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Introduction

The Cosmic Web describes the distribution of structures in the Universe from few Mpc up to
scales larger than hundreds of Mpc. It has a foam-like pattern and is composed of knots, filaments,
sheets and cosmic voids. The latter is the topic of this thesis.

In the last decades, Cosmic Microwave Background (CMB) experiments and galaxy survey
campaigns have highlighted this particular matter distribution, providing information about the
evolution and initial conditions from which the Universe has evolved in such an intricate pat-
tern (van de Weygaert and Schaap, 2009). It has been shown that the present cosmological distri-
bution of matter finds its origin in tiny density and velocity perturbations in the early Universe;
these perturbations have grown through gravitational instability leading to the formation of large-
scale structures (Peebles, 1980).

In particular, the WMAP (Bennett et al., 2013) and Planck (Planck Collaboration et al., 2018)
missions have allowed the scientific community to extract almost all possible information from
the physics of the CMB. In addition, recent galaxy surveys, such as SLOAN (Abolfathi et al.,
2018), BOSS (Alam et al., 2017) and VIPERS (Guzzo and The Vipers Team, 2013; Guzzo and
Vipers Team, 2017), have provided important knowledge about the evolution and dynamics of the
large scale structure (LSS) of the Universe.

On the one hand, such observations have led to the so-called concordance model of cosmol-
ogy, i.e. the currently accepted and most commonly adopted cosmological scenario, the ΛCDM
model. It fits with high level of accuracy the CMB, Supernovae, and Baryon Acoustic Oscilla-
tion data, and describes the Universe as a flat and expanding space-time governed by the laws of
General Relativity. Its evolution is dictated by the different constituents of the Universe, i.e. the
ordinary baryon matter (4.9%), the so-called cold dark matter (CDM) (26.8%), and the so-called
cosmological constant, Λ, (68.3%), supposed to represent the simplest form of dark energy, the
mysterious component of the Universe causing its recent accelerated expansion, whose origin and
nature are still unknown.

On the other hand, the discovery of neutrino oscillations demonstrates that at least two neu-
trino families must have a nonzero mass (Becker-Szendy et al., 1992; Fukuda et al., 1998; Ahmed
et al., 2004), evidence for beyond the standard model physics. Cosmological observables provide
stringent upper bounds on the sum of active neutrino masses,

∑3
i=1 mν,i (see e.g. Planck Collabo-

ration et al., 2018), and may soon determine the last missing parameter in the standard model.
Furthermore, future galaxy surveys, such as the ESA mission Euclid (Laureijs et al., 2011),

and the NASA mission WFIRST (Eifler et al., 2020), in combination with CMB data, will allow
a step forward in the knoedge of both the dark energy evolution and neutrino mass.

In this context, cosmic voids represent peculiar structures in the Cosmic Web, as they are
under-dense regions in the matter and galaxy distribution of the Universe, as well as the largest
structure observed up to now. It is this peculiar characteristic that makes voids a field of interest
for the study of the cosmological parameters, dark energy and dark matter. In fact, since they
extend up to hundred of Mpc, they are cosmological probes sensitive to large scale effects, as
dark energy and free streaming neutrinos. Due to their hot thermal velocities, massive neutrinos
are able to escape the gravitational field of dark matter structures, but are trapped inside very large
regions as cosmic voids.

In this thesis we study cosmic voids from maps of lensing convergence, κ, with the identifica-
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tion of the so-called VOLEs (VOids from LEnsing) (Davies et al., 2018) as under-dense regions
in the convergence field. The use of weak lensing convergence maps for the identification of
under-densities in the distribution of matter is a relatively new approach for the analysis of void
properties.

The staring point of this work is the exploitation of simulated lensing convergence maps,
obtained via ray-tracing (Calabrese et al., 2015) across the dark matter distribution of large cos-
mological simulations. Since the lensing convergence is the integral along the line-of-sight of
the dark matter distribution weighted by a geometrical kernel, the identification of voids as under-
dense κ regions maintains the nature of voids as being under-density in the total matter distribution
field, rather than in the galaxy field which could be affected by bias effects. Among the variety of
void finder algorithms present in the literature, we prefer to use an algorithm that directly exploit
the convergence field as a void tracer. In this thesis we adopt the tunnel finding method (Cautun
et al., 2018), modified in order to analyze convergence fields.

In this thesis we apply the VOLEs finder to a set of weak lensing maps obtained from the
Dark Energy and Massive Neutrino Universe (DEMNUni) cosmological simulations (Carbone
et al., 2016), in two different cases: the massless neutrinos scenario, which we call ΛCDM cos-
mology, and the massive neutrino scenario, which we call νΛCDM. For the latter, we consider
a total neutrino mass of Mν ≡

∑3
i=1 mν,i = 0.16 eV, slightly above the latest constraints from

Planck (Planck Collaboration et al., 2018).
In particular we will consider three different lensing probes, all assumed full-sky for simplic-

ity: an ideal CMB-lensing experiment (i.e. sources all located at redshift z = 1100), a weak
lensing ideal survey with sources all located at zs = 2, and a weak lensing survey where sources
follow the Euclid photometric galaxy redshift distribution. We will analyze such probes, iden-
tifying κ-peaks, and combining the so-called peak statistics with the tunnel finding algorithm as
void finder, to construct three lensing void catalogs for each of the two cosmological scenarios
considered.

This work is structured as follows. In Chapter 1 we introduce the ΛCDM cosmological model,
the equations governing the background evolution of the Universe, as well as basic concepts on
the clustering of matter perturbations. In Chapter 2 we introduce massive neutrinos, both from the
point of view of the Standard Model of particle physics, and from a cosmological point of view;
we report about the discovery of ν flavour oscillations, highlighting the need of a model that takes
into account a non vanishing mass for these particles. In Chapter 3 we introduce the concept
of gravitational lensing focusing in particular on the weak lensing and the different quantities
allowing us to quantify such effect. Chapter 4 is devoted to the description of cosmic voids,
their properties and their role in the context of gravitational lensing. In Chapter 5 we present our
lensing mock maps, and the data analysis pipeline. In Chapter 6, we report our results on lensing
void counts and profiles, as well as their redshift evolution in the ΛCDM cosmology, underlying
the difference among the three probes considered. In Chapter 7 we focus on the effect of massive
neutrinos and how they change void counts and profiles with respect to the massless neutrino case.
Finally, in the Conclusions we present our concluding remarks.
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Chapter 1

The Cosmological Framework

When the scientific interest towards the study of the Universe brought the necessity of a scientific
theory able to describe the whole Universe, it became clear that in order to pursue this goal a guid-
ing principle was needed; then, at the begins of the XXth century, the Cosmological Principle has
been introduced. This principle claims that on large enough scales the Universe can be consid-
ered homogeneous and isotropic from the point of view of a comoving observer(1). This means
that on such large scales (more precisely, on length scales larger than hundreds of Mpc) there is
not a preferred direction or orientation in the space. Although at first this was just a principle
introduced to simplify scientific theories, later on some observations confirmed this assumption
(Smoot, 1999). Nowadays it is thought that the model that best describes a Universe with these
components is the Λ Cold Dark Matter (CDM) model or ΛCDM model. The main components
of the present day Universe are:

• Dark Energy (∼ 68 %), it is responsible for the accelerated expansion of the Universe;

• Dark Matter (∼ 27 %), it is composed of non-interacting massive particles that have an
equation of state dust-like: p = wρ with w=0, whose nature has not been clarified yet;

• Baryonic Matter (∼ 5 %), it is the ordinary matter produced during the Big Bang Nucle-
osynthesis.

The ΛCDM model is a six free parameters model, this means that six parameters are needed
in order to parametrise the ΛCDM model. According to the Planck mission (Planck Collabora-
tion et al., 2018), combining Planck temperature with Planck lensing data, the values of these
parameters are written in Tab. 1.1:

(1) A comoving observer is an observer that moves with the cosmic flow.

H0[c] 67.66 ± 0.42
τ 0.0561±0.0071
ns 0.9665 ± 0.0038

ln(1010As) 3.047 ± 0.014
Ωbh2 0.02242 ± 0.00014
Ωmh2 0.14240 ± 0.00087

Table 1.1: Cosmological parameters associated to the ΛCDM model with their values from the Planck
mission.
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1.1 The Friedmann Robertson Walker metric

The model introduced to describe the Universe is based on Einstein’s equations of general rela-
tivity (GR):

Gµν = Rµν −
1
2

gµνR = 8πTµν =
1

M2
Pl

Tµν, (1.1)

where Gµν is the Einstein tensor relative to the geometric part (left-hand side) of Einstein’s equa-
tions, with Rµν and R being the Ricci scalar and the Ricci tensor of the spacetime; Tµν is the
stress energy tensor that describes the source of matter-energy of the spacetime and gµν is the
metric tensor that describes the geometric properties of spacetime. Thanks to the Cosmological
Principle the energy-momentum tensor from Eq. (1.1) can be written in a simple form

Tµν = (ρ + p)uµuν + pgµν. (1.2)

This is the expression of the energy-momentum tensor for a perfect fluid, a fluid with no
viscosity, where p is the isotropic pressure and uµ is the 4-velocity of the fluid. From a geometric
point of view our Universe can be described as a 4-dim spacetime with a set of symmetries
(the maximum number of symmetries a spacetime of this type can have is ten, as the Minkowski
spacetime). In the case of the cosmological model introduced, we have a 4-dimensional spacetime
that has a 3-dimensional maximally symmetric space, this means that it has the maximum number
of allowed symmetries. Spatial translations and rotations still remain as in the Minkowski case,
but not time translation, in fact the Universe we are considering evolves in time, so the assumption
of homogeneity is only in space and not in time. The spacetime metric describes the geometrical
properties of the Universe. For Minkowski spacetime the line element is expressed as(2):

ds2 = dt2 − dl2 = dt2 − dx2 − dy2 − dz2, (1.3)

in Cartesian coordinates, whereas in spherical coordinates it is:

ds2 = dt2 − dl2 = dt2 − dρ2 + ρ2(dθ2 + sin2 θdφ2). (1.4)

In the case of a Universe where the Cosmological Principle is valid, the most general expression
of the spacetime metric is the Robertson-Walker metric:

ds2 = dt2 − a(t)2
[

dr2

1 − Kr2 + r2
(
dθ2 + sin2 θdφ2

)]
, (1.5)

where a(t) is a function of the cosmic time called scale factor and tells us how the Universe is
expanding, r is the comoving spatial coordinate, θ and φ are the angular comoving coordinates and
K is an adimensional constant that refers to the curvature of the Universe. In principle the quantity
K can assume three different values that corresponds to three different classes of Universe: K = 0
we come back to the case of Minkowski spacetime and we have a flat Universe, K = 1 describes
a closed Universe and K = −1 is for an open Universe.

It is also possible to further simplify the Robertson-Walker metric introducing the concept of
conformal time: dt = a(η)dη:

ds2 = a(η)2
[
dη2 −

(
dr2

1 − Kr2 + r2(dθ2 + sin2 θdφ2)
)]
. (1.6)

Solving Einstein’s equations of spacetime assuming the line element of Eq.(1.5), we obtain the
first Friedmann equation that describes the rate of expansion of our Universe through the Hubble
rate H(t):

(2) We are working in natural units, with c=}=1
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H2(t) =

( ȧ
a

)2
=

1
3M2

Pl

ρ −
K
a2 , (1.7)

and the second Friedmann equation, called the acceleration equation:

ä
a

= −
1

6M2
Pl

(ρ + 3p) . (1.8)

From Eq. (1.8) we see that as long as (ρ+ 3p) > 0 the Universe is accelerating; since all fluids
we are familiar to satisfy this property, it is natural to expect a decelerating Universe, but it is not
what happens. In fact, observations of Type Ia supernovae (Riess et al., 1998; Perlmutter et al.,
1999) show instead evidences of an accelerated expanded Universe.

Finally, from the continuity equation of the stress-energy tensor

DµTµν = 0. (1.9)

it is possible to recover the third Friedmann equation:

ρ̇ + 3H(ρ + p) = 0. (1.10)

Introducing the concept of critical density ρc = 3M2
PlH

2, it is possible to express all densities of
the components by mean of a dimensionless unit called density parameter, Ωi, associated to each
component, where: Ωi(t) ≡ ρ(t)/ρc(t) and ΩTOT(t) =

∑
i Ωi(t).

Using Ωi(t) the first Friedmann equation (1.7) can be rewritten as:

H2(t) =
1

3M2
Pl

∑
i

ρi(t) −
K

a(t)2 , (1.11)

1 =
∑

i

Ωi(t) −
K

a(t)2H(t)2 =
∑

i

Ωi(t) + ΩK(t),

where ΩK(t) = −K/a(t)2H(t)2 is the parameter density of the curvature. We recover that
1 = ΩTOT(t) + ΩK(t) and if ΩTOT = 1 at any time, then K = 0, but if K = 0 then ΩTOT = 1
is valid for any value of the cosmic time t. Analysis of the CMB measurements combining
BOOMERaNG ((Masi, 2002)), Maxima (Balbi et al., 2001), CBI (Wang et al., 2002), WMAP (Ko-
matsu et al., 2009), and Planck (Planck Collaboration et al., 2018) data sets shows that ΩTOT ∼ 1,
this means that we are in an almost flat spacetime.

If we assume that the density of a fluid ρ is linked to its pressure p through an equation of
state (EoS):

p = wρ, (1.12)

it is possible to recover the simple scaling relation ρ vs a for each component of the Universe
starting from the continuity equation. We are interested in three different kinds of fluid (the three
main components of the present-day Universe) and each one of them will have a different EoS.

w =


1
3 radiation (γ and massless ν)
0 matter (ordinary but also dark matter)
−1 cosmological constant (it accounts for the dark energy content of the Universe)

The continuity equation can be rewritten as:

ρ(a) = ρ(ai)
(ai

a

)3(1+w)
. (1.13)
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The scaling relation will be:

ρ ∝


a−4 radiation
a−3 matter
constant cosmological constant

(1.14)

Keeping in mind this scaling relation and going back in time in the evolution history of the Uni-
verse, it is possible to identify three main eras through the correspondent values of the scale
factor:

• Dark Energy Domination: aΛ < a < a0,

• Matter Domination: aeq < a < aΛ,

• Radiation Domination: 0 < a < aeq.

1.2 The cosmological constant

From the acceleration equation
ä
a

= −
1

6 M2
Pl

(ρ + 3p) , (1.15)

it is clear that as long as the term ρ + 3p > 0 the Universe is decelerating.
Although at first a possible accelerated expansion of the Universe was excluded since all

fluids we are familiar to satisfy this inequality, at the end of the XX century two different groups
(Supernova Cosmology Project and High-Z Supernova Search Team) used type Ia supernovae as
standard candles to measure the expansion rate of the Universe at different distances and they both
found evidences for an accelerated expansion (Perlmutter et al., 1997; Riess et al., 1998).

Obviously this result brought new theories and elements in the physics of the Universe. A
possible solution to explain the observed acceleration is to assume the presence of a cosmological
constant Λ that appears in the Friedmann’s equations as follows:( ȧ

a

)2
=

1
3M2

Pl

ρ −
K
a2 +

Λ

3
, (1.16)

ä
a

= −
1

6 M2
Pl

(ρ + 3p) +
Λ

3
. (1.17)

If Λ > 0 is the dominant term, the right-hand side of the acceleration equation is positive and a
possible accelerating expansion can be explained.

Here, with the cosmological constant term Λ we are introducing also a new component into
the Universe beside the ordinary matter, the dark matter and the radiation component. This new
element is called dark energy and has a characteristic Equation of State p = wρ where w = −1.

We have already seen that in the case of a cosmological constant the energy density ρΛ remains
constant with the scale factor, so it does not change in time. This means that at some point in the
evolution history of the Universe the dark energy component became the dominant component and
it drives the present expansion of the Universe. Observations seem to show that the dominance of
this cosmological constant starts at z ∼ 1.

