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Abstract

The estimation of the minimum spanning tree (MST) is one of the most important tasks of

graph theory and presents many different applications in different technical fields, ranging

from network management to multimedia forensics. Since this graph theory problem has

many applications in various fields, algorithms of every kind have been studied and developed

specifically for this task. The current work propose a new approach to estimate the minimum

spanning tree for a complete graph whose edge weights are affected by a significant amount

of noise. The main idea is to model the MST estimation as an image denoising problem,

where the input noisy image corresponds to the dissimilarity matrix and the desired output is

a binary adjacency matrix.

The denoising task was implemented using a deep learning strategy based on autoencoder

structures, and in this work different typologies of autoencoder are discussed. The estimation

results were compared to those obtained with state-of-the-art algorithm by means of some

metrics measuring the percentage of correctly-estimated roots, leaves and relations among

nodes. The results obtained are very encouraging because the model outperforms the existing

strategies in accuracy and flexibility. Moreover, the designed solution can be easily extended

to other MST estimation problems.
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1
Introduction

The minimum spanning tree (MST) estimation is an important task in graph theory that

presents several applications in different fields, randing from network management, cluster

analysis, image segmentation and denoising, topology and multimedia forensics, to mention

only some of them. This mathematical structure is able to correctly estimate the inner rela-

tionships within a set of data, extrapolating them from a complete graph structure describing

the relations interlying among all the elements of the input dataset. Many real-life situations

could be represented with this data structure. Therefore, almost every context is a possible

test-bed for the minimum spanning tree computation.

Common situations where theMSTproblem finds today a dense research are the treatment

of the data, with fields like clustering and image manipulation, where this problem has been

exploited to obtain important results about the inner compositions of the data considered,

and some pure mathematical concepts, where resembling the given information to a graph

and then trying to find the inner MST-like frames between them, can highlight important
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structures that are useful to comprehend the initial problem. Shortly, the minimum spanning

tree estimation has a solid utility everywhere there is the need of finding a defined relation

between a representation of some data.

This work proposes to approximate the minimum spanning tree of a set of data as the

denoised version of the matrix made by the values of dissimilarity between couples of samples

from the same set. Consequently, under this assumption, theminimum spanning tree finding

problem can be simplified to a denoising problem. The denoising algorithms in this work

were implemented using deep learning strategies, in particular to a specific structure of deep

learning models, called autoencoder. The autoencoder, as one of the first learning models

presented, has a simple structure that, up to today, has been used and re-engineered several

times to face a broad kind of applications. One of these is the denoising.

Starting from some preliminary studies on the reconstruction of the minimum spanning

tree to estimate the phylogeny tree of a set of data, this work describes how to reconstruct

a valid MST using some of the most advanced neural methodologies; in our experimental

results we tested the robustness and the flexibility of this approach by changing the size of the

analyzed datasets and by removing randomly some elements.

Further analysis on corrupted datasets highlights the good behaviour of this approach even

in realistic situations, where some of the data could be missing.
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“Very simple. Just keep adding layers until the test error

does not improve anymore.”

Unknown

2
Neural Networks: a short introduction

2.1 Brain model

The human brain is composed of connected structures that can interact with each other,

transmit the information and produce a precise reaction to a particular input. These structures

are the neurons, electrically excitable cells connected by synapses and axons. The main

function of these kind of cells is to receive a signal in response to a well-defined stimulus

and then forward it, after some processing, to the next cells, which are connected to them.

The signal is an electrical/chemical process which is generated by any internal or external

interaction of the body. The final result of this propagation process is an interpretation of

the stimulus or a reaction to it.

Recently, this connection concept has been proposed to build a learningmodel for computers.
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Figure 2.1: Comparison between biological neurons and artificial neurons [1].

2.2 Neuron

An artificial neuron is a mathematical function which takes one or more inputs and combines

them to create an output. Interconnecting these neurons makes possible to create a network,

which is able, after a learning phase where all the variables of the network are set, to generate

an output which is coherent with the given task. The visual comparison between biological

neuron and artificial neuron is visible in figure 2.1.

Each artificial neuron implements the function:

yk = φ(
m∑
j=0

wkjxj) (2.1)

where yk is the output of the k-th neuron, xj is the value of the j-th input,wkj is the weight

of the edge connecting input j to neuron k and φ is a function called activation function.

A single unit of these has a limited learning ability, since it can implement a simple linear

decision function. Their concatenation, instead, can perform very complex tasks.

The main components of equation 2.1 are:
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• Values: these are the inputs given to the model;

• Weights: they control how much each input affects the output value;

• Activation function: the sum of all the input values multiplied by their correspond-

ing weight is then processed by this non-linear function. The final result is the actual

output of the neuron. Since this function defines the type of output obtained, there

are many of them, all suitable for different problems;

These are some of the most used activation functions:

• Step: the output of this function is a binary value, which depends on a given threshold

θ;

f(x) =

 0 x < θ

1 x ≥ θ
(2.2)

• Sigmoid: it is a simple non-linear function, whose derivative can be easily computed.

σ(x) =
1

1 + e−x
(2.3)

The function is “S”-shaped, and the output is between 0 and 1. While the algorithm is

in the training phase, the activation function needs to be derived several times, and

therefore, the use of sigmoid can lighten the computation;

• Rectifier: this non-linear function returns the positive part of the input argument:

f(x) =

 0 x < 0

x x ≥ 0
(2.4)

It has been shown that deeper networks can be trainedmore effectively [2] by exploiting

this function in their layers;
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• Softmax: this function is a way to convert a k-dimensional vector into another k-

dimensional vector where each of its value is between 0 and 1, and their sum is 1. The

first objective of this function is to provide a likelihood value for each output value

instead of a hard value.

σ(xj) =
exj∑
i e
xi

(2.5)

2.3 Neural network

A neural network is a system where several of these neurons are interconnected to form a

single structure. The neurons are typically organized into layers, where the “input layer”

represent the data to be processed and the output layer is the result of the processing. All

the other layers are called “hidden layers”; the number of layers identifies the depth of the

network.

Each layer is connected to the next one by a certain number of edges, and the connection

pattern affects the behaviour of the entire network. The most common pattern is the “fully

connected”, where each neuron in the layer i is connected with each neuron at layer i+ 1; it

is important to notice that each edge has its weight, which is a parameter that will be adjusted

during the training phase. A greater number of edges will cause a greater number of parame-

ters to train and the performance of the entire network can slow down. Usually, there’s one

more parameter in each neuron, called bias: the idea behind the bias is to add in every linear

combination describing the output of the given neuron a value that it does not depend on

previous neurons, but it’s constant; since the bias value is fixed, the only parameter to adjust

is its weight.

By connecting a layer with l neurons and a bias to another layer of n neurons, the parameters

concerning this particular part of thenetworkwill be (l+1)×n, so the complexity grows easily.
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2.4 Training

This is the main phase for the creation of the model. It uses a training set, i.e. a set of

data where each sample is made by the data in itself and a ground truth value, which is the

information that themodel will need to predict. The ground truth will be used to understand

how much the current prediction done on its relative sample of data is far from the expected

value, helping the network to learn from its errors. The phase of training is primarily divided

into two distinct moments: forward propagation and backward propagation.

• forward propagation: the input data from the training set are fed to the network; it

is then propagated to the end and an output is produced. This output is compared to

the ground truth, generating an error defined by a disparity or loss function;

• backward propagation: the error is then propagated in the opposite direction in

order to correct the weight values and refine the final accuracy.

This procedure is repeated for the whole training set, trying to adjust the parameters of the

model for every data in it.

2.4.1 Learning

The learning phase adjusts the weights of the model. At the beginning, the weighs are

initialised to an arbitrary value, e.g. 1. Then the dataset is split into training, validation and

test set. The actual training comes when the training set is processed by the network, and its

output is compared to the ground truth of the data. An analysis on the error generated in this

comparison will lead to an adjustment of the weights of every edge to improve its accuracy.

The error measured by the loss function, which is a metric that parameterize the distance

between the network output and the ground truth value. Some of the most-widely used

metrics are:
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• Mean Square Error (MSE): it is the average of the squared difference between pre-

dictions and values obtained. With this function, outliers (observations that are very

far from their actual values) are penalized, because their big difference from the truth

is squared.

MSE =

∑n
i=1(yi − ŷi)

2

n
(2.6)

• Mean Absolute Error: it is very similar to the MSE, but the difference between

observation and the ground truth depends on the absolute value. This function is

slightly more complicated than the MSE while calculating its gradient, and the outliers

are not so penalized.

MAE =

∑n
i=1 |yi − ŷi|

n
(2.7)

• Mean Bias Error: this function is not so common, and it is very similar to the MAE.

MBE =

∑n
i=1(yi − ŷi)

n
(2.8)

There could be both positive and negative errors; the MBE is not very accurate, but it

is useful to describe the trend of the training, if the bias is positive or negative.

Loss functions can, of course, be customized according to the problem analysed: further

in this work an example of custom loss function will be used and explained.

There are also some parameters, called hyperparameters, that cannot be trained, but are

defined at the beginning of the training phase and they can determine how well the entire

process will perform [3]:

• Number of hidden layers: if there are many hidden layers in the network, then the

accuracy can increase, but the computation can be slower. On the other hand, if there

are few hidden layers, the model will not have enough parameters to train and get a

good approximation of the data, so the trainingwill fail. In other words, it will underfit.

Figure 2.2 shows an example of neural network with more than one hidden layer.
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Figure 2.2: An example of neural network with more than a single hidden layer [4].

• Dropout: it is used to avoid overfitting. It consists in ignoring a fixed number of

neurons from each layer while training. This will keep the processing power of the

network intact while avoiding overfitting it on a specific training set. In figure 2.3 it is

possible to see how dropout works.

Figure 2.3: How dropout works [5].

• Activation function: it introduces nonlinearity in the model. In particular, the rectifier

is the most popular and the sigmoid is the one for binary predictions. While doing

multi-class predictions, the softmax function applied to the output layer is the best

choice.

• Weight initialization: how the weights on the edges are initialized, normally done

accordingly to the activation function of each layer. The most used distribution is the

uniform one.
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• Learning rate: it defines how quickly the network updates its parameters. If this value

is low the entire process is slower, but the overall algorithm arrives at its optimum value

smoothly. If the value is larger, the algorithm is faster but it could not converge: this

difference is shown in figure 2.4.

Figure 2.4: Differences between learning rates [6].

• Number of epochs: an “epoch” occurs when the entire training set is processed through

the network. Therefore, the number of epochs sets how many times this entire set is

used in the training phase.

• Batch size: it sets how many samples feed to the network before changing the pa-

rameters. A higher batch size will speed up the training algorithm, because the new

parameters are calculated less often, but it will be less accurate.

2.4.2 Backpropagation

Several optimisation techniques can be used to adjust the parameters of the network. The

first possible way is a brute-force algorithm, which means that every possible combination of

values is tried for the edges of the network. Of course, there are limitations to this approach:

if the weights are assumed to be values between two given thresholds, let’s say -l and l, with a
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step between each possible value of ε, each weight will have to be tried∼ 2·l
ε

times to cover all

possibilities. This amount of calculation is required for every edge and at the end, the resulting

weights are those who minimize the loss. On these terms, the brute-force approach appears

to be suitable only for small networks, with a few parameters to train, and the final result is

not very precise. Talking about a normal fully connected network, with thousands of nodes,

the edges will be so much that the brute-force method is infeasible due to the computational

power and the overall time to compute the final result.

Mathematics comes to help because it is known that the derivative of a given function in a

certain point is the rate at which the function is changing value in that point. It’s possible to

apply this concept to the loss function, to understand how it behaves as the internal weights

change at a given rate.

