 10.00 1.00	1.37 2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D 0.700 1.099 4.76943 8.50 9.44 0.94	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706 1.109 4.91840 8.00 8.89 0.89	1.43 3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710 1.115 5.01247 7.50 8.33 0.83	1.30 3.17E+07 1.70E+06 926.20 30.50 926.1 13.506 8.422 0.711 1.117 5.04848 7.00 7.78 0.78
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{T}{\Delta V(T0)}$ af $\frac{\Delta a}{af/W}$ $\frac{\theta f}{g(af/W)}$ $\frac{\Delta KI, th}{KI, max th}$ $KI, min th$ ΔFf	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696 1.094 4.68472 9.00 10.00 1.00 1.587	1.37 2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D 0.700 1.099 4.76943 8.50 9.44 0.94 1.472	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706 1.109 4.91840 8.00 8.89 0.89 1.343	3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710 1.115 5.01247 7.50 8.33 0.83 1.236	1.30 3.17E+07 1.70E+06 926.20 30.50 926.1 13.506 8.422 0.711 1.117 5.04848 7.00 7.78 0.78 1.145
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T0)}{af}$ af Δa af/W θf $g(af/W)$ $\Delta KI,th$ $KI,max th$ $KI,min th$ ΔFf $Fmax,f$	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696 1.094 4.68472 9.00 10.00 1.00 1.587 1.763	2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D 0.700 1.099 4.76943 8.50 9.44 0.94 1.472 1.636	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706 1.109 4.91840 8.00 8.89 0.89 1.343 1.493	3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710 1.115 5.01247 7.50 8.33 0.83 1.236 1.373	1.30 3.17E+07 1.70E+06 926.20 30.50 926.1 13.506 8.422 0.711 1.117 5.04848 7.00 7.78 0.78 1.145 1.273
$\frac{N}{\Delta N}$ $\frac{\Delta N}{\Delta V(T)}$ $\frac{T}{\Delta V(T0)}$ af Δa af/W θf $g(af/W)$ $\Delta KI,th$ $KI,max th$ $KI,min th$ ΔFf $Fmax,f$ $Fmin,f$	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696 1.094 4.68472 9.00 10.00 1.00 1.587 1.763 0.176	2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D 0.700 1.099 4.76943 8.50 9.44 0.94 1.472 1.636 0.164	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706 1.109 4.91840 8.00 8.89 0.89 1.343 1.493 0.149	3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710 1.115 5.01247 7.50 8.33 0.83 1.236 1.373 0.137	1.30 3.17E+07 1.70E+06 926.20 30.50 926.1 13.506 8.422 0.711 1.117 5.04848 7.00 7.78 0.78 1.145 1.273 0.127
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{T}{\Delta V(T0)}$ af Δa af/W θf $g(af/W)$ $\Delta KI,th$ $KI,max th$ $KI,min th$ ΔFf $Fmax,f$ $Fmin,f$ Fa,f	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696 1.094 4.68472 9.00 10.00 1.00 1.587 1.763 0.176 0.793	1.37 2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D 0.700 1.099 4.76943 8.50 9.44 0.94 1.636 0.164 0.736	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706 1.109 4.91840 8.00 8.89 0.89 1.343 1.493 0.149 0.672	1.43 3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710 1.115 5.01247 7.50 8.33 0.83 1.236 1.373 0.137 0.618	1.30 3.17E+07 1.70E+06 926.20 30.50 926.1 13.506 8.422 0.711 1.117 5.04848 7.00 7.78 0.78 1.145 1.273 0.127 0.573
Circle SST N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta Kl, th$ Kl,max th Kl,min th ΔFf Fmax, f Fmin, f Fa, f Fmean, f	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696 1.094 4.68472 9.00 10.00 1.00 1.587 1.763 0.176 0.793 0.970	1.37 2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D 0.700 1.099 4.76943 8.50 9.44 0.94 1.472 1.636 0.164 0.736 0.900	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706 1.109 4.91840 8.00 8.89 0.89 1.343 1.493 0.149 0.672 0.821	1.43 3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710 1.115 5.01247 7.50 8.33 0.83 1.236 1.373 0.137 0.618 0.755	1.30 3.17E+07 1.70E+06 926.20 30.50 926.1 13.506 8.422 0.711 1.117 5.04848 7.00 7.78 0.78 1.145 1.273 0.127 0.573 0.700
Circle SST N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta KI, th$ KI,max th KI,min th ΔFf Fmax, f Fmin, f Fa, f Fmean, f (W-af)	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696 1.094 4.68472 9.00 10.00 1.00 1.587 1.763 0.176 0.793 0.970 5.77	2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D 0.700 1.099 4.76943 8.50 9.44 0.94 1.472 1.636 0.164 0.736 0.900 5.70	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706 1.109 4.91840 8.00 8.89 0.89 1.343 1.493 0.149 0.672 0.821 5.58	1.43 3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710 1.115 5.01247 7.50 8.33 0.83 1.236 1.373 0.137 0.618 0.755 5.52	1.30 3.17E+07 1.70E+06 926.20 30.50 926.1 13.506 8.422 0.711 1.117 5.04848 7.00 7.78 0.78 1.145 1.273 0.127 0.573 0.700 5.49
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{T}{\Delta V(T0)}$ af $\frac{\Delta a}{af/W}$ $\frac{\partial f}{g(af/W)}$ $\frac{\Delta KI, th}{KI, max th}$ $\frac{KI, min th}{\Delta Ff}$ $\frac{Fmax, f}{Fmin, f}$ $\frac{Fmax, f}{Fmean, f}$ $\frac{Fwean, f}{(W-af)}$ $\frac{SSY}{ax}$	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696 1.094 4.68472 9.00 10.00 1.587 1.763 0.176 0.793 0.970 5.77 4.32	2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D 0.700 1.099 4.76943 8.50 9.44 0.94 1.472 1.636 0.164 0.736 0.900 5.70 4.16	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706 1.109 4.91840 8.00 8.89 0.89 1.343 1.493 0.149 0.672 0.821 5.58 3.97	3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710 1.115 5.01247 7.50 8.33 0.83 1.236 1.373 0.137 0.618 0.755 5.52 3.81	1.30 3.17E+07 1.70E+06 926.20 30.50 926.1 13.506 8.422 0.711 1.117 5.04848 7.00 7.78 0.78 1.145 1.273 0.573 0.700 5.49 3.67
Circle SST N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta KI, th$ KI, max th KI, min th ΔFf Fmax, f Fmin, f Fa, f Fmean, f (W-af) SSY af, max	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696 1.094 4.68472 9.00 10.00 1.587 1.763 0.176 0.793 0.970 5.77 4.32 14.68	1.37 2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D 0.700 1.099 4.76943 8.50 9.44 0.94 1.472 1.636 0.164 0.736 0.900 5.70 4.16 14.84	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706 1.109 4.91840 8.00 8.89 0.89 1.343 1.493 0.149 0.672 0.821 5.58 3.97 15.02	3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710 1.115 5.01247 7.50 8.33 0.83 1.236 1.373 0.137 0.618 0.755 5.52 3.81 15.18	$\begin{array}{r} 1.30\\ \hline 3.17E+07\\ \hline 1.70E+06\\ \hline 926.20\\ \hline 30.50\\ \hline 926.1\\ \hline 13.506\\ \hline 8.422\\ \hline 0.711\\ \hline 1.117\\ \hline 5.04848\\ \hline 7.00\\ \hline 7.78\\ \hline 0.78\\ \hline 1.145\\ \hline 1.273\\ \hline 0.127\\ \hline 0.573\\ \hline 0.700\\ \hline 5.49\\ \hline 3.67\\ \hline 15.33\\ \end{array}$
Circle SST N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta KI,th$ KI,max th KI,min th ΔFf Fmax,f Fmin,f Fa,f Fmean,f (W-af) SSY af,max rp,th	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696 1.094 4.68472 9.00 10.00 1.00 1.587 1.763 0.176 0.793 0.970 5.77 4.32 14.68 0.126	1.37 2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D 0.700 1.099 4.76943 8.50 9.44 0.94 1.472 1.636 0.164 0.736 0.900 5.70 4.16 14.84 0.113	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706 1.109 4.91840 8.00 8.89 0.89 1.343 1.493 0.149 0.672 0.821 5.58 3.97 15.02 0.100	1.43 3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710 1.115 5.01247 7.50 8.33 0.83 1.236 1.373 0.137 0.618 0.755 5.52 3.81 15.18 0.088	$\begin{array}{r} 1.30\\ \hline 3.17E+07\\ \hline 1.70E+06\\ \hline 926.20\\ \hline 30.50\\ \hline 926.1\\ \hline 13.506\\ \hline 8.422\\ \hline 0.711\\ \hline 1.117\\ \hline 5.04848\\ \hline 7.00\\ \hline 7.78\\ \hline 0.78\\ \hline 1.145\\ \hline 1.273\\ \hline 0.78\\ \hline 1.145\\ \hline 1.273\\ \hline 0.573\\ \hline 0.700\\ \hline 5.49\\ \hline 3.67\\ \hline 15.33\\ \hline 0.076\\ \end{array}$
Circle SST N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta Kl, th$ KI,max th KI,min th ΔFf Fmax, f Fmin, f Fa, f Fmean, f (W-af) SSY af,max rp, th r\Delta, th	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696 1.094 4.68472 9.00 10.00 1.00 1.587 1.763 0.176 0.793 0.970 5.77 4.32 14.68 0.126 0.026	$\begin{array}{r} 1.57\\ \hline 2.95E+07\\ \hline 9.59E+04\\ \hline 900.20\\ \hline 30.06\\ \hline 901.5\\ \hline 13.295\\ \# N/D\\ \hline 0.700\\ \hline 1.099\\ \hline 4.76943\\ \hline 8.50\\ \hline 9.44\\ \hline 0.94\\ \hline 1.472\\ \hline 1.636\\ \hline 0.164\\ \hline 0.736\\ \hline 0.900\\ \hline 5.70\\ \hline 4.16\\ \hline 14.84\\ \hline 0.113\\ \hline 0.023\\ \end{array}$	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706 1.109 4.91840 8.00 8.89 0.89 1.343 1.493 0.149 0.672 0.821 5.58 3.97 15.02 0.100 0.020	1.43 3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710 1.115 5.01247 7.50 8.33 0.83 1.236 1.373 0.137 0.618 0.755 5.52 3.81 15.18 0.088 0.018	$\begin{array}{r} 1.30\\ \hline 3.17E+07\\ \hline 1.70E+06\\ \hline 926.20\\ \hline 30.50\\ \hline 926.1\\ \hline 13.506\\ \hline 8.422\\ \hline 0.711\\ \hline 1.117\\ \hline 5.04848\\ \hline 7.00\\ \hline 7.78\\ \hline 0.78\\ \hline 1.145\\ \hline 1.273\\ \hline 0.127\\ \hline 0.573\\ \hline 0.700\\ \hline 5.49\\ \hline 3.67\\ \hline 15.33\\ \hline 0.076\\ \hline 0.015\\ \hline \end{array}$
Circle SST N $\Delta N(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta Kl, th$ KI,max th KI,min th ΔFf Fmax, f Fmin, f Fa, f Fmean, f (W-af) SSY af, max rp, th r Δ , th r Δ 2, th	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696 1.094 4.68472 9.00 10.00 1.00 1.587 1.763 0.176 0.793 0.970 5.77 4.32 14.68 0.126 0.026 0.007	1.37 2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D 0.700 1.099 4.76943 8.50 9.44 0.94 1.472 1.636 0.164 0.736 0.900 5.70 4.16 14.84 0.113 0.023 0.006	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706 1.109 4.91840 8.00 8.89 0.89 1.343 1.493 0.149 0.672 0.821 5.58 3.97 15.02 0.100 0.020 0.005	1.43 3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710 1.115 5.01247 7.50 8.33 0.83 1.236 1.373 0.137 0.618 0.755 5.52 3.81 15.18 0.088 0.018 0.005	$\begin{array}{r} 1.30\\ \hline 3.17E+07\\ \hline 1.70E+06\\ \hline 926.20\\ \hline 30.50\\ \hline 926.1\\ \hline 13.506\\ \hline 8.422\\ \hline 0.711\\ \hline 1.117\\ \hline 5.04848\\ \hline 7.00\\ \hline 7.78\\ \hline 0.78\\ \hline 1.145\\ \hline 1.273\\ \hline 0.78\\ \hline 1.145\\ \hline 1.273\\ \hline 0.78\\ \hline 1.145\\ \hline 1.273\\ \hline 0.700\\ \hline 5.49\\ \hline 3.67\\ \hline 15.33\\ \hline 0.076\\ \hline 0.015\\ \hline 0.004\\ \end{array}$
Circle SST N ΔN $\Delta V(T)$ T $\Delta V(T0)$ af Δa af/W θf g(af/W) $\Delta KI, th$ KI, max th KI, min th ΔFf Fmax, f Fmin, f Fa, f Fmean, f (W-af) SSY af, max rp, th r\Delta, th r\Delta2, th Check SSY	2.94E+07 6.87E+04 890.60 29.47 893.7 13.227 #N/D 0.696 1.094 4.68472 9.00 10.00 1.00 1.587 1.763 0.176 0.793 0.970 5.77 4.32 14.68 0.126 0.007 1.34	1.37 2.95E+07 9.59E+04 900.20 30.06 901.5 13.295 #N/D 0.700 1.099 4.76943 8.50 9.44 0.94 1.472 1.636 0.164 0.736 0.900 5.70 4.16 14.84 0.113 0.023 0.006 1.37	1.41 2.97E+07 1.89E+05 915.90 30.81 914.8 13.410 #N/D 0.706 1.109 4.91840 8.00 8.89 0.89 1.343 1.493 0.149 0.672 0.821 5.58 3.97 15.02 0.100 0.020 0.005 1.41	1.43 3.00E+07 3.00E+05 926.40 31.52 923.0 13.480 #N/D 0.710 1.115 5.01247 7.50 8.33 0.83 1.236 1.373 0.137 0.618 0.755 5.52 3.81 15.18 0.0088 0.018 0.005 1.45	1.30 3.17E+07 1.70E+06 926.20 30.50 926.1 13.506 8.422 0.711 1.117 5.04848 7.00 7.78 0.78 1.145 1.273 0.573 0.700 5.49 3.67 15.33 0.076 0.004 1.50

In Figura 7.15 vengono riportati tutti i punti in soglia dove la cricca è arrestata, assieme al percorso di carico in controllo di forza e controllo di SIF K₁ seguito durante il corso della prova. Nella spezzata gialla (load path a Δ K₁ cost) si può notare una fase di *increasing* per fare propagare la cricca e una fase finale di *decreasing* per tornare in soglia. Nel grafico in Figura 7.16, oltre ai punti in soglia, vengono mostrati nel dettaglio i punti di inizio e fine di ogni step di carico. Si noti come in controllo di SIF applicato aumenta in quanto la forza è costante e la lunghezza di cricca aumenta, in controllo di SIF invece la forza diminuisce gradualmente mantenendo il K₁ applicato costante durante tutto lo step di carico.

In Figura 7.17 sono mostrati l'andamento del potenziale e della lunghezza di cricca durante tutto il corso della prova. Si noti come risolto il problema dell'isolamento elettrico non vi sono particolari oscillazioni del segnale X e come la lunghezza di cricca sia proporzionale al potenziale X corretto secondo l'equazione di Johnson. Una volta terminata la prova si interrompono le acquisizioni si toglie il provino dalla macchina e si separano i due conci tagliando con un seghetto a mano la sezione resistente rimasta.

Figura 7.16: curva R AN05. Inizio e fine di ogni step di carico

Figura 7.17: segnale di potenziale e lunghezza di cricca durante la prova AN05

Durante il corso della prova è stato necessario modificare le impostazioni del PID in quanto dal display del PC della macchina di prova si è visto un overshoot del segnale sinusoidale misurato. Per risolvere rapidamente il problema è stato abbassato il coefficiente proporzionale passando da $P_0=0.9$ a $P_1=0.8$ e in seguito, dopo aver osservato nuovamente lo stesso problema a $P_2=0.7$. Questo comportamento può essere dovuto alla variazione della rigidezza del sistema a causa di una lunghezza di cricca molto elevata (si è presentato infatti nella parte finale della prova).

7.4 Post processing

7.4.1 Misure al DinoLite

Le misure fatte dal DCPD durante la prova vengono verificate ed eventualmente corrette misurando la reale estensione di cricca al microscopio a provino rotto (Tabella 7.6). Di conseguenza si ricalcolano i vari $\Delta a \in \Delta K$ per ottenere il grafico della curva R corretta dopo il post-processing. Nelle Figure 7.19-7.21 vengono mostrate le foto della cricca a provino rotto, con riferimento allo schema in Figura 7.18.

Figura 7.18: schema di conci e facce del provino

Figura 7.19: provino rotto (a), zoom sulla superficie di frattura (b)

Figura 7.20: intaglio da RB. Side A (a), Side B (b)

Figura 7.21: Side B. Concio 1 (a), concio 2 (b)

Figura 7.22: misure al DinoLite, lunghezza di cricca iniziale e finale

a ₀	a _{0 post}	$\Delta\% a_0$	a _f	a _{f post}	$\Delta\% a_{\rm f}$
[mm]	[mm]	[%]	[mm]	[mm]	[%]
5.005	5.039	0.67	13.506	13.833	2.36
Tabel	lla 7.6: con	fronto tra misi	ure DCPD e	e misure Dir	ıoLite

7.4.2 Requisiti ISO 12108.

Le equazioni per il calcolo del SIF proposte dalla normativa sono valide solo se la cricca rispetta i seguenti requisiti geometrici (Figura 7.23):

- La dimensione di cricca misurata ai due lati del provino deve differire al massimo di 0.25B;
- La cricca deve propagare entro uno spessore di 0.05W dal piano dell'intaglio iniziale.

Come si può leggere in Tabella 7.7 entrambi i requisiti sono rispettati.

Figura 7.23: requisiti ISO: differenza tra lunghezze di cricca sui due lati (a), deviazione della cricca rispetto al piano dell'intaglio (b).

Verifiche ISO		limite	reale	risultato
Differenza tra lunghezze di cricca	[mm]	1.500	0.285	OK
Deviazione rispetto al piano dell'intaglio	[mm]	0.950	0.389	OK
	100	13105		•

Tabella 7.7: requisiti ISO per prova AN05

7.4.3 Fitting e correzione.

Le lunghezze di cricca reali misurate al microscopio vengono date in input allo script MATLB per il post processing (appendice A.3) che adatta la lunghezza di cricca correggendo la costante 2y. In Tabella 7.8 è riportato il confronto tra la grandezza 2y misurata e di fitting, in Figura 7.24 è invece riportato l'andamento

delle lunghezze di cricca misurata e corretta in post processing. La curva R definitiva è rappresentata in Figura 7.25 e confrontata con i punti sperimentali senza post-processing. In tabella 7.9 si possono apprezzare i valori numerici di ogni punto di arresto e la differenza percentuale tra la curva "grezza" e quella corretta in post-processing.

2y	2y _{post}	Δ% 2y
[mm]	[mm]	[%]
2.292	5.030	+119

Tabella 7.8: confronto tra distanza tra i probe misurata e corretta in post-processing

Figura 7.24: andamento della lunghezza di cricca durante la prova e corretto in post-processing

Figura 7.25: Curva R ANO.	corretta in	post-proce.	ssing
---------------------------	-------------	-------------	-------

ΔK_{Ith}	[MPa m ^{0.5}]	2.50	3.00	4.00	5.01	6.00	9.00	8.90	7.00
ΔK_{Ith} post	[MPa m ^{0.5}]	2.52	3.02	4.03	5.05	6.04	9.44	9.45	8.40
Δ	[%]	0.7	0.7	0.7	0.7	0.7	4.8	6.2	20.0
Δa	[mm]	0.000	0.000	0.003	0.021	0.018	2.050	2.808	8.422
∆a post	[mm]	0.000	0.000	0.003	0.025	0.022	2.336	3.170	8.999
Δ	[%]	0	0	0	17.6	17.6	13.9	12.9	6.9

Tabella 7.9: confronto tra lunghezze di cricca e soglie di propagazione prima e dopo post-processing

7.5 Conclusioni e commenti

Ouesta seconda prova a modo I è stata svolta utilizzando tutti i miglioramenti implementati nella precedente prova HAZ17. L'attrezzatura sperimentale si dimostra ancora una volta robusta, la superficie di frattura è infatti praticamente complanare all'intaglio e non presenta deviazioni dovute a modo II e modo III. Gli isolamenti in Kapton sono sufficienti a garantire l'isolamento elettrico (anche in caso di prove particolarmente lunghe come questa), è però comunque consigliato di verificarlo regolarmente ed eventualmente di sostituire i pezzi di foglio tra provino e appoggi. Gli errori di misura della lunghezza di cricca del DCPD diventano sensibili a lunghezze di cricca di qualche millimetro e sempre inferiori al 17.6%. Questi comportano correzioni sul SIF che arrivano fino al 20% nel caso finale. Si noti la lunghezza di cricca particolarmente elevata dell'ultimo punto in soglia (a/W=0.73). Anche a lunghezze di cricca molto elevate la soglia di propagazione delle cricche lunghe, a meno di incertezze sperimentali, mantiene un valore simile a quella trovata nei punti precedenti. Bisogna inoltre considerare che la prova è stata interrotta nell'ultimo punto in condizioni "near threshold" a causa di un fallimento del controllo in SIF (si veda appendice B) e quindi questo è da considerare con una incertezza maggiore. La soglia delle cricche lunghe trovata per i due punti entro i 4mm di propagazione ha lo stesso valore. Con questa prova si ritiene validata in maniera definitiva l'intera procedura per condurre prove sperimentali di curva R ciclica a puro modo I. Il conseguente sviluppo consiste nel cercare un metodo applicativo per svolgere prove anche con combinazione di modo I+II.

CAPITOLO 8 Curva R a modo misto I+II

In questo capitolo viene descritto il procedimento che, partendo dalle analisi FEM iniziali, ha portato a svolgere la prova di propagazione a modo mosto I+II. Come descritto già negli obbiettivi del progetto è di grande interesse pratico conoscere la curva R a modo misto I+II visto che generalmente le strutture reali sono sollecitate a modo misto. Si noti fin da subito che il meto do descritto nel capitolo è del tutto generale, assolutamente replicabile per qualsiasi geometria di provino, di cricca e per qualsiasi configurazione di carichi applicati. Nello schema in Figura 8.1 si riassumono i blocchi principali del procedimento che verranno poi dettagliati nel corso del capitolo. Anche per la prova a modo misto sarà utilizzato un provino SENB di geometria 108x19x6mm con intaglio iniziale di 5mm.

Figura 8.1: schema del capitolo

8.1 Analisi FEM

8.1.1 Modello FEM parametrico

Le analisi sono state svolte in modo parametrico nel software Ansys Workbench modificando di volta in volta la posizione di carichi e vincoli e il modulo delle forze applicate. In seguito, si riportano le caratteristiche principali del modello:

- geometria 3D: 108x19x6mm, *a*=5mm (Figura 8.2a);
- mesh: elementi tetraedrici a 10 nodi, dglobale=3mm, dFractureTool=0.1mm (Figura 8.2b)
- vincoli: applicati lungo linee, appoggio x=0, z=0; carrello z=0; stato di deformazione piana y=0 (Figura 8.3);
- carichi: applicati lungo linee, F₁=260.87N, F₂=739.13N (Figura 8.3);
- risultati: riportati al variare del disassamento <u>x</u>, il colore distingue la variabile S_{min}, l'indicatore distingue la variabile S_{max} (Figura 8.4, 8.5).

Figura 8.2: geometria del provino SENB 108x19x6mm (a), mesh con infittimento locale all'apice della cricca (b)

Figura 8.3: carichi e vincoli applicati

Figura 8.4: SIF per la cricca iniziale (a) (b), rapporto tra i SIF applicati (c), forza necessaria per unità di K₁ (d)

Figura 8.5: schema delle variabili x, S_{max}, S_{min} (a), legenda (b)

Gli andamenti delle varie grandezze sono i medesimi delle analisi svolte per il provino SENB 108x16x10. Riassumendo: K₁ cresce linearmente con x, K₁₁ è circa costante, di conseguenza il rapporto K₁₁/K₁ tende a infinito per piccoli x. Allo stesso modo la forza necessaria aumenta esponenzialmente al ridursi di x. Tra le altre variabili quella più importante resta S_{min} (colore), mentre S_{max} è poco influente sui risultati. Per avere un rapporto tra modo I e modo II circa unitario e contenere il più possibile le forze necessarie si sceglie un disassamento x=2mm con S_{min}=30mm e S_{max}=85mm. In Figura 8.6 si riporta l'andamento delle varie grandezze assumendo come errori massimi ± 1mm rispetto alla posizione ottimale. Per una analisi approfondita dei risultati si veda il paragrafo 4.5.3, dove sono discussi quelli analoghi per il provino di diversa geometria.

Figura 8.6: dettaglio della configurazione scelta con passo 0.2mm

8.1.2 Modello FEM Smart Crack Growth

Nelle prove a flessione a puro modo I la cricca propaga restando idealmente nel piano dell'intaglio, questo rende applicabili le equazioni riportate nel Capitolo 6 per calcolare il SIF e la lunghezza di cricca noto il potenziale. In questo caso non è noto a priori il percorso della cricca durante la prova e non sono più valide le equazioni peril calcolo del SIF perché la cricca uscirà dal piano dell'intaglio. Per questo motivo è stato simulato il percorso della cricca soggetta a carichi di modo misto utilizzando il Tool *Smart Crack Growth* (SCG) di

Ansys WorkBench. Il pacchetto SCG permette non solo di simulare la propagazione della cricca secondo il criterio implementato nel software (si veda il paragrafo 5.1) ma calcola anche i SIF applicati ad ogni step di propagazione. Il modello FEM utilizzato è analogo al precedente per quanto riguarda mesh generale, vincoli, carichi; si riportano quindi i dati di input fondamentali per il l'applicazione del Tool SCG e i risultati finali.

- Costanti della legge di Paris: m=3 C=6.9E-30 (con unità di misura di riferimento m, N)
- geometria 3D: 108x19x6mm, a=5mm;
- mesh: elementi tetraedrici a 10 nodi, d_{globale}=3mm, d_{front element size}=0.1mm, 50 substeps
- vincoli: applicati lungo linee, appoggio x=0, z=0; carrello z=0; stato di deformazione piana y=0 (Figura 8.3);
- carichi: applicati lungo linee, F₁=260.87N, F₂=739.13N;
- output: crack path, SIF K_I probe, SIF K_{II} probe, crack extension probe.

In Figura 8.7 si vede la configurazione deformata finale, con cricca propagata fino al cinquantesimo substep. La mesh viene affinata in automatico dal Tool SCG che ad ogni step di propagazione crea una nuova mesh al nuovo apice di cricca, la cui posizione viene calcolata con il criterio SCG, noti i SIF dello step precedente. In dettaglio si può vedere la propagazione a partire dall'intaglio iniziale di 5mm. Le coordinate X-Z dei vari punti di propagazione sono state esportate in Excel per avere una rappresentazione quantitativa del crack path. Per esportare i dettagli di ogni substeps del modulo SCG si sceglie innanzitutto l'output da esportare e si clicca poi su *Export Text File*; l'output verrà automaticamente salvato in file .txt ed Excel. Per chiedere in output i risultati relativi agli istanti di propagazione è sufficiente specificare nella sezione *Details* dell'output1'istante di tempo in cui si vuole conoscere l'output, considerando che il substep finale è posto sempre a 1s. Ad esempio specificando *time=0.5s* con 50 substeps si ottiene l'output del venticinquesimo substep. Per semplicità si sono scelti passi di 0.1s e quindi 5 substeps. La geometria della cricca è stata plottata in Excel, elaborando gli output del *crack path* (Figura 8.8)

Figura 8.7: propagazione della cricca secondo il modello FEM SCG

Elaborando in Excel i dati relativi ai valori dei SIF ad ogni substep (Figura 8.9), si è osservato come la componente di modo II resti solo nella prima fase di propagazione e vada a perdersi subito dopo. Coerentemente con quanto riportato in letteratura la cricca tende a deviare propagando a puro modo I. Questo non è ottimale in vista di una prova di propagazione in soglia a modo misto I+II perché di fatto la componente

di modo II è solo iniziale e la quasi totalità della propagazione avviene a puro modo I. Per studiare l'influenza della dimensione di elemento sui risultati sono state ripetute le analisi per lunghezze di cricca vicine a quella iniziale, con un infittimento della mesh. In particolare, queste ulteriori analisi sono state rivolte al SIF K_{II} applicato nella prima parte della propagazione, per verificare che il valore calcolato dal modello FEM non sia una approssimazione numerica di un punto di singolarità. Come si può vedere in Figura 8.9b, riducendo la dimensione di elemento all'apice di cricca la lunghezza di propagazione soggetta a modo II diminuisce, e viceversa aumenta aumentando la dimensione di elemento *d*.

Figura 8.9: andamento dei SIF al variare della propagazione della cricca con forza applicata F=1kN (a); andamento del SIF KII al variare della dimensione di elemento d (b)

8.1.3 Modello FEM Smart Crack Growth con groove

Visto che dalle prime simulazioni la cricca tende a perdere la componente di modo II, deviando verso un puro modo I locale, si è pensato a una soluzione per forzare la cricca a propagare nel piano dell'intaglio, mantenendo quindi il modo misto. Una soluzione proposta in letteratura per provini CT è quella di scavare un intaglio a V sui due lati del provino lungo il piano dell'intaglio da elettro-erosione. In questo modo la cricca dovrebbe propagare all'interno dell'intaglio in quanto la sezione resistente è minore. Questo consentirebbe non solo di conservare il modo II ma anche di conoscere già le formule analitiche per il controllo della prova. La propagazione della cricca all'interno del groove è di fatto analoga a quella di una prova a puro modo I e quindi

valgono l'equazione di Johnson e le formule della ISO 12108 [14]. Sono state ripetute quindi diverse simulazioni di propagazione SCG con diverse geometrie di groove (variando profondità e angolo di apertura dell'intaglio). Il modello usato per studiare la propagazione nel groove è il medesimo modello SCG descritto in precedenza dove viene aggiornata solamente la geometria (Figura 8.10). Dai risultati delle simulazioni appare evidente come nonostante la sezione resistente nella zona indebolita degli intagli sia minore, la cricca viene comunque forzata a deviare verso il puro modo I e rompe il provino nella zona a sezione maggiore (integra), il modo II viene persogià nella fase iniziale come nel caso senza groove (Figura 8.12). In Figura 8.10 si riporta il disegno CAD del provino con groove che verrà usato nella successiva prova sperimentale. Quelli studiati con simulazioni FEM sono di geometria analoga con diverse profondità e dimensioni dell'intaglio. A titolo di esempio in Figura 8.11 è rappresentato il crack path e l'andamento dei SIF con intagli di 1mm x45°. La cricca è insensibile all'intaglio e continua a deviare verso il modo I locale. La simulazione è stata ripetuta variando la profondità dell'intaglio con risultati analoghi.

Figura 8.10: provino SENB con groove. Disegni CAD 2D.

