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Summary

Programmed cell death, termed apoptosis, plays a fundamental role in the development
and homeostasis of multicellular organisms. Dysregulation of apoptosis can lead to nu-
merous diseases, including autoimmune diseases, neurodegenerative diseases, and cancer.
In mammalian cells apoptosis can be induced by intra- or extracellular stimuli. Extracel-
lular stimuli comprise death ligands (like TRAIL or FAS/Apo-1/CD95) which can lead,
through extrinsic pathway, to receptor-induced apoptosis. Intracellular signals, such as
DNA damage, trigger the intrinsic pathway which results in release and activation, by
mitochondria into cytosol, of proapoptotic factors. Apoptosis is promoted by a family
of cysteine proteases, the caspases, which could lead to apoptotic phenotypes such as
chromatin condensation, nuclear fragmentation, membrane blebbing, cell shrinkage, and
formation of apoptotic bodies. A series of other non-apoptotic pathways occur when
the cell is stymolated by death receptors. In particular nuclear factor kappa B is a pro-
tein complex that, when active, transfers into DNA generating transcriptional factors
that could interact and inhibit caspase and mitochondrial apoptotic pathways. Creating
models of apoptotic phenomenon is a key tool to understand the role of any singular
molecule involved in this process. In particular, ordinar di�erential equations (ODEs)
models allows to obtain quantitative concentrations of each molecule. There are a lot of
ODEs models in literature, each of them dedicated to a di�erent branch of apoptosis.
The aim of this thesis is to perform a new ODE-based model (using BioNetGen language)
by integrating those already existing. Therefore is possible to reproduce and simulate
the complex signal of extrinsic apoptotic pathway and give new insights to cell death
mechanism. In particular, were selected two models with similar cellular lines (HeLa
cells). The �rst involves mitochondria reactions describing intrinsic apoptosis induced
by TRAIL receptors. It represents cellular death like a biologic time switch, whose activa-
tion could be delayed by opportune inhibitors. The second delineates extrinsic apoptosis
through NfkB pathway by stimolation of FAS receptors. The derived BioNetGen codes,
for these two di�erent approaches, was after imported in Matlab and integrated using
non linear least square method (NNLSQ). The new model is conceived to join together
mechanisms that leads to cellular death or survival. Controlling apoptosis inhibitor could
delay caspase and mitochondrial events and, consequently, induce NfkB transcriptional
factors activity, suppressing apoptosis in a de�nitive manner. To further study and val-
idate it, sensitivity analysis and pattern classi�cation were performed and underlining
a good agreement with previous models. Since no complex algebric forms such as 'Hill
functions' were used in the model, ultrasensitivity and other nonlinear behaviors arise
from interactions among simple elementary reactions. In future perspectives, this model
could be used for cross-talks investigation between di�erent pathways and also for better
description of NfkB in�uence in apoptosis propagation.
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1 Introduction

Programmed cell death is a fascinating process common to all multicellular organisms. It
results in the elimination of cells via a complex but a highly de�ned programme. Defects
in the regulation of programmed cell death are associated with serious diseases such as
cancer, autoimmunity, AIDS, and neurodegeneration. Apoptosis has been the best stu-
died type of programmed cell death so far. Cells that undergo apoptosis are characterized
by chromatin condensation, nuclear fragmentation, membrane blebbing, cell shrinkage,
and formation of apoptotic bodies. The central role in apoptosis execution belongs to
cysteine-speci�c aspartate proteases (caspases). Caspases are enzymes that orchestrate
apoptosis via cleavage of cellular substrates.

There are two major pathways of apoptosis: intrinsic and extrinsic. The intrinsic path-
way is triggered via chemotherapeutic drugs, irradiation, and growth factor withdrawal.
These stimuli lead to mitochondrial outer membrane permeabilization (MOMP), which
results in cytochrome-c release and caspase activation. In the extrinsic apoptotic path-
way, the caspase cascade is triggered by signals emanating from the cell-surface death
receptors (DR) triggered by death ligands (DL) (TNF, CD95L/FasL, TRAIL). The DR
stimulation results in the formation of the death-inducing signaling complex (DISC) and
subsequent caspase activation. DISC molecule, promotes caspase 8 and 10 activation and
was inhibited by cellular FADD-like interleukin-1b-converting enzyme inhibitory proteins
(c-Flips). Three splicing variants of c-Flips, c-Flip short (c-FlipS), c-Flip long (FlipL),
and c-Flip Raji (FlipR) can heterodimerize with a monomer of procaspase-8 bound to a
FADD molecule at the DISC and interfere with caspase-8 activation. c-Flips molecules
promotes Nf-kB activation through the formation of p43Flip.

Despite the fact that signaling pathways of apoptosis have been described with an im-
pressive level of detail, the understanding of apoptosis regulation in quantitative terms
has been missing until recently. There were many unclear points: when does a cell decide
that it has to die, what are the rate-limiting steps in apoptosis, is there a point of no
return, how can cell death be accelerated or blocked, and many others. From another
side the years of apoptosis research resulted in a profound understanding of how signaling
in apoptosis occurs. All major apoptotic complexes have been identi�ed from the DISC
to the apoptosome, including the death receptors and adaptors and the most important
enzymes and their inhibitors. Therefore, apoptosis was an ideal system to go into quan-
titative studies using the emerging �eld of systems biology.

On the modeling side there are a number of mathematical formalisms, e.g., Ordina-
ry Di�erential Equations (ODEs), Boolean models, etc., that allow to address di�erent
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1 Introduction

biological questions. Experimental work for systems biology of apoptosis involves the
generation of quantitative data using di�erent apoptotic assays. The development of this
�eld in the recent years is fascinating. Studies of apoptosis using systems biology have
provided novel insights into the quantitative regulation of cell death.

The aim of this thesis is to �nd new insights of the complex regulatory mechanism
of apoptosis by implementing and simulation of a state-of-art model. Two models have
been used from literature, each of them describing a di�erent behavior of apoptotic path-
way. The �rst model consider the pathway generated by TRAIL receptors and involves
the mitochondrion. It conisder apoptosis like a biological switch that can be delayed
by some molecules (called inhibitors of apoptosis). The second model evaluate two ex-
trinsic pathways produced by FAS receptors: apoptosis and Nf-kB. The last could lead
to the activation of trascriptional factors that act as inhibitors of both mitochondrial
and apoptosi pathway. We will merge them togheter using sensitivty analysis and non-
linear-least-square method. Then, we will study the new complete model using pattern
classi�cation, Hill equation and sensitivity analysis.

Structure of the thesis:
Chapter 2 starts with an overview of the biology of the di�erent pathways involved

in the apoptosis stimuli. We analyze both the extrinsic pathways (mediated by death
receptors) and intrinsic pathways (mediated by mithocondrial and the formation of the
apoptosome) and all the other major non-apoptotic pathways that occurs during the
apoptotic stimuli.
Chapter 3 gives an overview of the main computational modeling techniques focusing

on rule-based modeling approach and on BioNetGen language, the software implementing
it. It also gives an insight of the most widespreads mathematical models used in apoptosis
and cell death.
Chapter 4 starts illustrating two published models describing di�erent apoptosis signal-

ling branches to realize a �nal and more complete model. We analyze step by step their
implementation using BioNetGen language. At last, we import the models in MatLab
and we use sensitive analysis and the non linear square method for model integration
and parameter adjustment.
In chapter 5 the new apoptosis model has been used to obtain predictions of the system.

Simulated time series, describing concentrations of chemical species, has been considered
to characterized the dynamic behavior of the system. Both sensitivity analysis and Hill
equation have been used to further describe and validate the new model.
In chapter 6 we discuss the results and we introduce future plans. At last, chapter 7

shows model observables and BioNetGen source code.
Some chapters in section 2 and 3 are based on Inna Lavrik's [4] and Sangdun Choi's

[11] books.

2



1 Introduction

Su�x Description

Apaf-1 Adaptor protein, apoptotic protease activating factor-1

Bcl-2 B-cell lymphoma protein 2

IAP Inhibitor of Apoptosis

MOMP Mitochondrial Outer Membrane Permeabilisation

BH Bcl-2 homolgy

BIR Baculoviral IAP Repeat

RING Really Interesting New Gene

c-IAP1 and c-IAP2 Cellular inhibitor of apoptosis 1 and 2

XIAP X-linked inhibitor of apoptosis protein

Smac Second Mitochondria-derived Activator of Caspases

DIABLO Direct IAP Binding Protein with Low PI

ODE Ordinary Di�erential Equations

BAR Bifunctional Apoptosis Regulator

NF-kB Nuclear Factor-KappaB

IKK IkB kinase

FRET Foerster resonance energy transfer

TRAIL/Apo2L Tumour Necrosis factor-Related Apoptosis-Inducing Ligand

TRAIL-R1 TRAIL receptor 1

CHX Cycloheximide

ATP Adenosine Triphosphate

CA Cellular Automata

TNF Tumor Necrosis Factor

TNFR1 Tumor Necrosis Factor Receptor 1

CD95L/FasL death receptor

DISC death-inducing signaling complex

DR death receptor

DL death ligand

BH3 Bcl2 Homology domain

C8/C8* pro caspases 8 and the active form

FADD Fas-Associated protein with Death Domain

CD95/Apo-1/FAS First apoptosis signal ligand

c-FLIP cellular FLICE inhibitory proteins

Table 1.1: Legend of molecules abbrevations

3



2 Apoptosis

Apoptosis or programmed cell death (PCD) is a genetically controlled process whereby
cells die in response to environmental or developmental cues. The morphological char-
acteristics of apoptosis include cytoplasmic blebbing, chromatin condensation and nu-
cleosomal fragmentation. Dead cells are rapidly phagocytized to prevent damage to
neighboring cells. Regulation of apoptosis is critical for normal development and tissue
homeostasis and disruption of this process can have severe consequences. Too much cell
death may produce neurodegenerative diseases and impaired development, while insu�-
cient cell death can lead to increased susceptibility to cancer and sustained viral infection.
Progress has been made in the past decade to identify many of the basic components that
contribute to apoptosis, including transcriptional mediators, membranebound receptors
(e.g. TNF-a receptor and Fas), Bcl-2 family members, kinases/ phosphatases, and cys-
teine proteases. We �rst illustrate (par. 2.1) di�erent molecules involved in apoptosis
pathway and then we focus on extrinsic (par. 2.2) intrinsic (par. 2.3) and non apoptotic
pathways (par. 2.4). In particular we refer to pathway generated by TRAIL and FAS
receptors. In table 1.1 we illustrate a legend of the common abbrevations used in this
thesis.

2.1 Key molecules on apoptosis pathway

The importance of properly balanced cell survival and death in an organism is undeniable.
Unscheduled survival and proliferation of cells beyond their natural life span can lead
to the formation of tumours and cancer, while, at the other end of the spectrum, the
premature death of di�erentiated cells such as neurons or cardiac muscle cells leads to
irreversible, degenerative diseases. Given the complexity of the signaling involved, it
is not surprising that a large variety of endogenous regulators of apoptotic signaling
have been identi�ed and investigated in mammalian cells. Of particular importance for
the mitochondrial apoptosis pathway are the B-cell lymphoma protein 2 (Bcl-2) and
inhibitor of apoptosis (IAP) protein families. On the other side, death receptor-induced
apoptosis is regulated at several levels and involves numerous protein families. The
interplay between the di�erent levels of regulation provides a signi�cant complexity, which
can be understood better using systems biology. In the following sections, we will give
a summary of the di�erent protein families and their roles in intrinsic and extrinsic
apoptosis. In �g. 2.1 it is represented a little part of the apoptotic pathway mediated by
death receptor. In the red circles there are the molecules considered in this thesis.
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2 Apoptosis

Figura 2.1: Cellular apoptosis pathway by death receptors. Red circles represent
molecules and pathway evaluated in this study.
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2 Apoptosis

2.1.1 Caspases as major e�ector molecules of apoptosis pathway

Caspases are cysteine proteases and are the e�ector molecules of the apoptotic machine-
ry. There are apoptotic, as well as in�ammatory caspases. The apoptotic caspases are
divided into initiator caspases, including caspase-2, -8, -9, and -10, and e�ector caspa-
ses, such as caspase-7 and -3. All caspases are present in the cell as inactive zymogens
referred to as procaspases and are activated by internal cleavage. Initiator caspases act
upstream of e�ector caspases and activate them through cleavage. E�ector caspases then
cleave a variety of cellular substrates, eventually resulting in cell death.

Figura 2.2: Structural organization of caspases. Caspases are generally divided into in-
�ammatory and apoptotic caspases. Apoptotic caspases are further divided
into initiator and e�ector caspases. Caspases possess a large (p20) and small
(p10) subunit. Initiator caspases additionally have DEDs (procaspase-8/10)
or CARD domains (procaspase-9) at their N-terminus [1]

All caspases share a common structure. Caspase monomers consist of a large (∼20
kDa) and small (∼10 kDa) subunit (Fig. 2.2). Initiator caspases additionally have spe-
ci�c recruitment domains at their N-terminus. Procaspase-8 and -10 have two tandem
DED through which they interact with FADD at the DISC, procaspase-9 possesses a
caspase-recruitment domain (CARD) which is required for recruitment to the apoptoso-
me via interactions with Apaf-1. Active caspases are heterotetramers consisting of two
large and two small subunits. Initiator caspases are present in the cytosol as monomers
and are activated by dimerization or oligomerization at caspase-activating platforms and
cleavage between the large and small subunits only stabilizes the dimer. It was sho-
wn that both dimerization and interdomain cleavage are required for full activation of
caspase-8. E�ector caspases on the contrary are present as inactive dimers and are rea-
dily activated by internal cleavage. This cleavage is performed by initiator caspases.
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2 Apoptosis

The conceptual di�erence between the two classes is that there is no proteolytic enzyme
upstream of initiator caspases. Consequently, initiator caspases exhibit low zymogenici-
ty, which is de�ned as the ratio of activity between the cleaved and the uncleaved form.
While initiator caspases have highest ratios of 10 (caspase-9) or 100 (caspase-8), the ratio
for caspase-3 is more than 10,000.

2.1.1.1 Caspase-8/10 activation at DISC

Two isoforms of procaspase-8 procaspase-8a (p55) and -8b (p53) are recruited to the
DISC. After binding to the DISC, procaspase-8a/b (p55/p53) undergoes processing, thus
generating active caspase-8 (Fig. 2.3). This processing has been suggested to occur via
dimerization of two procaspase-8 monomers followed by a conformational change, leading
to autoactivation of procaspase-8 homodimers. Procaspase-8a/b (p55/p53) processing
at the DISC also results in the generation of the N-terminal cleavage products p43/p41,
the prodomains p26/p24, as well as the C-terminal cleavage products p30, p18, and
p10. Active caspase-8 heterotetramers (p10/p18) generated at the DISC initiate the
execution of apoptotis. Recently, it has been reported that the cleavage products p30 and
p43/p41 also possess catalytic activity leading to apoptosis initiation. Hence, procaspase-
8 processing at the DISC initiates apoptosis through the generation of several catalytically
active cleavage products.

Figura 2.3: Caspase-8 cleavage products and processing at the DISC. (a) Procaspase-8
can be cleaved between the large and small subunit or between the prodomain
and the large catalytic subunit, resulting in numerous di�erent cleavage prod-
ucts. (b) Procaspase-8 homodimers at the DISC can be processed to the ac-
tive caspase-8 heterotetramers (p10/p18) via the intermediate p43/p41. The
procaspase-8/c-FLIPL heterodimer can only be processed to the intermediate
p43-FLIP
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2 Apoptosis

Three isoforms of caspase-10 namely procaspase-10a, procaspase-10c, and procaspase-
10d were reported to be bound to the DISC. Procaspase-10 is also activated at the DISC
via generation of homodimers, leading to the formation of an active heterotetramer.
However, whether caspase-10 cantrigger cell death in the absence of caspase-8 in response
to CD95 stimulation is controversial.
The pathways generating apoptosis are usually divided into two principal categories:

extrinsic and intrinsic. The �rst are generated by an external stimulus (e. g. through
receptors) while the second are produced by reactions that occur inside the cell. Other
pathways occur when cell undergo apoptosis and some of them promote cell survival.
They are usually called non-apoptotic or survival pathways.

2.1.2 c-Flip proteins regulate caspase activation at the DISC

Three c-FLIP isoforms and two cleavage products have been characterized so far (Fig.
2.4). Three isoforms include one long, c-FLIPL, and two short variants, c-FLIPS and c-
FLIPR. All three c-FLIP isoforms possess two tandem DED domains at their N-terminus.
c-FLIPL additionally contains catalytically inactive caspase-like domains (p20 and p12).

Figura 2.4: c-FLIP isoforms and cleavage products. Three isoforms of c-FLIP proteins
exist, one long (c-FLIPL) and two short variants (c-FLIPS and c-FLIPR). All
isoforms contain two tandem DEDs which are required for DISC recruitment.
c-FLIPL additionally has a large and small caspase-like subunit, which are
catalytically inactive. C-FLIPL can be cleaved by caspase-8 at di�erent posi-
tions generating the N-terminal fragment p43-FLIP or N-terminal fragment
p22-FLIP [1]

The two short isoforms, c-FLIPS and c-FLIPR, block DR-induced apoptosis by inhi-
bition of procaspase-8 activation at the DISC. This has been suggested to occur through
the formation of catalytically inactive procaspase-8/c-FLIPR/S heterodimers. c-FLIPL
can play both a pro- and an antiapoptotic role. It can act as an antiapoptotic molecule,
functioning in a way analogous to c-FLIPS when it is present at high concentrations
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2 Apoptosis

at the DISC. c-FLIPL can act proapoptotic when expressed at lower concentrations, in
combination with strong receptor stimulation or in the presence of high amounts of ei-
ther of the short c-FLIP isoforms c-FLIPS or c-FLIPR. Under these conditions c-FLIPL
facilitates the activation of procaspase-8 at the DISC. This occurs via the formation of
catalytically active procaspase-8/c-FLIPL heterodimers in which the procaspase- 8 active
loop is stabilized by c-FLIPL, thereby increasing the catalytic activity of procaspase-8.

2.1.3 IAP family of proteins

The Inhibitors of Apoptosis (IAP) proteins directly inhibit caspases. They all share a
conserved sequence motif of 70�80 amino acids, the baculoviral IAP repeat (BIR) domain,
which is arranged around a coordinated zinc atom, of which each family member can
possess up to three copies. There are six human IAPs,which include XIAP, c- IAP1,
c-IAP2, NAIP, Bruce, and survivin. Numerous mammalian IAPs, as well as IAPs in �ies
and viruses, possess a C-terminal RING domain, however, the requirement of this domain
for apoptosis suppression remains unclear. There are reports that both domains are
required for their antiapoptotic function in insects, however, c-IAP1, c-IAP2, and XIAP
in humans could still inhibit apoptosiswhen lacking the RINGdomain. XIAP directly
inhibits active caspase-3. During the intrinsic apoptosis, mitochondrion is activated and
opens its pores (MOMP). After MOMP Smac is released from the mitochondria into the
cytosol and relieves XIAP-mediated inhibition. This causes a delay between receptor-
mediated initiator phase and �nal commitment to cell death in type II cells [2]. XIAP
also contains a RING domain with E3 ubiquitin ligase activity, which promotes caspase-3
degradation by the proteasome ([2, 5]).

2.1.3.1 XIAP and Smac/DIABLO

Among the IAPs, XIAP is the most potent inhibitor of cell death, capable of blocking
both the intrinsic and extrinsic pathways of apoptosis through inhibition of the initiator
caspase-9 and e�ector caspases-3 and -7. In addition to its caspase inhibition abili-
ties, XIAP also has a RING motif which functions as an E3 ubiquitin protein ligase to
catalyse the ubiquitination of itself as well as substrate proteins. Caspase inhibition by
XIAP may be counteracted by the release of Second Mitochondria-derived Activator of
Caspases/ Direct IAP Binding Protein with Low PI (Smac/DIABLO) or the serine pro-
tease Omi/HtrA2, both of which are released by mitochondria into the cytosol during
apoptosis.

2.1.4 The Bcl-2 family

The Bcl-2 family of proteins are probably the best described endogenous modulators
of the mitochondrial pathway of apoptosis, and regulate apoptosis by either promoting
or preventing mitochondrial outer membrane permeabilisation (MOMP). Pro- and anti-
apoptotic family members can heterodimerise and neutralise each other's function. The
Bcl-2 family proteins can be divided into three subfamilies. The �rst subfamily com-
prises the anti-apoptotic proteins (Bcl-2, Bcl-xL, Bcl-w, Mcl-l, Al and Boo) which are
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2 Apoptosis

potent inhibitors of the apoptotic programme and antagonise pore formation at the mi-
tochondrial outer membrane. These proteins are structurally characterised by four Bcl-2
homolgy (BH) domains. The remaining two subgroups, the Bax/Bak family and the
BH3-only protein family, are pro-apoptotic and required for the initiation of apoptosis.
The multi-domain, pro-apoptotic proteins, Bax and Bak (and potentially a third protein,
Bok), bear three BH domains, and oligomerise and facilitate pore formation in the outer
mitochondrial membrane. The BH3-only proteins promote apoptosis by not only selec-
tively binding to the anti-apoptotic Bcl-2 family members, but also by directly inducing
the activation and oligomerisation of the Bax and Bak proteins. Activation of Bax and
Bak is essential for the activation of the mitochondrial apoptosis pathway. It should also
be noted that there is crosstalk between the mitochondrial and death receptor apoptosis
pathways. This crosstalk is carried out by caspase-8- mediated cleavage of the BH3-only
protein family member, Bid.

2.2 System biology of extrinsic apoptosis

The extrinsic signaling pathway leading to apoptosis involves transmembrane death re-
ceptors that are members of the tumor necrosis factor (TNF) receptor gene superfamily.
Members of this receptor family bind to extrinsic ligands and transduce intracellular
signals that ultimately result in the destruction of the cell. The signal transduction of
the extrinsic pathway involves several caspases which are proteases with speci�c cellular
targets. Once activated, the caspases a�ect several cellular functions as part of a process
that results in the death of the cells. The focus of this chapter is on understanding
the signaling complexity of the extrinsic apoptotic pathway using systems biology. We
summarize the main signaling paradigms and the major features of the extrinsic pathway.

2.2.1 Death receptor-induced apoptosis

Death receptors (DR) belong to the tumor necrosis factor (TNF) family of proteins and
are characterized by extracellular cysteine rich domains (CRD) and an intracellular ∼80
amino acid long motif, the death domain (DD). The best characterized DRs are CD95
(also named Fas/APO-1), TNFR1, TRAIL receptor 1 (TRAIL-R1), and TRAIL-R2.
Death ligands (DL) are assumed to be homotrimeric and exist in a membrane-bound or
a soluble form.