What is interesting is the rate of which the error changes relative to the changes in the

weights. For example, it could happen that if the weights change a little, e.g. newW = W

+ ε, the overall sum of the errors can be several times greater than ε. So this method can be

applied also to decrease the error, by decreasing the values of the weights. Therefore, the

overall learning process is [7]:

1. Check the derivative of the loss function to see how much the error is increasing/de-

creasing.

2. If the value is positive, it means that if the weights are increased, the error is also

increasing. The solution is to decrease the weights.

3. If the value is negative, it means that if the weights are increasing, the error is decreasing.

The best thing to do is to increase the weights.

4. If the value is 0, the stable point is reached, and the algorithm is over

In figure 2.5 how the weights change.
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Figure 2.5: How to change the weights with regards to the sign of the gradient [7].

So, the goal of the backpropagation algorithm [7] is to change the weights inside the

network such that the next results are closer to their target value.

This algorithm is briefly described as follows: it works by looking at the error generated

by the feed-forward of a particular input and trying to understand how much a change in a

particular edge (connected to the output) will affect the total error. This estimation is done

through the partial derivative of the total error concerning the considered weight.

∂C

∂wi
(2.9)

Explaining how this rate is transferred from the final error to the desired weight is possible

through the chain rule:

∂C

∂wi
=
∂C

∂zj
· ∂zj
∂aj

· ∂aj
∂wi

(2.10)

where aj is the linear combination of the nodes as input to node j, and zj is this value fed to

the activation function, e.g. the output of the network in neuron j.

The single error of neuron j is defined as δ, in particular:

δ =
∂C

∂zj
(2.11)
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This value is then multiplied by a factor η, which is the learning rate, and the final quantity

has to be subtracted from the weight that is considered. This entire procedure is done for

every weight connected to the layer, in this case, the output.

For hidden layers, the process is similar, but need to take into account the fact that now every

neuron in this layer contributes to the next one.

∂C

∂zi
=
∂C1

∂zi
+
∂C2

∂zi
(2.12)

After having done the calculations for all the neurons in the same layer, the procedure is

repeated for every layer in a backwards direction, until the input layer is reached. At this point,

all the weights can be updated with their newly found value and other samples are fed to the

network as inputs; then the algorithm is called again until the last batch of data is treated.

2.4.3 Problems

Some challenges could arise while optimizing the network during the training phase [8]:

• Ill-conditioning: this issue appears if the loss function has a steep derivative, i.e. even a

small change in the input or weight increases the cost function. One consequence of

this problem is that learning turns out to be very slow because the learning rate must be

reduced to face a strong curvature. Newton’s method is very useful to optimize convex

functions, but it cannot be used yet since it must be adapted to the neural network

context;

• Localminima: looking for aminimum in a generic functionwith an iterative procedure

can lead the training algorithm to settle on a localminimum,which can be very different

from the lowest achievable value. If the values are not so different, falling into a local

minimum is not such a great problem for the overall learning result; otherwise, the

trained network will have suboptimal accuracies.
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• Flat regions: saddle points are zero gradient regions that can be the result of the opti-

mization algorithm. In particular, in high-dimensional spaces, saddle points are more

common than local minima. It seems that the standard optimization strategies stop

their iterative learning process while facing saddle points.

• Cliffs: while on a steep region, the gradient could make a huge step and jump off the

entire cliff structure. This is solved by the gradient clipping, that reduces the update

step according to the size of the gradient: bigger gradient means a small step, and

vice-versa;

• Long-term dependencies: they happen when the same operation is repeated through

various steps. To make an example, repeating the multiplication with a particular

weights matrix can lead to the exploding gradient problem, which generates very steep

surfaces, like cliffs;

• Inexact gradients: usually, the optimization algorithms assume that the computed

gradient is correct, but in practice, this value is noisy or biased, so the gradient is

not perfect. The problem can be avoided by accounting for imperfections in the

gradient while designing the algorithm or by choosing a loss function that is easier to

approximate.

2.5 Validation

The validation is an optional phase of the learning process of a network, where a new set of

data, called validation set, is used to decide when to stop the training phase. The idea is to

calculate an estimation of the overall loss of each network with this set that is not part of the

training set. The validation set is used to simulate a test set, by calculating a validation loss on

the input data. The backpropagation algorithm can find the optimal parameters of a network
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by adjusting the weights of the edges in the model, but this can lead the network to a situation

where the result keeps floating around its optimal value. Validation has been introduced to

avoid this loss of precision by keeping under control when the training procedure would

generate a good test loss and stopping the training algorithm at its optimum. Usually, if

after 10 epochs of training the validation loss has not improved, the learning procedure is

interrupted and the network is taken as it is.

The validation, due to its ability to emulate the behaviour of a test set, is also used to

understand which one, between different configurations of the model, is the best to fit the

data.

2.6 Test

Once various models have been trained, and the best one has been identified through valida-

tion, it is possible to assess the performance of the fully specified model.

The test set used is a set of data that have to be extracted from the same distribution as

the training and validation set, to ensure consistency. If the model fits both the training set

and the test set similarly, it means that no overfitting occurred. In case the test accuracy is

lower than the training accuracy the generated model does not generalize the task it has been

trained for.

2.7 Overfitting/Underfitting

Statistically speaking, overfitting occurs when the trained model proves to be tailored very

closely or in an almost exact way to a particular set of data, i.e., the training data[9]. This

implies that further sets can not be reliably predicted by this model.

Underfitting is the opposite of overfitting. In this case, the model is not able to adequately
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Figure 2.6: Overfitting vs underfitting [10].

capture the inner structure of the data, bringing poor performance even on training data[9].

This problem can be related to the structure of the model itself; in figure 2.6 a comparison

between overfitting, underfitting and a correct balanced model.
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3
Deep neural networks

A neural network is a data processing architecture which can implement an unknown func-

tion. This is made possible by the training phase, in which the network learns how to process

data and provide an answer which is as correct as possible with respect to the ground truth

values.

The Universal Approximation Theorem [11] states that:

“A feed-forward network with a single hidden layer containing a finite number of neurons

can approximate continuous functions on compact subsets of Rn”

This theorem essentially says that a network with a single hidden layer can approximate in a

goodway every single continuous function in the real space of any dimension [12]. In this way,

every continuous function can be disassembled in its minimal parts. The weights on the edges

will care about howmuch that particular neuron value counts for the final result. As reported
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Figure 3.1: Example of a fully-connected neural network with multiple outputs [12].

in the previous, weight values are learned during the training phase. These weights will then

contribute to the final layer, with one or more output neurons; in figure 3.1, how multiple

outputs are organized. But there are two caveats to face while declaring this statement: a

neural network with a single hidden layer can only learn continuous functions and they are

only approximate versions of themselves.

If a function is discontinuous, it is generally not possible to represent or approximate it

with a network of this kind. This is a not so surprising fact because usually, the functions that

a network is called to compute are continuous. In this case, the network will try to learn a

continuous approximation, which normally is enough to represent it with a good accuracy

[12].

Another limitation is the fact that the final result is an approximated representation. The

accuracy is directly connected to the number of neurons in the hidden layers. If there are

few neurons, the network will not be able to understand the relational structure between

input and output; if there are more of them, more nuances can be caught by the layer and the

approximation will be better.
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Figure 3.2: An example of a deep fully-connected neural network [13].

This fact leads to amajor drawback: the total amount of neurons required canbe exponentially

large. In particular, the more complex is the needed function, more neurons there will be in

the layer. Since every neuron is connected to all the other ones in the following layer, if the

number of neurons grows, the total complexity, which is defined by the size of the set of the

neurons and the size of the set of the edges, grows in a very steep way.

To overcome these problems, themost adopted strategy is to add one ormore hidden layers.

This allows the network to have fewer neurons per hidden layer, fastening the feed-forward

phase of the algorithm and increasing the total number of edges. This can bring a better

approximation of the function that is been considered. The overall complexity of the system

grows, as it can be seen in figure 3.2, but this allows to compute a wider family of functions,

both linear and non-linear. In general, a neural network is defined as “deep” if there are

multiple hidden layers between the input and output layers.

A deep neural network can generate a compositional model of an object where it is repre-

sented as a composition of primitive data, arranged in layers. With more layers, the input can

be decomposed in its primitives at a deeper level, regardless of the complexity of the object

[8].

This feature comes to help when harder problems are taken into account: real-life artificial

intelligence applications require a deep analysis of every observed data. To make a couple of
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examples: a pixel of a certain subject in a picture can change its colour values if the photo is

taken in different moments of the day, even if the context and the subject itself are the same; a

registration of a phrase spoken by a person could be very different from the registration of

the same phrase done by another person: there are many factors that can lead to a complete

mistake, like the accent and the tone of voice [8].

Deep neural networks can overcome these problems by considering only the object itself,

ignoring every misleading factor, decomposing the computation into nested simple functions,

each one belonging to a different layer. The abstraction grows as the input proceed into the

network, allowing an easier computation, as it is show in figure 3.3.

Besides their slightly different approach and scope, deep neural networks are very similar to

standard neural networks, since the seconds are just a particular case of the firsts.

Figure 3.3: Some features captured by a neural network [8].

Many different deep networks have been created to face particular tasks, like face and speech

recognition or image classification; these structures have been tested for years and at this point

they are capable to fulfil their duty and reached a good level of reliability. In this work, in

parallel with the standard implementation of deep neural networks, have been also considered
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two alternative architectures: convolutional neural networks and residual neural networks.

3.1 Convolutional neural network

Convolutional neural networks are specialized kind of network thought to process data that

has a grid-like topology. An example could be an image dataset, where each piece of data is an

image, that is seen as a 2Dgrid of pixels. As the name says, the particularity of this architecture

lays on the convolutional term: it means that at least one layer in the network implements

the convolution in place of the standard matrix multiplication [8].

Matematically the convolution is an operation on two functions f and g which produces a

third function expressing how the shape of the first is modified by the other one. It is defined

as the integral of the product of the two functions with the second one that has been inverted

and shifted.

(f ~ g)(t) :=

∫ +∞

−∞
f(τ)g(t− τ)dτ (3.1)

(f ~ g)(t) :=
+∞∑

k=−∞

f(k)g(t− k) (3.2)

The first term usually is referred to as the input, while the second is the kernel. The output is

sometimes called feature map [14].

While the input is usually a multidimensional array of data, the kernel is usually a multidi-

mensional array of parameters, which will be trained and adjusted by the network.

From figure 3.4 above it can be seen that the output of the convolution between a grid of

values and a kernel is just a linear combination of the values involved, which in the case of

the kernel they are always the same; those who change are those about the portion of input

considered in that particular iteration.

Typically, a single convolutional layer is divided into three operations or stages:

1. Convolution stage: in this stage, the layer performs various convolutions in parallel

and produces a set of linear activations;
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Figure 3.4: Output of a convolutional layer [8].

2. Detector stage: in this phase, the output set of the first one is run through a non-linear

activation function, such as the ReLu;

3. Pooling stage: here the output of the detector stage is furthermodified with a pooling

operation, which is a function that replaces the output of a net with a summary of the

surrounding outputs;

The most common pooling functions used [15] are:

• Max pooling: where the final output is the maximum value in the considered set of

values fed to the function. An example is shown in figure 3.5;

• Min-pooling: the same as max-pooling, but the value taken is the smallest one;

• Average pooling: here the final output, as the name suggests, is the average of all the

values that the function takes as input. Figure 3.6 is a clear example;
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Figure 3.5: How max-pooling works [16].

Figure 3.6: How avg-pooling works [17].