Figura 8.11: risultato della propagazione SCG su provino SENB con groove

Figura 8.12: andamento dei SIF al variare della propagazione della cricca su SENB con groove, F=1kN

8.2 Prova sperimentale su SENB con groove

8.2.1 Setup sperimentale

Visto il risultato delle simulazioni FEM SCG, contrario alle aspettative, si è pensato di procedere con una rapida prova sperimentale (terminata in poche ore controle 2-3 settimane di una prova di curva R) per verificare se effettivamente la cricca va a rompere il provino dove la sezione resistente è maggiore, ignorando la presenza dell'intaglio. Per la prova è stato usato un provino SENB in semplice acciaio da costruzione con la geometria nominale di Figura 8.10 (108x16x10, intagli 1.5mm x90°, a₀=4mm ottenuto manualmente con sega da ferro). Si è scelto appositamente un provino con queste dimensioni in quanto è già stato studiato in maniera approfondita con le simulazioni FEM riportate nel Capitolo 4 e si conoscono quindi la posizione degli appoggi e i carichi da applicare. Il provino è stato montato in configurazione di 4PB asimmetrico senza CPC e senza utilizzare il DCPD in quanto non si è interessati a monitorare la propagazione della cricca ma a una rapida rottura non in soglia. Si è scelto un disassamento x pari a 5mm secondo lo schema in Figura 8.5a. La forza applicata è tale da avere un range di ΔK_1 pari a 10 MPa m^{0.5}. I principali dettagli della prova sono riassunti in Tabella 8.1

X	[mm]	5
Smax	[mm]	90
Smin	[mm]	30
F ₁	[kN]	0.25F
F ₂	[kN]	0.75F
K _I (F=1kN)	[MPam ^{0.5}]	0.757
KII (F=1kN)	[MPam ^{0.5}]	0.308
KII/KI	[]	0.406
F (K _I =1 MPa m ^{0.5})	[kN]	1.320

R	[]	0.1
ΔΚι	[MPam ^{0.5}]	10
ΔF	[kN]	13.200
Fmax	[kN]	14.667
F _{min}	[kN]	1.467
Fmean	[kN]	8.067
Fa	[kN]	6.600

Tabella 8.1: geometrie e carichi

8.2.2 Risultati e commenti

Visti i carichi elevati l'innesco e la propagazione sono stati rapidi anche senza le fasi di RB e CPC. Il risultato sperimentale è in ottimo accordo con le simulazioni numeriche. La cricca infatti propaga fuori dall'intaglio (Figura 8.13, 8.14), insensibile alla riduzione di sezione e devia verso una direzione dove è soggetta a puro modo I. In accordo con i risultati delle analisi numeriche il modo II viene perso dopo la fase iniziale. Appare quindi inevitabile concludere che la prova di fatto è inizialmente a modo misto I+II, in seguito la componente di modo II diminuisce fino ad annullarsi e la cricca propaga a modo I. Il criterio di propagazione del Maximum

Tangential Stress implementato nel pacchetto SCG di WorkBench coglie il fatto che la cricca non risente della riduzione di spessore. In Figura 8.15 si può osservare come la propagazione della cricca sia analoga a quella del modello FEM SCG con la stessa geometria.

Figura 8.13: provino SENB rotto al termine della prova

Figura 8.14: cricca propagata fino a rottura fuori dal groove

Figura 8.15: confronto qualitativo tra propagazione reale e risultato FEM SCG

Figura 8.16: foto al DinoLite della superficie di frattura. Concio 1 (a), concio 2(b)

Visti i risultati delle simulazioni numeriche e le conferme sperimentali appare poco ragionevole ritenere la propagazione della cricca completamente a modo misto, perché nella quasi totalità del crack path il modo II è nullo. Sperimentalmente, al momento, non c'è modo di forzare la cricca a propagare in un percorso prestabilito facendo mantenendo una sollecitazione di modo misto. L'obbiettivo della prossima prova di propagazione non sarà quindi consapevolmente quello di ricavare una curva R in condizioni iniziali di modo misto, confermando eventualmente che la curva R trovata con condizioni iniziali di modo misto, e poi deviata a modo I, sia di fatto analoga a quella a puro modo I. In questo modo si può concludere sperimentalmente che qualsiasi sia la configurazione delle sollecitazioni iniziali all'apice della cricca, questa propagherà comunque a modo I e quindi potrà essere trattata con le curve relative al puro modo I. Un parziale confronto però tra curve R a modo I e modo misto è comunque possibile per il breve tratto dove è ancora presente il modo II. Visto che la cricca non propagherà dritta nel groove non sarà più applicabile l'equazione di Johnson [25] e le equazioni della ISO12108 [14]. Per controllare i carichi da applicare durante la prova e mon itorare la lunghezza di cricca sarà quindi necessario trovare nuove relazioni valide con cricca che devia a modo I.

8.3 Controllo della prova a Modo misto I+II

Per poter procedere con la prova sperimentale sono necessarie nuove equazioni per il calcolo dei SIF e della lunghezza di cricca, noto il segnale di potenziale X (il metodo è schematizzato in Figura 8.17). Per ricavare le equazioni si è fatta l'assunzione fondamentale che i risultati in output dalle simulazioni di propagazione in WorkBench (modulo SCG) siano corretti. Dalle simulazioni SCG si ricavano quindi il crack path e i valori dei SIF per ogni lunghezza di cricca discreta (che corrisponde ad ogni substep). Noti i valori dei SIF all'aumentare della lunghezza di cricca si interpolano i valori ottenendo due espressioni polinomiali, una per K_I e una per K_I al variare di *a*. Per calibrare la nuova equazione DCPD si è utilizzato invece un modello FEM elettrico variando di volta in volta la geometria in input, facendo propagare la cricca. Per ogni lunghezza di cricca è stato registrato il corrispondente valore di potential drop. Interpolando i risultati discreti si ottiene un polinomio che fornisce la lunghezza di cricca *a* dato il potenziale X. Vista la premessa iniziale il parametro fondamentale di controllo della prova diventa il ΔK_{eq} fornito dal criterio MTS (Paragrafo 5.1).

Figura 8.17: schema concettuale per il calcolo dei SIF e della lunghezza di cricca

8.3.1 Polinomi fittati per il calcolo di K_I e K_{II}

Si riportano in Tabella 8.2 i risultati della simulazione SCG per ogni substep. I risultati della simulazione sono stati assunti come corretti e usati quindi per ricavare un polinomio che permetta di calcolare i SIF per ogni lunghezza di cricca compresa tra quella iniziale e quella massima (Figura 8.18, 8.19). Si noti come per lunghezze di cricca superiori a quella finale sarebbe necessario ripetere la simulazione SCG. In alternativa si può usare comunque il polinomio quando questo è di grado sufficientemente basso da avere un andamento coerente anche fuori dalla zona di interpolazione (polinomi di grado elevato fittano meglio i punti di

#substep	a	Δa	Kı	Кп	KII/KI	F K _I =1
[/]	[mm]	[mm]	[MPam ^{0.5}]	[MPam ^{0.5}]	[/]	[kN]
1	5.101	0.101	0.412	0.474	1.151	2.425
2	5.188	0.188	0.726	0.070	0.096	1.378
3	5.309	0.309	0.747	0.170	0.228	1.339
4	5.394	0.394	0.830	0.052	0.062	1.204
5	5.511	0.511	0.913	0.005	0.006	1.096
6	5.606	0.606	0.918	0.002	0.002	1.090
7	5.714	0.714	0.944	0.005	0.005	1.059
8	5.827	0.827	0.960	0.007	0.008	1.042
9	5.949	0.949	1.003	0.004	0.004	0.997
10	6.055	1.055	1.062	0.014	0.014	0.941
11	6.153	1.153	1.021	0.006	0.006	0.979
12	6.260	1.260	1.080	0.004	0.004	0.926
13	6.361	1.361	1.107	0.007	0.007	0.903
14	6.469	1.469	1.139	0.013	0.011	0.878
15	6.572	1.572	1.166	0.004	0.004	0.858
16	6.669	1.669	1.211	0.002	0.001	0.826
17	6.754	1.754	1.180	0.012	0.010	0.848
18	6.853	1.853	1.257	0.014	0.011	0.796
19	6.945	1.945	1.274	0.007	0.006	0.785
20	7.037	2.037	1.321	0.002	0.002	0.757
21	7.128	2.128	1.303	0.005	0.004	0.767
22	7.229	2.229	1.348	0.002	0.002	0.742
23	7.335	2.335	1.356	0.004	0.003	0.737
24	7.418	2.418	1.353	0.002	0.001	0.739
25	7.531	2.531	1.471	0.002	0.001	0.680
26	7.624	2.624	1.483	0.005	0.003	0.674
27	7.717	2.717	1.510	0.010	0.007	0.662
28	7.809	2.809	1.553	0.003	0.002	0.644
29	7.917	2.917	1.543	0.005	0.003	0.648
30	8.011	3.011	1.578	0.000	0.000	0.634
31	8.108	3.108	1.607	0.004	0.003	0.622
32	8.199	3.199	1.626	0.006	0.004	0.615
33	8.286	3.286	1.657	0.006	0.004	0.603
34	8.390	3.390	1.692	0.011	0.006	0.591
35	8.478	3.478	1.731	0.018	0.011	0.578
36	8.569	3.569	1.756	0.003	0.002	0.570
37	8.660	3.660	1.774	0.003	0.002	0.564
38	8.750	3.750	1.808	0.003	0.001	0.553
39	8.851	3.851	1.789	0.004	0.002	0.559
40	8.939	3.939	1.891	0.005	0.003	0.529
41	9.029	4.029	1.874	0.007	0.004	0.534
42	9.120	4.120	1.920	0.005	0.003	0.521
43	9.207	4.207	1.928	0.014	0.007	0.519
44	9.299	4.299	1.978	0.008	0.004	0.506
45	9.392	4.392	2.079	0.011	0.005	0.481
46	9.503	4.503	2.094	0.003	0.001	0.478
47	9.595	4.595	2.150	0.004	0.002	0.465
48	9.684	4.684	2.164	0.012	0.006	0.462
49	9.771	4.771	2.122	0.006	0.003	0.471
50	9.864	4.864	2.231	0.000	0.000	0.448

interpolazione ma cambiano andamento per lunghezze di cricca oltre quella massima).

 Tabella 8.2: output modello FEM SCG

Figura 8.19: polinomio interpolato $K_{II}(a)$ partendo dai risultati SCG

8.3.2 Polinomio fittato per il calcolo della lunghezza di cricca

Ogni substep del modello SCG fornisce in output le coordinate dell'apice di cricca riportate in Tabella 8.4 (colonne 3 e 4). Queste sono state utilizzate per disegnare la geometria 3D della cricca nel modello elettrico (Figura 8.20) e calcolare la differenza di potenziale tra i probes ad ogni lunghezza di cricca. In seguito, si riportano i dettagli del modello elettrico:

- Resistività elettrica: $\rho = 17 \cdot 10^{-8}$ ohm m;
- Mesh: elementi elettrici tetraedrici a 10 nodi, d_{globale}=2mm, refinement sulle superfici della cricca e dei fori di potenziale con d=0.5mm;
- Vincoli e carichi elettrici (Figura 8.22): I=15A (applicata su tutta una faccia all'estremità), V=0 (applicato all'altra faccia);
- Risultati: probes di potenziale V_1 e V_2 sui fori ai lati dell'intaglio.

L'intaglio e la cricca sono stati modellati come tagli estrusi dello spessore di 0.3mm, interruzioni vere e proprie della geometria (Figura 8.21).

Figura 8.20: esempio di geometria 3D (cinquantesimo substep)

Figura 8.21: mesh del modello elettrico sui fori di potenziale e sulla cricca

Figura 8.22: carichi e vincoli del modello FEM elettrico

Ripetendo la simulazione per le varie lunghezze di cricca del modello SCG si ottiene per ognuna il corrispondente valore della caduta di potenziale (Tabella 8.4 colonna 7). A questo punto diventa fondamentale correggere la differenza di potenziale appena calcolata, questa infatti dipende dalla resistività elettrica, assunta a priori, usata nelle simulazioni, che differisce da quella reale del provino. Per calcolare la resistività elettrica del provino e quindi correggere la caduta di potenziale appena calcolata si sfrutta la linearità dell'equazione hi Ohm (8.1-8.5), noti il potenziale iniziale misurato sul provino dopo CPC, il potenziale iniziale risultante dal FEM elettrico e la resistività usata come input del modello elettrico (Tabella 8.3).

$$\Delta V_{0,FEM} = \rho_{FEM} I \frac{L}{A} = \rho_{FEM} I \Delta v$$
(8.1)

$$\Delta V_{0,exp} = \rho_{exp} I \frac{L}{A} = \rho_{exp} I \Delta v$$
(8.2)

$$\frac{\Delta V_{0,exp}}{\Delta V_{0,FEM}} = \frac{\rho_{exp} I \Delta \nu}{\rho_{FEM} I \Delta \nu} = \frac{\rho_{exp}}{\rho_{FEM}}$$

$$\rho_{exp} = \frac{\Delta V_{0,exp}}{\Delta V_{0,FEM}} \rho_{FEM}$$
(8.3)

(8.4)

$$\Delta V_{0,FEM.corretto} = \Delta V_{0,exp} = \Delta V_{FEM} \frac{\rho_{exp}}{\rho_{FEM}}$$
(8.5)

$\Delta V_{0,FEM}$	ΔV _{0,exp}	ρгем	ρ _{exp}
[µV]	[µV]	[ohm m]	[ohm m]
228.4	278.78	1.70E-07	2.08E-07

Tabella 8.3: parametri di calibrazione DCPD sperimentali e da FEM

In questo modo si calcolano le differenze di potenziale corrette, forzando quella iniziale ricavata da FEM ad essere uguale a quella sperimentale. Questi valori vengono interpolati al variare della lunghezza di cric ca. In Figura 8.23 si può osservare come l'andamento del polinomio interpolato differisca dall'andamento dell'equazione di Johnson applicata a un provino analogo ma con cricca dritta. L'equazione di Johnson non è quindi applicabile in quanto sottostima la lunghezza di cricca.

#substep	a	X	Z	V1	V ₂	AVFEM	ΔV	ainterp	a Johnson	diff% a
[/]	[mm]	[mm]	[mm]	[µV]	[µV]	[µV]	[µV]	[mm]	[mm]	[%]
1	5.000	54.000	5.000	1346.6	1118.2	228.4	278.8	5.054	4.982	-0.36
5	5.511	54.333	5.214	1358.3	1114.7	243.6	297.3	5.449	5.310	-3.79
10	6.055	54.772	5.562	1377.7	1110.6	267.1	326.0	6.029	5.807	-4.27
15	6.572	55.167	5.907	1397.7	1107.2	290.5	354.6	6.571	6.291	-4.48
20	7.037	55.521	6.234	1417.9	1103.7	314.2	383.5	7.090	6.768	-3.98
25	7.531	55.868	6.564	1437.1	1102.0	335.1	409.0	7.528	7.178	-4.91
30	8.011	56.227	6.918	1458.9	1099.6	359.3	438.6	8.017	7.641	-4.84
35	8.478	56.562	7.260	1480.5	1097.5	383.0	467.5	8.482	8.082	-4.90
40	8.939	56.882	7.599	1500.8	1095.7	405.1	494.5	8.908	8.481	-5.40
45	9.392	57.188	7.933	1524.0	1094.0	430.0	524.8	9.386	8.918	-5.32
50	9.864	57.507	8.289	1547.8	1092.4	455.4	555.9	9.878	9.349	-5.51

Tabella 8.4: risultati modello FEM elettrico

8.4 R curve test

8.4.1 Attrezzatura sperimentale

L'attrezzatura a flessione descritta nel Capitolo 6 può essere utilizzata anche per la configurazione asimmetrica richiesta per applicare modo misto I+II. La procedura di montaggio per la prova asimmetrica (la fase di CPC viene comunque svolta in configurazione standard di 4PB simmetrico) è la medesima, con unica differenza nella dima di allineamento dei perni (Figura 8.25). In questo caso si usa una dima asimmetrica appositamente disegnata per garantire le distanze desiderate (tali da avere un disassamento x=2mm) tra appoggi e asse della macchina di prova. In figura sono riportati i disegni CAD della dima per prove asimmetriche (8.26).

Figura 8.25: dima di allineamento per 4PB asimmetrico

Figura 8.26: dima di allineamento per 4PB asimmetrico, disegni CAD

I supporti in alluminio con inserti permettono di rendere l'attrezzatura versatile e utilizzabile anche per una prova asimmetrica sostituendo solo i pezzi in teflon, che sono stati appositamente disegnati. In Figura 8.27 sono riportati i disegni CAD degli inserti in teflon per prova asimmetrica con disassamento x=2mm. In Figura 8.28 sono rappresentati i supporti di allineamento in alluminio con inserti isolanti montati in macchina per la prova ASM01.

Figura 8.27: inserti in teflon asimmetrici. Inserto destro (a), inserto sinistro (b)

Figura 8.28: 4PB asimmetrico, montaggio del provino in macchina

8.4.2 Fase preliminare

Il provino utilizzato è un provino SENB in acciaio S355 che ha subito un trattamento termico ricottura a 600° per cinque ore per distendere le tensioni residue da laminazione (Figura 8.29). In seguito, il provino è stato lucidato a specchio per poter apprezzare anche visivamente la propagazione della cricca durante la prova. La geometria nominale del provino è analoga a quelli delle prove precedenti 108x19x6mm con intaglio di 5mm ottenuto per elettro-erosione a filo, fori per i pin di potenziale e per i cavi di corrente (8.30).

Figura 8.29: provino SENB ASM01

Figura 8.30: provino SENB, disegni CAD con particolare dell'intaglio e dei fori di potenziale

A questo punto si inizia con le misure al calibro e al microscopio, riportate in Tabella 8.5. Nelle figure 8.32, 8.33 si riportano le foto dell'intaglio e dei fori fatte al microscopio Dino-Lite[®].

Figura 8.31: provino SENB, misure al calibro

W	L	В	an	h	ρ	2y0
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
19.01	107.99	6.028	5.022	0.337	0.167	2.374

Tabella 8.5: misure pre-Razor Blading

Figura 8.32: intaglio pre RB side A (a), zoom intaglio pre RB side A (b)

Figura 8.33: fori per misura di potenziale

Si procede con la lavorazione di Razor-Blading che viene riassunta in Tabella 8.6, le foto al microscopio per confrontare l'intaglio si possono vedere in Figura 8.34

Durata	Precarico molle	Pasta diamantata	f	a N+RB	δarb
[min]	[mm]	[/]	[Hz]	[mm]	[min]
10	6	Size 3	2	5.071	0.049
	T 1 11 (n (· n	יו ות		

AT THE REAL PROPERTY OF	
	and the second se

Tabella 8.6: parametri Razor Blading

Figura 8.34: intaglio post RB side B

Una volta collegati i cavi di corrente, potenziale e della termocoppia si può procedere con la calibrazione del coefficiente di resistenza con la temperatura α . I parametri impostati per il DCPD sono i medesimi dei casi precedenti: I=15 A, *Number of readings* = 64 e *Number of samples* = 8. In Figura 8.35 sono riportati i risultati

dell'acquisizione con la retta di fitting, la cui pendenza rappresenta il coefficiente α.

Figura 8.36: confronto tra potenziale corretto e potenziale non corretto (a); andamento della temperatura (b)

8.4.3 R-Curve test

Si riportano in seguito (Tabella 8.7) i parametri fondamentali della procedura di CPC a puto modo I, svolta esattamente come nelle prove precedenti. Per il centraggio del provino si sono usati i supporti per prove simmetriche già progettati e utilizzati.

Date	Time	Mode	R	ΔΚι	f	Fa	Fmean	$\Delta V(T_0)$	acpc	Ν	<i>Aacpc</i>
[-]	[-]	[-]	[-]	[MPa m ^{0.5}]	[Hz]	[kN]	[kN]	[µV]	[mm]	[cycles]	[mm]
02/08/2023	12:30	$\Delta F \cos t$	20	15	30	5.312	- 5.871	290.2	5.276	1660659	0.205

K1,max	K1,min	Smax	Smin	Fmax	Fmin
[MPa m ^{0.5}]	[MPa m ^{0.5}]	[mm]	[mm]	[kN]	[kN]
-0.789	-15.789	65	50	-0.595	-11.183
	T 1 11 0 2	7	$\cdot \cdot c \mathbf{n} c$	1	

Tabella 8.7: parametri CPC

Solo in questa fase è possibile utilizzare l'equazione di Johnson [25] per misurare la lunghezza di cricca e le equazioni proposte nella normativa ISO12108 [14] per il calcolo del SIF. La procedura si può ritenere conclusa dopo 1.660.659 cicli e un incremento di lunghezza di cricca di 0.205mm. In figura è mostrato l'andamento del segnale di potenziale durante il CPC.

Figura 8.37: potenziale acquisito durante CPC, andamento grezzo X e corretto con la temperatura Xc

Terminato il CPC l'acquisizione viene interrotta, l'attrezzatura smontata completamente e rimontata nella configurazione prescelta per la prova a modo misto (è sufficiente usare la dima di allineamento asimmetrica). Il provino viene riposizionato in modo asimmetrico con intaglio verso il basso e la prova può iniziare (Figura 8.38). La prova è stata condotta a rapporto di ciclo R=0.1, interamente in controllo di forza, particolare attenzione è stata fatta alle variazioni dei carichi applicati, sempre il più contenute possibile in modo da evitare arresti indesiderati della cricca (variazioni di circa 0.2 MPam^{0.5} in ΔK_{eq}). In seguito, vengono riportati i valori numerici di ogni step di carico. Il parametro di controllo della prova è il ΔK_{eq} che noti i SIF K_I e K_{II} dai polinomi di calibrazione stima un SIF equivalente secondo il criterio del Maximum Tangential Stress (Capitolo 5.1). Nell'Excel di controllo della prova si è quindi scelto un ΔK_I tale da ottenere il ΔK_{eq} desiderato. Bisogna inoltre fare particolare attenzione al fatto che, controllando la prova a forza costante, il SIF applicato iniziale è diverso da quello finale. Ogni cambio carico deve essere quindi valutato rispetto al valore finale di ΔK_{eq} .

