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Chapter 1

Atomically thin transition metal
dichalcogenides

1.1 Definition and properties

Transition metals dichalcogenide (TMD) monolayers are a group of bidimensional di-
rect band gap semiconductors. They are composed by a layer of a transition metal, such
as Mo and W, between two layers of a chalcogen, such as S, Se or Te [1]. Their struc-
ture is composed of an hexagonal plane of transition metal atoms placed between two
hexagonal planes of chalcogen atoms in a trigonal prismatic arrangement with strong co-
valent in-plane bonds and weak van der Waals coupling between the individual planes [2].
TMDs show that their properties are significantly modified by changing the number of
layers. In fact, in the monolayer limit, these materials have often superior electronic,
optical, catalytic and mechanical properties compared to their three-dimensional coun-
terparts. They have an intrinsic band gap in the visible which crosses over from an
indirect gap in bulk to a direct gap when reduced to a single atomic layer. Moreover,
the photocatalytic stability is significantly increased in the monolayer limit compared
to any multiple layers making these materials interesting for optoelectronic applications
and solar energy harvesting [3]. Furthermore, both the conduction and valence bands of
monolayer TMDs have two degenerate energy valleys at the corners of the first Brillouin
zone, which are essential to optically control the charge carriers in these valleys. These
properties make possible a new class of integration in spintronics and valleytronics [4].
With such a broad potential application base, a comprehension of the optical properties
of TMDs, and in particular of MoS2, is going to elucidate their electronic band structure
which is critical to electronic and optoelectronic device researchers.

1.1.1 Band gap crossover

The most important property of these new class of materials is the already mentioned
transition from an indirect to a direct band gap in the passage from bulk to monolayer.
We are now analyzing this fact showing the most important results deeply examined
in [1] for MoS2. The evolution of the optical properties and electronic structure of
ultrathin MoS2 crystals by changing layer number N from 1 to 6 is examined by using
three complementary spectroscopic techniques: optical absorption, photoluminescence
(PL) and photoconductivity. The combination of these spectroscopic methods allowed
them to trace the evolution of both the indirect and direct band gaps of the material as
a function of layer thickness N. By decreasing N, the experiments reveal a progressive
confinement-induced shift in the indirect gap from the bulk value of ≈ 1.29 eV to over
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CHAPTER 1. ATOMICALLY THIN TRANSITION METAL DICHALCOGENIDES4

≈ 1.90 eV. The change in the indirect-gap energy was found to be significantly larger
than that of the direct gap, which increased by only 0.1 eV. As a consequence of these
different scaling properties, the MoS2 crystals exhibit a crossover from an indirect to a
direct gap semiconductor in the monolayer limit. In addition to the signatures of this
effect in the absorption and photoconductivity spectra, the PL quantum yield showed a
dramatic enhancement in going from the dark, indirect-gap bulk crystal to the bright,
direct-gap monolayer, which stresses the passage from phonon to photon emission by
electrons while crossing the band gap. For some suspended samples, they observed
an increase of the PL quantum yeld by more than a factor of 104 for the monolayer
compared with the bulk crystal. Now we are summing up a possible proof of this shift.
In this simplified treatment of the spectral dependence of the photoconductivity, they
neglected both any excitonic effect and the variation of matrix elements with energy.
The absorbance A(~ω) at photon energy ~ω near a direct band edge of energy Eg is then
determined by the joint density of states. For a 2D material like MoS2, this is described
by the step function Θ(~ω − Eg). After including a phenomenological broadening of
30 meV to account for finite temperature and scattering rates, they found that the
photoconductivity spectrum of the monolayer samples can be fit well to this simple
model. This indicates that monolayer MoS2 is indeed a direct-gap material. On the
other hand, the photoconductivity spectrum for bilayer MoS2 cannot be described by the
step-function response. It is needed to include the effect of an indirect transition. Near
an indirect band edge, the corresponding absorbance can be represented by expression

A(~Ω) ∝
∑
α

[~ω − ~Ωα − E ′g
1− e−~Ωα

kT

+
~ω + ~Ωα − E ′g

e
~Ωα
kT − 1

]
∝ ~ω − E ′g (1.1)

Here E′g and ~Ωα denote, respectively, the indirect-gap energy and that of the αth phonon
mode, and kT is the thermal energy. By taking this term into account, the experimental
bilayer MoS2 spectrum can be fit well by an indirect transition at 1.6 eV, combined
with a direct transition at 1.88 eV This property causes monolayer TMDs to be more
attractive than graphene for future transistors and logic circuit applications where a high
on/off current ratio is required.

1.2 Production

In this section we are presenting the two most used production techniques for monolayer
TMDs, also mentioning two other recent alternatives.