We refer to (Weinberg, 2000; Straumann, 2002) for some history reviews of the cosmological
constant problem and the nature of dark energy.
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1.3 The matter power spectrum

In order to explain the origin and the evolution of the cosmic structures, we have to take into
account primordial matter density perturbations δ(x). These perturbations came from quantum
fluctuations of the scalar field called inflaton that filled the Universe in the first stages of its
evolution. These density fluctuations, due to gravitational instability, became larger and larger
until they generate the cosmic structures we see today, as the Universe during the inflationary
period underwent a remarkable expansion of about 60-efolds (Kolb and Turner, 1990).

They can be considered quasi-Gaussian random fields and, as a consequence, can be treated
from a statistical point of view as if they were exactly Gaussian; this means that these fields
are defined by their mean < δ(x) > that is zero by definition and their covariance or two-point
correlation function ξ(r) = δ(x)δ(x + r). This field lives in a Robertson-Walker Universe, that
geometrically is a spacetime with the three-dimensional spatial component homogeneous and
isotropic, this property translates in a definition of a density fluctuation δ(x) homogeneous and
isotropic itself with the two-point correlation function that depends only on the r coordinate with
r = |x2 − x1|.

Moving to Fourier space:

δ(x) =
1

(2π)3

∫
d3keik·xδk, (1.18)

and the two-point correlation function will be:

ξ(r) =< δ(x)δ(x + r) >=
1

(2π)6

∫
d3k1

∫
d3k2ei(k1·x+k2·(x+r)) < δk1δk2 > . (1.19)

If the random field is homogeneous and isotropic, also its statistical ensemble will have the same
properties, this means that it is possible to write:

< δk1δk2 >= (2π)3δ(3)(k1 + k2)P(k), (1.20)

where the Dirac delta δ(3)(k1 + k2) ensures translation invariance and the function P(k) called
Power Spectrum guarantees rotational invariance.

It is possible to show that the power spectrum of our statistical system is simply the Fourier
transform of the two-point correlation function

ξ(r) =
1

(2π)3

∫
d3keik·rP(k), (1.21)

ξ(r) =< δ(x)δ(x + r) >=<
1

(2π)6

∫
d3k1

∫
d3k2eik1·xeik2·(xr)δk1δk2 > (1.22)

=
1

(2π)6

∫
d3k1

∫
d3k2eik1·xeik2·(xr)δk1δk2(2π)3δ3(k1 + k2)P(k) (1.23)

=
1

(2π)3

∫
d3k1e−ik1·rP(k) =

1
(2π)3

∫
d3k1eik1·rP(k). (1.24)

Moving from cartesian coordinates to spherical coordinates in Fourier space the explicit expres-
sion of the two-point correlation function will be function of k, θk and φk.

After an integration over the angles it will be:

ξ(r) =
1

2π2

∫
dkk3P(k)

sin(kr)
kr

. (1.25)

Now, we focus on the linear regime and study the evolution of density perturbations at this scale.
The equations that describe the evolution of a fluid inside a Universe with a non-static back-

ground (remember that Universe evolves) can be written as:

∂ρ

∂t
+ 3Hρ +

1
a
∇ · (ρv) = 0, (1.26)

9
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∂v
∂t

+ Hv +
1
a

(v · ∇x)v = −
1
a
∇xΦ, (1.27)

∇2
xΦ = 4πGa2δρ. (1.28)

Eq. (1.26) is the continuity equation, Eq. (1.27) is the Euler equation and Eq. (1.28) is Poisson’s
equation. H(t) is the Hubble constant, a(t) the scale factor and Φ is the Newtonian gravitational
potential and v is the peculiar velocity. We want to write these equation for the evolution of the
initial density fluctuation δ in the linear regime, this means that δ << 1 and we can linearise our
system.

δρ = ρ − ρ̄, (1.29)

and
ρ = (1 + δ)ρ̄. (1.30)

We obtain:
∂δ

∂t
+

1
a
∇x · v = 0, (1.31)

∂v
∂t

+ Hv = −
1
a
∇xΦ, (1.32)

∇2
xΦ = 4πGa2δρ̄. (1.33)

In order to find a solution to this system of equations we go to Fourier space where our vector
fields will be δ(k, t), v(k,t) and Φ(k,t).

Now, combining the three equations we get:

δ̈ + 2
ȧ
a
δ̇ − 4πGδρ̄ = 0. (1.34)

If we are in a matter-dominated Universe, then a(t) ∝ t2/3, H(t) = 2/3t and ρ̄ = 1/6πGt2 and it is
possible to rewrite the second order differential equation as:

δ̈ +
4
3t
δ̇ −

2
3t2 δ = 0. (1.35)

With a substitution we find two different solutions:

δ ∝

t2/3 ∝ a(t)
t−1 ∝ H(t)

(1.36)

In particular we introduce D+(t) that is the growing mode factor and D−(t) that is the decaying
mode factor and we have:

δ(x, t) = D+(t)δ(x) + D−(t)δ(x). (1.37)

Since D− ∝ t−1 it becomes negligible in the early stages of the evolution of the Universe, the
interesting term is D+(t) ∝ a(t) ∝ t2/3 that describes the growing mode of the initial density
perturbation. As these density perturbations are small, the linear regime approach is able to
explain their physical evolution; when the perturbations due to gravitational instability becomes
larger, the linear regime is no longer the right approach and we have to pass to the non-linear
regime in order to explain structure formation.
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1.4 Summary of Chapter 1

In this Chapter we have introduced the ΛCDM model, the standard model of Cosmology with
six free parameters. Although up to now this model seems to be the best model to describe the
Universe, it is not able to explain the presence of dark energy, whose nature still remains unknown.
We know that in its evolution history the Universe passes through different epochs: in its early
stages there was the inflationary period, a period of large expansion (we talk about an expansion
of 60 e-folds), then there was the radiation dominated era, the matter dominated era and finally
the dark energy dominated epoch that it is the one we are living into. Moreover, all the cosmic
structure we see (cluster of galaxies, filaments, cosmic voids) are all produced by tiny initial
density perturbations of the primordial Universe that grow under the effect of the gravitational
instability generating large under-dense regions as well as large over-dense ones. When these
perturbations are small, they can be explained by the equations of the linear regime, but when the
become bigger, we have to pass to the non-linear regime.
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Chapter 2

Massive neutrinos

The ΛCDM model introduced in Chapter 1 does not take into account massive neutrinos, these
particles are considered simply massless ones. Although at first the idea of massless neutrinos
was supported by the Standard Model, with the discovery of the oscillation of atmospheric neu-
trinos (Fukuda et al., 1998) and solar neutrinos, it became clear that an extension of the ΛCDM
model must be introduced in Cosmology as well as a theory beyond the Standard Model must
be introduced in Particle Physics. In fact, if we consider massive neutrinos in our model, these
particles will have a central role in the structure formation of the Universe and they will leave an
imprint on its evolution.

2.1 Massive neutrinos and the Standard Model

Neutrinos are the most peculiar particles among the ones described by the Standard Model of
particle physics. They were first hypothesized in the 1930’s in the context of the phenomenon of
natural radioactivity showed by some nuclei that, even in the absence of external perturbations,
emit radiation β (emission of an electron e− or a positron e+) (Bilenky, 2013; Dolgov, 2002).

At first it was thought that the decay process for an X atom proceeded this way:

A
Z X −→ A

Z+1X + e−. (2.1)

If this is the real process, then we expect to have monochromatic electrons, so we expect that all
e− emitted have the same exact energy as a consequence of energy and momentum conservation;
however, the spectrum observed was a continuum one. This means that, in order to preserve
energy and momentum conservation laws, a new particle must be introduced. Actually, the β-
decay process proceeds this way:

A
Z X −→ A

Z+1X + e−(+) + ν̄e(νe). (2.2)

Later, this new particle was called neutrino. According to the Standard Model, neutrinos are
massless spin 1/2 fermions with three flavours: νe(ν̄e), νµ(ν̄µ) and ντ(ν̄τ). At the end of the 1990’s
the Sudbury Neutrino Observatory (SNO) observed neutrino flavour oscillation: neutrinos change
flavours as they propagate through a medium (from the Sun toward the Earth or through the Earth
atmosphere) and this is possible only if they have masses that are different from zero (see Fig. 2.1
by (Ahmad et al., 2002)).

From the experiments on atmospheric and solar neutrinos we obtain the difference of squared
neutrino masses and not the mass relative to each ν flavour:

• atmospheric neutrinos can be understood in terms of the oscillation νµ ⇐⇒ ντ leading to:
(Nakamura and Petkov, 2016)

∆m2
32 ' (2.43 ± 0.06)10−3 (eV)2 (2.3)
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Figure 2.1: νe measurement of SNO (red) and the total flux measurement (blue). In green the Super-
Kamiokande solar measurements based on νe scattering are shown (Ahmad et al., 2002). The measure-
ments all intersect in one point and that is the evidence of the presence of (νµ+ντ) flux.

• solar neutrinos can be understood in terms of the oscillation νe ⇐⇒ νµ leading to: (Naka-
mura and Petkov, 2016)

∆m2
21 '

(
7.54+0.26

−0.22

)
10−5 (eV)2 (2.4)

This brings to two different neutrino mass hierarchy shown in Fig. 2.2.

Figure 2.2: Here are shown the two different mass hierarchy: the normal (NH) on the left, and the inverse
one (IH) on the right (Patterson, 2015)

The oscillations we have described give information about mass splittings among neutrinos,
but we still do not have any bound on the overall mass scale. Actually, the current experimental
results are consistent with at least one massless states and two massive ones. The two different
hierarchy bring to two different lower bounds for neutrino masses (Esteban et al., 2017):

3∑
i=1

mν,i > 0.056(0.095) eV. (2.5)

According to Choudhury and Hannestad (2020), combining data sets from CMB temperature data
from Planck 2015, Baryon Acoustic Oscillations measurements from SDSS-III BOSS DR12, the
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Type Ia supernovae (SNe Ia) dat aset from Pantheon Sample, the upper bound on neutrino mass
in the ΛCDM+

∑3
i=1 mν,i cosmological model with three massive active neutrinos is

3∑
i=1

mν,i < 0.152 eV (95%CL). (2.6)

2.2 Massive neutrinos and Cosmology

In the primordial Universe at high temperatures (much higher than the temperatures that are ex-
plored in collider experiments) all the particle species are in thermal equilibrium with a thermal
bath and the thermalisation is reached through collisions, scattering processes between particles.
However, when the temperature of the Universe goes below the mass value of a certain particle,
the projected density of that particle is Maxwell-Boltzmann suppressed and that species decou-
pled from the thermal bath. Quantitatively, the projected density of a particle species i in thermal
equilibrium is expressed by Eq. (2.7)

ni = gi
ζ(3)
π2 T 3

i

1 (BE)
3
4 (FD)

(2.7)

whereas the projected density of the same particle species after the decoupling epoch is expressed
by Eq. (2.8),

ni = gi

(miTi

2π

)3/2
exp(−(mi − µi)/Ti). (2.8)

The number of collision Ncoll is the quantity that makes us understand if a particle is in thermal
equilibrium or not:

Ncoll(T ) '
Γ(T )
H(T )

, (2.9)

where H(T ) is the Hubble constant at a certain temperature T and Γ(T ) is the collision rate of a
particle species. If Ncoll > 1 the particle species is in thermal equilibrium with a thermal bath and
collisions allow the thermalisation, on the contrary if Ncoll < 1 there are not enough collisions and
without thermal equilibrium the particle species decoupled from the thermal bath. In the early
stages of the evolution of the Universe, at temperatures above the MeV scales, neutrinos have
been continuously produced via weak interactions and scattering processes mediated by weak
interactions as well kept them in thermal equilibrium. Neutrino decoupling took place when

Γν(TD) ' H(TD) (2.10)

and in this case
Γν(TD)
H(TD)

'

( TD

1 MeV

)3
. (2.11)

This mean that at a temperature Tν ' 1 MeV neutrinos decoupled from the thermal bath and from
that time on they free streamed through the Universe. Neutrinos decoupled when they were still
ultra-relativistic particles and their distribution function followed the Fermi-Dirac statistic:

fν(p) =
1

e
p

aTν + 1
. (2.12)

After that moment the free-streamed until the present time. At T= Te ' 0.511 MeV there was
the electron/positron decoupling, this moment can be considered a key moment in the evolution
history of the Universe. In fact, above Te photons and neutrinos have the same temperature even
if they are decoupled particles, but for T < Te the effective number degrees of freedom of the
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Universe changed and thus also the temperature of the two particle species changed. In particular,
we can prove that

Tν
Tγ

=

(
4
11

)1/3

, (2.13)

and Eq. (2.13) allows the calculation of the present day temperature of neutrino background. The
redshift at which neutrinos became non-relativistic particles is:

1 + zν(mν,i) ' 1890
mν,i

1eV
, (2.14)

and that corresponds to the moment at which the temperature of the Universe dropped below their
mass. The neutrino total density today, written in terms of critical density, is

Ων =
ρ0
ν

ρ0
crit

=

∑3
i=1 mν,i

93.14h2eV
, (2.15)

here h is the Hubble constant expressed in units of 100 kms−1Mpc−1.

2.3 The effect of massive neutrinos on structure formation

The discovery of the neutrino flavour oscillation represents the observational evidence that neu-
trinos have actually a mass that is different from zero; this evidence opens a new scientific inves-
tigation toward the measurements of neutrino mass through cosmological observations.

In fact, the common way in particle physics to measure effects of neutrino masses on its mass
range ∆mν is studying β-decays, however this method does not give the hoped results in the small
mass range we are considering. Hence the necessity to shift toward cosmological observations,
where even the smallest possible mass has a distinguishable impact on the total matter power
spectrum. Massive neutrinos leave fundamental imprints on cosmological observations and on
cosmic structure formation history that can be used to constrain neutrino properties themselves,
in fact finite masses of ν cause a characteristic suppression in the growth of structure formation
on scales below the ν free-streaming scale (Lesgourgues and Pastor, 2006, 2012, 2014; Blas et al.,
2014).

Generally speaking, cosmology is sensitive to two main neutrino properties: their density,
that is related to the number of active species, and their masses (or total mass). The method
used to study neutrino properties and their impact on cosmic structure formation is the theory
of cosmological perturbation; in this theory each component of the Universe (CDM, baryons
and neutrinos) has attached a small value of density contrast δi with respect to the cosmological
background and this density value is used in the perturbative expansion. Obviously, different
values of δi mean different evolution.

However, perturbation theory in presence of massive neutrinos can be considered slightly
more difficult than perturbation theory in the case of CDM alone; in fact in the case of CDM
domination, the expansion parameter is solely the amplitude of the CDM perturbations, whereas
in this cosmological model with massive neutrinos added, we have to take into account the com-
bination of CDM and baryons and neutrinos themselves (Saito et al., 2009).

After the moment of thermal decoupling from the thermal bath, neutrinos free-streamed as
a collision-less particle fluid with a particular velocity that corresponds to the thermal veloc-
ity (Soler et al., 2009):

vth =
< p >

m
'

3T 0
ν

m

(a0

a

)
, (2.16)

where T 0
ν is the present-day neutrino temperature obtained from Eq. (2.13). The typical scale

associated to neutrinos is the free-streaming scale kFS

kFS = 0.82

√
ΩΛ + Ωm(1 + z)3

(1 + z)2

( mν,i

1eV

)
hMpc−1. (2.17)
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From Eq. (2.17) it is possible to recover also the neutrino free-streaming wavelength:

λFS(mν,i) = a
2π
kFS

. (2.18)

For neutrinos becoming non-relativistic during matter domination epoch, kFS,com = kFS/a passes

Figure 2.3: Matter power spectrum P(k) in three cases: ΛCDM without neutrinos, a ΛCDM model with
massless neutrinos fν = 0 and a model νΛCDM with three massive neutrinos and fν=0.1. The impact of
the mass of neutrinos on the matter power spectrum is clearly visible: the effect of the shift in the time
equality and the reduced Cold Dark Matter fluctuation growth has a consequent attenuation of small-scale
perturbations for k > knr (Lesgourgues and Pastor, 2006).

through a minimum at kNR:

kNR ' 0.018Ω
1/2
m

( mν,i

1eV

)1/2
hMpc−1. (2.19)

The free-streaming causes a damping of small-scale neutrino density fluctuations but it introduces
also a back-reaction effect of damping of metric perturbations too on these scales. At scales larger
that kNR neutrinos behave like purely CDM. Coming back to the perturbative approach described
in the previous Chapter: the density contrast of the total matter component of the Universe is:

δm =
δρCDM + δρν + δρb

ρ̄m
, (2.20)

while, if we introduce the corresponding fractional contributions to the matter density fi, it be-
comes:

δm = fCDM+bδCDM+b + fνδν, (2.21)

with fCDM+b = (1 − fν). The fractional contribution to the density parameter in the case of
neutrinos is

fν =
Ων0

Ωm0
=

∑3
i=1 mν,i

94.1Ων0h2eV
. (2.22)

The expression of the total matter power spectrum Pmm(k) =< δm(k)δm(k) > in the case of interest
will be:

Pmm(k) = f 2
CDM+bPCDM+b(k) + 2 fCDM+b fνPL

CDM+b,ν(k) + f 2
ν PL

ν (k), (2.23)
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or, using the fact that fCDM+b = (1 − fν):

Pmm(k) = (1 − fν)2PCDM+b(k) + 2(1 − fν) fνPL
CDM+b,ν(k) + f 2

ν PL
ν (k). (2.24)

where the apex "L" means that we are considering just the linear order contribution of massive
neutrinos, although they have an impact on the non-linear scale, and PCDM+b,ν is the cross spec-
trum of CDM + b and νs. The factor fν in Eq. (2.24) appears to be very small in realistic models.
Neutrinos affect the matter power spectrum on the linear growth rate of cosmic structure (Les-
gourgues and Pastor, 2006; Saito et al., 2009).