Figura 8.38: schema dei carichi applicati dalla macchina di prova

Step	[-]	1	2	3	4	5	6	7	8
Date	[-]	21/08/2023	22/08/2023	22/08/2023	22/08/2023	23/08/2023	23/08/2023	24/08/2023	24/08/2023
Time	[-]	15.15.00	09.20.00	11.15.00	16.20.00	11.20.00	16.20.00	14.05.00	17.10.00
ai	լո	5 276	5 246	5 249	5 254	5 266	5 269	5 283	5 282
R	[]	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
K AV	[⁻]	1.50	2.50	2.00	2.50	4.00	4.50	5.00	5.50
		1.50	2.30	3.00	3.30	4.00	4.30	3.00	3.30
J	[HZ]	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00
Δa	[mm]	0.205	0.175	0.178	0.183	0.195	0.198	0.212	0.211
K _I interp F=1kN	MPam^0.5	0.685	0.671	0.672	0.675	0.680	0.682	0.688	0.688
K _{II} interp F=1kN	MPam^0.5	0.228	0.254	0.251	0.247	0.236	0.234	0.223	0.224
ΔK_{II}	[MPa m0.5]	0.500	0.945	1.120	1.280	1.391	1.545	1.619	1.788
K _{II} /K _I	[/]	0.333	0.378	0.373	0.366	0.348	0.343	0.324	0.325
$\mathbf{F} \mid \mathbf{K} = 1$ MPa m ^{0.5}	[kN]	1.460	1.491	1.487	1.482	1.470	1.467	1.453	1.454
AF	[kN]	2 1 9 0	3 726	4 462	5 188	5 880	6.602	7 266	7 998
F	[kN]	2 4 3 4	4 140	4 958	5 764	6 534	7 3 3 5	8 074	8 887
F max		0.243	0.414	0.496	0.576	0.653	0.734	0.807	0.880
r _{min}		1.005	1.962	2 221	2.504	2.040	2 201	2.622	2 000
e ¹		1.093	1.805	2.231	2.394	2.940	5.501	5.055	3.999
F _{mean}	[KN]	1.338	2.211	2.121	3.170	3.594	4.034	4.441	4.888
θ	[rad]	-0.55	-0.60	-0.59	-0.58	-0.56	-0.56	-0.54	-0.54
θ	[deg]	-31.37	-34.13	-33.85	-33.39	-32.28	-32.01	-30.73	-30.82
ΔK _{ea}	[MPa m0.5]	1.715	2.945	3.522	4.088	4.616	5.177	5.679	6.253
$\Delta K_{eq max}$	[MPa m0.5]	1.905	3.272	3.914	4.542	5.128	5.753	6.310	6.947
$\Delta K_{ea \min}$	[MPa m0.5]	0.191	0.327	0.391	0.454	0.513	0.575	0.631	0.695
ΔΚ	[MPa m0.5]	0.857	1.472	1.761	2.044	2.308	2.589	2.840	3.126
	[MPa m0 5]	1 048	1.800	2,153	2.498	2.821	3 1 6 4	3 471	3 821
(W-ai)	[mm]	13 73	13.76	13.76	13.76	13 74	13 74	13 73	13 73
SSV: (W ai)	[mm]	5.00	6.64	7 27	7.92	9 2 A	0.04	0.27	0.72
55 Y: (W-al) _{min}	[11111]	12.02	12.27	11.27	/.03	0.54	0.04	9.27	9.73
a _{i.max}		13.92	12.57	11./4	11.10	10.07	10.17	9.74	9.20
r _n	[mm]	0.005	0.014	0.019	0.026	0.033	0.042	0.050	0.061
Check SSY	[-]	2.70	2.07	1.89	1.76	1.65	1.55	1.48	1.41
N	[cycles]	1.95E+06	2.14E+06	2.74E+06	4.78E+06	5.26E+06	7.60E+06	7.92E+06	9.67E+06
<u>Ν</u> ΔΝ	[cycles] [cycles]	1.95E+06 2.87E+05	2.14E+06 1.96E+05	2.74E+06 5.94E+05	4.78E+06 2.05E+06	5.26E+06 4.74E+05	7.60E+06 2.34E+06	7.92E+06 3.26E+05	9.67E+06 1.75E+06
<u>Ν</u> ΔΝ ΔV(T)	[cycles] [cycles] [µV]	1.95E+06 2.87E+05 287.7	2.14E+06 1.96E+05 292.9	2.74E+06 5.94E+05 295.2	4.78E+06 2.05E+06 294.2	5.26E+06 4.74E+05 295.9	7.60E+06 2.34E+06 296.5	7.92E+06 3.26E+05 297.6	9.67E+06 1.75E+06 295.7
<u>Ν</u> ΔΝ ΔV(T) Τ	[cycles] [cycles] [µV] [°C]	1.95E+06 2.87E+05 287.7 30.08	2.14E+06 1.96E+05 292.9 34.73	2.74E+06 5.94E+05 295.2 36.59	4.78E+06 2.05E+06 294.2 35.14	5.26E+06 4.74E+05 295.9 36.59	7.60E+06 2.34E+06 296.5 36.49	7.92E+06 3.26E+05 297.6 37.54	9.67E+06 1.75E+06 295.7 35.40
N ΔN ΔV(T) T ΔV(T₀)	[cycles] [cycles] [μV] [°C] [μV]	1.95E+06 2.87E+05 287.7 30.08 287.7	2.14E+06 1.96E+05 292.9 34.73 287.8	2.74E+06 5.94E+05 295.2 36.59 288.1	4.78E+06 2.05E+06 294.2 35.14 288.7	5.26E+06 4.74E+05 295.9 36.59 288.8	7.60E+06 2.34E+06 296.5 36.49 289.5	7.92E+06 3.26E+05 297.6 37.54 289.4	9.67E+06 1.75E+06 295.7 35.40 289.8
	[cycles] [cycles] [μV] [°C] [μV] [mm]	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292
	[cycles] [cycles] [μV] [°C] [μV] [mm]	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046
	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm]	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221
	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [mm]	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692
	[cycles] [cycles] [µV] [°C] [µV] [mm] [mm] [mm] MPam^0.5	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692
	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [mm] MPam^0.5 MPam^0.5	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.278	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{T}{\Delta V(T_0)}$ $\frac{a_f}{\Delta a}$ $\frac{\Delta a \text{ tot}}{K_1 \text{ interp } F=1kN_{sf}}$ $\frac{K_{II}/K_{bf}}{K_{II}}$	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [mm] MP am^0.5 MP am^0.5	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236 0.347	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312
$\begin{tabular}{ c c c c }\hline N \\ \hline \Delta N \\ \hline \Delta V(T) \\ \hline T \\ \hline \Delta V(T_0) \\ \hline a_f \\ \hline \Delta a \\ \hline \Delta a \\ \hline \Delta a \\ tot \\ \hline K_1 interp F=1kN_{sf} \\ \hline K_{tl} interp F=1kN_{sf} \\ \hline K_{tl} / K_{tsf} \\ \hline \Delta K_{t,th} \\ \hline \end{tabular}$	[cycles] [cycles] [μV] [°C] [mm] [mm] [mm] MPam^0.5 [/] [MPa m0.5]	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 5.54
$\begin{tabular}{ c c c c }\hline N \\ \hline \Delta N \\ \hline \Delta V(T) \\ \hline T \\ \hline \Delta V(T_0) \\ \hline a_f \\ \hline \Delta a \\ \hline \Delta a \\ \hline \Delta a \\ tot \\ \hline K_1 interp F=1kN_{sf} \\ \hline K_{11} interp F=1kN_{sf} \\ \hline K_{11} / K_{1sf} \\ \hline \Delta K_{1,th} \\ \hline \Delta K_{1,th} \\ \hline \Delta K_{1,th} \\ \hline \end{tabular}$	[cycles] [cycles] [μV] [°C] [mm] [mm] [mm] MPam^0.5 [/] [MPa m0.5] [MPa m0.5]	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73
$\begin{tabular}{ c c c c c }\hline N \\ \hline & \Delta N \\ \hline & \Delta V(T) \\ \hline & T \\ \hline & \Delta V(T_0) \\ \hline & a_f \\ \hline & \Delta a \\ \Delta a \\ \Delta a \\ tot \\ \hline & K_1 interp \ F=1kN_{sf} \\ \hline & K_{II} / K_{lof} \\ \hline & & K_{ILth} \\ \hline & \Delta K_{ILth} \\ \hline & \Delta F_f \end{tabular}$	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [mm] MPam^0.5 [/] [MPa m0.5] [MPa m0.5] [kN]	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23 5.188	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998
$\begin{tabular}{ c c c c c }\hline N \\ \hline & \Delta N \\ \hline & \Delta V(T) \\ \hline & T \\ \hline & \Delta V(T_0) \\ \hline & a_f \\ \hline & \Delta a \\ \hline & \Delta tot \\ \hline & K_{I} interp F=1kN_{sf} \\ \hline & K_{II}/K_{lof} \\ \hline & \Delta K_{ILth} \\ \hline & \Delta K_{ILth} \\ \hline & \Delta F_f \\ \hline & F_{max.f} \\ \hline \end{tabular}$	[cycles] [cycles] [µV] [°C] [µV] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190 2.434	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726 4.140	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462 4.958	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23 5.188 5.764	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880 6.534	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602 7.335	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266 8.074	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998 8.887
$\begin{tabular}{ c c c c c }\hline N \\ \hline & \Delta N \\ \hline & \Delta V(T) \\ \hline & T \\ \hline & \Delta V(T_0) \\ \hline & a_f \\ \hline & \Delta a \\ \hline & & K_I \\ \hline & & K_I \\ \hline & K_{II} \\ \hline & K_{II} \\ \hline & & K_{II} \\ \hline & & K_{II,th} \\ \hline & & \Delta K_{II} \\ \hline & & F_f \\ \hline & F_{max,f} \\ \hline & F_{min,f} \\ \hline \end{tabular}$	[cycles] [cycles] [µV] [°C] [mm] [mm] [mm] MPam^0.5 [/] [MPa m0.5] [MPa m0.5] [kN] [kN]	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190 2.434 0.243	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726 4.140 0.414	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462 4.958 0.496	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23 5.188 5.764 0.576	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880 6.534 0.653	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602 7.335 0.734	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266 8.074 0.807	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998 8.887 0.889
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [mm] MPam^0.5 [/] [MPa m0.5] [MPa m0.5] [MPa m0.5] [kN] [kN] [kN]	1.95E+06 2.87E+05 2.87.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190 2.434 0.243 1.095	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726 4.140 0.414 1.863	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462 4.958 0.496 2.231	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23 5.188 5.764 0.576 2.594	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880 6.534 0.653 2.940	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602 7.335 0.734 3.301	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266 8.074 0.807 3.633	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998 8.887 0.889 3.999
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{T}{\Delta V(T_0)}$ $\frac{a_f}{a_f}$ $\Delta a tot$ $K_1 interp F=1kN_{sf}$ K_{II}/K_{lof} $\frac{\Delta K_{I,th}}{\Delta K_{I,th}}$ $\frac{\Delta F_f}{F_{max,f}}$ $\frac{F_{a,f}}{F_{max,f}}$	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [mm] MPam^0.5 [/] [MPa m0.5] [MPa m0.5] [kN] [kN] [kN] [kN] [kN]	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190 2.434 0.243 1.095 1.338	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726 4.140 0.414 1.863 2.277	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462 4.958 0.496 2.231 2.727	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23 5.188 5.764 0.576 2.594 3.170	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880 6.534 0.653 2.940 3.594	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602 7.335 0.734 3.301 4.034	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266 8.074 0.807 3.633 4.441	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998 8.887 0.889 3.999 4.888
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{T}{\Delta V(T_0)}$ $\frac{a_f}{\Delta a}$ $\frac{\Delta a \text{ tot}}{K_1 \text{ interp } F=1kN_{sf}}$ $\frac{K_{II}/K_{1sf}}{K_{II}/K_{1sf}}$ $\frac{\Delta K_{ILth}}{\Delta F_f}$ $\frac{F_{max,f}}{F_{max,f}}$ $\frac{F_{mean,f}}{\theta_{0.5}}$	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [mm] [mm] MPam^0.5 [/] [MPa m0.5] [MPa m0.5] [kN] [kN] [kN] [kN] [kN] [kN]	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190 2.434 0.243 1.095 1.338 -0.60	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726 4.140 0.414 1.863 2.277 -0.59	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462 4.958 0.496 2.231 2.727 -0.58	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23 5.188 5.764 0.576 2.594 3.170 -0.56	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880 6.534 0.653 2.940 3.594 -0.56	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602 7.335 0.734 3.301 4.034 -0.54	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266 8.074 0.807 3.633 4.441 -0.54	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998 8.887 0.889 3.999 4.888 -0.52
$\begin{tabular}{ c c c c c }\hline N \\ \hline & \Delta N \\ \hline & \Delta V(T) \\ \hline & T \\ \hline & \Delta V(T_0) \\ \hline & a_f \\ \hline & \Delta a & tot \\ \hline & Aa & tot \\ \hline & K_1 interp F = 1kN_{sf} \\ \hline & K_{II} interp F = 1kN_{sf} \\ \hline & K_{II} / K_{Isf} \\ \hline & \Delta K_{Lth} \\ \hline & \Delta F_f \\ \hline & F_{max,f} \\ \hline & F_{mean,f} \\ \hline & \theta_{0,f} \\ \hline & \theta_{0,c} \\ \hline \end{tabular}$	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [mm] [mm] [mm] [mm] [mPam^0.5 [/] [MPam0.5] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190 2.434 0.243 1.095 1.338 -0.60 -34 11	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726 4.140 0.414 1.863 2.277 -0.59 -33.88	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462 4.958 0.496 2.231 2.727 -0.58 -33.37	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23 5.188 5.764 0.576 2.594 3.170 -0.56 -32.24	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880 6.534 0.653 2.940 3.594 -0.56 -32.04	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602 7.335 0.734 3.301 4.034 -0.54 -30 69	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266 8.074 0.807 3.633 4.441 -0.54 -30.80	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998 8.887 0.889 3.999 4.888 -0.52 -29.95
$\begin{tabular}{ c c c c c }\hline N \\ \hline & \Delta N \\ \hline & \Delta V(T) \\ \hline & T \\ \hline & \Delta V(T_0) \\ \hline & a_f \\ \hline & \Delta a \\ \hline & \Delta t \\ \hline & A \\ \hline & K_1 \\ \hline & K_$	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190 2.434 0.243 1.095 1.338 -0.60 -34.11 1.731	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726 4.140 0.414 1.863 2.277 -0.59 -33.88 2.942	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462 4.958 0.496 2.231 2.727 -0.58 -33.37 3.516	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23 5.188 5.764 0.576 2.594 3.170 -0.56 -32.24	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880 6.534 0.653 2.940 3.594 -0.56 -32.04 4.612	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602 7.335 0.734 3.301 4.034 -0.54 -30.69 5.159	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266 8.074 0.807 3.633 4.441 -0.54 -30.80	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998 8.887 0.889 3.999 4.888 -0.52 -29.95 6.241
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{T}{\Delta V(T_0)}$ a_f $\Delta a tot$ $K_1 interp F=1kN_{sf}$ K_{II}/K_{lof} ΔK_{Lth} ΔF_f $F_{max,f}$ $F_{min,f}$ $F_{mean,f}$ $\theta_{0,f}$ $\theta_{0,f}$ ΔK_{conf}	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [mm] [mm] [mm] [mPam^0.5] [MPam0.5] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190 2.434 0.243 1.095 1.338 -0.60 -34.11 1.731 1.923	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726 4.140 0.414 1.863 2.277 -0.59 -33.88 2.942 3.269	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462 4.958 0.496 2.231 2.727 -0.58 -33.37 3.516 3.906	4.78E+06 2.05E+06 2.94.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23 5.188 5.764 0.576 2.594 3.170 -0.56 -32.24 4.072 4.524	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880 6.534 0.653 2.940 3.594 -0.56 -32.04 4.612 5.124	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602 7.335 0.734 3.301 4.034 -0.54 -30.69 5.159 5.723	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266 8.074 0.807 3.633 4.441 -0.54 -30.80 5.680 6.311	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998 8.887 0.889 3.999 4.888 -0.52 -29.95 6.241 6.934
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{T}{T}$ $\frac{\Delta V(T_0)}{a_f}$ $\frac{A_a}{\Delta a \text{ tot }}$ $\frac{A_a \text{ tot }}{K_1 \text{ interp } F=1kN_{sf}}$ $\frac{K_{II}/K_{tof}}{\Delta K_{Lth}}$ $\frac{\Delta K_{ILth}}{\Delta F_f}$ $\frac{F_{max,f}}{F_{min,f}}$ $\frac{F_{mean,f}}{\theta_{0,f}}$ $\frac{\theta_{0,f}}{\Delta K_{eq,max,f}}$	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [mm] [mm] [mm] [mPa m0.5] [MPa m0.5] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [cad] [deg] [MPa m0.5] [MPa m0.5]	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190 2.434 0.243 1.095 1.338 -0.60 -34.11 1.731 1.923 0.172	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726 4.140 0.414 1.863 2.277 -0.59 -33.88 2.942 3.269 0.204	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462 4.958 0.496 2.231 2.727 -0.58 -33.37 3.516 3.906 0.252	4.78E+06 2.05E+06 2.05E+06 2.05E+06 2.05E+06 2.94.2 3.5.14 2.88.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23 5.188 5.764 0.576 2.594 3.170 -0.56 -32.24 4.072 4.524 0.0407	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880 6.534 0.653 2.940 3.594 -0.56 -32.04 4.612 5.124 0.461	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602 7.335 0.734 3.301 4.034 -0.54 -30.69 5.159 5.733 0.516	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266 8.074 0.807 3.633 4.441 -0.54 -30.80 5.680 6.311 0.569	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998 8.887 0.889 3.999 4.888 -0.52 -29.95 6.241 6.934 0.624
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{T}{T}$ $\frac{\Delta V(T_0)}{a_f}$ a_f $\Delta a \text{ tot }$ $K_1 \text{ interp } F=1kN_{sf}$ $K_{II} \text{ interp } F=1kN_{sf}$ $\frac{K_{II} / K_{Isf}}{\Delta K_{I,th}}$ $\frac{\Delta K_{I,th}}{\Delta F_f}$ $\frac{F_{max,f}}{F_{max,f}}$ $\frac{F_{mean,f}}{\theta_{0,f}}$ $\frac{\theta_{0,f}}{\Delta K_{eq,max,f}}$ $\frac{\Delta K_{eq,max,f}}{\Delta K_{eq,max,f}}$	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [mm] [mm] [mm] [mm] [mPa m0.5] [MPa m0.5] [kN] [kN] [kN] [kN] [kN] [kN] [mPa m0.5] [MPa m0.5] [MPa m0.5]	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190 2.434 0.243 1.095 1.338 -0.60 -34.11 1.731 1.923 0.173 0.655	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726 4.140 0.414 1.863 2.277 -0.59 -33.88 2.942 3.269 0.294	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462 4.958 0.496 2.231 2.727 -0.58 -33.37 3.516 3.906 0.352 1.752	4.78E+06 2.05E+06 2.05E+06 2.05E+06 2.05E+06 0.294.2 3.5.14 2.88.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23 5.188 5.764 0.576 2.594 3.170 -0.56 -32.24 4.072 4.524 0.407 2.625	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880 6.534 0.653 2.940 3.594 -0.56 -32.04 4.612 5.124 0.461 0.235	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602 7.335 0.734 3.301 4.034 -0.54 -30.69 5.159 5.733 0.516	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266 8.074 0.807 3.633 4.441 -0.54 -30.80 5.680 6.311 0.568	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998 8.887 0.889 3.999 4.888 -0.52 -29.95 6.241 6.934 0.624 2.122
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	1.95E+06 2.87E+05 2.87.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190 2.434 0.243 1.095 1.338 -0.60 -34.11 1.731 1.923 0.173 0.865 1.675	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726 4.140 0.414 1.863 2.277 -0.59 -33.88 2.942 3.269 0.294 1.471 .551	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462 4.958 0.496 2.231 2.727 -0.58 -33.37 3.516 3.906 0.352 1.758	4.78E+06 2.05E+06 2.05E+06 2.05E+06 2.05E+06 0.20 0.195 0.680 0.236 0.347 3.53 1.23 5.188 5.764 0.576 2.594 3.170 -0.56 -32.24 4.072 4.524 0.407 2.036	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880 6.534 0.653 2.940 3.594 -0.56 -32.04 4.612 5.124 0.461 2.306	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602 7.335 0.734 3.301 4.034 -0.54 -30.69 5.159 5.733 0.516 2.580	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266 8.074 0.807 3.633 4.441 -0.54 -30.80 5.680 6.311 0.568 2.840	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998 8.887 0.889 3.999 4.888 -0.52 -29.95 6.241 6.934 0.624 3.120 2.55=1
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{T}{T}$ $\frac{\Delta V(T_0)}{a_f}$ a_f $\Delta a tot$ $K_t interp F=1kN_{sf}$ K_{II}/K_{lof} $\frac{\Delta K_{l,th}}{\Delta K_{f,t}}$ $\frac{\Delta K_{l,th}}{f}$ $\frac{\Delta K_{l,th}}{f}$ $\frac{\Delta F_f}{F_{max,f}}$ $\frac{F_{mean,f}}{\theta_{0,f}}$ $\frac{\theta_{0,f}}{\Delta K_{eo,mcan,f}}$ $\frac{\Delta K_{eo,mcan,f}}{\Delta K_{eo,mcan,f}}$	[cycles] [μV] [°C] [μV] [mm] [mm] [mm] [mm] [mm] [mm] [mPa m0.5] [MPa m0.5] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [mPa m0.5] [MPa m0.5] [MPa m0.5] [MPa m0.5] [MPa m0.5]	1.95E+06 2.87E+05 2.87.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190 2.434 0.243 1.095 1.338 -0.60 -34.11 1.731 1.923 0.173 0.865 1.048	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726 4.140 0.414 1.863 2.277 -0.59 -33.88 2.942 3.269 0.294 1.471 1.781	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462 4.958 0.496 2.231 2.727 -0.58 -33.37 3.516 3.906 0.352 1.758 2.129	4.78E+06 2.05E+06 2.05E+06 2.94.2 3.5.14 2.88.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23 5.188 5.764 0.576 2.594 3.170 -0.56 -32.24 4.072 4.524 0.407 2.036 2.466	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880 6.534 0.653 2.940 3.594 -0.56 -32.04 4.612 5.124 0.461 2.306 2.793	7.60E+06 2.34E+06 2.96.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602 7.335 0.734 3.301 4.034 -0.54 -30.69 5.159 5.733 0.516 2.580 3.124	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266 8.074 0.807 3.633 4.441 -0.54 -30.80 5.680 6.311 0.568 2.840 3.440	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998 8.887 0.889 3.999 4.888 -0.52 -29.95 6.241 6.934 0.624 3.120 3.779
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [mm] MPam^0.5 [/] [MPa m0.5] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190 2.434 0.243 1.095 1.338 -0.60 -34.11 1.731 1.923 0.173 0.865 1.048 13.76	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726 4.140 0.414 1.863 2.277 -0.59 -33.88 2.942 3.269 0.294 1.471 1.781 13.76	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462 4.958 0.496 2.231 2.727 -0.58 -33.37 3.516 3.906 0.352 1.758 2.129 13.76	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23 5.188 5.764 0.576 2.594 3.170 -0.56 -32.24 4.072 4.524 0.407 2.036 2.466 13.74	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880 6.534 0.653 2.940 3.594 -0.56 -32.04 4.612 5.124 0.461 2.306 2.793 13.74	7.60E+06 2.34E+06 2.96.5 3.6.49 2.89.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602 7.335 0.734 3.301 4.034 -0.54 -30.69 5.733 0.516 2.580 3.124 13.73	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266 8.074 0.807 3.633 4.441 -0.54 -30.80 5.680 6.311 0.568 2.840 3.440 13.73	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998 8.887 0.889 3.999 4.888 -0.52 -29.95 6.241 6.934 0.624 3.120 3.779 13.72
$\begin{tabular}{ c c c c c }\hline N \\ \hline & \Delta N \\ \hline & \Delta V(T) \\ \hline T \\ \hline & \Delta V(T_0) \\ \hline & a_f \\ \hline & \Delta a tot \\ \hline & Aa tot \\ \hline & K_1 interp F=1kN_{sf} \\ \hline & K_{II} interp F=1kN_{sf} \\ \hline & K_{II}/K_{1sf} \\ \hline & \Delta K_{ILth} \\ \hline & \Delta K_{ILth} \\ \hline & \Delta F_f \\ \hline & F_{max,f} \\ \hline & F_{mean,f} \\ \hline & \theta_{0,f} \\ \hline & \theta_{0,f} \\ \hline & \theta_{0,f} \\ \hline & \Delta K_{eq,min,f} \\ \hline & \Delta K_{eq,mean,f} \\ \hline & (W-af) \\ \hline & SSY: (W-af)_{min} \\ \hline \end{tabular}$	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [mm] MPam^0.5 [/] [MPa m0.5] [MPa m0.5] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190 2.434 0.243 1.095 1.338 -0.60 -34.11 1.923 0.173 0.865 1.048 13.76 5.09	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726 4.140 0.414 1.863 2.277 -0.59 -33.88 2.942 3.269 0.294 1.471 1.781 13.76 6.64	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462 4.958 0.496 2.231 2.727 -0.58 -33.37 3.516 3.906 0.352 1.758 2.129 13.76 7.27	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23 5.188 5.764 0.576 2.594 3.170 -0.56 -32.24 4.072 4.524 0.407 2.036 2.466 13.74 7.83	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880 6.534 0.653 2.940 3.594 -0.56 -32.04 4.612 5.124 0.461 2.306 2.793 13.74 8.34	7.60E+06 2.34E+06 296.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602 7.335 0.734 3.301 4.034 -0.54 -30.69 5.159 5.733 0.516 2.580 3.124 13.73 8.84	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266 8.074 0.807 3.633 4.441 -0.54 -30.80 5.680 6.311 0.568 2.840 3.440 13.73 9.27	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998 8.887 0.889 3.999 4.888 -0.52 -29.95 6.241 6.934 0.624 3.120 3.779 13.72 9.73
$\begin{tabular}{ c c c c c }\hline N \\ \hline & \Delta N \\ \hline & \Delta V(T) \\ \hline & T \\ \hline & \Delta V(T_0) \\ \hline & a_f \\ \hline & \Delta a & tot \\ \hline & Aa & tot \\ \hline & K_1 interp F=1kN_{sf} \\ \hline & K_{II} interp F=1kN_{sf} \\ \hline & K_{II}/K_{1sf} \\ \hline & \Delta K_{Lth} \\ \hline & \Delta K_{Lth} \\ \hline & \Delta F_f \\ \hline & F_{max,f} \\ \hline & F_{max,f} \\ \hline & F_{mean,f} \\ \hline & \theta_{0,f} \\ \hline & \theta_{0,f} \\ \hline & \theta_{0,f} \\ \hline & \Delta K_{eq,min,f} \\ \hline & \Delta K_{eq,mean,f} \\ \hline & (W-af) \\ \hline & SSY: (W-af)_{min} \\ \hline & a_{f,max} \\ \hline \end{tabular}$	[cycles] [cycles] [μV] [mm] [mm] [mm] MPam^0.5 [MPa m0.5] [MPa m0.5] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190 2.434 0.243 1.095 1.338 -0.60 -34.11 1.923 0.173 0.865 1.048 13.76 5.09 13.92	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726 4.140 0.414 1.863 2.277 -0.59 -33.88 2.942 3.269 0.294 1.471 1.781 13.76 6.64 12.37	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462 4.958 0.496 2.231 2.727 -0.58 -33.37 3.516 3.906 0.352 1.758 2.129 13.76 7.27 11.74	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23 5.188 5.764 0.576 2.594 3.170 -0.56 -32.24 4.072 4.524 0.407 2.036 2.466 13.74 7.83 11.18	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880 6.534 0.653 2.940 3.594 -0.56 -32.04 4.612 5.124 0.461 2.306 2.793 13.74 8.34 10.67	7.60E+06 2.34E+06 2.96.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602 7.335 0.734 3.301 4.034 -0.54 -30.69 5.159 5.733 0.516 2.580 3.124 13.73 8.84 10.17	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266 8.074 0.807 3.633 4.441 -0.54 -30.80 5.680 6.311 0.568 2.840 3.440 13.73 9.27 9.74	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998 8.887 0.889 3.999 4.888 -0.52 -29.95 6.241 6.934 0.624 3.120 3.779 13.72 9.73 9.28
$\begin{tabular}{ c c c c c }\hline N \\ \hline & \Delta N \\ \hline & \Delta V(T) \\ \hline & T \\ \hline & \Delta V(T_0) \\ \hline & a_f \\ \hline & \Delta a & tot \\ \hline & & \Delta a & tot \\ \hline & & & & & & & & & & & & & & & & & &$	[cycles] [cycles] [μV] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	1.95E+06 2.87E+05 287.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190 2.434 0.2434 0.2433 1.095 1.338 -0.60 -34.11 1.923 0.173 0.865 1.048 13.76 5.09 13.92 0.005	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726 4.140 0.414 1.863 2.277 -0.59 -33.88 2.942 3.269 0.294 1.471 1.781 13.76 6.64 12.37 0.013	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462 4.958 0.496 2.231 2.727 -0.58 -33.37 3.516 3.906 0.352 1.758 2.129 13.76 7.27 11.74 0.019	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23 5.188 5.764 0.576 2.594 3.170 -0.56 -32.24 4.072 4.524 0.407 2.036 2.466 13.74 7.83 11.18 0.026	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880 6.534 0.653 2.940 3.594 -0.56 -32.04 4.612 5.124 0.461 2.306 2.793 13.74 8.34 10.67 0.033	7.60E+06 2.34E+06 2.96.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602 7.335 0.734 3.301 4.034 -0.54 -30.69 5.159 5.733 0.516 2.580 3.124 13.73 8.84 10.17 0.042	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266 8.074 0.807 3.633 4.441 -0.54 -30.80 5.680 6.311 0.568 2.840 3.440 13.73 9.27 9.74 0.050	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998 8.887 0.889 3.999 4.888 -0.52 -29.95 6.241 6.934 0.624 3.120 3.779 13.72 9.73 9.28 0.061
$\begin{tabular}{ c c c c c }\hline N \\ \hline & \Delta N \\ \hline & \Delta V(T) \\ \hline & T \\ \hline & \Delta V(T_0) \\ \hline & a_f \\ \hline & \Delta a \\ \hline & \Delta t \\ \hline & \Delta t \\ \hline & A \\ \hline & K_1 interp F=1kN_{sf} \\ \hline & K_{11}/K_{10f} \\ \hline & A \\ & \Delta K_{Lth} \\ \hline & \Delta K_{f} \\ \hline & F_{max,f} \\ \hline & F_{max,f} \\ \hline & F_{mean,f} \\ \hline & \theta_{0,f} \\ \hline & \theta_{0,f} \\ \hline & \theta_{0,f} \\ \hline & \Delta K_{eq} \\ \hline & M_{eq} \\ \hline & \Delta K_{eq} \\ \hline & M_{eq} \\ \hline & M_{$	[cycles] [cycles] [μV] [°C] [μV] [mm] [mm] [mm] [mm] [MP a m0.5] [MP a m0.5] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [ma m0.5] [MP a m0.5] [MP	1.95E+06 2.87E+05 2.87.7 30.08 287.7 5.246 0.000 0.175 0.671 0.254 0.378 1.47 0.56 2.190 2.434 0.243 1.095 1.338 -0.60 -34.11 1.731 1.923 0.173 0.865 1.048 13.76 5.09 13.92 0.005 2.70	2.14E+06 1.96E+05 292.9 34.73 287.8 5.249 0.002 0.178 0.672 0.251 0.374 2.50 0.94 3.726 4.140 0.414 1.863 2.277 -0.59 -33.88 2.942 3.269 0.294 1.471 1.781 13.76 6.64 12.37 0.013 2.07	2.74E+06 5.94E+05 295.2 36.59 288.1 5.254 0.008 0.183 0.675 0.247 0.365 3.01 1.10 4.462 4.958 0.496 2.231 2.727 -0.58 -33.37 3.516 3.906 0.352 1.758 2.129 13.76 7.27 11.74 0.019 1.89	4.78E+06 2.05E+06 294.2 35.14 288.7 5.266 0.020 0.195 0.680 0.236 0.347 3.53 1.23 5.188 5.764 0.576 2.594 3.170 -0.56 -32.24 4.072 4.524 0.407 2.036 2.466 13.74 7.83 11.18 0.026 1.75	5.26E+06 4.74E+05 295.9 36.59 288.8 5.269 0.023 0.198 0.681 0.234 0.344 4.01 1.38 5.880 6.534 0.653 2.940 3.594 -0.56 -32.04 4.612 5.124 0.461 2.306 2.793 13.74 8.34 10.67 0.033 1.65	7.60E+06 2.34E+06 2.96.5 36.49 289.5 5.283 0.037 0.212 0.688 0.222 0.323 4.54 1.47 6.602 7.335 0.734 3.301 4.034 -0.54 -30.69 5.159 5.733 0.516 2.580 3.124 13.73 8.84 10.17 0.042 1.55	7.92E+06 3.26E+05 297.6 37.54 289.4 5.282 0.036 0.211 0.688 0.223 0.325 5.00 1.62 7.266 8.074 0.807 3.633 4.441 -0.54 -30.80 5.680 6.311 0.568 2.840 3.440 13.73 9.27 9.74 0.050 1.48	9.67E+06 1.75E+06 295.7 35.40 289.8 5.292 0.046 0.221 0.692 0.216 0.312 5.54 1.73 7.998 8.887 0.889 3.999 4.888 -0.52 -29.95 6.241 6.934 0.624 3.120 3.779 13.72 9.73 9.28 0.061 1.41

 Arrested?
 I
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y

Step	9	10	11	12	13	14	15	16	17
Date	########	25/08/2023	28/08/2023	28/08/2023	28/08/2023	28/08/2023	29/08/2023	29/08/2023	30/08/2023
Time	09.40.00	21.15.00	09.10.00	11.20.00	21.30.00	22:45:00	09.05.00	13.30.00	14.35.00
ai	5 292	5 346	5 4 3 6	5 4 3 8	5.615	5 644	5 823	5 828	6.002
R	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	6.00	6.50	7.00	7.50	7.50	7.20	7.00	7.50	7.60
<u>AR</u>	20.00	20.00	20.00	20.00	7.50	20.00	20.00	20.00	20.00
J	0.221	0.275	0.265	0.267	0.544	30.00	0.752	0.757	0.021
	0.221	0.275	0.365	0.367	0.344	0.575	0.752	0.757	0.931
K _I interp F=1kN	0.692	0./1/	0.757	0.758	0.832	0.844	0.914	0.915	0.979
K _{II} interp F=1kN	0.216	0.179	0.132	0.131	0.084	0.080	0.075	0.075	0.088
	1.871	1.621	1.224	1.301	0.756	0.684	0.572	0.613	0.680
K _{II} /K _I	0.312	0.249	0.175	0.174	0.101	0.095	0.082	0.082	0.089
$F \mid K_{I}=1 \text{ MPa m}^{0.5}$	1.445	1.395	1.322	1.320	1.202	1.185	1.095	1.092	1.022
ΔF	8.667	9.068	9.251	9.900	9.014	8.533	7.663	8.193	7.763
F _{max}	9.630	10.075	10.278	11.000	10.015	9.481	8.514	9.103	8.626
F _{min}	0.963	1.008	1.028	1.100	1.002	0.948	0.851	0.910	0.863
Fa	4.334	4.534	4.625	4.950	4.507	4.266	3.831	4.096	3.882
F _{mean}	5.297	5.541	5.653	6.050	5.508	5.215	4.683	5.007	4.744
θο	-0.52	-0.44	-0.33	-0.33	-0.20	-0.19	-0.16	-0.16	-0.18
θ	-29.92	-25.28	-18.77	-18.65	-11.28	-10.67	-9.23	-9.23	-10.06
ΔK _{ea}	6.762	7.052	7.305	7.823	7.612	7.296	7.069	7.574	7.690
ΔΚ	7.514	7.835	8.117	8.692	8.458	8.107	7.855	8.416	8.544
ΔK	0.751	0.784	0.812	0.869	0.846	0.811	0.785	0.842	0.854
	3 381	3 526	3 653	3 911	3 806	3 648	3 535	3 787	3 845
	4 1 3 3	4 309	4 464	4 780	4 652	4 4 5 9	4 320	4 62.9	4 699
(W-ai)	13.72	13.66	13.57	13 57	13.40	13.37	13.19	13.18	13.01
(((-ar)) SSV: (W. ai)	10.13	10.36	10.46	10.82	10.33	10.05	9.52	9.84	9.58
551. (w-ai) _{min}	8.88	8.65	8 55	8 19	8.68	8.96	9.49	9.17	9.43
a _{i.max}	0.071	0.078	0.083	0.005	0.000	0.083	0.078	0.080	0.092
Chock SSV	1.35	1.32	1.30	1.25	1.30	1.33	1 30	1.34	1.36
N N	1.00E+07	1.52	1.77E+07	1.23	1.90	1.55	1.59	1.34	$2.57E \pm 0.7$
	1.09E+07	1./4E+0/	1.77E+07	$1.04E \pm 06$	1.00E+07	2.00E+07	2.04E+07	2.31E+07	2.57E+07
	1.24E+00	0.40E+00	2.77E+03	1.04E+00	1.30E+03	1.12E+00	4.03E+03	2.71E+00	2.33E+00
Δν(1)	300.7	301.0	301.0	307.5	307.7	314.3	314.9	323.3	329.0
1	37.54	33.92	33.84	31./5	30.87	28.98	29.29	29.00	29.93
$\Delta V(T_0)$	292.4	296.7	296.8	305.4	306.8	515.6	515.9	324.6	329.8
a _f	5.346	5.436	5.438	5.615	5.644	5.823	5.828	6.002	6.102
Δa	0.100	0.190	0.191	#N/D	#N/D	#N/D	#N/D	#N/D	0.856
∆a tot	0.275	0.365	0.367	0.544	0.573	0.752	0.757	0.931	1.031
K ₁ interp F=1kN, _f	0.717	0.757	0.757	0.832	0.844	0.914	0.915	0.979	1.014
K _{II} interp F=1kN, _f	0.179	0.132	0.132	0.084	0.080	0.075	0.075	0.088	0.098
K _{II} /K _I ,	0.249	0.175	0.174	0.101	0.095	0.082	0.082	0.089	0.097
ΔK _{Lth}	6.21	6.86	7.01	8.24	7.61	7.80	7.01	8.02	7.87
$\Delta K_{II.th}$	1.55	1.20	1.22	0.83	0.72	0.64	0.57	0.72	0.76
ΔF_{f}	8.667	9.068	9.251	9.900	9.014	8.533	7.663	8.193	7.763
F _{max.f}	9.630	10.075	10.278	11.000	10.015	9.481	8.514	9.103	8.626
F _{min.f}	0.963	1.008	1.028	1.100	1.002	0.948	0.851	0.910	0.863
F _{a.f}	4.334	4.534	4.625	4.950	4.507	4.266	3.831	4.096	3.882
F _{mean.f}	5.297	5.541	5.653	6.050	5.508	5.215	4.683	5.007	4.744
$\theta_{0,f}$	-0.44	-0.33	-0.33	-0.20	-0.19	-0.16	-0.16	-0.18	-0.19
$\theta_{0,f}$	-25.27	-18.79	-18.68	-11.27	-10.66	-9.23	-9.23	-10.06	-10.88
ΔKeaf	6.741	7.160	7.309	8.362	7.709	7.873	7.083	8.114	7.980
ΔK _{eq max f}	7.490	7.956	8.121	9.292	8.565	8.748	7.870	9.016	8.867
$\Delta K_{eq} \min f$	0.674	0.716	0.731	0.836	0.771	0.787	0.708	0.811	0.798
ΔKea a th	3 370	3 580	3.654	4.181	3.854	3.936	3.542	4.057	3.990
	0.010	5.500							
	4.082	4.336	4.426	5.064	4.668	4.767	4.289	4.914	4.833
(W-af)	4.082 13.66	4.336 13.57	4.426 13.57	5.064 13.39	4.668 13.37	4.767	4.289	4.914 13.01	4.833 12.91
(W-af) SSY: (W-af):	4.082 13.66 10.13	4.336 13.57 10.36	4.426 13.57 10.46	5.064 13.39 10.82	4.668 13.37 10.33	4.767 13.19 10.05	4.289 13.18 9.52	4.914 13.01 9.84	4.833 12.91 9.58
(W-af) SSY: (W-af) _{min}	4.082 13.66 10.13 8.88	4.336 13.57 10.36 8.65	4.426 13.57 10.46 8.55	5.064 13.39 10.82 8.19	4.668 13.37 10.33 8.68	4.767 13.19 10.05 8.96	4.289 13.18 9.52 9.49	4.914 13.01 9.84 9.17	4.833 12.91 9.58 9.43
(W-af) <u>SSY: (W-af)_{min} <u>a_{f.max}</u></u>	4.082 13.66 10.13 8.88 0.071	4.336 13.57 10.36 8.65 0.080	4.426 13.57 10.46 8.55 0.083	5.064 13.39 10.82 8.19 0.109	4.668 13.37 10.33 8.68 0.093	4.767 13.19 10.05 8.96 0.097	4.289 13.18 9.52 9.49 0.078	4.914 13.01 9.84 9.17 0.103	4.833 12.91 9.58 9.43 0.099
(W-af) <u>SSY: (W-af)_{min} <u>a_{f.max}</u> <u>r_{n.th}</u> <u>Check SSV</u></u>	4.082 13.66 10.13 8.88 0.071	4.336 13.57 10.36 8.65 0.080	4.426 13.57 10.46 8.55 0.083 1.30	5.064 13.39 10.82 8.19 0.109 1.24	4.668 13.37 10.33 8.68 0.093 1.29	4.767 13.19 10.05 8.96 0.097 1.31	4.289 13.18 9.52 9.49 0.078 1.38	4.914 13.01 9.84 9.17 0.103 1.32	4.833 12.91 9.58 9.43 0.099