1.2.1 Exfoliation

The first and simplest production method is mechanical exfoliation, which consists of
taking away some layers from bulk TMD using adhesive tape and depositing it in a
silicon or glass substrate. To obtain a monolayer sample several intermediate exfoliation
steps are required [5]. Each sample must be characterised because it can be made by one
to many layers, and has a random shape. Another class of exfoliation method is through
a chemical approach with solvent-based exfoliation. For instance, in [6] is presented an
exfoliation method using TMD dispersion in water by elevating the temperature of the
sonication bath and introducing energy in the system through dissipation of sonic waves.
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1.2.2 CVD

An alternative and more elaborated technique to obtain TMD monolayers is by Chemical
Vapor Deposition (CVD). The instrumentation consists of a quartz tube furnace with a
hot zone at a working temperature of ≈ 1100 K, which hosts in the middle the transition
metal oxide (such as molybdenum trioxide, MoO3) over the desired substrate in an alu-
minia boat and the chalcogen powder in another aluminia boat, usually placed upstream
of the first boat. After some preliminary procedures to eliminate residual water and
physisorbed contaminants in the tube and in the substrate, the quartz tube is filled with
a noble gas, such as argon (Ar), at a pressure of ≈ 53000 Pa and heated to the high wor-
ling temperature. Both the transition metal and chalcogen are carried by the noble gas
and chemically react forming the desired TMD and another fizzy product. After ≈ 20
min, the tube is slowly cooled down at room temperature and the TMD monolayer is
formed [7]. The CVD process guarantees a high quality final product, even if it demands
an high technological instrumentation and an elaborated process. The TMD monolayer
produced can, however, present some inpurities. Moreover, this technique can produce
both single crystal and policrystalline samples. A single crystal area can reach 100 µm2,
while policrystalline samples are much wider, up to ≈ 1 cm2, but present several border
conditions, one at each single crystal shape. In [8] is presented a CVD technique to
obtain large area single crystal WS2 samples, which reach ≈ 0.014mm2

1.2.3 Innovative techiniques

Laser thinning

One single sample obtained via mechanical exfoliation may be composed by different
flakes, each one with a different layer number and random shape. To obtain a precise-
shaped TMD monolayer it is possible to scan the desired area and to thin the multilayer
flakes by inducing sublimation with an high power laser with a certain setup, such as a
scanning laser from a confocal Raman microscope. The sublimation of the upper layers
occurs because of the heat induced by light absorption, and the bottom layer is immune
to sublimation because it is in intimate contact with the substrate which acts as a heat
sink, thus it need a much higher laser power to be separated and to sublimate. Using the
Raman microscope experimental setup it is possible to reach a production of ≈ 8 µm2

min
.

However this method produces samples about three times rougher than pristine TMD
because of unremoved TMD traces on the surface [9].

Thermal annealing

Samples obtained via mechanical exfoliation can vary from more than five-layer to mono-
layer. To thin layer by layer the sample, after having determinated the layer number, it
is possible to set the sample along with the silicon substrate in a quartz tube and induce
sublimation of the TMD. Using argon (Ar) gas at 500 K and 1333.22 Pa can guarantee a
thinning rate of ≈ 1 Layer lost

h
. However this method, even if economic, causes the TMD’s

surface to shrink. This is because the sublimation occurs both perpendiculary and in
parallel to the material surface [10].



Chapter 2

Optical models for 2D materials

The study of monolayer materials began in 2004 with the discovery of graphene by A.
Gejm and K. Novoselov. Since then the monolayer materials have been studied to under-
stand their physical properties and, in particular, their electromagnetic properties. The
model used to describe the interactions between an electromagnetic wave and graphene
or monolayer TMDs has been initially the slab model, the model of propagation, reflec-
tion and trasmission of a classical electromagnetic wave through dielectric or conducting
media [11], [12]. However there is also an alternative model, recently developed [13],
which doesn’t think of monolayer materials as an ultrathin strate of dielectric media but
as a conducting plane which interacts only through opportune boundary conditions for
the electric and magnetic field in the reflection and trasmission between the two media
separated by the monolayer film. It is called the surface current model. In [14] it is
showed that the surface current model fits better the graphene experimental data than
the slab model used in the analysis. In [15] the authors derive the electric properties
of several TMDs using the slab model and propose two relations that should make the
models equivalent. In this work we are analyzing two of these TMDs, MoS2 and WS2,
with both models to find out whether they are equivalent or not. In this chapter we are
considering the two optical models mentioned.

2.1 Slab model

Let us consider a stratified medium, with electric and magnetic permittivity being re-
spectively ε = ε(z) and µ = µ(z), calling ẑ the axis perpendicular to the medium. Let
us consider an incident plane electromagnetic wave which is linearly polarized such as its
electric vector ~E is perpendicular to the plane of incidence, and let us denote as x̂ that
direction. Let also the wave be eiwt time dependant. In this special case, the Maxwell’s
equations (in Lorentz-Heaviside units) are reduced to six scalar equations:

∂Hz

∂y
− ∂Hy

∂z
+
iεω

c
Ex = 0

iωµ

c
Hx = 0

∂Hx

∂z
− ∂Hz

∂x
= 0

∂Ex
∂z
− iωµ

c
Hy = 0 (2.1)

∂Hy

∂x
− ∂Hx

∂y
= 0

∂Ex
∂y

+
iωµ

c
Hz = 0

It is possible now to eliminate Hy and Hz and obtain a differential equation:

∂2Ex
∂y2

+
∂2Ex
∂z2

+ n2k2
0Ex =

d ln µ

dz

∂Ex
∂z

(2.2)
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with n2 = εµ and k0 = 2π
λ0