The effect of this scale is that for:

• k < kNR neutrinos cluster with CDM and baryons;

• k > kNR the growth rate of CDM is suppressed due to lack of neutrino perturbations (that
causes a weaker gravitational force) that at those scales are dumped.

For the scale of the matter power spectrum Pmm(k):

Pmm(k) =

PCDM+b k < kFS

(1 − fν)2PCDM+b k > kFS
(2.25)

Fig. 2.3 shows the behaviour of the matter power spectrum P(k) in the case of ΛCDM cosmology
without neutrinos, ΛCDM cosmology with massless neutrinos and a νΛCDM cosmology with the
three active massive species, highlighting the impact of massive neutrinos on mass distribution.

2.4 Summary of Chapter 2

Neutrinos are considered the most peculiar particles among fermions. At first they were thought
to be massless particles, however at the end of the XX century thanks to the observations of SNO
the neutrino flavour oscillation was detected. This detection was the direct probe of the massive
nature of these particles, so it brought along the necessity of a theory beyond the standard model
of particle physics and a theory that takes into account a cosmological model with massive ν. We
have taken into account just the linear order contribution of neutrinos to the total matter power
spectrum and we have seen how on particular scales neutrinos can influence in a distinguishable
way the cosmic structure evolution.
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Chapter 3

Gravitational Lensing

Photons travel along null geodesics of the spacetime metric described by ds2=0, and the presence
of sources of mass/energy in their path induces deflections in the direction of the light bundles.
This phenomenon of gravitational light deflection is called Gravitational Lensing (GL) and it is
well described in the context of General Relativity. Light from distant galaxies is deflected on its
way toward the observer through an inhomogeneous Universe and light bundles are differentially
distorted by tidal fields of the Large Scale Structure components. The interesting property of the
gravitational lensing is that it can be considered as a probe of the total matter (ie dark matter and
visible matter) content of the Universe without having to take into account dark matter probes.

In this Chapter we introduce the basic concepts of gravitational lensing through a general
relativity approach and then we focus on the Weak Gravitational Lensing (WL) case in the ap-
proximation of weak field and small light deflection angle. In full generality, the main difference
between weak gravitational lensing and strong gravitational lensing is that in the first case the net
effect is the production of small distortions in the shape of the light sources, whereas in the case
of strong gravitational lensing multiple images and Einstein rings of the sources are produced.
Moreover, since in the weak field approximation the distortion of the image of a single source is
very small, we need a large number of sources in order to be able to detect WL effects. An exam-
ple of the gravitational lensing effect on the SdSS J 1004+4112 cluster is shown in Fig 3.1 (Sharon
et al., 2020).

Figure 3.1: Image showing the cluster SdSS J 1004+4112 (Sharon et al., 2020) with arcs, multiply imaged
galaxies and quadruply lensed quasars (Bartelmann, 2010).
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3.1 The weak gravitational lensing effect

We have already said that the gravitational lensing by LSS is a probe of the total matter content of
the Universe, however it is considered also the most unbiased method that gives a complete picture
of the same total matter distribution and its evolution at different redshift values (Van Waerbeke
and Mellier, 2003). This is also the reason why this method has been widely used in the course
of the last decade for tracing cosmic voids and their evolution history as we will see in Chapter 5.
Other techniques such as the ones that use galaxies as tracers or the ones that take into account
cosmic velocity fields introduce non-indifferent biases; however the gravitational lensing by LSS
is sensible to non-linear power spectrum predictions or to other corrections and that introduces
some difficulties in its application.

In Fig. 3.2 a light bundle with two of its light rays is shown; these light-rays L and L′ move
from a distant source to an observer and are continuously deflected by the inhomogeneities they
encounter along their path. First of all we take into account the characteristics of a background
homogeneous Universe where the Cosmological Principle is valid. The line element is

ds2 = dt2 − a(t)2
[

dr2

1 − Kr2 + r2dΩ2
]
, (3.1)

where r is the comoving distance, K is curvature parameter related to the geometry of the space-
time and a(t) is the scale factor and it can be written also as

a =
1

1 + z
, (3.2)

with z being the redshift value.
Remember that a0 = a(t = t0) = 1 today.
We can introduce also a new variable χ such that:

χ =

arcsin(r) K = +1,
arcsinh(r) K = −1.

(3.3)

This way, the expression of the line element can be rewritten as:

ds2 = dt2 − a(t)2


(
dχ2 + sin2 χdΩ2

)
K = +1(

dχ2 + sinh2 χdΩ2
)

K = −1(
dr2 + r2dΩ2

)
K = 0

(3.4)

And in full generality
ds2 = dt2 − a(t)2

[
dχ2 + f 2

K(χ)dΩ2)
]
, (3.5)

ds2 = a(η)2
[
−dη2 + dχ2 + f 2

K(χ)dΩ2
]
, (3.6)

with η conformal time, χ comoving distance and fK(χ) angular diameter distance.
As it can be seen in Fig. 3.2 L and L′ are two light rays and dθ is the angular vector between the

two. If the Universe at the scales we are considering was homogeneous and there were no cosmic
structures, then the physical distance between the two light bundles would be ξ = fK(χs)dθ,
however in their propagation through the cosmic medium photons encounter inhomogeneities
such as knots, filaments, voids and cluster of galaxies, that are all fundamental components of the
Cosmic Web. Therefore, the expression of the physical distance between the two light rays of the
bundle must take into account the presence of these inhomogeneities that causes an infinitesimal
relative displacement between L and L′.

In particular, in the presence of inhomogeneities we will have a Newtonian potential Φ differ-
ent from zero and the line element associated to the spacetime where photons propagate will have
a different expression in the presence of local and weak perturbations:

ds2 = a2(η)
[
−(1 + 2φ)dη2 + (1 − 2φ)(dχ2 + f 2

K(χ)dΩ2)
]
, (3.7)
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Figure 3.2: Two light rays L and L′ moving form a source at χ = χs toward a distant observer at χ = 0
through a inhomogeneous spacetime (Van Waerbeke and Mellier, 2003).

with
φ =

Φ

c2 , (3.8)

(we use natural units, so c2 = 1 and φ = Φ).
If the perturbations are local they can be considered as embedded in a flat Universe where

fK(χ) ∼ χ.
Thus, the new expression of the line element will be:

ds̃2 = −(1 + 2φ)dη2 + (1 − 2φ)d~χ2. (3.9)

Starting from the line element written in Eq. (3.9) it is possible to recover Einstein’s equations by
mean of the introduction of vielbeins, that make the metric of the spacetime locally Minkowskian.
In this case

θ0 = (1 + φ)dη, (3.10)

θi = (1 − φ)dri. (3.11)

Through the vielbeins written above we compute the spin connection of the spacetime ωi, the
Riemann tensor or curvature tensor and the Ricci tensor Ri j and Ricci scalar R. If we combine
homogeneous and local contributions, the inhomogeneous propagation equation of a bundle of
light with comoving bundle dimension ξi will be:(

d2

dχ2 + K
)
ξi = −2∂iφ, (3.12)

where K is, as usual, the expression of the curvature. Eq. (3.12) is the equation of the propagation
of the light bundle that has to be resolved to obtain the equation for the distortion of the light
bundle (Bartelmann, 2010),

ξi(χ) = fK(χ)θi − 2
∫ χ

0
dχ′ fK(χ − χ′)∂iφ(ξ j(χ′), χ′). (3.13)

In these calculations we use the Born’s approximation, this means that we have to introduce
an integration along the line of sight of the unperturbed photon path. Although this is just an
integration, it seems to well fit the observational data. We integrate from the observer position to
the position of a source at coordinate χs and defining ξi(χs) = fK(χs)βi, from Eq. (3.13):

βi = θi − 2
∫ χs

0
dχ′

fK(χs − χ
′)

fK(χs)
∂iφ( fK(χ′)θ j, χ′). (3.14)
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The reduced deflection angle is defined as:

αi(θ j) B θi − 2
∫ χs

0
dr′

fK(χs − χ
′)

fK(χs)
∂iφ( fK(χ′)θ j, χ′), (3.15)

and it is the difference between the angular separation of two light rays in unperturbed and per-
turbed Universe at comoving distance χ. Combining both equation we obtain the expression of
the lens equation:

βi = θi − αi(θ j). (3.16)

From the definition of reduced deflection angle, it is possible to introduce the concept of lensing
potential, that is a basic concept of gravitational lensing. First of all we define:

α(θ j) = ∇θψ(θ j). (3.17)

So the reduced deflection angle is simply the angular gradient on the sphere of the lensing poten-
tial, whose expression in:

ψ(θ j) = 2
∫ χs

0
dr′

fK(χs − χ
′)

fK(χs) fK(χ′)
φ( fK(χ′)θ j, χ′). (3.18)

Physically, the lensing potential assigns a number to each point of the observer sky S2, it is a map

ψ : S2 −→ R (3.19)

p 7−→ ψ(p) (3.20)

where p is a random point in the observer sky.
From the definition of α can recover the convergence κ that is (Bartelmann, 2010):

κ(θi) =
1
2
∇θ ·α(θi) . (3.21)

The process of assigning a value of each point of the sky introduces a map φ that sends each
point of the observer sky to the surface of a sphere where all the sources are located:

φ : S2 −→ S2 (3.22)

p 7−→ φ(p) (3.23)

The differential Dφ describes how a source may change and be deformed by the lens mapping.
The elements of these matrix are:

Dφi
j = Ai

j =
∂βi

∂θ j = δi
j −

∂αi

∂θ j = δi
j −

∂2ψ

∂θi∂θ j , (3.24)

and
Ai

j(θ) = δi
j − 2

∫ χs

0
dχ′

fK(χs − χ
′)

fK(χ′) fK(χs)
φi
, j( fK(χ′)θ j, χ′), (3.25)

with Ai
j amplification (magnification) matrix. From a geometrical point of view, the meaning of

this matrix can be understood from Fig. 3.3.
The amplification matrix depends on the values of the convergence field κ and the shear field

γ and all these quantities contain important cosmological information. Obviously, if there are no
inhomogeneities in the path of the photons, then

Ai
j = δi

j, (3.26)
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Figure 3.3: Effect of κ (convergence), γ (shear) and ω (rotation) on the displacement of two test particles
1 and 2 placed on a test ring (Van Waerbeke and Mellier, 2003).

with the Newtonian gravitational potential Φ = 0; however, this is not a real description of what
happens along the path of a light-bundle. The deformations that occur on to a light bundle can be
expressed after an integration along the line of sight as:

Ai
j =

(
1 − κ 0

0 1 − κ

)
−

(
γ1 γ2
γ2 −γ1

)
(3.27)

κ =
1
2

Tr(Ai
j), (3.28)

γ = γ1 + iγ2, (3.29)

γ1 =
1
2

(A1
1 − A2

2), (3.30)

γ2 = A1
2 = A2

1. (3.31)

In the weak field approximation κ << 1 and γ << 1. Practically, the convergence κ induces a
change in the size of a lensed galaxy, whereas the shear introduces distortions in the shape of the
same lensed galaxy, as shown in Fig. 3.4.

Figure 3.4: Effect of convergence only (left panel) and of the convergence, κ, combined with the shear,
γ, (right panel) on the shape of a source of photons. Dot-dashed lines represent the source in its original
shape (ie. a circle), while solid lines show the impact of a WL field.
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3.2 Convergence and cosmic shear

We have seen that the gravitational lensing phenomenon is a probe of the total matter content of
the Universe. From a cosmological point of view the most used method to investigate the structure
and the evolution of the Universe is the cosmic shear technique of WL, a method based on the
measurements of weak distortions induced on background galaxies by photons propagating and
interacting with the inhomogeneities of the Cosmic Web, Fig. 3.5 (Refregier, 2003). It is easy to
understand what is the main difference between the cosmic shear method and other methods used
to probe cosmological properties of the Universe: while the latter relies on the detection of the
distribution of luminous sources, the WL based method uses deflections of light-bundles to trace
the total matter content of the Universe. And this direct detection of the distribution of matter
is useful to constrain cosmological parameters. Coming back to the explicit expression of the

Figure 3.5: Effect of WL by LSS. Light-bundles from distant galaxies (right) travel to an observer (left) as
they are deflected by intervening LSS of the Universe (middle). The result is a distortion in the observed
shapes of the background galaxies. These distortions are on the order of a few percent in amplitude and
can be measured giving a direct map of the distribution of mass in the Universe (Refregier, 2003).

amplification matrix A, we have seen that this matrix depends directly on the convergence κ that
physically is the projected mass along the line of sight and it describes the isotropic dilation of
the sources; A depends also on the complex shear γ, that quantifies the distortions of the sources
along an axis, and it has also a part associated to a rotation ω of the image, but this term vanishes
at first order approximation. Moreover, the gravitational potential Φ is related to the fluctuations
of the density contrast δ through the Poisson’s equation:

∇2Φ = 4πGρm, (3.32)

with ρ energy density of the Universe. It is possible to introduce the quantity δ that is the density
contrast defined as:

δ(~x) =
ρ(~x) − ρ̄

ρ̄
. (3.33)

If we recall that the density parameter associated to the total energy density of the Universe is
Ωm = ρ/ρcrit and that ρcrit = 3H2

0/8πG = 3H2
0 M2

Pl, then we can rewrite Poisson’s equation as:

∇2Φ =
3
2

H2
0Ωm(1 + z)δ. (3.34)

Combining together the explicit expression of the convergence κ in Eq. (3.28) and the expression
of the lensing potential we have that:

κ(ξ j) =

∫ χs

0
dχ′

fK(χ′) fK(χs − χ
′)

fK(χs)
∂ξi∂ξ

i
φ(ξ j, χ′), (3.35)
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where the partial derivative is done with respect to the comoving radial distance between two
light-rays of the bundle and in the direction perpendicular to the line of sight. Finally, combining
together Eq. (3.35) and Poisson’s equation Eq. (3.32)

κ(θi) = 4πG
∫ χs

0
dχ′

fK(χ′) fK(χs − χ
′)

fK(χs)
ρ( fK(χ′)θi, χ′). (3.36)

Using Eq. (3.34) instead:

κ(zs) =
3Ωm H2

0

2

∫ χs

0
dχ′

fK(χ′) fK(χs − χ
′)

fK(χs)
(1 + z)δ(χ′). (3.37)

We have shown that the convergence κ is the weighed surface-mass density of the lensing matter
inhomogeneities and that WL allows the measurement of the projected density field along the line
of sight.

3.3 Summary of Chapter 3

In this Chapter we have introduced the phenomenon of gravitational lensing that can be described
in the context of General Relativity. This phenomenon consists in the deviation of light rays as
they encounter mass/energy sources along their path, in cosmological context, these sources are
simply the structures of the Cosmic Web (cluster of galaxies, filaments, voids). Gravitational
lensing can show up in the form of

• Strong Gravitational Lensing, in this case multiple images of the source are seen;

• Weak Gravitational Lensing, in this case we do not see multiple images of one source, but
just a distortion of its image.