Step	18	19	20	21	22	23	24	25	26
Date	########	31/08/2023	31/08/2023	01/09/2023	02/09/2023	03/09/2023	03/09/2023	03/09/2023	04/09/2023
Time	14:20:00	20:10:00	22:00:00	20:30:00	00:15:00	20:40:00	22:10:00	22:50:00	09:40:00
ai	6.102	6.259	6.305	6.505	6.526	6.524	6.532	6.532	6.565
R	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
ΛKı	8.40	8,50	8.00	8.00	7.60	8.00	8.30	8,50	9.00
f	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00
у Да	1 031	1 188	1 2 3 4	1 434	1 455	1 453	1 461	1 461	1 494
K- intern F=1kN	1.014	1.066	1.081	1 143	1 1 50	1 1 4 9	1.152	1.152	1.162
K_intern F=1kN	0.098	0.116	0.121	0.140	0.142	0.142	0.142	0.142	0.145
	0.815	0.927	0.898	0.981	0.938	0.987	1.026	1.051	1 1 2 2
	0.015	0.109	0.112	0.123	0.123	0.123	0.124	0.124	0.125
$\frac{\mathbf{N}_{\text{II}}}{\mathbf{E} + \mathbf{V} - 1} \mathbf{M} \mathbf{D}_{\text{F}} = \frac{0.5}{100}$	0.097	0.038	0.025	0.125	0.125	0.125	0.124	0.124	0.125
$F K_l = 1 MPa m$	0.980	7 072	7.400	6.006	6.610	6.061	7 207	7 2 9 1	7 740
Б	0.200	0.912	× 222	0.990	7 2 4 4	7 725	7.207 8.008	201	8 600
Γ _{max}	9.207	0.030	0.222	0.777	0.724	0.772	0.000	0.201	0.009
	0.921	0.880	0.822	0.///	0.734	0.773	0.801	0.820	0.801
	4.143	3.980	3.700	3.498	3.305	3.481	3.004	3.090	3.8/4
F _{mean}	5.064	4.8/2	4.522	4.276	4.039	4.254	4.404	4.511	4./35
<u> </u>	-0.19	-0.21	-0.22	-0.24	-0.24	-0.24	-0.24	-0.24	-0.24
θ ₀	-10.88	-12.17	-12.50	-13.59	-13.67	-13.67	-13.69	-13.69	-13.80
ΔΚ _{ea}	8.517	8.649	8.148	8.176	7.769	8.178	8.485	8.690	9.204
ΔK _{ea max}	9.463	9.610	9.053	9.085	8.633	9.087	9.428	9.655	10.227
ΔK _{ea min}	0.946	0.961	0.905	0.908	0.863	0.909	0.943	0.966	1.023
ΔK _{ea.a}	4.258	4.324	4.074	4.088	3.885	4.089	4.243	4.345	4.602
ΔK _{eg mean}	5.205	5.285	4.979	4.996	4.748	4.998	5.186	5.311	5.625
(W-ai)	12.91	12.75	12.71	12.51	12.48	12.49	12.48	12.48	12.45
SSY: (W-ai) _{min}	9.90	9.71	9.36	9.10	8.84	9.07	9.23	9.34	9.57
a _{i.max}	9.11	9.30	9.65	9.91	10.17	9.94	9.78	9.67	9.44
r _n	0.113	0.117	0.104	0.104	0.094	0.104	0.112	0.118	0.132
Check SSY	1.30	1.31	1.36	1.37	1.41	1.38	1.35	1.34	1.30
N	0 (0T) 07	0.655.07	2 001 07	0.000	0.415.07	0.405.05	0.445.05	2.551.07	2 (21) 07
14	2.63E+07	2.65E+07	2.89E+07	2.92E+07	3.41E+07	3.43E+07	3.44E+07	3.35E+07	3.63E+07
ΔΝ	2.63E+07 6.30E+05	2.65E+07 1.95E+05	2.89E+07 2.43E+06	2.92E+07 2.56E+05	3.41E+07 4.93E+06	3.43E+07 1.61E+05	3.44E+07 7.26E+04	3.55E+07 1.17E+06	3.63E+07 7.65E+05
$\frac{\Delta N}{\Delta V(T)}$	2.63E+07 6.30E+05 338.3	2.65E+07 1.95E+05 339.9	2.43E+07 2.43E+06 352.6	2.92E+07 2.56E+05 352.9	3.41E+07 4.93E+06 355.1	3.43E+07 1.61E+05 355.1	3.44E+07 7.26E+04 355.1	3.55E+07 1.17E+06 355.0	3.63E+07 7.65E+05 367.5
ΔN ΔV(T) T	2.63E+07 6.30E+05 338.3 30.36	2.65E+07 1.95E+05 339.9 29.73	2.43E+06 352.6 31.26	2.92E+07 2.56E+05 352.9 30.65	3.41E+07 4.93E+06 355.1 32.38	3.43E+07 1.61E+05 355.1 32.06	3.44E+07 7.26E+04 355.1 32.05	3.55E+07 1.17E+06 355.0 30.65	3.63E+07 7.65E+05 367.5 32.10
	2.63E+07 6.30E+05 338.3 30.36 337.9	2.65E+07 1.95E+05 339.9 29.73 340.4	2.89E+07 2.43E+06 352.6 31.26 351.0	2.92E+07 2.56E+05 352.9 30.65 352.1	3.41E+07 4.93E+06 355.1 32.38 352.0	3.43E+07 1.61E+05 355.1 32.06 352.5	3.44E+07 7.26E+04 355.1 32.05 352.5	3.55E+07 1.17E+06 355.0 30.65 354.2	3.63E+07 7.65E+05 367.5 32.10 364.7
$ \frac{\Delta N}{\Delta V(T)} $ $ \frac{\Delta V(T)}{T} $ $ \frac{\Delta V(T_0)}{a_f} $	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756
	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D	2.43E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D
	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234	2.43E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685
	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081	2.43E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217
	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144 0.140	2.56E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155
$ \frac{\Delta N}{\Delta V(T)} $ $ T$ $ \frac{\Delta V(T_0)}{a_f} $ $ \frac{a_f}{\Delta a} $ $ \Delta a \text{ tot} $ $ \frac{K_t \text{ interp } F=1kN_{,f}}{K_{tr} \text{ interp } F=1kN_{,f}} $	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112	2.43E+07 2.43E+06 352.6 351.0 6.505 #N/D 1.434 1.144 0.140 0.123	2.56E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.124	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128
$\begin{array}{c} \Lambda \\ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ \Delta a \\ tot \\ K_i interp F=1kN, f \\ K_{ij} f = 1kN, f \\ K_{ij} f \\ AK_{ij} \\ AK_{ij} \end{array}$	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62	2.89E+07 2.43E+06 352.6 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123 7.60	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.124 8.30	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43
$\begin{array}{c} \Lambda \\ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ tot \\ K_i interp F=1kN_{sf} \\ K_{ij} interp F=1kN_{sf} \\ K_{ij}/K_{isf} \\ \Delta K_{1,th} \\ \Delta K_{1,th} \end{array}$	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62 0.97	2.89E+07 2.43E+06 352.6 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04	2.56E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123 7.60 0.94	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.142 0.124 8.30 1.03	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20
$\begin{array}{c} \Lambda \\ \Delta N \\ \Delta V(T) \\ \hline T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ tot \\ K_i interp F=1kN, f \\ K_{ii} interp F=1kN, f \\ K_{ii} / K_{iof} \\ \Delta K_{i,th} \\ \Delta K_{i,th} \\ \Delta F_c \end{array}$	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62 0.97 7.972	2.89E+07 2.43E+06 352.6 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.142 0.123 7.60 0.94 6.610	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.142 0.124 8.30 1.03 7.207	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07 7.381	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749
$\begin{array}{c} \Lambda \\ \Delta N \\ \Delta V(T) \\ \hline T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ \Delta a \\ tot \\ K_I interp F=1kN, f \\ K_{II}/K_{lyf} \\ \hline \Delta K_{ILth} \\ \Delta K_{ILth} \\ \Delta F_f \\ \hline F_{L} \\ c \\ \end{array}$	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286 9.207	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62 0.97 7.972 8.858	2.89E+07 2.43E+06 352.6 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400 8.222	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996 7.774	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.142 0.123 7.60 0.94 6.610 7.344	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961 7.735	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.142 0.124 8.30 1.03 7.207 8.008	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07 7.381 8.201	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749 8.609
$\begin{array}{c} \Lambda \\ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ tot \\ K_I interp F=1kN_{sf} \\ K_{II} / K_{Isf} \\ \Delta K_{ILth} \\ \Delta K_{ILth} \\ \Delta F_f \\ F_{max,f} \\ F_{max,f} \\ \end{array}$	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286 9.207 0.921	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62 0.97 7.972 8.858 0.886	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400 8.222 0.822	2.56E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996 7.774 0.777	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.142 0.123 7.60 0.94 6.610 7.344 0.734	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961 7.735 0.773	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.142 0.124 8.30 1.03 7.207 8.008 0.801	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07 7.381 8.201 0.820	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749 8.609 0.861
$\begin{array}{c} \Lambda \\ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ tot \\ K_I interp F=1kN_{sf} \\ K_{II} interp F=1kN_{sf} \\ K_{II}/K_{lsf} \\ \Delta K_{ILth} \\ \Delta F_f \\ F_{max,f} \\ F_{min,f} \\ F \\ \end{array}$	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286 9.207 0.921 4.143	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62 0.97 7.972 8.858 0.886 3.986	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400 8.222 0.822 3.700	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996 7.774 0.777 3.498	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123 7.60 0.94 6.610 7.344 0.734 3.305	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961 7.735 0.773 3.481	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.142 0.124 8.30 1.03 7.207 8.008 0.801 3.604	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07 7.381 8.201 0.820 3.690	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749 8.609 0.861 3.874
$\frac{\Delta N}{\Delta V(T)}$ T $\Delta V(T_0)$ a_f Δa $\Delta a tot$ $K_t interp F=1kN_{sf}$ K_{II} / K_{Isf} $\Delta K_{I,th}$ $\Delta K_{I,th}$ ΔF_f $F_{max,f}$ $F_{a,f}$ F	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286 9.207 0.921 4.143 5.064	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62 0.97 7.972 8.858 0.886 3.986 4.872	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400 8.222 0.822 3.700 4.522	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996 7.774 0.777 3.498 4.276	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123 7.60 0.94 6.610 7.344 0.734 3.305 4.039	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961 7.735 0.773 3.481 4.254	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.124 8.30 1.03 7.207 8.008 0.801 3.604 4.404	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07 7.381 8.201 0.820 3.690 4.511	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749 8.609 0.861 3.874 4.735
$\frac{\Delta N}{\Delta V(T)}$ T $\Delta V(T_0)$ a_f $\Delta a tot$ $K_t interp F=1kN_{sf}$ $K_{II} interp F=1kN_{sf}$ K_{II}/K_{1sf} $\Delta K_{I,th}$ $\Delta K_{I,th}$ ΔF_f $F_{max,f}$ $F_{min,f}$ $F_{mean,f}$ A	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286 9.207 0.921 4.143 5.064 -0.21	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62 0.97 7.972 8.858 0.886 3.986 4.872 -0.22	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400 8.222 0.822 3.700 4.522 -0.24	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996 7.774 0.777 3.498 4.276 -0.24	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123 7.60 0.94 6.610 7.344 0.734 3.305 4.039 -0.24	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961 7.735 0.773 3.481 4.254 -0.24	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.124 8.30 1.03 7.207 8.008 0.801 3.604 4.404 -0.24	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07 7.381 8.201 0.820 3.690 4.511 -0.24	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749 8.609 0.861 3.874 4.735
$\begin{array}{c} \Lambda \\ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN_{sf} \\ K_{II} interp F=1kN_{sf} \\ K_{II} / K_{Isf} \\ \Delta K_{I,th} \\ \Delta K_{I,th} \\ \Delta F_f \\ F_{max,f} \\ F_{max,f} \\ F_{mean,f} \\ \theta_{0,f} \\ \theta_{0,f} \end{array}$	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286 9.207 0.921 4.143 5.064 -0.21 -1.217	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62 0.97 7.972 8.858 0.886 3.986 4.872 -0.22 -12.50	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400 8.222 0.822 3.700 4.522 -0.24 -13.60	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996 7.774 0.777 3.498 4.276 -0.24 -13.67	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123 7.60 0.94 6.610 7.344 0.734 3.305 4.039 -0.24 -13.66	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961 7.735 0.773 3.481 4.254 -0.24 -13.69	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.124 8.30 1.03 7.207 8.008 0.801 3.604 4.404 -0.24 -13.69	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07 7.381 8.201 0.820 3.690 4.511 -0.24 -13.80	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749 8.609 0.861 3.874 4.735 -0.25
$ \frac{\Delta N}{\Delta V(T)} $ $ \frac{\Delta V(T_0)}{T} $ $ \frac{a_f}{\Delta a} $ $ \frac{\Delta a \text{ tot}}{K_1 \text{ interp } F = 1 \text{ kN}, \text{ f}} $ $ \frac{K_{II} \text{ / } K_{II} / K_{II} \text{ f}}{\Delta K_{I,th}} $ $ \frac{\Delta K_{I,th}}{\Delta F_f} $ $ \frac{F_{max,f}}{F_{max,f}} $ $ \frac{F_{mex,f}}{F_{mex,f}} $ $ \frac{\theta_{0,f}}{\theta_{0,f}} $	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286 9.207 0.921 4.143 5.064 -0.21 -12.17 8.880	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62 0.97 7.972 8.858 0.886 3.986 4.872 -0.22 -12.50 8.778	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400 8.222 0.822 3.700 4.522 -0.24 -13.60 8.649	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996 7.774 0.777 3.498 4.276 -0.24 -13.67 8.223	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123 7.60 0.94 6.610 7.344 0.734 3.305 4.039 -0.24 -13.66 7.764	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961 7.735 0.773 3.481 4.254 -0.24 -13.69 8.105	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.124 8.30 1.03 7.207 8.008 0.801 3.604 4.404 -0.24 -13.69 8.485	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07 7.381 8.201 0.820 3.690 4.511 -0.24 -13.80 8.767	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749 8.609 0.861 3.874 4.735 -0.25 -14.10 9.655
$\begin{array}{c} \Lambda \\ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ \Delta a \\ \Delta tot \\ K_1 interp F=1kN_{,f} \\ K_{II}/K_{1sf} \\ \Delta K_{ILth} \\ \Delta K_{ILth} \\ \Delta F_f \\ F_{max,f} \\ F_{min,f} \\ F_{a,f} \\ F_{mean,f} \\ \theta_{0,f} \\ \theta_{0,f} \\ \theta_{0,f} \\ \Delta K_{eo,f} \\ \end{array}$	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286 9.207 0.921 4.143 5.064 -0.21 -12.17 8.989 9.00°	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62 0.97 7.972 8.858 0.886 3.986 4.872 -0.22 -12.50 8.778 9.752	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400 8.222 0.822 3.700 4.522 -0.24 -13.60 8.649 9.600	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996 7.774 0.777 3.498 4.276 -0.24 -13.67 8.223 9.127	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123 7.60 0.94 6.610 7.344 0.734 3.305 4.039 -0.24 -13.66 7.764 8.627	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961 7.735 0.773 3.481 4.254 -0.24 -13.69 8.195 9.106	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.124 8.30 1.03 7.207 8.008 0.801 3.604 4.404 -0.24 -13.69 8.485 9.422	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07 7.381 8.201 0.820 3.690 4.511 -0.24 -13.80 8.767 9.741	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749 8.609 0.861 3.874 4.735 -0.25 -14.10 9.655 10.728
$\begin{array}{c} \Lambda \\ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta$	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286 9.207 0.921 4.143 5.064 -0.21 -12.17 8.989 9.988	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62 0.97 7.972 8.858 0.886 3.986 4.872 -0.22 -12.50 8.778 9.753 0.979	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400 8.222 0.822 3.700 4.522 -0.24 -13.60 8.649 9.609 0.965	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996 7.774 0.777 3.498 4.276 -0.24 -13.67 8.223 9.137 0.922	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123 7.60 0.94 6.610 7.344 0.734 3.305 4.039 -0.24 -13.66 7.764 8.627 0.737	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961 7.735 0.773 3.481 4.254 -0.24 -13.69 8.195 9.106 0.920	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.124 8.30 1.03 7.207 8.008 0.801 3.604 4.404 -0.24 -13.69 8.485 9.428	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07 7.381 8.201 0.820 3.690 4.511 -0.24 -13.80 8.767 9.741 0.827	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749 8.609 0.861 3.874 4.735 -0.25 -14.10 9.655 10.728 0.966
$\begin{array}{c} \Lambda \\ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta$	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286 9.207 0.921 4.143 5.064 -0.21 -12.17 8.989 9.988 0.899 4.424	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62 0.97 7.972 8.858 0.886 3.986 4.872 -0.22 -12.50 8.778 9.753 0.878 4.299	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400 8.222 0.822 3.700 4.522 -0.24 -13.60 8.649 9.609 0.865 4.324	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996 7.774 0.777 3.498 4.276 -0.24 -13.67 8.223 9.137 0.822 4.112	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123 7.60 0.94 6.610 7.344 0.734 3.305 4.039 -0.24 -13.66 7.764 8.627 0.776 2.892	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961 7.735 0.773 3.481 4.254 -0.24 -13.69 8.195 9.106 0.820	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.142 0.124 8.30 1.03 7.207 8.008 0.801 3.604 4.404 -0.24 -13.69 8.485 9.428 0.849 4.242	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07 7.381 8.201 0.820 3.690 4.511 -0.24 -13.80 8.767 9.741 0.877 4.392	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749 8.609 0.861 3.874 4.735 -0.25 -14.10 9.655 10.728 0.966 4.829
$\begin{array}{c} \Lambda \\ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta$	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286 9.207 0.921 4.143 5.064 -0.21 -12.17 8.989 9.988 0.899 4.494 5.442	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62 0.97 7.972 8.858 0.886 3.986 4.872 -0.22 -12.50 8.778 9.753 0.878 4.389 5.215	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400 8.222 0.822 3.700 4.522 -0.24 -13.60 8.649 9.609 0.865 4.324 5.227	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996 7.774 0.777 3.498 4.276 -0.24 -13.67 8.223 9.137 0.822 4.112 4.022	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123 7.60 0.94 6.610 7.344 0.734 3.305 4.039 -0.24 -13.66 7.764 8.627 0.776 3.882 4.722	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961 7.735 0.773 3.481 4.254 -0.24 -13.69 8.195 9.106 0.820 4.098 4.052	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.142 0.142 0.142 0.142 8.30 1.03 7.207 8.008 0.801 3.604 4.404 -0.24 -13.69 8.485 9.428 0.849 4.243 5.122	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07 7.381 8.201 0.820 3.690 4.511 -0.24 -13.80 8.767 9.741 0.877 4.383 5.202	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749 8.609 0.861 3.874 4.735 -0.25 -14.10 9.655 10.728 0.966 4.828 5.647
$\begin{array}{c} \Lambda \\ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN_{sf} \\ K_{II} interp F=1kN_{sf} \\ K_{II} herp F=1kN_{sf} \\ K_{II} herp F=1kN_{sf} \\ AK_{Lth} \\ \Delta K_{Lth} \\ \Delta K_{ILth} \\ \Delta K_{f} \\ F_{max.f} \\ F_{max.f} \\ F_{max.f} \\ F_{mean.f} \\ \theta_{0.f} \\ \theta_{0.f} \\ \Delta K_{ea.f} \\ \Delta K_{ea.max.f} \\ \Delta K_{e$	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286 9.207 0.921 4.143 5.064 -0.21 -12.17 8.989 9.988 0.899 4.494 5.443 12.75	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62 0.97 7.972 8.858 0.886 3.986 4.872 -0.22 -12.50 8.778 9.753 0.878 4.389 5.315	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400 8.222 0.822 3.700 4.522 -0.24 -13.60 8.649 9.609 0.865 4.324 5.237 12.52	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996 7.774 0.777 3.498 4.276 -0.24 -13.67 8.223 9.137 0.822 4.112 4.980	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123 7.60 0.94 6.610 7.344 0.734 3.305 4.039 -0.24 -13.66 7.764 8.627 0.776 3.882 4.702 12.42	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961 7.735 0.773 3.481 4.254 -0.24 -13.69 8.195 9.106 0.820 4.098 4.963 12.42	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.142 0.142 0.142 0.142 0.142 0.124 8.30 1.03 7.207 8.008 0.801 3.604 4.404 -0.24 -13.69 8.485 9.428 0.849 4.243 5.138	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07 7.381 8.201 0.820 3.690 4.511 -0.24 -13.80 8.767 9.741 0.877 4.383 5.309 12.45	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749 8.609 0.861 3.874 4.735 -0.25 -14.10 9.655 10.728 0.966 4.828 5.847
$\begin{array}{c} \Lambda \\ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN_{sf} \\ K_0 interp F=1kN_{sf} \\ K_0 / K_{bf} \\ \Delta K_{t,th} \\ \Delta K_{t,th} \\ \Delta K_{t,th} \\ \Delta K_{t,th} \\ \delta K_{f} \\ F_{max,f} \\ F_{max,f} \\ F_{max,f} \\ f_{max,f} \\ \delta K_{ca,f} \\ \Delta K_{ca,f} \\ \Delta K_{ca,c} \\ \delta K_{ca,$	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286 9.207 0.921 4.143 5.064 -0.21 -12.17 8.989 9.988 0.899 4.494 5.443 12.75 2.65	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.121 0.121 0.122 8.62 0.97 7.972 8.858 0.886 3.986 4.872 -0.22 -12.50 8.778 9.753 0.878 4.389 5.315 12.71 2.51	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400 8.222 0.822 3.700 4.522 -0.24 -13.60 8.649 9.609 0.865 4.324 5.237 12.50	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996 7.774 0.777 3.498 4.276 -0.24 -13.67 8.223 9.137 0.822 4.112 4.980 12.48 2.15	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123 7.60 0.94 6.610 7.344 0.734 3.305 4.039 -0.24 -13.66 7.764 8.627 0.776 3.882 4.702 12.49 2.65	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961 7.735 0.773 3.481 4.254 -0.24 -13.69 8.195 9.106 0.820 4.098 4.963 12.48 2.67	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.142 0.142 0.142 0.124 8.30 1.03 7.207 8.008 0.801 3.604 4.404 -0.24 -13.69 8.485 9.428 0.849 4.243 5.138 12.48	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07 7.381 8.201 0.820 3.690 4.511 -0.24 -13.80 8.767 9.741 0.877 4.383 5.309 12.45	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749 8.609 0.861 3.874 4.735 -0.25 -14.10 9.655 10.728 0.966 4.828 5.847 12.25
$\begin{array}{c} \Lambda \\ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN_{sf} \\ K_0 interp F=1kN_{sf} \\ K_0 / K_{tof} \\ \Delta K_{th} \\ \Delta K_{th} \\ \Delta K_{th} \\ \Delta K_{f} \\ F_{max.f} \\ F_{max.f} \\ F_{max.f} \\ F_{mean.f} \\ \theta_{0.f} \\ \theta_{0.f} \\ \delta K_{e0.mean.f} \\ (W-af) \\ SSY: (W-af)_{min} \end{array}$	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286 9.207 0.921 4.143 5.064 -0.21 -12.17 8.989 9.988 0.899 4.494 5.443 12.75 9.90	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.121 0.121 0.112 8.62 0.97 7.972 8.858 0.886 3.986 4.872 -0.22 -12.50 8.778 9.753 0.878 4.389 5.315 12.71 9.71 9.71	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400 8.222 0.822 3.700 4.522 -0.24 -13.60 8.649 9.609 0.865 4.324 5.237 12.50 9.36	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996 7.774 0.777 3.498 4.276 -0.24 -13.67 8.223 9.137 0.822 4.112 4.980 12.48 9.10	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123 7.60 0.94 6.610 7.344 0.734 3.305 4.039 -0.24 -13.66 7.764 8.627 0.776 3.882 4.702 12.49 8.84 12.49	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961 7.735 0.773 3.481 4.254 -0.24 -13.69 8.195 9.106 0.820 4.098 4.963 12.48 9.07	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.142 0.142 0.124 8.30 1.03 7.207 8.008 0.801 3.604 4.404 -0.24 -13.69 8.485 9.428 0.849 4.243 5.138 12.48 9.23	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07 7.381 8.201 0.820 3.690 4.511 -0.24 -13.80 8.767 9.741 0.877 4.383 5.309 12.45 9.34	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749 8.609 0.861 3.874 4.735 -0.25 -14.10 9.655 10.728 0.966 4.828 5.847 12.25 9.57
$\begin{array}{c} \Lambda \\ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN, f \\ K_0 K_0 \\ M_0 \\ M_0 \\ K_0 \\ M_0 \\$	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286 9.207 0.921 4.143 5.064 -0.21 -12.17 8.989 9.988 0.899 4.494 5.443 12.75 9.90 9.11	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62 0.97 7.972 8.858 0.886 3.986 4.872 -0.22 -12.50 8.778 9.753 0.878 4.389 5.315 12.71 9.71 9.30	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400 8.222 0.822 3.700 4.522 -0.24 -13.60 8.649 9.609 0.865 4.324 5.237 12.50 9.36 9.65	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996 7.774 0.777 3.498 4.276 -0.24 -13.67 8.223 9.137 0.822 4.112 4.980 12.48 9.10 9.91	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123 7.60 0.94 6.610 7.344 0.734 3.305 4.039 -0.24 -13.66 7.764 8.627 0.776 3.882 4.702 12.49 8.84 10.17	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961 7.735 0.773 3.481 4.254 -0.24 -13.69 8.195 9.106 0.820 4.098 4.963 12.48 9.07 9.94	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.142 0.124 8.30 1.03 7.207 8.008 0.801 3.604 4.404 -0.24 -13.69 8.485 9.428 0.849 4.243 5.138 12.48 9.23 9.78	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07 7.381 8.201 0.820 3.690 4.511 -0.24 -13.80 8.767 9.741 0.877 4.383 5.309 12.45 9.34 9.67	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749 8.609 0.861 3.874 4.735 -0.25 -14.10 9.655 10.728 0.966 4.828 5.847 12.25 9.57 9.44
$\begin{array}{c} \Lambda \\ \Delta N \\ \Delta V(T) \\ \hline T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN, f \\ K_{II} interp F=1kN, f \\ K_{II} interp F=1kN, f \\ \Delta K_{II,th} \\ \Delta K_{II,th} \\ \Delta K_{II,th} \\ \Delta F_f \\ \hline F_{max.f} \\ F_{min.f} \\ \hline F_{a.f} \\ \hline F_{mcan.f} \\ \theta_{0.f} \\ \theta_{0.f} \\ \Delta K_{co.min.f} \\ \Delta K_{co.mean.f} \\ (W-af) \\ SSY: (W-af)_{min} \\ a_{f.max} \\ F_{n.th} \\ \end{array}$	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286 9.207 0.921 4.143 5.064 -0.21 -12.17 8.989 9.988 0.899 4.494 5.443 12.75 9.90 9.11 0.126	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62 0.97 7.972 8.858 0.886 3.986 4.872 -0.22 -12.50 8.778 9.753 0.878 4.389 5.315 12.71 9.71 9.30 0.120	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400 8.222 0.822 3.700 4.522 -0.24 -13.60 8.649 9.609 0.865 4.324 5.237 12.50 9.36 9.65 0.117	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996 7.774 0.777 3.498 4.276 -0.24 -13.67 8.223 9.137 0.822 4.112 4.980 12.48 9.10 9.91 0.105	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123 7.60 0.94 6.610 7.344 0.734 3.305 4.039 -0.24 -13.66 7.764 8.627 0.776 3.882 4.702 12.49 8.84 10.17 0.094	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961 7.735 0.773 3.481 4.254 -0.24 -13.69 8.195 9.106 0.820 4.098 4.963 12.48 9.07 9.94 0.105	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.142 0.142 0.142 0.142 0.124 8.30 1.03 7.207 8.008 0.801 3.604 4.404 -0.24 -13.69 8.485 9.428 0.849 4.243 5.138 12.48 9.23 9.78 0.112	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.145 0.125 8.57 1.07 7.381 8.201 0.820 3.690 4.511 -0.24 -13.80 8.767 9.741 0.877 4.383 5.309 12.45 9.34 9.67 0.120	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749 8.609 0.861 3.874 4.735 -0.25 -14.10 9.655 10.728 0.966 4.828 5.847 12.25 9.57 9.44 0.145
$\begin{array}{c} \Lambda \\ \Delta N \\ \Delta V(T) \\ \hline T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN,_f \\ K_{II} interp F=1kN,_{ff} \\ K_{II} interp F=1kN,_{ff} \\ \Delta K_{Lth} \\ \Delta F_f \\ \hline F_{max.f} \\ \hline F_{max.f} \\ \hline F_{m.a.f} \\ \hline F_{a.f} \\ \hline F_{a.f} \\ \hline F_{a.f} \\ \hline F_{a.f} \\ \hline AK_{ea.min.f} \\ \hline \Delta K_{ea.min.f} \\ \Delta K_{ea.min.f} \\ \hline \Delta K_{ea.min.f} \\ \hline \Delta K_{ea.min.f} \\ \hline \Delta K_{ea.mean.f} \\ (W-af) \\ \hline SSY: (W-af)_{min} \\ \hline a_{f.max} \\ \hline r_{p.th} \\ \hline Check SSY \\ \end{array}$	2.63E+07 6.30E+05 338.3 30.36 337.9 6.259 #N/D 1.188 1.066 0.116 0.109 8.83 0.96 8.286 9.207 0.921 4.143 5.064 -0.21 -12.17 8.989 9.988 0.899 4.494 5.443 12.75 9.90 9.11 0.126 1.29	2.65E+07 1.95E+05 339.9 29.73 340.4 6.305 #N/D 1.234 1.081 0.121 0.112 8.62 0.97 7.972 8.858 0.886 3.986 4.872 -0.22 -12.50 8.778 9.753 0.878 4.389 5.315 12.71 9.71 9.30 0.120 1.31	2.89E+07 2.43E+06 352.6 31.26 351.0 6.505 #N/D 1.434 1.144 0.140 0.123 8.46 1.04 7.400 8.222 0.822 3.700 4.522 -0.24 -13.60 8.649 9.609 0.865 4.324 5.237 12.50 9.36 9.65 0.117 1.34	2.92E+07 2.56E+05 352.9 30.65 352.1 6.526 #N/D 1.455 1.150 0.142 0.123 8.04 0.99 6.996 7.774 0.777 3.498 4.276 -0.24 -13.67 8.223 9.137 0.822 4.112 4.980 12.48 9.10 9.91 0.105 1.37	3.41E+07 4.93E+06 355.1 32.38 352.0 6.524 #N/D 1.453 1.149 0.142 0.123 7.60 0.94 6.610 7.344 0.734 3.305 4.039 -0.24 -13.66 7.764 8.627 0.776 3.882 4.702 12.49 8.84 10.17 0.094 1.41	3.43E+07 1.61E+05 355.1 32.06 352.5 6.532 #N/D 1.461 1.151 0.142 0.124 8.02 0.99 6.961 7.735 0.773 3.481 4.254 -0.24 -13.69 8.195 9.106 0.820 4.098 4.963 12.48 9.07 9.94 0.105 1.38	3.44E+07 7.26E+04 355.1 32.05 352.5 6.532 #N/D 1.461 1.152 0.142 0.142 0.124 8.30 1.03 7.207 8.008 0.801 3.604 4.404 -0.24 -13.69 8.485 9.428 0.849 4.243 5.138 12.48 9.23 9.78 0.112 1.35	3.55E+07 1.17E+06 355.0 30.65 354.2 6.565 #N/D 1.494 1.161 0.125 8.57 1.07 7.381 8.201 0.820 3.690 4.511 -0.24 -13.80 8.767 9.741 0.877 4.383 5.309 12.45 9.34 9.67 0.120 1.33	3.63E+07 7.65E+05 367.5 32.10 364.7 6.756 #N/D 1.685 1.217 0.155 0.128 9.43 1.20 7.749 8.609 0.861 3.874 4.735 -0.25 -14.10 9.655 10.728 0.966 4.828 5.847 12.25 9.57 9.44 0.145 1.28