. The method to solve this equation is beyond the purpose of
this work, and we do not present it. It is fully described in [16] and we only summarize
the most significant results to derive the reflectivity R and trasmissivity T.
Imposing the solution of equation 2.2 to be Ex = Y (y)U(z), solving immediatly the
y-related part of the equation obtaining Y (y) = Aeik0αy, A being a generic constant and
with α = n sin θ, and finally imposing Ex = U(z)ei(k0αy−ωt) and Hy = V (z)ei(k0αy−ωt), it
is possible to write a system of two equations:

d2U
dz2 − d ln µ

dz
∂U
∂z

+ k2
0(n2 − α2)U = 0

d2V
dz2 −

d ln
(
ε−α

2

µ

)
dz

∂V
∂z

+ k2
0(n2 − α2)V = 0

(2.3)

The solutions of the system U(z) and V (z), deriving from two simultaneous equations,
can be expressed as linear combination of two particolar solutions U1, U2 and V1, V2,
which are not completely arbitrary but must satisfy some specific conditions. From
these conditions the most convenient choice is{

U1 = f(z)

U2 = F (z)

{
V1 = g(z)

V2 = G(z)
(2.4)

such that f(0) = G(0) = 0 and F (0) = g(0) = 1. Supposing to have initial conditions
U(0) = U0 and V (0) = V0, it is possible to put the solutions in the reversed matrix form
Q0 = M Q, where

M =

(
g(z) −f(z)
−G(z) F (z)

)
(2.5)

We also note that |M | = 1. Equation 2.5 means that to determinate the propagation
of a plane monochromatic wave through a stratified medium, the medium only needs to
be specified by a characteristic two by two unimodular matrix M. For this reason M is
called the characteristic matrix of the stratified medium.
Shall we now derive the general expressions for the reflection and trasmission coefficients
r and t in the case of a dielectric film. Let us denote I, R and T the electric field
amplitudes of the incident, reflected and transmitted wave, ε1,2,3 and µ1,2,3 the electric
and magnetic permeability of the first, middle and last materials and θi and θt the
incident and transmittend angles. We must impose the continuity of the tangential
components of ~E and ~H across the two boundaries of the stratified medium. This means
that

~H =

√
ε

µ
ŝ× ~E (2.6)

which gives the following relations for U and V:{
U0 = I +R

V0 = p1(I −R)

{
U(z̄) = T

V (z̄) = p3T
(2.7)

with z̄ being the depth where the film ends and the transmitted wave enters definetely in
the third material. As U, V, U0 and V0 are bound by the relation Q0 = M Q, detoning
as m̄ij the element at row i and column j of M(z̄), we have{

(m̄11 + m̄12p3)T = I +R

(m̄21 + m̄22p3) = p1(I −R)
(2.8)

and finallt get
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Figure 2.1: Scheme of the homogeneous dielectric film

r =
R

I
=

(m̄11 + m̄12p3)p1 − (m̄21 + m̄22p3)

(m̄11 + m̄12p3)p1 + (m̄21 + m̄22p3)
t =

T

I
=

2p1

(m̄11 + m̄12p3)p1 + (m̄21 + m̄22p3)
(2.9)

To get the reflectivity R and transimissivity T it is sufficient to calculate

R = |r|2 T =
p3

p1

|t|2 (2.10)

Let us now turn our attention to an homogeneous dielectric film, which has ε, µ and
n =

√
εµ constants. Applying the equations 2.3 to this special case and denoting p =√

ε
µ

cos θi, we obtain

M =

(
cos(k0nz cos θ) − i

p
sin(k0nz cos θ)

−ip sin(k0nz cos θ) cos(k0nz cos θ)

)
(2.11)

Let us also assume the film of thickness h to be located between two homogeneous media
and all three media to be nonmagnetic, therefore with µ=1. We denote the three media
and their refractive index as in picture 2.1. Appling the characteristic matrix in eq 2.11
we obtain:

m′11 = m′22 = cos β m′12 = −i sin β

p2

m′21 = −ip2 sin β (2.12)

with β = 2π
λ
n2h cos θ and pi = ni cos θi. Remembering that the Fresnel coefficiens for

two homogeneous materials 1 and 2 are:

rs12 =
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2

rp12 =
n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2

(2.13)

ts12 =
2n1 cos θ1

n1 cos θ1 + n2 cos θ2

tp12 =
2n1 cos θ1

n2 cos θ1 + n1 cos θ2
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having s for the normal component and p for the parallel component to the plane of
incidence, with analogous expressions for rs,p23 and ts,p23 , we finally obtain: [16]

r123 =
r12 + r23e

2iβ

1 + r12r23e2iβ
t123 =

t12t23e
2iβ

1 + r12r23e2iβ
(2.14)

using for all the Fresnel coefficiens the same s or p form. The reflectivity and trasmis-
sivity are consequently given by:

R = |r|2 =
r2

12 + r2
23 + 2r12r23 cos 2β

1 + r2
12r

2
23 + 2r12r23 cos 2β

(2.15)

T =
p3

p1

|t|s2 =
n3 cos θ3

n1 cos θ1

t212t
2
23

1 + r2
12r

2
23 + 2r12r23 cos 2β

(2.16)

We have, as expected, R + T = 1. We also define Absorbance the quantity

A = − log10 T (2.17)

2.1.1 χ and σ from slab model

We end this section mentioning the attenuation through a medium of significant thickness
h, which is described by the extinction coefficient k. The wave description is identical
to ideal, non-attenuating materials but redefining the refractive index n = nideal − ik.
However, considering a nonmagnetic material with µ=1, we have n =