Usually, the choice of the pooling method depends on the input data: if the dataset is

composed of images, by using the average pooling the final result will be an image with

smoothed colours and some information about the edges will be lost; on the other hand,

using the max pooling will bring out more information from darker images, and vice-versa

for the min pooling.

In every case, pooling helps to make the representation invariant to small changes of the

input, so the final result will be more robust [15].

This is the case of pooling over results of the same convolutions, but this operation is effective

even when applied to results coming from separately parametrized convolutions.

On the example in figure 3.7 the same input is fed to three different filters, which try to match

the input with a rotated version of it. A match in one of these filters will bring out a larger

output than the others, so a max-pooling over the outputs of the filters will be able to obtain

a large response in any case, even with slightly different inputs.

The size of each layer reduces at each stage, and this is caused by both the convolutional
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Figure 3.7: Example of learned invariances [8].

stage and the pooling stage. This happens because the filtering operation, which involves

a linear combination between the values of the filter and the image, will make the involved

pixels collapse into a single one, reducing the dimensionality; the further stage, the pooling

with size q x q, is responsible for the elimination of some unwanted information, reducing

again the size, obtaining a final output of size (N/q) x (M/q).

For example, an image of 100× 80 pixels as input, after the first convolutional layer with

filters 5× 5 and pooling of size 2× 2will result in a feature map of size 48× 38.

So this means that while going on with the computation, the entire input will collapse to

a really small feature map e consequently a lot of information will be lost; the number of

kernels comes to help in this situation because the further one gets in the network, the more

filters there will be per layer. It is a general rule that while shrinking the size of the single

feature map, more of them will be generated.

Very far away from the input layer, depending on the initial size, the feature set will become

more and more similar to a layer of a fully-connected neural network. This entire structure is

graphically described in figure 3.8
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Figure 3.8: Usual structure of a convolutional neural network [18].

Generally speaking, convolutional neural networks decompose the input in various features

using the convolutional operation. The features will be more and more abstract as the consid-

ered layer is far away from the input one, and few final fully-connected layers complete the

model allowing this structure to perform standardmachine learning tasks on grid-like datasets.

3.2 Residual neural network

Residual neural networks were born [19] to face the problem of degradation: if a model is

trained to map a certain function and if some layers mapping the identity function are added,

the overall accuracy of the network should be not lower than its shallow counterpart. In real

cases, it can be shown that adding layers to a network leads to a degradation in performance

of the overall network because the error is hard to propagate on the earlier layers; this is due

to the exponential reduction of the gradient while travelling backwards the network to adjust

the weights.

The idea behindResNet is tomake a network or a set of layers learn not the needed function

H(x), but the difference between this function and the identity function, and this quantity

f(x) is called residual:

H(x) = f(x) + x -> f(x) = H(x) - x (3.3)
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The x is simply obtained by a skip connection between the input layer and the needed one.

Each one of these structures, where there are few layers in the middle of a shortcut connection

between the first and the last, is called Block [20], and an example of it is in figure 3.9.

Figure 3.9: Example of a single block of a residual neural network [19] [20] [21].

As can be seen from the above figure, the needed input x is given to a series of layers which

can approximate f(x), called residual, and add at the output of this function the input, in an

element-wise operation.

Usually, the input and the output of the layers have the same size, to ease the operation of

adding, but in the cases in which this do not happen, zero-padding techniques or 1× 1 con-

volutions are used to adapt the dimensions. The learning phases and the backpropagation of

the error seen in the fully-connected approach are then applicable here without any problem.

About the model that has been described earlier in this paragraph, adding one or more block

instead of the usual layers, will maintain the accuracy of the shallow network without in-

creasing the error: this happens because it is easier to force a function like f(x) described

by the layers in the block, to remain simple, because the skip connection will exclude some

of its overall complexity by bringing over the function f(x) = x [20]. In this way, ResNet

gives the layers a reference point to start mapping the identity function, which is the shortcut

connection x, instead of let them create a new identity function for each block.

The idea behindResNet, (see figure 3.10), was to increase the number of hidden layers (with
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Figure 3.10: First ResNet architecture [21].

respect to a fully-connected approach) at a feasible computational cost. The neural network

with the biggest number of layers is a ResNet with more than a thousand layers, while the

biggest number of layers for a fully-connected neural network is still less than thirty [20].

The thousand-layer model has been proved to be able to generate a training error< 0.1%,

while keeping the test error to a good 7.93% [21].

3.3 Autoencoder

There are a lot of different neural network architectures. Some are the best while treating

images, others that can be used to learn accurately complex functions more accurately. One

of them is the autoencoder, a neural way to compress data [8]. This kind of neural network

can be related to both compression and encoding: they were developed to take a vector from

Rn and translate it into an m-dimensional representation, withm < n.

This neural architecture learns how to extract the most important features of the input

and build a smaller, yet complete, representation of it. Then, the inverse process is possible,

taking the compressed code and obtaining the original data after having applied a decoding

function.
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The simplest autoencoder can be modelled by a neural network with just three layers [8]:

1. Input: this layer, as usual, takes the desired data and feeds it into the network;

2. Code: this is the layer of the code, where the reduced representation of the input

sample will be shown. Its size is the length of the encoding of the data;

3. Output: in this architecture, the size of the output must be the same as the size of the

input, to allow the network to understand if the entire model caught the reduction

and the following expansion of the features in a reliable way;

These phases can be grouped into two main operations, visible also in figure 3.11:

• Encoder: the first and the second layer, represent an encoding function fromRn to

Rm;

• Decoder: the second and the third and last layers implement a decoding function

fromRm toRn, to get the original data back from the coded representation;

Figure 3.11: The organization of the layers in a simple autoencoder [22].
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This means that autoencoders do not need to have a labelled datasets to learn because their

loss function describes howmuch the obtained output is similar to the input that generated it.

3.4 Mathematical approach

The two parts of a simple fully-connected autoencoder, the encoding and the decoding parts,

are, respectively, two functions φ and ψ, such that

φ : X → F (3.4)

ψ : F → X (3.5)

with

φ, ψ = arg min
φ,ψ

‖X − (ψ ◦ φ)X‖2 (3.6)

3.4.1 Encoder

The encoder phase takes the input x ∈ Rn and codes it into z ∈ Rm:

z = σ(Wx+ b) (3.7)

withW as the weight matrix of the encoder, b as the bias and σ as the activation function.

3.4.2 Decoder

The decoder takes in input z ∈ Rm and tries to decode it back to x ∈ Rn:

x′ = σ′(W ′z + b′) (3.8)

29



whereW ′ is the weight matrix of the decoder, b′ is the bias, ans σ′ its activation function.

Subsequently, the algorithm has to minimize a function of this shape:

f(x, x′) = ‖x− x′‖2 = ‖x− σ′(W ′(σ(Wx+ b)) + b′)‖2 (3.9)

Figure 3.12: A sample application of an autoencoder with MNIST data [23].

3.5 Regularized autoencoders

There are autoencoders where the number of neurons in the hidden layer is the same or even

bigger than the size of the original data. These borderline cases can lead the model to learn the

representation of hidden feature structures, but in the most of the cases, the learned function

includes the identity. Various techniques has been developed to avoid this phenomenon, and

the architectures resulting are knows as regularized autoencoders [24] [22].

3.5.1 Sparse autoencoders

Sparse autoencoders have more neurons in the hidden layers than in the input one. However,

these neurons are not all active at the same time, only few of themper iteration can be triggered.

This technique can make the model learn all the possible features of the input dataset in the

hidden layer, without having all of them involved in the analysis of a single input [24] [25]

[26].
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In more detail, this sparsity constraint is a “penalty” which is added to the loss function

and depends on the hidden layer; then this sum is what will be minimized in the training

phase:

f(x, x′) + Ω(z) (3.10)

A neuron is “active” when its output is close to the maximum value allowed by the activation

function, and “inactive” in the other case. In the following explanation, the assumed activation

function is the sigmoid, with maximum output 1 and minimum output 0. Let aj be the

activation factor the j-th neuron in the hidden layer and xi the input neuron connected to

the considered hidden unit. The average activation overm samples of the hidden unit j is

defined as follows:

ρ̂j =
1

n

n∑
i=1

(ajxi) (3.11)

where ρ̂j has to be forced to be close to 0, whichmeans that themost of the neurons is inactive;

therefore, given the “sparsity parameter” ρ, which is a constant that defines the percentage of

contemporary active neurons for a given input, the method forces ρ̂j = ρ [26].

So, the penalty will penalize ρ̂j when it deviates significantly from ρ; this is done with the

Kullback-Leibler divergence:

KL(px||py) = pxlog
px
py

+ (1− px)log
1− px
1− py

(3.12)

for generic px and py probability mass distributions, defined in the same probability space.

This quantity is the indication of how much the random variable px is related to the random

variable py. It’s some sort of asymmetric distance function, since it’s close to 0 if the two

random variables have similar distributions, and it’s positive and greater than 0 if the two

distributions are very different; in particular, the more uncorrelated the two distributions are,

the bigger will be their divergence value [26].
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In this case, the KL divergence needs to be summed all over the hidden units in layer 2:

m∑
j=1

KL(ρ||ρ̂j) =
m∑
j=1

ρlog
ρ

ρ̂j
+ (1− ρ)log

1− ρ

1− ρ̂j
(3.13)

With this penalty function, if ρ̂j = ρ,KL(ρ||ρ̂j) = 0, otherwise the divergence is greater

than 0. In the example below, ρ has been set equal to 0.2, and the plot ofKL(ρ||ρ̂j) for dif-

ferent values of ρ̂j is in figure 3.13. As can be seen in figure 3.13, when ρ̂j = 0.2, the divergence

is 0, and the network will learn to activate certain hidden neurons concerning the input [25].

Figure 3.13: KL divergence as ρ̂j varies [26].

3.5.2 Denoising autoencoders

Denoising autoencoders, graphically described in figure 3.14, belong to a specific architecture

which task is to remove the noise that affects an image to obtain a cleansed version. The main

differences between this approach and the others are:

• The input of the training phase is made of partially corrupted data;
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• No compact representation is required, but the reconstructing strategy is changed.

Figure 3.14: A visual description of a denoising autoencoder [27].

In particular, this approach is called to a representation of the corrupted image in the

encoder phase. The input can be, for example, corrupted by a Gaussian noise:

x̂ = x+N (µ, 0) (3.14)

and the corresponding hidden layer can be simply represented as

z = σ(Wx̂+ b) (3.15)

Then, the decode phase or reconstruction aims tominimize the difference between the output

of the network and the original, uncorrupted input:

x̃ = x (3.16)
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with

x̃ = σ(Wz + b) (3.17)

The final result of a successful training phase is a complete network that takes in input a

normal signal and produces its denoised version, as figure 3.15 shows.

Figure 3.15: Briefly, how a DAE works [28].

3.5.3 Contractive autoencoders

Contractive autoencoders are neural networks that force the algorithm to learn a robust

function [29]. They’re quite similar to sparse autoencoders in their working since they try to

minimize the loss function plus a determined value.

This value to be added to the loss is a factor that depends on the norm of the partial

derivative matrix with respect of the input, known as Jacobian. The final factor to be added is

then:

Ω(z, x) = λ
∑
i

‖∇xzi‖2 (3.18)

This penalty is applied to training input only, so the trainer learns useful features about the

training distribution. The symbol∇x is the partial derivative matrix concerning input, and
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this means that the model is forced to penalize high gradient situations, which corresponds to

a high value of the loss, in the representation z of the data x.