Step	27	28	29	30	31	32	33	34	35
Date	########	04/09/2023	04/09/2023	04/09/2023	05/09/2023	05/09/2023	05/09/2023	05/09/2023	05/09/2023
Time	16.20.00	18.30.00	20:45:00	21.20.00	08.35.00	10.20.00	13.55.00	15.45.00	22:30:00
ai	6756	6.871	6 991	7.013	7.086	7 100	7 1 2 4	7 140	7 1 5 3
R	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	0.1	8.80	8.50	8 10	8.00	7.80	7.60	7.40	7.20
<u>A</u> K _I	9.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
<u>J</u>	1 (95	1,800	1.020	1.042	2 015	2 0 2 0	2 052	2.000	2.082
	1.085	1.800	1.920	1.942	2.015	2.029	2.055	2.069	2.082
K _I interp F=1kN	1.217	1.250	1.283	1.289	1.309	1.312	1.319	1.323	1.327
K _{II} interp F=1kN	0.155	0.159	0.162	0.162	0.163	0.163	0.163	0.163	0.163
	1.148	1.120	1.070	1.017	0.995	0.968	0.940	0.913	0.899
K _{II} /K _I	0.128	0.127	0.126	0.126	0.124	0.124	0.124	0.123	0.123
$F \mid K_{I}=1 \text{ MPa m}^{0.5}$	0.822	0.800	0.780	0.776	0.764	0.762	0.758	0.756	0.754
ΔF	7.394	7.042	6.626	6.285	6.114	5.944	5.763	5.593	5.503
F _{max}	8.215	7.824	7.363	6.983	6.793	6.604	6.403	6.215	6.115
F _{min}	0.822	0.782	0.736	0.698	0.679	0.660	0.640	0.621	0.611
Fa	3.697	3.521	3.313	3.143	3.057	2.972	2.881	2.797	2.752
Fmean	4.518	4.303	4.049	3.841	3.736	3.632	3.522	3.418	3.363
θο	-0.25	-0.25	-0.24	-0.24	-0.24	-0.24	-0.24	-0.24	-0.24
θο	-14.10	-14.07	-13.93	-13.90	-13.77	-13.74	-13.70	-13.67	-13.64
ΔK _{ea}	9.214	9.008	8.697	8.287	8.181	7.976	7.770	7.565	7.462
ΔK _{ent} max	10.238	10.009	9.663	9.207	9.090	8.862	8.633	8.405	8.291
	1.024	1.001	0.966	0.921	0.909	0.886	0.863	0.841	0.829
ΔΚ	4.607	4.504	4.348	4.143	4.090	3.988	3.885	3.782	3.731
	5 631	5 505	5 315	5.064	4 999	4 874	4 748	4 623	4 560
(W-ai)	12.25	12.14	12.02	12.00	11.92	11.91	11.89	11.87	11.86
(((-ai)) SSV: (W ai)	9.35	9.13	8.85	8.62	8 50	8 30	8 26	8.13	8.07
551. (w-ai) _{min}	9.66	9.88	10.16	10.39	10.51	10.62	10.75	10.88	10.94
a _{i.max}	0.132	0.127	0.118	0.107	0.104	0.000	0.094	0.080	0.087
Cheak SSV	1.21	1.22	1.26	1.20	1.40	1.42	1.4.4	1.46	1.47
N N	2.65E±07	$2.67E \pm 0.7$	2 69 - 1.50	2 200 + 07	2 925+07	1.42	2 00E+07	2.05E+07	1.47 4.05E±07
1	5.05E+07	3.07E+07	5.00E+07	J.60E+07	J.62E+07	5.60E+07	J.66E+07	5.95E+07	4.03E+07
A NI	$1.00E \pm 0.5$	$2.24E \pm 0.5$	$1.12E \pm 0.5$	1.17E + 0.6	2 200 105	2.21E + 0.5	$2.00E \pm 0.5$	7.22E+05	$0.92E \pm 0.5$
	1.90E+05	2.34E+05	1.12E+05	1.17E+06	2.38E+05	3.31E+05	2.00E+05	7.32E+05	9.83E+05
$\frac{\Delta N}{\Delta V(T)}$	1.90E+05 374.0	2.34E+05 380.1	1.12E+05 381.0	1.17E+06 383.7	2.38E+05 384.4	3.31E+05 386.6	2.00E+05 387.8	7.32E+05 388.5	9.83E+05 384.7
ΔN ΔV(T) T	1.90E+05 374.0 32.13	2.34E+05 380.1 31.66	1.12E+05 381.0 31.41	1.17E+06 383.7 30.39	2.38E+05 384.4 30.31	3.31E+05 386.6 30.90	2.00E+05 387.8 31.08	7.32E+05 388.5 31.02	9.83E+05 384.7 27.89
ΔN ΔV(T) T ΔV(T ₀)	1.90E+05 374.0 32.13 371.1	2.34E+05 380.1 31.66 377.8 (001	1.12E+05 381.0 31.41 379.1	1.17E+06 383.7 30.39 383.3 7.006	2.38E+05 384.4 30.31 384.1	3.31E+05 386.6 30.90 385.4	2.00E+05 387.8 31.08 386.3	7.32E+05 388.5 31.02 387.1 7.152	9.83E+05 384.7 27.89 387.9
$ \Delta N \Delta V(T) T \Delta V(T_0) a_f $	1.90E+05 374.0 32.13 371.1 6.871	2.34E+05 380.1 31.66 377.8 6.991	1.12E+05 381.0 31.41 379.1 7.013	1.17E+06 383.7 30.39 383.3 7.086	2.38E+05 384.4 30.31 384.1 7.100	3.31E+05 386.6 30.90 385.4 7.124	2.00E+05 387.8 31.08 386.3 7.140	7.32E+05 388.5 31.02 387.1 7.153	9.83E+05 384.7 27.89 387.9 7.168
	1.90E+05 374.0 32.13 371.1 6.871 #N/D	2.34E+05 380.1 31.66 377.8 6.991 #N/D	1.12E+05 381.0 31.41 379.1 7.013 #N/D	1.17E+06 383.7 30.39 383.3 7.086 #N/D	2.38E+05 384.4 30.31 384.1 7.100 #N/D	3.31E+05 386.6 30.90 385.4 7.124 #N/D	2.00E+05 387.8 31.08 386.3 7.140 #N/D	7.32E+05 388.5 31.02 387.1 7.153 #N/D	9.83E+05 384.7 27.89 387.9 7.168 1.921
$ \Delta N \Delta V(T) T \Delta V(T_0) a_f \Delta a \Delta a \Delta a tot $	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097
$ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \text{ tot } \\ K_t \text{ interp } F=1kN, f $	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330
$ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \text{ tot } \\ K_t \text{ interp } F=1kN_{sf} \\ K_{tt} \text{ interp } F=1kN_{sf} $	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164
$ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN_{sf} \\ K_{II} / K_{lyf} $	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123
$ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN_{sf} \\ K_{II} interp F=1kN_{sf} \\ K_{II}/K_{lyf} \\ \Delta K_{Lth} $	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32
$ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN_{sf} \\ K_{II} / K_{isf} \\ K_{II} / K_{isf} \\ \Delta K_{ILth} \\ \Delta K_{ILth} $	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90
$ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ tot \\ K_I interp F=1kN_{sf} \\ K_{II} / K_{isf} \\ \Delta K_{ILth} \\ \Delta K_{ILth} \\ \Delta F_f $	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503
$ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ tot \\ K_I interp F=1kN_{sf} \\ K_{II} / K_{Isf} \\ \Delta K_{ILth} \\ \Delta K_{ILth} \\ \Delta F_f \\ F_{max,f} $	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394 8.215	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042 7.824	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626 7.363	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285 6.983	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114 6.793	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944 6.604	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763 6.403	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593 6.215	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503 6.115
$ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ tot \\ K_I interp F=1kN_{sf} \\ K_{II} / K_{Isf} \\ \Delta K_{ILth} \\ \Delta K_{ILth} \\ \Delta F_f \\ F_{max.f} \\ F_{min.f} $	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394 8.215 0.822	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042 7.824 0.782	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626 7.363 0.736	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285 6.983 0.698	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114 6.793 0.679	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944 6.604 0.660	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763 6.403 0.640	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593 6.215 0.621	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503 6.115 0.611
$\begin{array}{c} \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN_{sf} \\ K_{II} interp F=1kN_{sf} \\ K_{II}/K_{lof} \\ \Delta K_{Lth} \\ \Delta K_{Lth} \\ \Delta F_f \\ F_{max.f} \\ F_{min.f} \\ F_{a,f} \end{array}$	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394 8.215 0.822 3.697	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042 7.824 0.782 3.521	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626 7.363 0.736 3.313	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285 6.983 0.698 3.143	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114 6.793 0.679 3.057	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944 6.604 0.660 2.972	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763 6.403 0.640 2.881	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593 6.215 0.621 2.797	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503 6.115 0.611 2.752
$\begin{array}{c} \Delta N \\ \Delta V(T) \\ \hline T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN_{sf} \\ K_{II}/K_{1sf} \\ \hline \Delta K_{Lth} \\ \Delta K_{Lth} \\ \Delta F_f \\ \hline F_{max.f} \\ \hline F_{min.f} \\ \hline F_{a.f} \\ \hline F_{mean.f} \end{array}$	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394 8.215 0.822 3.697 4.518	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042 7.824 0.782 3.521 4.303	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626 7.363 0.736 3.313 4.049	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285 6.983 0.698 3.143 3.841	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114 6.793 0.679 3.057 3.736	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944 6.604 0.660 2.972 3.632	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763 6.403 0.640 2.881 3.522	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593 6.215 0.621 2.797 3.418	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503 6.115 0.611 2.752 3.363
$\begin{array}{c} \Delta N \\ \Delta V(T) \\ \hline T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ tot \\ K_t interp F=1kN_{sf} \\ K_{tt} interp F=1kN_{sf} \\ \hline K_{tt} h \\ \Delta K_{tth} \\ \Delta K_{tth} \\ \Delta F_f \\ \hline F_{max,f} \\ \hline F_{min,f} \\ \hline F_{a,f} \\ \hline F_{mcan,f} \\ \theta_{0,f} \end{array}$	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394 8.215 0.822 3.697 4.518 -0.25	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042 7.824 0.782 3.521 4.303 -0.24	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626 7.363 0.736 3.313 4.049 -0.24	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285 6.983 0.698 3.143 3.841 -0.24	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114 6.793 0.679 3.057 3.736 -0.24	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944 6.604 0.660 2.972 3.632 -0.24	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763 6.403 0.640 2.881 3.522 -0.24	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593 6.215 0.621 2.797 3.418 -0.24	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503 6.115 0.611 2.752 3.363 -0.24
$\begin{array}{c} \Delta N \\ \Delta V(T) \\ \hline T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN_{sf} \\ \hline K_{II} interp F=1kN_{sf} \\ \hline K_{II}/K_{lyf} \\ \Delta K_{Ith} \\ \Delta F_f \\ \hline F_{max,f} \\ \hline F_{mean,f} \\ \hline \theta_{0,f} \\ \theta_{0,f} \end{array}$	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394 8.215 0.822 3.697 4.518 -0.25 -14.07	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042 7.824 0.782 3.521 4.303 -0.24 -13.93	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626 7.363 0.736 3.313 4.049 -0.24 -13.90	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285 6.983 0.698 3.143 3.841 -0.24 -13.77	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114 6.793 0.679 3.057 3.736 -0.24 -13.74	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944 6.604 0.660 2.972 3.632 -0.24 -13.70	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763 6.403 0.640 2.881 3.522 -0.24 -13.67	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593 6.215 0.621 2.797 3.418 -0.24 -13.64	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503 6.115 0.611 2.752 3.363 -0.24 -13.62
	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394 8.215 0.822 3.697 4.518 -0.25 -14.07 9.459	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042 7.824 0.782 3.521 4.303 -0.24 -13.93 9.242	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626 7.363 0.736 3.313 4.049 -0.24 -13.90 8.736	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285 6.983 0.698 3.143 3.841 -0.24 -13.77 8.410	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114 6.793 0.679 3.057 3.736 -0.24 -13.74 8.204	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944 6.604 0.660 2.972 3.632 -0.24 -13.70 8.013	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763 6.403 0.640 2.881 3.522 -0.24 -13.67 7.794	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593 6.215 0.621 2.797 3.418 -0.24 -13.64 7.585	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503 6.115 0.611 2.752 3.363 -0.24 -13.62 7.483
$\frac{\Delta N}{\Delta V(T)}$ T $\Delta V(T_0)$ a_f Δa $\Delta a tot$ $K_1 interp F=1kN_{sf}$ K_{II}/K_{10} ΔK_{Lth} ΔK_{ILth} ΔF_f $F_{max,f}$ $F_{mean,f}$ $\theta_{0,f}$ $\Delta K_{co,f}$ $\Delta K_{co,f}$	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394 8.215 0.822 3.697 4.518 -0.25 -14.07 9.459 10.510	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042 7.824 0.782 3.521 4.303 -0.24 -13.93 9.242 10.269	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626 7.363 0.736 3.313 4.049 -0.24 -13.90 8.736 9.707	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285 6.983 0.698 3.143 3.841 -0.24 -13.77 8.410 9.345	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114 6.793 0.679 3.057 3.736 -0.24 -13.74 8.204 9.116	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944 6.604 0.660 2.972 3.632 -0.24 -13.70 8.013 8.903	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763 6.403 0.640 2.881 3.522 -0.24 -13.67 7.794 8.660	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593 6.215 0.621 2.797 3.418 -0.24 -13.64 7.585 8.427	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503 6.115 0.611 2.752 3.363 -0.24 -13.62 7.483 8.315
$\begin{array}{c} \Delta N \\ \Delta V(T) \\ \hline T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ \Delta a \\ to \\ K_1 interp F=1kN_{sf} \\ \hline K_{11} interp F=1kN_{sf} \\ \hline K_{11} / K_{1sf} \\ \Delta K_{1th} \\ \Delta F_f \\ \hline F_{max,f} \\ \hline F_{max,f} \\ \hline F_{mean,f} \\ \hline \theta_{0,f} \\ \hline \Delta K_{co,max,f} \\ \Delta K_{co,max,f} \\ \Delta K_{co,max,f} \\ \end{array}$	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394 8.215 0.822 3.697 4.518 -0.25 -14.07 9.459 10.510 0.946	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042 7.824 0.782 3.521 4.303 -0.24 -13.93 9.242 10.269 0.924	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626 7.363 0.736 3.313 4.049 -0.24 -13.90 8.736 9.707 0.874	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285 6.983 0.698 3.143 3.841 -0.24 -13.77 8.410 9.345 0.841	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114 6.793 0.679 3.057 3.736 -0.24 -13.74 8.204 9.116 0.820	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944 6.604 0.660 2.972 3.632 -0.24 -13.70 8.013 8.903 0.801	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763 6.403 0.640 2.881 3.522 -0.24 -13.67 7.794 8.660 0.779	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593 6.215 0.621 2.797 3.418 -0.24 -13.64 7.585 8.427 0.758	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503 6.115 0.611 2.752 3.363 -0.24 -13.62 7.483 8.315 0.748
$ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ tot \\ K_1 interp F=1kN_{sf} \\ K_{II} interp F=1kN_{sf} \\ K_{II}/K_{1of} \\ \Delta K_{Lth} \\ \Delta F_f \\ F_{max.f} \\ F_{max.f} \\ F_{mean.f} \\ \theta_{0.f} \\ \theta_{0.f} \\ \Delta K_{eq.mx.f} \\ \Delta $	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394 8.215 0.822 3.697 4.518 -0.25 -14.07 9.459 10.510 0.946 4.729	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042 7.824 0.782 3.521 4.303 -0.24 -13.93 9.242 10.269 0.924 4.621	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626 7.363 0.736 3.313 4.049 -0.24 -13.90 8.736 9.707 0.874 4.368	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285 6.983 0.698 3.143 3.841 -0.24 -13.77 8.410 9.345 0.841 4.205	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114 6.793 0.679 3.057 3.736 -0.24 -13.74 8.204 9.116 0.820 4.102	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944 6.604 0.660 2.972 3.632 -0.24 -13.70 8.013 8.903 0.801 4.006	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763 6.403 0.640 2.881 3.522 -0.24 -13.67 7.794 8.660 0.779 3.897	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593 6.215 0.621 2.797 3.418 -0.24 -13.64 7.585 8.427 0.758 3.792	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503 6.115 0.611 2.752 3.363 -0.24 -13.62 7.483 8.315 0.748 3.742
$\begin{array}{c} \Delta N \\ \Delta V(T) \\ \hline T \\ \Delta V(T_0) \\ \hline a_f \\ \Delta a \\ \Delta$	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394 8.215 0.822 3.697 4.518 -0.25 -14.07 9.459 10.510 0.946 4.729 5.728	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042 7.824 0.782 3.521 4.303 -0.24 -13.93 9.242 10.269 0.924 4.621 5.596	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626 7.363 0.736 3.313 4.049 -0.24 -13.90 8.736 9.707 0.874 4.368 5.290	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285 6.983 0.698 3.143 3.841 -0.24 -13.77 8.410 9.345 0.841 4.205 5.093	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114 6.793 0.679 3.057 3.736 -0.24 -13.74 8.204 9.116 0.820 4.102 4.968	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944 6.604 0.660 2.972 3.632 -0.24 -13.70 8.013 8.903 0.801 4.006 4.852	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763 6.403 0.640 2.881 3.522 -0.24 -13.67 7.794 8.660 0.779 3.897 4.720	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593 6.215 0.621 2.797 3.418 -0.24 -13.64 7.585 8.427 0.758 3.792 4.593	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503 6.115 0.611 2.752 3.363 -0.24 -13.62 7.483 8.315 0.748 3.742 4.531
$\frac{\Delta N}{\Delta V(T)}$ $\frac{T}{T}$ $\frac{\Delta V(T_0)}{a_f}$ $\frac{a_f}{\Delta a}$ $\frac{\Delta a \text{ tot}}{\Delta t}$ $\frac{K_1 \text{ interp } F=1kN_{sf}}{K_{II} \text{ interp } F=1kN_{sf}}$ $\frac{K_{II}/K_{1sf}}{\Delta K_{Lth}}$ $\frac{\Delta K_{f}}{\Delta F_f}$ $\frac{F_{max,f}}{F_{mean,f}}$ $\frac{\theta_{0,f}}{\Theta_{0,f}}$ $\frac{\Delta K_{eq max,f}}{\Delta K_{eq max,f}}$ $\frac{\Delta K_{eq max,f}}{\Delta K_{eq max,f}}$	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394 8.215 0.822 3.697 4.518 -0.25 -14.07 9.459 10.510 0.946 4.729 5.728 12.14	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042 7.824 0.782 3.521 4.303 -0.24 -13.93 9.242 10.269 0.924 4.621 5.596 12.02	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626 7.363 0.736 3.313 4.049 -0.24 -13.90 8.736 9.707 0.874 4.368 5.290 12.00	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285 6.983 0.698 3.143 3.841 -0.24 -13.77 8.410 9.345 0.841 4.205 5.093 11.92	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114 6.793 0.679 3.057 3.736 -0.24 -13.74 8.204 9.116 0.820 4.102 4.968 11.91	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944 6.604 0.660 2.972 3.632 -0.24 -13.70 8.013 8.903 0.801 4.006 4.852 11.89	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763 6.403 0.640 2.881 3.522 -0.24 -13.67 7.794 8.660 0.779 3.897 4.720 11.87	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593 6.215 0.621 2.797 3.418 -0.24 -13.64 7.585 8.427 0.758 3.792 4.593 11.86	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503 6.115 0.611 2.752 3.363 -0.24 -13.62 7.483 8.315 0.748 3.742 4.531 11.84
$\frac{\Delta N}{\Delta V(1)}$ $\frac{T}{T}$ $\frac{\Delta V(T_0)}{a_f}$ $\frac{a_f}{\Delta a}$ $\frac{\Delta a \text{ tot}}{\Delta t}$ $\frac{K_1 \text{ interp } F=1kN_{sf}}{K_{11} \text{ interp } F=1kN_{sf}}$ $\frac{K_{11}/K_{10f}}{\Delta K_{1,th}}$ $\frac{\Delta K_{f}}{\Delta K_{L,th}}$ $\frac{\Delta F_f}{F_{max,f}}$ $\frac{F_{max,f}}{F_{mean,f}}$ $\frac{\theta_{0,f}}{\Theta_{0,f}}$ $\frac{\Delta K_{eq max,f}}{\Delta K_{eq max,f}}$ $\frac{\Delta K_{eq max,f}}{\Delta K_{eq max,f}}$ $\frac{\Delta K_{eq max,f}}{\Delta K_{eq max,f}}$	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394 8.215 0.822 3.697 4.518 -0.25 -14.07 9.459 10.510 0.946 4.729 5.728 12.14 9.35	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042 7.824 0.782 3.521 4.303 -0.24 -13.93 9.242 10.269 0.924 4.621 5.596 12.02 9.13	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626 7.363 0.736 3.313 4.049 -0.24 -13.90 8.736 9.707 0.874 4.368 5.290 12.00 8.85	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285 6.983 0.698 3.143 3.841 -0.24 -13.77 8.410 9.345 0.841 4.205 5.093 11.92 8.62	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114 6.793 0.679 3.057 3.736 -0.24 -13.74 8.204 9.116 0.820 4.102 4.968 11.91 8.50	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944 6.604 0.660 2.972 3.632 -0.24 -13.70 8.013 8.903 0.801 4.006 4.852 11.89 8.39	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763 6.403 0.640 2.881 3.522 -0.24 -13.67 7.794 8.660 0.779 3.897 4.720 11.87 8.26	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593 6.215 0.621 2.797 3.418 -0.24 -13.64 7.585 8.427 0.758 3.792 4.593 11.86 8.13	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503 6.115 0.611 2.752 3.363 -0.24 -13.62 7.483 8.315 0.748 3.742 4.531 1.84 8.07
$\frac{\Delta N}{\Delta V(1)}$ $\frac{T}{T}$ $\frac{\Delta V(T_0)}{a_f}$ $\frac{a_f}{\Delta a}$ $\frac{\Delta a \text{ tot}}{\Delta t}$ $\frac{K_1 \text{ interp } F=1kN_{sf}}{K_{II} \text{ interp } F=1kN_{sf}}$ $\frac{K_{II}/K_{1of}}{\Delta K_{Lth}}$ $\frac{\Delta K_{Lth}}{\Delta K_{IL}}$ $\frac{\Delta F_f}{F}$ $\frac{F_{max,f}}{F_{max,f}}$ $\frac{F_{a,f}}{\theta_{0,f}}$ $\frac{\theta_{0,f}}{\theta_{0,f}}$ $\frac{\theta_{0,f}}{\Delta K_{eq max,f}}$ $\frac{\Delta K_{eq max,f}}{\Delta K_{eq mean,f}}$ $\frac{\Delta K_{eq mean,f}}{(W-af)}$ $\frac{W-af}{min}$	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394 8.215 0.822 3.697 4.518 -0.25 -14.07 9.459 10.510 0.946 4.729 5.728 12.14 9.35 9.66	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042 7.824 0.782 3.521 4.303 -0.24 -13.93 9.242 10.269 0.924 4.621 5.596 12.02 9.13 9.88	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626 7.363 0.736 3.313 4.049 -0.24 -13.90 8.736 9.707 0.874 4.368 5.290 12.00 8.85 10.16	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285 6.983 0.698 3.143 3.841 -0.24 -13.77 8.410 9.345 0.841 4.205 5.093 11.92 8.62 10.39	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114 6.793 0.679 3.057 3.736 -0.24 -13.74 8.204 9.116 0.820 4.102 4.968 11.91 8.50 10.51	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944 6.604 0.660 2.972 3.632 -0.24 -13.70 8.013 8.903 0.801 4.006 4.852 11.89 8.39 10.62	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763 6.403 0.640 2.881 3.522 -0.24 -13.67 7.794 8.660 0.779 3.897 4.720 11.87 8.26 10.75	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593 6.215 0.621 2.797 3.418 -0.24 -13.64 7.585 8.427 0.758 3.792 4.593 11.86 8.13 10.88	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503 6.115 0.611 2.752 3.363 -0.24 -13.62 7.483 8.315 0.748 3.742 4.531 11.84 8.07 10.94
$\begin{array}{c} \Delta N \\ \Delta V(T) \\ \hline T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN_{sf} \\ K_{II} interp F=1kN_{sf} \\ K_{II} interp F=1kN_{sf} \\ \hline K_{II}/K_{lof} \\ \Delta K_{Lth} \\ \Delta K_{Lth} \\ \Delta F_f \\ \hline F_{max.f} \\ \hline F_{min.f} \\ \hline F_{a.f} \\ \hline F_{mean.f} \\ \theta_{0.f} \\ \hline \theta_{0.f} \\ \Delta K_{ca.f} \\ \Delta K_{ca.a.th} \\ \hline $	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394 8.215 0.822 3.697 4.518 -0.25 -14.07 9.459 10.510 0.946 4.729 5.728 12.14 9.35 9.66 0.139	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042 7.824 0.782 3.521 4.303 -0.24 -13.93 9.242 10.269 0.924 4.621 5.596 12.02 9.13 9.88 0.132	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626 7.363 0.736 3.313 4.049 -0.24 -13.90 8.736 9.707 0.874 4.368 5.290 12.00 8.85 10.16 0.119	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285 6.983 0.698 3.143 3.841 -0.24 -13.77 8.410 9.345 0.841 4.205 5.093 11.92 8.62 10.39 0.110	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114 6.793 0.679 3.057 3.736 -0.24 -13.74 8.204 9.116 0.820 4.102 4.968 11.91 8.50 10.51 0.105	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944 6.604 0.660 2.972 3.632 -0.24 -13.70 8.013 8.903 0.801 4.006 4.852 11.89 8.39 10.62 0.100	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763 6.403 0.640 2.881 3.522 -0.24 -13.67 7.794 8.660 0.779 3.897 4.720 11.87 8.26 10.75 0.095	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593 6.215 0.621 2.797 3.418 -0.24 -13.64 7.585 8.427 0.758 3.792 4.593 11.86 8.13 10.88 0.090	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503 6.115 0.611 2.752 3.363 -0.24 -13.62 7.483 8.315 0.748 3.742 4.531 11.84 8.07 10.94 0.087
$\frac{\Delta N}{\Delta V(T)}$ T $\Delta V(T_0)$ a_f Δa Δa Δa Δa Δtot $K_I interp F=1kN_{sf}$ K_{II} /K_{bf} ΔK_{Lth} ΔK_{Lth} ΔF_f $F_{max.f}$ $F_{min.f}$ $F_{a.f}$ $F_{mean.f}$ $\theta_{0.f}$ $\theta_{0.f}$ $\Delta K_{ca.d}$ $\Delta K_{ca.d}$ $\Delta K_{ca.d}$ $\Delta K_{ca.dh}$	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394 8.215 0.822 3.697 4.518 -0.25 -14.07 9.459 10.510 0.946 4.729 5.728 12.14 9.35 9.66 0.139 1.30	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042 7.824 0.782 3.521 4.303 -0.24 -13.93 9.242 10.269 0.924 4.621 5.596 12.02 9.13 9.88 0.133 1.32	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626 7.363 0.736 3.313 4.049 -0.24 -13.90 8.736 9.707 0.874 4.368 5.290 12.00 8.85 10.16 0.119 1.36	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285 6.983 0.698 3.143 3.841 -0.24 -13.77 8.410 9.345 0.841 4.205 5.093 11.92 8.62 10.39 0.110 1.38	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114 6.793 0.679 3.057 3.736 -0.24 -13.74 8.204 9.116 0.820 4.102 4.968 11.91 8.50 10.51 0.105 1.40	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944 6.604 0.660 2.972 3.632 -0.24 -13.70 8.013 8.903 0.801 4.006 4.852 11.89 8.39 10.62 0.100 1.42	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763 6.403 0.640 2.881 3.522 -0.24 -13.67 7.794 8.660 0.779 3.897 4.720 11.87 8.26 10.75 0.095 1.44	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593 6.215 0.621 2.797 3.418 -0.24 -13.64 7.585 8.427 0.758 3.792 4.593 11.86 8.13 10.88 0.090 1.46	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503 6.115 0.611 2.752 3.363 -0.24 -13.62 7.483 8.315 0.748 3.742 4.531 11.84 8.07 10.94 0.087 1.47
$\begin{array}{r} \Delta N \\ \Delta V(T) \\ \hline T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN_{sf} \\ K_{II} interp F=1kN_{sf} \\ K_{II} interp F=1kN_{sf} \\ \hline K_{II}/K_{bf} \\ \Delta K_{Lth} \\ \Delta K_{Lth} \\ \Delta F_f \\ \hline F_{max.f} \\ \hline F_{max.f} \\ \hline F_{mon.f} \\ \hline \phi_{0.f} \\ \phi_{0.f} \\ \Delta K_{co.mcan.f} \\ \Delta K_{co.mcan.f} \\ \Delta K_{co.mcan.f} \\ \Delta K_{co.mcan.f} \\ (W-af) \\ \hline SSY: (W-af)_{min} \\ a_{f.max} \\ \hline r_{n.th} \\ Check SSY \\ \Delta Arrestod 2 \end{array}$	1.90E+05 374.0 32.13 371.1 6.871 #N/D 1.800 1.250 0.159 0.127 9.24 1.18 7.394 8.215 0.822 3.697 4.518 -0.25 -14.07 9.459 10.510 0.946 4.729 5.728 12.14 9.35 9.66 0.139 1.30 N	2.34E+05 380.1 31.66 377.8 6.991 #N/D 1.920 1.283 0.162 0.126 9.03 1.14 7.042 7.824 0.782 3.521 4.303 -0.24 -13.93 9.242 10.269 0.924 4.621 5.596 12.02 9.13 9.88 0.133 1.32 N	1.12E+05 381.0 31.41 379.1 7.013 #N/D 1.942 1.289 0.162 0.126 8.54 1.07 6.626 7.363 0.736 3.313 4.049 -0.24 -13.90 8.736 9.707 0.874 4.368 5.290 12.00 8.85 10.16 0.119 1.36 N	1.17E+06 383.7 30.39 383.3 7.086 #N/D 2.015 1.309 0.163 0.124 8.22 1.02 6.285 6.983 0.698 3.143 3.841 -0.24 -13.77 8.410 9.345 0.841 4.205 5.093 11.92 8.62 10.39 0.110 1.38 N	2.38E+05 384.4 30.31 384.1 7.100 #N/D 2.029 1.312 0.163 0.124 8.02 1.00 6.114 6.793 0.679 3.057 3.736 -0.24 -13.74 8.204 9.116 0.820 4.102 4.968 11.91 8.50 10.51 0.105 1.40 N	3.31E+05 386.6 30.90 385.4 7.124 #N/D 2.053 1.319 0.163 0.124 7.84 0.97 5.944 6.604 0.660 2.972 3.632 -0.24 -13.70 8.013 8.903 0.801 4.006 4.852 11.89 8.39 10.62 0.100 1.42 N	2.00E+05 387.8 31.08 386.3 7.140 #N/D 2.069 1.323 0.163 0.123 7.62 0.94 5.763 6.403 0.640 2.881 3.522 -0.24 -13.67 7.794 8.660 0.779 3.897 4.720 11.87 8.26 10.75 0.095 1.44 N	7.32E+05 388.5 31.02 387.1 7.153 #N/D 2.082 1.327 0.163 0.123 7.42 0.91 5.593 6.215 0.621 2.797 3.418 -0.24 -13.64 7.585 8.427 0.758 3.792 4.593 11.86 8.13 10.88 0.090 1.46 N	9.83E+05 384.7 27.89 387.9 7.168 1.921 2.097 1.330 0.164 0.123 7.32 0.90 5.503 6.115 0.611 2.752 3.363 -0.24 -13.62 7.483 8.315 0.748 3.742 4.531 11.84 8.07 10.94 0.087 1.47 V