CD95/Apo-1/FAS
The CD95-induced apoptotic pathway is one of the best-studied signaling pathways.
The natural ligand of CD95, CD95L, is expressed on a variety of cells, such as cytotoxic
T cells, as a type II membrane protein1. Stimulation of CD95 with its ligand or wi-
th agonistic anti-CD95 antibodies, such as anti-APO-1, triggers the oligomerization of
CD95. This leads to the recruitment of Fas-associated death domain (FADD) through
DD interactions, as well as procaspase-8, procaspase-10 (par. 2.1.1), and cellular FLICE

1Type II membrane proteins are trans membrane proteins that have their amino terminus on the
cytoplasmic side of the cell and the carboxy terminus on the exterior.
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inhibitory proteins (c-FLIPs) via N-terminal death e�ector domains (DED) (par. 2.1.2),
and formation of the death-inducing signaling complex (DISC). In the DISC procaspase-
8/10 are activated by dimerization and internal cleavage, which is regulated by c-FLIP
proteins. Recent structural analyses challenge the concept of a trimeric ligand binding to
a trimeric receptor. Triggering of CD95 has also been reported to induce nonapoptotic
pathways, such as NF-kB, AKT, and ERK [3]. However, the detailed mechanisms of the
induction of CD95-mediated nonapoptotic pathways are not elucidated yet. Activated
caspase-8 is released from the DISC and activates e�ector caspases-3 and -7, which cleave
a variety of substrates, and are responsible of the fragmentation of chromosomes.

Figura 2.5: Fas ligand and receptor

Additionally, caspase-8 cleaves Bcl-2 protein Bid (par. 2.1.4). The C-terminal part,
tBid, then translocates to the mitochondria resulting in mitochondrial outer membrane
permeabilization (MOMP) and the release of proapoptotic factors into the cytosol, such
as cytochrome c, Apaf-1, or endonuclease G. This results in the formation of another
complex, the apoptosome, including cytochrome c, Apaf-1, ATP and procaspase-9, and
activation of procaspase-9 in this complex. Caspase-9 also cleaves and activates caspase-
3. In CD95-induced apoptosis two di�erent cell types are distinguished: Type I and
Type II. Type I cells are characterized by high amounts of CD95 DISC, which results
in very e�cient procaspase-8 activation, leading to massive activation of caspase-3 and
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cell death. Type II cells, on the other side, are characterized by lower amounts of CD95
DISC formation, that results in less active procaspase-8 and require signal ampli�cation
through tBid-mediated mitochondrial permeabilization.

TRAIL
TRAIL (TNF-Related Apoptosis-Inducing Ligand) is a protein consisting of 281 ami-
no acids. It is also called Apo2L. Five proteins, TRAILR1 (DR4), TRAILR2 (DR5/
TRICK2 or KILLER), TRAILR3 (DcR1/ TRID or LIT), TRAILR4 (DcR2 or TRUNDD),
and Opg (Osteoprotegerin), have been identi�ed as TRAIL receptors (Ref.1). Both
TRAILR1 and TRAILR2 contain the functional DD (Death Domain), capable of indu-
cing apoptosis. The other three receptors DcR1, DcR2 and Opg serve as "decoy" recep-
tors. These three receptors can bind to TRAIL, but cannot induce apoptosis. DcR1 is
a glycosylphosphatidylinositol-anchored cell surface protein, which contains the TRAIL-
binding region as well as a region that anchors the receptor to the membrane. But
unlike the other receptors, DcR1 lacks an intracellular tail needed to spark the death
pathway. DcR2 is also able to bind TRAIL but contains a truncated DD that does
not signal apoptosis induction but can activate NF-KappaB (Nuclear Factor-KappaB).
Finally, Opg, slightly weaker receptor for TRAIL also binds to OpgL (Osteoprotegrin
Ligand/Receptor), activator for NF-KappaB ligand (RANKL/Receptor Activator of NF-
KappaB Ligand), inhibits osteoclastogenesis, and increases bone density. A cell expres-
sing more decoy receptors is more likely to survive upon binding of the death ligands.
TRAIL has been demonstrated to kill a wide variety of tumor cells with minimal e�ects
on normal cells. This is because TRAIL's death receptors (TRAILR1 and TRAILR2)
are mainly expressed in transformed cells while its decoy receptors are expressed in nor-
mal cells. Binding of TRAIL to DR4 and DR5 leads to the recruitment of an adaptor
protein FADD (Fas-Associated Death Domain), which functions as a molecular bridge
to Caspase8. Caspase8 then oligomerizes and is activated via autocatalysis. Activated
Caspase8 stimulates apoptosis via two parallel cascades: it directly cleaves and activa-
tes Caspase3, and it cleaves BID (BH3 Interacting Death Domain) (par. 2.1.4). tBID
(Truncated BID) translocates to mitochondria, inducing CytoC (Cytochrome-C) release,
which sequentially activates Caspases9 and 3. BAX (BCL-2 Associated X-Protein) de�-
ciency has no e�ect on TRAIL-induced Caspase8 activation and subsequent cleavage of
BID; however, it results in an incomplete Caspase3 processing due to inhibition by XIAP
(Inhibitor of Apoptosis, X-Linked). Release of SMAC/DIABLO from mitochondria th-
rough TRAIL-Caspase8-tBID-BAX cascade is required to remove the inhibitory e�ect of
XIAP and allow apoptosis to proceed. BAX-dependent release of SMAC, not CytoC from
mitochondria, mediates the contribution of mitochondrial pathway to TRAIL through
death receptor-mediated apoptosis. Caspase3 directly cleaves downstream substrates e.g.
PARP (Poly ADP Ribose Polymerase).

2.3 System biology of intrinsic apoptosis

For intrinsic apoptosis we usually mean the mitochondrial apoptosis pathway. Mitochon-
dria have multiple functions. Apart from their role in the regulation of cellular bioen-
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ergetics, redox homeostasis and signal transduction, mitochondria are able to initiate
apoptosis. The Bcl-2 family proteins are the key regulators of the mitochondria-initiated
caspase activation pathway. Activation of caspases is considered one of the most impor-
tant regulatory steps for apoptosis. Caspase cascades can be initiated or ampli�ed by the
release of cytochrome-c from the mitochondria. On release into the cytosol, cytochrome-c
binds to Apaf-1. Apaf-1 oligomerises and engages the initiator caspase, pro-caspase-9,
which in turn activates downstream caspases-3 and -7. Furthermore, the release of Smac
from mitochondria assists the ampli�cation of the caspase cascade by abrogating the func-
tion of caspase inhibitors such as XIAP. Moreover, mitochondria are involved in caspase
independent cell death with the release of factors including apoptosis-inducing factor.
There have been considerable developments in recent years in further understanding the
complex signaling networks and cellular decision making during mitochondria-initiated
apoptosis through the use of systems biology. In this chapter, we examine the modeling
approaches that are currently employed to further our understanding of the mitochondrial
pathway of apoptosis.

2.3.1 Mithocondrial apoptosis pathway

In mammalian cells there are at least three main pathways which lead to caspase activa-
tion, the intrinsic or mitochondrial pathway, the extrinsic or death receptor pathway and
the cytotoxic T-lymphocytes (CTL)/natural killer (NK)-derived granzyme B-dependent
pathway. There is a certain amount of crosstalk between the pathways and all may ul-
timately result in the apoptotic death of the cell. The intrinsic pathway of apoptosis
can be initiated by various forms of stress such as DNA damage, trophic factor with-
drawal, nutrient deprivation, heat shock and oxidative stress. Apoptotic signaling in this
pathway results in an increase in the permeability of the mitochondrial outer membrane
and the subsequent release of several proteins from the inter-membrane space of the mi-
tochondria into the cytoplasm, resulting in the activation of both initiator and e�ector
caspases. Central to this pathway is the release of cytochrome c from the mitochondria.
Normally cytochrome-c resides in the inter-membrane space of the mitochondria, where
it functions by transporting electrons between protein complexes of the respiratory chain
during oxidative phosphorylation. On release of cytochrome-c into the cytosol, it binds
to and activates the adaptor protein, apoptotic protease activating factor-1 (Apaf-1).
Oligomerisation of Apaf-1 results in the recruitment of the initiator caspase pro-caspase-
9 and the formation of the apoptosome. Once activated, the mature caspase-9 remains
part of the apoptosome complex, with Apaf-1 functioning as an allosteric regulator of
caspase-9 activity, allowing it to cleave and activate downstream e�ector caspases such
as pro-caspase-3 and pro-caspase-7. The executioner caspases-3 and -7 exist within the
cytosol as inactive dimers. When activated, these caspases cleave and activate further
downstream caspases such as caspases-2 and -6. Caspase-3 is also involved in a feedback
ampli�cation loop to further activate caspase-9.
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2.4 Nf-kB non-apoptotic pathway

The eukaryotic transcription factor NF-kB was originally discovered transcribing the
immunoglobulin kappa light chain gene in B cells. NF-kB can be activated following a
variety of stimuli, including bacterial lipopolysaccharide (LPS), T cell receptor (TCR)
signaling, di�erent cytokines, such as TNFa, interleukin 1 (IL-1) and IL-2, viral infections,
UV and X-ray radiation, nitric oxide, and also CD95. The NF-kB transcription family
comprises multiple members, including RelA (p65), NF-kB1 (p50, p105), NF-kB2 (p52,
p100), c-Rel, and RelB. All NF-kB proteins share a conserved N-terminal 300-amino
acid motif, the Rel homology domain (RHD), which contains a dimerization, nuclear
localization as well as DNA-binding domain. NF-kB proteins form homo- or heterodimers
with each other, except for RelB. The most prominent dimer which is commonly referred
to as NF-kB is the heterodimer of p65 with either p50 or p52. Importantly, only c-
Rel, RelA, and RelB possess a transactivation domain and thus act as transcriptional
activators, while other NF-kB proteins act as transcriptional repressors. In the absence
of activating stimuli NF-kB dimers are inhibited by IkB (inhibitor of NF-kB) proteins
via ankyrin-repeat motifs and masking their nuclear localization signal. IkB proteins are
phosphorylated by IkB kinases (IKKs) and subsequently degraded by the proteasome.
The IKK complex, consisting of IKKa, IKKb, and NEMO (IKKg) regulates NF-kB
activation following various stimuli and lack of either IKK complex component blocks
NF-kB activation.

2.4.1 CD95-Mediated NF-kB activation

Accumulating evidence suggests that stimulation of CD95 can also induce nonapoptotic
pathways, such as tumor growth and invasion, as well as proliferation and programmed
necrosis, termed necroptosis. CD95-mediated nonapoptotic signaling occurs via induc-
tion of NF-kB, Akt and mitogen-activated protein kinases (MAPK) pathways. These,
however, are not well understood, but have been reported to require caspase-8 activity
[3]. C-FLIP proteins play a very important role in the regulation of caspase-8 activa-
tion [6, 7] as well as induction of nonapoptotic pathways. It could be shown that the
cleavage product of c-FLIPL p43-FLIP directly interacts with the IKK complex, leading
to the activation of NF-kB [3]. Other prominent players in nonapoptotic pathways are
receptor-interacting protein 1 (RIP1) and RIP3 which are important for CD95-induced
necroptosis, as well as activation of NF-kB.

2.4.2 TRAIL-Mediated NF-kB activation

Upon binding to TRAILR1, TRAILR2, or TRAILR4, TRAIL can also activate the tran-
scriptional factor NF-kB and JNK (c-Jun N-terminal Kinase). Recently, it was suggested
that TRAF2 (TNF Receptor-Associated Factor-2), an important e�ector of TNF (Tu-
mor Necrosis Factor) signaling, was involved in both NF-kB and JNK activation induced
by overexpression of TRAIL receptors. Inactive NF-kB is located in the cytoplasm be-
cause its interaction with the inhibitory proteins, IkBs, masks its nuclear translocation
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signal. When IKK is activated, it phosphorylates IkBs. Then the phosphorylated IkBs
will be polyubiquitinated and rapidly degraded by the proteasome. The degradation of
IkBs leads to the release of NF-kB and allows NF-kB to translocate into the nucleus
and to activate its target genes, some of which are the crucial mediators of the NF-kB
antiapoptotic function.
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3.1 introduction

Signal transduction inside cells is carried out by network of interacting signal mediators
and is often a very complex process. Complexity derives not only from the enormous
amount of di�erent molecules involved in the process but also from the presence of
numerous feedbacks and feedforward loops, both negative or positive, concerning the
pathway itself, and ample crosstalks involving distinct pathways. This high degree of
complexity issues new challenges in understanding how cellular signaling works in detail
and thus new and more powerful tools have to be introduced beyond the simple reasoning
on experimental data. Apoptosis signaling pathway represents a typical example of
complex network due to the numerous molecules constituting it and the several types of
interactions between these elements. Hence, in order to analyse in detail the dynamics
which characterizes this network it is necessary to make use of mathematical tools able
to model the system comprising the majority of its biochemical reactions. The resulting
model can be used to make predictions of signaling pathway in physiological state to
gain new knowledge about the process or may be used to test the system varying some
quantities and parameters which describe the model to obtain information about network
malfunctioning and mimicking pathological condictions. The most common approach
makes use of a system of ordinary di�erential equations (ODEs) to model the kinetics of
the molecules populating the system. This method works well in case of simple networks
comprising just few molecules. When the system under investigation is particularly large
and involves a great amount of interactions between molecules, the ODEs approach is
no more e�cient from both implementational and computational point of view. For this
reason the rule-based modeling approach has been introduced providing an easy way to
implement the system and new simulation tools.

3.2 Why modelling apoptosis?

Apoptosis is a phenomenologically easily observable process. However, understanding
its mechanistic basis is challenging owing to complex interactions of a large number of
signaling proteins and emergent behavior at the systems level. After applying a su�cien-
tly strong death-inducing stimulus to a population of cells, irreversible signaling events
are initiated leading to the characteristic appearance of an apoptotic cell: membrane
blebbing proceeds, the cell shrinks, and organelles disintegrate. Apoptosis occurs for
extrinsic stimuli on a timescale of hours and for intrinsic stimuli of days, and is accessi-
ble to several experimental techniques allowing for the acquisition of quantitative data.
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The wide range of available experimental techniques and the detailed knowledge about
molecular events render apoptosis a system suitable for modeling analyses. Apoptosis
induced by death ligands is one of the few cell fate decisions known to proceed by purely
post-transcriptional mechanisms, thus further simplifying the formulation of mathema-
tical models. Even though individual steps of the apoptotic signal transduction cascades
are well understood, we lack insights into the system properties and the dynamics of the
death decision. Questions to be addressed in apoptosis by systems biology approaches
include:

1. How do cells ensure that apoptosis robustly occurs in all-or-none manner? What is
the �point-of-no-return� representing irreversibility in apoptosis? Which signaling
motifs are responsible for such digital and history-dependent behavior? As detai-
led below, mechanisms proposed using kinetic modeling include bistability due to
positive feedback and sigmoidal responses arising from competitive inhibition.

2. How is speci�city in the apoptosis vs. survival responses ensured? A topic of par-
ticular interest for apoptosis modeling is that apoptotic stimuli trigger survival or
death signaling depending on initial conditions and the stimulus strength. Mode-
ling can be employed to identify critical nodes of signaling crosstalk that tip the
balance between cell death and survival. Furthermore, the interlocked regulation
of cell cycle is a topic followed by modelers.

3. What are the principles underlying cell-to-cell variability in the apoptosis response
of a cell population? Why do cell types di�er in their sensitivity to death-inducing
stimuli? Currently, several therapeutic applications are tested to stimulate apop-
tosis in cancer cells, to decelerate tumor growth, or to prevent cells, preferentially
neurons or cardiomyocytes, from undergoing programmed cell death. Modeling ap-
proaches could help to plan therapies and to predict the outcome on a population
of cells. Particularly by distinguishing cell death kinetics and the behavioral hete-
rogeneity of di�erent cell types, and predicting drug sensitization by cotreatments,
modeling could be a valuable tool.

To answer these questions, we �rst give an overview of the basics of mathematical for-
malisms in system biology (par. 3.3 and 3.4). At last we review successful application of
ODE apoptosis models created to characterize apoptosis pathway (par. 3.4.1).

3.3 Ultrasensitivity

In molecular biology, ultrasensitivity describes an output response that is more sensitive
to stimulus change than the hyperbolic Michaelis-Menten response1 [22]. Ultrasensitivity

1In biochemistry, Michaelis�Menten kinetics is one of best-known models of enzyme kinetics. The model
takes the form of an equation describing the rate of enzymatic reactions, by relating reaction rate v

to [S], the concentration of a substrate S. Its formula is given by: v =
Vmax[S]

Km+[S]
. Vmaxrepresents the

maximum rate achieved by the system. The Michaelis constant Kmis the substrate concentration ati
which the reaction rate is half of Vmax.
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can help to �lter out noise or can delay responses. Mechanisms that lead to ultrasensitive
stimulus-response curves include cooperativity, multisite phosphorylation, feed-forward
loops, and enzymes operating under saturation. The latter mechanism has been termed
zero-order ultrasensitivity because a necessary condition is that the opposing enzymes of
a covalent modi�cation cycle display zero-order kinetics. Molecular binding is an inte-
raction between molecules that results in a stable association between those molecules.
Cooperative binding occurs if the number of binding sites of a macromolecule, that are
occupied by a speci�c type of ligand, is a non-linear function of this ligand's concentra-
tion. This can be due, for instance, to an a�nity for the ligand that depends on the
amount of ligand bound.

Figure 3.1: Ultrasensitive versus Michaelian curve response [22]

Oscillations can be observed if an ultrasensitive cascade possesses a negative feedback.
Bistability (hysteresis) can occur if such an ultrasensitive cascade is equipped with a
positive feedback. Ultrasensitive responses are usually represented by sigmoidal graphs.

3.3.1 E�ect of feedbacks on ultrasensitive cascades

The dynamic behavior of signal transduction cascades is strongly controlled by feed-
back loops. These feedbacks act on all levels of signal transduction. Feedbacks arise
from autocrine induction of hormones, from the transcriptional regulation of cascade in-
termediates, from their covalent modi�cation or from receptor internalization. Positive
feedback is a process in which the e�ects of a small disturbance on a system include an
increase in the magnitude of the perturbation. That is, A produces more of B which in
turn produces more of A. Mathematically, positive feedback is de�ned as a positive loop
gain around a feedback loop. That is, positive feedback is in phase with the input, in the
sense that it adds to make the input larger. Positive feedback tends to cause system in-
stability. When the loop gain is positive and above 1, there will typically be exponential
growth, increasing oscillations or divergences from equilibrium. System parameters will
typically accelerate towards extreme values, which may damage or destroy the system, or
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may end with the system latched into a new stable state. Positive feedback may be con-
trolled by signals in the system being �ltered, damped, or limited, or it can be cancelled
or reduced by adding negative feedback. In the following sections, the consequences of
such feedback loops on the dynamics are brie�y reviewed.

3.3.2 Bistability caused by positive feedback

Many theoretical and experimental investigations have shown that a positive (or double
negative) feedback loop in gene regulatory circuits is a structural condition that allows
for bistability. A bistable system is a system that exhibits two stable steady states,
separated by an unstable state. Often the coexistence of the steady states is a function
of a stimulus; therefore, the system can be switched from one state to another at so-called
saddle-node bifurcations. There is now ample evidence that bistability is important in
biological signal processing, in the cell cycle, in apoptosis, and in the yeast Gal/Glc
network. A prerequisite for observing bistability is that either the cascade or the feedback
loop is ultrasensitive. Bistability provides the means for a biological signaling system to
suppress noise, to memorize the signaling history, or to perform all-or-none decisions. It
is a mechanism to establish checkpoints, i.e. a threshold, which a stimulus has to exceed
before the system is committed into a new state, e.g. cell cycle phase.

3.4 Computational modeling techniques

Analyzing the cell on a systems view can be done by top-down and bottom-up approaches.
Detailed mechanistic mathematical models constructed from the molecular characteris-
tics of individual proteins (�bottom-up models�) have only been developed for metabolic
and signaling networks. In contrast, transcriptional regulatory networks, and the link
between signaling networks and ultimate cellular decisions are best tackled by statis-
tical methods which integrate huge amounts of data but are mostly phenomenological
(�top-down modeling�). Top-down approaches examine the cell on a global level, treat-
ing individual regulatory modules as black boxes that are not analyzed mechanistically
but only characterized with respect to input�output behavior. Thus, top-down methods
typically do not require much prior knowledge about the system, so that many signal-
ing and/or metabolic pathways can be studied at once. Most top-down approaches are
solely data-driven and rely on high throughput screens of cellular behavior (gene expres-
sion pro�ling, proteomics, siRNA screening, sequencing, and a�nity assays). Typically,
the ultimate goal of top-down approaches is to identify biologically relevant patterns and
correlations to the data (e.g., disease marker gene identi�cation) or to predict new molec-
ular interactions (e.g., reverse engineering algorithms). Bottom-up approaches focus on
well-characterized parts of the biochemical regulatory network, and are typically based on
the assumption that the properties of these subnetworks (or �modules�) can be studied in
isolation. Based on prior knowledge and on time-resolved experimental data, mechanistic
mathematical models describing the interactions of individual proteins in the module are
constructed (e.g., by using sets of coupled di�erential equations). The goal of bottom-up
modeling is to identify physiologically relevant systems-level properties emerging from
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complex interactions within the network (e.g., feedback). Apoptosis-inducing signaling
cascades, especially those induced by death ligands, were mainly studied using bottom-up
modeling approaches, since (1) the molecular events are well characterized; (2) transcrip-
tional events can be neglected; (3) the ultimate death decision often closely correlates
with all-or-none activation of e�ector caspases, implying that statistical methods are not
required to link signaling to cellular phenotypes.
However, bottom-up approaches to apoptosis are diverse and the methodology of choice

depends on the complexity of the signaling network under study, the available experimen-
tal data, and the question to be addressed by modeling. Boolean approaches are typically
employed to qualitatively analyze the (quasi-)static behavior of large apoptosis-survival
crosstalk networks which comprise many molecular species. Ordinary di�erential equa-
tion (ODE) models allow for the quantitative description of network dynamics but typi-
cally require knowledge about many kinetic parameters which either limits the network
size and/or requires huge amounts of experimental data. Standard ordinary di�eren-
tial equations (ODE) modeling may even not be su�cient if spatiotemporally resolved
single-cell data is available
(1) spatial gradients within the cell can be modeled using subcellular compartment

ODE models or partial di�erential equations (PDEs);
(2) cell-to-cell variability may arise due to stochastic dynamics of the apoptotic sig-

naling cascade (�intrinsic noise�) or due to cell-to-cell variability in the expression of
pathway components (�extrinsic noise�).
While ODE models with randomly sampled initial protein concentrations can be em-

ployed to simulate extrinsic noise, stochastic simulation algorithms are required to un-
derstand intrinsic noise. In the following, we will give an overview of principal di�erences
between boolean and quantitaive ODE models.