3.6 Applications of autoencoders

Autoencoders are simple to understand and useful for many applications. It’s possible to

build them in every shape, and one can add all the needed hidden layers. Over the years,

various applications have been discovered to be easy to implement on this kind of neural

network, so it’s possible to create a fine model which has a great accuracy while performing its

task [30]. Some of these applications are:

• Image colouring: by understanding which colour is normally associated to a specific

shape, it’s possible for an autoencoder which learns with black/white images and their

colourized version to take a greyscale image and apply to it a plausible colour palette.

A example in figure 3.16;

Figure 3.16: Example of a b/w image colored with an autoencoder. The real image is in the middle [30].

• Dimensionality reduction: instead of using Principal Component Analysis (PCA),

a valid technique based on the variance along the dimensions of representation of the

data, it’s possible to configure an autoencoder to make it learn the patter of the most

important features in a piece of data, and use them to rebuild the initial data in the

more accurate way possible. This is visible in figure 3.17;
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Figure 3.17: Example of feature reduction in a dataset [30].

• Watermark removal: watermarks are generally symbols that are added to data to

prevent their usage in an unauthorized way. They can be removed by making an

autoencoder learn their pattern and then extracting it like in figure 3.18 from the

desired input;

Figure 3.18: The watermark on the left is successfully removed from the middle image. The result is on the right [30].

Of course, there’s continuous research about the possibilities of this neural architecture.

These stated above are just examples, but there are many applications of this kind of network,

making it one of the most versatile neural network on the scene.
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4
Minimum Spanning Tree

4.1 Graph notation

The definition of a minimum spanning tree, called in this work MST for the sake of con-

ciseness, directly derives from a graph notation. A graph is a discrete mathematical structure

composed of various nodes or vertices that are connected between each other with a certain

number of edges. Formally, say that a graph is an ordered coupleG = (V,E), where V and

E are, respectively, the set of the nodes and the set of the edges, such thatE ⊆ V × V : an

element of E is a couple of elements of V . The graph can be oriented or non-oriented: in

the first caseE is an asymmetric relation, in the second one it is symmetric. If the graph is

complete, it means that every node is connected with a distinct edge to every single other node

[31].

Given an oriented graphG = (V,E), with a cost for every edge called weight, ifw(u, v) ∈
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R+ is a weight function forG, the MST forG is a set of edges such that:

w(T ) =
∑

(u,v)∈T

w(u, v) (4.1)

which is the solution of the following problem:


min

∑
(i,j)∈E wijxij∑

(i,j)∈E xij = |V | − 1∑
i∈E,j /∈E xi,j +

∑
i/∈E,j∈E xi,j ≥ 1

(4.2)

wherewij is the weight of the edge going from i to j, and xij is equal to 1 if the edge (i, j) is

taken in the MST.

1. The first row is just a cost function which describes the sum of the edges chosen in the

MST;

2. The second constraint describes that the number of edges must be exactly the number

of vertices minus one because, by the tree property, a tree with n nodes has exactly

n− 1 edges;

3. The last one says that there must not be cycles. This expression is described using the

concept of cut, which is a partition of the graph into two disjoint subsets.

There are of course more than one minimum spanning tree that can be obtained from the

same graph, like is show in figure 4.1; if the overall sum of chosen edges is the same it means,

of course, that there are more possibilities to obtain a minimum, and this means that all the

solutions with the same cost are valid.

38



Figure 4.1: The two bottom graphs are two possible MSTs for the graph at the top. They have the same overall cost

[31].

4.2 Properties

Minimum Spanning Trees have some important properties [31], like:

• Multiplicity. As already said, there is the possibility that the same graph has several

MSTs.

• Uniqueness. This is the opposite of the previous statement, but in certain situations,

there is only one minimum spanning tree in a graph. This happens when all the edges

have distinct weights; if there are edges that have the same value, the graph falls in the

other case.

• Minimum-cost subgraph. If there are only non-negative weights, the minimum span-

ning tree is, in fact, the subgraph with the minimum overall cost, because graphs with
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cycles surely have a bigger overall weight.

• Cycle property. Given any cycle in the graph, if the weight of one of its edges is greater

than the weights of all the others, than this edge cannot belong to anMST. An example

in figure 4.2.

Figure 4.2: In the figure, the only edge that cannot belong to an MST is the one with weight 8, because is the largest
value between all the weights in the cycle [32].

• Cut property. Defined a cut as a partition of nodes dividing a graph in two subgraphs,

a cut-set is the set of all edges that connect two nodes that belong to different subgraphs.

For any cut in the graph, if there’s an edge in its cut-set with a weight that is strictly

smaller than the weights of the other edges belonging to the same cut-set, then this

edge is part of every MST of the graph. Figure 4.3 shows an example of cut-set.

Figure 4.3: This is a simple graph with a cut; the edges in the cut-set are those which connect a black node to a white

node, and vice-versa [33].

• Minimum-cost edge. If in a graph there’s a unique edge with the minimum-cost, then

this edge belongs to every minimum spanning tree.
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• Contraction. If in a graph there’s a minimum spanning tree, a subtree of it can be

collapsed to a single node and the MST of the initial graph is the sum of the value of

single vertex plus the MST of the collapsed graph.

4.3 Algorithms

Various algorithms have been developed to find a minimum spanning tree given a graph

[31]. One of the first of them to be published is the Borůvka algorithm. After that, more

algorithm were discussed, such as Prim’s and Kruskal. All the algorithms, except the brute-

force approach, are greedy, which means that they build the final solution with locally correct

smaller solutions, exact, so they give a solution which is not approximated or probabilistic,

optimal because the result they propose is the best they can get.

4.3.1 Brute-force algorithm

The first algorithm that can be hypothesized, for every mathematical or informatic problem,

is a brute-force algorithm [34], which in cases like this consists into considering all the possible

combinations and then choosing the ones which satisfy the initial condition. In particular,

for the minimum spanning tree problem on a complete graph with n nodes, the brute-force

approach is as follows:

1. Consider all possible trees in the given graph.

2. Among all the trees, find the one with exactly n nodes with the minimum sum of the

weights.

The main issue with this types of algorithms is the computational load. Cayley, in 1889

[35], discovered that given a complete graph of n ≥ 2 nodes, the number of all possible
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spanning trees is:

f(n) = nn−2 (4.3)

This means that just with 10 nodes the number of all possible trees is 108 = 100000000 →

one hundred million possibilities.

Considering that a normal graph will surely have more than 10 nodes and then after having

found all the trees there’s the procedure of finding the one of minimum cost, it’s easy to

understand that an approach like this one is too expensive in terms of time and computational

power. Just to explain, in figure 4.4 it is possible to see that n! is one one of the quickest

Figure 4.4: Plots of the principal functions, nn not shown [36].

functions to diverge. The nn−2 curve, not displayed, goes to∞ even faster than n!.

4.3.2 Borůvka algorithm

Developed in 1926 to solve a problem about electricity supply in Moravia, this algorithm

[37] starts, like shown in figure 4.5, by considering a graph, with a set of nodes and a set of

edges; the single node is considered as a connected component, and the first step is to add

to the MST, which is empty at first, the edge connecting the considered vertex to another

one with the lowest cost. After this phase, the algorithm is repeated considering the newly
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created connected components, and this iterates until there is only one connected component

with all the vertices inside. This result is the minimum spanning tree for that graph. The

Figure 4.5: Example of the second iteration of the Borůvka algortihm on a graph. The connected components are

circled in black, and they contain nodes that are connected by edges with the lowest weights available [37].

complexity of the Borůvka algorithm isO(ElogV ), whereE is the number of edges and V is

the number of vertices.

4.3.3 Prim’s algorithm

Born in 1930, this algorithm [38] assumes that the graph is organized as an adjacency list, a

data structure where each element represents the list of the neighbours of a node in the graph.

The procedure to obtain a minimum spanning tree of a graph using this method is visible in

figure 4.6 and is:

1. Given a weighted graph with n vertices, choose one of them.

2. Find the nearest vertex, in terms of edge weight, and add it to theMST. A vertex can be

chosen only if it’s not already in the tree. If starting from a node there are more edges

with the same lowest weight, choose one randomly.

3. Iterate the procedure until there are n nodes in the MST.

This algorithm has a complexity that depends on the data structure used to represent the

adjacency between the nodes; usually the most used structure is the priority queue, and in this
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Figure 4.6: Example of how the Prim’s algorithm works [39].

case, the complexity isO(ElogV ). This value can be further decreased if the structure used

is a Fibonacci heap: the overall complexity will drop atO(logV ).

4.3.4 Kruskal algorithm

The Kruskal algorithm [40], designed in 1956, has a simple idea behind it: if the edges are

sorted increasingly concerning their weight, the edges with a lower value will be the best

suitable for a minimum spanning tree. This procedure is displayed in figure 4.7.

The algorithm orders the edges as said before and then includes them in theMST iteratively

considering the edge with the lowest weight first. An edge is ignored if it forms cycles with

the others already included in the tree. The algorithm stops when all vertices are visited.

The worst case for the complexity of this algorithm isO(EV̇ ), but this can be lowered to

O(ElogV ).
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Figure 4.7: Functioning of the Kruskal algorithm [41].

4.4 Applications

Minimum spanning trees are very useful while designing networks, like a computer network,

a telecommunication network or even a water or energy supply network.

They’re useful also in taxonomy, to classify organisms or abstract concepts, image registration

and segmentation, handwritten recognition, circuit design, and phylogeny.
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5
Applications of minimum spanning tree

estimation

5.1 Introduction

Whenever a set of data canbe somehowwritten in a graph-like structure, finding theMinimum

SpanningTree (MST) can be extremely useful in order to understand the dependencies among

each element. As a matter of fact, it is needed to have a fast and effective way to calculate it

even when the weights on the edges are noisy.

5.2 Image filtering

Image filtering is one of the fields of application of the theory behind minimum spanning

trees. Many effective algorithms have been developed to filter an image and smooth out some

noise or unwanted details, like mean and Gaussian filters, which are both linear, and rely on
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combining pixel values in a considered window according to a given kernel. Others, like the

median, are not linear and rely on ordering data and choosing a representative value.

There are also more complex filters, like the bilateral, which combines the concept of

physical and colour distance with the gaussian filtering, to obtain and edge-preserving trans-

formation. From this idea, Stawiaski andMeyer [42], developed their adaptive image filtering,

based on minimum spanning trees. The algorithm considers a small window and the neigh-

bourhood of pixels in it: a graphG = (V,E,W ) is built with these pixels considering as a

weight between i and j the absolute difference between their grey levels. The graph obtained

in this way is then used to create an MST that follows the shape of the image because similar

pixels, which usually lies on the same side of an edge, have similar grey values and the MST

algorithm will connect them. All the trees obtained with the window in different positions

of the image, are then fused into a single one. The final image will transform the pixel values

along the minimum spanning tree to delete most of the noise. As a result, the final signal to

noise ratio of the image is almost doubled with respect to a traditional filtering technique.

5.3 Mathematical problems

Another application of theminimum spanning tree concept has been applied by de Figueiredo

and Gomes [43] on a mathematical problem: they proved that euclidean minimum spanning

tree can reconstruct differentiable arcs from a sufficiently dense set of samples. Euclidean

MST are a particular subset of the minimum spanning tree family, where the function used

to set the weights is an euclidean distance. This strategy can be applied when the samples are

points that can be represented in euclidean spaces.

Briefly speaking, this problem aims at finding the shape of a curve given a small subset

of points of that curve. Humans have a natural predisposition in finding structures, so it’s

natural for them to find the shape just with a look. A computer has not such perception, since

each point is a couple of coordinates in an euclidean bi-dimensional space, in this case. The

minimum spanning tree structure allows to reconstruct the curve with the smaller euclidean
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distance, and this method has proved to be effective into reconstructing more general curves

and when the data are altered with noise.