√
ε. This means

that ε is a complex number, composed by a real part ε1 and an imaginary part ε2 defined
such that n =

√
ε =
√
ε1 − iε2. In [15] Heinz et al. state that from ε1 and ε2 it is possible

to derive the electric susceptibility χ and conductivity σ through two important relations,
such that

χ = (ε1 − 1)h σ =
2πε2ε0ch

λ
(2.18)

with c the speed of light in vacuum. In presence of a monolayer material of known
thickness, by finding out its refractive index n and thus ε1 and ε2, it is possible to switch
between this classical model and the surface current model. However, the equivalence of
the models is based on the truthfullness of equations 2.18 which is not proved, and must
be verified or denied.

2.2 Surface current model

Let us consider a flat 2D crystal, composed of N atoms per cm2, with an atomic polar-
izability α. If we apply an electric field in the plane of the crystal a macroscopic dipole
moment arises and it is possible to define a density of polarisation ~P . If the electric
field is applied orthogonally to the 2D crystal, no effective macroscopic polarization is
created. Indeed, to have a macroscopic polarization, the microscopic dipoles need to be
aligned, to generate a macroscopic separation of charges. Let us also suppose that the
2D crystal is isotropic in its own plane. This hypothesis is realistic beacause of MoS2’s
and WS2’s simmetric in-plane structure, which doesn’t show any favourite axis. Let us
also assume also that ~P = ε0χ~E where ε0 is the vacuum permittivity and χ is the electric
susceptibility. Wherever the polarization in matter changes with time there is an electric
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current ~Jp , a genuine motion of charges. The connection between rate of change of

polarization and current density is ~Jp = ∂ ~P
∂t

. It is important to note that in passing from

a bulk to a 2D crystal the dimensions of ~P vary from C
m2 to C

m
, the dimensions of χ pass

from a pure number to meters and ~Jp becomes A
m

.
Let us first suppose that a horizontal 2D crystal is suspended in vacuum and that a
plane wave with eiwt time dependance falls onto it, thus having the refractive indexes
n1 = n2 = 1. The relation between the electric field ~E and the magnetic field ~H in the
incident, reflected and transmitted waves is Z0

~H = ŝ× ~E where ŝ is the Poynting versor
and Z0 is the impedance of vacuum. The boundary conditions are ẑ× ( ~E2− ~E1) = 0 and

ẑ × ( ~H2 − ~H1) = ~Jp where ẑ is the versor along the vertical z axis. Thus we have tree
conditions for s polarisation (on the left) and tree for p polarisation (on the right):

Ex,i + Ex,r = Ex,t Ey,i + Ey,r = Ey,t

Ex,i + Ex,r =
Px
ε0χ

Ey,i − Ey,r =
Py
ε0χ

(2.19)

Hx,i −Hx,r = Hx,t + iωPy Hy,i +Hy,r = Hy,t + iωPx

where i, r and t subscripts stand for incident, reflected and transmitted. Defining rs =
Er
Ep

, ts = Et
Ep

and rp = Hr
Hp

, tp = Ht
Hp

as the reflection and the transmission coefficients, we

have:

rs = − ikχ

ikχ+ 2 cos θi
rp =

ikχ cos θi
ikχ cos θi + 2

(2.20)

and ts = rs + 1, tp = 1 − rp, with θi being the angle of incidence. In this special
case, the reflectivity is Rs,p = |r2s,p|, the transmissivity is T s,p = |t2s,p|, and their sum
Rs,p + T s,p = 1 shows that there is no absorption.
Shall we now consider physical conducting media and not void. We must apply the Ohm’s
law ~J = σ ~E. We assume again that ~J is null or negligible in a direction orthogonal to
the crystal plane, and in-plane isotropy. The boundary conditions for ~H becomes now
ẑ × ( ~H2 − ~H1) = ~Jp + ~J . We also add to equation 2.19 two other conditions becoming
from Ohm’s law, the former for s polarisation and the latter for p polarisation:

Ex,i + Ex,r =
Jx
σ

Ey,i − Ey,r =
Jy
σ

(2.21)

And consequently we obtain:

rs = − ikχ+ Z0σ

ikχ+ Z0σ + 2 cos θi
rp =

(ikχ+ Z0σ) cos θi
(ikχ+ Z0σ) cos θi + 2

(2.22)

and having again and ts = rs + 1, tp = 1 − rp. As for a bulk material, conductivity is
connected with the transformation of part of the electromagnetic energy into heat. In
fact:

T s,p +Rs,p = 1− 4σZ0

4 + 4σZ0 + σ2Z2
0 + k2χ2

≈ 1− σZ0 (2.23)

Finally we are able to consider the reflection and the transmission coefficient for the case
of a 2D crystal at the interface of two different bulk media with refractive indexes n1
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and n2. The only difference is the relation between ~E and ~H in the incident, reflected
and transmitted waves:

Z0

n1

~Hi,r = ẑ × ~Ei,r
Z0

n2

~Ht = ẑ × ~Et (2.24)