Boolean models:
Simulations of largescale networks is therefore often performed using boolean or logic
modeling, a qualitative approach that is based on network topology, but does not take
into account quantitative features of individual reactions. Instead protein activities are
represented by nodes which can either be on or o� (activity 0 or 1), depending on
the activities of upstream input nodes. Logic rules are applied at each iteration: For
example, in a so-called AND-gate, the node Z will be activated if and only if both input
nodes X and Y are active. In contrast, an OR-gate simply requires either X or Y to
be active. Thus, boolean rules can be used to qualitatively represent real biochemical
mechanisms such as functional redundancy (OR-gate) or coincidence detection (AND-
gate), the latter, arising from sequential processing by two distinct enzymes. Since logical
rules are applied iteratively, the approach can be used to study temporal phenomena such
as adaptation. Moreover, boolean networks can exhibit nonlinear dynamic phenomena
such as oscillations, and stable vs. unstable attractors.

Quantitative models:
Boolean models are inherently limited in their capability of quantitatively describing the
temporal dynamics of biochemical networks. In the context of perturbation analysis,
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boolean approaches are restricted to the simulation of complete elimination of network
nodes and/or reactions; thus, gradual phenomena such as dosage compensation cannot
be studied. Moreover, the qualitative e�ects of perturbations as revealed by boolean
modeling are often intuitively clear. Thus, in many cases, nontrivial and experimentally
testable predictions require quantitative modeling approaches such as ODE and PDE
modeling, as well as stochastic simulations. ODE approaches assume that large numbers
of signaling molecules are present within the cell, so that random �uctuations in reaction
events can be neglected by averaging over the whole molecule population. Moreover, in
ODE modeling it is assumed that the cell represents a well-stirred reactor, implying that
di�usion e�ects do not matter. In apoptosis networks, these assumptions are likely to be
ful�lled, as caspase and their regulators are typically expressed at the number of several
hundred thousand molecules per cell. Furthermore, the time scale of apoptosis induction
(hours) is slow relative to the time scale of protein di�usion within a cell (milliseconds
to seconds); therefore, spatial gradients of apoptosis signaling molecules are unlikely to
play a decisive role in apoptosis initiation.

3.4.1 ODE Models Describing Apoptosis Networks

In this section, we will review some models of apoptosis found in literature. The �rst
mechanistic apoptosis model of coupled di�erential equations, presented by Fusseneg-
ger et. al. [12], described sequential activation of caspase-8, caspase-9, and caspase-3
by intrinsic or extrinsic stimuli. The model encountered for a positive feedback from
caspase-3 promoting the release of cytochrome c from mitochondria and thus promoting
the additional activation of caspase-9 in apoptosomes. As this model was not trained
against quantitative data, it provided only predictions on activated fractions of initiator
and executioner caspases dependent on initial concentrations of apoptosis promoting or
inhibiting proteins. A lot of progress has been made since this �rst apoptosis model, and
di�erent aspects have been studied in detail. In the following, we will review a piece of
the current literature on ODE-based apoptosis modeling.

3.4.1.1 Models of Extrinsic Apoptosis Pathway

Understanding bistability in the process of apoptosis initiation was the focus of the study
of Eissing et. al. [13]. Their model described the bistability in extrinsic apoptosis within
the context of caspase-mediated positive feedback. Caspase-8 activated by receptor-
induced apoptosis in type I cells activates caspase-3, while caspase-3 promotes positive
feedback by caspase-8 activation. A stability analysis of this minimal model showed that
bistability and therefore a stable live steady state were only possible parameter values far
o� the experimentally measured kinetic parameters. By extending the model topology,
the authors concluded that bistable caspase activation within the physiologically rea-
sonable parameter range required the consideration of inhibitors of activated caspase-8.
It was found that BAR molecule palys an important role in establish bistability. The
important antiapoptotic role of the protein BAR was investigated also in the study of
Pace et. al. [14].
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3.4.1.2 Models of Intrinsic Apoptosis Pathway

The theoretical study by Bagci at. al. [15] addressed origins of bistability on the level
of MOMP and apoptosome formation. Two positive feedback mechanisms contribute
to bistability: �rst, caspase-3 cleaves and inactivates the MOMP inhibitor Bcl-2, and
thereby ampli�es its own production. A second feedback arises from the cleavage of
the MOMP inducer Bid by caspase-3; thus Bid cleavage, initially triggered by caspase-
8, can be enhanced by caspase-3. Their mass-action model describes oligomerization
of Apaf-1 bound to cytochrome c to the heptameric complexes of apoptosomes. As this
cooperative oligomerization process leads to higher-order terms in the corresponding rate
equation, the positive feedback interactions can result in bistable regimes corresponding
to either survival or apoptosis. In the model of Bagci at. al. [15], bifurcation points in the
caspase-3 activity were investigated, that are dependent on the production or degradation
of Bax and their relation to inhibitory Bcl-2 proteins. Above a certain threshold for the
degradation rate of Bax or below a certain threshold for the Bax production rate, the
bistable behavior is changed into a monostable survival state.

3.4.1.3 Implicit Feedback Mechanism in Intrinsic Apoptosis

In the modeling studies summarized so far, the positive feedback mechanisms known
from the biomedical literature and their contribution to bistability were analyzed. Addi-
tionally, mathematical modeling could provide valuable insights into non-obvious, hidden
feedback loops that arise from the topology of the apoptosis network. This phenomenon
has been referred to as implicit positive feedback regulation. The interplay of caspase-3,
caspase-9, and inhibitors of apoptosis (IAPs) in the mitochondrial proapoptotic path-
way was investigated in a model by Legewie at. al. [16]: cytochrome c released from
mitochondria, triggers activation of caspase-9, which in turn cleaves procaspase-3 into
active caspase-3. Both caspase-3 and caspase-9 are inhibited by XIAPs to prevent au-
toreactive activation. Interestingly, an implicit positive feedback loop arises from the
dual inhibition of both caspases by XIAPs: once active caspase-3 is generated, it can
bind to XIAPs, thus sequestering XIAPs away from caspase-9. This sequestration e�ect
enhances caspase-9 activation, resulting in autoampli�cation of caspase-3 cleavage. In
the model by Legewie et al., the dependency of the concentration of active caspase-3 as
the response to an Apaf-1 concentration shows di�erent characteristics of either monos-
table, bistable reversible, or bistable irreversible behavior. The authors concluded that
implicit positive feedback alone brings a very small range of bistability; however, implicit
feedback synergizes with other feedback mechanisms to establish a broad bistable range
and irreversibility in the life�death decision. The studies of Chen et. al. [17] combined
ODE, stochastic and cellular automaton modeling to further understand signaling pro-
cesses that potentially lead to MOMP. In these studies interactions between pore-forming
e�ectors (Bax, Bak), activators and enablers (tBid and several others), and inhibitors
(Bcl-2 amongst others) that lead to or prevent mitochondria outer membrane perme-
abilization are analyzed. After translocation to mitochondria, inactive Bax and Bak are
catalyzed to their active form by an activator. Subsequently, activated Bax and Bak lead
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to membrane pore formation and cell death. In the study of Cui et. al. [18], models
involved in the bistability of MOMP were further developed. Questions on the possible
model topology led to hierarchical considerations in Chen's[17] and Cui's [18] studies: do
activators and enablers indirectly induce apoptosis by sequestering Bcl-2 away from Bax,
or are activators directly proapoptotic by catalyzing the reaction of Bax to its active form
that can cause pore formation and cytochrome c release? This question led to an indirect
model recapturing the inhibition of Bcl-2 by activators and topologies describing direct
Bax activation. Inhibitors as Bcl-2 in the indirect topology interfere by inhibiting Bax
and thereby preventing its oligomerization at the pores. In direct topologies they inhibit
activators from catalyzing Bax activation. Direct topologies were favored in this study,
as they involve two possible feedback mechanisms that could contribute to a bistability
in Bax activation.

3.4.1.4 Models with a switching / threshold mechanisms

The critical roles of c-FLIPL and c-FLIPS, which potentially act as stoichiometric in-
hibitors in the DISC, were investigated in a model of Bentele et. al [19]. The dependence
of the ligand concentration threshold on the concentrations of both splicing variants of
c-FLIP was characterized, and it was concluded that c-FLIPs establish a stoichiometric
switch. A large-scale model comprising DISC assembly, caspase activation, MOMP, in-
terference from caspase inhibitors, and degradation processes was derived. By a global
sensitivity analysis, clusters of modeled signaling proteins with high mutual sensitivi-
ties of protein concentrations were de�ned, which lead to functional subsystems. By
disregarding parameters that had low sensitivities to parameters in one cluster, the di-
mensionality of the parameter estimation problem could be decreased. It could be shown
that the threshold ligand concentration was highly sensitive to the c-FLIP concentration
which is consistent with a stoichiometric switch mechanism. It could be shown that the
concentration of c-FLIP at the time of ligand addition is central to apoptosis timing.
Another monostable model of the apoptosis threshold was introduced in the theoretical
study of Stucki and Simon [20]. However, these authors did not focus on the mechanism
of ultrasensitivity, but represented all-or-none caspase-3 activation phenomenologically
using a Heaviside function2 in the caspase-3 production term. The major focus of the
study was to analyze how the caspase-3 activation threshold could be modulated by the
caspase-3 inhibitory XIAPs, the XIAP antagonist Smac, and Smac-binding antiapoptotic
proteins such as survivin. The potentially limiting role of caspase-3 degradation was ad-
dressed, and it was concluded that XIAPs e�ciently suppress apoptosis by triggering the
degradation of caspase-3 in a nonlinear manner.

3.4.1.5 Models with a timing switch

Steady states, bistable switches, and ultrasensitivity govern long-term decision making
within biochemical signaling networks. However, in the context of apoptosis, it is also

2The Heaviside step function, or the unit step function, usually denoted by H (but sometimes u or j),
is a discontinuous function whose value is zero for negative argument and one for positive argument.
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important that the time course of e�ector caspase activation is abrupt. Such temporal
switching ensures complete and coherent initiation of cellular demise. A recent study con-
cluded that the apoptosis timing in single cells consists of a variable lag time followed by
the sudden switch-like e�ector caspase activation (Albeck et. al. [5]). While the lag time
varies within the range of one to several hours, dependent on the stimulus strength, the
sudden switching time was shown to be relatively invariant around 30 min. This robust-
ness of sudden switching can be interpreted as necessary to prevent from states of partial
destruction that could cause genomic instability. The lag time is lengthened by proteins
upstream of activated Bax, as c-FLIP, BAR, or cytosolic Bcl-2, and shortened by TRAIL
receptors, caspase-8, Bid, and Bax. Moreover, the robustness of the switching time is
determined on the level of Bax�Bcl-2 interaction leading to mitochondria pore formation.
Thus, most modeling studies characterizing the temporal dynamics of apoptosis initiation
in type II cells employing the mitochondrial pathway focused on regulation at caspase-8
or Bcl-2 level. In a combined experimental and theoretical study, Rehm et. al. [21]
analyzed the kinetics of temporally switch-like e�ector caspase activation downstream of
mitochondria. In particular, they focused on the control of e�ector caspase activation
by XIAP. Their model described apoptosis signaling following MOMP induced by the
drug staurosporine. In their model, Smac and cytochrome c released from mitochon-
dria served as stimuli. Subsequent events in the model include apoptosome formation,
caspase-9 as well as caspase-3 activation and caspase inhibition by XIAP. Speci�cally,
their model predict that a reduction of XIAP levels would not a�ect apoptosis timing,
while an XIAP overexpression would signi�cantly delay e�ector caspase activation.

3.4.1.6 Nf-kB Models

To understand the double-edged role of CD95 (APO-1/Fas) activation in apoptosis as well
as in NF-êB activation, models describing the role of c-FLIP on both cell fates were estab-
lished (Fricker [7]; Neumann [3]). A focus of the models is the balance between caspase
activation and inhibitory processes at the DISC. Cleavage of procaspase-8 homodimers
bound to FADD can result in two forms that possess catalytic activity: an intermediate
form p43 that remains bound to the DISC as a homodimer, and the completely processed
form p18 that dissociates from the DISC as p182�p102 heterotetramers. Three splicing
variants of the cellular FADD-like interleukin-1b-converting enzyme inhibitory protein
(c-FLIP), c-FLIP short (c-FLIPS), c-FLIP long (FLIPL), and c-FLIP Raji (FLIPR) can
heterodimerize with a monomer of procaspase-8 bound to a FADD molecule at the DISC
and interfere with caspase-8 activation. The two variants c-FLIPS and c-FLIPR block
procaspase-8 autoprocessing in a heterodimer and therefore inhibit propagation of the
apoptosis signal. In contrast, c-FLIPL can facilitate procaspase-8 cleavage to p43 but not
to p18. While the two forms c-FLIPS and c-FLIPR clearly inhibit signal propagation, it
was not obvious if c-FLIPL promotes or also inhibits apoptosis. To resolve this question,
a study of Fricker [7] on the signaling function of c-FLIPL combined experiments and
modeling, and showed an ambiguous function of the protein as dependent on the stim-
ulus strength. Their model considered the formation of homodimers of procaspase-8 or
heterodimers of procaspase-8 and c-FLIP variants at the DISC and either termination
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of further reactions or processing to caspase-8 or p43-FLIPL by other active homo- or
heterodimers.

3.5 Rule-based modeling

We mentioned the importance to catch every site-speci�c detail of protein-protein in-
teractions in order to achieve the complete comprehension of how a signaling pathways
works. In addiction to di�culties arising from incomplete experimental data, another
impediment is present due to the intrinsic complexity in describing every interaction oc-
curring in the network. Signaling proteins contain multiple functional components and
several sites of post-translational modi�cation. As result, interactions among signaling
proteins may generate a myriad of protein complexes and post-translational modi�cation
states. For instance, a protein containing n phosphorylation sites can be found in up to
2n distinct states. This feature has been called combinatorial complexity and has been
recognized as a signi�cant challenge to our understanding about cellular regulation. In
conventional model speci�cation using a set of ODEs, each chemical species that poten-
tially populates the system and each reaction that can occur must be explicitly speci�ed
and this may generate a combinatorial number of coupled di�erential equations mak-
ing model implementation tedious, prone to errors or even impossible. Since the same
molecule found in a di�erent state represents a di�erent chemical species, to describe
completely each molecule as many of di�erential equations as the number of its dinstict
states are necassary (without considering any kind of interaction with other molecules).
Taking the example above, a protein containing n phosphorylation sites is described by
2n di�erential equations. Moreover, the amount of di�erential equations increases rapidly
when molecules with more than one site bind together forming in a complex which can
be found in a myriad of di�erent possible states. The most common solution adopted to
overcome this limitation entails the simpli�cation of the model. Proteins with multiple
phosphorylation sites are represented with a single phosphorylation site which reassumes
the properties of all sites, termed virtual phosphorylation site. The same procedure is
adopted when a complex sequential multi-step process is taking place by substituting it
with a single step. Obviously these simpli�cations con�icts with the knowledge of cel-
lular biochemistry and there is no proof that these assumptions could not a�ict model
predictions in some way. In order to deal with the issue of combinatorial complexity, a
new useful tool has been introduced with the purpose to specify all the reactions arising
from molecular interactions in a more e�cient and compact way. Rule-based modeling
approach is based on the key assumption that the characteristics of molecular interactions
depend on local properties of the protein involved and this modularity mostly determines
the network dynamics. According to this assumption, structure of a reaction occurring
in the network can easily be de�ned by means of a rule. A rule represents a class of
reactions involving reactants with common components and component properties. The
important simpli�cation of the rule-based modeling approach is that all the reactions
within a class are assigned the same rate law. In conclusion, both rule-based model and
ODEs model provide a representation of chemical kinetics but they are di�erent in the
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model speci�cation procedure. While in ODEs model the modeler must state explicitly
which chemical species populate the system and how these are connected and in�uence
each other, in a rule-based model, the modeler must state only the interactions occurring
in the system and their contextual dependencies. Rule-based modeling approach is im-
plemented by means of two major languages, termed Kappa and BioNetGen. Due to its
facility of use we chose BioNetGen language to implement our models but the di�erences
compared with Kappa language are neglegible.

3.6 BioNetGen language

BioNetGen [4] is a set of software tools for rule-based modeling and is a mnemonic
for �Biological Network Generator�. The software not only generates reaction networks
starting from reaction rules, but also simulates such networks using a variety of methods.
In order to understand how this software practically implements a biological system using
rule-based modeling, we report a simple example taken from that will clear the basic
concepts lying beneath this approach.

Bionetgen language encoding example: Fig. 3.2 depicts the implementation of a sim-
ple network in all its essential parts. Molecules are implemented as structured objects
that can be constituted by di�erent components. These components represent functional
elements of proteins and may have associated states representing covalent modi�cations
or conformations (e.g. phosphorylated/ unsphosphorylated state, active/inactive state
etc.). The expression reported in Fig.3.2(A) indicates the de�nition of two molecules
types. A(a) represents the presence of molecules type A having only the componet a.
B(b1,b2∼U∼P) represents molecules type B having two components, b1 and b2. In
particular, the expression b2∼U∼P indicates that component b2 may be found in two
possible states, ∼U and ∼P, which can be used to indicates respectively the unphophory-
lated and the phosphorylated states. Components of distinct molecules can link together
forming a bond, thereby building complexes of assembled molecules. Patterns can be
used to select particular molecular attributes. In particular, the pattern B(b1) shown
in Fig. 3.2(B) selects molecules B having the binding site b1 completely free despite of
the phosphorylation and binding status of b2 component. Rules are needed to specify
the biochemical transformations that can potentially take place in the system. The term
�transformation� is used instead of �reaction� to indicate that the same reaction rule
is applied to a selected set of reactant species and not necessarily to only one chemi-
cal species. This approach is worthy if, as already said, the chemical reactions mainly
depend on the local properties of protein components. Modularity feature implies that
the same reaction rule can be used to describe the transformation of di�erent chemical
species sharing common components and component properties. This selection method
of the chemical species permits to write many complicated chemical reactions in a set of
few rules making more compact and e�cient the implementation of the model. In rules,
the �pattern matching� is accomplished specifying two essential parts:

� the protein components directly modi�ed by the transformation (reaction center)
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and

� the components and components states needed for the selection of chemical species
(reaction context).

In Fig. 3.2(C) are reported 3 di�erent rules and their reaction centers are underlined.
Rule 1 A(a) + B(b1) <-> A(a!1).B(b1!1) kp1,km1 represents a common reaction of bind-
ing and unbinding between molecules A and B. Bond formation involves the components
a of molecule A and component b1 of molecules B. Since nothing is specifyed about
component b2, the reaction between the two molecules takes place indipendently from
the phosphorylation state of b2.

Figure 3.2: BioNetGen language encoding example. Figure taken from [4]

Since this reaction is reversible (<->) its kinetics is described by means of two param-
eters, kp1 and km1, which respectively determine the speed of the forward and backward
reactions. Rule 2 B(b1!+,b2∼U) -> B(b1!+,b2∼P) k2 describes a typical phosphoryla-
tion event. Component b2 of molecule B changes its state from ∼U to ∼P according to
kinetics parameter k2. The expression b1!+ speci�es that the reaction takes place only if
site b1 is bound to another molecule. Finally, rule 3 B(b2∼P) -> B(b2∼U) k3 describes
a desphosphorylation event. Component b2 of molecules B changes its state from ∼P to
∼U according to rate k3. Since nothing is specifyed about b1, the reaction takes place
indipendently from presence of bond in component b1. Starting from the seed species
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the rules are applied generating other new species and thus new reactions. The process
continue iteratively until no new reactions are found or some other stopping criteria are
satis�ed creating the complete network model. Fig. 3.2(C) depicts this phase starting
from the seed species A(a) and B(b1,b2∼U) up to the creation of a complete network
containing all the possible species which may populate the system according to rules 1, 2
and 3. This simple but explicative example depicts some of the typical events occurring
in a biological pathway. Phosphorylation and dephosphorylation of a molecular site and
binding and unbinding of two proteins are fundamental events taking place in a signaling
pathway and governing its dynamics. However, this set of few rules can be extended
using more molecules with di�erent components and components properties opening the
door to implementation of very complex systems.
A BioNetGen input �le is mainly constituted by six sections including all the informa-

tion about the biological system and they are brie�y presented here:

� (parameters) De�ne the parameters that govern the dynamics of the system such
as rate constants, the values for initial concentrations of chemical species, compart-
ment volumes and physical constants used in unit conversions. The synthax of a
line in the parameters block is

[index] parameter [=] value

where square brackets indicate optional elements, parameter is a string consisting
of only alphanumeric characters plus the underscore character and containing at
least one nonnumeric character. value may be either a number in integer, decimal
or exponential notation or a formula involving numbers and other parameters in
C-style math synthax;

� (molecule types) De�ne molecules, including components and allowed component
states. As already said, molecules are structured objects composed of components
able of binding to each other. Components typically represent physical part of pro-
teins such as domains and motives and may also be associated with a list of state
labels, which represent states or properties of the components. Examples of com-
ponent states modeled using state labels may concern conformation (e. g. open or
closed), phosphorylation status and location (e. g. extracellular space, membrane,
cytoplasm). The synthax of a line in the molecule types block is

[index] moleculeTypes

where moleculeTypes has the synthax for a BioNetGen species;

� (seed species) De�ne the initial state of system such as initial chemical species to
which rules are applied. The synthax of a line in the seed species block is

[index] species [initialPopulation]
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where species has the synthax for a BioNetGen species described above and ini-
tialPopulation is a number or formula that speci�es the amount of the species
present at the start of the �rst simulation (default is zero);

� (observables) De�ne model outputs, which are functions of the population levels of
multiple chemical species sharing a set of properties. The synthax of a line in the
observables block is

[index] [observableType] observableName pattern1[ ,pattern2]

where observable Type is either Molecules or Species (default is Molecules), ob-
servable Name is a valid name for a BioNetGen observable, and each pattern is a
valid BioNetGen pattern;

� (functions) De�ne the functions describing the kinetic rate constants which cannot
be described by a simple constant value but which show a kind of dependencies
from concentrations of some chemical species present in the system. The synthax
of a line in the functions block is

f() = formula

where f() is the name of the function and formula is an mathematical expression
involving the concentration of one or more chemical species which have to be nec-
essarily listed in the observables block;

� (reaction rules) De�ne rules describing which chemical species are involved in a
transformation and which are the consequences of this transformation. Each rule
is similar to a standard chemical reaction notation having four basic elements:
reactant patterns, an arrow, product patterns and a rate law speci�cation. The
synthax of a line in the reaction rules block is

[index] rPattern1 [+rPattern2] ... arrow pPattern1 [+ pPattern2] ...
rateLaw1[,rateLaw2] [command1] ...

where each Pattern is a valid BioNetGen pattern, arrow is one of �->� or �<->�,
each rateLaw is a parameter or a rate law function. Rules may transform a selected
set of reactant species by adding or deleting molecules or bonds and by changing
component state labels. An example for each case is reported below
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begin reaction rules
#Add a bond
A(a) + B(b) -> A(a!1).B(b!1) k_a
#Delete a bond
A(a!1).B(b!1) -> A(a) + B(b) k_d
#Change a component state label
A(Y∼P) -> A(Y∼U) km3
#Add a molecule
I() -> I() + A(a,Y∼U) ksynth
#Delete a molecule
A() -> Trash() kdeg
end reaction rules

� actions) Perform two basic types of actions, generate the chemical reaction net-
work implied by the model speci�cation and simulate this network using di�erent
methods. An example of actions commonly used are reported below

#actions
generate_network({overwrite=>1});
#kinetics
writeSBML({});
simulate_ode({t_end=>120,n_steps=>120});
resetConcentrations();
simulate_ssa({su�x=>ssa,t_end=>120,n_steps=>120});

� generate_network command directs BioNetGen to generate a network of species
and reactions through iterative application of the rules starting from the set of
seed species. This behaviour can be overridden setting the option overwrite=>1.
writeSBML indicates that the network is written to an SBML �le. simulate_ode
command initiates a simulation of the dynamics implementing and numerically
solving a set of ODEs. t_end and n_steps specify respectively the end time for
the simulation and the number of steps at which the results are written to the
output �les. reset Concentrations command restores the concentrations to the
initial values. simulate_ssa command initiates a stochastic simulation. su�x=>ssa
command appends �_ssa� to the basename for output �les of the simulation.