5.4 Image segmentation

The minimum spanning tree approach can be exploited in the 2D image segmentation as

well. The segmentation of an image is one of the most basic problems about low-level image

processing: it divides a grey-scale image into parts which have low differences in their tonality.

The problem has further extended to coloured images, to recognize patterns or structures

in them. Two main types of algorithms have been proposed to segment images: boundary-

detection approaches and clustering-based approaches. Xu and Uberbacher [44] developed

an innovative solution, based on minimum spanning trees. It first builds a graph where the

weights on the edges are determined by the distance between the two pixels, measured by the

differences between the two greylevels. This means that the image edges are those couples

of pixels that present larger weights; consequently, building a minimum spanning tree will

identify and join those pixels with similar values, i.e. the smooth regions within the same

object. There will be only one final minimum spanning tree, but some of the edges with the

biggest weights can be removed to obtain different regions. The approach of this algorithm is

visible in figure 5.1, applied on a letter “T”. The algorithm works very well for 2D grey-level

images, and it has been tested successfully also on noisy images.

5.5 Clustering

Clustering is another hot topic in modern informatics. Given a set of n points defined as

coordinates in a finite space, it is possible to divide them into k different subsets, called

“clusters”, with the properties:

• Each cluster is disjointed from the others.

• The union of all the clusters returns the initial set.
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Figure 5.1: The image shows how the algorithm behaves while segmenting a grey-level image [44].

This happens such that the points in the same clusters are “similar” between each other

and “different” from the points in the other clusters. This similarity property is obtained

with an objective function.

In literature there are various approaches to perform this technique; some solutions start from

a single cluster containing all the points and then subdivide it into smaller ones following a

precise distance function; others start from n single-point clusters and then aggregate them

into bigger clusters; others build the structure of the clusters based on a hierarchy between

the points, and so on. The most important and used algorithm for clustering is the k-means,

where each cluster is built by comparing each point with the means of the clusters. There’s a

limitation in this approach: it only produces convex clusters.

The approach proposed byMiller, Nowozin and Lampert [45] should avoid this limitation us-

ing a different idea based on minimum spanning trees. The initial set is considered composed

by samples coming from the same distribution p(X) and the labels, which are the cluster

identifier, come from the distribution p(Y ); these labels are assigned such that the mutual

information between p(X) and p(Y ) is maximized. In this case, the objective function is:

I(X,Y ) = DKL(p(X, y)||p(X)p(Y )) (5.1)
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whereDKL is the Kullback-Leibler divergence, to detect the differences between the two

distributions.

In particular, after the construction of a graph with the considered points, where the

weights on the edges are the euclidean distance between a point and the others, the minimum

spanning tree is built with regards to a function which derives from the Kullback-Leibler

divergence, built to penalize the connections between faraway points and lower the overall

entropy, to obtain more stable clusters; this method is able to return a joint set of clusters.

Finally, k − 1 edges of the minimum spanning tree are removed to divide the single cluster

into k clusters; the edges to be removed are chosen by a trade-off between edge length and

cluster size. This method is proved to be more effective than the traditional ones even if it

assumes that the initial data come from an absolute continuous distribution.

5.6 Image phylogeny

Image phylogeny is a very researched topic, due to its fundamental utility in many research

fields. The first environment suitable for this topic is the internet, because nowadays the

digital content is available almost everywhere and easily redistributable, even illegally.

There are several main areas where this problem finds its natural application [46], such as:

• Reduce the number of version of a document. This can be useful for storage purposes

because since there could be various versions of the same document on the internet, by

understanding which one is the common ancestor it’s possible to delete all duplicates

and save storage space.

• Tracking the distribution of a document. By collecting the same document from vari-

ous sources on the internet, it is possible to understand the sequence of sites that spread

the document. As an example, a video content created and posted on the internet, can

be reposted by a newspaper website, for example, and then reposted by another website.

This video will suffer a sequence of little modifications and coding steps. These will
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make it very different from its first version, even if apparently the content looks the

same. By exploiting the phylogeny technique it is possible to understand which one is

the very first version of the video and track its path through the internet.

• Copyright protection. By reconstructing the phylogeny of a resource whose intellectual

property has been put to hazard by an illegal treatment on the internet, it’s also possible

to understandwho has the right to own it. An official document belonging to a specific

person, for example, can be downloaded and re-edited by somebody else who can claim

its property; The phylogenetic analysis can understand which one of the two identical

documents derives from the other.

• Illegal material detection. With the phylogeny is also possible to track and recognize

some illegal material surfing the internet and find its origin.

This problem is actual and significant; it’s easy to detect image duplicates, but in these last

years researchers have focused on finding a way to recognize near-duplicate images, which is

not so immediate as a duplicate could be. Recently, the focus has been moved to finding the

structure evolution within a set of images, and many important steps were made.

The most recent result is the identification of some sort of relationships between images in a

set [46]. This has been done through the Image Phylogeny Tree (IPT). The set of images

is rearranged in a tree structure, where images corresponds to the nodes and the structure

of edges reproduce the dependencies between them; traversing the graph from leaves to the

root it is possible to reconstruct the evolution of each content. The name comes from the

biological realm, due to its similarity with the evolution of natural species. For example, the

phylogeny tree of the species which the dog belongs to is shown in figure 5.2.

Just as organisms evolve and change their biological structure over centuries, documents

can evolve in different versions of themselves, by the continuous process of manipulation

through the internet. These modifications can be unintentional, for example, if a document
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Figure 5.2: Example of the phylogeny tree of the dog. This approach considers an image in each leave and the inner

nodes are the common ancestors of the connected leaves [47].

is encoded with a different format or it’s badly copied, or intentional if a forger deliberately

modifies a document with malicious intents.

The first approach to this problem could be referred to some watermark or fingerprinting

techniques. These were known as traitor tracing strategies, and consisted in signing the docu-

ment with a mar. After the content has leaked over the internet, it’s possible to recover its

history by analyzing the marks and their variations. The problem with these methods is that

they aren’t always possible because the marks can be destroyed by some transformations. Of

course, if a watermark is applied to a document there is always the possibility that previous

unidentified copies of the same document are already available on the internet and without

the protection of the mark. Also, if the presence of the mark is a known fact, some cheaters

may try to circumvent them.
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5.7 Baseline

According to the Joly et al. [46] work, with the general idea explained in figure 5.3, a near-

duplicate is a version of a document which remains similar to the original and immediately

recognizable. They propose an interpretation of the word “duplicate” in an image context,

assuming that a documentD′ is a near-duplicate of the documentD ifD′ = T (D), where

T is a set of licit transformations andD is the original document. This set of transformations

T is a family that can contain several combinations of transformations, so every document

D1 can be written as a transformation of the original documentD with a transformation T

which is the combination of all the transformations applied.

Figure 5.3: This is the idea of Joly et al., where a near-duplicate tree is built with the information obtained. If the

watermarking technique can be applied, it’s easier to track the transformations, while it’s harder if the analysis can rely

only on the content of the image [46].

This “duplicate” definition can be seen as a pairwise relationship, because it’s a correlation

between couples of documents, and it’s also transitive, since if a documentA is a duplicate of

B, andB is a duplicate ofC , thenA is also said to be a duplicate ofC .

There are several techniques to perform near-duplicate detection, like watermarking and

fingerprinting, already discussed in the previous section. A more content-based approach

consists in analyzing the data itself to understand its changes between two different examples.

After the development of these techniques, many steps were made to overcome the concept
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of near-duplicate, and embrace the idea to find a correlation between a bigger number of

documents based on their inner structures; for example, Kennedy et al. [48] proposed that

the relationships within a set of images can be identified with a pixel by pixel analysis, with

the hypothesis that an image that has been heavily manipulated cannot give a child which

is less manipulated; in this way, they introduced a directionality in the image manipulation.

They also designed a way to build a graph to understand how the images in a set are related to

each other, based on the previous idea: some detectors are involved in deciding if there was a

manipulation from an image to another one.

More recently De Rosa et al. [49] stated that the single image can be written as a com-

bination of two different parts, one representing the real scene and one about the content-

independent part of the image; they assume that two images are dependent if it exists an image

processing function, seen as a combination of scaling, rotation, cropping, colour change and

JPEG compression, that is able to approximately transform one of these images in the other

one. This method brings to the construction of a graph since dependent images on two

different nodes are connected by an edge; from this graph, then, cycles and low-value edges

are removed.

The last work developed about this topic is directly related to this approach, but it doesn’t base

its near-duplicate idea on independent parts of the image because if the capturing conditions

of the images were different, it could be really difficult to spot the similarities. Thismechanism

is described in the paper by Dias et al. [50] which this work takes inspiration from.

5.7.1 Phylogenetic analysis of a set of images

The phylogenetic analysis of a set of data relies on a dissimilarity function, which parameterizes

how close are two elements in the set. The lower the metric between two contents, the

more direct the dependency. As a matter of fact, applying a MST algorithm on a complete

dissimilarity graph associated to a set of near-duplicate images, similar images will be more

likely near on the final tree, and the opposite occurs with dissimilar images, which will be far
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away from each other in the final data structure. Naming T−→
β

an image transformation that

maps image IA to image IB , the dissimilarity function between a couple of images IA and IB

is defined as the minimum

dIA,IB = min−→
β

∣∣∣IB − T−→
β
(IA)

∣∣∣ (5.2)

where the difference between the two images is point-wise over the possible values of the

parameter
−→
β . This equation does not represent a distance function, and in case of different

dimensions, this operation will return the residual of the non-transformed image.

Given n images, the first thing to do is to calculate the dissimilarity between each couple of

images, in an asymmetric way, since dIA,IB 6= dIB ,IA . To accomplish this procedure, there’s

the need to consider a set of different transformations T to be used to derive an image from

another one. Every transformation can be obtained as a combination of the functions in the

following family:

• Resampling: an image can be resized and result bigger or smaller than its origin;

• Cropping: the image can be cropped to cut some data from it;

• Affine warping: rotation, distortions and translations are all available to create a new

image modifying an existing one;

• Brightness and contrast: by changing the pixel values with some known functions

to adjust the colors;

• Compression: the JPEG algorithm can be seen as a lossy transformation;

The first problem to face while detecting the dissimilarity between two images IA and IB ,

for every couple of images in the given set, is to estimate in a reliable way the transformation

T in terms of the vector
−→
β that parametrizes it. The best way to perform this operation is by:
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1. Using the SURF algorithm, some robust features are detected in each one of the two

images, and the corresponding points are calculated. This will produce a set of couples

of matched points to estimate the transformation.

2. Estimate the transformation that maps the keypoints of an image to those found

in the other one. The transformation, as already stated, can be an affine warping

function. Here the above points are made more robust to improve the reliability of

the calculations.

3. The colours need to be equalized to understand properly the variations between each

couple of images. For each colour channel of IB mean and variance are calculated and

these values are used to normalize the colour channels of IA. In this section, also non-

linear operators, such as gamma correction, are used to simulate a life-like behaviour

while considering near-duplicate images.

4. The result of the previous steps is compressed using the quantization table of IB . Once

one of the two images have been adapted to the other one with the previous procedure

and they have both been uncompressed, the minimum squared error technique is used

to calculate their point-wise dissimilarity as a final result.

5.7.2 Analysis

The next step of this procedure is to translate this set of dissimilarities between pairs of

images into a matrix which can be used to describe the entire set. The creators of this method

proposed an algorithm to solve the optimal branching problem, which deal on finding a

minimum spanning tree in a non-oriented graph with a known root. Previous attempts

to solve this known problem was by Edmonds [51] and Chu and Liu [52], independently.