We at last obtain:

rs =
n1 cos θi − n2 cos θt − ikχ− σZ0

n1 cos θi + n2 cos θt + ikχ+ σZ0

rp =
n2 cos θi − n1 cos θt + (ikχ+ σZ0) cos θi cos θt
n2 cos θi + n1 cos θt + (ikχ+ σZ0) cos θi cos θt

(2.25)

having consequentially [14] ts = rs + 1 and tp = rp n2 cos θi
n1 cos θt



Chapter 3

Ellipsometry

Let us consider a classical electromagnetic wave E1 on air inciding with an angle θ 6= 0
against a reflecting material, and E2 the reflected wave. Let us denote δ1 E1’s phase
difference between the parallel and perpendicular components to the plane of incidence
and δ2 the same phase difference between the analogous components of E2. Let us call
∆ the angle defined as

∆ = δ1 − δ2. (3.1)

Thus ∆ is the phase difference upon reflection and can vary from 0 to 360◦.
Moreover, the amplitude of both perpendicular and parallel components may change
upon reflection. Because of this, given from any optical model |rp| and |rs|, the ratios of
the reflected wave amplitude to the incoming wave amplitude respectively for the parallel
and perpendicular components, we define the angle Ψ as

tan Ψ =
|rp|
|rs|

(3.2)

The value of Ψ can vary from 0 to 90◦.
Now let us define the quantity ρ as the complex ratio of the total reflection coefficients,
that is

ρ =
rp

rs
. (3.3)

Then the Foundamental Equation of Ellipsometry follows from ρ’s definition, and is

ρ = tan Ψei∆ (3.4)

with i being the immaginary unit. From equations 3.4 and 3.2 we derive a second
definition of ∆ [17]

∆ = arg
rp

rs
. (3.5)

By performing ellipsometry measurements we get experimental values of Ψ and ∆,
as schematised in picture 3.2. We used the VASE ellipsometer made by J. A. Wool-
lam, NE, USA, kept in the Indutrial Engineering Department in via Marzolo 9, Padova
(PD). All measurements were made by prof. Alessandro Martucci always using the same
ellipsometer shown in picture 3.1.

12
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(a) From back (b) In profile

Figure 3.1: Pictures of the VASE ellipsometer

Figure 3.2: Scheme of the ellipsometer



Chapter 4

Measurements and data analysis

We obtained from different sources five samples of bidimensional material on subtrate,
divided in two specimen of WS2 and three specimen of MoS2. They are:

• Sample 1 and 2 of WS2 from IIT (Italian Institute of Technology) section of Pisa,
prepared by Camilla Coletti’s team

• Sample 1, 2 and 3 of MoS2 from King Abdullah University of Science and Tech-
nology

All five spicemens were prepared using CVD technique. They all are policrystalline
with area between 0.5 and 1 cm2.

4.1 Substrate characterisation

We obtained ellipsometry measurements for each single monolayer material substrate,
reported in figures 4.1 (b – d) and 4.2. Both samples of WS2 and samples 1 and 2
of MoS2 are on sapphire, while the last sample of MoS2 is on soda-lime glass. As our
substrates are of limited thickness with a rough end rather than endless, we obtained Ψ
at each different angle correcting the recfractive index n, given by the Sellmeier formula,
with an opportune addendum cα to best fit experimental data.

4.1.1 Soda-lime glass

We considered three strata, the first topless and the last bottomless both made of air
with nair ≈ 1.00028, and the middle one of thickness h = 1 mm made of soda-lime glass
with the refractive index given by the Sellmeier formula [18]:

nBK7(λ) =

√
1 +

1.03961212λ2

λ2 − 0.00600069867
+

0.231792344λ2

λ2 − 0.0200179144
+

1.01046945λ2

λ2 − 103.560653
(4.1)

This formula needs λ to be in nm. We used nBK7 in place of nSoda−lime because they are
experminetally equivalent in the λ range considered.
We then had the absorbance, defined in equation 2.17, from ellipsometry measurements
at normal incidence and used it to derive the absorption coefficient k by the Mathematica
algorithm FindRoot. At this point we interpolated the experimentals point dividing the
λ spectrum in three intervals: exponential, linear and parabolic. We didn’t impose any

14
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boundary condition (such as logaritmical derivative equality), thus having completely
free parameters. We have:

k(λ) =


el−hλ if 300nm ≤ λ < 336.1nm

q −mλ if 336.1nm ≤ λ < 356.7nm

aλ2 + bλ+ c if 356.7nm ≤ λ ≤ 900nm

(4.2)

where the parameters have values l = 5.4 ± 1, h = 0.0552 ± 0.0003 nm−1, q =
(1.85 ± 0.09)10−5, m = (5.0 ± 0.3)10−8 nm−1, a = (4.6 ± 0.2)10−12 nm−2, b = (5.4 ±
0.3)10−9 nm−1, c = (2.34 ± 0.07)10−6. Thus we put nSoda−lime(λ) = nSellmeierBK7 (λ) −
i k(λ) + cα and varied cα to best fit the experimental data of Ψ, calculating the theorical
Ψ using equation 3.2, rs and rp being respectively rs12 and rp12 of equation 2.13. We show
the results in the next table:

c35 -0.012
c50 0.002
c65 0

We did not consider ∆ as it is expected to be exactly 180◦ and difference between the
theorical value and the measure is lower than the experimental error, which is between
2◦ and 3◦.