All the information about BioNetGen software and syntax are fully described in [4].

3.6.1 BioNetGen simulation tools

It is worthy to clear some aspects concerning the simulation tools o�ered by BioNetGen
software. One possible method (the one presented above) entails the iterative applica-
tion of rules to the set of de�ned seed species in order to generate a network before the
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simulation starts. Subsequently, the simulation may be carried out either by numerically
solving ODEs or by implementing a stochastic simulation algorithm (SSA). SSA implies
a kinetic Monte Carlo simulation using the Gillespie algorithm [9] and produces stochas-
tic trajectories representing the concentrations of observables species. Alternatively, the
rules may be applied during the simulation as the set of populated species grows using a
procedure that has been called �on-the-�y� network generation and simulation. As a �rst
step only the reactions involving seed species are initially generated. Then, BioNetGen
detects when a reaction event occurs that populates one or more species to which rules
have not been previously applied and automatically expands the network through rule
application. This method is useful when a network is potentially unrestricted such as in
polimerization processes which allows aggregates formation of any size. For this reason
to generate a complete network before prediction starts may be dangerous unless some
stopping criteria are speci�ed. An example of this simulation method is reported below

#simulation on-the-�y
generate_network({overwrite=>1,max_iter=>1});
simulate_ssa({t_end=>50,n_steps=>20});

where max_iter set to 1 indicates that only the reactions involving seed species are
initially generated. For all the mentioned methods the simulation cost scales with the
network size, hence simulation of large-scale reaction networks may become impractical.
In particular, the CPU time required for model simulation increases exponentially as the
number of network reactions grows. In order to overcome this computational limit, net-
workfree methods have been introduced such as NFsim. NFsim [10] guarantees a constant
cost of simulation per reaction event and thereby implies a linear increase of the CPU
time with the number of reaction events in the system. NFsim generalized the rule-based
version of Gillespie's stochastic simulation algorithm (SSA) and guarantees very similar
results compared with SSA but with a outstanding saving in time. An example of NFsim
is reported below

#network-free simulation
simulate_nf({su�x=>nf,complex=>1,t_end=>50,n_steps=>20})

.
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4.1 Introduction

In this section we implement a model of the apoptosis pathway. As seen in the previous
section (3.4.1) there are a lot of models in literature, each of them describing a di�erent
behavior of the pathway. We decided to focus only on two models that describe with
high accuracy two di�erent and important extrinsic apoptosis pathways: Albeck's and
Neumann's model. The �rst evaluates the molecular reactions generated by stimolation
of TRAIL receptors related to mitochondrion, while the second generates a series of
reactions by CD95 (FAS) receptors and takes into account both caspase (apoptotic) and
Nf-kB (non apoptotic) pathways.
At �rst, we have realized the models separately and veri�ed the match between results

obtained and those showed in literature. Subsequently, we have integrated them creating
a single complete model including as many elements as possible of the apoptosis signal-
ing pathway. The rule-based modeling approach has been prefered in order to overcome
combinatorial complexity that often limits the implementation of large models. BioNet-
Gen language, as said in the previous section, is a software that allows to follow this new
modeling approach and to encode the model by means of a simple set of rules. Mod-
els taken from literature were originally implemented using sets of ordinary di�erential
equations (ODEs) and thus they needed to be translated using the rule-based modeling
approach. In the following chapters there will be decribed in details Albeck's [2, 5] and
Neumann's [3] model of extrinsic and intrisinc apoptosis pathway.

4.2 Albeck's model of intrinsic apoptosis with TRAIL

Albeck's model [2, 5], already introduced in section 3.4.1.5 describes the pathway gen-
erated by the exposure of TRAIL ligand. They supposed that apoptotic events occurs
like a biological switch. To understand how this extrinsic apoptosis switch functions
in quantitative terms, they constructed a mathematical model based on a mass-action
representation of known reaction pathways. The model was trained against experimental
data obtained by live-cell imaging, �ow cytometry, and immunoblotting of cells perturbed
by protein depletion and overexpression. The trained model accurately reproduces the
behavior of normal and perturbed cells exposed to TRAIL, giving the possibility of study
switching mechanisms in detail. In thier studies, Albeck et al. examine the relative dy-
namics of initiator and e�ector caspase activation and MOMP using four experimental
tools:

1. live-cell reporters speci�c to initiator and e�ector caspases;
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2. a biologically inert reporter of MOMP;

3. �ow cytometry and immunoblot analysis of endogenous substrates;

4. perturbation of speci�c proteins using RNAi, protein over-expression and small
molecule drugs.

To monitor caspase behavior in single living cells, they constructed three �uorescent
protein (FP) fusions (Fig. 4.1 A, B). The �rst, e�ector caspase reporter protein (EC-RP),
monitors caspase-3 activity (and, to a lesser extent, caspase-7 activity) and is composed
of a Forster Resonance Energy Transfer (FRET) donor-acceptor pair (CFP and YFP)
connected via a �exible linker that contains the caspase cleavage sequence DEVDR (Fig.
4.1 B). When the linker is cleaved, energy transfer is lost and CFP signal increases. This
event can be monitored by live-cell microscopy. Initiator caspase reporter protein (IC-
RP) carries tandem copies of IETD in its linker, a sequence that is e�ciently cleaved
by caspase-8, but poorly by caspases-3,7. IETD constitutes the site in procaspase-3 for
initiator caspase cleavage, and IC-RP cleavage is therefore a good readout of procaspase-3
activation.
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Figure 4.1: Process diagram of the death receptor network modeled by Albeck et al. (A)
The major features of the network are highlighted by color: gray, receptor
module; blue, direct caspase cascade; green, positive feedback loop; yellow,
mitochondrial feed-forward loop. (B) A condensed alternate representation
of the network.

Finally, a reporter for MOMP that localizes to the inter-membrane space (IMSRP) was
created by fusing RFP to the mitochondrial import sequence of Smac (residues 1- 59).
FP fusions to full-length cytochrome c and Smac have been described by other authors,
but IMSRP di�ers from these fusions in lacking an IAP-binding motif, and it is therefore
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biochemically inactive. To validate the properties of EC-RP, IC-RP, and IMS-RP in
vivo, HeLa cells stably expressing the reporter proteins were treated with TRAIL and
cycloheximide (CHX) and �uorescence signals monitored every 3 min over an 8-12 hr
period.
When Albeck et al. try to implement the model, three simpli�cations were made to

reduce the number of species and free parameters. The �rst concerns the details of
DISC and apoptosome assembly, both of which involve multiple copies of several protein
species, that are replaced by simpli�ed ``lumped parameter'' representations. The second
is refered to the omission of all mechanism involved in protein synthesis by performing the
experiments in the presence of cycloheximide (which is commonly used to sensitize cells
to the action of TNF, but which, in thier works, also simpli�es modeling by eliminating
source terms). As third sempli�cation, proteins with similar biochemical activities were
represented by single species: C8 and caspase-10 (C10) by C8 alone; C3 and C7 by
C3 alone; and Bcl-2-like family of proteins by three prototypical examples: Bid, a pro-
apoptotic ``activator,'' Bcl-2, an apoptosis inhibitor, and Bax, a pore-forming protein.
The last parameters discussed are still a matter of dispute about the precise mechanism
by which Bcl-2-like proteins regulate MOMP; so, they decided to implement the simplest
form of ``direct activation'' of Bax molecules by t-Bid formation (see par. 2.1.4).
Mathematical model of proteins was constructed using elementary reactions, repre-

sented by ODEs. All biochemical transformations were represented as unimolecular or
bimolecular reactions. Transport between cellular compartments is also modeled as an
elementary unimolecular reaction while the assembly of multiprotein complexes is mod-
eled as a series of bimolecular reactions. Because no complex algebric forms, such as
Hill functions, are used in Albeck's model, ultrasensitivity and other nonlinear behaviors
arise from interactions among simple elementary reactions rather than the proprieties of
higher-order equations.
The �nal model contains 58 species corresponding to 18 gene products having nonzero

initial conditions and 40 additional species representing complexed, cleaved, or di�eren-
tially localized forms of the initial species, which interact via 28 reactions described by
70 nonzero rate constants (including forward, reverse, and kcat rates for each reaction).

4.2.1 Model description

The dynamics of extrinsic apoptosis made by Albeck can be summarized in a three co-
operating but asynchronous processes: direct cleavage of e�ector caspases by initiators,
cytosolic translocation of pro-apoptotic mitochondrial proteins, and feedback from ef-
fector to initiator caspases. Activation of initiator and e�ector caspases is a de�ning
characteristic of apoptosis. E�ector caspases cleave essential cellular substrates and di-
rectly dismantle cells, while initiator caspases have a more limited range of substrates
and act primarily to regulate e�ector caspases. The precise all-or-none control of caspase
activation is critically important for control of cell fate: e�ector caspases must not turn
on prematurely, but once active they must fully cleave their substrates and provoke cell
death.
The chain of events that initiates extrinsic cell death begins with ligand-induced assem-
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bly of death-inducing signaling complexes (DISCs) on TNF, Fas, or TRAIL receptors.
The initiator caspases-8 and -10 are activated by enforced dimerization at DISCs, after
which they cleave e�ector pro-caspases. The activation of procaspase-3 by proteolysis is
mediated exclusively by initiator caspases. Subsequent to cleavage by initiators, e�ec-
tor caspases are regulated by trans-acting factors such as Xlinked inhibitor of apoptosis
protein (XIAP), which blocks the proteolytic activity of caspase-3 by binding tightly to
its active site. XIAP may also encode an E3 ubiquitin ligase that promotes caspase-3
ubiquitination and its subsequent proteasome mediated degradation.
In most cells (those with type-II regulation), XIAP-mediated inhibition of caspase-3

is relieved by a pathway that involves mitochondrial outer membrane permeabilization
(MOMP). MOMP is regulated by the Bcl-2 family of proteins, which function either as
proapoptotic (e.g. Bid or Bax) or anti-apoptotic (e.g. Bcl-2) factors. Initiator caspases
directly cleave Bid, which then activates Bax by altering its conformation. Activated Bax
translocates to the mitochondria, forming pores that allow Smac/Diablo and cytochrome
c to translocate from their normal locations in the mitochondrial inter-membrane space to
the cytosol. Smac binds tightly to XIAP, blocking XIAP's caspase-3-inhibitory activity,
while cytochrome c binds Apaf-1 and caspase-9 to form the apoptosome. Finally, in at
least some cells, active caspase-3 cleaves procaspase-6, which then generates additional
caspase-8 in a feedback loop. In the described model is possible to recognise mainly four
interacting cell death subcircuits (�g. 4.1) :

1. a lumped-parameter representation of receptor binding by TNF or TRAIL and
the subsequent activation of pro-C8 by receptor-bound death-inducing signaling
complexes (DISC) to form C8* (�g. 4.1, gray);

2. an enzyme cascade in which C8* directly cleaves C3 to form active C3*, which can
cleave e�ector caspase substrates (a process represented in our model by cleavage
of PARP to form cPARP) but not when bound to XIAP (X-linked IAP �g. 4.1,
blue);

3. a mitochondrial feed-forward pathway in which C8* cleaves Bid (into tBid) to acti-
vate Bax (to Bax*) and promote formation of pores in the mitochondrial membrane
through which CyC and Smac translocate into the cytosol following MOMP; cy-
tosolic CyC then binds Apaf-1 and C9 to form the apoptosome (which also cleaves
pro-C3 ), and Smac neutralizes XIAP, thereby de-inhibiting C3* (�g. 4.1, yellow);

4. a positive feedback loop in which pro-caspase-6 (pro-C6) is cleaved by C3* to form
C6*, which then activates additional pro-C8 (�g. 4.1, green).

4.2.2 Model implementation using BioNetGen

In this paragraph is desctibed the model implementation using BioNetGen language, on
the base of what already explained on section 3.6. First, we de�ned initial parameters
and kinetics of the reactions from Albeck's work. We wrote them in the 'begin parametes'
section.
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pC8_init 2e4 # pro cas 8
Bar_init 1e3 # Bifunctional apoptosis regulator
....
k1 4e-7*60
k_1 1e-3 *60
kc1 1e-5*60
...

After that, we de�ned di�erent con�gurations of the initial species in the dedicated
section �begin molecule types� in the command line. In the example below, procaspase
3 has a binding site named B and can reach active (a), inactive (i) or ubiquinated (u)
states while Bax molecule has 4 binding sites and 3 di�erent states: inactive (i), active(a)
and inside the mitochondrial (m). In this command section it is possible to de�ne both
chemical and spatial di�erent conformations.

C3(B,S∼a∼i∼u)
Bax(B1,B2,B3,B4,S∼i∼a∼m)

In the �begin species� section we initialized the species with the same starting values of
Albeck's paper. We used the labels wrote in the �begin parametes� section. We have to
set an initial concentration only on a single state of the molecule (e.g. we have to de�ne
two initial concentrations of caspase 8 because it can be in two di�erent states: active
and inactive). In this case we de�ned only procaspase 8 concentration and the active
form value was setted automatically to 0.

C8(B,S∼i) pC8_init

In the �begin observables� section we decided which concentrations examine during the
analysis, following its evolution with a graph. We showed di�erent molecules combination
by usings �ags according to chapter 3.6. In the following example the label �DISC_Flip�
is referred to the concentration of DISC molecule linked to Flip molecule in the binding
site �Bs�.

Molecules DISC_Flip �ip(Bs!1).DISC(Bs!1)

In the last section (�begin reaction rules�) we have described the reactions present in
the system, representing the dynamic of the interactions between di�erent molecules.
Now, we de�ne new di�erent molecules and complexes generated by molecule binding.
This is the case, for example, of active C8 generation by binding of DISC with proC8
through an unidirectional reaction, regulated by kc3 kinetic ( de�ned before in the �begin
parameters� section ).

active C8 by C6 loop
C3(B,S∼i) indicates the inactive form of caspase 3 (procaspase 3). In the �rst reac-
tion (7) procaspase 3 binds to active caspase 8 C8(B,S∼a) producing the new molecule
C3(B!1,S∼i).C8(B!1,S∼a). Double arrows indicate that reaction is under equilibrium,
so it can be reversible. In reaction (8), C3(B!1,S∼i).C8(B!1,S∼a) gives active cas-
pase 3 and active C8. Considering both (7) and (8) reactions, that have in common
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C3(B!1,S∼i).C8(B!1,S∼a), is interesting observing that the only species that changes its
physical state is caspase 3 that turns from inactive to active form. The same mechanism
occurs considering the combination of (9) and (10) reactions: procaspase 6 (C6(B,S∼i))
binded to active C3, promotes active caspase 6 (C6(B,S∼a)) formation. In turn reactions
(11) and (12), as �nal step, form active caspase 8 (C8(B,S∼a)) from pro caspase 8 and
active caspase 6. Summarizing, active C8 generates a positive feedback loop through a
series of reactions ending with formation of other active C8.

7 C3(B,S∼i) + C8(B,S∼a) <-> C3(B!1,S∼i).C8(B!1,S∼a) k5, k_5
8 C3(B!1,S∼i).C8(B!1,S∼a) -> C3(B,S∼a) + C8(B,S∼a) kc5
9 C6(B,S∼i) + C3(B,S∼a) <-> C6(B!1,S∼i).C3(B!1,S∼a) k6, k_6
10 C6(B!1,S∼i).C3(B!1,S∼a) -> C6(B,S∼a) + C3(B,S∼a) kc6
11 C8(B,S∼i) + C6(B,S∼a) <-> C8(B!1,S∼i).C6(B!1,S∼a) k7, k_7
12 C8(B!1,S∼i).C6(B!1,S∼a) -> C8(B,S∼a) + C6(B,S∼a) kc7

mythocondrial ampli�cation loop
Mitochondrial ampli�cation loop starts with t-Bid molecule. The latter is generated by
active C8 that binds to Bid (Bid(B,S∼i)) molecule (17) and cleaves it (Bid(B,S∼t)) (18).
The mechanism behind Bax and mitochondrial activation is still unknown. Albeck et al.
supposed direct molecule activation through t-Bid.

17 Bid(B,S∼i) + C8(B,S∼a) <-> Bid(B!1,S∼i).C8(B!1,S∼a) k10, k_10
18 Bid(B!1,S∼i).C8(B!1,S∼a) -> Bid(B,S∼t) + C8(B,S∼a) kc10

Truncated Bid (Bid(B,S∼t)) binds to Bax inactive form (20) (Bax(B1,B2,B3,B4,S∼i)),
present in the citosol, and makes it active (21) (Bax(B1,B2,B3,B4,S∼a)). In the next
step (22) Bax translocates reversibly into the mitochondrion (Bax(B1,B2,B3,B4,S∼m)).
At �rst Bax oligemerizes (24) with another molecule of Bax (Bax2) to �nally form (26)
a complex composed by 4 molecules (Bax4). Bax, Bax2, Bax4 can be inhibited by mi-
tochondrial Bcl2 molecule (23, 25, 27) (Bcl2(B,S∼m)), a stronger apoptotic suppressor.
When four molecules of Bax bind together they start to open mythocondrial pores (28,
29) that becomes active Mit(B,S∼a). Reactions (30 ,31, 34) and (32, 33, 40) repre-
sent cytosolic release of apoptotic factors like cytocrome-c (cytC(B,P∼c)) and SMAC
(SMAC(B,P∼c)). They change from an inactive state ( cytC(B,P∼m), SMAC(B,P∼m)
), inside the mitochondrion, to an active state ( cytC(B,P∼a), SMAC(B,P∼a) ) and
translocate into the citosol.
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20 Bax(B1,B2,B3,B4,S∼i) + Bid(B,S∼t) <-> Bax(B1!1,B2,B3,B4,S∼i).Bid(B!1,S∼t)
k12, k_12
21 Bax(B1!1,B2,B3,B4,S∼i).Bid(B!1,S∼t) -> Bax(B1,B2,B3,B4,S∼a) + Bid(B,S∼t) kc12
22 Bax(B1,B2,B3,B4,S∼a) <-> Bax(B1,B2,B3,B4,S∼m) k13, k_13
23 Bax(B1,B2,B3,B4,S∼m) + Bcl2(B,S∼m) <->
Bcl2(B!1,S∼m).Bax(B1!1,B2,B3,B4,S∼m) k14, k_14
24 Bax(B1,B2,B3,B4,S∼m) + Bax(B1,B2,B3,B4,S∼m) <-> Bax2(B) k15, k_15 # Bax2
+ Bcl2 <�> MBax2:Bcl2
25 Bax2(B)+ Bcl2(B,S∼m)<-> Bax2(B!1).Bcl2(B!1,S∼m) k16, k_16 # Bax2 + Bax2
<�> Bax2:Bax2 == Bax4
26 Bax2(B) + Bax2(B) <-> Bax4(B) k17, k_17 # Bax4 + Bcl2 <�> MBax4:Bcl2
27 Bax4(B) + Bcl2(B,S∼m) <-> Bax4(B!1).Bcl2(B!1,S∼m) k18, k_18 # Bax4 + Mit0
<�> Bax4:Mito
28 Bax4(B) + Mit(B,S∼i) <-> Bax4(B!1).Mit(B!1,S∼i) k19, k_19 # Bax4:Mito �>
AMito
29 Bax4(B!1).Mit(B!1,S∼i) -> Mit(B,S∼a) kc19 # AMit0 + mCtoC <�> AMito:mCytoC
30 Mit(B,S∼a) + cytC(B,P∼m) <-> Mit(B!1,S∼a).cytC(B!1,P∼m) k20, k_20 #
AMito:mCytoC �> AMito + ACytoC
31 Mit(B!1,S∼a).cytC(B!1,P∼m) -> Mit(B,S∼a) + cytC(B,P∼a) kc20 # AMit0 + mS-
Mac <�> AMito:mSmac
32 Mit(B,S∼a) + SMAC(B,P∼m) <-> Mit(B!1,S∼a).SMAC(B!1,P∼m) k21, k_21 #
AMito:mSmac �> AMito + ASMACC
33 Mit(B!1,S∼a).SMAC(B!1,P∼m) -> Mit(B,S∼a) + SMAC(B,P∼a) kc21 # ACytoC
<�> cCytoC
34 cytC(B,P∼a) <-> cytC(B,P∼c) k22, k_22 # Apaf + cCytoC <�> Apaf:cCytoC

40 SMAC(B,P∼a) <-> SMAC(B,P∼c) k26, k_26

Once released, cytocrome-c binds (35, 36) to inactive Apaf complex (Apaf(B,S∼i)) ac-
tivating it (Apaf(B,S∼a)). Procaspase 9 (C9(B,S∼i)) iteracts with Apaf to form Apopto-
some (Apop(B)) (37). Albeck et al. sempli�cates Apoptosome formation by considering
only a single Apaf molecule instead of seven. At last, Apoptosome (38, 39) binds pro-
caspasi 3 (Apop(B!1).C3(B!1,S∼i)) and promotes its activation (C3(B,S∼a)). The new
active caspase 3 enhances, like a positive feedback loop, those just formed by active C8
direct cleavage (8).