They developed anO(mn) algorithm with n as the number of nodes andm edges. Further
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researches on this topic led to different versions of this algorithm, which complexitywas finally

set asO(m+ nlogn). Currently, this represents the best implementation for this problem.

The different approach of this work deals with oriented graphs without a known root: the

idea is to find the root and then build the oriented tree with anO(n2logn) complexity; this

algorithm has been called Oriented Kruskal.

The procedure of Oriented Kruskal starts with a dissimilarity matrixM built upon a set

of n near-duplicate images. The algorithm starts considering the graph as a forest, which

means that every node is a tree on its own with only one node. Then, the procedure sorts

the positions (i, j) ofM from lowest to highest value, and joins the single trees with a low

dissimilarity. It does this until n−k edges are introduced in the graph, where k is the number

of needed trees. Intuitively, the final solution at the original problem will be obtained with

k = 1, forcing the algorithm to find one source and, consequently, one tree. Example of this

is in figure 5.4.

Figure 5.4: As can be seen by the figure, representing a simple execution of Oriented Kruskal, the positions of the

matrix are sorted and evaluated as belonging to the MST. The tests on the right are relative to some checks done by

the algorithm during its functioning; in particular, test I triggers when the edge joins two different trees, and test II is

called when the edges joins two trees and the endpoint is a root [46].

5.7.3 Test datasets

The testing data set has been created with 1238 images taken from the Uncompressed Color

Image Database (UCID), where each image has been transformed and duplicate several times

to obtain a final dataset with 250000 cases. From this last data set, another one was created
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but paying attention at dropping the root for each tree, to force the algorithm to face another

big difficulty.

For the uncontrolled data set, some real-case images take from the internet were transformed

and duplicated to get nearly a thousand test cases.

In every case, the transformed images were obtained from the standard dataset images with

the application of a transformation like resampling, scaling, rotation, diagonal correction,

cropping, colour and contrast change and compression.

These transformations were applied in a way such that the final result is a near-duplicate, so

they have parameters with small ranges.

To test this idea, various metrics have been created to understand how good was the

detection of the root and the leaves, edges and ancestors sets of the reconstructed tree.

5.7.4 Results

The results show that when the trees are complete, the percentages of correct reconstruction

are stable between the sizes considered. In particular, the root is correctly found in almost all

the cases while edges, leaves and the ancestors are guessed with a precision of 80% on average.

Dropping some links brings some difficulties, because in this case as the size of the tree is lower,

i.e. the number of dropped connections is bigger, the edges, leaves and ancestor statistics

drop heavily around the 50%, rising to 80% as the connections grow. The root is affected less

drastically, going from the 90%with 5 nodes up to almost a 100%with 50 nodes.

If between the dropped nodes there’s the root, the resulting IPT has to be compared with

the original forest, and in this case, as the number of nodes goes down, the root is way harder to

identify, with a 40% of success with 5 nodes. From 15 to 50 nodes, root, leaves and edges are

successfully found with an average between 60% and 80%; the ancestry metric is the one that

performs better in this situation because it’s almost always above 90%. In the uncontrolled

scenario, on average the worst metric to satisfy is the first one, which says that is not good

if a new image is not a child of its generator image, with more the 20% of errors on all the
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test cases. The best metric is the fourth one, so it happened only in 0.2% of the considered

situations that the two considered trees have a different root, which is good. The precision

metric returned a 73% of perfect reconstruction with the injection of a modified image.

5.7.5 Conclusions

The applications of this work are several, like forensics (especially on the dropped root situ-

ation) and copyright enforcement, to understand the changes in the document. Also, new

dedicated metrics were developed to estimate the performances of tree-like structures. To

conclude, the approach is promising, since it has a good precision in detecting the phylogeny

of a set of images.

60



6
Neural models for minimum spanning tree

estimation

6.1 Architectures

The neural network structures tested for this approach are three architectures with different

capabilities, and they are a modified version of the standard autoencoder, a ResNet-based

autoencoder and a UNet-based one.

6.1.1 Modified autoencoder

The first autoencoder taken into account is, as already stated, a modified version of a tra-

ditional fully-connected hourglass network, described earlier in this text. While the usual

fully-connected autoencoder is a neural network divided into two distinct parts, where the

first one encodes the input creating a latent representation of the data, and the second one
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decodes the representation to obtain the input back, this variant concatenates the input to

the latent representation, as it can be seen from figure 6.1, to try to encode only the noise and

then extrapolate it from the input obtaining its denoised version in output.

The procedure of transformation of the data is as follows:

• Encode:

– Input layer of 64 neurons;

– First representation of the data with 32 neurons;

– Second representation of the data with 24 neurons;

• Decode:

– Concatenation of the input: 88 in total;

– Back to the size of the first latent representation, 32 neurons;

– Concatenation of the input: 96 neurons;

– Output layer of 64 neurons;

This model considers an 8× 8 input image, and as can be seen from its description, the

input data is flattened to a 1-dimensional vector to be worked. Its dimension is reduced by

half and then reduced again with a lower rate. Concatenating the input to its representation

should theoretically guide the network to learn the representation of the error, obtaining the

output by subtraction from the noisy input data.

To test the network with the MNIST dataset in a first analysis, the used autoencoder

was not the one just described, but it was a normal fully-connected autoencoder as it was

described in the dedicated chapter; since the nature of the two structures is similar, without

convolutions and shortcut between the layers, the results obtained can be considered in the

same way.
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Figure 6.1: This structure is a graphic render of the modified autoencoder described in this section.

6.1.2 ResNet

This particular network architecture, created to build very deep neural networks while main-

taining a good error and speed of computation, was considered in this work due to its inner

characteristic of learning only the residuals between the output and the input.

The central unit of this network is the block: each block is just a series of convolutions with

a certain number of filters of different sizes. The block considered in this work is composed

of three convolutional layers:

1. (1× 1) convolution: also called “dimensionality reduction layers”, used to raise the

number of feature maps;

2. (3× 3) convolution: with padding and stride, to lower the size of the feature maps;

3. (1× 1) convolution: usually with a larger number of filters, to generate even more

feature maps. This layer is known as bottleneck, which means that this layer is slower

because it generates many features; in other ResNet architectures, this layer can have a

number of filters that is up to four times the usual number that there is in the other

layers in the same block.
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The number of filters varies and is greater as the center of the network approaches, to

become smaller and back to 1 on the output.

The first of the two blocks of the encoder considers 8 filters for the first two layers and 16

for the last. For the second block, these numbers are, respectively, 16 and 32. The input data

is gradually decomposed into various feature maps, as it’s shown in figure 6.2, while at the

same time is reduced in size; when a block is concluded, the input is summed to the result, for

the ResNet property: if the number of feature maps between the two is the same, the input

is average-pooled to get the correct size; if the values are different, to the input is applied a

(1× 1) convolutional filter with stride 2 to get the correct number of maps and, at the same

time, lower their size to make them match correctly. After both the blocks are applied, the

result is flattened to get the final encode of the input data.

Figure 6.2: This figure shows only the encoding part of the ResNet: on the arrows, divided by colour to identify

different sizes of convolutional filters, there is a number which indicates how many filters are applied on that layer.

The decoding phase is similar to the encoding one, but it’s performed in the opposite

way: the encoding of the input data is elaborated by a fully-connected part which raises the

number of units, and then the usual block structures with sum of the adapted input is applied

other two times, with a lower number of filter as the output approaches. This time, the

input is upsampled with stride 2 if the number of feature maps is the same between the two
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layers, or it is convoluted with the inverse convolution and stride 2 if they’re different. What

mostly changes from the encode phase, besides the operations to transform the input, are

the operations in the block: the convolution is now inverted, but with the same parameters;

the (1 × 1) convolution becomes a way to decrease the number of maps and the (3 × 3)

convolution with padding and stride 2 can enlarge the size of the feature maps. After two

blocks, the final result is a single image with the same size as the input; the entire procedure

can be visualized in figure 6.3. Since themain idea of ResNet is to learn the difference between

Figure 6.3: In this image is clearly visible the succession of layers that decodes the encoded data following the ResNet

specifications; as in the encoder figure, on the arrows there’s the number of maps reached with that operation.

the output and the input, the task of denoising should be easier with this approach than with

other architectures.

6.1.3 U-Net

U-Net is a convolutional neural network that was created to face the problem of image

segmentation in biomedical scope. It was developed in Freiburg, Germany, by Ronneberger,

Fischer and Brox [53]. The model proposed is a convolutional neural network where the

reduction of dimensionality is divided into layers, corresponding to the several feature maps

obtained by the elaboration of the initial data.
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U-Net, the name of the network, has been chosen because of the visual shape of the model

when it was first proposed and the sequence of the convolutional layers was described entirely.

What is immediately visible from the image 6.4 of the original U-Net, besides its shape, is the

Figure 6.4: This is the very first implementation of U-Net [53], built to face biomedical image segmentation.

clear division into two distinct parts, comparable and conceptually similar to the encoding

and decoding parts of an autoencoder, and the presence of a connection between the feature

maps of the left segment and those of the right one, coupled by their size; this last one is the

particular detail about U-Net: feature maps of the same size are concatenated between the

encoding and the decoding phasewhen the data have the same dimensions again to re-consider

high resolution features treated in the encoding part.

The model built for this work, in figure 6.5, derives directly from the U-Net idea, maintain-

ing the skip connections and exploiting the natural subdivision in encoding half and decoding

half to apply the concept of autoencoder.

First of all, the number of dimensionality reduction cannot be that big due to the initial tests

with theMNIST dataset, composed of images of size 28× 28, so the custom architecture will

reduce the size of the input only two times. Every time the size changes, a block of operations
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is applied to the data, and each one of these blocks is composed by two times the application

of a 2D convolution with fixed-size kernels and padding, to obtain n feature maps that have

the same size as the input, with the rectifier as activation function. To reduce the size of the

features, a max-pooling layer of size (2× 2) is applied and then some dropout is added to

reduce overfitting. Every time the size of the data changes, the number of filters is doubled,

obtaining more features map as the dimensionality lowers. This is what happens concerning

the encoding phase.

Then, the operations applied in every block are similar to those in the previous phase, but

they are inverted, so the max-pooling operation becomes a transposed convolution with a

stride of 2 and padding, to obtain again the size of the second level, and the features belonging

to that particular level are concatenated to the result. After some dropout, the normal 2D

convolutions of the encoding part are again applied to the maps, and this completes the

decoding block. When the original size of the input is reached, as a last operation a (1× 1)

convolution, known as the dimensionality reduction layer, is applied, to obtain a final result

with the same size of the input.

Figure 6.5: The graphical representation of the U-Net based architecture built for this work.

This architecture should be able to perform well since it was designed to extrapolate

information from an image, and separating the noise from the corrupted image is the task of
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this work.
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7
Experimental results

7.1 Dataset creation

The main dataset used in this work is the Uncompressed Color Image Database, known as

UCID [54], which is a dataset of 1338 images, visible in figure 7.1, that was built to standardize

the usage of test data concerning images. It was presented under the justification that usually

the authors of a new paper concerning image treatment adopt their images while training

and evaluating the models they present; for the creators of the UCID, this fact makes the

comparisons between results of different papers difficult to compare. As another difficulty,

sometimes the analysis are done with different levels of compression, which complicates even

more the comparisons. UCID was created to fill the gap between different analysis, and it

was used in this work because some of its final results, to match the case of the phylogeny tree

problem, come from a manipulation of sets of images.