The values that allow the quantification of this distortion mechanism are the convergence κ that
describes the isotropic stretching of the source and the shear γ that describes its distortion along
the ξ axis, that is the axis perpendicular to the line of sight.
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Chapter 4

Cosmic Voids

The cosmic matter distribution on scales of hundreds of Mpc displays a characteristics foam-like
pattern, called Cosmic Web. Galaxies and mass on such large scale are arranged in elongated
filaments, knots, sheet-like walls and voids, that are vast under-dense regions. A representation
of the Cosmic Web can be seen in Fig. 4.1.

Figure 4.1: SDSS distribution of local galaxies (www.sdss3.org/science/). Under-dense regions of
galaxies, i.e. cosmic voids, are clearly visible.

The investigation of this spatial distribution of matter can give us information about both the
physical forces at work and the conditions under which the Universe evolved in a morphology
like the one we observe. In this Chapter we will consider and analyse the properties of Cosmic
Voids, that constitute the major component in the galaxy distribution volume.

4.1 Cosmic voids in cosmology

Cosmic voids are under-dense regions of the large scale (from ten up to hundred of Mpc) Universe
surrounded by the other components of the Cosmic Web; their property of being a low density en-
vironment implies that voids are slightly affected by complicated non-linear gravitational effects,
differently to what happens in over-dense regions as the clusters of galaxies. The scientific interest
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toward the study of cosmic voids began with the observation and the analysis of the first galaxy
surveys and with the discovery of the first dramatic specimen: the Boötes Void, the emptiest re-
gion in the known Universe (van de Weygaert and Platen, 2011). Since that discovery, voids have
been considered among the main interesting features of the Cosmic Web with a key role in the
spatial distribution of matter in the Universe (Gruen et al., 2016; Brouwer et al., 2018). It can be
wrongly thought that voids are simple vacant spaces, however they contain a complex multi-level
hierarchical dark matter substructure that every void finding algorithm should take into account.
This means that the fact that voids are objects largely dominated by dark matter, coupled with the
fact that voids undergo simple dynamics, make them a unique probe of cosmological parameters
as well as interesting regions for studying astrophysical phenomena. In particular matter distri-
bution inside voids is sensitive to the sum of neutrino masses and to different theories of gravity.
The latter is caused by the fact that, since voids are low density environments of the Cosmic Web,
the screening mechanism associated to modified gravity models does not take place.

4.1.1 Formation and evolution of voids

Studying the matter distribution and evolution in the Universe with voids makes highlights how
the moment of formation of the first voids represents the transition scale at which density pertur-
bations have decoupled from the Hubble flow and contracted into the structural features of the
Cosmic Web (van de Weygaert and Platen, 2011). One property of cosmic voids found in the
first observations of galaxy surveys as well as in the first N-body simulations is a net repulsive
force inside them exerted over the surroundings. This property underlines the key role of voids
in the evolution of matter distribution and the formation of filaments and sheet-like walls due to
squeezing of matter. In Fig. 4.2 it is possible to see snapshots of evolution of a single void in a
ΛCDM scenario.

From these snapshots of void evolution history we can recover some of their main properties.
First of all, because of the net repulsive force inside voids and the outward flow of matter, they
tend to expand with respect to the cosmic background and this expansion is faster than the Hubble
flow; as a result, density inside voids decreases until, in a perfect ideal situation of an isolated
spherical void, it would reach the value of δ = −1, that corresponds to emptiness in terms of
matter content. Secondly, as the mass inside voids continuously moves outward, the mass inside
voids becomes more and more uniform, giving rise to a sort of low-density Friedmann-Robertson-
Walker Universe inside the void itself. As matter moves toward the exterior of the under-density
and accumulates on the boundaries, its peculiar gravitational acceleration decreases, resulting in
the formation of the usual Cosmic Web structures: filaments and sheet-like walls. As the outflow
of matter increases, substructures inside the void decrease. This means that it is not possible for
massive object to form and evolve inside large voids; this fact explains also the reason why we see
a shift of the mass spectrum of dark halos toward small masses. Actually, from a physical point
of view, we will never encounter an isolated and perfectly spherical void, however this type of
approximation leads to a better understanding of the basic concepts of the formation and evolution
of real cosmic voids. Therefore, if we consider the evolution of an isolated and spherical voids, it
proceeds as described before and the result of this evolution will be an increasingly empty void.

In the context of massive neutrino cosmologies, mainly three-dimensional distribution of
voids have been considered, in particular, Massara et al. (2015); Kreisch et al. (2019); Schus-
ter et al. (2019) have probed the effect of different massive neutrino cosmology on cosmic void
properties and statistics using the DEMNUNi simulations using the VIDE (Sutter et al., 2015)
algorithm to define a void.
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Figure 4.2: Simulation of the evolution of a cosmic void at different time steps (scale factor from top to
bottom, a = 0.05, 0.15, 0.35, 0.55, 0.75 and 1.0) in a ΛCDM scenario (van de Weygaert and Platen, 2011).

4.2 Algorithms of void finding

We have said that cosmic voids are under-dense regions of the Megaparsec Universe and they are
surrounded by an intricate network of DM halos and their galaxies.

Since voids represent a pristine environment of the Universe and their analysis can put con-
straints on cosmological parameters, several algorithms for the identification of cosmic voids have
been introduced.

From a theoretical point of view, voids are simply low density regions in the large-scale matter
field. However, because the full mass distribution is not easily observable, observational studies
typically identify voids using the galaxy distribution (Davies et al., 2018).

Several void finders can be found in the literature: Voronoi tessellation and Watershed meth-
ods (Platen et al., 2007), Delaunay triangulation (Zhao et al., 2016) and others; the majority of
them are applied to data obtained from surveys and simulations and they use galaxies with spec-
troscopic redshifts to define voids.
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Beside them, also galaxies with photometric redshifts (photo-z’s) have been introduced in
the literature. These redshifts are far less precise than the correspondent spectroscopic ones and
when they are applied to our data the void-finding process needs to be slightly modified in order
to overcome the smearing in the line-of-sight position of the tracer galaxies (Sánchez et al., 2017).

The spectroscopic surveys have the disadvantage that are expensive in terms of time and may
be affected by limited depth, incompleteness or they may suffer from selection effects. On the
contrary photometric surveys such as SDSS (York et al., 2000) and LSST (Refregier, 2003), for
example, are preferable since they are more complete and they are almost unaffected by selection
bias; however, due to their limited resolution in the positions of the galaxies on the line of sight,
they do not provide a complete 3D information of the galaxy distribution.

What are the main properties of the voids identified from photometric redshift tracers?
If this voids have the size of the photo-z error or if they are even smaller, they will no be seen

by the algorithm. Moreover, due to photo-z scatter, it will find spurious voids. It can be deduced
that all the algorithms that work with photometric redshift surveys must take into account all
these information in order to pursue a complete analysis of voids. The Dark Energy Survey, for
example, is a photometric redshift survey that covers about one eight of the sky imaging about
300 million galaxies in 5 broadband filters up to redshift z = 1.4 (Nadathur et al., 2017).

We have seen that the majority of void finders identify voids using galaxies as tracers. How-
ever, due to the sparsity of these types of tracers (Neyrinck et al., 2014), there is a complex
relation between visible matter and such cosmic voids. In particular, galaxy voids seem to be less
underdense than they would be if identified from the total matter distribution. Furthermore, it can
be very difficult to test cosmological parameters from voids identified from simulated galaxies in
cosmological parameters that could also weaken the lensing signal.

This is the reason why some algorithms of void finding have been introduced in the literature
and these void finders identify cosmic void from lensing convergence maps.

During the past decades the gravitational lensing field has been widely studied and various
observations have proved the existence of strong, weak and microlensing. It has been observed
that matter between the source and the observer acts like a converging lens on light rays leading
to an image splitting, magnification and distortion of the source. This is what happens in the case
of intervening matter concentration on the photon paths. But, what do we can say in the case of
intervening under-dense regions, the so called voids? Actually, voids do affect the propagation of
light bundles, so it is possible to use the gravitational lensing as an identification method for voids.
In particular, a light ray passing through an under-dense region is deflected away from its center
because it is attracted by matter accumulation on the walls, on void boundaries. It is necessary
to take into account the effect of voids in lensing since voids are large under-dense regions of the
Cosmic Web and they constitute the 70% of the volume of the Universe.

(Krause et al., 2013) demonstrates that the matter density profile of cosmic voids in the red-
shift range 0.4 < zl < 0.6 can be constrained from the average lensing signal of stacked voids,
both from the convergence profile κ(r) and from the tangential shear signal γt(r); thus lensing
maps play an important role in the analysis of the properties of cosmic voids. The technique
of void stacking allows to achieve a larger significance in measuring the lensing signals induced
by smaller voids. In Fig.4.3 we see the results obtained by (Krause et al., 2013) with the void
stacking method.

These plots show that convergence and shear signals can measure and identify the extent of
walls, structures at the boundary of voids.

However, the ellipsoidal shape of individual voids will smooth the over-dense ridges, if each
single void has a However, if individual voids have sharp overdense ones.

In this work we will use an algorithm of void finding that identifies cosmic voids from sim-
ulated convergence maps; we will also use, among the other CMB-lensing convergence maps, a
convergence maps with a Euclid-like photometric redshift distribution that will help us to under-
stand the properties of lensing voids at lower redshifts.
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Figure 4.3: Impact of void density profile on lensing signal (Krause et al., 2013).

4.3 Summary of Chapter 4

In this Chapter we have introduced the Cosmic Web and we have presented one of their most
prominent elements: cosmic voids. We have said that cosmic voids are regions of the Universe
characterised by having a low density environment and this property makes them a unique probe
of cosmological parameters as well as interesting elements for the study of the modified gravity
theory. We have briefly introduced the basic notions of the evolution history of a void and how in
our theory we used to simplify their structure and their interaction with the surrounding environ-
ment. Finally we have combined the analysis of cosmic voids with the concept of WL trying to
underline from a theoretical point of view what are the main elements that we need to study voids
identified in lensing convergence maps.
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Chapter 5

Simulated data and analysis pipeline

The goal of this thesis is studying the evolution of number densities and profiles of voids identified
in WL maps via the so-called κ-peak statistics. We will consider two different cosmological
scenarios: the first one where neutrinos are considered massless particles, which we call the
ΛCDM model of the Universe; the second one where neutrinos have a mass different from zero
(in our case fixed at Mν=0.16 eV), which we call the νΛCDM model of the Universe.

In order to pursue this aim we will use mock data from cosmological simulations, which are
able to reproduce the nonlinear evolution of the Universe together with its properties in different
cosmological scenarios. In this context we will exploit the Dark Energy and Massive Neutrino
Universe (DEMNUni) cosmological simulations (Carbone et al., 2016), and the lensing maps
obtained via direct ray-tracing across their dark matter distribution as provided by the Lens2Hat
code (Calabrese et al., 2015; Fabbian et al., 2018; Hilbert et al., 2020).

5.1 The DEMNUni cosmological simulations

The DEMNUni simulations have been produced using a modified version of the tree particle
mesh-smoothed particle hydrodynamics code GADGET-3 which includes massive neutrinos as a
particle component. In particular, this code follows the evolution of CDM alone (ΛCDM scenario)
or the evolution of CDM plus massive neutrinos particles (νΛCDM scenario) treating them as
collisionless species. The simulations are characterized by a starting redshift, zin = 99, and a
comoving volume of (2h−1Gpc)3 filled with 20833 CDM particles and 20833 massive neutrino
particles in the νΛCDM scenario(1).

The baseline cosmology of the DEMNUni suite implements the cosmological parameters
from the Planck-13 data analysis (Planck Collaboration et al., 2014), namely a flat ΛCDM model
generalised to a νΛCDM framework by changing only the value of the sum of the three active
neutrino masses Mν:

Mν =

3∑
i=1

mν,i = (0.0, 0.16, 0.32, 0.53) eV, (5.1)

where Ωm and the amplitude of primordial curvature perturbations, As, are kept fixed. In this
work we will consider only the cases Mν = 0, 0.16 eV. For each simulation, 63 particle snapshots
have been produced in the redshift range z = [0, 99]. From the latter full-sky lightcones have been
constructed in order to produce different lensing maps as described in the next section.

(1) Baryon physics is not included in the DEMNUni simulation suite, due to the expensive computational costs.
However, recent studies found out that baryon effects are mostly independent of cosmological parameters and
from neutrino masses in particular (Mummery et al., 2017).
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5.2 Lensing map making procedure

The lensing observable maps are extracted with a post-processing procedure acting on the N-body
snapshots to create a full-sky lightcone. This procedure was developed to perform high-resolution
CMB lensing simulations (Calabrese et al., 2015; Fabbian et al., 2018) in order to implement a
multiple lens ray-tracing algorithm in spherical coordinates on the full sky.

The current version of the code reconstructs a full-sky, backward lightcone around an observer
placed in the center, using the particle snapshots out to the comoving distance of the highest
redshift available from the simulation, following Calabrese et al. (2015). To overcome the finite
size of an N-body simulation box, the code replicates the box volume the number of times in space
necessary to fill the entire volume between the observer and the source plane. Moreover, the code
can randomize the particle positions, as described in (Carbone et al., 2008, 2009), throughout flips
and shifts, to minimize any numerical artifacts due to the repetition of the same structures along
the line of sight.

The backward lightcone is then sliced into 63 full-sky spherical shells with the following
scheme: the median comoving distance spanned by each shell coincides with the comoving dis-
tance at the redshift of each N-body snapshot. Any particle inside each of these shells is projected
onto 2D spherical maps; the resulting surface mass density Σ on each sphere is thus defined on a
two-dimensional grid. For each pixel of the i-th sphere one has

Σ(i)(θ) =
n mX

Apix
, (5.2)

where n is the number of particles in the pixel, Apix is the pixel area in steradians and mX is the
particle mass of type X (dark matter, or neutrino) from the N-body simulation in each pixel. For
this work, the code produces a full-sky convergence map on a HEALPix(2) http://healpix.
sourceforge.net grid (Gorski et al., 1999) with Nside = 4096, which corresponds to a pixel
resolution of 0.85 arcmin. Finally, the lensing convergence of a source plane at redshift zs is
computed in the Born approximation as the weighted sum of surfaces mass density, accordingly
to the discretized form of Eq.(3.37).

The angular position of the center of each HEALPix pixel coincides with the direction of
propagation of the rays in the Born approximation. Several lensing observables can be then con-
structed simply by changing the source distance (or redshift zs), which will affect the geometrical
weight in the sum of Eq. (3.37).

For the simulated CMB-lensing signal the integration up to a lens redshift z = 99 is able to
capture ∼ 99% of the power. In this thesis we will consider different probes, i.e. CMB-lensing
convergence maps with zs = 1100 and lens-planes up to z = 99, weak-lensing convergence maps
with sources all located at the same redshift zs = 2, as well as a Euclid photometric redshift
distribution of galaxies (Laureijs et al., 2011).

In Fig. 5.1 we show some examples of full-sky lensing-convergence maps for these three
probes, both in the massless and massive neutrino cases. In the next chapters we will be more
quantitative. Here, qualitatively its difficult to appreciate any difference from a first visual inspec-
tion. However, we can still infer the suppression of matter perturbations (enclosed in κ) due to
free-streaming massive neutrinos, especially at low redshifts where they are non-relativistic. In
fact, this is evident from the smaller κ-range in the map color bar for the νΛCMD scenario as
compared to the ΛCMD one, in the case of the WL(zs = 2) and Euclid convergence maps.