35 cytC(B,P∼c) + Apaf(B,S∼i) <-> cytC(B!1,P∼c).Apaf(B!1,S∼i) k23, k_23 #
Apaf:cCytoC �> Apaf* + cCytoC
36 cytC(B!1,P∼c).Apaf(B!1,S∼i) -> cytC(B,P∼c) + Apaf(B,S∼a) kc23
37 Apaf(B,S∼a) + C9(B,S∼i) <-> Apop(B) k24, k_24 # Apaf*+ Procasp9 <�>
Apoptosome
38 Apop(B) + C3(B,S∼i) <-> Apop(B!1).C3(B!1,S∼i) k25, k_25 # Apop +
pCasp3 <�> Apop:cCasp3 �> Apop + Casp3
39 Apop(B!1).C3(B!1,S∼i) -> Apop(B) + C3(B,S∼a) kc25

Parp degradation and apoptosis
At last active C3 (C3(B,S∼a)) binds PARP substrate (15) (C3(B!1,S∼a).PARP(B!1,S∼a))
and starts to degradate it (16) (PARP(B,S∼d)). When active C3 pass a certain threshold,
apoptosis occurs in a irreversible manner.
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15 C3(B,S∼a) + PARP(B,S∼a) <-> C3(B!1,S∼a).PARP(B!1,S∼a) k9, k_9
16 C3(B!1,S∼a).PARP(B!1,S∼a) -> C3(B,S∼a) + PARP(B,S∼d) kc9

4.3 Neumann's model of extrinsic apoptosis with
FAS/APO-1

Neumann's model, already introduced in section 3.4.1.6, explores the dilemma in cellular
signaling that triggering of CD95 (Fas/APO-1) in some situations results in cell death
and in others leads to the activation of NF-kB. They established an integrated kinetic
mathematical model for CD95-mediated apoptotic and NF-kB signaling.

Figure 4.2: Reduced model is su�cient to explain dynamics of life/death signaling. (A)
Reduced model of CD95-mediated caspase and NF-kB activation. CD95 re-
ceptor and FADD are merged into one entity named RF. (B) The table lists
the consecutive reduction steps performed from models 1 to 8. (C) Model
comparison using the relative goodness of �t, expressed in % of the values as-
sociated with model 1, are labelled with black circles. Red diamonds indicate
the number of reactions of each model and squares show the corresponding
number of parameters.

They perform a model reduction resulted in a surprisingly simple model well approx-
imating experimentally observed dynamics. The model postulates a new link between
c-FLIPL cleavage in the death-inducing signaling complex (DISC) and the NF-kB path-
way.They validated experimentally that CD95 stimulation resulted in an interaction of
p43-FLIP with the IKK complex followed by its activation. Furthermore, they showed
that the apoptotic and NF-kB pathways diverge already at the DISC. Model and ex-
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perimental analysis of DISC formation showed that a subtle balance of c-FLIPL and
procaspase-8 determines life/death decisions in a nonlinear manner. Cell death can oc-
cur in two di�erent ways in type I and type II cells. Type I cells are characterized by
high levels of CD95 DISC formation and increased amounts of active caspase-8, leading to
the direct activation of downstream e�ector caspases-3 and -7 and subsequent apoptosis.
Type II cells are characterized by lower levels of CD95 DISC formation, and caspase-3
activation requires additional ampli�cation through the release of pro-apoptotic factors
from mitochondria triggered by the caspase-8-mediated cleavage of the Bcl-2 family pro-
tein Bid. Recently, experiments have demonstrated that CD95L is not only a potent
apoptosis inducer but can also activate multiple nonapoptotic pathways, in particular
induction of transcription factor NF-kB.
The NF-kB family regulates the expression of genes crucial for innate and adaptive im-

mune responses, cell growth and apoptosis. In most cells, the NF-kB dimer is sequestered
in the cytosol by inhibitors of the kB protein (IkB), and its nuclear translocation can be
induced by a wide variety of stimuli through activation of the IkB kinase (IKK) complex.
The IKK complex consists of two catalytic subunits, IKKa and IKKb, and a regulatory
subunit IKKg/NEMO. On activation of the IKK complex, IkB is phosphorylated and de-
graded in an ubiquitin-dependent manner. The NF-kB dimers can then translocate into
the nucleus to induce transcription of target genes. However, the exact molecular mech-
anism of NF-kB activation through CD95 remains unclear. DED-containing proteins,
such as procaspase-8 and c-FLIP have a prominent role in NF-kB activation. c-FLIP N-
terminal cleavage products p43-FLIP and p22-FLIP strongly induce NF-kB. p43-FLIP
is generated by procaspase-8 at the DISC on CD95 stimulation. It has been shown
to interact with components of the TNFR-mediated NF-kB activation pathway, TN-
FRassociated factor 1 (TRAF1), TRAF2 and receptor-interacting protein (RIP), which
together promote NF-kB activation. Interestingly, it has been shown that c-FLIPL/S/R
form heterodimers with procaspase-8, resulting in the generation of the cleavage frag-
ment p22-FLIP. This protein mediates NF-kB activation by binding directly to the IKK
complex. p22-FLIP di�ers from p43-FLIP in that it is generated in nonapoptotic cells
without DR stimulation. Thus, various molecules of the CD95 signaling machinery, such
as procaspase-8 and c-FLIP have a complex role in CD95-mediated apoptosis and NF-
kB pathways. These �ndings motivated their systems biology approach and prompted
them to determine whether CD95- mediated signaling should be considered as a dynamic
system resulting in life/death decisions. It has been shown repeatedly that decision mak-
ing is often a process brought about by a reaction system rather than by the in�uence
of a single molecule. Neumann propose an integrated quantitative model supported by
experimental data for CD95-mediated apoptosis and NF-kB activation. A direct interac-
tion between p43-FLIP and the IKK complex is postulated by the model and validated
experimentally. The model also predicts a divergence of the two pathways at the DISC
and that the cellular decision depends on the balance between the levels of c-FLIPL and
caspase-8. Experimental modulations of DISC protein amounts are all consistent with
the model predictions.
For the model validation Neumann used HeLa, HeLa-CD95, HeLa-CD95�p65�mCherry

and HeLa-CD95�c-FLIPL cells. A total of 107 cells were either treated with indicated
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amounts of anti- CD95 antibody for indicated periods of time at 37◦C. They investigated
CD95 signaling by western blot analysis of HeLa cells stably overexpressing CD95�GFP
(HeLa-CD95) and treated the cells with agonistic anti-CD95 antibodies at three concen-
trations: 1500, 500 and 250 ng/ml. The simultaneous induction of apoptosis and NF-kB
activation and their di�erent dynamics led them to investigate the divergence point of
the two pathways.
To reduce the large number of free parameters, they simpli�ed the reactions to be irre-

versible with the exception of a reversible enzymatic scheme used for caspase activation.
The model contains unknown reaction constants and concentrations that they estimated
from their data by least-squares optimization.

4.3.1 Model description

The CD95 protein (APO-1/Fas) is a member of the death receptor (DR) family, a sub-
family of the tumor necrosis factor receptor (TNF-R) superfamily. Cross linking of CD95
with its natural ligand, CD95L, or with agonistic anti-CD95 antibodies induces apop-
tosis in sensitive cells. The signal transduction of CD95 starts with the formation of
the death-inducing signaling complex (DISC) detectable within seconds after receptor
stimulation. The DISC consists of CD95, the adaptor molecule FADD, procaspase-8a/b,
procaspase-10 and c-FLIPL/S/R. Procaspase-8 is converted at the DISC, through a series
of autoproteolytic cleavage steps, into p43/p41 and p18, which leads to the activation of
e�ector caspase-3. Procaspase-3 was also cleaved to the active subunit p17 showing the
induction of the apoptotic pathway. In parallel, they observed the phosphorylation of
IkBa followed by its degradation. Stimulation of CD95 caused apoptosis at all antibody
concentrations. The quanti�ed blots demonstrate that apoptotic and NF-kB pathways
were activated on a similar time scale. They hypothesized that p43-FLIP is the missing
link between the DISC and the IKK complex. The kinetics of phosphorylated IkBa in-
dicate a temporal correlation between CD95 stimulation and IKK activity. The simplest
scheme to explain this phenomenon would be through p43-FLIP generation at the DISC
and subsequent interaction with the IKK complex.
Neumann model assumes a trimerized ligand (L) that binds to a trimerized CD95

receptor (R) that can recruit three copies of FADD (F) leading to the DISC formation.
Subsequently, DEDcontaining proteins, such as procaspase-8 (C8), c-FLIPL (FL) and c-
FLIPS (FS) can bind to FADD. The order of protein binding gives rise to a combinatorial
variety of intermediates.
Assembled DISCs can be categorized into three groups: the �rst group contains at

least two copies of procaspase-8 and is further processed by p43/p41 into active protease
subunits, p18 and p10, forming an active caspase-8 heterotetramer (C8*). This apoptotic
branch of the model also includes procaspase-3 and procaspase-6 (C3 and C6), their active
forms (C3* and C6*), the inhibitor IAP and a feedback loop from caspase-6 to caspase-8.
The second group of DISCs features at least one copy of procaspase-8 and one copy of
c-FLIPL giving rise to p43-FLIP. The model postulates that p43-FLIP interacts with
the IKK complex leading to phosphorylation of IkB (NF-kB IkB P), which entails its
degradation and the translocation of p65 to the nucleus (NF-kB*). For simplicity, they
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assume that the entire pool of IkB is bound to NF-kB.
In the third group of DISCs, they considered all remaining con�gurations. They do not

participate in further signaling and are merged in a terminal state (L R F F F X X X). The
key features of the model are its partitioning into DISC formation, apoptotic and NF-kB
signaling, and the con�nement of all interactions between the two pathways to the DISC.
As expected from the model structure, c-FLIPS inhibited both pathways, although p43-
FLIP generation was inhibited at a lower threshold than p43/p41 generation. Low and
high levels of c-FLIPL both inhibited p43-FLIP generation, giving rise to a bell-shaped
activation pro�le. In this model, the gene transcription induced by NF-kB was neglected.
It shows that the activity of e�ector caspases is not required for reproducing the dynamics
of CD95-mediated NF-kB activation. The model was tested on wild type HeLa cells
and they found taht the increased receptor number in HeLa-CD95 cells resulted in the
ampli�cation of both CD95-mediated apoptosis and NF-kB signaling. Furthermore, they
observed that the amount of CD95 receptors determines the death rate, in contrast to
the apoptotic threshold concentration that remained constant (30-100ng/ml of anti-CD95
antibodies). An intresting dynamic behavior is that the peak of phosphorylated IkB-a was
reached within 1h and was rather invariant to the stimulus intensity; on the contrary, the
dynamics of caspase-8 and caspase-3 activation showed a marked delay with decreasing
stimulus strength.

4.3.2 Model implementation using BioNetGen

Following chapter 4.2.2 we started with the �begin parameters� section by de�ning con-
centration of species and kinetics of the model. We also de�ne the three anti-CD95 doses
that was used to valuate the model. We labelled them L01, L02 and L03: from the
greatest to the smallest.

L01 1.1322e2
L02 3.7740e1
L03 1.887e1
pC3_init 1.4434

We wrote di�errent molecule conformations in the �begin molecules types� section.
Then, we set the initial concentrations of the species in the �begin molecules species�
section according to the labels de�ned before in the �begin parameters� section. For
example: NfkB is naturally present in the cytosol as a complex, binded with IkB kinase,
so, we de�ne initial concentration of the complex (NfkB(B!1,S∼i).IkB(B1!1,B2)) with
�NF_kB_IkB_init� value.

NfkB(B!1,S∼i).IkB(B1!1,B2) NF_kB_IkB_init
IKK(B,S∼i) iIKK_init

DISC formation
DISC, represented by (L(Rb!1).Rf(B1!1,B2,B3)) molecule, could bind three di�erent
molecules: procaspase 8 (C8(B,S∼i)), cFLIP-L (FL(Bs)) and cFLIP-S (FS(Bs)). In
reaction (2), DISC binds C8 forming L(Rb!1).Rf(B1!1,B2!2,B3).C8(B!2,S∼i) complex ,
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in reaction (3) binds c-FlipL forming L(Rb!1).Rf(B1!1,B2!2,B3).FL(Bs!2) complex and
in reaction (4) binds c-FlipS forming L(Rb!1).Rf(B1!1,B2!2,B3).FS(Bs!2) complex. As
DISC has two binding sites and could bind three di�erent molecules, a di�erent combi-
nation of nine complexes can be found.

# DISC-C8 formation
2 L(Rb!1).Rf(B1!1,B2,B3) + C8(B,S∼i) -> L(Rb!1).Rf(B1!1,B2!2,B3).C8(B!2,S∼i)
k2
# DISC-FL formation
3 L(Rb!1).Rf(B1!1,B2,B3) + FL(Bs) -> L(Rb!1).Rf(B1!1,B2!2,B3).FL(Bs!2) k3
# DISC-FS formation
4 L(Rb!1).Rf(B1!1,B2,B3) + FS(Bs) -> L(Rb!1).Rf(B1!1,B2!2,B3).FS(Bs!2) k4

DISC that binds just one molecule of FS (5, 6, 7, 9, 10) or, two molecules of cFlipL (8)
(L(Rb!1).Rf(B1!1,B2!2,B3!3).FL(Bs!2).FL(Bs!3)), don't generate any pathway. For this
reason, these ones, are considered inhibitors of DISC formation.

# DISC-C8-FS formation - NO signalling
5 L(Rb!1).Rf(B1!1,B2!2,B3).C8(B!2,S∼i) + FS(Bs) ->
L(Rb!1).Rf(B1!1,B2!2,B3!3).C8(B!2,S∼i).FS(Bs!3) k7
# DISC-FS-FS formation - NO signalling
6 L(Rb!1).Rf(B1!1,B2!2,B3).FS(Bs!2) + FS(Bs) ->
L(Rb!1).Rf(B1!1,B2!2,B3!3).FS(Bs!2).FS(Bs!3) k7
# DISC-FS-C8 formation - NO signalling
7 L(Rb!1).Rf(B1!1,B2!2,B3).FS(Bs!2) + C8(B,S∼i) ->
L(Rb!1).Rf(B1!1,B2!2,B3!3).C8(B!2,S∼i).FS(Bs!3) k5
# DISC-FL-FL formation - NO signalling
8 L(Rb!1).Rf(B1!1,B2!2,B3).FL(Bs!2) + FL(Bs) ->
L(Rb!1).Rf(B1!1,B2!2,B3!3).FL(Bs!2).FL(Bs!3) k6
# DISC-FS-FL formation - NO signalling
9 L(Rb!1).Rf(B1!1,B2!2,B3).FS(Bs!2) + FL(Bs) ->
L(Rb!1).Rf(B1!1,B2!2,B3!3).FS(Bs!2).FL(Bs!3) k6
# DISC-FL-FS formation - NO signalling
10 L(Rb!1).Rf(B1!1,B2!2,B3).FL(Bs!2) + FS(Bs) ->
L(Rb!1).Rf(B1!1,B2!2,B3!3).FS(Bs!2).FL(Bs!3) k7

A combination of DISC, FL and C8 (18, 19) molecules, form p43-�ip (p43FLIP(B))
that promotes Nf-kB pathway. DISC that links two molecules of procaspase 8 (11)
(L(Rb!1).Rf(B1!1,B2!2,B3).C8(B!2,S∼i) + C8(B,S∼i)) generates two molecules of p43p41
(p43p41(B) + p43p41(B)) that iniziate caspases apoptotic pathway.
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# DISC-C8 + C8 generate p43p41
11 L(Rb!1).Rf(B1!1,B2!2,B3).C8(B!2,S∼i) + C8(B,S∼i) -> p43p41(B) +
p43p41(B) k5
# DISC-FL-C8 generate p43FLiP
18 L(Rb!1).Rf(B1!1,B2!2,B3).FL(Bs!2) + C8(B,S∼i) -> p43FLIP(B) k5
# DISC-C8-FL generate p43FLiP
19 L(Rb!1).Rf(B1!1,B2!2,B3).C8(B!2,S∼i) + FL(Bs) -> p43FLIP(B) k6

Caspase 3 ampli�cation loop
Two molecules of p43p41, combined together (13), form one molecule of active caspase 8
(C8(B,S∼a)) that promotes (15) activation of caspase 3 (C3(B,S∼a)). At last (17), active
caspases 3 iteracts with procaspase 8 and form new p43p41 molecules (p43p41(B)). This
mechanism is used (11) to create new active caspase 8 and represents a positive feedback
ampli�cation loop. Reactions (14) and (16) represent natural cellular degradation of
active caspase 8 and 3 respectively (-> Trash()).

# 2 p43p41 forms active caspase 8
13 p43p41(B) + p43p41(B) -> C8(B,S∼a) 2*k8
# degradation of active C8
14 C8(B,S∼a) -> Trash() k11
15 C3(B,S∼i) + C8(B,S∼a) -> C3(B,S∼a) + C8(B,S∼a) k9
16 C3(B,S∼a) -> Trash() k12
17 C8(B,S∼i) + C3(B,S∼a) -> p43p41(B) + C3(B,S∼a) k10

Nf-kB pathway
Once that p43Flip was activated at DISC, it leads to the activation (20) of the cytoplas-
matic IKK molecule (p43FLIP(B!1).IKK(B!1,S∼a)). This one iteracts (22) with NfkB,
that is linked to IkB (NfkB(B!1,S∼i).IkB(B1!1,B2)), and phosforilate it
(NfkB(B!1,S∼i).IkB(B1!1,B2!2).P(B!2)). At last, the phosforilated complex (23) be-

comes active NfkB (NfkB(B,S∼a)) and translocates into the nucleus. Some degradation
reactions ((21) and (24)) was also introduced.

20 p43FLIP(B) + IKK(B,S∼i) -> p43FLIP(B!1).IKK(B!1,S∼a) k13
21 p43FLIP(B!1).IKK(B!1,S∼a) ->Trash() k16
# NfkB phosforilation
22 NfkB(B!1,S∼i).IkB(B1!1,B2) + p43FLIP(B!1).IKK(B!1,S∼a) ->
NfkB(B!1,S∼i).IkB(B1!1,B2!2).P(B!2) + p43FLIP(B!1).IKK(B!1,S∼a) k14
23 NfkB(B!1,S∼i).IkB(B1!1,B2!2).P(B!2) -> NfkB(B,S∼a) k15
# degradation of NfkB
24 NfkB(B,S∼a) -> Trash() k17
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4.4 Model integration

When we analized system biology pathways (par. 2.2.1) we found that both Trail and Fas
upregulates DISC formation and Nf-kB formation in a di�erent manner [8]. Therefore, we
aim to create a new model of type II cells1 that takes into account both mytochondrial
activation and Nf-kB generation from DISC. Nf-kB activation induces transcriptional
factors (Flip,Bid,..) which may inhibit DISC formation and mitochondrial release of
apoptotic factors. This mechanism could be a way to ensure cell survival. Neumann's
model is based on type I cells, that are caracterized by high level of DISC formation;
instead, those considered by Albeck, is based on type I cells and need mytochondrial
ampli�cation to ensure cell death.

Figure 4.3: It represent a schematic of the overlapping parts of Neumann's and Albeck's
model. In the middle (yellow rectangles) there are molecules present in both
models. Pink connections mean that the pathway belong to Albeck while
blue connections belong to Neumann.

These two models also contain several overlapping parts (�g. 4.3). They both modeled
DISC formation and C8 feedback loop but in a di�erent way. Neumann et. al. consider
trimerization at the DISC (section 4.3.1) that may binds di�erent combination of three
molecules: procaspase 8, c-FLIPL and c-FLIPS; while Albeck et. al. (section 4.2.1)

1Type II cells has been de�ned to be mitochondrial-dependent, they need release of mitochondrial
factors to enhance and de�nitively lead cell to apoptosis.
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modeled DISC like a dimer that may binds only two molecules: procaspase8 and FLIP (he
also simpli�ed both the two isoforms of Flip in one entity). Neumann et. al. sempli�ed
C8 feedback loop (C8->C8*->C3*->C6*->C8*) by deleting the contribute of procaspase
6, while Albeck et. al. considered the entire loop reaction.
The new model will consider activation of Nf-kB and mitochondrial pathway by both

Trail and Fas receptors. We started by adding at Albeck's model, two Neumann's reac-
tions: DISC complex formation and Nf-kB pathway. We kept the original mitochondrial
and C6 ampli�cation loop. Before integrating the two models, we performed calibration
of the systems. We made a time conversion from seconds to minutes in Albeck's model
and we coverted concentration from nM to number of molecules/cell in Neumann's model
(see 4.4.2.1).
As will be de�ned in the following, As previous seen, we have performed sensitivity

analysis of both the models at DISC in order to �nd parameters that are important for
the dynamic of the systems. Then, we used a nonlinear least-squares method performed
in MatLab for model merging and calibration. We used, like objective function, the
di�erence between Albeck's active C8 time concentration and that predicted by our
new model. To import the model from BioNetGen to MatLab we used the BioNetGen
command:

writeM�le();

Which generate a 'xxx.m' �le, where 'xxx' is the same name of the BioNetGen �le.
Inside there will be a function structured like this:

function [err, timepoints, species_out, observables_out] = apoptosis_albeck(
timepoints, species_init, parameters)

We can now simulate our model by controlling a lot of parameters. We can modify the
time samples by altering the column vector named timepoints, we can change species
initial values in the raw vector called species − init and change parameter values by
adjusting the raw vector called parameters. The latter input vector (parameters) was
very advantageous because permits to perform sensitivity analysis that need parameter
perturbation (see below). As outputs, the function returns four di�erent vectors: err
that is 0 if the integrator exits without errors, timepoints that return a row vector of
timepoints de�ned inside of the function and generated before in BioNetGen (see 3.6.1),
species− out: an array with population trajectories of the species and observable− out
that contains only observable trajectories de�ned in the �begin observable� section of
BioNetGen. Observable− out trajectories are a subset of species− out trajectories. To
summarize, by calling this function you can simulate any concentration of the species and
change any initial value parameters in order to make some useful analysis like sensitivity
analysis or parameter calibrations.