Step	36	37	38	39	40	41	42	43	44
Date	########	06/09/2023	06/09/2023	06/09/2023	06/09/2023	06/09/2023	06/09/2023	06/09/2023	06/09/2023
Time	07:35:00	09:25:00	10:05:00	12:45:00	13:50:00	14:05:00	14:15:00	14:45:00	15:05:00
ai	7.168	7.168	7.172	7.390	7.578	7.622	7.654	7.726	7.777
R	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
ΔK	8.00	8,50	9.00	9.20	9.20	9.00	8.80	8.60	8.40
f	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00
у Да	2.097	2.097	2 101	2,319	2,507	2.551	2.583	2.655	2,706
K. intern F=1kN	1 331	1 331	1 332	1 389	1 438	1 450	1 4 5 8	1 477	1 491
K_intern F=1kN	0.164	0.164	0.164	0.166	0.170	0.171	0.172	0.175	0.178
	0.983	1.045	1 105	1.098	1.087	1.064	1.041	1.022	1.003
	0.123	0.123	0.123	0.119	0.118	0.118	0.118	0.119	0.119
$\frac{\mathbf{N}_{\mathrm{II}}}{\mathbf{E} + \mathbf{V} - 1} \mathbf{M} \mathbf{D}_{\mathrm{T}} = 0.5$	0.752	0.752	0.125	0.720	0.695	0.690	0.686	0.677	0.671
F K _l =1 MPa m	6.012	6 2 9 9	6 750	6.622	6 206	6 207	6.024	5.822	5.625
Б	6.681	7.008	7.510	7 3 5 8	7 107	6.207	6 705	5.622	6 261
г _{max}	0.081	7.098	0.751	0.726	0.711	0.697	0.703	0.408	0.201
F _{min}	0.008	0.710	0.751	0.730	0./11	0.090	0.070	0.04/	0.020
F _a	3.006	3.194	3.379	3.311	3.198	3.104	3.017	2.911	2.817
F _{mean}	3.0/4	3.904	4.130	4.04/	3.909	3.793	3.688	3.558	5.444
θ ₀	-0.24	-0.24	-0.24	-0.23	-0.23	-0.23	-0.23	-0.23	-0.23
θο	-13.62	-13.62	-13.61	-13.25	-13.12	-13.13	-13.14	-13.19	-13.25
ΔK _{ea}	8.177	8.688	9.199	9.392	9.388	9.184	8.980	8.778	8.575
ΔK _{ea max}	9.085	9.653	10.221	10.436	10.431	10.205	9.978	9.753	9.528
ΔK _{ea min}	0.909	0.965	1.022	1.044	1.043	1.020	0.998	0.975	0.953
ΔK _{eg a}	4.088	4.344	4.599	4.696	4.694	4.592	4.490	4.389	4.288
$\Delta K_{eq mean}$	4.997	5.309	5.621	5.740	5.737	5.613	5.488	5.364	5.240
(W-ai)	11.84	11.84	11.84	11.62	11.43	11.39	11.36	11.28	11.23
SSY: (W-ai) _{min}	8.43	8.69	8.94	8.85	8.70	8.57	8.45	8.30	8.16
a _{i max}	10.58	10.32	10.07	10.16	10.31	10.44	10.56	10.71	10.85
r _n	0.104	0.118	0.132	0.138	0.137	0.132	0.126	0.120	0.115
Check SSY	1.40	1.36	1.32	1.31	1.31	1.33	1.34	1.36	1.38
N	4.07E+07	4.07E+07	4.10E+07	4.11E+07	4.12E+07	4.12E+07	4.12E+07	4.13E+07	4.13E+07
AN	1.95E+05	6.10E+04	2.88E+05	1.13E+05	2.19E+04	1.73E+04	4.63E+04	4.32E+04	5.11E+04
AV(T)	386.4	387.3	402.0	414.2	416.3	418.4	422.7	425.8	430.2
T	29.04	29.49	30.84	31.49	31.16	31.27	31.23	31.23	31.24
	387.9	388.2	400.8	412.0	414.6	416.5	420.9	424.0	428.3
	7 168	7 172	7 390	7 578	7.622	7.654	7 726	7 777	7 8/19
af	#N/D	#N/D	#N/D	#N/D	#N/D	#N/D	#N/D	#N/D	#N/D
	$\frac{\pi N}{D}$	$\frac{\pi N}{D}$	2 3 1 0	$\frac{\pi N}{D}$	2 551	2 583	2 6 5 5	2 706	2 778
L'inform E-11-N	1.220	1 222	1 2 2 0	1.420	1.450	2.365	2.035	1.401	1.510
$K_{\rm I}$ interpr=1kN, f	0.1(4	0.164	0.1((0.170	0.171	1.438	1.4//	0.179	0.192
K_{II} interp F=1KN, _f	0.104	0.104	0.100	0.170	0.171	0.172	0.175	0.178	0.182
K _{II} /K _{I,f}	0.123	0.123	0.119	0.118	0.118	0.118	0.119	0.119	0.120
	8.00	8.51	9.39	9.55	9.27	9.05	8.91	8.68	8.51
	0.98	1.04	1.12	1.13	1.10	1.07	1.06	1.04	1.02
	6.013	6.388	6.759	6.622	6.396	6.207	6.034	5.822	5.635
F _{max.f}	6.681	7.098	7.510	7.358	7.107	6.897	6.705	6.468	6.261
F _{min.f}	0.668	0.710	0.751	0.736	0.711	0.690	0.670	0.647	0.626
F _{a.f}	3.006	3.194	3.379	3.311	3.198	3.104	3.017	2.911	2.817
F _{mean.f}	3.674	3.904	4.130	4.047	3.909	3.793	3.688	3.558	3.444
$\theta_{0.f}$	-0.24	-0.24	-0.23	-0.23	-0.23	-0.23	-0.23	-0.23	-0.23
$\theta_{0,f}$	-13.62	-13.61	-13.25	-13.12	-13.13	-13.14	-13.19	-13.25	-13.36
ΔK _{ea.f}	8.176	8.694	9.585	9.721	9.463	9.238	9.099	8.860	8.689
ΔK _{eg max.f}	9.085	9.660	10.650	10.801	10.515	10.264	10.110	9.844	9.654
ΔK _{eq min.f}	0.818	0.869	0.958	0.972	0.946	0.924	0.910	0.886	0.869
ΔK _{eq a.th}	4.088	4.347	4.792	4.861	4.732	4.619	4.549	4.430	4.344
ΔK _{eq mean f}	4.951	5.265	5.804	5.887	5.731	5.594	5.510	5.365	5.261
(W-af)	11.84	11.84	11.62	11.43	11.39	11.36	11.28	11.23	11.16
SSY: (W-af)min	8.43	8.69	8.94	8.85	8.70	8.57	8.45	8.30	8.16
a.	10.58	10.32	10.07	10.16	10.31	10.44	10.56	10.71	10.85
нах Г., 4	0.4.0.4	0.440			0.4.4.0	0.100	0.4.0.0	0.100	0.110
• D 10	0.104	0.118	0.143	0.147	0.140	0.133	0.129	0.122	0.118
Check SSY	0.104	0.118	0.143	0.147	0.140	0.133	0.129	1.35	0.118

Step	45	46	47	48	49	50	51	52	53
Date	########	06/09/2023	06/09/2023	06/09/2023	06/09/2023	06/09/2023	07/09/2023	07/09/2023	07/09/2023
Time	15:35:00	16:35:00	17:00:00	18:50:00	21:30:00	22:35:00	07:40:00	09:15:00	09:55:00
ai	7.849	7.944	7.988	8.128	8.245	8.265	8.330	8.336	8.341
R	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
ΔΚι	8.20	8.20	8.00	7.90	7.90	7.80	8.00	8,50	9.00
f	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00
у Да	2.778	2.873	2.917	3 057	3 174	3 194	3 2 5 9	3 265	3 270
K- intern F=1kN	1 510	1 535	1 547	1 585	1.618	1.623	1 642	1 644	1.645
K_intern F=1kN	0.182	0.188	0.191	0.202	0.212	0.214	0.219	0.220	0.220
	0.988	1 004	0.988	1.006	1.035	1.027	1.069	1 1 3 8	1 206
	0.120	0.122	0.123	0.127	0.131	0.132	0.134	0.134	0.134
$\frac{\mathbf{N}_{\mathrm{II}}}{\mathbf{E} + \mathbf{V} - 1} \mathbf{M} \mathbf{D}_{\mathrm{F}} = \mathbf{U}^{0.5}$	0.120	0.651	0.125	0.631	0.131	0.132	0.609	0.134	0.134
F K _l =1 MPa m	5.421	5 3 4 2	5 171	4 084	4 8 8 2	4 805	4 872	5 171	5 471
Б	6.025	5.025	5.1/1	4.964	4.005	5 2 2 0	4.072	5.1/1	6.078
Γ _{max}	0.033	5.935	5.740	5.556	0.5420	0.524	0.541	5.740	0.078
F _{min}	0.003	0.594	0.575	0.554	0.545	0.534	0.541	0.575	0.008
F _a	2./10	2.0/1	2.380	2.492	2.442	2.402	2.430	2.380	2.735
F _{mean}	3.319	3.264	3.160	3.046	2.984	2.936	2.978	3.160	3.343
θο	-0.23	-0.24	-0.24	-0.25	-0.25	-0.25	-0.26	-0.26	-0.26
θ ₀	-13.36	-13.56	-13.67	-14.08	-14.45	-14.51	-14.72	-14.74	-14.76
ΔK _{ea}	8.374	8.380	8.178	8.087	8.098	7.997	8.208	8.722	9.235
ΔK _{ea max}	9.305	9.311	9.087	8.986	8.997	8.885	9.120	9.691	10.261
ΔK _{ea min}	0.930	0.931	0.909	0.899	0.900	0.889	0.912	0.969	1.026
ΔKega	4.187	4.190	4.089	4.044	4.049	3.998	4.104	4.361	4.618
ΔK_{eqmean}	5.118	5.121	4.998	4.942	4.948	4.887	5.016	5.330	5.644
(W-ai)	11.16	11.07	11.02	10.88	10.77	10.75	10.68	10.67	10.67
SSY: (W-ai) _{min}	8.02	7.95	7.82	7.68	7.60	7.54	7.59	7.82	8.04
a _{i max}	10.99	11.06	11.19	11.33	11.41	11.47	11.42	11.19	10.97
r _n	0.109	0.109	0.104	0.102	0.102	0.100	0.105	0.119	0.133
Check SSY	1.39	1.39	1.41	1.42	1.42	1.43	1.41	1.36	1.33
N	4.14E+07	4.15E+07	4.17E+07	4.19E+07	4.21E+07	4.30E+07	4.32E+07	4.33E+07	4.35E+07
AN	9.92E+04	4.53E+04	1.93E+05	2.96E+05	1.07E+05	9.77E+05	1.70E+05	7.27E+04	2.74E+05
	436.5	439.8	448.6	455.5	455.9	455.0	458.2	459.2	473.4
(1) T	31.55	31.91	31.97	31.73	31.24	28.37	29.98	30.38	31.72
	434.1	436.8	445.4	452.7	453.9	458.0	458.4	458 7	470.5
	7 944	7 988	8 1 2 8	8 245	8 265	8 3 3 0	8 3 3 6	8 3 4 1	8 5 2 9
af	#N/D	#N/D	#N/D	#N/D	#N/D	#N/D	#N/D	#N/D	#N/D
	2 873	2 017	3.057	3 174	3 10/	3 250	3 265	3 270	3 458
L'inform E-11-N	1.525	2.917	1.595	1 6 1 9	1.622	1.642	1.644	1.645	1 700
$K_{\rm I}$ interpr-1kN, f	0.199	0.101	0.202	0.212	0.214	0.210	0.220	0.220	0.227
K_{II} Interp F=1KN, _f	0.100	0.191	0.202	0.212	0.214	0.219	0.220	0.220	0.237
	0.122	0.125	0.127	0.131	0.132	0.134	0.134	0.134	0.139
	8.54	8.26	8.20	8.00	1.93	1.89	8.01	8.51	9.30
ΔK _{II.th}	1.02	1.02	1.04	1.06	1.04	1.05	1.07	1.14	1.30
	5.431	5.342	5.1/1	4.984	4.883	4.805	4.872	5.1/1	5.4/1
F _{max.f}	6.035	5.935	5.746	5.538	5.426	5.339	5.414	5.746	6.078
F _{min.f}	0.603	0.594	0.575	0.554	0.543	0.534	0.541	0.575	0.608
F _{a.f}	2.716	2.671	2.586	2.492	2.442	2.402	2.436	2.586	2.735
F _{mean.f}	3.319	3.264	3.160	3.046	2.984	2.936	2.978	3.160	3.343
$\theta_{0,f}$	-0.24	-0.24	-0.25	-0.25	-0.25	-0.26	-0.26	-0.26	-0.27
$\theta_{0.f}$	-13.56	-13.67	-14.08	-14.45	-14.51	-14.72	-14.74	-14.76	-15.29
ΔK _{ea.f}	8.520	8.447	8.391	8.264	8.127	8.094	8.218	8.730	9.564
ΔK _{eg max.f}	9.467	9.385	9.324	9.182	9.030	8.994	9.131	9.700	10.627
ΔK _{eq min.f}	0.852	0.845	0.839	0.826	0.813	0.809	0.822	0.873	0.956
$\Delta K_{eq a.th}$	4.260	4.223	4.196	4.132	4.064	4.047	4.109	4.365	4.782
ΔKeg mean.f	5.159	5.115	5.081	5.004	4.922	4.902	4.976	5.287	5.792
(W-af)	11.07	11.02	10.88	10.77	10.75	10.68	10.67	10.67	10.48
SSY: (W-af)min	8.02	7.95	7.82	7.68	7.60	7.54	7.59	7.82	8.04
afmax	10.99	11.06	11.19	11.33	11.41	11.47	11.42	11.19	10.97
r _r th	0.113	0.111	0.110	0.106	0.103	0.102	0.105	0.119	0.143
Check SSY	1.38	1.39	1.39	1.40	1.41	1.42	1.41	1.36	1.30
A	N	N	N	N	N	N	N	N	N
Step	54	55	56	57	58	59	60	61	62
--	---	---	---	---	--	---	---	---	---
Date	########	07/09/2023	07/09/2023	07/09/2023	07/09/2023	07/09/2023	07/09/2023	07/09/2023	07/09/2023
Time	12:30:00	13.40.00	14.30.00	14.20.00	15.10.00	15.30.00	16:05:00	16.20.00	18.40.00
ai	8 529	8 688	8 841	8 860	8.917	8 964	9.011	9.049	9.085
R	0.52)	0.1	0.01	0.1	0.1	0.1	0.1	0.1	0.1
	0.10	0.10	0.10	8.00	8 70	8.50	8 20	8.10	8.00
<u>AN</u> f	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
<u>J</u>	2 459	2 (17	2 770	2 780	2.946	2 802	2.040	2 0 7 9	30.00
	3.438	3.017	3.770	3./89	3.840	3.893	3.940	3.978	4.014
K _I interp F=1kN	1./00	1.749	1./98	1.805	1.824	1.840	1.856	1.8/0	1.882
K _{II} interp F=1kN	0.237	0.249	0.258	0.259	0.261	0.263	0.264	0.265	0.266
	1.267	1.295	1.305	1.277	1.247	1.215	1.182	1.149	1.130
K _{II} /K _I	0.139	0.142	0.143	0.143	0.143	0.143	0.142	0.142	0.141
$\mathbf{F} \mid \mathbf{K}_{\mathbf{I}} = 1 \text{ MPa m}^{0.5}$	0.588	0.572	0.556	0.554	0.548	0.543	0.539	0.535	0.531
ΔF	5.352	5.202	5.060	4.931	4.770	4.619	4.472	4.332	4.250
F _{max}	5.946	5.780	5.622	5.479	5.300	5.133	4.968	4.814	4.722
F _{min}	0.595	0.578	0.562	0.548	0.530	0.513	0.497	0.481	0.472
Fa	2.676	2.601	2.530	2.466	2.385	2.310	2.236	2.166	2.125
Fmean	3.270	3.179	3.092	3.014	2.915	2.823	2.733	2.648	2.597
θο	-0.27	-0.27	-0.27	-0.27	-0.27	-0.27	-0.27	-0.27	-0.27
θο	-15.29	-15.60	-15.71	-15.71	-15.70	-15.66	-15.61	-15.56	-15.49
ΔK _{an}	9.356	9.367	9.371	9.166	8.959	8.752	8.544	8.337	8.232
ΔK _{ea} may	10.396	10.408	10.413	10.184	9.954	9.724	9.494	9.263	9.146
ΔK _{ea} min	1.040	1.041	1.041	1.018	0.995	0.972	0.949	0.926	0.915
ΛΚ	4.678	4.684	4.686	4.583	4,480	4.376	4.272	4.168	4.116
AK	5.718	5.724	5.727	5.601	5.475	5.348	5.221	5.095	5.030
(W-ai)	10.48	10.32	10.17	10.15	10.09	10.05	10.00	9.96	9.92
SSV: (W-ai)	7.96	7 84	7 74	7.64	7 51	7 39	7 27	7.16	7.09
9.	11.05	11.17	11.27	11.37	11.50	11.62	11 74	11.85	11.92
r ai.max	0.136	0.137	0.137	0.131	0.125	0.119	0.114	0.108	0.106
Check SSV	1.32	1.32	1 31	1 33	1.34	1.36	1 37	1 39	1.40
N	$\frac{1.52}{4.37E+07}$	$\frac{1.52}{4.38E+0.7}$	$\frac{1.51}{4.38E+07}$	4.38E+07	$\frac{1.5+}{4.39E+0.7}$	4.30E+07	$\frac{1.57}{4.40E+07}$	$\frac{1.5}{4.42E+07}$	4.45E+07
1	4.57E+07	4.50L+07	4.50L+07	4.50L+07	4.57L+07	4.571.07	4.40L+07	H.H2L+07	4.43L+07
AN	1.24E+05	8 63 E+04	3.11E+0.4	3.31E+0.4	3.66E+0.4	5.82E+04	8 06E+04	1.91E+05	2.92E+05
	1.24E+05	8.63E+04	3.11E+04	3.31E+04	3.66E+04	5.82E+04	8.06E+04	1.91E+05	2.92E+05
ΔN ΔV(T) T	1.24E+05 483.7	8.63E+04 492.3	3.11E+04 495.1 32.07	3.31E+04 498.7	3.66E+04 501.7	5.82E+04 505.6	8.06E+04 508.3	1.91E+05 510.7	2.92E+05 512.1
ΔN ΔV(T) T	1.24E+05 483.7 31.84 480.5	8.63E+04 492.3 31.22 490.2	3.11E+04 495.1 32.07 491.4	3.31E+04 498.7 32.04 495.0	3.66E+04 501.7 32.02 498.0	5.82E+04 505.6 32.50 501.0	8.06E+04 508.3 32.62 503.4	1.91E+05 510.7 32.67 505.7	2.92E+05 512.1 32.38
$ \Delta N \Delta V(T) T \Delta V(T_0) $	1.24E+05 483.7 31.84 480.5	8.63E+04 492.3 31.22 490.2 8.841	3.11E+04 495.1 32.07 491.4 8.860	3.31E+04 498.7 32.04 495.0	3.66E+04 501.7 32.02 498.0 8.964	5.82E+04 505.6 32.50 501.0	8.06E+04 508.3 32.62 503.4	1.91E+05 510.7 32.67 505.7	2.92E+05 512.1 32.38 507.7
$ \Delta N \Delta V(T) T \Delta V(T_0) a_f Az $	1.24E+05 483.7 31.84 480.5 8.688 #N/D	8.63E+04 492.3 31.22 490.2 8.841 #N/D	3.11E+04 495.1 32.07 491.4 8.860 #N/D	3.31E+04 498.7 32.04 495.0 8.917 #N/D	3.66E+04 501.7 32.02 498.0 8.964 #N/D	5.82E+04 505.6 32.50 501.0 9.011 #N/D	8.06E+04 508.3 32.62 503.4 9.049 #N/D	1.91E+05 510.7 32.67 505.7 9.085 #N/D	2.92E+05 512.1 32.38 507.7 9.116 #N/D
$ \Delta N \Delta V(T) T \Delta V(T_0) a_f \Delta a tot $	1.24E+05 483.7 31.84 480.5 8.688 #N/D 2.617	8.63E+04 492.3 31.22 490.2 8.841 #N/D	3.11E+04 495.1 32.07 491.4 8.860 #N/D	3.31E+04 498.7 32.04 495.0 8.917 #N/D 2.846	3.66E+04 501.7 32.02 498.0 8.964 #N/D 2.802	5.82E+04 505.6 32.50 501.0 9.011 #N/D	8.06E+04 508.3 32.62 503.4 9.049 #N/D 2.078	1.91E+05 510.7 32.67 505.7 9.085 #N/D	2.92E+05 512.1 32.38 507.7 9.116 #N/D
	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045
	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.240	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.250	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 2.261	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 2.262	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 2.266	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 2.266
	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 2.142	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.142	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.142	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.142	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.142	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266
$\frac{\Delta N}{\Delta V(T)}$ T $\Delta V(T_0)$ a_f Δa $\Delta a tot$ $K_1 interp F=1kN_{sf}$ $K_{II} K_{II} K_{Sf}$	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 0.25	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 0.12	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 9.62	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 9.75	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 9.57	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 9.14	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141
$\frac{\Delta N}{\Delta V(T)}$ $\frac{T}{T}$ $\frac{\Delta V(T_0)}{a_f}$ $\frac{a_f}{\Delta a}$ $\frac{\Delta a \text{ tot}}{K_1 \text{ interp } F=1kN_{sf}}$ $\frac{K_{II}/K_{1sf}}{K_{II}/K_{1sf}}$ $\frac{\Delta K_{Lth}}{\Delta K_{Lth}}$	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.52	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.21	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.21	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.22	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.12	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 8.16	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05
$\frac{\Delta N}{\Delta V(T)}$ T $\Delta V(T_0)$ a_f Δa $\Delta a tot$ $K_1 interp F=1kN_{sf}$ $K_{II} interp F=1kN_{sf}$ K_{II}/K_{Isf} ΔK_{Lth} ΔK_{Lth}	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.552	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.622	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.642	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.021	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.612	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.452	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.222	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.255
$ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN, f \\ K_{II} interp F=1kN, f \\ K_{II} / K_{I,f} \\ \Delta K_{L,th} \\ \Delta K_{L,th} \\ \Delta F_f \\ T \\ $	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.352 5.615	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.202 5.522	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.060	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.931 5.55	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25 4.770 5.255	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.619 5.155	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.472 4.672	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.332 4.632	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.250
$\begin{tabular}{ c c c c c } \hline \Delta N \\ \hline \Delta V(T) \\ \hline T \\ \hline \Delta V(T_0) \\ \hline a_f \\ \hline \Delta a \\ \Delta a \\ tot \\ \hline K_1 interp F=1kN,_f \\ \hline K_{11} interp F=1kN,_f \\ \hline K_{11}/K_{1sf} \\ \hline \Delta K_{1,th} \\ \hline \Delta K_{1,th} \\ \hline \Delta F_f \\ \hline F_{max,f} \\ \hline \end{tabular}$	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.352 5.946	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.202 5.780	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.060 5.622	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.931 5.479 5.479	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25 4.770 5.300	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.619 5.133	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.472 4.968	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.332 4.814 4.814	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.250 4.722
$\begin{tabular}{ c c c c }\hline &\Delta N\\ \hline &\Delta V(T)\\ \hline &T\\ \hline &\Delta V(T_0)\\ \hline &a_f\\ \hline &\Delta a\\ \Delta a tot\\ \hline &K_i interp F=1kN,_f\\ \hline &K_{II} interp F=1kN,_f\\ \hline &K_{II}/K_{isf}\\ \hline &\Delta K_{I,th}\\ \hline &\Delta K_{I,th}\\ \hline &\Delta F_f\\ \hline &F_{max,f}\\ \hline &F_{min,f}\\ \hline \end{tabular}$	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.352 5.946 0.595 2.555	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.202 5.780 0.578 0.578	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.060 5.622 0.562	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.931 5.479 0.548	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25 4.770 5.300 0.530	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.619 5.133 0.513	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.472 4.968 0.497	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.332 4.814 0.481 0.481	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.250 4.722 0.472
$\begin{tabular}{ c c c c c } \hline & \Delta N \\ \hline & \Delta V(T) \\ \hline & T \\ \hline & \Delta V(T_0) \\ \hline & a_f \\ \hline & \Delta a \\ \hline & \Delta a \\ & \Delta a \\ tot \\ \hline & K_I interp F=1kN_{sf} \\ \hline & K_{II} / K_{Isf} \\ \hline & K_{II} / K_{Isf} \\ \hline & \Delta K_{ILth} \\ \hline & \Delta F_f \\ \hline & F_{max,f} \\ \hline & F_{min,f} \\ \hline & F_{a,f} \\ \hline \end{tabular}$	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.352 5.946 0.595 2.676	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.202 5.780 0.578 2.601	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.060 5.622 0.562 2.530	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.931 5.479 0.548 2.466	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25 4.770 5.300 0.530 2.385	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.619 5.133 0.513 2.310	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.472 4.968 0.497 2.236	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.332 4.814 0.481 2.166	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.250 4.722 0.472 2.125
$\begin{tabular}{ c c c c c } \hline & \Delta N \\ \hline & \Delta V(T) \\ \hline & T \\ \hline & \Delta V(T_0) \\ \hline & a_f \\ \hline & \Delta a \\ \Delta a \\ tot \\ \hline & K_i interp F=1kN_{sf} \\ \hline & K_{II} interp F=1kN_{sf} \\ \hline & K_{II} / K_{Isf} \\ \hline & \Delta K_{I,th} \\ \hline & \Delta K_{I,th} \\ \hline & \Delta F_f \\ \hline & F_{max,f} \\ \hline & F_{min,f} \\ \hline & F_{a,f} \\ \hline & F_{mean,f} \\ \hline \hline & F_{mean,f} \\ \hline \end{tabular}$	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.352 5.946 0.595 2.676 3.270	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.202 5.780 0.578 2.601 3.179	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.060 5.622 0.562 2.530 3.092	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.931 5.479 0.548 2.466 3.014	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25 4.770 5.300 0.530 2.385 2.915	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.619 5.133 0.513 2.310 2.823	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.472 4.968 0.497 2.236 2.733	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.332 4.814 0.481 2.166 2.648	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.250 4.722 0.472 2.125 2.597
$\begin{tabular}{ c c c c c } \hline \Delta N \\ \hline \Delta V(T) \\ \hline T \\ \hline \Delta V(T_0) \\ \hline a_f \\ \hline \Delta a \\ \hline \Delta a \\ tot \\ \hline K_I interp F=1kN_{sf} \\ \hline K_{II} / K_{Isf} \\ \hline \Delta K_{ILth} \\ \hline \Delta K_{ILth} \\ \hline \Delta F_f \\ \hline F_{max.f} \\ \hline F_{min.f} \\ \hline F_{a.f} \\ \hline F_{mean.f} \\ \hline \theta_{0.f} \\ \hline \end{tabular}$	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.352 5.946 0.595 2.676 3.270 -0.27	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.202 5.780 0.578 2.601 3.179 -0.27	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.060 5.622 0.562 2.530 3.092 -0.27	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.931 5.479 0.548 2.466 3.014 -0.27	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25 4.770 5.300 0.530 2.385 2.915 -0.27	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.619 5.133 0.513 2.310 2.823 -0.27	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.472 4.968 0.497 2.236 2.733 -0.27	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.332 4.814 0.481 2.166 2.648 -0.27	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.250 4.722 0.472 2.125 2.597 -0.27
	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.352 5.946 0.595 2.676 3.270 -0.27 -15.60	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.202 5.780 0.578 2.601 3.179 -0.27 -15.71	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.060 5.622 0.562 2.530 3.092 -0.27 -15.71	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.931 5.479 0.548 2.466 3.014 -0.27 -15.70	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25 4.770 5.300 0.530 2.385 2.915 -0.27 -15.66	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.619 5.133 0.513 2.310 2.823 -0.27 -15.61	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.472 4.968 0.497 2.236 2.733 -0.27 -15.56	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.332 4.814 0.481 2.166 2.648 -0.27 -15.49	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.250 4.722 0.472 2.125 2.597 -0.27 -15.43
	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.352 5.946 0.595 2.676 3.270 -0.27 -15.60 9.636	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.202 5.780 0.578 2.601 3.179 -0.27 -15.71 9.635	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.060 5.622 0.562 2.530 3.092 -0.27 -15.71 9.404	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.931 5.479 0.548 2.466 3.014 -0.27 -15.70 9.262	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25 4.770 5.300 0.530 2.385 2.915 -0.27 -15.66 9.037	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.619 5.133 0.513 2.310 2.823 -0.27 -15.61 8.827	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.472 4.968 0.497 2.236 2.733 -0.27 -15.56 8.605	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.332 4.814 0.481 2.166 2.648 -0.27 -15.49 8.391	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.250 4.722 0.472 2.125 2.597 -0.27 -15.43 8.278
$ \begin{array}{c} \Delta N \\ \Delta V(T) \\ \hline T \\ \Delta V(T_0) \\ \hline a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ tot \\ \hline K_I interp F=1kN_{sf} \\ \hline K_{II} / K_{Isf} \\ \hline \Delta K_{IL} \\ \Delta K_{IL} \\ \hline \Delta F_f \\ \hline F_{max.f} \\ \hline F_{min.f} \\ \hline F_{a.f} \\ \hline F_{mean.f} \\ \hline \theta_{0.f} \\ \hline \theta_{0.f} \\ \hline \Delta K_{eo.max.f} \\ \end{array} $	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.352 5.946 0.595 2.676 3.270 -0.27 -15.60 9.636 10.707	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.202 5.780 0.578 2.601 3.179 -0.27 -15.71 9.635 10.706	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.060 5.622 0.562 2.530 3.092 -0.27 -15.71 9.404 10.449	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.931 5.479 0.548 2.466 3.014 -0.27 -15.70 9.262 10.291	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25 4.770 5.300 0.530 2.385 2.915 -0.27 -15.66 9.037 10.041	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.619 5.133 0.513 2.310 2.823 -0.27 -15.61 8.827 9.808	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.472 4.968 0.497 2.236 2.733 -0.27 -15.56 8.605 9.561	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.332 4.814 0.481 2.166 2.648 -0.27 -15.49 8.391 9.324	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.250 4.722 0.472 2.125 2.597 -0.27 -15.43 8.278 9.197
$ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a$	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.352 5.946 0.595 2.676 3.270 -0.27 -15.60 9.636 10.707 0.964	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.202 5.780 0.578 2.601 3.179 -0.27 -15.71 9.635 10.706 0.964	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.060 5.622 0.562 2.530 3.092 -0.27 -15.71 9.404 10.449 0.940	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.931 5.479 0.548 2.466 3.014 -0.27 -15.70 9.262 10.291 0.926	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25 4.770 5.300 0.530 2.385 2.915 -0.27 -15.66 9.037 10.041 0.904	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.619 5.133 0.513 2.310 2.823 -0.27 -15.61 8.827 9.808 0.883	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.472 4.968 0.497 2.236 2.733 -0.27 -15.56 8.605 9.561 0.860	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.332 4.814 0.481 2.166 2.648 -0.27 -15.49 8.391 9.324 0.839	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.250 4.722 0.472 2.125 2.597 -0.27 -15.43 8.278 9.197 0.828
$ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a$	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.352 5.946 0.595 2.676 3.270 -0.27 -15.60 9.636 10.707 0.964 4.818	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.202 5.780 0.578 2.601 3.179 -0.27 -15.71 9.635 10.706 0.964 4.818	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.060 5.622 0.562 2.530 3.092 -0.27 -15.71 9.404 10.449 0.940 4.702	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.931 5.479 0.548 2.466 3.014 -0.27 -15.70 9.262 10.291 0.926 4.631	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25 4.770 5.300 0.530 2.385 2.915 -0.27 -15.66 9.037 10.041 0.904 4.519	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.619 5.133 0.513 2.310 2.823 -0.27 -15.61 8.827 9.808 0.883 4.413	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.472 4.968 0.497 2.236 2.733 -0.27 -15.56 8.605 9.561 0.860 4.302	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.332 4.814 0.481 2.166 2.648 -0.27 -15.49 8.391 9.324 0.839 4.196	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.250 4.722 0.472 2.125 2.597 -0.27 -15.43 8.278 9.197 0.828 4.139
$ \begin{array}{c} \Delta N \\ \Delta V(T) \\ \hline T \\ \Delta V(T_0) \\ \hline a_f \\ \Delta a \\ $	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.352 5.946 0.595 2.676 3.270 -0.27 -15.60 9.636 10.707 0.964 4.818 5.835	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.202 5.780 0.578 2.601 3.179 -0.27 -15.71 9.635 10.706 0.964 4.818 5.835	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.060 5.622 0.562 2.530 3.092 -0.27 -15.71 9.404 10.449 0.940 4.702 5.695	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.931 5.479 0.548 2.466 3.014 -0.27 -15.70 9.262 10.291 0.926 4.631 5.609	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25 4.770 5.300 0.530 2.385 2.915 -0.27 -15.66 9.037 10.041 0.904 4.519 5.472	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.619 5.133 0.513 2.310 2.823 -0.27 -15.61 8.827 9.808 0.883 4.413 5.345	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.472 4.968 0.497 2.236 2.733 -0.27 -15.56 8.605 9.561 0.860 4.302 5.211	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.332 4.814 0.481 2.166 2.648 -0.27 -15.49 8.391 9.324 0.839 4.196 5.081	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.250 4.722 0.472 2.125 2.597 -0.27 -15.43 8.278 9.197 0.828 4.139 5.013
$\begin{array}{c} \Delta N \\ \Delta V(T) \\ \hline T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a$	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.352 5.946 0.595 2.676 3.270 -0.27 -15.60 9.636 10.707 0.964 4.818 5.835 10.32	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.202 5.780 0.578 2.601 3.179 -0.27 -15.71 9.635 10.706 0.964 4.818 5.835 10.17	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.060 5.622 0.562 2.530 3.092 -0.27 -15.71 9.404 10.449 0.940 4.702 5.695 10.15	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.931 5.479 0.548 2.466 3.014 -0.27 -15.70 9.262 10.291 0.926 4.631 5.609 10.09	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25 4.770 5.300 0.530 2.385 2.915 -0.27 -15.66 9.037 10.041 0.904 4.519 5.472 10.05	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.619 5.133 0.513 2.310 2.823 -0.27 -15.61 8.827 9.808 0.883 4.413 5.345 10.00	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.472 4.968 0.497 2.236 2.733 -0.27 -15.56 8.605 9.561 0.860 4.302 5.211 9.96	1.91E+05 510.7 32.67 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.332 4.814 0.481 2.166 2.648 -0.27 -15.49 8.391 9.324 0.839 4.196 5.081 9.92	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.250 4.722 0.472 2.125 2.597 -0.27 -15.43 8.278 9.197 0.828 4.139 5.013 9.89
$\begin{array}{r} \Delta N \\ \Delta V(T) \\ \hline T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN_{sf} \\ \hline K_{II} interp F=1kN_{sf} \\ \hline K_{II} / K_{1sf} \\ \Delta K_{Lth} \\ \Delta F_f \\ \hline F_{max.f} \\ \hline F_{max.f} \\ \hline F_{mean.f} \\ \hline \theta_{0.f} \\ \hline \theta_{0.f} \\ \Delta K_{ca.min.f} \\ \Delta K_{ca.a.th} \\ \Delta K_{ca.a.th} \\ \Delta K_{ca.a.th} \\ \hline A \\ \hline A \\ \hline K_{ca.a.th} \\ \hline A \\ \hline K_{ca.a.th} \\ \hline A \\ \hline K_{ca.a.th} \\ \hline$	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.352 5.946 0.595 2.676 3.270 -0.27 -15.60 9.636 10.707 0.964 4.818 5.835 10.32 7.96	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.202 5.780 0.578 2.601 3.179 -0.27 -15.71 9.635 10.706 0.964 4.818 5.835 10.17 7.84	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.060 5.622 0.562 2.530 3.092 -0.27 -15.71 9.404 10.449 0.940 4.702 5.695 10.15 7.74	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.931 5.479 0.548 2.466 3.014 -0.27 -15.70 9.262 10.291 0.926 4.631 5.609 10.09 7.64	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25 4.770 5.300 0.530 2.385 2.915 -0.27 -15.66 9.037 10.041 0.904 4.519 5.472 10.05 7.51	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.619 5.133 0.513 2.310 2.823 -0.27 -15.61 8.827 9.808 0.883 4.413 5.345 10.00 7.39	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.472 4.968 0.497 2.236 2.733 -0.27 -15.56 8.605 9.561 0.860 4.302 5.211 9.96 7.27	1.91E+05 510.7 32.67 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.332 4.814 0.481 2.166 2.648 -0.27 -15.49 8.391 9.324 0.839 4.196 5.081 9.92 7.16	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.250 4.722 0.472 2.125 2.597 -0.27 -15.43 8.278 9.197 0.828 4.139 5.013 9.89 7.09
$ \Delta N \\ \Delta V(T) \\ T \\ \Delta V(T_0) \\ a_f \\ \Delta a \\ \Delta a \\ \Delta a \\ \Delta a \\ tot \\ K_1 interp F=1kN_{sf} \\ K_{II} interp F=1kN_{sf} \\ K_{II} K_{II} \\ A \\ K_{II} \\ A \\ K_{II} \\ A \\ K_{II} \\ A \\ F_f \\ F_{max.f} \\ F_{max.f} \\ F_{mcan.f} \\ \theta_{0.f} \\ \delta \\ A \\ K_{ca} \\ A \\ $	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.352 5.946 0.595 2.676 3.270 -0.27 -15.60 9.636 10.707 0.964 4.818 5.835 10.32 7.96 11.05	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.202 5.780 0.578 2.601 3.179 -0.27 -15.71 9.635 10.706 0.964 4.818 5.835 10.17 7.84 11.17	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.060 5.622 0.562 2.530 3.092 -0.27 -15.71 9.404 10.449 0.940 4.702 5.695 10.15 7.74 11.27	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.931 5.479 0.548 2.466 3.014 -0.27 -15.70 9.262 10.291 0.926 4.631 5.609 10.09 7.64 11.37	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25 4.770 5.300 0.530 2.385 2.915 -0.27 -15.66 9.037 10.041 0.904 4.519 5.472 10.05 7.51 11.50	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.619 5.133 0.513 2.310 2.823 -0.27 -15.61 8.827 9.808 0.883 4.413 5.345 10.00 7.39 11.62	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.472 4.968 0.497 2.236 2.733 -0.27 -15.56 8.605 9.561 0.860 4.302 5.211 9.96 7.27 11.74	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.332 4.814 0.481 2.166 2.648 -0.27 -15.49 8.391 9.324 0.839 4.196 5.081 9.92 7.16 11.85	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.250 4.722 0.472 2.125 2.597 -0.27 -15.43 8.278 9.197 0.828 4.139 5.013 9.89 7.09 11.92
$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.352 5.946 0.595 2.676 3.270 -0.27 -15.60 9.636 10.707 0.964 4.818 5.835 10.32 7.96 11.05 0.145	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.202 5.780 0.578 2.601 3.179 -0.27 -15.71 9.635 10.706 0.964 4.818 5.835 10.17 7.84 11.17 0.145	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.060 5.622 0.562 2.530 3.092 -0.27 -15.71 9.404 10.449 0.940 4.702 5.695 10.15 7.74 11.27 0.138	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.931 5.479 0.548 2.466 3.014 -0.27 -15.70 9.262 10.291 0.926 4.631 5.609 10.09 7.64 11.37 0.134	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25 4.770 5.300 0.530 0.530 2.385 2.915 -0.27 -15.66 9.037 10.041 0.904 4.519 5.472 10.05 7.51 11.50 0.127	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.619 5.133 0.513 2.310 2.823 -0.27 -15.61 8.827 9.808 0.883 4.413 5.345 10.00 7.39 11.62 0.121	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.472 4.968 0.497 2.236 2.733 -0.27 -15.56 8.605 9.561 0.860 4.302 5.211 9.96 7.27 11.74 0.115	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.332 4.814 0.481 2.166 2.648 -0.27 -15.49 8.391 9.324 0.839 4.196 5.081 9.92 7.16 11.85 0.110	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.250 4.722 0.472 2.125 2.597 -0.27 -15.43 8.278 9.197 0.828 4.139 5.013 9.89 7.09 11.92 0.107
$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	1.24E+05 483.7 31.84 480.5 8.688 #N/D 3.617 1.749 0.249 0.142 9.36 1.33 5.352 5.946 0.595 2.676 3.270 -0.27 -15.60 9.636 10.707 0.964 4.818 5.835 10.32 7.96 11.05 0.145 1.30	8.63E+04 492.3 31.22 490.2 8.841 #N/D 3.770 1.798 0.258 0.143 9.36 1.34 5.202 5.780 0.578 2.601 3.179 -0.27 -15.71 9.635 10.706 0.964 4.818 5.835 10.17 7.84 11.17 0.145 1.30	3.11E+04 495.1 32.07 491.4 8.860 #N/D 3.789 1.805 0.259 0.143 9.13 1.31 5.060 5.622 0.562 2.530 3.092 -0.27 -15.71 9.404 10.449 0.940 4.702 5.695 10.15 7.74 11.27 0.138 1.31	3.31E+04 498.7 32.04 495.0 8.917 #N/D 3.846 1.824 0.261 0.143 8.99 1.29 4.931 5.479 0.548 2.466 3.014 -0.27 -15.70 9.262 10.291 0.926 4.631 5.609 10.09 7.64 11.37 0.134 1.32	3.66E+04 501.7 32.02 498.0 8.964 #N/D 3.893 1.840 0.263 0.143 8.78 1.25 4.770 5.300 0.530 0.530 2.385 2.915 -0.27 -15.66 9.037 10.041 0.904 4.519 5.472 10.05 7.51 11.50 0.127 1.34	5.82E+04 505.6 32.50 501.0 9.011 #N/D 3.940 1.856 0.264 0.142 8.57 1.22 4.619 5.133 0.513 2.310 2.823 -0.27 -15.61 8.827 9.808 0.883 4.413 5.345 10.00 7.39 11.62 0.121 1.35	8.06E+04 508.3 32.62 503.4 9.049 #N/D 3.978 1.870 0.265 0.142 8.36 1.19 4.472 4.968 0.497 2.236 2.733 -0.27 -15.56 8.605 9.561 0.860 4.302 5.211 9.96 7.27 11.74 0.115 1.37	1.91E+05 510.7 32.67 505.7 9.085 #N/D 4.014 1.882 0.266 0.141 8.16 1.15 4.332 4.814 0.481 2.166 2.648 -0.27 -15.49 8.391 9.324 0.839 4.196 5.081 9.92 7.16 11.85 0.110 1.39	2.92E+05 512.1 32.38 507.7 9.116 #N/D 4.045 1.893 0.266 0.141 8.05 1.13 4.250 4.722 0.472 2.125 2.597 -0.27 -15.43 8.278 9.197 0.828 4.139 5.013 9.89 7.09 11.92 0.107 1.40