For every sample of the UCID dataset, a family of images is built through the application
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Figure 7.1: The images in the UCID dataset are very different from each other, to ensure that the tests can be

performed on different parameters conditions, like contrast and luminosity [55].

of some transformation. Each one of these has a given range of action, which is set to simulate

the normal variations that can occur to a resource while surfing the internet. These transfor-

mations can, of course, be combined to obtain more complex ones; then, colour correction

can be performed at the end of the procedure on all colour channels. These are the considered

transformations and their range:

1. Geometry

Resampling: [90%, 110%]

Global scaling: [90%, 110%]

Rigid Rotation: [-5°, 5°]

Scaling by axis: [90%, 110%]

Rotation: [-5°, 5°]

Off-diagonal correction: [0.95, 1.05]

2. Cropping

Cropping: [0%, 5%]

3. Color

Brightness: [-10%, 10%]

Contrast: [-10%, 10%]

Gamma: [0.9, 1.1]
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4. Compression

Re-compression: [50%, 100%]

As can be seen, the applied transformations have narrow ranges, due to the realistic as-

sumption that an image cannot be changed completely by these transformations and at the

same time remain a near-duplicate of that specific image.

Once the near-duplicate images have been created, the dissimilarity between each possible

couple is calculated and this value is put in amatrix in the correct position; e.g. the dissimilarity

between the image i and the image j corresponds to the number in position (i, j) in the

matrix, and this is done for every position; the diagonal of the matrix, relative to the couple

(i, i), is not computed, under the assumption that an image is the perfect duplicate of itself,

so there is no dissimilarity, and the final value in the matrix is 0. Thus, the matrix is related

Figure 7.2: This image shows a generic dissimilarity matrix for a given graph.

to a single family of n images, where one is the original one, while the remaining n− 1 are

near-duplicate versions of it obtained with the application of some simple transformations as

explained in the previous chapter; an example of dissimilarity matrix is figure 7.2.

The ground truthmatrix is a representation of theminimum spanning tree structure in the

image set considered. It’s represented as a matrix where the position (i, j) has its maximum

value (255 for the representation in 8 bits) if i is connected to j and is its father node in the

tree structure. Of course, all the positions (i, i) are equal to 0, since in a minimum spanning

tree there are no cycles in the same node, i.e. a node cannot be its father. Just as an example,

as it can be seen in figure 7.3, if in the row i there are two positions 6= 0, (i, j) and (i, k), it
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means that in the tree the node i has two children, j and k. In particular, each ground truth

Figure 7.3: This figure represents a generic groundtruth matrix.

image is related to a dissimilarity image, and the task of this work is to make an autoencoder

learn the inner strategies to construct the ground truth from the dissimilarity matrix, building

the matrix form of the tree.

By following this approach, the procedure of associating a dissimilarity matrix describing

a graph with its ground truth representing a minimum spanning tree between the node of

the graph, with the metric of dissimilarity used also to build the MST, can be extended to

the general procedure of obtaining the minimum spanning tree of a generic graph seen as a

matrix. This is just the generalization of theMST finding problem, so by considering different

matrices size, associated with different size graphs, it could be possible to add the technique

developed in this work to the long list of already existing algorithms about this topic.

Another level of abstraction can be reached by considering the dissimilarity matrix just

as a noisy version of the ground truth; in this case it is possible to try to denoise the matrix

and train a network to do it automatically and generically, and this is exactly what the idea of

this work is about. Therefore, the denoising problem, with this structure of the data, can be

related to the minimum spanning tree finding problem.

7.2 Metrics used

To evaluate these approaches four different metrics have been developed to estimate how well

the reconstructed tree follows the actual phylogeny of the considered images. These metrics

72



have different implementations depending on the selected case; the first case occurs when the

reconstructed IPT is compared to its ground truth. The metrics are presented as follows:

Root : R(IPT1, IPT2) =

 1, ifRoot(IPT1) = Root(IPT2)

0, otherwise
(7.1)

Leaves : L(IPT1, IPT2) =
|L1 ∩ L2|
|L1 ∪ L2|

(7.2)

Edges : E(IPT1, IPT2) =
|E1 ∩ E2|
n− 1

(7.3)

Ancestry : A(IPT1, IPT2) =
|A1 ∩ A2|
|A1 ∪ A2|

(7.4)

whereEi,Li andAi are, respectively, the sets containing all the edges, leaves and ancestors of

the tree i. Each one of these metrics evaluates a different useful property and it can be used

not only to see if the resulting tree is valid but also can highlight how the overall algorithm

performs.

As an interpretation, the root metric returns a positive result if the root of the reconstructed

tree has been found correctly; the edges metric return the fraction of the correct guessed edges

over the number of expected ones, and this happens similarly for the leaves and ancestor

metrics;

7.3 MNIST and first partial results

The first train and test procedures of the architectures have been with the MNIST dataset. It

is a set of handwritten numbers from 0 to 9, represented in 8-bits, where each digit is related to

an image of size 28× 28. These digits have been collected from the different writing styles of

the employees of theAmericanCensus Bureau andAmerican high school students [56]. Then,

these numbers were quantized at 8-bits to have a uniform representation of the information

among the entire set; the dataset is in total made of 60000 different training images and 10000
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test images, each one with its label representing the correct number displayed. Due to the

Figure 7.4: In this image it’s possible to see how the data are kept in the MNIST dataset; in particular, this example is

simplified and the images have a size of 14× 14, but the idea behind is the same [57].

simplicity and the wideness of the data in it, the MNIST dataset is usually adopted while

testing the idea behind an approach concerning two-dimensional data; even for this work, the

prototypes of networks related to the three architectures seen in the previous section, have

been tried with this dataset.

In this work, the MNIST dataset has been used to test the capabilities of the very first

implementations of the networks. Since the problem faced was about denoising, and this

dataset comeswithout anynoise, itwas necessary to add it to the images to test the architectures

properly: every image in the dataset was copied, and a noise matrix has been added to the

copy. A noise matrix is a 28× 28matrixM where each element is extracted from a Gaussian

distribution:

M(i, j) ∼ N (0, 1) ∀(i, j) ∈ [0, 27] (7.5)

The two matrices are then summed element-wise; in this way, the noisy dataset just obtained

became the actual set of data to be fed to the networks, and the original data, where each

image is coupled with its noisy counterpart, became the ground truth to be obtained from

the noisy data.

The only analysis done to understand how well the noisy MNIST dataset behaves, was on

the loss and the accuracy of the models, calculated on 10 epochs of training. As it can be seen

in the figure 7.5, the loss is constantly near 0, which means that the standard autoencoder

behaves very well while training the noisy MNIST.

74



Figure 7.5: The plot of the losses for every epoch of training of the standard autoencoder.

A similar result can be visualized in figure 7.6. It’s possible to see that the training and

validation losses are very low and similar to each other, so the network is not overfitting. This

means that the ResNet based model isn’t too specific for the training data and can behave

very well even with other samples of the same distribution.

Figure 7.6: The plot of the training losses of the ResNet-based autoencoder. In green, the loss of the validation phase

for every epochs.

The different behaviour of the U-Net based model can be visualized in figure 7.7 where the

validation loss is higher than the training loss. To confirm the bad behaviour, the accuracy is

way lower than it should be to be satisfying. To be fair, the statistics are clearly improving,

and this could mean that a greater number of training epochs could be the solution to obtain
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better measures with this approach.

Figure 7.7: The plots of the training and validation losses of the model built with U-Net coupled with the respective

accuracies.

7.4 UCID analysis to find the best model

To test the architectures with the UCID dataset, there’s the need to build correct graph

structures using the images of the set. From every image, three graphs are built; each graph is

made by seven near-duplicate images that have been created from the original one, generating

a structure with 8 nodes. The set of dissimilarity and ground truthmatrices obtained are then

fed to the model, divided as 35% training set, 35% validation set and the remaining 30% as

test set, with a training phase of 100 epochs. The metrics adopted to test the reliability of the

different systems are those that have been presented earlier in this work: the percentage of

correct capture of roots, leaves, edges and ancestors. The algorithm used for comparison is

the Oriented Kruskal, used in the same paper.

The results are the following:

• Modified autoencoder: in table 7.1 are shown the results of a first training of the

network. The tests were performed on the modified autoencoder presented earlier
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in this chapter, and on a different version of it, where the layer with 24 neurons has

been reduced to 8 neurons, to simulate dropout to ease the computation and possibly

achieve better results.

As it is possible to notice, the values of root, edges and ancestors are always slightly

lower than the results obtained byOriented Kruskal, denoting a not so good behaviour

of the network; only the leaves metric performs better. Overall, the values don’t change

too much between the two versions of autoencoder. This inefficiency could be due to

some overfitting, since the final loss, relative to the test set, is way greater than the train

loss.

Algorithm % Root % Leaves % Edges % Ancestors Train Loss Test Loss
Modified AE 65.56 86.27 38.01 29.88 0.0220 0.1065

Reduced 66.57 86.55 37.77 29.39 0.0274 0.1071
OK 67.27 70.98 47.83 32.57 - -

Table 7.1: Modified autoencoder comparison table

• Res-Net autoencoder: the obtained values relative to the Res-Net based architecture

are presented in table 7.2. In parallel with the already presented Res-Net based ap-

proach, a slightly different model is also tested: this variant adds more layers of batch

normalization, to adapt the inner parameters to the different scalings of the input data.

The results of these Res-Net based models are not so good as they were expected by

looking at the losses of the model with the MNIST dataset: although the root and

leaves precisions are better than those of the Oriented Kruskal approach, edges and

ancestors metrics performworse than the standard algorithm. On average, the Res-Net

model is not better than the modified autoencoder approach, since the only metric in

which the last one is better is the root metric. The add of some batch normalization

layers can improve the root and leaves detection, but lowers the probabilities of find-

ing edges and ancestors; surely, with the batch normalization, both losses gain some

percentage points.
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Looking at the losses, and in particular, to the differences between train loss and test

loss, it’s possible to think that the main reason for the bad results is, as it was stated for

the modified autoencoder, some overfitting.

Algorithm % Root % Leaves % Edges % Ancestors Train Loss Test Loss
Res-Net 70.66 85.96 26.55 24.81 0.0206 0.1307

Normalized 71.65 88.22 24.52 22.94 0.0194 0.1277
OK 67.27 70.98 47.83 32.57 - -

Table 7.2: Res-Net based autoencoder comparison table

• U-Net autoencoder: to discuss the performances of this last approach, based on U-

Net, the same training procedure was performed on the same network with a different

number of starting filters, which number will vary through the model following the

usual rule of U-Net: doubling at each reduction of dimensionality, going back to 1 as

the end of the decoder part approaches. The number of filters considered are 2, 4, 8,

16 and 32.

By briefly looking at 7.3, the results look promising, since every filter numerosity will

lead to a model that performs better than the basic Oriented Kruskal algorithm, by

almost doubling the percentage of the leaves and edges metrics. The other metrics are

better in a less dramatic way, but still greater than the values relative to the referring

algorithm. The train and test losses are close to each other, confirming the absence of

overfitting.

A more complete view highlights a clear hierarchy of performances between the dif-

ferent approaches considered: with 2 starting filters, the results are better than the

referring algorithm, but raising this number will improve almost all the metrics. It

looks like a median-high number of filters leads to the best overall results.