4.4.1 Robust parametric sensitivity analysis

Parametric sensitivity analysis (PSA) has become one of the most useful tools in
computational systems biology, in which the sensitivity coe�cients are used to study
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the parametric dependence of biological models. As many of these models describe
dynamical behaviour of biological systems, PSA has subsequently been used to
elucidate important cellular processes that regulate this dynamics. This algorithm
permits to understand what are the key molecules and the core reactions of the system.
These informations may be used to make model adjustement or modi�cation. A little
variation of sensitive parameters may cause a big perturbation of the dynamic of the
entire system. In the case of programmed cell death, ligand concentration needs to
exceed a certain threshold to induce a complete apoptosis. Sensitivity analysis provides
a useful tool to investigate how this threshold and thus cellular susceptibility to
apoptosis could be modulated pharmacologically. Moreover, sensitivity analysis has
been applied to identify reactions determining whether a cell dies by type I or type II
cell death, and to reduce model complexity. We use it mainly to �nd modi�cable
parameters in order to perform model integration. A standard PSA consider the
contrubute of a little (local) variation of a parameter dpj compared to the di�erence
between the old and the new outputs obtained by parameter variation: dxi. To
normalize this comparison we divide them by their original values. Therefore, the
relative sensitivity of a variable xi at time t (in min) with respect to a parameter pj is
given by:

sij(t) =
pj
xi
· dxi
dpj

(4.1)

The digital version of 4.1 is:

sij(t) =
pj
xi
· 4xi
4pj

=
pj
xi
· xi − xoldi
pj − poldj

(4.2)

To implement 4.2 equation, we have �rst to decide the increment 4pj for each param-
eter (e. g. 10% of the original value). Then we use it to calculate the new output i
at timet : xi. If we select a positive increment, we will ignore the possible contribute
that negative increment may have in our system dynamics. Therefore, we considered
not only a small positive increase of a single parameter, but a uniform distribution of
negative and positive variation of the same parameter at a �xed percentage: pj(k). For
example, we can select a series of N=50 variations distribuited between -10% and +10%
of a single parameter pj . Once selected, the percentage increment and the length of the
serie (N), we evaluate each new parameter with 4.2 formula. Hence, we obtain N of the
sij coe�cent for each parameter. To �nd the total sensitive coe�cent, we perform the
mean:

¯sij(t) =
1

N
·
∑
N

|sij(t, pj(k))| (4.3)

We summed absolute values to rule out that positive and negative sensitivities cancel
each other. Finally we calculate the time-averaged sensitivities according to:

Sij =

ˆ
¯sij(t) · dt (4.4)
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Equation 4.4 was evaluated in MatLab with digital trapezoid method. This di�erent
way to perform sensitivity analisis using 4.3 ,that considered local surrounding of each
parameter, make standard parametric sensitivity analisis more roboust. All of the sen-
sitivity coe�cents Sij can be plotted in a 3D-bar diagram having pjparameters instead
of axis x , each xi observables instead of axis y and Sij values instead of axis z. In this
thesis another bar diagram (2D) was made by meaning all the sensitivity coe�cents Sij
across the di�erent observables:

Sj =
1

M
·
∑
i

Sij (4.5)

In this way we obtain an overall single sensitivity index for each parameter calculated
only in a range of observables. The sensitive algorithm code performed in MatLab is
present in Appendix section.

4.4.1.1 Neumann DISC sensitivity analysis

In Neumann's work [3] they have just performed a sensitivity analysis to further con�rm
the importance of DISC protein levels in the dynamics of apoptosis. They found that
the initial concentrations of DISC proteins especially of c-FLIP isoforms were the most
sensitive parameters, summing up to 63% of the total sensitivities.

Figure 4.4: Sensitivity analysis. Absolute values of relative sensitivities were averaged
over a time interval of 360 min. The pie chart shows the contribution of
di�erent parameter categories to the total sensitivity. No of parameters indi-
cate di�erent parameters in the model while no.proteins indicate the di�erent
observables of the system.
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The remaining 20 parameters contributed only to 37% of total sensitivities. This
result explains how relatively small changes in the abundance of DISC proteins might
lead to drastic changes in downstream signaling as already observed for the amount of
CD95. The decrease in procaspase-8 level resulted in a signi�cantly lower amount of
p43-FLIP after CD95 stimulation. Subsequently, it led to the abolishment of CD95-
mediated phosphorylation of IkB. Furthermore, the amount of active caspase-8, p18, was
decreased, hence leading to reduced apoptosis. Therefore, by perturbing the ratio of
procaspase-8 to c-FLIPL at the DISC, they have in�uenced the induction of apoptosis
and NF-kB activation.

4.4.1.2 Albeck DISC sensitivity analysis

Albeck et. al. did not perform a sensitivity analysis of his model. Therefore, we did it
by using methods explained in previous chapter. We obtained a 2D bar diagram using,
like observables, the concentrations involved in DISC formation: TRAIL-receptor, DISC
reclutation, Bar, Flip, procaspase 8 and its active form. We used only observables that
represent a key mechanism in apoptosis propagation and cell death. Apoptosis is a cas-
cade of reactions that leads to substrate degradation so, some chemical reactions are a
consequence of more important upstream reactions. For this reason, it is not good to se-
lect them in sensitivity analysis. E.g: Bax activation, Smac release and all mitochondrial
reactions are all regulated by a more important upstream reaction: Bid molecule trun-
cated by active C8. By considering only tBid concentration we take into account almost
all the reactions involved in mitochondrial propagation.If you perform a parametric sen-
sitivity analysis considering, like observables, all the concentration of the species, you will
obtain sensitivity coe�cents that are insubstantialy. There will be coe�cents, like Bid or
procaspase 8 initial concentration, that will outnumber all the other parameters for the
fact that they regulate a large series of reactions. For these reasons, we selected active
C8 activity concentration to perform sensitivity analysis because it regulates multiple
processes: from mythocondrial activation loop to C6 activation loop, from C3 activation
to cell death. As seen in the �gure 4.5, we found intresting results. TRAIL concentra-
tion (L50 in �gure) and kinetic, that activate DISC complex (kc1), are sensitive factors.
They regulate both DISC concentration and C8 activity in a direct manner. A�nity
of pro caspase 8 to the DISC (k3) and initial concentration of the species present in
the DISC, are other core parameters.In particular, c-Flip and procaspase 8 initial values
play an important role in apoptosis signal propagation. At least, activation of C8 by
C6 through C3 loop (k7) is a signi�cative parameter because generates a lot of active
C8 in a short period of time. To sum up, the essential parameters that lead to initiator
caspases activation are those involved in DISC formation, inibition and ampli�cation.
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Figure 4.5: Figure A represents sensitivity analysis made in Albeck's model using like
observabels: DISC reclutation, trail receptors, pro C8, its active form, Bar
and Flip (axis y). In axes x there are the parameters of the model. Figure B
represents a 2D bar diagram showing the sensitivity coe�cent of active C8
like. In green color there are the parameters involved in DISC formation.

4.4.2 Merging using nonlinear least-squares method

The least squares method is a standard approach to the approximate solution of overde-
termined systems, i.e., sets of equations in which there are more equations than un-
knowns. "Least squares" means that the overall solution minimizes the sum of the
squares of the errors made in the results of every single equation. The most important
application is in data �tting. The best �t in the least-squares sense minimizes the sum
of squared residuals, a residual being the di�erence between an observed value and the
�tted value provided by a model. Least squares problems fall into two categories: linear
or ordinary least squares and non-linear least squares (NLLSQ), depending on whether
or not the residuals are linear. The linear least-squares problem occurs in statistical
regression analysis; it has a closed-form solution. A closed-form solution (or closed-form
expression) is any formula that can be evaluated in a �nite number of standard oper-
ations. The non-linear problem has no closed-form solution and is usually solved by
iterative re�nement; at each iteration the system is approximated by a linear one, and
thus the core calculation is similar in both cases. A non linear least squares problem is
an unconstrained minimization problem of the form:

minimizex f(x) =
1

2

m∑
i=1

fi(x)2 ≡ 1

2
F (x)TF (x) (4.6)
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where F is the vector-valued function:

F (x) = ( f1(x) f2(x) . . . fm(x) )T

F is composed by a series of function (fm(x)) we want to minimize. Usually we want
to �t a model to a concentration of samples of a particular molecule (e.g: insulin or oxi-
gen evoltution). Hence, f1(x) represents the di�erence between the discrete-experiment
concentration and that obtained with our parameter variation of the model. For a good
data �tting is important to �nd a reasonable starting point. To perform parameters
estimation in MatLab we used the lsqnonlin function:

options = optimset('TolFun',1e-3);
[x ,resnorm, residual, exit�ag, output, lambda, jacobian] = lsqnonlin(ObjFun, x0,
lb, ub, options);

WhereObjFun is the nonlinear vector function whose sum of squares you want to
minimize; x0 is the initial point (vector) for the algorithm, lb and ub are the lower and
upper bounds of the variables, speci�ed as a vector, and options provides the function-
speci�c details for the options values. If not speci�ed, Gauss-Newton method was used to
perform the algorithm. We speci�ed ObjFun as a function handle of the form @objfun,
where objfun.m is an M-�le that returns a vector function value. With 'TolFun' setted
to 1e − 3 the algorith run until the di�erence between the current residual and those
calculated in the previous step is minor of 1e − 3. x represent the vector of the new
parameters, x0 the initial parameters, x0lb the lower bounds and x0ub the upper bounds.

Objective function
Choosing the correct function to minimize and the right initial parameters is essential
for a positive ending of the algorithm. Therefore, we used, like objective function, the
di�erence between Albeck's active C8 (aC8old(x, t) ) and that obtained from the new
model ( aC8new(x, t) ). Referring to the the eq.4.6 we obtain:

F (x) = objFunc = ( f(x) )T = (aC8new(x, t)− aC8old(x, t))T

We use active C8 because it has a central role in determine both Nf-kB and active C3
apoptotic pathways.
The active C8 concentrations were obtained without considering the contribution of

caspase 6 positive feedback loop. For these reason, we simulated the model by not
considering the initial value of procaspase 6 (pC6init=0). In his work, Neumann et. al.
[3] asserted that NfkB was activated at the same time of active C8 and it was indipendent
from caspase activity. This, further con�rm that C8 was the right objective function to
consider.
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4.4.2.1 Parameters calibration

Before you perform NLLSQ method for data �tting , by calibrating a set of parameters,
is important to ask some questions about the model such as: what bounds can we
place on the values of the initial parameters? Does the model adeguately �t the data?
How sensitive are the parameters to changes in the data? To answer these questions we
previously performed sensitivity analisys of both models ( �g. 4.4, 4.5 ). A sensitive value
is a parameter that, with a little variation of itself, cause a big mutation of the dynamics of
the system. Both Neumann's and Albeck's models sensitive parameters are, above all, the
initial concentrations and kinetics of the reactions and species involved in DISC formation
and ampli�cation (par. 4.4.1.1, 4.4.1.2). DISC formation and its initial concentrations
play a crucial role in controlling the downstream reactions. In particular, dynamic of
caspase 8 formation regulates both cell death (through mithochondrial activation and
C6 feedback loop) and survival (through Nf-kB activation). Understanding dynamics of
these system is very important in order to create a new integrated model. Therefore, to
obtain the best �ttings, it is important to reasonably calibrate the entire system.

Figure 4.6: Figure on top showing the di�erence between original Albeck's caspase 8
concentration and those of the new model stymulated by TRAIL before pa-
rameter calibration. There is a marcable delay of caspase 8 activation of the
new model. The second �gure showing the concentrations after calibration.
This has a di�erence in the number of molecules per cell activated.
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We used, as most of the initial parameters, those of Albeck's model. We introduced two
new molecules involved in DISC formation: FlipS and FlipL. Since procaspase 8 and 3
initial concentrations were present in both models, we set as initial value in the x0 vector
the arithmetic mean of the two. E.g: Neumann's starting concentration of C3 molecules
was 38000 while Albeck's was 20000. Therefore, we set procaspases 3 initial concen-
tration with the mean: 29000. We decided to keep constant those parameters involved
in mitochondrial pathway and Nf-kB formation and to give down and upper bounds at
those implicated in DISC formation and C6 ampli�cation loop. The bound values were
set 100 times greater and smaller than the originals. After de�nition of starting initial
parameters (x0), lower bounds (x0lb) and upper bounds (x0ub) we performed the NLLSQ
method to obtain the new vector of parameters (x). It was di�cult to �t concentration
of active C8 like the original model because we introduced di�erent dynamics in DISC
formation. Therefore, we didn't obtain a perfect �t but we only reasonably reduced the
distance between the two (�g. 4.6). The NLLSQ algorithm made the new model, as soon
as possible, equal to the original.
In the bar diagram below (�g. 4.7) it is represented the ratio between the new estimated

parameters and their starting values in a logarithmic scale. E.g: k1 represents a�nity
of Trail ligand in its receptor and it has a value of 9. So, the new obtained parameter is
e9 = 8103.1 times greater than its initial value.

Figure 4.7: Bar diagram showing the ratio between the new parameters (obtained during
the application of NLLSQ method) and the initial parameters in a logaritmic
scale. E.g. the new kn3 parameter (�ip that binds DISC) is e2 = 7, 3 times
greater than its starting value.

55



4 Mathematical model of apoptosis

For reasonably promote caspase 8 formation and activation, kc1 (invovled in DISC
formation), kn2 (representing a�nity of procaspasis 8 to DISC complex) and kn8 (that
promoted active caspasis 8 formation by two molecules of p43p41) were enhanced. For the
same reason, c-Flips molecules inhibit with a di�erent mechanism. c-FlipL a�nity to the
DISC kn6 was enhanced while c-FlipS a�nity kn5 was severely reduced. Thus, cFlipL
molecule becomes more important in active C8 formation than cFlipS as con�rmed in
the next chapter by sensitivity analysis (par. 5.2.6). The initial DISC molecules concen-
tration in Fas receptor (Rf_init) has a negative value, so it is e−4 = 0.0183 times smaller
than its original value. In order to reproduce the lower concentration of DISC molecules,
typical of type II cells, a new �Rf_init� value was setted. Procaspasi 8 and Trail re-
ceptors initial concentrations were increased while procaspasi 3, FlipS, FlipL and Fas
receptors initial concentrations were decreased. These values remain consistent because
they are between the initial values of both the models. To sum up, the NLLSQ algorithm
calibrated the model by fastening all reactions involved in procaspase 8 activation and
guarantee the number of molecules per cell predicted by Albeck's model.

Corrective factors
First of all, homogeneity in time units describing kinetics parameters must be guaran-
tee. Neumann's models express the parameters in [min−1] whereas Albeck's model uses
[sec−1]. Hence, all the parameter expressed in [sec−1] should be multiplied for 60 to
transform them in [min−1]. It is worthy to discuss an essential aspect linked to BioNet-
Gen implementation concerning the fact that concentrations should be expressed in units
of copies per cell and thus bimolecular rate constants in per molecule per cell. This simply
means that every time a quantity is expressed in M or in M−1 (unless time units) this
has to be multiplied or divided by the product (NA ∗ V ), where NA is the Avogadro's
number and V indicates cellular volume. Since many biological systems involve ligands
present in extracellular space, receptors spread out on the cell surface and molecules sit-
uated in the cytoplasm, the value of V changes depending on molecule location. For this
reason it is important to identify where molecules are located, such as Trail that binds
to his receptor on the plasma membrane and subsequently summon DISC mechanism in
intracellular space. Therefore, the computed values of volume, expressed in (L), for the
three most important cellular locations are:

� Vo = 1.0 · 10−10 for extracellular volume,

� Vm = 3.0 · 10−13 for plasmatic membrane volume, and

� V = 3.0 · 10−12 for cytoplasmic volume.

Albeck's model expresses its concentration both in #copies per cells and in M (Moles),
so it's easy to pass from a unit to another. He had just trasformed all the units by
multipling kinetics and concentrations by a corrective factor F that we can obtain form
data. For example, k1 is expressed in the two di�erent units:

k1 = 4 · 10−7 in [(
#

CC
)−1 · sec−1] and k1 = 2.4 · 104 in [(nM)−1sec−1]
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Therefore, passing from nM to ( #
CC ) can be made by multipling the concentration

expressed in ( #
CC ) with the factor:

F =
4 · 10−7

2, 4 · 104
= 1, 667 · 10−3

For the same reason we can pass from nM−1 to ( #
CC )−1by multiply the concentration

expressed in ( #
CC )−1by 1

F = 5, 9999 · 103. Once F is obtained we can transform all Neu-

mann's kinetics and initial concentrations form nM to ( #
CC ) in order to make congruent

with Albeck's.

4.4.2.2 Conclusion

We �nally obtained the new model. The complete scheme with all the graphic connec-
tion is represented in the next chapter, �g. 5.2 and the BioNetGen code of the model
implementation is in the Appendix. The model has 101 parameters of which 23 are ini-
tial concentrations and 78 are reaction kinetics. It count 75 di�erent molecule species
controlled and generated with 61 reactions.
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In this chapter, apoptosis model has been used to simulate the temporal series of the
most signi�cant chemical species in order to analyse the dynamic behavior of the system.
We try to probe if apoptosis robustly occurs in all-or none manner and what is the �point-
of-no-return� representing irreversibility in apoptosis. Concentrations time series permit
to carry out a detailed analysis of dynamic behavior of the system. This could be used
to develop a deeper understanding of network regulation processes and to characterize
the main role played by each chemical species. Moreover, we can consider the dynamic
behavior of each chemical species as a kind of �ngerprint of the system working under
physiological conditions. Network structure and type of interactions between di�erent
species determine characteristic response of the system upon stimulation. If some of these
characteristic features are lost for di�erent reasons, typical dynamics may change and
then result in inappropriate actions of the system. System disregulations cause defects
in signal transduction that can bring to apoptosis. Hence, characterize physiological
working conditions of a signaling pathway may be a useful method to distinguish it from
those in pathologic conditions, to investigate the origin of disregulations and, in future
perspective, to �nd a drug or combination of drugs able to prevent or to induce apoptosis.
In order to do this, a detailed and rational analysis of collected data from apoptosis model
simulations have to be done. Since the main purpose is to characterize system response,
we decide to classify the obtained time series according to their dynamic behavior. In
other words, we distinguish them depending on their qualitative behavior, or pattern
and for each of them we calculate Hill coe�cent (par. 5.1.1.1). This help us to examine
bistability1 due to positive feedbacks, and sigmoidal responses arising from competitive
inhibition. Such sigmoidal curves are frequently termed ultrasensitive (par. 3.3), as
small alterations in the stimulus can elicit large changes in the response. It is known
that bistability can emerge from ultrasensitivity in conjunction with positive feedback,
whereas adaptation, oscillations, and, surprisingly, highly linear response can arise with
negative feedback.
At last we perform a local sensitivity analysis of the system in order to �nd key pa-

rameters and core mechanisms in the pathway. Comparing these �ndings to those of
the previous models helps us to validate the new integrated model. In next sections, we
present details about classi�cation of main patterns (section 5.1.1), results and analysis
of apoptosis model simulations (section 5.1.2), and comparison with experimental data
of previous models (section 5.2).

1A bistable system is a system that exhibits two stable steady states, separated by an unstable state.
(par. 3.3.2)
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5.1 Apoptosis model simulations: results and analysis

Simulations of apoptosis were realized using a step function of 5.1 nM = 50ng/ml of
Trail as input. Trail stimulation started at 0 time and was held for 360 minutes. Using
BioNetGen language:

#actions

generate_network({overwrite=>1});
# Kinetics

simulate_ode({t_end=>360,n_steps=>720});

where, as presented in Chapter 3, �generate_network� command permits to generate
the complete reactions network according to an iterative method which terminates when
no more new reactions are found. �simulate_ode command� indicates that simulation
of dynamics is carried out implementing and numerically solving a set of ODEs. Sim-
ulation lasts for 360 minutes (t_end=>360) and shows in output 720 time samples for
each observable species (n_steps=>720). Time series of all the observables species are
reported in Appendix.

5.1.1 Pattern classi�cation

Considering the remarkable importance of negative and positive feedback loops in trans-
duction networks it could be helpful to distinguish the simulated concentrations according
to those particular features. Hence, we can divide them in two sets, one for those con-
centrations characterized by overshoot, and one for those without overshoot. To classify
dynamic behaviours according to their speed may also give useful information about
how signaling system works and help in its characterization. Thus, we decide to clas-
sify predicted time series obtained from apoptosis model according to these two criteria,
obtaining four main pattern sets, shown in Fig.5.1:

� slow (not-overshooting) response,

� rapid (not-overshooting) response,

� slow overshooting response, and

� rapid overshooting response.
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Figure 5.1: Representative dynamic behaviour for each pattern: slow (notovershooting)
response (a), rapid (not-overshooting) response (b), slow overshooting re-
sponse (c) and rapid overshooting repsonse (d).

Each pattern may be characterized by means of speci�c parameters.

5.1.1.1 Classi�cation parameters

For pattern classi�cation we de�ne mainly four parameters that may help to further
describe concentration dynamics:
1) C0.9 [min] which indicates the time to reach the 90% of maximum level;
2) C0.1 [min].
These two parameters may be particularly useful for characterization of increasing

(notovershooting) responses. For concentrations characterized by overshooting response,
we can easily obtain information about:
3)τ peak [min], which indicates the period of time the concentration takes to reach its

peak value.
This parameter permits to distinguish concentration dynamics according to their speed.

To better characterize not-overshooting response, in particular those showing sigmoidal
curves, Hill coe�cent was calculated:
4) Hill coe�cent.