(a) k (b) Ψ at 35◦

(c) Ψ at 50◦ (d) Ψ at 65◦

Figure 4.1: Experimental points and theorical interpolation for BK7
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4.1.2 Sapphire

We used the same model of Soda-lime with nSapphire given by its specific Sellmeier for-
mula:

nSapphire(λ) =

√
1 +

1.023789λ2

λ2 − 0.061448212
+

1.058264λ2

λ2 − 0.11069972
+

5.280792λ2

λ2 − 17.926562
(4.3)

We did not consider k as it is almost 0 when 300nm ≤ λ ≤ 900nm at room temperature
[18]. Thus, we put nSapphire(λ) = nSellmeierSapphire (λ) + cα and varing again cα we obtained the
results shown in the next table:

c50 -0.005
c65 0
c80 -0.011

(a) Ψ at 50◦ (b) Ψ at 65◦

(c) Ψ at 80◦

Figure 4.2: Experimental points and theorical interpolation for soda-lime

4.2 Measurements

We performed ellipsometry measurements on all samples of MoS2 and WS2, obtaining
experimental data of Ψ and ∆ at incident angle θ being 35◦, 50◦, 65◦ and 80◦. We also
did reflectance measurements on MoS2 sample 2 at θ= 50◦, 80◦. In the next sections we
are showing the experimental data.
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4.2.1 MoS2

We present the experimental data obtained in picture 4.3.

(a) Sample 1 at 50◦ (b) Sample 1 at 65◦

(c) Sample 1 at 80◦ (d) Sample 2 at 35◦

(e) Sample 2 at 50◦ (f) Sample 2 at 65◦
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(g) Sample 2 at 80◦ (h) Sample 3 at 35◦

(i) Sample 3 at 50◦ (j) Sample 3 at 65◦

(k) Sample 3 at 80◦
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(l) Reflectance of sample 2 at 50◦ (m) Reflectance of sample 2 at 80◦

Figure 4.3: MoS2 data measured

4.2.2 WS2

We present the experimental data obtained in picture 4.4.

(a) Sample 1 at 50◦ (b) Sample 1 at 65◦

(c) Sample 1 at 80◦ (d) Sample 2 at 35◦
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(e) Sample 2 at 50◦ (f) Sample 2 at 65◦

Figure 4.4: WS2 data measured

4.3 Data analysis and controntation with literature

We first applied the Surface Current model using equations 2.25 and implemented it
in the Mathematica notebook reported in section 6.1, using the algorithm FindRoot.
In this way we obtained our values of χ and σ from experimental data, all of them
showed in the next graphs. Right after, for MoS2 sample 2, we used χ and σ extracted
to calculate the reflectance theorical value, and confrontated it with the experimental
one. We then obtained the values of χ and σ from ε1 and ε2 using equations 2.14
and 2.18 of the slab model, implementing this in the Mathematica notebook in section 6.2.
Later, we prepared simultaneous plots to confrontate the results of the two different
models, assuming the thicknesses dMoS2 = 6.15 Å and dWS2 = 6.18 Å [15]. At last, we
confrontated our results of σ with the analougous results available in [15].

4.3.1 MoS2

We present our results in pictures 4.5, 4.6 and 4.7.

(a) Sample 1 at 50◦ (b) Sample 1 at 65◦
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(c) Sample 1 at 80◦ (d) Sample 2 at 35◦

(e) Sample 2 at 50◦ (f) Sample 2 at 65◦

(g) Sample 2 at 80◦ (h) Sample 3 at 35◦
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(i) Sample 3 at 50◦ (j) Sample 3 at 65◦

(k) Sample 3 at 80◦

(l) Reflectance of sample 2 at 50◦ (m) Reflectance of sample 2 at 80◦

Figure 4.5: MoS2 data extracted
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(a) Confrontation of χ (b) Confrontation of σ

(c) Difference between the two models ∆χ and ∆σ

Figure 4.6: Confrontation of slab and surface current model for Sample 3 of MoS2 at 65◦

Figure 4.7: Simultaneous plot of σ from surface current model and [15] for MoS2 sample
3

4.3.2 WS2

We present our results in pictures 4.8, 4.9 and 4.10.
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(a) Sample 1 at 50◦ (b) Sample 1 at 65◦

(c) Sample 1 at 80◦ (d) Sample 2 at 35◦

(e) Sample 2 at 50◦ (f) Sample 2 at 65◦

Figure 4.8: WS2 data extracted
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(a) Confrontation of χ (b) Confrontation of σ

Figure 4.9: Confrontation of slab and surface current model for Sample 2 of WS2 at 65◦