The need of introducing a pixelization technique goes back to the first satellite missions aimed
at measuring the CMB anisotropies, such as the NASA Wilkinson Microwave Anisotropy probe
(WMAP) (Bennett et al., 2013) and the Planck mission (Planck Collaboration et al., 2018). These
missions produced massive data-sets for the construction of full-sky maps of the microwave sky

(2) The Hierarchical Equal Area isoLatitude Pixelisation (HEALPix) of a 2-sphere is a general class of spherical
projections, sharing several key properties, which map the 2-sphere to the Euclidean plane
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Figure 5.1: Examples of full-sky κ-maps with HEALPix data structure where Nside=4096 and a nest or-
dering has been chosen.
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with few arcminutes of angular resolution, giving rise to the necessity of creating a mathemat-
ical structure able to support a discretization of functions defined on a sphere with a suitable
resolution, and able to provide a fast and ready-to-use statistical analysis of cosmological and
astrophysical data. Three are the main HEALPix characteristics:

• The sphere is tessellated into quadrilaterals of equal area and the lowest resolution of a
HEALPix map consists in the subdivision of the 2-sphere into twelve quadrilaterals. Ob-
viously, the resolution of a pixelization of the sky increases by division of each pixel into
other four as can be seen in Fig. 5.2;

Figure 5.2: A simple image showing how the increasing pixel resolution changes the pixelization of a
sphere (Gorski et al., 1999).

• all pixel areas are identical for a given resolution;

• all pixels are distributed on lines of constant latitude.

The resolution of the HEALPix maps is fixed choosing a value of Nside which defines the num-
ber of divisions along the side of a base-resolution pixel that is needed to reach a desired high-
resolution partition. From a geometrical point of view, two are the numbering schemes for the
pixels: the NEST ordering, where the pixel indices are arranged in twelve tree structures, and the
RING ordering, where each pixel is placed on the map moving down from the north to the south
pole along the iso-latitude ring. Since the NEST ordering with its tree structure allows the user to
implement all the computational routines involving nearest-neighbour searches, in this work we
will use this type of ordering scheme. The total number of pixels of a HEALPix map is given by
Npix = 12 ∗ N2

side.

35



Lensing voids with peak statistics in massive neutrino cosmologies

5.3 The VOLEs void finder

There are several types of void finding algorithms that start from different input data and search
for voids inside them. In this work we use a new type of void finding algorithm, the so called
VOids from LEnsing (VOLEs) void finder. As the name suggests, it is used to find cosmic voids
starting from lensing maps projected onto 2D Cartesian planes. Weak lensing measurements using
upcoming large area and deep imaging surveys such as Euclid (Laureijs et al., 2011) and LSST
(Tyson, 2002) will provide the possibility to constraint the profile of voids and to have information
about their total matter content and evolution in time.

Why is it interesting to move our investigation from measurements directly performed on
the galaxy density field to measurement performed, instead, on the lensing convergence field?
As we already mentioned, voids correspond to low density regions in the large-scale matter eld
distribution; however, since the full mass distribution is difficult to observe, observational studies
typically identify voids using the galaxy distribution. Here there is a problem: due to the sparsity
of galaxy tracers and their bias the relation between matter and voids identified by galaxies is
quite complicated, with galaxy voids being less under-dense than would be if identied via the full
matter density eld (Davies et al., 2018).

The lensing convergence field represents the projected line-of-sight matter density field weighted
by the lensing kernel, therefore the identified under-densities correspond to voids in this projected
field. As a consequence, using weak lensing maps to identify voids provides the chance of re-
ducing possible galaxy bias effects and, at the same time, maintains the nature of voids of being
under-density regions in the total matter field.

The void finder algorithm exploited in this thesis uses flat-sky WL maps as input data, and
follows the so-called tunnel finding algorithm adapted to this type of data using convergence
peaks as tracers. The steps followed by the algorithm are the following:

• First it projects full-sky κ-maps onto 2D cartesian grids;

• Second, it identifies κ-peaks in the projected maps via a function of the Lenstools pack-
age(3) called LocatePeaks, providing the location of each κ-peak in the map as well as its
amplitude. The found κ-peaks are the tracers of the lensing voids;

• Finally, the core part of the algorithm consists in the identification of the largest circles that
are devoid of any κ-peak. These largest circles in the 2D maps correspond to tunnels of
the tunnel algorithm applied to 3D maps. The tunnels are from a physical point of view
elongated line-of-sight regions that intersect one or more under-dense regions of the space
without passing through overdense regions (Cautun et al., 2018). If we project our full-sky
maps on to a 2d Cartesian plane, tunnels will we circles devoid of tracers for the voids.
The identification of these circles proceeds via a Delaunay tessellation: the vertices of the
triangles constructed in the convergence maps are located in the position of the κ-peaks
previously identified; by definition, the circumcircle of every Delaunay triangle does not
contain any κ-peak. Therefore, each circumcircle is a void candidate, with its radius R
being the candidate void radius RV, and its center being the candidate void center (xc, yc).

It is interesting to compare the results obtained by (Davies et al., 2018) using the VOLEs
finder with the results from other void finder techniques. In this way we are able to understand
the main differences between the identified voids, and why weak lensing can be a prominent
method for the cosmic void research field.

In Fig. 5.3 we can see both the κ-profiles and the γ-profiles of voids found with the VOLEs
finder. The image on the right of Fig. 5.3 compares the γ-profiles obtained with the VOLEs
finder to void profiles obtained via other void finders implemented in previous works, all of them
working directly with matter density fields. They are:

(3) https://lenstools.readthedocs.io/en/latest/
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Figure 5.3: LEFT: Stacked κ-profiles of WL voids for different values (νcut = 1, 2, 3) of the Signal to
Noise Ratio (SNR), ν ≡ κ/σ, where σ is the standard deviation of the smoothed convergence maps. Lines
with different colours show the average profile of voids in catalogs with galaxy shape noise (GSN) (solid
lines) and without GSN (dashed lines). RIGHT: Stacked γ-profiles of WL voids for different values of the
SNR. Lines with different colours show the average profile of voids in catalogs with GSN (solid lines) and
without GSN (dashed lines). Other black lines correspond to the shear profile of under-densities identified
other void finder strategies, as explained in the text (Davies et al., 2018).

• the 3D Watershed Void Finder (WVF) (Platen et al., 2007): voids are assumed to be simply
basins in the large scale density field of matter or matter-tracers, with no a priori assump-
tions or constraints about their sizes, shapes or minimum value of the under-density. It
proceeds via the construction of a Delaunay Tessellation Field Estimator as the tunnel al-
gorithm adapted for voids of the density field, then it constructs a segmentation of the
smoothed density field itself into watershed basins, and finally density minima are identi-
fied;

• the 2D throughs: 2d throughs have a definition very similar to 2d-tunnels; throughs are
represented as elongated line-of-sight under-dense regions, however they have all the same
radius and contain a low number of galaxies;

• 2D tunnels: in this case the procedure of void finding is very similar to the one used in this
thesis but it has been applied to galaxy fields instead of lensing maps.

It is possible to see that in the case of voids found by the VOLEs finder the maximum value
of the tangential shear is larger than the one found with the other algorithms. This is because the
shear profile is obtained from lensing maps and, as we said before, the lensing signal is directly
related to the total matter distribution along the line of sight.

5.4 From full-sky to flat-sky

Figure 5.4: Procedure of partitioning full-sky maps into non-overlapping 10x10 deg2 flat-sky square
patches (Davies et al., 2019).
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Figure 5.5: Flat-sky projections of convergence full-sky maps from the DEMNUni simulations, for differ-
ent sources, both in the ΛCDM (left panels) and the νΛCDM scenarios (right panels). The coordinates are
in angular degrees.
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The 2D tunnel-finding algorithm of VOLEs uses as input data lensing maps in the flat-sky
approximation with a Cartesian pixelization. However, the ray-tracing Lens2Hat code, applied
to the DEMNUni simulations, generates full-sky maps with the HEALPix pixelization. As a
consequence, we need to perform a partitioning of the HEALPIx full-sky maps into smaller and
non-overlapping Cartesian flat-sky maps, in order to be able to apply the VOLEs finder to our
simulated data. The procedure is shown in Fig. 5.4. We choose to make the partitioning on
10x10 deg2 flat-sky square patches.

To this aim, first a coarse HEALPix vector corresponding to Nside = 4 is initialized. With
this resolution the pixel area is 215 deg2, and the total number of pixels Npix = 192. Next, the
algorithm assigns each pixel in the full-sky simulated map to the coarser pixel it is enclosed by.
In this way a low resolution map is generated with a number of pixel equal to 192, where each
pixel is now the coarse pixel that contains the simulated data of the original map. Then a plane
tangent at the center of each coarse pixel is defined, and a Cartesian projection of the data in the
coarse pixel onto this tangent plane is performed. Finally, from such projections, flat square maps
of (10x10) deg2 are extracted, with their centers corresponding to the centers of the coarse pixels.

In Fig. 5.5 we show some examples of projected sections obtained from the simulated full-
sky maps for the three lensing probes considered in this work: CMB-lensing, WL(zs = 2), and
weak lensing with a Euclid photometric redshift distribution. Contrary to the full-sky maps, here
the visual inspection allows us to observe qualitative the effect of massive neutrinos on structure
formation. In fact, the maps in the νΛCDM scenario appear less bright than in the ΛCDM case,
which means that perturbations in the κ field are smoother. This is confirmed also from the
different κ-ranges in the color bars. Similarly, looking closely at the WL(zs = 2) and Euclid
lensing maps, in the massless neutrino case (left side) we can observe peaks larger and brighter
than in the massive neutrino scenario (right).

5.5 Summary of Chapter 5

In this Chapter we have described the simulated data and the numerical procedures needed to
perform the analyses presented in this thesis, i.e. pursue a detailed study of lensing voids in the
massless and massive neutrino cosmological scenarios.

First of all, we have described the DEMNUni simulations and the Lens2Hat ray-tracing pro-
cedure providing the set of full-sky lensing maps, which are our raw data, i.e. the starting point
of our void analysis. We also introduced HEALPix, the tool that allows us to easily handle such
maps.

As a second step, we have explained the VOLEs finder procedure that we use in our analysis.
Third, we have shown how we move from full-sky maps with Healpix pixelization to flat-sky

square patches with a 2D-Cartesian pixelization, thanks to the algorithm implemented by Davies
et al. (2019).

Finally, we have shown some examples of full- and flat-sky maps for the three probes consid-
ered in this work: CMB-lensing, WL(zs = 2), and Eulcid weak lensing, stressing the qualitative
differences between the massless and massive neutrino cases, that we are able to infer from a first
visual inspection of the maps.
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Chapter 6

Lensing voids in the massless neutrino
scenario

In this chapter we will focus on the analysis of simulated lensing voids in the massless neutrino
case. We will study how the different probes considered in this work (CMB-lensing, weak lens-
ing with sources at zs = 2, and Euclid weak lensing) are sensitive to voids of different radius and
depth. Furthermore, we will investigate the void redshift evolution. In fact, thanks to our sim-
ulated data, we are able to analyse the integrated lensing signal in redshift bins, and understand
how κ-peak counts and void profiles evolve in redshift, with different behaviors depending on the
considered probe.

6.1 The extraction of convergence peaks

We make use of different full-sky maps as input to our analysis in the ΛCDM cosmology. We
consider maps of CMB-lensing, WL(zs = 2) maps, and Euclid convergence mock maps. After
verifying that the algorithms presented in Chapter 5 work properly, we focus on the scientific
exploitation of the produced lensing void catalogs.

Since one of our goals is the study of the void redshift evolution, we consider different redshift
bins, and sum up together the full-sky CMB-lensing κ-maps described in Section 5.2. In this way
we construct spherical shells around the observer with a thickness in redshift able to provide a
fair sample of lensing voids in each redshift bin, and study how they evolve.

The considered redshift ranges are shown in Tab. 6.1. We will make the same choice in
Chapter 7, in order to compare the void evolution between the massless and massive neutrino
scenarios.

z1 z2 z3 z4 z5 z6

19 < z < 99 12 < z < 15 5 < z < 11 2.5 < z < 4 1 < z < 2 0.5 < z < 1

Table 6.1: Redshift bins chosen for the study of the void redshift evolution.

Convergence peaks are maxima of the lensing convergence, κ, field and in this analysis are
used as tracers of local matter under-densities.

Before extracting the peaks, we proceed with the application of a Gaussian smoothing filter
on each convergence maps. The peaks number and their spatial distribution are both affected by
the smoothing scale we choose to apply, meaning that larger the smoothing scale is, larger is the
number of low amplitude peaks washed out by the filter.

We apply a smoothing scale of θs=2.5 arcmin on the maps, that Davies et al. (2018) finds to
be the optimal Gaussian filter able to suppress the galaxy shape noise without over-smoothing,
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and we maintain the same filter throughout our analysis.
As mentioned before, convergence peaks are identified using a Lenstools function called Lo-

cate Peaks (Petri, 2016) that identifies in the maps perturbation in κ whose amplitudes are greater
than their eight neighbours. These for us are the so-called κ-peaks.

Using this tool, for a given convergence map we produce several κ-peak catalogs by selecting
different values of the threshold for the SNR, ν, defined as:

ν ≡ SNR ≡
κ

σ
, (6.1)

where σ is the standard deviation of the convergence map. In this work we will adopt the follow-
ing thresholds: ν > νcut = 1, 2, 3.

In Tab. 6.2 we report, for the massless neutrino case, the values of the mean standard devi-
ation of the convergence for the three probes considered in this work, averaged over all the 192
projected flat-sky patches. As expected, given the same redshift range covered, its values for Eu-
clid lensing and WL(zs=2) are very similar, with a difference of ∼ 6% between the two, while
for CMB-lensing the mean convergence standard deviation is larger by ∼ 14% with respect to the
other probes at lower redshifts.

σCMB 0.051
σWL(zs=2) 0.034
σEuclid 0.032

Table 6.2: Mean standard deviation of the convergence for CMB-lensing, WL(zs = 2), and Euclid weak
lensing, in the ΛCDM scenario.

σν>1 0.0169
σν>2 0.0171
σν>3 0.0198

Table 6.3: Typical values of the convergence standard deviation for a 10x10 deg2 map, in the WL(zs = 2)
case, for different SNR values, in the ΛCDM cosmology.

Moreover, in Tab. 6.3 we show, for the WL(zs = 2) case, how the typical standard deviation
of the lensing convergence increases with the value of ν. This is expected, as σ is a proxy of the
κ-peak amplitude.

In Fig. 6.1 it is possible to observe how the peak selection criterion affects the number of
peaks found in a convergence map, as we change the value of the threshold, νcut. As expected,
we find less κ-peaks as we increase νcut. From a theoretical point of view, the projected density
of κ-peaks as a function of the SNR is one of the most interesting feature to analyse in weak
lensing maps. Therefore, we first focus on the analysis of the number of κ-peaks in the CMB-
lensing, WL(zs = 2) and Euclid weak lensing simulated maps, where the photometric redshift
distribution, n(z), of lensed galaxies is represented in Fig. 6.2, and given by

n(z) ∝
(

z
z0

)2

exp

− (
z
z0

)3/2 . (6.2)

Here z0 = zm/
√

2, with zm = 0.9 being the median redshift. The grey area in Fig. 6.2 shows the
redshift range covered by the photometric Euclid survey.
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Figure 6.1: Distributions of κ-peaks with different heights (purple crosses) in a the same convergence map.
Peaks with amplitudes below the value of νcut = 1, 2, 3 are removed in the left, middle, and right panels,
respectively, in the ΛCDM case. The axes are the θ1 and θ2 orthogonal directions. The smoothing scale
applied to the maps is θs=2.5 arcmin.

Figure 6.2: Galaxy redshift distribution used for the Euclid mock convergence maps used in this work.
The grey area is the redshift range covered by Euclid (Laureijs et al., 2011).

The effective convergence map created with this source distribution and used in this thesis has
been computed via the theoretical procedure described in Bartelmann and Schneider (2001).

The first results of our analysis on the convergence maps for the three probes considered are
shown in Fig. 6.3, in the ΛCDM scenario. We report the mean cumulative κ-peak abundances for
n(> ν) per unit area, that is the number densities of κ-peaks with SNR greater than ν = κ/σ, as a
function of ν. It is possible to observe that all the analysed probes show the expected behaviour: as
ν decreases, n(> ν) rapidly increases, telling us that κ-peaks with lower heights are more abundant
as expected.