Hill coe�cent
Hill coe�cent could help to classify pattern de�nition. It quanti�es the ultrasensitivity
of a stimulus-response curve globally (see chapter 3.3). At the beginning it was the �rst
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characterization of ultrasensitivity, introduced by Hill, as an empirical description of the
cooperative binding2 of oxygen to hemoglobin. Hill found that binding was well described
by the following relationship, which is now known as the Hill equation:

y =
xh

Kh
0.5 + xh

where y is the bound fraction of oxygen, x is the oxygen pressure,K0.5 is the oxygen
pressure where half of the binding sites are occupied, and h is the Hill coe�cient. Enzy-
mes exhibiting positive cooperativity, such as hemoglobin, display ultrasensitivity; that
is, their Hill coe�cients exceed unity. For example, the Hill coe�cient of hemoglobin
equals 2.8, and in general, a Hill coe�cient of 4 is often thought to be an upper limit
for cooperative enzymes. The Hill coe�cient is not commonly estimated by �tting the
formula to the data, but it is often calculated from the cooperativity index, which is
de�ned as Ra = C0.9

C0.1
where C0.9 and C0.1 are those de�ned in the previous section. To

get the relationship between Ra and the Hill coe�cient, h, the following equation need
to be solved:

Ra = 81
1
h → h =

log81

log(C0.9
C0.1

)
(5.1)

If the Hill coe�cient is 1, an 81-fold increase of the stimulus is needed to increase
activation from 10% to 90%. For Hill coe�cients higher than 1, the increase of the
stimulus needed is smaller and the Hill curve gets sigmoidal. In some literature models of
Apoptosome formation, Bax oligomerization and other species formation were described
with cooperative interactions between molecules. As previous said, this can generate
sigmoidal curves as molecules with ultrasensitivity behavior. Therefore, calculatin Hill
coe�cent can help to understand if a speci�c molecule has ultrasensitivity behavior and
if a particular system is activated in a all-or none manner.

5.1.1.2 Classi�cation rules

We decide to distinguish concentration dynamics according to their speed using the
parameters introduced in section 5.1.1. τ peak was used to distinguish between over-
shooting and non-overshooting response. Among the species characterized by increasing
(not-overshooting) response and (overshooting) response, we classify:
� as rapid those having |C0.9 − C0.1| < 1600 sec=30 min, and
� as slow, all the others.
At last, we further classify the dynamics by calculating Hill coe�cent (5.1) of each

pattern. This can help to distinguish those concentration that may exhibit cooperativity,
or ultrasensitivity. Since some reactions belong to a cascade of reactions and are enhanced

2Cooperative binding occurs if the number of binding sites of a macromolecule, that are occupied by
a speci�c type of ligand, is a non-linear function of this ligand's concentration. This can be due,
for instance, to an a�nity for the ligand that depends on the amount of ligand bound. Usually a
sigmidal curve occurs. (par. 3.3)
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by feedback loops, the Hill coe�cent may arise. Therefore, we decided to label the
concentrations with an Hill coe�cent more than 10 with an asterisk (*). All the detected
concentrations classi�ed according to their pattern are reported in Tab. 5.1.

5.1.2 Classi�cation analysis and discussion

Figure 5.2: Complete apoptosis model. We integrated (red arrows and circles) Neumann's
DISC dynamics in Albeck's model in order to introduce Nf-kB pathway. A
pattern classi�cation study was made to �nd network motif and to study
molecule dynamics. The di�erent dynamics response are represented by a
yellow square sorrounded by a colored frame: blue for rapid non-overshooting,
red for low non-overshooting , green for rapid overshooting and azure for low
overshooting. We calculated the dynamics only of the species written in red
bold color. We can recognise three major pathways involved in this model: I)
p43-Flip and p43p41 activation by DISC formation II) C8-C3-C6-C8 positive
feedback loop III) mitochondrial activation and C3 positive feedback loop
(here is considered also the double-negative feedback loop of XIAP sequestred
by SMAC) and IV) Nf-kB activation.

62



5 Model Analysis and validation

According to discussion in section 5.1.1, we decide to �rst distinguish the dynamic
behavior of observable species according to the presence or not of overshooting response.
Thus, chemical species characterized by overshoot response are: DISC complex, p43Flip
and p43p41 molecules, Bar linked with C8, Bcl2 linked with Bid, active form of Bax,
oligomerization of Bax in the mitochondrion, Bax linked with Bcl2 in the mitochon-
drion, active SMAC, active cytocrome-c, active Apaf, Apoptosome complex binded with
XIAP molecules and active C3. In NfkB pathway we found: p43Flip bounded with IKK
comlpex, NfkB phosphorilated with IkB and active Nf-kB. The remaining time series de-
pict increasing concentrations, which reach the steady state level without any overshoot,
and are: active C8 by processing of p43p41 and C3 loop, active C6, ubiquinated C3 by
XIAP, truncation of Bid by active C8, active mitochondrion pores, SMAC sequestred by
XIAP, apoptosome formation and �nally PARP degradation.
We expect that all the species involved in apoptosome formation and C3 activation

have an Hill coe�cent greater than 1.
Resulting pattern classi�cation is also presented in Fig. 5.2. It shows the most im-

portant chemical species involved in apoptosis model which are represented as distinct
compartments. Compartments show also red asterisk indicating that the molecule is in
an active form. Solid lines connecting di�erent compartments indicate the transformation
between a chemical species to another. Dotted lines joining two di�erent species indicate
interactions with complex formation. Dotted lines are also used to indicate chemical
species controlling di�erent reactions.

Rapid non-overshooting Slow non-overshooting

Active cytocrome c (*) active C8 (*)

Apoptosome formation (*) tBid

Active C6 (*) #MitochondrialPores (*)

PARP (*) SMAC.XIAP (*)

C3 ubiquinated (*)

Rapid overshooting Slow overshooting

DISC.cFlipS (*) activated p43Flip.IKK

DISC.cFlipL (*) Nf-kB.IkB phosphorilated

DISC.C8 (*) active C8.BAR (*)

p43Flip active Bax

p43p41 (*) Bax4 (*)

Bid.Bcl2 (*) Bax.Bcl2 (*)

active C3 (*)

Apaf (*)

Apoptosome.XIAP (*)

Table 5.1: Concentration classi�ed according to their dynamics. Those with (*) indicate
that Hill coe�cent is higher than 10.
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Detected quantities (observables) are indicated in red and, in their proximity, are
present plots depicting their qualitative dynamic behaviours. Plots present colored frames
which indicate under which pattern the detected concentration is classi�ed, and are blue
for rapid (notovershooting) response, red for slow (not-overshooting) response, green for
rapid overshooting response, and cyan blue for slow overshooting response. The green
species represented in the circles are inhibitors of apoptosis. cFlipL and cFlipS act in
DISC formation preventing formation of p41p43 and p43Flip molecules. Free cytosolic
Bcl-2 can inhibit Bid molecule before being truncated by active C8; instead, mitochodrial
Bcl-2, inhibit Bax oligomerization. Bar sequestrates active C8 and XIAP inhibits both
mitochondrial and direct active C3 pathways.
Reactions involved in DISC formation are characterizided by rapid overshooting dy-

namics and high Hill coe�cents. Model calibration (par. 4.4.2.1) accelerate Neumann's
DISC dynamics that were less rapid. As a conseguence, both activation of p43p41 and
p43Flip occur in rapid manner. Once p43Flip was activated, all the molecules in NfkB
pathway , but the phosphorilated complex NfkB, show a slow overshooting responce and
lower Hill coe�cent. Active C8 shows a slow non-overshootin responce like caspase 6
in the feedback loop. By analizing graph connection of species (�g. 5.2) involved in
non-overshooting, overshooting and sigmoidal responce we concluded that:

� usually complexes, generated by molecule interactions (represented in �g. 5.2 with
dotted lines joining two di�erent species), show a non-overshooting responce be-
cause they do not be degradeted by anyone. A molecule that exhibit this behavior
is active C8 that promotes Bid truncation and C3 activation and it is only se-
questred by BAR molecule in the cytosol. This kind of seqestration/degradation
is not su�cient to convert concentration responce from non-overshooting to over-
shooting. Another molecule is active C6, that is activated by C3, and promotes
C8 activation without degrading itself. Apoptosome iteracts with C3 and makes
it active, but does not link to any molecule so, its concentration reach a stable
state. We can �nd the same dynamics in mitochondrion active pores concentra-
tion, active cytocrome-c formation, SMAC sequestrated by XIAP, ubiquinated C3
and degradated PARP.

� There are some molecules that, once formed, bind with other molecules forming
new molecular complexes. Usually they exhibit overshooting responce. While their
concentrations increase, the complexes formation increase at the same time but
with di�erent dynamics. This may cause an overshooting response that may reach
a stable state if the startintig molecules concentrations are �nite. For example (�g.
5.2 and table 5.1) , a molecule that show this behavior is the complex formed by
Bax and Bcl2. Once Bax is beeing active, it is sequestred at the same time by Bcl2
generating an overshooting responce.

By means of pattern classi�cation we were able to characterize dynamic behaviour of
some of the most important elements constituting apoptosis signaling system. As al-
ready said, pattern classi�cation may help us to better understand the behavior of the
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system and to characterize those concentration that exibhit sigmoidal and an all-no one
irreversibility dynamic. Activation of caspase 3 occur in a very rapid manner and its
high Hill coe�cent (about 31) suggest that, once activated, it is di�cult to stop it. Fur-
thermore, it initiate PARP degradation, that has a similar Hill coe�cent and sigmoidal
dynamic. This suggest that apoptosis, when started, occurs in a all-no one manner. If
this does not happen the cell may reach an intermediate state (partial death) between life
and death. During classi�cation analysis we noticed that almost all the reactions involved
in mitochondrial pathway have a high Hill coe�cent and a rapid, non-overshooting, sig-
moidal responce instead several molecules show overshooting responce. This fast and
rapid dynamic behavior is due to mitochordrion that, once stymulated with molecular
extrernal signals (like tBid) or internal (stress, X-ray,..), starts a cascade of reactions
that brings to apoptosis.
It is important that cells, when adeguately stimulated by death receptors, undergo

rapidly to apoptosis and the system exhibit ultrasensitivity. The latter can help to �lter
out noise or delay responses. Mechanisms that lead to ultrasensitive stimulus-response
curves include cooperativity, multisite phosphorylation, feed-forward loops, and enzymes
operating under saturation. Bistability (par. 3.3.2) can occur if such an ultrasensitive
cascade is equipped with a positive feedback, like apoptosis pathway is. For this reasion
we have studied below the in�uence of feedback loops in apoptosis death cascade.

Feedback loops analysis
Albeck et. al., as just described in chapter 4.2.1, found in his model three principal
positive feedbacks that we also have in our new model:

1. a positive feedback loop in which pro-caspase-6 (pro-C6) is cleaved by C3* to form
C6* , which then activates additional active C8;

2. a double negative feedback loop, that act as a positivie one, with XIAP, that inhibit
active C3, that is inhibited by SMAC;

3. a positive active C3 feedback loop due to mitochondrial formation of Apoptosome
(this includes also SMAC loop as part of mitochondrial reactions);

We simulated the model without considering the contribute of the loops and then we
evaluated dynamic behavior of the system. Removing C6 feedback loop (by setting to
zero the initial concentration of C6) do not cause sensible dynamic variation on the
apoptotic dynamics. This means that cell undergo apoptosis whether with the loop or
not. We noticed only a little delay on signal propagation. On the other hand, the
removal of SMAC double-negative loop permits at XIAP molecule to inhibit more active
C3. The cell undergo the same to apoptosis, but cause an important reduction of active
C3 molecules that delay PARP degradation. By removing all the mitochondrial loop
(both Apoptosome and SMAC contribute) we noticed a marcable delay on apoptosis
signal propagation. After this long delay C3 starts to become active and the cell dies.
This means that not even the removal of this ampli�cation loop permits at the cell to
survive. Between the feedback loops, the last is the most important in terms of how it
a�ects apoptosis dynamic.
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5.2 Model validation

Complete apoptosis model (�g. 5.2) of type II cells is the integration of two di�erent
models. Although the di�culties to deal with the overlapping parts of these networks,
we were able to obtain a �nal model which is a counterfeit between state of art chemistry
knowledge and simplicity in implementation procedure. Then, we run simulations and
we compared them with those obtained from original models [3, 2] verifying a good agree-
ment. Figures show the comparison between models are presented in Appendix. When
we performed parameter calibrations some dynamics changed in order to �t Albeck's
concentrations (chapter 4.4.2.1). For these reasons, the model simulate better TRAIL
simulation rather than FAS.

5.2.1 DISC formation, p43Flip and p43p41 activation

We noticed very di�erent dynamics in DISC formation. Nuemann at. al. and Albeck
et. al. modeled it with a slow kinetic, while our new model considered it faster. By
changing DISC parameters (see �g. 4.7) we have sped up reactions involved in ligand-
receptor, DISC formation and DISC linked with cFlips or procaspase 8. The di�erent
kinetics introduced in DISC formation a�ect both p43Flip and p41p43. p43Flip was
produced faster and so reached its peak value before those on Neumann's. Since the
initial concentrations of cFlipL and cFlipS also changed, the peak values of p43Flip was
a�ected. It was 400 molecules per cell in Neumann's model and about 140 molecules per
cell in our new model. Therefore, we can assert that Nf-kB pathwat was less stimulated
in TRAIL receptor.

Figure 5.3: p43Flip molecule

Formation of p41p43 was modeled in a di�erent way. Neumann et. al. modelled it
with a low overshooting responce and with a peak value reached in 70 minutes while,
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in our new model, it had an overshooting responce characterized by two peak values:
one at the beginning (due to DISC activation) and the other at 160 minutes (due to C3
feedback loop).

Figure 5.4: p43p41 in a logarithmic scale

Despite these di�erences in DISC formation and p41p43 activation, caspase 8 concen-
tration became active in similar way as Albeck's model (Fig. 5.5). The inital concentra-
tion of procaspase 8 in our model was diminished and also the initial starting dynamic.
It reaches a steady state value showing a low non-overshooting responce and mantained
it until apoptosis was done.

Figure 5.5: active caspase 8 in a logarithmic scale
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5.2.2 mitochondrial ampli�cation loop

When we performed model calibration, the initial concentrations and kinetics of the
mitochondrial loop remained almost constant. Little modi�cation on caspase 8 activation
a�ects Bid truncation and Bax activation.

Figure 5.6: cytosolic SMAC

The last, reaches its peak value at the same time as the original (Fig. 5.9). It has a
peak value of ∼9000 molecules per cell instead of ∼7000 molecules per cell.

Figure 5.7: apoptosome formation
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Despite of this �ndings, the dynamics of cytocrome-c release (Fig. 5.8), SMAC release
(Fig. 5.6) and Apoptosome formation (Fig. 5.7) show a good �t.

Figure 5.8: Cytosolic cytocrome-c

Figure 5.9: active Bax

5.2.3 C3 - C6 feedback loop

Active C3 dynamic was very similar to the original (Fig. 5.10). Since the initial con-
centration of procaspase 3 changed, its peak value changed too. We noticed a di�erent
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of ∼5000 molecules between Albeck's original value and those obtained with our model.
Activation of C6 feedback loop occurs at the same time and with the same number of
molecule as the original model (Fig. 5.11).

Figure 5.10: active caspases 3 in a logarithmic scale

Figure 5.11: active caspase 6

5.2.4 NfkB activation

To validate NfkB pathway we compared concentrations obtained with our model with
those of Neumann's.

70



5 Model Analysis and validation

Figure 5.12: p43FLIP molecule bound with IKK

The peak of IKK activated by p43Flip (Fig. 5.12) was reached faster than the original.
Its peak has a value of ∼15 molecules per cell instead of ∼62 molecules per cell. This
low concentration of molecules stimulates only a little part of Nf-kB. This one, reaches
its peak value ∼40 minutes later and with less than ∼400 molecules per cell than the
original (Fig. 5.13).

Figure 5.13: active NfkB
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5.2.5 FAS pathway

The new model, stymolated by Fas receptors, was compared to Albeck's model concen-
trations stymolated by Trail because the original Neumann's model was of type I cells.
In system biology we know that type I cells are characterized by greater DISC forma-
tion in order to generate an adeguate C8 stimolation without involving mitochondrial
ampli�cation. This implicates that DISC formation from Fas was less strong than the
original (see chapter 4.4.2.1). The wew model concentrations have similar dynamics as
those stymulated by Trail, and discussed in previous chapters, but in a di�erent time
scale. In fact, mitochondrial and active C8-C3 reactions seem to occur 50 minutes before
those of Albeck's stymulated with Trail. Since Albeck et. al. conceived their model like
a biological time switch, these results are a consequence.
In particulare, we simulated Nf-kB pathway generated by Fas and we compared it with

those of Neumann's �nding good agreement. Phosphorilated NfkB, linked with IKK,
reaches its peak value just 10 minutes before Neumann's (Fig. 5.14). NfkB was activated
in a similar time scale and reached its peak value of ∼1700 molecules per cell in ∼100
minutes. By comparing the di�erent pathways stimulated with di�erent receptors, we
found that NfkB pathway seems more sensitive to Fas receptors rather than Trail.

Figure 5.14: NfkB bonded with Ikb phosphorilated

To further validate the model we perform a sensitivity analisis using the robust PSA
explained in chapter 4.4.1. In this way, we are able to compare our parameters with
those in literature.

5.2.6 Sensitivity analysis

We decided to perform PSA of the main observables involved in apoptotic pathway like:
active caspase 8, active caspase 3 and Apoptosome formation. The result is showed in
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�g. 5.15. Parameters are labeled in red while observables in blue. Starting from the left
(dark blue bars), it is represented the in�uence of initial concentrations of the species
among all the 25 observables of the model. Since they show high values, they are the
most sensitive parameters. A little variation of their values cause a big perturbation on
the entire dynamics of the system. In particular, the most sensitive parameter is the
initial concentration of Bid molecule. This is consistent with what found by Albeck et.
al., that MOMP generation and stimulation plays an essential role in apoptosis. This
further con�rm the importance of the mitochondrial ampli�cation pathway and prove
that cell is of type I.

For these reasons, we found also that intial concentration of Bax, and the initial
concentration of Bcl2 molecules present inside and outside the mitochondrion were key
factors. The latter, controls Bax oligomerization in the mitochondrion and, as a conse-
quence, inhibit pore opening and release of apoptotic factors. De facto, it inhibit the
entire positive feedback mitochondrial loop. After that, we found that initial concentra-
tion of procaspase 8 (proC8) and TRAIL receptors were sensitive parameters. This is
obvious, for the reason that active C8 controls both mitochondrial loop and caspase 3
direct activation pathway and TRAIL receptors control all the reactions of the model.
Another important molecule was cF lipL. Neumann et. al. found the same result in his
model (see 4.4.1.1). DISC molecules and kinetics (in particular cFlipL) are decisive in
the determination of the downstream reactions. By adding Neumann's DISC complexity
at Albeck's model we made the new model more sensitive to Flip molecules in particu-
lar, to c-FlipL (see chapter 4.4.1.2). Since XIAP initial concentration was a powerful
inhibitor of active caspase 3 activation and positive mitochondrial feedback loop, it is a
key sensitivity parameter. After the initial concentrations, we found some kinetics that
had an important role in the dynamic of the model: kn2 involved in the formation of
DISC complex with proC8, kn3 that controls DISC and FlipL a�nity, k10 that promotes
truncation of Bid and activates mitochondrial reactions and k12 that encurage inibithion
of Bid molecule by Bcl2.
If we select an horizontal row (among all the colors) we will obtain how parameters

a�ect a single observable. Selecting a vertical column (a single color) we will get how
a single parameter variation in�uences the di�erent observables/species. Since we intro-
duced di�erent dynamics at DISC, it may be useful to understand what parameters a�ect
more the di�erent species. Therefore, we focused on p43Flip formation (that upregulates
NfkB formation) and active C8 (that upregulates apoptosis).

Active caspases 8 formation
By watching the horiziontal row representing active C8 (�g. 5.15) we can see that, after
procaspase 8 and Trail receptor, the most sensitivity parameter are cF lipL and XIAP
concentrations. The �rst is due to the major a�nity that cFlipL has in DISC formation
(regulated by kn3 and kn7, also sensitive parameters) while the second is due to the
C3-C6-C8 ampli�cation loop that is strongly inhibited by XIAP molecule. In particular,
XIAP binds active C3 and degrades it through ubiquination.
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.

cFlipS and cFlipL role on pathway activation
Overexpression of cFlipL and cFlipS molecules cause activation delay of both caspase
8 and Nf-kB activation. cFlipL has a stronger inhibition power than cFlipS. When
we simulated the model, we found that these molecules only delay cell death and not
prevent it. These �ndings argue with Albeck's study that apoptosis is like a biological
switch delayed by Flips molecules. We found that DISC plays a central role in deciding
divergence between Nf-kB and apoptosis pathway. By overexpressing cFlip molecules we
found that Nf-kB became active before apoptosis pathway. This could permit to generate
transcriptional factors, that interact with mitochondrial pathway and inhibit it. cFlipS
and cFlipL inhibit apoptosis more than NfkB pathway. By varying cFlipS concentrations
we noticed that Nf-kB peak was always reached in a short time and between a little range
of values. Thus, apoptosis inhibition may be guaranteed by iteraction between delay on
caspase activation and NfkB survival transcriptional factors. E.g: in system biology it is
known that, when active, Nf-kB produces as transcriptional factors molecules like Bcl2
and XIAP. These may interact with Bax oligomerization, Apoptosome formation and
active caspase 3 cascade. If apoptotic pathway was delayed by cFlips, it would give time
to XIAP and Bcl2 to act as a negative feedback and to prevent apoptosis in a de�nitive
manner.

p43Flip formation
In order to study parameters in�uencing p43Flip molecules we selected the horizontal
row labelled as �p43Flip� in �g. 5.15. In particular, we found that parameters that
in�uence more p43Flip dynamics are: Trail concentration, Ikk initial concentration and
kn13 (representig p43Flip interaction with IKK complex). Other parameters are: cF lipS
concentration at DISC, kn5 and kn7. The last two are involved rispectively in DISC.C8
formation and DISC.cFlipS formation. Since p43Flip molecule generation is due to DISC
complex linked with a combination of cFlipL and procaspase 8, sequestration of DISC
by C8 and cFlipS in�uence its formation.