Step	63	64	65
Date	########	08/09/2023	08/09/2023
Time	21:20:00	07:35:00	11:45:00
ai	9,116	9.137	9.139
R	0.1	0.1	0.1
AK.	7 90	7.80	0.1
f	30.00	30.00	30.00
J	4.045	4.066	4 068
	4.043	4.000	4.008
K_{I} interp F=1kN	1.893	1.901	1.902
K _{II} interp F=1kN	0.266	0.267	0.267
	1.111	1.094	0.000
K _{II} /K _I	0.141	0.140	0.140
$F \mid K_{I} = 1 \text{ MPa m}^{0.5}$	0.528	0.526	0.526
ΔF	4.172	4.103	0.000
F _{max}	4.636	4.559	0.000
\mathbf{F}_{\min}	0.464	0.456	0.000
Fa	2.086	2.051	0.000
F _{mean}	2.550	2.507	0.000
θn	-0.27	-0.27	-0.27
θ	-15.43	-15.39	-15.39
ΛΚ	8,127	8.023	0.000
	9.030	8 914	0.000
	0.903	0.891	0.000
<u>∧ K</u>	4 063	4 011	0.000
	4.005	4.011	0.000
(W ai)	4.900	4.903	0.000
	9.69	9.07	9.07
55Y: (W-al) _{min}	7.03	6.97	0.00
a _{i.max}	11.98	12.04	19.01
<u> </u>	0.103	0.100	0.000
Check SSY	1.41	1.42	#DIV/0!
	$A = 56 E \pm 07$	A = A = A = A = A = A = A = A = A = A =	
IN	4.30E+07	4.00E+07	
ΔΝ	1.10E+06	4.50E+07 4.50E+05	-4.60E+07
$\frac{\Delta N}{\Delta V(T)}$	1.10E+06 506.0	4.50E+05 509.7	-4.60E+07
ΔN ΔV(T) T	1.10E+06 506.0 28.52	4.50E+07 4.50E+05 509.7 30.38	-4.60E+07
$ \frac{\Delta N}{\Delta V(T)} $ $ \frac{\Delta V(T)}{T} $ $ \Delta V(T_0) $	1.10E+06 506.0 28.52 509.0	4.50E+07 4.50E+05 509.7 30.38 509.1	-4.60E+07
$ \frac{\Delta N}{\Delta V(T)} $ $ \frac{\Delta V(T)}{T} $ $ \frac{\Delta V(T_0)}{a_f} $	4.30E107 1.10E+06 506.0 28.52 509.0 9.137	4.50E+07 4.50E+05 509.7 30.38 509.1 9.139	-4.60E+07 0.0 -3.954
	4.56E+07 1.10E+06 506.0 28.52 509.0 9.137 #N/D	4.50E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893	-4.60E+07 0.0 -3.954 #N/D
	1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066	4.50E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068	-4.60E+07 0.0 -3.954 #N/D -9.025
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T_0)}{a_f}$ $\frac{a_f}{\Delta a}$ $\Delta a \text{ tot}$ $K_f \text{ interp } F=1kN_{sf}$	1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901	4.50E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T_0)}{a_f}$ $\frac{a_f}{\Delta a}$ $\Delta a \text{ tot}$ $K_1 \text{ interp } F=1kN_{sf}$ $K_{II} \text{ interp } F=1kN_{sf}$	4.36E+07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267	4.50E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T_0)}{a_f}$ $\frac{a_f}{\Delta a}$ $\frac{\Delta a}{\Delta a \text{ tot}}$ $K_{II} \text{ interp } F=1kN_{,f}$ $K_{II} \text{ interp } F=1kN_{,f}$	1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140	4.50E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T_0)}{a_f}$ $\frac{a_f}{\Delta a}$ $\Delta a \text{ tot}$ $K_1 \text{ interp } F=1kN_{sf}$ $K_{II} \text{ interp } F=1kN_{sf}$ $\frac{K_{II}/K_{1sf}}{\Delta K_{1sf}}$	4.36E+07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T_0)}{a_f}$ $\frac{a_f}{\Delta a}$ $\frac{\Delta a}{\Delta a \text{ tot}}$ $K_1 \text{ interp } F=1kN_{sf}$ $K_{II} \text{ interp } F=1kN_{sf}$ $\frac{K_{II}/K_{1sf}}{\Delta K_{Lth}}$	4.36E+07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11	4.50E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.00
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T_0)}{a_f}$ $\frac{a_f}{\Delta a}$ $\frac{\Delta a}{\Delta a \text{ tot}}$ $K_I \text{ interp } F=1kN_{sf}$ $\frac{K_{II} \text{ / } K_{Isf}}{\Delta K_{I.th}}$ $\frac{\Delta K_{I.th}}{\Delta F_{s.}}$	4.36E+07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.00 0.000
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{\Delta V(T_0)}{a_f}$ $\frac{a_f}{\Delta a}$ $\frac{\Delta a}{\Delta a \text{ tot}}$ $\frac{K_1 \text{ interp } F=1kN_{sf}}{K_{II} \text{ interp } F=1kN_{sf}}$ $\frac{K_{II}/K_{1sf}}{\Delta K_{L,th}}$ $\frac{\Delta F_f}{F}$	4.36E+07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172 4.636	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103 4.559	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.000 0.000 0.000
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{T}{\Delta V(T_0)}$ $\frac{a_f}{\Delta a}$ $\Delta a \text{ tot}$ $K_1 \text{ interp } F=1kN_{sf}$ $K_{II} \text{ interp } F=1kN_{sf}$ $\frac{K_{II}/K_{1sf}}{\Delta K_{L,th}}$ $\frac{\Delta K_{IL,th}}{\Delta F_f}$ F	4.36E+07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172 4.636 0.464	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103 4.559 0.456	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.000 0.000 0.000 0.000
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	4.36E+07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172 4.636 0.464 2.086	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103 4.559 0.456 2.051	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.000 0.000 0.000 0.000 0.000
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	4.36E+07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172 4.636 0.464 2.086 2.550	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103 4.559 0.456 2.051 2.507	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.000 0.000 0.000 0.000 0.000 0.000
$\frac{N}{\Delta N}$ $\frac{\Delta V(T)}{T}$ $\frac{T}{\Delta V(T_0)}$ $\frac{a_f}{\Delta a}$ $\Delta a \text{ tot}$ $K_1 \text{ interp } F=1kN_{sf}$ $K_{II} \text{ interp } F=1kN_{sf}$ K_{II}/K_{1sf} $\frac{\Delta K_{II,th}}{\Delta K_{II,th}}$ $\frac{\Delta F_f}{F_{max,f}}$ $F_{min,f}$ $F_{a,f}$ $F_{mean,f}$ $P_{mean,f}$	4.36E+07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172 4.636 0.464 2.086 2.550 0.27	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103 4.559 0.456 2.051 2.507 0.27	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	4.36E+07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172 4.636 0.464 2.086 2.550 -0.27	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103 4.559 0.456 2.051 2.507 -0.27 15.20	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172 4.636 0.464 2.086 2.550 -0.27 -15.39 9.157	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103 4.559 0.456 2.051 2.507 -0.27 -15.39 8.035	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	4.36E+07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172 4.636 0.464 2.086 2.550 -0.27 -15.39 8.159	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103 4.559 0.456 2.051 2.507 -0.27 -15.39 8.025 9.657	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172 4.636 0.464 2.086 2.550 -0.27 -15.39 8.159 9.065	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103 4.559 0.456 2.051 2.507 -0.27 -15.39 8.025 8.917	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	4.36E+07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172 4.636 0.464 2.086 2.550 -0.27 -15.39 8.159 9.065 0.816	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103 4.559 0.456 2.051 2.507 -0.27 -15.39 8.025 8.917 0.803 1.051	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000 0.00000000
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	4.36E+07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172 4.636 0.464 2.086 2.550 -0.27 -15.39 8.159 9.065 0.816 4.079	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103 4.559 0.456 2.051 2.507 -0.27 -15.39 8.025 8.917 0.803 4.013	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	4.36E+07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172 4.636 0.464 2.086 2.550 -0.27 -15.39 8.159 9.065 0.816 4.079 4.941	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103 4.559 0.456 2.051 2.507 -0.27 -15.39 8.025 8.917 0.803 4.013 4.860	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000000
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	4.36E/07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172 4.636 0.464 2.086 2.550 -0.27 -15.39 8.159 9.065 0.816 4.079 4.941 9.87	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103 4.559 0.456 2.051 2.507 -0.27 -15.39 8.025 8.917 0.803 4.013 4.860 9.87	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000 0.00000 0.000000 0.000000 0.000
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	4.36E/07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172 4.636 0.464 2.086 2.550 -0.27 -15.39 8.159 9.065 0.816 4.079 4.941 9.87 7.03	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103 4.559 0.456 2.051 2.507 -0.27 -15.39 8.025 8.917 0.803 4.013 4.860 9.87 6.97	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	4.36E/07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172 4.636 0.464 2.086 2.550 -0.27 -15.39 8.159 9.065 0.816 4.079 4.941 9.87 7.03 11.98	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103 4.559 0.456 2.051 2.507 -0.27 -15.39 8.025 8.917 0.803 4.013 4.860 9.87 6.97 12.04	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000 0.00000 0.000000 0.000000 0.000
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	4.36E/07 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172 4.636 0.464 2.086 2.550 -0.27 -15.39 8.159 9.065 0.816 4.079 4.941 9.87 7.03 11.98 0.104	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103 4.559 0.456 2.051 2.507 -0.27 -15.39 8.025 8.917 0.803 4.013 4.860 9.87 6.97 12.04 0.100	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	4.36E107 1.10E+06 506.0 28.52 509.0 9.137 #N/D 4.066 1.901 0.267 0.140 7.93 1.11 4.172 4.636 0.464 2.086 2.550 -0.27 -15.39 8.159 9.065 0.816 4.079 4.941 9.87 7.03 11.98 0.104	4.00E+07 4.50E+05 509.7 30.38 509.1 9.139 3.893 4.068 1.902 0.267 0.140 7.80 1.09 4.103 4.559 0.456 2.051 2.507 -0.27 -15.39 8.025 8.917 0.803 4.013 4.860 9.87 6.97 12.04 0.100 1.42	-4.60E+07 0.0 -3.954 #N/D -9.025 -21.573 11078.949 -513.552 0.00 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000

Durante la prova è stata fatta particolare attenzione ai cambi carico nella fase di *decreasing*, con variazioni di 0.1 MPam^{0.5}. In Figura 8.39 si riportano i punti di arresto ottenuti durante la prova sperimentale. In ordinata si è scelto di considerare il range di SIF equivalente da criterio MTS. In figura 8.40 sono riportati i segnali di potenziale della prova. Il *decreasing* con step di riduzione molto piccoli ha consentito un andamento continuo del segnale fino alla soglia.

Figura 8.40: segnale di potenziale grezzo e corretto con la temperatura della prova ASM01

8.4.4 Post processing

Terminata la prova si è smontato il provino dalla macchina e si sono fatte foto al microscopio della cricca da entrambi i lati. In seguito, il provino è stato rotto manualmente facendo particolare attenzione a tagliarlo sopra all'apice della cricca e non sopra l'intaglio (dopo aver verificato al microscopio la posizione finale della cricca). Prima di separare il provino la cricca è visibile solo dal lato A (Figura 8.40), mentre non si apprezza del tutto dal lato B (Figura 8.41).

Figura 8.40: cricca Side A

Figura 8.41: cricca Side B

In Figura 8.42 sono riportate le foto della superficie di frattura a provino rotto. Si nota subito come la propagazione della cricca non sia stata simmetrica, la lunghezza dal lato A è notevolmente maggiore di quella dal lato B. La propagazione della cricca non è uniforme sui due lati del provino, non si notano però deviazioni dovute a componenti di modo III. Il fatto di avere una geometria della superficie di frattura irregolare complica la procedura di post-processing, in quanto la cricca diventa difficile da misurare e da riprodurre in una simulazione numerica. La procedura di post-processing per prove a modo misto prevederebbe di misurare il *crack path* reale e calcolare da simulazioni FEM con quella particolare geometria dei nuovi polinomi che descrivano l'andamento reale dei SIF e del potenziale al variare della lunghezza di cricca.

Figura 8.42: concio 2 side A (a), side B (b)

Figura 8.42: superficie di frattura, concio 2 (a), concio 1 (b)

Figura 8.43: cricca da CPC

L'unica verifica a provino rotto è quella del percorso di cricca. La superficie di frattura è stata misurata al microscopio e il percorso confrontato con quello del modello FEM. Dal grafico in Figura 8.44 si può osservare come la differenza tra il modello e il percorso reale aumenta all'aumentare della lunghezza di cricca.

Figura 8.43: misure al microscopio del percorso di cricca

Figura 8.44: confronto tra percorso di cricca reale e da simulazione FEM (a); scarto percentuale tra modello FEM e percorso reale (b)

8.5 Conclusioni e commenti

La propagazione asimmetrica della cricca rende poco attendibili i punti di arresto sperimentali, calcolati nel corso della prova. La cricca evidentemente è stata sollecitata maggiormente nel lato con maggiore lunghezza di propagazione. Questo è probabilmente dovuto a tensioni residue dovute a un trattamento termico non simmetrico, che hanno quindi al contempo aperto un lato della cricca e chiuso l'altro. La simmetria dei carichi applicati dall'attrezzatura sperimentale appare confermata dalle prove a modo I, che hanno avuto una propagazione uniforme del fronte di cricca. Per quanto riguarda successivi trattamenti termici è fondamentale garantire che il posizionamento del provino sia simmetrico rispetto al flusso di calore del forno e, in particolare, non appoggiato su uno dei lati. Posizionando il provino appoggiato sul lato dell'intaglio, entrambe le superfici sono esposte all'aria e inoltre durante il trattamento termico si formano meno ossidi sull'intaglio (si veda Figura 8.43). Il metodo implementato per il controllo della prova, sebbene ancora da migliorare, si è rivelato utile e i dispositivi di allineamento asimmetrico del provino hanno garantito la posizione del provino per tutto il corso della prova. Una criticità dei polinomi di calcolo dei SIF e della lunghezza di cricca consiste nel fatto che questi sono calcolati per una lunghezza di cricca nominale di 5.000 mm e quindi non sono perfettamente adattabili a ogni provino. Bisogna però considerare che in caso di corretta propagazione del fronte di cricca, la geometria può essere modellata in post processing e quindi i polinomi ricalcolati considerando la geometria reale della cricca. Inoltre, come si è dimostrato dalle analisi FEM SCG con diverse dimensioni di elemento, i polinomi che calcolano K_{II} utilizzati per il controllo della prova sono fortemente dipendenti dalla dimensione di elemento. I polinomi, quindi, sono approssimazioni del comportamento fisico reale del materiale durante la prova. In caso di una prova condotta con corretta propagazione è necessario ricalcolare i polinomi in post processing partendo dal percorso di cricca reale attraverso il Fracture Tool di WorkBench, che fornisce un risultato accurato dei SIF ad una precisa lunghezza di cricca.

Il polinomio per la misura della lunghezza di cricca è stato trovato interpolando i valori di potenziale ricavati da FEM e corretti in modo che alla lunghezza di cricca iniziale corrisponda il potenziale realmente misurato. In questo caso il potenziale iniziale usato per "azzerare" il polinomio è quello della lunghezza di cricca iniziale dopo RB. Così facendo però durante la prima fase di CPC a puro modo I viene percorso l'incremento di lunghezza di cricca iniziale soggetto a modo misto I+II. Quindi, quando inizia l'effettiva prova a modo misto, i polinomi dei SIF(a) non misurano effettivamente una sollecitazione di modo misto sulla cricca. Sarebbe quindi più opportuno per una prova successiva azzerare il polinomio che calcola la lunghezza di cricca a un potenziale corrispondente alla lunghezza di cricca dopo CPC. In questo modo lo zero del polinomio e lo zero della prova a modo misto coincidono, e il tratto iniziale non viene passato in CPC.

CONCLUSIONI

In questo lavoro di tesi è stata determinata sperimentalmente la curva R ciclica con rapporto di ciclo R=0.1 su provini SENB in configurazione di puro modo I e modo misto I+II.

Inizialmente sono stati confrontati attraverso simulazioni agli elementi finiti diversi metodi per calcolare il SIF K_1 applicato all'apice della cricca, in configurazione di Four Point Bending simmetrico. Dal confronto tra i vari risultati si è verificato che i metodi sono coerenti tra loro e con la formula analitica proposta nella normativa ISO 12108. Un lavoro analogo è stato svolto anche con analisi FEM elettriche per calcolare la caduta di potenziale al variare della lunghezza di cricca. I vari metodi numerici sono stati confrontati con l'equazione di Johnson proposta dalla normativa ISO 12108 valida per prove simmetriche a modo I. Anche in questo caso i risultati delle simulazioni sono coerenti con quelli della normativa.

In seguito, si è proceduto con le analisi numeriche per lo studio delle configurazioni di carico a modo misto I+II. Dopo aver analizzato agli elementi finiti varie configurazioni, si è scelto uno schema di carico di Four Point Bending Asimmetrico con posizioni degli appoggi asimmetriche tra loro e intaglio non allineato all'asse di carico della macchina di prova. Questa consente di avere una quantità di SIF K_I e K_{II} inizialmente circa uguali e permetta la corretta installazione del provino in macchina (con sufficiente spazio per i cavi di corrente e di potenziale del DCPD). Per questa configurazione scelta sono stati approfonditi tutti i parametri geometrici e la loro influenza sui SIF applicati. Dopo questa ulteriore analisi si sono dimensionate le posizioni degli appoggi e il disassamento tra cricca e asse della macchina.

Al termine della prima parte numerica sono state svolte le prove a puro modo I. La procedura sperimentale non era solida e non consentiva di acquisire correttamente il segnale di potenziale elettrico e quindi la lunghezza di cricca. Inoltre, durante le precedenti prove a modo I l'allineamento dei provini non era ottimale e questo comportava l'aggiunta di indesiderati modi II e III. La prima prova HAZ17 è servita quindi a rivedere l'intera procedura sperimentale, trovando e migliorando le criticità delle prove precedenti. Sono stati riprogettati i supporti laterali che trattengono il provino in posizione durante la prova e si è testato un metodo per isolare elettricamente il provino durante tutto il corso della prova. I problemi di instabilità del segnale di potenziale del DCPD riscontrati nelle prove precedenti erano dovuti a cortocircuiti. La corrente flussando nell'attrezzatura a flessione anziché nel provino causava misure fittizie della lunghezza di cricca. L'isolamento elettrico proposto (con fogli di Kapton tra provino e appoggi, e supporti in teflon) è robusto e può essere rapidamente sostituito. Durante questa prima prova è stata inoltre implementata un metodo di controllo in SIF K_I non presente nelcontroller della macchina di prova. Con queste modifiche la prima prova a modo I ha avuto risultati compatibili con altre prove svolte sullo stesso materiale e la superficie di frattura a provino rotto è regolare e conforme ai requisiti ISO.

Una seconda prova a modo I AN05 è stata svolta per confermare e consolidare il metodo sperimentale implementato nella prima prova.

Prima di procedere con le prove a modo misto si sono studiati vari criteri di propagazione presenti in letteratura. I criteri sono stati confrontati tra loro e applicati al caso di studio della configurazione 4PB asimmetrica. Per svolgere prove sperimentali a modo misto I+II è stato necessario creare un metodo per monitorare la propagazione della cricca e calcolare i SIF applicati, in quanto non sono più valide le equazioni fornite dalla ISO. Si sono calcolati da simulazioni FEM SCG polinomi per il calcolo di K_I, K_{II} e il nuovo polinomio di calibrazione del metodo DCPD. Dalle analisi è emerso che la sollecitazione di modo II rimane solo per il primo tratto della propagazione in quanto la cricca tende a deviare a modo I locale. Il metodo implementato è del tutto generale, può essere applicato a qualsiasi geometria di provino e configurazione di carico. Con questa modalità di controllo sono state svolte due prove di curva R ciclica. L curva R trovata a modo misto è confrontabile nella propagazione è inferiore rispetto a quello delle prove a puro modo I, probabilmente a causa dell'orientazione delle fibre del materiale.