Moreover, from Fig. 6.3 we can observe that the weak lensing map with zs = 2, along with the
Euclid one, present higher peaks with respect to the CMB-lensing map, the difference reaching
even one order of magnitude for large ν values. In addition, while CMB-lensing does not present
κ-peaks with SNR above ν = κ/σ ∼ 5.0, the other two probes extend up to ν ∼ 8 (for WL with
zs = 2) and ν ∼ 10.0 (for Euclid lensing), with a difference between the latter up to a factor of ∼ 2.
Somehow this behaviour is expected since weak lensing at low redshifts is much more affected by
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Figure 6.3: Cumulative projected projected density of κ-peaks averaged over 192, 10x10 deg2, maps, as a
function of the SNR, ν, for the three probes considered in this work, assuming a ΛCDM cosmology. Error
bars show the Poisson error.

the nonlinear structure evolution than CMB-lensing: the latter is characterized by a convergence
kernel peaked at z ∼ 2, where linear structure formation is still important, while the former have
a kernel peaked at z ∼ 0.5 where the nonlinear growth of cosmic structures is dominant.

Finally, let us notice that there exit negative SNR values down to ν = κ/σ = −2. For such
values the κ-peak number densities converge to the same values as expected. In fact, κ-peaks are
local maxima in the convergence field, so there exist certainly many of them with SNR larger
than a negative value, independently of the particular probe considered. As we can observe from
Fig. 6.3, the variation of the peak number densities vanishes for negative values of ν, therefore we
can infer that positive κ-peaks dominate, and negative ones (considered as local maxima inside
under-dense regions) are very rare.

After discussing the κ-peak abundance of the total maps, we now focus on its redshift evolu-
tion. To this aim, we consider the different redshift bins defined in Tab. 6.1 for the CMB-lensing
case. These slices of convergence maps represent different lens regions along the light-cone from
the observer back to the last scattering surface. Tab. 6.4 shows the convergence standard devia-
tions, σz, associated to such maps, averaged over 192, 10x10 deg2, flat-sky patches. We see that
σz increases with decreasing redshift, due to the nonlinear structure evolution.

In Fig. 6.4 we show the corresponding mean cumulative projected densities of κ-peaks. As
before, all the curves present the characteristic decreasing behaviour as the SNR, ν, increases.
Moreover, not only the κ-peak projected density hugely increases with decreasing redshift, but it
also extends up much larger values of ν. In fact, at e.g. ν ∼ 4, it changes from n(> ν) ∼ 3 · 10−2,
in the bin 19 < z < 99, up to n(> ν) ∼ 1 in 0.5 < z < 1, i.e. by a factor of ∼ 30. In addition,
the cumulative projected density extends by a factor of ∼ 2 toward higher SNR values. Such
increases arise especially when the nonlinear structure formation starts to become dominand, i.e.
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Figure 6.4: Cumulative projected density of κ-peaks as a function of the SNR ν = κ/σ, in different redshift
bins, averaged on the 192 10x10 deg2 patches in the CMB-lensing case, as extracted via our ray-tracing
procedure in the ΛCDM cosmology. Error bars show the Poisson error.

19 < z < 99 12 < z < 15 5 < z < 11 2.5 < z < 4 1 < z < 2 0.5 < z < 1
σz1 σz2 σz3 σz4 σz5 σz6

0.0041 0.0038 0.0041 0.0059 0.0062 0.0060

Table 6.4: Mean values of the standard deviation associated to the simulated CMB-lensing maps for
different redshift ranges, as extracted from our ray-tracing procedure in the ΛCDM case.

at z < 1, as it is evident from Fig. 6.4. Again this is expected, as nonlinear structure evolution
produces more and higher κ-peaks as redshift decreases.

6.2 Void identification and counts

The next step in the analysis is the identification of voids in the κ maps. It proceeds via the algo-
rithm called tunnel finding (Cautun et al., 2018), as explained in Chapter 5, adapted to search for
voids in lensing convergence maps. The tunnel finding algorithm identifies voids in the projected
distribution of galaxies that does not contain any galaxy, similarly its modified version uses con-
vergence peaks as tracers and it defines a void as the region of the convergence map that does not
contain any κ-peak. Clearly it is a very idealised situation since it considers not only perfectly
spherical voids, but also voids that do not contain any κ-peak in their inside.

In Fig. 6.5 we provide a visualisation of the spherical voids found for our three probes in the
massless case: the lensing map with sources located at zs = 2, the CMB-lensing map, and the map
with the Euclid photometric redshift distribution. In particular, the three horizontal panels show
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how the number of voids changes as we increase the SNR selection criterion. The dependence of

Figure 6.5: Visualisation of voids found in one of square projected sections fro CMB-lensing (TOP),
WL(z = 2) (MIDDLE), and Euclid weak lensing (BOTTOM) in the ΛCDM scenario. The three images
show the voids found for three convergence peak selection criteria: ν > 1 (LEFT), ν > 2 (MIDDLE) and
ν > 3 (RIGHT). In the background we show the SNR, ν = κ/σ.

void size from the peak selection criterion is clearly visible: as ν increases, also the void radius RV
increases. This means that, imposing a higher signal to noise ratio, ν = κ/σ, the tunnel algorithm
identifies voids with larger radii. This is expected since, as the threshold νcut increases, the void
finder looks for higher κ-peaks, which are also rarer (with lower density) than peaks exceeding a
lower threshold. Therefore, since voids are defined as regions devoid of κ-peaks, larger νcut, i.e.
rarer peaks, corresponds to larger void radii.

In Fig. 6.5 we can actually observe such behavior: the left panel, representing the case with
ν > 1, has a very large number of small circular voids which are the regions devoid of κ-peaks
with ν > 1 as shown in the left panel of Fig. 6.1. This is the case where we can find the smallest
lensing voids. In the middle panel of Fig. 6.5, corresponding to SNR>2, the number of voids
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Figure 6.6: Visual comparison between the κ-peak distribution for SNR>3 and the void distribution iden-
tified by the VOLEs finder in a typical 10x10 deg2 convergence patch for WL(zs = 2), in the ΛCDM
case.

decreases and their radii RV increase. However, we can still observe lensing voids with small
radii as κ-peaks with SNR>2 are not so rare. Finally, the right panel show the number of voids
identified for SNR>3.

Also in this case we find a very good correspondence between the κ-peak distribution and the
size and distribution of voids, as it is clear from a visual inspection of the left and right panels in
Fig. 6.6 for the WL(zs = 2) case.

For what concerns the differences between the three probes, as expected, the WL(zs = 2)
and Euclid lensing patches show a similar void distribution, while the CMB-lensing patch is
characterized by a smaller number of voids, especially for the catalog ν > 3, typically with larger
values of RV. This is due to the fact that the CMB-lensing probe is the most linear between the
three and it has a smaller number of lensing peaks, as shown in Fig. 6.3, as compared to the other
two probes.

It is interesting to analyse more quantitatively how the total number of voids changes with the
source redshift, and as a function of the three thresholds ν > 1, ν > 2 and ν > 3.

In Fig. 6.7 we show the histograms of the total number of lensing voids as a function of
their radius RV in the case of the CMB-lensing map, the WL map with sources located at redshift
zs = 2, and the convergence map with a Euclid source distribution. These are extracted combining
together the 192 10x10 deg2 square patches for each of the three lensing probes, with different
SNR thresholds.

In particular, for the three thresholds, we report the total number of voids, NV in Tab. 6.5:
From Tab. 6.5 it is possible to observe that, the CMB-lensing catalogs have the smallest

number of voids among the three probes considered, and that such difference increases with the
threshold ν, starting from comparable numbers for ν > 1, and ending with differences by factors of
∼ 3 − 6 for ν > 3. This is a further confirmation tha CMB-lensing probes a more linear evolution
with respect to the low redshift probes, not only for what concerns peaks in the convergence
field, but also for voids: more linear the structure evolution is, lower the number of voids is.
Interestingly, for ν > 3, the Euclid-lensing catalog presents a total number of voids larger by
a factor ∼ 1.5 with respect to the WL(zs = 2) catalog, meaning that a realistic source redshift
distribution is more sensitive to the non linear structure evolution. This result agrees with the
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Nmax
V,CMB Nmax

V,zs=2 Nmax
V,Euclid

ν > 1 21775 26558 24427
ν > 2 3772 6213 6146
ν > 3 379 1380 2150

Table 6.5: Total number of lensing voids for CMB-lensing, WL(zs = 2), and Euclid lensing catalogs, in
the case of ν > 1, ν > 2 and ν > 3 for the ΛCDM scenario.
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Figure 6.7: Histograms of the total number of voids, summed over the 10x10 deg2 patches, as a function of
their radii RV for different SNR values (ν > 1 in red, ν > 2 in olive and ν > 3 in blue), and different probes:
CMB-lensing (LEFT) WL(zs = 2) (MIDDLE) and Euclid lensing (RIGHT), in the ΛCDM cosmology.

cumulative projected density of peaks in Fig. 6.3, and is also confirmed from the histograms of
the void total number in Fig. 6.7.

The cumulative void projected density as a function of the void radius, RV, shown in Fig. 6.8
confirms such trend. First, small voids, e.g. RV < 0.5 deg, always dominate in density with
respect to larger ones. However, as we increase the SNR thresholds, ν > 2 and ν > 3, we can
observe that, voids start to extend to larger radii, up to RV = 3.5 deg for the CMB-lensing case.
Voids in CMB-lensing catalogs extend to larger radii with respect to weak lensing probes at low
redshifts. This can be understood again in terms of the particular structure evolution which the
different probes are sensitive to. Since for WL(zs = 2) and Euclid lensing nonlinear structure
formation dominates, especially for higher SNR threshold, there will be more κ-peaks than in
CMB-lensing maps, and therefore (for the same sky area) there will be more but smaller regions
devoid of κ-peaks in the former with respect to the latter. This trend with the imposed SNR
threshold is expected and there is concordance with what we see qualitatively in Fig. 6.5.

Second, it can be interesting to notice that for small radii the curves corresponding to catalogs
with ν > 1 and ν > 2 of the three probes mostly overlap, in particular for the Euclid lensing map
and the WL(zs = 2) map, given their same redshift coverage. This is because we have learned that
the void size is strictly linked to the κ-peak density, and in fact the number densities of κ-peaks,
for ν < 3, are very similar for the three probes. They begin to separate one from the other just
for ν & 2, as shown in Fig. 6.3. Consequently, from Fig. 6.8, we can observe that, for ν > 3,
also the void densities of the three probes start to separate one from the other, extending to larger
radii. This separation is smaller between the Euclid lensing and the WL(zs = 2) void catalogs, as
they trace a very similar structure distribution in the Universe. But the CMB-lensing void catalog,
probing different stages of structure evolution, looks quite different from the other two: at small
radii the CMB-lensing map has a projected density of voids a factor of ∼ 3 smaller than the
other two probes, implying a lower number of smaller voids enclosed by high significant κ-peaks.
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Figure 6.8: Cumulative projected density of voids as a function of the void radius RV for CMB-lensing
(olive), WL(zs = 2) (red), and Euclid lensing (blue), in the ΛCDM cosmology. Each curve is averaged over
all the 192 10x10 deg2 patches. The curves represent three different void catalogs created starting from
κ-maps where three different SNR thresholds are applied: ν > 1 (solid), ν > 2 (dash-dotted) and ν > 3
(dotted). The smoothing scale applied to all the three maps is θs=2.5 arcmin. Each curve is averaged over
all the 192 10x10 deg2 patches. Error bars show the Poisson error.

This behavior reverses at large RV, where among the three probes the CMB-lensing map has the
largest projected density of voids enclosed by high significant κ-peaks with ν > 3. This difference
is more than one order of magnitude. We think that such behavior of CMB-lensing voids for ν > 3
is understandable inspecting again at the projected density of κ-peaks in Fig. 6.3. In fact, for ν > 3
the CMB-lensing curve decreases much more steeply than the other two, becoming one order of
magnitude smaller than for low redshift probes for ν & 4, and then negligible. In other words,
in the CMB-lensing convergence maps peaks with ν > 3 are spatially very rare, with respect the
other two probes, and therefore the VOLEs finder, which identifies void as empty regions, at a
fixed large radius, finds much more voids in the CMB-lensing κ-maps than in the WL(zs = 2) and
Euclid maps. In some sense, given the void definition in the VOLEs finder, void catalogs behaves
as the "negative image" of κ-peak catalogs.

This is confirmed if we have a look at the void distribution in the third column of Fig 6.5,
where the number of large voids seems to dominate in the CMB-lensing catalog with respect to
the other two. Further investigation on this behavior will be performed in the next future.

Now, we want to carry a similar analysis on the CMB-lensing lens shells in different redshift
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zi Nν>1
V Nν>2

V Nν>3
V

19<z<99 27832 6716 402
12<z<15 32066 6451 378
5<z<11 27566 4095 359
2.5<z<4 28914 8048 508
1<z<2 29316 7008 1088

0.5<z<1 26528 8379 2206

Table 6.6: Total number of voids NV for CMB-lensing, as a function of redshift and κ-SNR threshold,
obtained by combining together the 192 10x10 deg2 patches, in the ΛCDM cosmology.

bins, as defined in Tab. 6.1. This will allow us to study the redshift evolution of the lensing void
projected density as a function of the radius, RV.

Fig. 6.9 shows the histograms of the total number, NV, of CMB-lensing voids as a function of
RV, for different redshift bins; as usual, we analyse the three void catalogs with the κ-peak SNR
ν > 1, ν > 2 and ν > 3.

For completeness, the the total number of voids, NV in each redshift bin, for the void catalogs
with ν > 1, ν > 2 and ν > 3, are reported in Tab. 6.6. We can observe that, as the imposed value of
the threshold on the SNR increases, the number of lensing voids decreases. This can be related to
the fact that the algorithm of void finding identifies a mach lower number of convergence peaks
when we impose higher nucut in our data. Since we use these convergence peaks as tracer for
the identification of the under-densities in the κ-maps, we therefore find less numerous lensing
voids. Moreover, as the redshift decreases, the lensing voids associated to catalogs with ν > 2
and ν > 3 become more numerous. The redshift range 19 < z < 99 has a number of lensing
voids Nnu>2

V = 6716 and Nnu>2
V = 402, however, when we consider lower redshift values as, for

example, the bin 0.5 < z < 1, it is characterized by Nnu>2
V = 8379 and Nnu>3

V = 2206. This clearly
highlights how the formation of voids increases as the Universe evolves. Finally, from Fig. 6.9
and Tab. 6.6 we see that in the CMB-lensing catalogs the presence of voids devoid of κ-peaks with
SNR>3 starts to increase and become non negligible, as compared to the other thresholds, only
at redshifts z < 1, when the nonlinear evolution starts to dominate. Again this can be associated
to the evolution of the projected peak density shown in From Fig. 6.4: thanks to the nonlinear
structure evolution, only for z < 1 the peak projected density extends appreciably above ν > 3,
so that regions devoid of peaks with such SNR can be found in a non negligible amount only for
z < 1.

In Fig. 6.10 we show the projected void cumulative number densities as a function of the
void radius. For different redshifts, all the plots show the usual decreasing behaviour with the
increasing threshold: catalogs with ν > 2 and ν > 3 seem to have much more larger voids than
catalogs with ν > 1. This confirms what we have already seen from the plot of the cumulative
projected density of κ-peaks as a function of the SNR: high SNR peaks correspond to massive
structures or more structures aligned along the line of sight that is a rare event; thus, the number
of peaks decreases with the threshold as well as the number of voids for each catalog. At the same
time if we increase the RV values, the number of voids with that radius decreases. This means that
for each catalog and for each redshit range, we find much more voids with smaller radii than voids
with larger ones. This for each fixed redshift bin. However, if we compare different redshift bins
together, in order to understand the evolution of the void projected density and size for different
thresholds, on the one hand we notice that for the ν > 3 void catalog, lower redshifts have a
larger density of very small voids. The same is true for the catalog with ν > 2, although it is less
evident. For ν > 2 he void density peak changes from n(> RV) ∼ 0.2[deg−2] at 19 < z < 99 to
n(> RV) ∼ 0.8[deg−2] at 0.5 < z < 1. This is expected if we think that lensing maps at lower
redshift are more affected by the evolution of nonlinear structures.
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On the other hand we notice the opposite behaviour for very large voids. In fact, in perfect
agreement with the redshift evolution of the peak density in Fig. 6.4, we can observe that as n(ν >
3) increases from high to low redshifts due to nonlinear evolution, the void density decreases and
extends down to lower RV values. Such differences can reach even some orders of magnitude if
compared between the highest and the lowest redshift bins, depending on the value of large radii
considered. Again, we can say that the void distribution is the "negative image" of the κ-peak
distribution, therefore larger the number of κ-peak with SNR>3 is at low redshifts (because of
nonlinear evolution), smaller is the size of void devoid of such peaks. And, smaller the number
of κ-peaks with SNR>3 is at high redshift (since linear evolution is still dominating) larger is the
size of voids devoid of such peaks.