The main reason of the fails of the modified autoencoder and the Res-Net approaches

could be found in:

78



Initial filters % Root % Leaves % Edges % Ancestors Train Loss Test Loss
2 82.55 95.03 64.75 47.87 0.0578 0.0565
4 96.36 92.79 73.33 52.84 0.0404 0.0382
8 95.58 92.06 76.06 58.84 0.0319 0.0335
16 96.70 92.82 75.24 61.24 0.0231 0.0355
32 97.71 94.75 72.56 64 0.0167 0.0381
OK 67.27 70.98 47.83 32.57 - -

Table 7.3: U-Net based autoencoder comparison table

1. since the modified autoencoder is a fully connected neural network and the input data,

besides their low dimensionality, are clearly more similar to images than other type

of data, a pixel-by-pixel analysis brought by this approach could be not the best way

to detect and find an agglomerate structure like the minimum spanning tree is in a

better way than a standard algorithmic procedure. The creation of autoencoders in a

fully-connected way are of course possible and effective, but in this situation, the noise

is totally casual and not so easy to isolate;

2. the Res-Net was built to learn the residuals of a function, which is the difference

between the function itself and the identity: the noise that was added in the previous

MNIST tests was aGaussian additive noise, which has a knownmathematical structure,

and could be easily enclosed in the residuals learned; this explains why the losses of

the Res-Net in the previous tests were the best among all the models. In these tests,

the noise was not Gaussian additive but random, so it was harder for the model to

understand its structure and lead to good results;

Finally, the results suggest that the best approach to continue the analysis is the U-Net

based model, with 8, 16, or 32 filters.
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7.5 Actual analysis

Further analysis will regard the U-Net models divided by the number of starting filters, but

with an extension: the loss function used during the training phase in the previous tests was

a combination of the standard MSE with another value weighted by a parameter λ, set to

0.016 after some previous tests:

loss(a, b) = loss1 + 0.016 · loss2 (7.6)

where loss1 is the MSE on the input and output matrices, and loss2 is the average value

of the Frobenius norm of the predicted matrix; this norm is a normalization factor, used to

lower the complexity of the result.

The new loss function adopted adds a value to the previous sum; this factor loss3 represents

a thresholding procedure of the output image, where the predicted data is thresholded with a

factor 0.7 and this binary image obtained is used to calculate the MAE with the ground truth

image. The multiplicative λ2 value has been set to 0.05. Thus, the new loss becomes:

loss(a, b) = loss1 + 0.016 · loss2 + 0.05 · loss3 (7.7)

Another condition has been considered while training the models: if the validation loss

doesn’t improve in 10 epochs, then the training is stopped and the model is declared ready to

test. This guarantees not only that the training will use less time to be completed, but also

that the model uses the best parameters achieved because the loss can also become worse than

its optimum value. The condition is set on the validation loss because since the validation is

like a test simulation, controlling the value of this metric will give the best results with newly

fed data.
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7.5.1 Complete graphs

The tests were performed with the new loss and termination condition on the U-Net based

model withmatrices relative to 8, 16 and 32 nodes graphs. These matrices have been obtained

in the same exact way as those of the previous tests and the datasets have a dissimilarity matrix

and a ground truth matrix for each graph. In figure 7.8 there is the plot of the losses about

Figure 7.8: This graph shows the comparison between the losses of the train, validation and test phases with 8 nodes

per graph.

training, validation and testing of the graphs with 8 nodes. It is possible to see that the train

loss is the one that goes lower, but the validation is very similar to the test loss, which is a

single number, at the end of the procedure. Note that these data are relative to the model

running with 16 initial filters, just to visually compare the differences.

Initial filters % Root % Leaves % Edges % Ancestors Test Loss
8 94.95 91.28 72.98 52.54 0.03699
16 95.54 91.65 74.48 56.64 0.03772
32 93.91 88.73 72.59 53.65 0.03973
OK 66.26 70.23 47.41 32.52 -

Table 7.4: U-Net based autoencoder with 8 nodes per graph
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In table 7.4 are presented the results of the U-Net autoencoder with images of size 8× 8,

which means that each graph has 8 nodes relative to the same number of images. The table

shows that apparently, the best number of initial filters is 16 because all the metrics are better

than those of the other strategies about a different number of initial filters. This could mean

that 16 is the right number that balances the tradeoff between a greater number of features

and a high complexity, with 32 filters, and a lower number of features and a low complexity,

with 8 filters. But this situation is not stable, because the precisions are very close: in a more

general way, it is possible to say that all approaches work very well since they all obtain better

results than the Oriented Kruskal algorithm. In the same way figure 7.8 does, figure 7.9 shows

Figure 7.9: This graph highlights the differences between the losses with 16 nodes per graph.

the main differences between the losses while training the dataset of graphs with 16 nodes

and 16 initial filters. The overall behaviour of the losses is very similar and coherent with the

previous case.

A similar situation can be viewed in tables 7.5 and 7.6, where the strategy of having 16

initial filters is no longer the best one, but the metrics are very close and this means that all the

approaches have a similar behaviour, which anyway looks better than Oriented Kruskal. To

complete the visual interpretation of the losses for every size of graph, figure 7.10 shows that

in the 32 nodes case, the losses behave in a standard way, also seen in both figures 7.8 and 7.9.
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Initial filters % Root % Leaves % Edges % Ancestors Test Loss
8 91.17 90.94 68.20 46.64 0.03310
16 93.10 90.09 66.22 46.30 0.03442
32 92.96 88.92 67.21 46.79 0.03358
OK 60.97 70.55 39.95 25.86 -

Table 7.5: U-Net based autoencoder with 16 nodes per graph

Figure 7.10: This graph displays the train, validation and test losses with 32 nodes per graph.

This case is particular because it is clear that good loss values are reached after fewer iterations

than in the other cases, but then they need more time to stabilize. To maintain coherence

between the plots, the data are relative to an analysis of the model with 16 starting filters.

Note that in every plot, the number of iterations, i.e. epochs, is never 100, as set during the

setup of the model, but it is always lower due to the stopping condition on the validation loss.

In a macroscopical view, in table 7.6 the precisions are degrading as much as the size of the

initial data is increasing, denoting that if the input graph is bigger then the detection of the

correct MST is harder, even if the difference between the metrics in one or the other case is

never greater than 15 percentual points.

The root and leaves metrics are those that degrade less with the increase of the size, while
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Initial filters % Root % Leaves % Edges % Ancestors Test Loss
8 88.82 89.62 62.38 41.81 0.02458
16 88.92 89.69 63.26 42.55 0.02412
32 90.63 87.92 62.40 41.98 0.02423
OK 55.23 71.91 36.29 23.42 -

Table 7.6: U-Net based autoencoder with 32 nodes per graph

the edges and ancestors metrics have the biggest differences between each approach. A cause

in this could be found in the representation itself of the matrices, where the root and the

leaves could be detected more easily than edges and ancestors.

7.5.2 Dropped nodes

As a further analysis, it is taken into consideration the concept that there could be some

missing nodes in the graph, i.e. missing images from a set. These situations are common in

forensics, for example, where there could be some resources missing from the considered set,

but the problem needs to be solved anyway with a good precision.

In this work, the decision was to remove half of the images from each graph of 16 and 32

nodes to obtain, respectively, graphs of 8 and 16 nodes each. This drop of vertices has been

done programmatically on the already existing datasets, by removing the same half of the

columns and rows (except the root) in both the dissimilarity matrix and the ground truth

matrix regarding the same graph.

The dropped datasets have been then tested on theweights learned in the learning phases of

the standard datasets with the same size, i.e. the dropped 16 nodes dataset has been tested on

the weights of the standard 8 nodes dataset, and so on. Figure 7.11 shows that every variation

of the autoencoder approach is able to perform better than Oriented Kruskal in all the chosen

metrics. In particular, to make a comparison with the non-dropped situation, the root and

leaves metric go from an average which is above 90% to barely over 80%, while the edges

and ancestors metrics, which are known to be a harder task, have an average degradation of
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Figure 7.11: A comparison between the metrics of the dropped 16 nodes dataset with various numbers of starting

filters and the Oriented Kruskal algortihm.

almost 20 points. The test losses are all around 10%: even though these results are still very

good, compared to those obtained with a standard dataset there are signals of a clear difficulty

in correctly finding the MST when there are dropped nodes. A similar situation happens

while considering the case of a graph with 32 nodes dropped to 16. Figure 7.12 highlights a

behaviour which is in line with what has been seen in the previous case, but the percentual are

overall worse. This could be due to the not negligible quantity of information removed with

16 vertices. A similar behaviour can be visualized also on the test losses, which are around

6%, higher than the standard case, denoting a general difficulty of detection.

Figure 7.12: The metrics of the dataset with 32 nodes dropped to 16 and the numbers of starting filters compared to

the Oriented Kruskal algorithm.
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7.5.3 Audio samples

To the same models has been applied another dataset of the same nature but generated with

audio samples instead of images. 7 tracks have been created starting from another one and

the dissimilarities between the 8 samples of this set are calculated for each couple. These

dissimilarities generate the input matrix of the model, while the real way how the samples are

related is summarized in the ground truth matrix.

This has been done to generalize this entire approach, by evaluating it on data coming

from different sources. Since audio samples are harder to treat than images, the results of the

learning should be no better than the results already obtained with that kind of data.

Initial filters % Root % Leaves % Edges % Ancestors Test Loss
8 93.40 88.60 63.57 46.00 0.05937
16 91.85 88.61 63.40 46.99 0.06138
32 93.32 89.33 64.83 49.21 0.06166
OK 81.74 66.90 37.93 22.37 -

Table 7.7: Analysis on the 8 nodes graph made with audio samples

In table 7.7 there are the results of the learning of 8 × 8 dissimilarity matrices and the

comparison, as always, with the Oriented Kruskal algorithm. The differences between the

neural approach and the standard one are visible by comparing the columns of the table, each

one referring to the same metric.

The first look confirms the performances of U-Net, since the precisions in finding the root,

leaves, edges and ancestors in neurally reconstructedminimum spanning trees are significantly

better than those related to the reconstructionwith the Kruskal algorithm. The overall results,

as expected, are worse than those resulting from the application of the samemodel to matrices

deriving from images, due to the difficulty of correctly quantifying the dissimilarity between

audio samples.
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8
Conclusion

In this work, a new approach different from the usual algorithms that proposes to solve

the problem of minimum spanning tree finding has been presented. This method adopts a

specific variation of a well known neural network structure, called denoising autoencoder, to

extract the MST structure from a dissimilarity matrix. The matrix was built by comparing

couple by couple the data belonging to a set of near-duplicate samples, under the assumption

that the matrix representation of the minimum spanning tree of the graph identified by the

data can be well approximated by the application of a denoising operation on the dissimilarity

matrix.

Using the MNIST dataset, the best model out of three following different construction

strategies has been detected, and on this model, the analysis have been made on different

parameters sets. The images dataset has been created starting from the standard UCID. The

model has been also tested with some variations of the dataset to match the possible real-

life fields of application of this problem. Another dataset has been created starting from a
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collection of audio samples.

The results have been presented by a comparison between the new model and an oriented

version of the Kruskal algorithm. The numbers show that the U-Net based approach, which

was delineated as the best one in this work, outperforms the standard algorithm in each one

of the tests done.

However, there are some strong limitations to this approach: since the autoencoder is a

neural network, the learning phase implies that a huge amount of fixed-size matrices are fed

as input. While the first obstacle can be easily overcome by the modern algorithms, which are

able to produce a sufficient number of samples in a reasonable amount of time, the second one

is trickier, since a fixed matrix size means that the approach is ready to compute the minimum

spanning trees for those size of set it was trained with. Further developments of this idea

could include studies on methods to make this approach scalable. The improvements can

also consider the training on datasets of real data since those adopted in this work were a

derivation of ad hoc created ones. These future modifications could make even better and

reliable an approach that looks promising in every analysis where it was employed so far.
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