Figure 4.10: Simultaneous plot of σ from surface currentn model and [15] for WS2

4.4 Discussion

We have succesfully derived χ and σ using the surface current model, appling equations
2.25 and showing the results in pictures 4.5 and 4.8. From the confrontation between
the two models shown in pictures 4.6 and 4.9 a difference in both the σ and χ com-
putation arises. As for χ, the difference ∆χMoS2 ≈ 1.3 nm and ∆χWS2 ≈ 2 nm is
significant. However, these values are a mean as, for both materials, the ∆χ distribution
follows exactly the σ distribution. This suggests a contribution of ε2 in χ computiation
through equation 2.18. The same is true for ∆σ and, even if the difference ∆σ is much
lower, it is still detectable by the measurement and it is much greater than the esper-
imental error because the ∆σ distribution follows precisly the path of χ and it is not
random. The significant χ overstimation by the slab model and the slight difference of
σ computation show that the two models are not equivalent and that equations 2.18 are
wrong. We then stress the slab model dependance on three parameters (h, ε1 and ε2

or, equally, h,Re(n2) and Im(n2)) compared with the surface current model dependance
on only two parameters (χ and σ). Moreover, the monolayer thickness hMoS2 or hWS2 ,
which is a slab model parameter, may change between different structural models used,
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between molecule’s parts (hard core radius, s or p orbitals) and between different liter-
ature sources. The confrontations with the data available in [15] plotted in pictures 4.7
and 4.10 show a difference in the samples quality between MoS2 and WS2. The samples
1 and 2 of MoS2, which have not been plotted, follow Heinz’s sample’s walk but have
significantly disturbed values and are flat at 600 nm < λ < 670nm. These facts stress
their low quality. On the other hand, sample 3 bears a good accord with Heinz’s data
and a less fluctuating shape, demostrating its higher quality: in fact, this is our best
sample. Instead, WS2 samples both do not follow Heinz’s σ. Interestingly, sample 1 has
a good accord with Heinz’s data but doesn’t present the high peak at λ ≈ 610 nm, while
sample 2 has the mentioned peak but it is much higher than Heinz’s σ at lower λ. This
difference could mean that, while sample 1 is simply of low quality like samples 1 and 2
of MoS2, sample 2 may be a three layer sample, as its σ values are roughly three times
Heinz’s ones.
At last, the reflectance measures of MoS2 sample 2 shown in picture 4.5 (l – m) high-
light a poor accord at θ = 50◦, where both models slightly overstimate the experimental
points, and are unreadable at θ = 80◦. Both these facts can be caused by the sample’s
low quality.



Chapter 5

Conclusions

Because of the facts marked in the previous section, that are the significant ∆χ, the small
but detectable ∆σ, and the three-parameter rather than two-parameter dependance, we
conclude that the surface current model is not equivalent to the slab model. We have
also shown how to correctly derive χ and σ using the surface current model. Finally, we
highlight that while the slab model is a three dimensional model adapted to 2D materials,
the surface current model is a model specific for a 2D material physical system.
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Appendix A: Mathematica
notebooks

6.1 Computation of χ and σ from Ψ and ∆ using

Surface Current model

data = Import["infile.dat", "Table"] (*Expects file with 3 columns: lambda

in nm, Psi and Delta in degrees. Substitiute with actual file and path.*)

dim = Dimensions[data] (*column dimension to control the For loop below *)

solutions = (*Solution matrix*)

chi = 1.67 10^(-3)

sigma = 2.627 10^(-5) (*Realistic initial values for FindRoot*)

n1 = 1.0002772 (*Air refractive index*)

n2gen[lam ] := Sqrt[1 + 1.03961212 lam^2 /(lam^2 - 0.00600069867) + 0.231792344

lam^2 /(lam^2 - 0.0200179144) + 1.01046945 lam^2 /(lam^2 - 103.560653)] (*Glass

refractive index*)

(*n2gen[lam ] := Sqrt[1 + 1.023789 lam^2 /(lam^2 - 0.06144821^2) + 1.058264

lam^2 /(lam^2 - 0.1106997^2) + 5.280792 lam^2 /(lam^2 - 17.92656^2)] (*Sapphire

refractive index. Comment the one you don’t need. Remember that here lambda

is in micrometers, um*) *)

ci = Cos[35 Pi/180] (*Incident angle’s cosine. Put the one you need.*)

ctgen[lam ] := Sqrt[1 + n1^2 (ci^2 - 1)/(n2gen[lam])^2] (*Transmitted angle

cosine*)

eta = 376.7303135 (*Void impendance*)

For[i = 1, i <= dim[[1]], i++,

l = data[[i, 1]]*10^-3; (*Changing lambda in micrometers to n2gen function*)

k = 2 Pi/l; (*k definition in um^(-1)*)

n2 = n2gen[l] - 0.012; (*Put here the right corrective addendum*)

ct = ctgen[l];

Rs[x , s ] := (n1 ci - n2 ct - I k x - s eta)/(n1 ci + n2 ct + I k x + s eta);

Rp [x , s ] := (n2 ci - n1 ct + (I k x + s eta) ci ct)/(n2 ci + n1 ct + (I

k x + s eta) ci ct); (*Definitions of reflectivity. It’s possible put it

outside the loop.*)

If[data[[i, 3]] < 180, phase = 0, phase = 360]; (*Definition of phase to correct
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experimental Delta, and set it -180 < Delta < 180*)

sol = x, s /. FindRoot[180/Pi*ArcTan[ Abs[ Rp[x, s] /Rs[x, s]]] == data[[i,

2]], 180/Pi*Arg[ Rp[x, s] /Rs[x, s]] + phase == data[[i, 3]], x, chi, s, sigma

]; (*Solution algorithm*)

chi = sol[[1]]; (*Resetting initial condition*)

sigma = sol[[2]];

sol = Insert[sol, l*10^3, 1 ];

solutions = Append[solutions, sol]

]

Print[solutions]

Export["outfile.dat", solutions] (*Solution exportation*)