6.3 The convergence profile inside voids

Now that we have analysed the projected density of voids as a function of their radius, and how it
changes with SNR threshold and redshift, for the three different probes considered in this work,
we can now study their convergence and shear profiles.

Following previous works on the analysis of voids from lensing maps such as (Davies et al.,
2018), we calculate the convergence profiles of lensing voids by using annuli of thickness RV/Nbin
with RV being the radius of the lensing voids of our flat-sky patches and Nbin = 15 being the
number of bins that we find to be the best one to analyse our data. We stack all the voids from
each of the 192 flat-sky patches, and plot the κ-profiles as a function of their scaled radial distance
R/RV. Then, we average over our 192 patches in order to have better statistics.

First, we focus on the convergence void profiles, for the CMB-lensing catalog, the WL(zs =

2) catalog, and Euclid lensing catalog. Fig. 6.11 shows the obtained stacked convergence void
profiles.

All the profiles are plotted up to the radius R = 1.86RV because we are interested in show-
ing and checking that for larger values of the radial distance R/RV these curves converge to the
background value of κ, i.e. its mean that we have set to be zero.

In all three cases it is possible to observe that for R < 0.75RV we have negative convergence
values, this points out that voids are truly under-dense regions in the κ-maps within their profile.
Moreover what we see is that catalogs with ν > 3 show interestingly to be less under-dense on
average than for the other thresholds, and are characterized by the smallest depth at R=0; this
particular behaviour is expected because, as we increase the SNR value of κ-peaks tracing the
void profile, we increase also the sizes of voids we find in that particular region. The fact is that
these larger voids may contain κ-peaks with ν < 3, leading to less under-dense voids.

On the contrary, at larger values of R/RV we see a common decreasing behaviour in absolute
value of the κ-profile curves; they behave similarly to one another, all going toward the back-
ground value of zero.

The maximum, the so-called "wall", is reached for all curves at R = RV as expected; however
the amplitude of the walls are slightly different depending on which lensing probe we are consid-
ering, and at which catalog we are referring to in terms of the threshold ν. The same is true for
the void depth at R = 0. In particular, for higher SNR values both the depth and the wall high
decrease as the threshold ν increases, independently of the kind of probe considered.

In fact, for ν > 1, the lensing map with Euclid redshift distribution shows a maximum κ-value
at the wall much similar to the one of the WL zs = 2: κEuclid

max = 0.0019 and κzs=2
max = 0.0022, while

κCMB
max = 0.0061; at the same time it contains the least under-dense voids with respect to CMB-

lensing and WL at zs = 2: κEuclid
min = −0.0071 and κzs=2

min = −0.0083, while κCMB
min = −0.0272. We

observe a similar trend among the three probes also for ν > 2, 3.
We see that the CMB-lensing map has both the largest absolute values of κmin and κmax, which

differs by one order of magnitude from the other two probes. Therefore it seems that CMB-
lensing, being integrated up to larger redshifts with respect to the other two probes, traces voids
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with the largest fluctuations in κ, which in turns means deepest voids.
In order to quantitatively show the main differences between κmax, the value of the conver-

gence κ on the wall, and κmin, the value of the convergence κ at the maximum depth of the lensing
void, for the three probes and three peak SNR threshold, we report these values in Tab. 6.7.

κCMB
max κWL(zs=2)

max κEuclid
max κCMB

min κWL(zs=2)
min κEuclid

min

ν > 1 0.0061 0.0022 0.0019 -0.0272 -0.0083 -0.0071
ν > 2 0.0050 0.0018 0.0017 -0.0168 -0.0057 -0.0051
ν > 3 0.0027 0.0013 0.0013 -0.0067 -0.0040 -0.0035

Table 6.7: Maximum kmax and minimum kmin of the stacked void profiles traced by the three probes
considered in this work, for the κ-SNR thresholds ν > 1, ν > 2 and ν > 3, in the ΛCDM cosmology.

Moreover, from Fig. 6.11 we notice one common property for all three κ-profiles: as we
follow the void profile from R = RV down to its center R = 0, the corresponding convergence
values decrease as well, showing a particular concavity. The convergence profiles of our probes
have a finite value of κ at the maximum depth of the stacked voids, however the behaviour of
the curves is not flat. If we extrapolate their asymptotic trend it seems that our voids have not
a fixed basin, since they look concave rather than convex. These results are very different from
the ones obtained in Davies et al. (2018), which find void convex void profile. We believe that
this characteristic profile could be due to the native resolution of the full-sky lensing maps we
have analysed in this work. Even if a full-sky resolution of Nside = 4096 is extremely large,
when projected to 10x10 deg2 patches, it translates into a lower resolution when compared to the
one usually adopted in flat-sky analyses. This means that we smooth out small scale structures
with respect to the latter case, which is e.g. considered in Davies et al. (2018). In fact, works
in preparation (Vielzeuf et al. 2021, in prep.), that cross-correlate our same set of simulated
CMB-lensing maps with void catalogs obtained applying the 2D void finder from Sánchez et al.
(2017); Vielzeuf et al. (2019) directly to the DM halo light-cones constructed from the DEMNUni
simulations, show that CMB-lensing void profiles start to become convex as the smoothing scale
in the void-finder is decreased. This could also explain the fact that the profile concavity gets
slightly mitigated when we consider voids with SNR>3 thresholds, as in this case the smoothing
effect of the size of the HEALPix pixels has a lower impact on larger κ-peaks than on lower
ones. We have performed further checks on the κ-profiles of the CMB-lensing map and the WL
map(zs = 2) in the ΛCDM cosmology that are shown in Appendix A.

Now, we want analyze how the void converge profile evolves in redshift. We show these
results in Fig. 6.12.

From Fig. 6.12 we recover that the curves show all the usual expected behaviour: convergence
values increase with R/RV, they reach the maximum at R = RV and then decrease rapidly toward
the zero, that is the background value. Beside that, also in the case of summed lensing maps at
different redshift ranges, the curves show a negative concavity as R approaches the zero value,
concavity that tends to flatten, again, when we consider the void catalogs with higher SNR.

All the panels in Fig. 6.12 help us understand how the convergence void profiles change with
the redshift.

In particular, it is possible to see that, as the redshift ranges decrease they seem to be more
and more under-dense (i.e. there are much less structures on their inside), this is valid for all the
catalogs; in fact the value of κmin decreases by about 23% for ν > 1 from the highest to the lowest
redshift bin. At the same time, we find that the walls on the boundary of the basins seem to be
richer in structures (i.e. the density increases) and, as a consequence, they show higher values
of κmax(r) with a percent variation of ∼ 40% for ν > 1 from the highest to the lowest redshift
bin. Evidently we are tracing, for the first time in the literature, the evolution of the lensing void
profiles, observing how less devoid regions become more and more devoid of matter perturbations
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inside their profile as the Universe evolves. At the same time, from Fig. 6.10, we observe that the
projected density of smaller voids increases (independently of the SNR threshold) as the redshift
decreases. Looking at the underdensity contrast in absolute value, this is similar to what happen
to DM halos in mass: as the Universe evolves more and more massive DM haloes form.

The values of κmax and κmin are shown in Tab. 6.8 and Tab. 6.9.

κz1
max κz2

max κz3
max κz4

max κz5
max κz6

max

ν > 1 0.0006 0.0005 0.0006 0.0008 0.0010 0.0010
ν > 2 0.0004 0.0003 0.0004 0.0005 0.0007 0.0007
ν > 3 0.0001 0.0001 0.0001 0.0002 0.0003 0.0004

Table 6.8: Maximum κmax of the stacked void profiles for the CMB-lensing void catalogs for different
redshifts and thresholds ν > 1, ν > 2 and ν > 3, in the ΛCDM cosmology.

κz1
min κz2

min κz3
min κz4

min κz5
min κz6

min

ν > 1 -0.0023 -0.0019 -0.0024 -0.0032 -0.0036 -0.0030
ν > 2 -0.0010 -0.0009 -0.0011 -0.0016 -0.0018 -0.0017
ν > 3 -0.0002 -0.0002 -0.0004 -0.0005 -0.0008 -0.0008

Table 6.9: Minimum κmin of the stacked void profiles for the CMB-lensing void catalogs for different
redshifts and thresholds ν > 1, ν > 2 and ν > 3, in the ΛCDM cosmology.

6.4 The shear profile inside voids

We have shown in the previous section the κ-profiles of stacked lensing voids for different probes
in the ΛCDM cosmology, and we have analyzed their evolution with redshift. The last step in our
analysis is the study of the tangential shear profiles of the same lensing voids both for different
probes and for different redshift ranges. We focus in this section on the ΛCDM cosmology, in the
next Chapter we will include also the effects of massive neutrinos.

We calculate the tangential shear profile of voids, γt(r), from the convergence profile using
Eq. (6.3) (Davies et al., 2018):

γt(r) = κ̄(< r) − κ(r) , (6.3)

where κ(r) corresponds to the value of the convergence profile at the radial distance r and κ̄(< r)
is the mean enclosed convergence within r. As for the convergence profile, we average over all
the 192 10x10 deg2 flat-sky maps, in order to have better statistics.

Fig. 6.13 show the stacked tangential shear profiles of lensing voids for the CMB-lensing void
catalog, the WL(zs = 2) void catalog, and the Euclid lensing void catalog. As throughout the rest
of the analysis we consider the three κ SNR thresholds: ν > 1, ν > 2 and ν > 3.

First of all, it is possible to observe that the maximum value of the tangential shear γmax
t is

at distances from the void center slightly smaller than R = RV; since the shear profile of voids is
only sensitive to the shape of the correspondent convergence profile, this result might be caused
by the concavity that characterizes the κ void profiles.

The maximum signal of the shear is at negative values, this enforces the idea that voids acts
as diverging lens as found by (Davies et al., 2018).

As for the convergence profiles, we observe that the position of the maximum is independent
of the catalog we choose, although the value of γmax

t largely changes as we change the void
catalog, as it happens for the κ-profiles. Quantitatively, we report in Tab. 6.10 for the three probes,
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the values of γmax
t , i.e. the maximum (in terms of its absolute value) of the tangential shear on

the wall, and γmin
t , i.e the minimum (in terms of its absolute value) of the tangential shear at the

maximum depth of the lensing voids.

γCMB
max γWL(zs=2)

max γEuclid
max γCMB

min γWL(zs=2)
min γEuclid

min

ν > 1 -0.0175 -0.0058 -0.0051 -0.0079 -0.0024 -0.0020
ν > 2 -0.0116 -0.0042 -0.0038 -0.0050 -0.0016 -0.0014
ν > 3 -0.0055 -0.0029 -0.0027 -0.0015 -0.0011 0.00010

Table 6.10: Maximum γmax and minimum γmin values (in terms of its absolute value) of stacked void
profiles, for the three probes and κ-SNR thresholds considered in this work, in the ΛCDM cosmology.

Similarly to what we have found in the analysis of the convergence profiles, the void shear
profiles for the Euclid and WL(zs = 2) catalogs present a similar behaviour. In fact their γmax
differs by ∼12% and their γmin by ∼17% if we consider the catalog with ν > 1. The tangential
shear profile of the CMB-lensing void catalog seems, again, to be the one that shows the largest
fluctuations in γt; in fact, γCMB

max = −0.0175 is one order of magnitude larger than γEuclid
max and

γWLzs=2
max , as reported in Tab. 6.10.

We recover the behaviour found also by (Davies et al., 2018), the γt-profiles decrease with the
stacked radial distance, reach their maximum negative value near R = RV, and the increase again
toward the background level γt = 0.

We are also interested in the study of the redshift evolution of stacked tangential shear, γt,
profiles of lensing voids. In Fig. 6.14 we show the γt-profiles of lensing voids for the CMB-
lensing void catalogs at different redshift bins.

The γt-profiles show the expected behaviour: the value of the shear γt decreases as the radial
stacked distance R/RV increases, it reaches its maximum negative value at R ∼ 0.8RV and then it
increases again toward the background value. Again, the fact that the maximum of the tangential
shear is not reached at R = RV might be due to the presence of a concavity in the correspondent
convergence profile.

The behaviour of these curves can be thought as the dual of the κ-profiles and they show
also the same properties: the height of the (negative) peaks change with the void catalogs we are
considering, whereas their positions remain unchanged also if we change the value of the SNR ν

applied to the original data. To better understand the main differences between these maps, we
show in Tab. 6.11 and Tab. 6.12 the values of γmax

t and γmin
t for each map.

γz1
max γz2

max γz3
max γz4

max γz5
max γz6

max

ν > 1 -0.0016 -0.0013 -0.0017 -0.0023 -0.0026 -0.0023
ν > 2 -0.0008 -0.0007 -0.0009 -0.0012 -0.0015 -0.0015
ν > 3 -0.0002 -0.0002 -0.0003 -0.0004 -0.0003 -0.0007

Table 6.11: Maximum γmax values (in terms of its absolute value) of stacked void profiles, for the CMB-
lensing catalogs at different redshifts thresholds ν > 1, ν > 2 and ν > 3, in the ΛCDM cosmology.

If for the convergence profiles of lensing voids we see an increase in the wall height at lower
redshifts, for the tangential shear profiles we see a decrease (with sign), i.e. an increase in its
absolute value of the γt maximum a lower redshifts; it goes from γz1

max = −0.0016 for 19 < z < 99
to γz6

max = −0.0023 for 0.5 < z < 1.
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γz1
min γz2

min γz3
min γz4

min γz5
min γz6

min

ν > 1 -0.0006 -0.0005 -0.0006 -0.0009 -0.0010 0.0008
ν > 2 -0.0003 -0.0003 -0.0003 -0.0005 -0.0005 -0.0005
ν > 3 -0.00005 -0.00005 -0.0001 -0.0001 -0.0002 -0.0002

Table 6.12: Minimum γmin values (in terms of its absolute value) of stacked void profiles, for the CMB-
lensing catalogs at different redshifts thresholds ν > 1, ν > 2 and ν > 3, in the ΛCDM cosmology.

6.5 Summary of Chapter 6

In this Chapter we present quantitative results for the analysis of κ-peak and lensing void statistics
in the massless neutrino case.

We have considered three different probes: the CMB-lensing convergence map, the WL(zs=2)
convergence map and the Euclid lensing convergence map, in order to understand how the proper-
ties of lensing voids change when we consider different lensing source distributions. We have also
focused on understanding the evolution with redshift of κ-peak counts and lensing void counts and
profiles. To this aim, we have considered the CMB-lensing probe, analyzing lens regions in the
following redshift ranges: 19 < z < 99, 12 < z < 15, 5 < z < 11, 2.5 < z < 4, 1 < z < 2 and
0.5 < z < 1.

For each map, we have created three different catalogs imposing a threshold, νcut, on the
SNR, ν = κ/σ, of κ-peaks: ν > 1, ν > 2 and ν > 3; these catalogs allow us to analyze the
properties of convergence peaks and lensing voids in terms of the non linear structure evolution,
understanding how the peaks and voids are related. this respect, we find that, when we impose
a higher threshold ν, we select voids with larger radii, RV, i.e. voids with a larger volume. We
explain this property considering the definition of lensing void in the adopted void finder: they
are region devoid of κ-peaks beyond a certain SNR threshold, therefore, as we increase the SNR,
we find in the convergence maps rarer κ-peaks, and consequently larger voids, kept fixed the area
of the analyzed maps.