APPENDICE A Script MATLAB

A.1 Calibrazione dell'a

Questo script riceve in input i file di dati acquisiti dai dispositivi (termocoppia e Matelect). Inizialmente sincronizza temporalmente i dati in quanto le acquisizioni vengono avviate manualmente una dopo l'altra, e li riscrive come tabelle di numeri. Nella seconda parte viene ricavato il coefficiente di calibrazione α andando a fittare i valori di temperatura e potenziale misurati, il coefficiente α corrisponde alla pendenza della retta trovata. Infine il potenziale X viene corretto considerando i risultati del fitting appena svolto. Vengono plottati l'andamento del potenziale grezzo e corretto con la temperatura nel tempo, l'andamento del potenziale con la temperatura.

```
close all
clear all
clc
%% User INPUT
filename_matelect = 'HAZ17_statica_matelect.csv';
filename temp = 'HAZ17 statica temp.xlsx';
%% Import data
DCPD = importfile matelect(filename matelect);
time = datetime(DCPD.date + timeofday(DCPD.time));
time = datevec(time);
t = time(:,1)*365*24*3600+time(:,2)*30*24*3600+time(:,3)*24*3600 +
time(:,4)*3600 + time(:,5)*60 + time(:,6);
t = t - t(1);
t = table(t);
DCPD = [DCPD t];
Temp = importfile temp(filename temp);
time = datevec(Temp.time);
t_T = time(:,1)*365*24*3600+time(:,2)*30*24*3600+time(:,3)*24*3600 +
time(:,4)*3600 + time(:,5)*60 + time(:,6);
t_T = t_T - t_T(1);
t_T = table(t_T);
Temp = [Temp t T];
clearvars -except DCPD Temp
%% Calibrate alpha coefficient
T = interp1(Temp.t_T,Temp.temp,DCPD.t);
T = table(T);
T = [DCPD T];
clearvars -except T
T(any(ismissing(T),2),:) = [];
T0 = mean(T.T);
ft = fittype( 'X0*(1+alpha*x)', 'independent', 'x', 'dependent', 'y' );
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
```

```
opts.StartPoint = [100 0.003];
AlphaFit = fit(T.T-T0,T.X, ft, opts );
CoefficientValues = coeffvalues(AlphaFit);
X0 = CoefficientValues(1);
alpha = CoefficientValues(2);
Xc = T.X./(1+alpha.*(T.T-T0));
Xest = X0*(1+alpha*(T.T-T0));
%%
figure(2)
subplot(2,1,1)
plot(T.t,T.X)
hold on
plot(T.t,Xc)
xlabel('time[s]')
ylabel('X[\muV]')
subplot(2,1,2)
scatter(T.T,T.X)
hold on
plot(T.T,Xest,LineWidth=1.5)
xlabel('temp[C°]')
ylabel('X[\muV]')
hold on
scatter(T0,X0,LineWidth=1.5)
```

Si riportano in seguito le functions utilizzate nello script. La function "importfile_matelect" permette di riscrivere il file .csv ottenuto in output dalla Matelect come una tabella ordinata con le varie grandezze misurate suddivise in colonne.

```
function DCPD = importfile matelect(filename, dataLines)
%IMPORTFILE Import data from a text file
% If dataLines is not specified, define defaults
if nargin < 2
    dataLines = [3, Inf];
end
%% Set up the Import Options and import the data
opts = delimitedTextImportOptions("NumVariables", 10);
% Specify range and delimiter
opts.DataLines = dataLines;
opts.Delimiter = ",";
% Specify column names and types
opts.VariableNames = ["Var1", "X", "Y", "X_Y", "I", "F", "Var7", "date",
"time", "Var10"];
opts.SelectedVariableNames = ["X", "Y", "X_Y", "I", "F", "date", "time"];
opts.VariableTypes = ["string", "double", "double", "double", "double",
"double", "string", "datetime", "string"];
% Specify file level properties
opts.ExtraColumnsRule = "ignore";
opts.EmptyLineRule = "read";
% Specify variable properties
opts = setvaropts(opts, ["Var1", "Var7", "Var10"], "WhitespaceRule",
```

```
"preserve");
opts = setvaropts(opts, ["Var1", "Var7", "Var10"], "EmptyFieldRule", "auto");
opts = setvaropts(opts, "date", "InputFormat", "dd/MM/yyyy");
opts = setvaropts(opts, "time", "InputFormat", "HH:mm:ss");
% Import the data
DCPD = readtable(filename, opts);
```

end

La function "importfile_temp" permette di riscrivere il file .xlsx ottenuto in output dal software della termocoppia come una tabella con colonna del tempo e della temperatura.

```
function Temp = importfile temp(workbookFile, sheetName, dataLines)
%% Input handling
% If no sheet is specified, read first sheet
if nargin == 1 || isempty(sheetName)
    sheetName = 1;
end
% If row start and end points are not specified, define defaults
if nargin <= 2
    dataLines = [2, Inf];
end
%% Set up the Import Options and import the data
opts = spreadsheetImportOptions("NumVariables", 2);
% Specify sheet and range
opts.Sheet = sheetName;
opts.DataRange = dataLines(1, :);
% Specify column names and types
opts.VariableNames = ["time", "temp"];
opts.VariableTypes = ["datetime", "double"];
% Import the data
Temp = readtable(workbookFile, opts, "UseExcel", false);
for idx = 2:size(dataLines, 1)
    opts.DataRange = dataLines(idx, :);
tb = readtable(workbookFile, opts, "UseExcel", false);
    Temp = [Temp; tb]; %#ok<AGROW>
end
end
```

A.2 Correzione del potenziale durante la prova

Questo script è fondamentale per controllare l'andamento della prova a modo I. I valori di input sono le dimensioni del provino, i parametri DCPD e i file di acquisizione di Matelect e termocoppia. Lo script inizialmente riscrive le acquisizioni in tabelle sincronizzate come il precedente. In seguito, vengono calcolati il potenziale corretto con la temperatura e la corrispondente lunghezza di cricca con l'equazione di Johnson. In figura vengono plottati il potenziale al variare del tempo (prima e dopo la correzione), il rapporto tra potenziale acquisito nel canale X e Y, la lunghezza di cricca *a* al variare del tempo e la temperatura del provino al variare del tempo.

```
close all
clear all
clc
%% User INPUT
filename_matelect = 'AN5_CPC_matelect.csv';
filename temp = 'AN5 CPC temp.xlsx';
W = 18.995;
                % [mm]
                         Specimen Height
alpha = 0.0035; % [°C-1] Temperature coefficient
              8 [°C]
T0 = 34.0660;
                         Reference temperature
              % [V]
X0 = 284.282;
                         Initial voltage value
               % [mm]
a0 = 5.005;
                         Initial Crack Size measured at the microscope
               % [mm]
v0 = 2.292/2;
                         v0 used for Johnson equation in Rumul
I = 15;
                % [A]
                         Applied current
%% Import data
DCPD = importfile_matelect(filename_matelect);
time = datetime(DCPD.date + timeofday(DCPD.time));
time = datevec(time);
t = time(:,1)*365*24*3600+time(:,2)*30*24*3600+time(:,3)*24*3600 +
time(:,4)*3600 + time(:,5)*60 + time(:,6);
t = t - min(t);
t = table(t);
DCPD = [DCPD t];
Temp = importfile_temp(filename_temp);
time = datevec(Temp.time);
t T = time(:,1)*365*24*3600+time(:,2)*30*24*3600+time(:,3)*24*3600 +
time(:,4)*3600 + time(:,5)*60 + time(:,6);
t_T = t_T - min(t_T);
t_T = table(t_T);
Temp = [Temp t T];
%clearvars -except DCPD Temp alpha T0 I
T = interp1(Temp.t T,Temp.temp,DCPD.t);
T = table(T);
T = [DCPD T];
%clearvars DCPD Temp
T(any(ismissing(T),2),:) = [];
%% Data post-processing
Xc = T.X./(1+alpha.*(T.T-T0))*I./T.I;
Yc = T.Y./(1+alpha.*(T.T-T0))*I./T.I;
X X0 = Xc/X0;
a =
acos(cosh(pi*y0/2/W)./cosh(X X0*acosh(cosh(pi*y0/2/W)/cos(pi*a0/2/W))))*2*W/pi;
%%
```

figure(1)

```
subplot(2,2,1)
scatter(T.t,T.X,0.2)
hold on
plot(T.t,Xc)
legend('T','T_0','Location','southeast')
xlabel('time [s]')
ylabel('X,X(T 0) [\muV]')
subplot(2,2,2)
plot(T.t,T.X_Y)
xlabel('time [s]')
ylabel('X/Y [-]')
subplot(2,2,3)
plot(T.t,a)
xlabel('time [s]')
ylabel('a [mm]')
subplot(2,2,4)
plot(T.t,T.T)
xlabel('time [s]')
ylabel('T [°C]')
```

Vista la lunghezza delle prove di propagazione in soglia può capitare che queste vengono protratte da un mese a un altro. In questo caso è opportuno verificare che la stringa di codice per calcolare il vettore dei secondi t abbia nel conteggio dei giorni il numero corretto di giorni per mese. In seguito, si riporta la riga di codice con il numero da modificare evidenziato.

```
t = time(:,1)*365*24*3600+time(:,2)*30*24*3600+time(:,3)*24*3600 +
time(:,4)*3600 + time(:,5)*60 + time(:,6);
```

A.3 Post processing

Questo script viene utilizzato dopo la prova, a provino rotto, per correggere le misure fatte dal DCPD durante la prova sperimentale. Gli input sono i file completi di acquisizione di tutta la prova, le dimensioni principali del provino e la lunghezza di cricca iniziale e finale. Dopo aver sincronizzato i dati delle acquisizioni il codice fitta il segnale di potenziale e quindi la lunghezza di cricca tenendo fissi i due valori estremi misurati variando di conseguenza il parametro y₀dell'equazione di Johnson. Infine, vengono plottati i valori di potenziale prima e dopo la correzione in post-processing e la conseguente lunghezza di cricca.

```
close all
clear all
clc
%% User INPUT
filename_matelect = 'AN5_CPC_matelect.csv';
filename temp = 'AN5 CPC temp.xlsx';
W = 18.995;
                                 Specimen Height
                        % [mm]
                        % [°C-1] Temperature coefficient
alpha = 0.0035;
                        % [°C]
                                 Reference temperature
T0 = 34.0660;
                        % [V]
X0 = 284.282;
                                 Initial voltage value
a0 pre = 5.005;
                        % [mm] Initial Crack Size measured at the microscope
in pre
a0_post = 5.039 ;
                        % [mm] Initial Crack Size measured at the microscope
in post
y0 = 2.292/2;
                         % [mm] y0 used for Johnson equation in Rumul
                         % [A]
I = 15;
                                 Applied current
```

```
Xf post = 926.2;
                         % [V] Final voltage value (temperature
compensated!!!)
af post = 13.833;
                        % [mm] Finals Crack Size measured at the microscope
in post
%% Import data
DCPD = importfile matelect(filename matelect);
time = datetime(DCPD.date + timeofdav(DCPD.time));
time = datevec(time);
t = time(:,1)*365*24*3600+time(:,2)*30*24*3600+time(:,3)*24*3600 +
time(:,4)*3600 + time(:,5)*60 + time(:,6);
t = t - min(t);
t = table(t);
DCPD = [DCPD t];
Temp = importfile_temp(filename_temp);
time = datevec(Temp.time);
t_T = time(:,1)*365*24*3600+time(:,2)*30*24*3600+time(:,3)*24*3600 +
time(:,4)*3600 + time(:,5)*60 + time(:,6);
t T = t_T - min(t_T);
t T = table(t T);
Temp = [Temp t T];
%clearvars -except DCPD Temp alpha T0 I
T = interp1(Temp.t_T,Temp.temp,DCPD.t);
T = table(T);
T = [DCPD T];
%clearvars DCPD Temp
T(any(ismissing(T),2),:) = [];
%% Data post-processing
Xc = T.X./(1+alpha.*(T.T-T0))*I./T.I;
Yc = T.Y./(1+alpha.*(T.T-T0))*I./T.I;
X X0 = (Xc)/X0;
a =
acos(cosh(pi*y0/2/W)./cosh(X X0*acosh(cosh(pi*y0/2/W)/cos(pi*a0 pre/2/W))))*2*W
/pi;
% Fit y0
Johnson_fit = @(x) Xf_post/X0*acosh(cosh(pi*x/2/W)/cos(pi*a0_pre/2/W))-
acosh(cosh(pi*x/2/W)/cos(pi*af_post/2/W));
y0_fit = fzero(Johnson_fit,2);
a_c =
acos(cosh(pi*y0 fit/2/W)./cosh(X X0*acosh(cosh(pi*y0 fit/2/W)/cos(pi*a0 post/2/
W))))*2*W/pi;
%%
figure(1)
subplot(2,2,1)
scatter(T.t,T.X,0.2)
hold on
plot(T.t,Xc)
```

```
legend('T','T_0','Location','southeast')
xlabel('time [s]')
ylabel('X,X(T_0) [\muV]')
subplot(2,2,2)
plot(T.t,T.X_Y)
xlabel('time [s]')
ylabel('X/Y [-]')
subplot(2,2,3)
plot(T.t,a)
hold on
plot(T.t,a_c)
legend('a','a_c','Location','southeast')
xlabel('time [s]')
ylabel('a [mm]')
subplot(2,2,4)
plot(T.t,T.T)
xlabel('time [s]')
ylabel('T [°C]')
```

APPENDICE B

Sviluppo della modalità di controllo in SIF K₁

Nell'appendice verranno riportati il codice MATLAB usato per implementare le formule analitiche del controllo in SIF e la procedura per creare la nuova modalità di controllo nella macchina di prova.

B.1 Canali misurati e calcolati

Durante la prova sperimentale i canali misurati dai sensori della macchina sono i seguenti:

- Canale DCIn2 (Forza)
- Canale In13 (Potenziale X)
- Canale ACIn1 (Spostamento)

Dal momento che il valore della forza e del potenziale vengono misurati dal controller è possibile utilizzarli per definire un canale calcolato a partire dai canali misurati. Noto il segnale di potenziale X si può calcolare la lunghezza di cricca a implementando nel controller l'equazione di Johnson (B.3), analogamente noti X e F si può calcolare il SIF applicato grazie alle formule analitiche della ISO 12108 [14]. In Figura B.1, si riporta lo schema concettuale per implementare i nuovi canali calcolati nel caso di 4PB simmetrico. Le formule analitiche sono riportate per intero al Capitolo 6, in questo caso si mostrano solo dove inserire gli input dei canali misurati.

Figura B.1: schema, implementazione del controllo in SIF

$$K_{I} = \frac{F}{BW^{\frac{1}{2}}}g\left(\frac{a}{W}\right) \tag{B.1}$$

$$g\left(\frac{a}{W}\right) = 3(2tan\theta)^{\frac{1}{2}} \left[\frac{0.923 + 0.199(1 - sin\theta)^4}{cos\theta}\right]$$
(B.2)

$$a = \frac{2W}{\pi} \cos^{-1} \left[\frac{\left(\cosh\left(\frac{\pi y}{2W}\right) \right)}{\cosh\left[\frac{\Delta V}{\Delta V_0} \cosh^{-1} \left(\frac{\cosh\left(\frac{\pi y}{2W}\right)}{\cos\left(\frac{\pi a_0}{2W}\right)} \right) \right]} \right]$$
(B.3)

B.2 Codice MATLAB

Le equazioni appena descritte devono essere scritte in un'unica formula $K_I(X, F)$ da inserire nel software del controller RT3. La scrittura direttamente nell'interfaccia grafica del controller è particolarmente complessa (vista anche la lunghezza della formula da inserire) e fonte di inevitabili errori che porterebbero a un controllo errato della prova. Questo è stato risolto implementando un codice MATLAB che scrive le formule in maniera simbolica pronte per essere copiate e incollate nell'apposita sezione del controller. I dati richiesti in input sono le dimensioni principali del provino e la differenza di potenziale iniziale. Lo script procede stampando le formule analitiche per il calcolo del SIF in caso di prova a trazione o flessione (nel caso a flessione è necessario specificare l'ampiezza degli appoggi).

```
%% questo script permette di stampare l'espressione analitica di KI in funzione
di DV per incollarla nel software del controller Schenck
close all
clear all
clc
%% INPUT
W = 18.995; % altezza provino [mm]
B = 5.993; % spessore provino [mm]
y = 2.292/2; % semi-distanza tra i pin [mm]
a0 = 5.005; % lunghezza di cricca iniziale [mm]
DV0 = 275.3664; % differenza di potenziale iniziale [uV]
Smax = 65; % massima distanza tra gli appoggi [mm]
Smin = 50; % minima distanza tra gli appoggi [mm]
%% calcolo parametri
c = sym(3.14*y/2/W);
d = sym(3.14*a0/2/W);
e = sym(2*W/3.14);
correction = sym((Smax-Smin)/2/W);
%% equazioni TRAZIONE
syms In13 DCIn2 % il primo è il canale di potenziale il secondo quello della
forza
a = sym(e*acos(cosh(c)/cosh((In13-0.001)*1000/DV0*acosh(cosh(c)/cos(d)))))
alpha = sym(0.265*(1-a/W)^4+(0.857+0.265*a/W)/(1-a/W)^(3/2));
KI_trazione = sym(DCIn2*1000/B/W*sqrt(3.14*a/1000)*alpha)
%% equazioni BENDING
% a è lo stesso per entrambi i casi e anche gli ingressi
theta = sym(3.14*a/2/W);
g = sym(correction*3*(2*tan(theta))^0.5*(0.923+0.199*(1-
sin(theta))^4)/cos(theta));
KI bending = sym(DCIn2/B/((0.001*W)^{0.5})*g)
```

B.3 Procedura

In questo paragrafo si riassume la procedura creare la nuova modalità di controllo nel software del controller RT3.

Definire il nuovo canale calcolato:

1. Controllo \rightarrow definizione canale calcolato;

2250	0*10^	(1/2)*19	9^(1/2)*	DCIn2*c	osh(aco	sh(cosh)	9263/		Canali ca	Icolati
95000)/cos(187744	402044	9059/				N° Nome canale		Formula
15035	599627	370496	5))*((100)0*ln13)/	331-1/33	(1))*((199	*((1-	1 a[mm]	cosh(9263	/95000)/cos(1877444020449059/4503
pi	2pi	pi/2		Null	V	K	>	2 KI [MPam0.5] 1/2)-1)^4)/1	000+923/1000)*((2*cosh(acosh(cos
sin	cos	asin	acos	()	С	Back			
sinh	cosh	asinh	acosh	1	2	3	·	Range:	Massimo	Minimo
tan	atan	tanh	atanh	4	5	6		ittange.	100	-100
cot	csc	sec	exp	7	8	9	•	Nome canale	U	ABILITA CANALE CALCOLATO

Figura B.2: definizione del canale calcolato

- 2. Definire limiti superiore e inferiore;
- 3. Definire nome del canale e unità di misura;
- 4. Copiare e incollare la formula analitica stampata dallo script MATLAB;
- 5. Usando le frecce percorrere la formula appena incollata finché il pulsante *ABILITA CANALE CALCOLATO* non si illumina;
- 6. Abilitare il canale calcolato.

Visualizzazione del canale calcolato:

- 1. Controllo \rightarrow definizione canali di acquisizione;
- 2. Selezionare il canale calcolato;

Figura B.3: definizione del canale di acquisizione

3. Visualizzazione \rightarrow indicatori digitali

Figura B.4: indicatori digitali

Verifica dei valori letti:

Prima di procedere è necessario verificare che le formule implementate siano effettivamente corrette. Per fare questo si scrivono le stesse formule analitiche in un foglio Excel e si verifica, dati due input di forza e potenziale, che il valore di K misurato dalla macchina sia uguale a quello calcolato nel foglio Excel. In questo modo si ha la conferma di non aver commesso errori di trascrizione o di scrittura del codice MATLAB. In

tabella B.1 è riportato un esempio della tabella Excel utilizzata. Lo scopo è verificare che il K_I calcolato in Excel sia circa uguale a quello misurato dalla macchina, inserendo nel foglio di calcolo i valori di forza e potenziale misurati dai sensori.

V	F	а	θ	g	KI
[µV]	[kN]	[mm]	[/]	[/]	[MPa m ^{0.5}]
381	1	6.80504	0.56289	1.46746	1.77689

Tabella B.1: foglio Excel per la verifica del K₁ applicato

Definizione della nuova modalità di controllo:

1. Controllo \rightarrow Definizione modalità di controllo

Selezione canale di co	ntrollo	Schend	:k 🔽
Nome modalità		к	
	Calc: KI [M	Parn0.5]	
52	_		
Nome Modalità contro	110		
Nome Modalità contro Canale di retroazione	llo Ca	lc: Kl [MPam(0.5] 3
Nome Modalità contro Canale di retroazione Modalità con poss stabilizzazione d	llo Ca Sibilità di Jelta P	lc: Kl (MPami	0.5] S
Nome Modalità contro Canale di retroazione Modalità con poss stabilizzazione d	llo Ca sibilità di Jelta P REA NUOVA	lic: Ki (MPami) MODALITA'	0.5] S
Nome Modalită contro Canale di retroazione Modalită con poss stabilizzazione d	IIO Ca sibilità di Jetta P REA NUOVA MODIFICA M	ilo: KI (MPami) MODALITA ⁴ 10DALITA ⁴	1.5] S
Nome Modalità contro Canale di retroazione Modalità con poss stabilizzazione d <u>cri</u> <u>r</u>	IIo Ca sibilità di Jetta P REA NUOVA MODIFICA M RINOMINA M	le: KI (MPamt MODALITA' IODALITA' IODALITA'	9.5] S

Figura B.5: definizione della nuova modalità di controllo

- 2. Definire il nome della modalità
- 3. Scegliere il canale calcolato da associare alla modalità di controllo
- 4. Cliccare il pulsante CREA NUOVA MODALITA'

Impostazione parametri della servovalvola:

1. Controllo \rightarrow Parametri servovalvola;

Parametri Servovalvola	
Serv.1 - Sch	enck K
Limite comando servovalu	vola [%] 100.00
0.00 Polarità Negat	iva) 100.00
Bilanciamento servovalvol	a [V] 0.787
-5.000	5.000
Selezione DAQ	Tipologia
DAQ 0: SV1 🔽	+- 50 mA 🔽
Ampiezza Dither [V]	1.915
0.000	2.000
Frequenza Dither (Hz)	1000 🔽
Canale di Controllo	
Serv.1 - Sche	enck 🔽

Figura B.6: parametri della servovalvola

2. Invertire la polarità (selettore verso il basso).

Impostare i parametri del PID:

- 1. Controllo \rightarrow Parametri PID
- 2. Inserire parametri di calibrazione
- 3. Feed-Foreward = 0.00

(i valori di ogni parametro sono stati calibrati in maniera iterativa controllando visivamente l'andamento del segnale di input e output)

	Schen	ck K	
PID	Feed-Foreward		
	Guadagno Proporzio	nale 0	.09
0	.01		0.54
	Guadagno Integrale	1	.00
0	.00		5.00
	Guadagno derivativo	. 0	.08
0	.00		1.00
	Set Point Rate [%/sec	:] 2	0.0
	, D.0		100.0
	Frequenza di taglio passabasso su como	o filtro 10 ando (Hz)	0
Cana	le di Controllo	Schenck	
-			

Figura B.7: parametri PID

B.4 Influenza della temperatura

Il segnale di potenziale X utilizzato dal controller per calcolare il K₁ non è corretto rispetto alla temperatura, per questo il K₁ applicato dipende dalla temperatura. A questo punto è necessario conoscere l'entità di queste variazioni indesiderate del SIF per valutare se è comunque possibile trascurarle e utilizzare il controllo in SIF. Per valutare l'entità della differenza di K₁ applicato rispetto a quello alla temperatura di riferimento si è calcolato il SIF facendo variare la temperatura tra 25 C° e 35 C°. Questo range di temperatura è verosimile (anche superiore) rispetto alla differenza di temperatura sul provino tra giorno e notte. Dalla tabella B.2 si può notare che nonostante il segnale X non sia corretto con la temperatura, la variazione sul SIF è minima e dunque l'errore commesso durante il controllo è trascurabile. All'ultima riga si riporta per confronto il valore di K₁ alla temperatura di riferimento T₀.

Т	V	F av	F _{max}	F _{min}	a	θ	g	KIav	KImax	K _{Imin}	Kimax 1%
[C°]	[V]	[kN]	[kN]	[kN]	[mm]	[/]	[/]	[MPa m ^{0.5}]	[MPa m ^{0.5}]	[MPa m ^{0.5}]	[/]
25	270.1	2.468	4.487	0.449	4.892	0.405	1.133	3.386	6.157	0.616	-1.28
26	271.1	2.468	4.487	0.449	4.909	0.406	1.136	3.394	6.171	0.617	-1.04
27	272.0	2.468	4.487	0.449	4.927	0.408	1.138	3.402	6.186	0.619	-0.81
28	273.0	2.468	4.487	0.449	4.944	0.409	1.141	3.410	6.201	0.620	-0.58
29	273.9	2.468	4.487	0.449	4.961	0.410	1.144	3.418	6.215	0.622	-0.34
30	274.9	2.468	4.487	0.449	4.979	0.412	1.147	3.426	6.230	0.623	-0.11
31	275.9	2.468	4.487	0.449	4.996	0.413	1.149	3.434	6.244	0.624	0.12
32	276.8	2.468	4.487	0.449	5.013	0.415	1.152	3.442	6.259	0.626	0.35
33	277.8	2.468	4.487	0.449	5.031	0.416	1.155	3.451	6.274	0.627	0.59
34	278.8	2.468	4.487	0.449	5.048	0.418	1.157	3.459	6.288	0.629	0.82
35	279.7	2.468	4.487	0.449	5.065	0.419	1.160	3.467	6.303	0.630	1.06
30.47	275.4	2.468	4.487	0.449	4.987	0.413	1.148	3.430	6.237	0.624	0.00

Tabella B.2: variazione del SIF con la temperatura

B.4 Commenti

La modalità di controllo in SIF K₁ è stata implementata inizialmente per la prova HAZ17. Sebbene sia stata utile nel corso della prova e permetta di applicare i giusti valori di K₁, è ancora da migliorare e non completamente affidabile. Questa nuova modalità di controllo riceve in input per il calcolo del SIF il segnale di potenziale X non corretto con la temperatura e di conseguenza a temperature diverse da quella di riferimento commette errori sul calcolo del SIF. Questi errori, come si è visto, sono trascurabili nei range di temperatura tipici della prova (~29-34 C°). Più critico è quello che accade nel caso in cui il dispositivo Matelect non misuri uno dei punti di potenziale, non fornendo quindi l'input di segnale X al controller. In questo caso il controllo in K₁ fallisce completamente (il controller riceve in input un segnale X di circa 6V, ordini di grandezza maggiore rispetto al vero segnale X di qualche centinaio di μ V) causando l'arresto della prova. Pe risolvere il problema sarebbe necessario un miglioramento del controller che permetta di limitare il segnale di potenziale X in input quando questo supera una certa soglia. In Figura B.3 vengono riportati i valori dei segnali misurati e calcolati al momento dell'arresto della macchina di prova. Si notino in particolare il picco del segnale di potenziale di rotore della riceca di 19 mm (pari a tutto lo spessore del provino) e i valori del tutto irragionevoli del SIF K₁.

ndicatori digitali Dimensione indicatori				
Canale di acquisizione		Valore Max	- Min Picco	- Valle
ACIn1: Spostamento [mm]	T	32.046	-0.185	RESET
DCIn2: Forza [kN]	V	1.276	-6.305	RESET
In13: XMatelect [V]	T	0.739	-6.060	RESET
Calc: a [mm]	T	19.002	0.000	RESET
Calc: KI [MParn0.5]		33917.799	-419036.558	RESET

Figura B.3: valori massimi e minimi dopo interlock in controllo di K₁

BIBLIOGRAFIA

- [1] "CNR-UNI 10011, Costruzioni di acciaio: istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione, 1988.".
- [2] "N. E. Frost, 'Non-Propagating Cracks in Vee- Notched Specimens Subject to Fatigue Loading,' Aeronaut. Q., vol. VIII, pp. 1–20, 1957.".
- [3] Luca Vecchiato, "Theoretical development and experimental validation of the Peak Stress Method for the fatigue design of steel welded structures," Università degli studi di Padova, 2022.
- [4] W. D. Pilkey, D. F. Pilkey, and R. E. Peterson, *Peterson's stress concentration factors*.
- [5] Atzori Bruno, *Appunti di costruzione di macchine*. Padova, 2001.
- [6] "Anderson TL. Fracture Mechanics, Fundamentals and Applications. 3rd ed. Boca Raton: CRC Press LLC; 2009.".
- [7] "Tada, Paris, Irwin, The Stress Analysis of Cracks Handbook, 2000".
- [8] "P. C. Paris and F. Erdogan, 'A Critical Analysis of Crack Propagation Laws S,' Jpirnal Basic Eng., pp. 528–533, 1963.".
- [9] U. Zerbst, M. Vormwald, R. Pippan, H. P. Gänser, C. Sarrazin-Baudoux, and M. Madia, "About the fatigue crack propagation threshold of metals as a design criterion - A review," *Eng Fract Mech*, vol. 153, pp. 190–243, Mar. 2016, doi: 10.1016/j.engfracmech.2015.12.002.
- [10] Kitagawa H and Takahashi S, "Applicability of fracture mechanics to very small cracks or the cracks in the early stage," *Proc of 2nd int conf mech behav mater, Boston. Cleveland* (*OH*): *ASM*, 1976.
- [11] El Haddad MH, Smith KN, and Topper TH, "Fatigue crack propagation of short cracks," *Trans ASME J Engng Mater Technol*, 1979.
- [12] "Y. Akiniwa, K. Tanaka, E. Matsui, Statistical characteristics of propagation of small fatigue cracks in smooth specimens of aluminum alloy 2024-T3, Mater. Sci. Eng. A 104 (1988) 105–115.".
- [13] "ASTM E 647-11. Standard test method for measurement of fatigue crack growth rates. Philadelphia: American Society for Testing and Materials (ASTM); 2011.".
- [14] "ISO. ISO 12108:2018 Metallic materials Fatigue testing Fatigue crack growth method 2018.".
- [15] "Tesch A, Pippan R, Döker H. New testing procedure to determine da/dN–DK curves at different, constant R-values using one single specimen. Int J Fatigue 2007;29:1220–8.".
- [16] B. Tabernig and R. P. B. Tabernig, "Determination of the length dependence of the threshold for fatigue crack propagation," *Eng. Fract. Mech.*, 2002.
- [17] Enrico Bernardo, *Lezioni di materiali non metallici*. 2019.
- [18] "J. Maierhofer, R. Pippan, and H. P. Gänser, 'Modified NASGRO equation for physically short cracks,' Int. J. Fatigue, vol. 59, pp. 200–207, 2014, doi: 10.1016/j.ijfatigue.2013.08.019.".
- [19] "Yamada Y, Newman Jr JC. Crack-closure behavior of 2324-T39 aluminum alloy nearthreshold conditions for high load ratio and constant Kmax tests. Int J Fatigue 2009;31:1780–7.".
- [20] "Wasen J, Heier E. Fatigue crack growth thresholds the influence of Young's modulus and fracture surface roughness. Int J Fatigue 1998;20:737–42.".
- [21] C. J. Chen, M. N. Su, Y. H. Wang, and R. H. Zhu, "Experimental investigation on anisotropic fatigue crack growth characteristics of Q420C steel," *Theoretical and Applied Fracture Mechanics*, vol. 124, p. 103815, Apr. 2023, doi: 10.1016/J.TAFMEC.2023.103815.
- [22] "B. Gross and A. Mendelson, 'Plane Elastostatic Analysis of V-Notched Plates,' vol. 8, no. 3, pp. 267–276, 1972, doi: 10.1007/bf00186126.".
- [23] "G. Meneghetti and A. Campagnolo, 'State-of-the-art review of peak stress method for fatigue strength assessment of welded joints,' Int. J. Fatigue, vol. 139, no. May, p. 105705, 2020, doi: 10.1016/j.ijfatigue.2020.105705.".

- [24] G. Meneghetti, L. Vecchiato, A. Campagnolo, P. Rech, and M. Cova, "Numerical calibration of the direct current potential drop (DCPD) method in fracture mechanics fatigue tests," *Procedia Structural Integrity*, vol. 28, pp. 1536–1550, Jan. 2020, doi: 10.1016/J.PROSTR.2020.10.126.
- [25] H.H. Johnson, "Calibrating the electric potential method for studying slow crack growth," *Mater. Res. Stand.*, 1965.
- [26] T. Vojtek, R. Pippan, A. Hohenwarter, L. Holáň, and J. Pokluda, "Near-threshold propagation of mode II and mode III fatigue cracks in ferrite and austenite," *Acta Mater*, vol. 61, no. 12, pp. 4625–4635, Jul. 2013, doi: 10.1016/J.ACTAMAT.2013.04.033.
- [27] "Bilby BA, Cardew GE, Howard IC. In: Taplin DMR, editor. Fracture 1977, vol. 3. New York: Pergamon Press; 1977.".
- [28] R. P. T. V. A. H. J. Pokluda, "Near-threshold behaviour of shear-mode fatigue cracks in metallic materials," *FFEMS*, Oct. 2016.
- [29] "Hellier, A.K., Zarrabi, K. & Merati, A.A. On the Mode II Fatigue Threshold for Mild Steel. Int J Fract 167, 267–272 (2011). https://doi.org/10.1007/s10704-010-9540-3".
- [30] "Pook LP, Greenan AF. Various aspects of the fatigue crack growth threshold in mild steel. In: Proc fatigue testing and design conf, Society of Environmental Engineers Fatigue Group, Buntingford, Herts; 1976, vol. 2, p. 30.1–33.".
- [31] G. C. S. F. Erdogan, "On the Crack Extension in Plates Under Plane Loading and Transverse Shear," J. Basic Eng. Dec 1963, 85(4): 519-525 (7 pages).
- [32] M. F. and M. S. H. A. RICHARD, "Theoretical crack path prediction," FFEMS, Nov. 2004.
- [33] "Sih, G.C. Strain-energy-density factor applied to mixed mode crack problems. Int J Fract 10, 305–321 (1974). https://doi.org/10.1007/BF00035493".
- [34] M. Sander and H. A. Richard, "Experimental and numerical investigations on the influence of the loading direction on the fatigue crack growth," *Int J Fatigue*, vol. 28, no. 5–6, pp. 583–591, May 2006, doi: 10.1016/J.IJFATIGUE.2005.05.012.
- [35] H. D. B. K. D. M. Amestory, "Analytic asymptotic solution of the kinked crack problem".
- [36] Metallic materials-Fatigue testing-Fatigue crack growth method. 2020.