Role of XIAP in cascade propagation
XIAP molecule is a pontent inhibitor of apoptosis. It acts on both mitochondrial pathway
(by blocking Apoptosome formation) and C3 formation (by degrading it). In order to un-
destand its dynamic better, we overexpessed the inital concentration of XIAP molecules.
By only doubling its concetration, the peak of Apoptosome number of molecules was re-
duced from 37000 to 3400 and consequently C3 active's peak was drammatically reduced
from 6500 to 150 active molecules.
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In this thesis we implemented a computational model of apoptosis signaling pathway.
We made use of two models already published in the literature that were integrated to
realize the �nal and more complete apoptosis model. The �rst model considers apoptosis
like a biological switch and involves TRAIL receptor, DISC formation and mitochondrial
activation; while, the second considers both Nf-kB and caspase activation from DISC.
The new model assumes that Nf-kB pathway was generated from DISC complex formed
by both receptors. It was implemented using rule-based modelling approach which per-
mitted a simple system description by a set of reaction rules. In particular, we used
BioNetGen software and, by means of its tools, we generated predictions of chemical
species populating apoptosis system. The �nal model has 101 parameters of which 23
are initial concentrations and 78 are reaction kinetics. It counts 75 di�erent molecules
species controlled and generated by 61 reactions. Simulated time series ( describing
the concentrations of molecules) were used to characterize dynamic behavior of the sys-
tem. Sensitivity analisys was used to de�ne core mechanisms of the system. We used
these results to clear some fundamental regulation processes. First, we distinguished
concentrations depending on overshoot presence. Then, we evaluate response time and
we distinguished between rapid, slow and sigmoidal dynamics. To further characterize
non-overshooting response, Hill coe�cent was calculated. Hence, we classi�ed dynamics
according to four main pattern sets: rapid (non-overshooting), slow (not-overshooting),
rapid overshooting, and slow overshooting responses. Through this analysis we realized
that rapid (not-overshooting) response characterizes those process related to mitochon-
drial pathway and caspases 6 activation. They demonstrated sigmoidal curves and Hill's
high coe�cents that indicate cooperative and ultrasensitive behavior. This means that, a
little variation of the input, produces rapid and fast growing of the output until it reaches
a steady state. Three positve feedbacks were present in the model. They mainly ensure
an all-or-none response but any of them is straight necessary to lead to apoptosis. The
same sigmoidal curves was found in PARP degradation, that above all, indicates that a
rapid all-or none responce occurs when the cell undergoes apoptosis. Slow overshooting
response characterizes NfkB pathway: from IKK activation to NfkB translocation. Rapid
overshooting response characterizes those molecules involved in DISC, p41Flip and ac-
tive caspase 3 formation. At last, slow (not-overshooting) response characterizes those
species that are not degraded or linked with anyone. This is the case of molecules as
active caspase 8 and Apoptosome.
We found good agreement with most of our sensitive parameters and those of the previ-

ous models. We found that Bax activation, Bcl2 and procaspase 8 initial concentrations
were essential for mitochondrial signal propagation and the feedback loop. Both cFlips
and XIAP molecules play dominant roles in apoptosis inhibition. In particular, c-FlipL
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and c-FlipS discriminate either apoptosis or survival pathway. We found that cFlipL had
a stronger inhibition power than cFlipS. By varying cFlipS concentrations we noticed
that the peak of Nf-kB was always reached in a short time and between a little range of
values.
Through overexpressing concentrations of apoptotic inhibitor we were able to introduce

signi�cative delays on apoptosis pathway. In system biology it is known that active
Nf-kB translocates into the nucleus and produce transcriptional factors like Bcl2 and
XIAP. These delays, in particular those of cFlips, could be used to enhance activation of
inhibitors that de�nitely interrupt apoptosis pathway.
Finally, we discussed model validation comparing our predictions with those of Al-

beck's and Neumann's. Since we introduced di�erent mechanisms in DISC formation,
we changed its dynamics. Anyway, we found a good agreement in caspase cascade, feed-
back loops, mitochondrial propagation and PARP degradation. From the other side, we
found good agreement between Neumann's Nf-kB pathway and that generated by our
model with FAS. Trail generation of NfkB and apoptosis induction by FAS were not
trained against quantitative data but only evaluated with biological knowing of dead
receptor pathways.

6.1 Future plans

There are some cytokines, such as those of the tumor necrosis factor (TNF) superfamily,
that induce apoptosis in many cell types. Others, such as cytokines from the epidermal,
insulin-like, and nerve growth factor (EGF, IGF, and NGF) families, act as survival
cues that block or attenuate the action of TNF-family cytokines. Evaluating cross talks
between them, can give new insigh in apoptosis mechanism. Numerous groups have
reported that CD95 mediate activation of other pathways like ERK, and MAPK. The
model could be integrated in studies that consider transcriptional factors of Nf-kB and
could help to de�nitely understand the role of these molecules.
In ODE modeling it is assumed that the cell represents a well-stirred reactor, implying

that di�usion e�ects do not matter. In apoptosis networks, these assumptions are likely
to be ful�lled, as caspase and their regulators are typically expressed at the number of
several hundred thousand molecules per cell. Furthermore, the time scale of apoptosis
induction (hours) is slow relative to the time scale of protein di�usion within a cell
(milliseconds to seconds); therefore, spatial gradients of apoptosis signaling molecules
can be considered decisive in apoptosis initiation.
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Source code of the model of apoptosis implemented in BioNetGen language.

begin parameters

# Initial amounts of cellular components (copies per cell)

FasL_01 1.1322e2*5.9999e2
FasL_02 3.7740e1*5.9999e2
FasL_03 1.887e1*5.9999e2
Trail_sat 6e4
R_Trail_WT 3e2 # TRAIL receptor (for experiments not involving siRNA)
Trail_50 3e3 # baseline level of ligand for most experiments (corresponding to 50 ng/ml Su-

perKiller TRAIL)
R_Trail_siRNA 1e5 # TRAIL receptor for experiments involving siRNA;
Rf_init 730 # concentration of CD95-FADD
FL_init 2.1064e3
FS_init 1.4473e3
pC8_init 3.04684e4
Bar_init 1e3 # Bifunctional apoptosis regulator
pC3_init 2.01871e4 # procaspase-3 (pro-C3)
pC6_init 1e4 # procaspase-6 (pro-C6)
XIAP_init 1e5 # X-linked inhibitor of apoptosis protein
PARP_init 1e6 # C3* substrate
Bid_init 4e4 # Bid
Bcl2c_init 2e4 # cytosolic Bcl-2
Bax_init 1e5 # Bax
Bcl2_init 2e4 # mitochondrial Bcl-2
M_init 5e5 # mitochondrial binding sites for activated Bax
CytoCM_init 5e5 # mythocondrial cytochrome c
SmacM_init 1e5 # mitochondrial Smac
pC9_init 1e5 # procaspase-9 (pro-C9)
Apaf_init 1e5 # Apaf-1
delay .01 # translocate CC <�> MC
NF_kB_IkB_init 4.7395*5.9999e2
iIKK_init 5.7728*5.9999e2

# model kinetics

k1 0.188241
k_1 39.7244
kc1 4.72700
kn1 1*1.6667e-3
kn2 1.27772e-4*1.6667e-3 # proC8 to DISC
kn3 0.0070538 # Flip long to DISC
kn4 5.382766e-8 # Flip short to DISC
kn5 8.987359e-4 # proC8 to DISC
kn6 0.00320177 # Fl to DISC
kn7 0.00748049 # Fs to DISC
kn8 0.01164630 # p43/p41 to C8*
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k4 1e-6*60 k_4 1e-3*60 k5 1e-7*60
k_5 1e-3*60
kc5 1*60
k6 1e-6*60
k_6 1e-3*60
kc6 1*60
k7 3e-8*60
k_7 1e-3*60
kc7 1*60
k8 2e-6*60
k_8 1e-3*60
kc8 .1*60
k9 1e-6*60
k_9 1e-2*60
kc9 1*60
k10 1e-7*60
k_10 1e-3*60
kc10 1*60
k11 1e-6*60
k_11 1e-3*60
k12 1e-7*60
k_12 1e-3*60
kc12 1*60
k13 delay*60
k_13 delay*60
k14 1e-6*60
k_14 1e-3*60
k15 1e-6 *60
k_15 1e-3*60
k16 1e-6*60
k_16 1e-3*60
k17 1e-6*60
k_17 1e-3*60
k18 1e-6*60
k_18 1e-3*60
k19 1e-6*60
k_19 1e-3*60
kc19 1*60
k20 2e-6*60
k_20 1e-3*60
kc20 10*60
k21 2e-6*60
k_21 1e-3*60
kc21 10*60
k22 delay*60
k_22 delay*60
k23 5e-7*60
k_23 1e-3*60
kc23 1*60
k24 5e-8*60
k_24 1e-3*60
k25 5e-9*60
k_25 1e-3*60
kc25 1*60
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k26 delay*60
k_26 delay*60
k27 2e-6*60
k_27 1e-3*60
k28 7e-6*60
k_28 1e-3*60
kn13 7.2043e-4*1.6667e-3
kn14 3.5882e-1*1.6667e-3
kn15 3.6842 # activation
kn16 2.2299e-2 # degradation
kn17 6.4182e-3 # degradation

end parameters

begin molecule types
Trail(Rb)
Rp(B)
C3(B,S~a~i~u)
C6(B,S~a~i)
C8(B,S~a~i)
C9(B,S~a~i)
XIAP(B)
PARP(B,S~a~d)
Bax(B1,B2,B3,B4,S~i~a~m)
Bax2(B)
Bax4(B)
Bid(B,S~t~i)
cytC(B,P~m~a~c)
SMAC(B,P~m~c~a)
Mit(B,S~i~a)
Apop(B)
Bcl2(B,S~m~c)
Apaf(B,S~a~i)
BAR(B)
Trash()
I()
FasL(Rb)
Rf(B1) # CD95 + FADD, B1,B2,B3= trimerization of FADD
FL(Bs)
FS(Bs)
p43p41(B)
P(B)
p43FLIP(B)
IKK(B,S~i~a)
NfkB(B,S~i~a)
IkB(B1,B2)
DISC(B1,B2)
DISC_F(B1,B2)
DISC_T(B1,B2)

end molecule types

begin species
Trail(Rb) Trail_50
Rp(B) R_Trail_siRNA
C8(B,S~i) pC8_init
BAR(B) Bar_init
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C3(B,S~i) pC3_init
C6(B,S~i) pC6_init
XIAP(B) XIAP_init
PARP(B,S~a) PARP_init
Bid(B,S~i) Bid_init
Bcl2(B,S~c) Bcl2c_init
Bax(B1,B2,B3,B4,S~i) Bax_init
Bcl2(B,S~m) Bcl2_init
Mit(B,S~i) M_init
cytC(B,P~m) CytoCM_init
SMAC(B,P~m) SmacM_init
C9(B,S~i) pC9_init
Apaf(B,S~i) Apaf_init
FasL(Rb) FasL_02
Rf(B1) Rf_init
FL(Bs) FL_init
FS(Bs) FS_init
NfkB(B!1,S~i).IkB(B1!1,B2) NF_kB_IkB_init
IKK(B,S~i) iIKK_init

end species

begin observables
Molecules activeC8 C8(B,S~a)
Molecules activeC3 C3(B,S~a)
Molecules NfkB_active NfkB(B,S~a)
Molecules proC8 C8(B,S~i)
Molecules proC3 C3(B,S~i)
Molecules Bar_C8 BAR(B!1).C8(B!1,S~a)
Molecules Bid_Bcl2 Bid(B!1,S~i).Bcl2(B!1,S~c)
Molecules ActiveBax Bax(B1,B2,B3,B4,S~a)
Molecules MytBax_Bcl Bcl2(B!1,S~m).Bax(B1!1,B2,B3,B4,S~m)
Molecules Bax2_Bcl2 Bax2(B!1).Bcl2(B!1,S~m)
Molecules Bax4 Bax4(B) Molecules Apaf Apaf(B,S~a)
Molecules Apopto_XIAP Apop(B!1).XIAP(B!1)
Molecules Bax4_Bcl2 Bax4(B!1).Bcl2(B!1,S~m)
Molecules C3_Ubiquinated C3(B,S~u)
Molecules tBID Bid(B,S~t)
Molecules PARP_degradation PARP(B,S~d)
Molecules num_active_Holes Mit(B,S~a)
Molecules activeC6 C6(B,S~a)
Molecules Active_Myth_cyto cytC(B,P~a)
Molecules cytocrome_Cyto cytC(B,P~c)
Molecules Active_Myth_SMAC SMAC(B,P~a)
Molecules SMAC_Cyto SMAC(B,P~c)
Molecules smac_xiap SMAC(B!1,P~c).XIAP(B!1)
Molecules Apoptosome Apop(B)
Molecules DISC_TRail DISC_T(B1,B2)
Molecules DISC_Fas DISC_F(B1,B2)
Molecules DISC DISC(B1,B2)
Molecules DISC_FS DISC(B1!1,B2).FS(Bs!1)
Molecules DISC_C8 DISC(B1!1,B2).C8(B!1,S~i)
Molecules DISC_FL DISC(B1!1,B2).FL(Bs!1)
Molecules p43p41 p43p41(B)
Molecules p43FLIP p43FLIP(B)
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Molecules p43FLIP_active_IKK p43FLIP(B!1).IKK(B!1,S~a)
Molecules NfkB_IkBPhosfo NfkB(B!1�S~i).IkB(B1!1,B2!2).P(B!2)

end observables

begin reaction rules

# TRAIL receptor DISC formation

1 Trail(Rb) + Rp(B) <-> Trail(Rb!1).Rp(B!1) k1, k_1
2 Trail(Rb!1).Rp(B!1) -> DISC_T(B1,B2) kc1
3 DISC_T(B1,B2) + C8(B,S~i) -> DISC(B1!1,B2).C8(B!1,S~i) kn2
4 DISC_T(B1,B2) + FL(Bs) -> DISC(B1!1,B2).FL(Bs!1) kn3
5 DISC_T(B1,B2) + FS(Bs) -> DISC(B1!1,B2).FS(Bs!1) kn4

# FAS receptor DISC formation

6 FasL(Rb) + Rf(B1) -> DISC_F(B1,B2) kn1
7 DISC_F(B1,B2) + C8(B,S~i) -> DISC(B1!1,B2).C8(B!1,S~i) kn2
8 DISC_F(B1,B2) + FL(Bs) -> DISC(B1!1,B2).FL(Bs!1) kn3
9 DISC_F(B1,B2) + FS(Bs) -> DISC(B1!1,B2).FS(Bs!1) kn4
10 DISC(B1!1,B2).C8(B!1,S~i) + FS(Bs) -> DISC(B1!1,B2!2).C8(B!1,S~i).FS(Bs!2) kn7
11 DISC(B1!1,B2).FS(Bs!1) + FS(Bs) -> DISC(B1!1,B2!2).FS(Bs!1).FS(Bs!2) kn7
12 DISC(B1!1,B2).FS(Bs!1) + C8(B,S~i) -> DISC(B1!1,B2!2).C8(B!1,S~i).FS(Bs!2) kn5
13 DISC(B1!1,B2).FL(Bs!1) + FL(Bs) -> DISC(B1!1,B2!2).FL(Bs!1).FL(Bs!2) kn6
14 DISC(B1!1,B2).FS(Bs!1) + FL(Bs) -> DISC(B1!1,B2!2).FS(Bs!1).FL(Bs!2) kn6
15 DISC(B1!1,B2).FL(Bs!1) + FS(Bs) -> DISC(B1!1,B2!2).FS(Bs!1).FL(Bs!2) kn7
16 DISC(B1!1,B2).FL(Bs!1) + C8(B,S~i) -> p43FLIP(B) kn5
17 DISC(B1!1,B2).C8(B!1,S~i) + FL(Bs) -> p43FLIP(B) kn6
18 DISC(B1!1,B2).C8(B!1,S~i) + C8(B,S~i) -> p43p41(B) + p43p41(B) kn5

# C8 activation and apoptosis pathway

19 p43p41(B) + p43p41(B) -> C8(B,S~a) 2*kn8
20 C8(B,S~a) + BAR(B) <-> BAR(B!1).C8(B!1,S~a) k4, k_4
21 C3(B,S~i) + C8(B,S~a) <-> C3(B!1,S~i).C8(B!1,S~a) k5, k_5
22 C3(B!1,S~i).C8(B!1,S~a) -> C3(B,S~a) + C8(B,S~a) kc5
23 C6(B,S~i) + C3(B,S~a) <-> C6(B!1,S~i).C3(B!1,S~a) k6, k_6
24 C6(B!1,S~i).C3(B!1,S~a) -> C6(B,S~a) + C3(B,S~a) kc6
25 C8(B,S~i) + C6(B,S~a) <-> C8(B!1,S~i).C6(B!1,S~a) k7, k_7
26 C8(B!1,S~i).C6(B!1,S~a) -> p43p41(B) + p43p41(B) + C6(B,S~a) kc7
27 XIAP(B) + C3(B,S~a) <-> XIAP(B!1).C3(B!1,S~a) k8, k_8
28 XIAP(B!1).C3(B!1,S~a) -> XIAP(B) + C3(B,S~u) kc8
29 C3(B,S~a) + PARP(B,S~a) <-> C3(B!1,S~a).PARP(B!1,S~a) k9, k_9
30 C3(B!1,S~a).PARP(B!1,S~a) -> C3(B,S~a) + PARP(B,S~d) kc9

# mitochondrial pathway

31 Bid(B,S~i) + C8(B,S~a) <-> Bid(B!1,S~i).C8(B!1,S~a) k10, k_10
32 Bid(B!1,S~i).C8(B!1,S~a) -> Bid(B,S~t) + C8(B,S~a) kc10
33 Bid(B,S~i) + Bcl2(B,S~c) <-> Bid(B!1,S~i).Bcl2(B!1,S~c) k11, k_11
34 Bax(B1,B2,B3,B4,S~i) + Bid(B,S~t) <-> Bax(B1!1,B2,B3,B4,S~i).Bid(B!1,S~t) k12, k_12
35 Bax(B1!1,B2,B3,B4,S~i).Bid(B!1,S~t) -> Bax(B1,B2,B3,B4,S~a) + Bid(B,S~t) kc12
36 Bax(B1,B2,B3,B4,S~a) <-> Bax(B1,B2,B3,B4,S~m) k13, k_13
37 Bax(B1,B2,B3,B4,S~m) + Bcl2(B,S~m) <-> Bcl2(B!1,S~m).Bax(B1!1,B2,B3,B4,S~m) k14,

k_14
38 Bax(B1,B2,B3,B4,S~m) + Bax(B1,B2,B3,B4,S~m) <-> Bax2(B) k15, k_15
39 Bax2(B)+ Bcl2(B,S~m)<-> Bax2(B!1).Bcl2(B!1,S~m) k16, k_16
40 Bax2(B) + Bax2(B) <-> Bax4(B) k17, k_17
41 Bax4(B) + Bcl2(B,S~m) <-> Bax4(B!1).Bcl2(B!1,S~m) k18, k_18
42 Bax4(B) + Mit(B,S~i) <-> Bax4(B!1).Mit(B!1,S~i) k19, k_19
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43 Bax4(B!1).Mit(B!1,S~i) -> Mit(B,S~a) kc19
44 Mit(B,S~a) + cytC(B,P~m) <-> Mit(B!1,S~a).cytC(B!1,P~m) k20, k_20
45 Mit(B!1,S~a).cytC(B!1,P~m) -> Mit(B,S~a) + cytC(B,P~a) kc20
46 Mit(B,S~a) + SMAC(B,P~m) <-> Mit(B!1,S~a).SMAC(B!1,P~m) k21, k_21
47 Mit(B!1,S~a).SMAC(B!1,P~m) -> Mit(B,S~a) + SMAC(B,P~a) kc21
48 cytC(B,P~a) <-> cytC(B,P~c) k22, k_22
49 cytC(B,P~c) + Apaf(B,S~i) <-> cytC(B!1,P~c).Apaf(B!1,S~i) k23, k_23
50 cytC(B!1,P~c).Apaf(B!1,S~i) -> cytC(B,P~c) + Apaf(B,S~a) kc23
51 Apaf(B,S~a) + C9(B,S~i) <-> Apop(B) k24, k_24
52 Apop(B) + C3(B,S~i) <-> Apop(B!1).C3(B!1,S~i) k25, k_25
53 Apop(B!1).C3(B!1,S~i) -> Apop(B) + C3(B,S~a) kc25
54 SMAC(B,P~a) <-> SMAC(B,P~c) k26, k_26
55 Apop(B) + XIAP(B) <-> Apop(B!1).XIAP(B!1) k27, k_27
56 SMAC(B,P~c) + XIAP(B) <-> SMAC(B!1,P~c).XIAP(B!1) k28, k_28

# NfkB pathway

57 p43FLIP(B) + IKK(B,S~i) -> p43FLIP(B!1).IKK(B!1,S~a) kn13
58 p43FLIP(B!1).IKK(B!1,S~a) ->Trash() kn16
59 NfkB(B!1,S~i).IkB(B1!1,B2) + p43FLIP(B!1).IKK(B!1,S~a) -> NfkB(B!1,S~i).IkB(B1!1,B2!2).P(B!2)

+ p43FLIP(B!1).IKK(B!1,S~a) kn14
60 NfkB(B!1,S~i).IkB(B1!1,B2!2).P(B!2) -> NfkB(B,S~a) kn15
61 NfkB(B,S~a) -> Trash() kn17

end reaction rules

#ACTIONS
generate_network({overwrite=>1});
simulate_ode({t_end=>6*60,n_steps=>720});

Matlab source code of robust sensitivity analysis in par. 4.4.1.

function [S_int] = sensitivity(time, perc, step, pl , obs, fh, x, N)
% obs=1 -> sensitivity analisis of observable output
% pl=1 plot every step ov the sensitivity analisis
% step = time step for the trapezoidal integral method approximation
% perc = percentage of the parameter step

[err, timepoints, species_out_old, observables_out_old, param_old ] = fh( time, [], x, 1);
par_new=param_old; if(obs) species_out_old=observables_out_old; end

% seleziono solo gli indici che sono diversi da 0
[ r ] = �nd(species_out_old~=0);
S_int2=zeros(size(param_old,2),size(species_out_old,2));
for j=1:size(param_old,2)

% creo array N numeri casuali basati su probablita uniforme nell'
% intervallo par*50 e par/50
perc=15;
casDiv= 1 - (random('unif',0,perc,1,round(N/2))./100);
casPer=(random('unif',0,perc,1,round(N/2))./100) + 1;
parCas=[param_old(j).*casDiv param_old(j).*casDiv];
si2=zeros(1,size(S_int2,2));
for i=1:length(parCas)

par_new(j)=parCas(i);
[err, timepoints, species_out, observables_out ] = fh( time, [], par_new, 1);
if(obs)

species_out=observables_out;
end
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f=zeros(size(species_out_old,1),size(species_out_old,2));
f(r)=abs( ( (species_out(r)-species_out_old(r)).*param_old(j) )./ ( species_out_old(r).*((param_old(j)

- parCas(i))) ) );
si2 = si2 + ( step * ((sum(f,1)) - (f(1,:)/2) - (f(end,:)/2)));

end
S_int2(j,:)=si2./N;
if(pl)

pause(0.05);
bar3(S_int');

end
par_new=param_old;

end
S_int2=S_int2';

end
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Figure 7.1: TRAIL apoptosis

Figure 7.2: FAS apoptosis
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