6.2 Computation of χ and σ from Ψ and ∆ using Slab

model

data = Import["infile.dat", "Table"] (*Expects file with 3 columns: lambda

in nm, Psi and Delta in degrees. Substitiute with actual file and path.*)

dim = Dimensions[data] (*column dimension to control the For loop below *)

solutions = (*Solution matrix*)

n1 = 1.0002772 (*Air refractive index*) n3gen[lam ] := Sqrt[1 + 1.03961212

lam^2/(lam^2 - 0.00600069867) + 0.231792344 lam^2/(lam^2 - 0.0200179144) +

1.01046945 lam^2/(lam^2 - 103.560653)] (*Glass refractive index*)

(*n3gen[lam ]:=Sqrt[1 + 1.023789 lam^2 /(lam^2 - 0.06144821^2) + 1.058264 lam^2

/(lam^2 - 0.1106997^2) + 5.280792 lam^2/(lam^2-17.92656^2)] (*Sapphire

refractive index. Comment the one you don’t need. Remember that here lambda

is in micrometers, um*) *)

h = 6.18 (*WS2 thickness in Angstrom*)

(*h = 6.15 (*MoS2 thickness in Angstrom, comment the one you don’t need*)

*)

c = 299792458 (*Speed of light in m/s*)

e0 = 8.854188*10^(-12)(*Vacuum permittivity in IS units*)

c1 = Cos[80 Pi/180] (*Incident angle’s cosine. Put the one you need.*)

i1 = 15

i2 = 15 (*Realistic initial values for FindRoot*)

Off[General::stop] (*Disable FindRoot’s option to hide any failure next the

third one*)

For[i = 1, i <= dim[[1]], i++,

l = data[[i, 1]]; (*lambda in nm*)

k = 2 Pi/(10 l); (*k definition in Angstrom^(-1)*)

n3 = n3gen[l 10^-3] - 0.0; (*refractive index of substratum with opportune

corrective addendum*)

n2[eps1 , eps2 ] := Sqrt[eps1 - I eps2]; (*MoS2 or WS2 refractive index.

Variables are eps1 and 2*) c2[eps1 , eps2 ] := Sqrt[1 + (n1/n2[eps1, eps2])^2

(c1^2 - 1)]; (*Refracted angle cosines*)

c3[eps1 , eps2 ] := Sqrt[1 + (n2[eps1, eps2]/n3)^2 (c2[eps1, eps2]^2 - 1)];
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rs12[eps1 , eps2 ] := (n1 c1 - n2[eps1, eps2] c2[eps1, eps2])/(n1 c1 + n2[eps1,

eps2] c2[eps1, eps2]); (*Definition of various Fresnel coefficients. They

could be defined also outside the loop*)

rp12[eps1 , eps2 ] := (n2[eps1, eps2] c1 - n1 c2[eps1, eps2])/(n2[eps1, eps2]

c1 + n1 c2[eps1, eps2]);

rs23[eps1 , eps2 ] := (n2[eps1, eps2] c2[eps1, eps2] - n3 c3[eps1, eps2])

/(n2[eps1, eps2] c2[eps1, eps2] + n3 c3[eps1, eps2]);

rp23[eps1 , eps2 ] := (n3 c2[eps1, eps2] - n2[eps1, eps2] c3[eps1, eps2]) /(n3

c2[eps1, eps2] + n2[eps1, eps2] c3[eps1, eps2]);

beta[eps1 , eps2 ] := k h n2[eps1, eps2]; (*Argument of the exponential*)

rp123[eps1 , eps2 ] := (rp12[eps1, eps2] + rp23[eps1, eps2] Exp[-2 I beta[eps1,

eps2]])/(1 + rp12[eps1, eps2] rp23[eps1, eps2] Exp[-2 I beta[eps1, eps2]]);

rs123[eps1 , eps2 ] := (rs12[eps1, eps2] + rs23[eps1, eps2] Exp[-2 I beta[eps1,

eps2]])/(1 + rs12[eps1, eps2] rs23[eps1, eps2] Exp[-2 I beta[eps1, eps2]]);

If[data[[i,3]] < 180, fase=0, fase=360]; (*Definition of phase to correct

experimental Delta, and set it -180 < Delta < 180*)

sol = eps1, eps2 /. FindRoot[180/Pi*ArcTan[Abs[rp123[eps1, eps2]/rs123[eps1,

eps2]]] == data[[i, 2]], 180/Pi*Arg[rp123[eps1, eps2]/rs123[eps1, eps2]] +

phase == data[[i, 3]], eps1, i1, eps2, i2]; (*Solution algorithm*)

i1 = sol[[1]]; (*Resetting initial condition*)

i2 = sol[[2]];

chi = (sol[[1]] - 1)*h*10^-4; (*calcolation of chi in um*)

sigma = 2 Pi c e0 sol[[2]] h/(l*10); (*calcolation of sigma in Siemens*)

sol = Insert[sol, data[[i, 3]] ,1];

sol = Insert[sol, data[[i, 2]], 1];

sol = Insert[sol, l, 1 ];

sol = Insert[sol, chi, 6];

sol = Insert[sol, sigma, 7];

solutions = Append[solutions, sol]

]

Print[solutions]

Export["outfile.dat", solutions] (*Solution exportation*)
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