Moreover, we recover the expected behaviour of the mean cumulative projected density of κ-
peaks, n(> ν), as a function of the SNR for the three probes used. We observe that n(> ν) decrease
as expected, as we increase the value of ν. In the CMB-lensing case, n(> ν) decreases much more
rapidly with ν with respect to the other two probes. This is due to the different sensitivity of the
three probes to the nonlinear structure evolution, being low redshift WL probes more sensitive to
the latter than CMB-lensing. This explains also the reason why the CMB-lensing maps present
the smallest total number of voids, even if for ν > 3 the projected void number density dominates
at large radii with respect the other two probes.

Concerning the evolution in redshift of κ-peak counts and void counts and size, first we notice
that for ν > 2, 3, lower redshift bins present a larger density of very small voids. However, the
opposite happens for very large voids. In fact, in agreement with the redshift evolution of the
κ-peak density, we observe that as n(ν > 3) increases from high to low redshifts, the void density
decreases and extends down to lower RV values. Such differences can reach even some orders of
magnitude, depending on the redshifts and radii considered. We can say that the void distribution
is the "negative image" of the κ-peak distribution, and the trends that we observe are perfectly
explained within the framework of the nonlinear structure evolution.

Finally, we have analyzed the behavior of the stacked convergence and the tangential shear
profile of of lensing void in our catalogs, as function of the stacked radial distance R/RV.

For the three probes we find that the Euclid-lensing and the WL(zs=2) void catalogs show,
as expected, a very similar behavior, whereas the CMB-lensing catalog presents large differences
with respect to the other two, with void profiles characterized by the largest fluctuations between
the wall (at R = RV) and the depth(at R = 0). Concerning the void profile evolution, we observe
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that their walls and depth both increase with decreasing redshifts. Summarizing, we can say that,
as the Universe evolves, lensing voids become more numerous, smaller and deeper, independently
of the ν threshold considered. However, let us note that the void finder adopted in this analysis
does not account for void mergers, therefore smaller voids could actually reside in larger ones.
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Figure 6.9: Histograms of the total number of voids as a function of their radii RV for CMB-lensing
convergence maps at different redshift ranges in the ΛCDM cosmology. We consider the three void catalogs
with κ-SNR thresholds: ν > 1 (red), ν > 2 (olive) and ν > 3 (blue).
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Figure 6.10: Cumulative projected density of voids as a function of their radius RV at different redshift
bins, in the ΛCDM cosmology. The curves represent three different catalogs obtained applying three
different peak selection criteria: ν > 1 (solid), ν > 2 (dash-dotted) and ν > 3 (dotted). The smoothing scale
applied to all maps is θs=2.5 arcmin. Each curve is averaged over all the 192 10x10 deg2 patches. Error
bars show the Poisson uncertainties of the data.
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Figure 6.11: Stacked convergence profile of voids from the CMB-lensing catalog (olive), the WL(zs = 2)
catalog (red), and Euclid-lensing catalog (blue), in the ΛCDM cosmology. Different line styles correspond
to different voids catalogs: ν > 1 (solid), ν > 2 (dash-dotted), ν > 3 (dotted). Each curve is averaged over
all the 192 10x10 deg2 patches. Error bars represent the mean standard deviation.
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Figure 6.12: Stacked convergence profiles of lensing voids for CMB-lensing maps at different redshift
ranges, in the ΛCDM cosmology. Different line styles correspond to different voids catalogs: ν > 1 (solid),
ν > 2 (dash-dotted), ν > 3 (dotted). Each curve is averaged over all the 192 10x10 deg2 patches. Error bars
show the mean standard deviation.
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Figure 6.13: Stacked shear profile of lensing voids in the CMB-lensing catalog (olive), the WL(zs = 2)
catalog (red), and the Euclid lensing catalog (blue) for the ΛCDM cosmology. Each curve is averaged over
all the 192 10x10 deg2 patches. Different line styles correspond to different voids catalogs: ν > 1 (solid),
ν > 2 (dash-dotted), ν > 3 (dotted). Error bars show the mean standard deviation.
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Figure 6.14: The stacked shear profile of lensing voids from the CMB-lensing catalogs at different redshift,
in the ΛCDM cosmology. The coloured lines show the average profile for the three void catalogs: ν > 1
(solid), ν > 2 (dash-dotted) and ν > 3 (dashed). Each curve is averaged over all the 192 10x10 deg2

patches. Error bars show the mean standard deviation.
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Chapter 7

Lensing voids in the presence of
massive neutrinos

In the previous Chapter we have analysed lensing voids and their main properties and evolution
starting from simulated lensing maps in massless neutrino scenario, for three different probes:
CMB-lensing, WL(zs = 2), and Euclid lensing. Now we focus on the massive neutrino case,
using the νΛCDM counterpart of these simulated lensing maps obtained via ray-tracing from the
DEMNUni simulations. We consider the case of a total neutrino mass Mν = 0.16 eV.

For the first time in the literature, we will study lensing voids in the presence of massive
neutrinos and understand how their free-streaming impacts their properties and evolution.

7.1 Convergence peaks in the νΛCDM scenario

As said in the previous Chapter, one of our goals is the study of the evolution with redshift of
κ-peak statistics and lensing voids. To this aim, we consider again different redshift bins, and sum
up together the full-sky CMB-lensing κ-maps described in Section 5.2. In this way we construct
spherical shells around the observer with a thickness in redshift able to provide a fair sample of
lensing voids in each redshift bin, and study how they evolve in the presence of massive neutrinos
with Mν = 0.16 eV. The considered redshift bins are shown in Tab. 7.1 and coincide with the one
chosen in the ΛCDM analysis.

z1 z2 z3 z4 z5 z6

19 < z < 99 12 < z < 15 5 < z < 11 2.5 < z < 4 1 < z < 2 0.5 < z < 1

Table 7.1: Redshift bins chosen for the study of the void redshift evolution.

The procedure of κ-peak extraction is the same followed in the case of the ΛCDM model: we
first identify the κ-peaks that are maxima of the convergence field. Again, we apply a Gaussian
filter with a smoothing scale θs = 2.5 arcmin, and use the Locate Peaks package to produce κ-peak
catalogs from the simulated lensing maps.

In Fig. 7.1 the convergence difference map for the WL(zs = 2) case, obtained subtracting
two corresponding 10x10 deg2 patches, one in the νΛCDM cosmology, the other ΛCDM model.
We have considered the weak lensing map with sources located at z = 2 since we expect that
the effect of massive neutrinos starts being more important at lower redshift values, when they
thermal velocities become non relativistic. We have used the Log-scale in order make more
visible the structures inside the section. We expect to see a suppression of the perturbations in
the convergence field due to the presence of free streaming massive neutrinos. Comparing with
Fig. 5.5, we can observe that the difference in κ are 1-2 orders of magnitude smaller than κ itself,
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as it should be. This maps represents the difference in the projected dark matter distribution due
to the presence of massive neutrinos.

Figure 7.1: Example of a convergence difference ∆κ map between the νΛCDM and the ΛCDM scenarios,
for the WL(zs=2) case. Color scale is logarithmic, coordinates on x- and y-axis in deg on a flat patch.

Fig. 7.2 shows the cumulative projected density of convergence peaks for the CMB-lensing
map, the WL(zs = 2) map and the Euclid lensing map, as a function of the signal to noise ratio
ν = κ/σ with sigma being the standard deviation associated to the smoothed maps. In Tab. 7.2 we
report the values of the mean standard deviations for the three probes in both the cosmologies.

νΛCDM ΛCDM
σCMB 0.050 0.051
σz2 0.025 0.034

σEuclid 0.023 0.032

Table 7.2: Averaged standard deviations computed on the convergence CMB-lensing map, the WL(zs = 2),
and Euclid-like lensing map, in the νΛCDM cosmology (left column) and the ΛCDM one (right column).

From Tab. 7.2, we observe that the CMB-lensing case presents only a 2% decrease in the
value of σk w.r.t. the massless neutrino case. The other two lensing maps, WL(zs=2) and Euclid
lensing one, present a much smaller value of σk (26% and 28%, respectively) than in the massless
neutrino cosmology. This confirms the suppression of matter perturbations due to the presence of
massive neutrinos, especially at low redshifts.

From the cumulative projected density of convergence peaks in Fig. 7.2 we recover that the
number of peaks is greater for small SNR as in the ΛCDM case, in this sense we recover the
expected behaviour also for the massive neutrino scenario. It is interesting to notice that the
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behaviour of the three curves in the νΛCDM scenario is similar to the one of the ΛCDM one,
with the CMB-lensing map having the smallest significant κ-peaks associated.

For what concerns the differences of each probe between the two cosmologies, we can refer
to the top-left, the bottom-left and the bottom-right panel of Fig. 7.2, where we show the mean
cumulative projected density of κ-peaks, obtained averaging over all the cumulative projected
density of κ-peaks extracted from the 192 flat-sky sections we have projected and divided the
original full-sky maps onto. In addition, in all cases we have added a sub-panel showing the
values of the percent residuals of the projected density of κ-peaks between the two cosmologies.
In particular, to quantify the difference between the massless and massive neutrino case, both for
the κ-peak and void statistics, we have evaluated the following percent residuals for the projected
peaks density as a function of ν = κ/σ, and for the projected void density as a function of RV:

∆RV/ν(%) =

(
nνΛCDM

nΛCDM
− 1

)
∗ 100 (7.1)

We adopt a similar notation also for the percent residuals of the convergence and shear stacked
void profiles, as a function of R/RV, as we discuss in the next Sections. It is this percent residual
that highlights the main differences between the two cosmologies and manifests the effects of the
presence of massive neutrinos.

In Tab. 7.3 we report the mean values of ∆ν(%) for each probe. In this case we are interested in
the analysis of how the projected density of κ-peaks changes with the neutrino mass. The values
of ∆(%) as a function of ν can be found in Tab. B.1

∆̄ν(%)

CMB-L -2
zs = 2 -3
Euclid -4

Table 7.3: Mean values of ∆ν(%) (as defined in Eq. (7.1)) for the CMB-lensing map, the WL(zs = 2) map,
and the Euclid-like lensing map.

From Tab. 7.3 and Fig. 7.2, we can observe that the presence of massive neutrinos decreases as
expected the projected κ-peak density. However, given the small value of the total neutrino mass
considered, Mν = 0.16 eV, such suppression is of few %, being the Euclid lensing map the most
affected, since it is characterized by a source distribution extending down to z = 0.5 and therefore
more sensitive to the free streaming scale of neutrinos which affects more nonlinear scales as the
redshift decreases.

More specifically, for the CMB-lensing peaks counts, where we recover ∆̄(%)ν = −2%. The
WL(zs = 2) and Euclid lensing cases show instead some discrepancies for higher ν threshold, in
fact we find: ∆̄(%)Euclid

ν = −3% and ∆̄(%)zs=2
ν = −4%.

Again, we recover that the CMB-lensing map has the smallest ν associated to the κ-peaks, it
does not go above κ/σ ∼ 5, whereas the Euclid and the WL(zs = 2) cases have values of ν much
larger, with the maximum κ/σ ∼ 9.

The discrepancies between the two cosmologies are more visible for the Euclid-like map and
the WL(zs=2) map at large ν; from a physical point of view we expect, indeed, that massive
neutrinos are effective for maps that cover lower redshift ranges, where they are less relativistic.
This is the case for the two probes above. The discrepancies of the two κ-peak catalogs between
the massless and massive neutrino case are very similar as we can observe from Fig. 7.2, and
reaching a difference of ∼ 20% at larger ν values, ν & 6. Larger values of the signal to noise ratio
means imply larger values of the convergence κ and, as a consequence, we are looking at high
density structures. The mean values of ∆(%) are negative, so in the νΛCDM case the cumulative
projected density of κ-peaks gets slightly smaller with respect to the massless neutrino scenario.
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Figure 7.2: TOP-LEFT: cumulative projected density of convergence peaks as a function of ν = κ/σ for
the three probes in the νΛCDM cosmology: CMB-lensing (TOP-RIGHT), WL(zs = 2) (BOTTOM-LEFT),
Euclid lensing (BOTTOM-RIGHT). In the latter panels different colors refers to the νΛCDM and standard
ΛCDM cosmology. The sub panels show the ∆ν(%) (as defined in Eq. (7.1)) of the cumulative projected
density of κ-peaks between the νΛCDM scenario and the ΛCDM one. Error bars represent Poisson noise.
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Now, we want to check what happens to the cumulative projected density of the convergence
peaks when we consider lensing maps at different redshift ranges in the νΛCDM cosmology.

Fig. 7.3 shows n(> ν) as a function of κ/σ, for the CMB-lensing partial maps with redshifts
reported in Tab. 7.1. The corresponding mean values of the standard deviation of the smoothed
maps are reported in Tab. 7.4. As expected, we can observe that the difference between the two
scenarios start to be visible only at low redshits, in the fith and sixth redshift bin, i.e. at z < 1,
reaching 3% at maximum.

σz1 σz2 σz3 σz4 σz5 σz6

νΛCDM 0.0041 0.0040 0.0041 0.0060 0.0060 0.0058
ΛCDM 0.0041 0.0038 0.0041 0.0059 0.0062 0.0060

Table 7.4: Mean standard deviations of the convergence field, for the the CMB-lensing maps integrated in
different redshift range in the νΛCDM cosmology.

Also in this case, Fig. 7.3 shows the expected decreasing behaviour and the projected density
of κ-peaks as the SNR increases, while, as the redshift decreases, the algorithm finds a larger
number of convergence peaks with greater ν values.

In order to analyse the main differences between the ΛCDM and the νΛCDM cosmologies,
we show in Fig.7.3 the plots of the mean cumulative projected density of κ-peaks as function of
the SNR associated to each map with a sub-panel showing the percent residuals ∆ν(%) between
the two cases.

Again, we refer to Tab. 7.5 where we report the mean value of ∆ν(%) for each redshift range.
The values of ∆nu(%) at each ν = κ/σ can be found in Tab. B.2.

zi ∆̄ν(%)

19 < z < 99 15
12 < z < 15 -2
5 < z < 11 1
2.5 < z < 4 0.4
1 < z < 2 -2

0.5 < z < 1 -5

Table 7.5: Mean values of ∆ν(%) (as defined in Eq. (7.1)) for the κ-peak catalogs extracted from the partial
CMB-lensing maps in different redshift bins.

The cumulative projected density at 19 < z < 99 is the one that shows the largest discrepancies
between the two cosmologies. These discrepancies are clearly visible for ν, where the νΛCDM
case has a value of n(> ν) greater with respect to the massless scenario, in fact ∆ν(%) goes up
to ∼ 80%, and its average is ∼ 15%. On the contrary, for lower significant κ-peaks, the two
cosmologies behave almost the same. However, such behavior is not representative of the matter
perturbation suppression due to massive neutrinos, since at these very high redshift neutrinos with
Mν = 0.16 eV are still relativistic. These fluctuation could be due to the rescaling technique used
to produce the initial condition of the DEMNUni simulations, which produces artificially more
power spectrum in the presence of massive neutrinos at very high redshifts, in order to match the
correct matter power spectrum at lower redshifts.

The κ-peak projected densities at redshifts 12 < z < 15, 5 < z < 11 and 2.5 < z < 4 have a
∆̄ν(%) equal to −2%, 1%, and 0.4%, respectively, so there are very small discrepancies between
the two cosmological models. Again, we expect that the effect of massive neutrinos starts being
detectable at lower redshift ranges, namely smaller that z ∼ 1.
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From Tab. 7.5, we can observe how catalogs at lower redshifts are the one that show again
some discrepancies at higher ν = κ/σ: ∆̄ν(%) for the maps at 1 < z < 2 and 0.5 < z < 1, in fact,
corresponds to -2% and -5%. The discrepancies, although being still very small, acts on higher
significant peaks. So this means that the maps with massive ν are smoother with respect to the
corresponding massless case and that the peaks we find inside each section are qualitatively less
brighter. Finally, from Fig.7.3 we can appreciate how the percent difference between the κ-peak
projected densities in the two cosmological scenarios reach ∼ 20% at ν > 6 for 0.5 < z < 1. This
is because nonlinear structure evolution is suppressed in the presence of massive neutrinos.

7.2 Void counts in the νΛCDM scenario

We produce three different κ-peak catalogues in the νΛCDM cosmology imposing different thresh-
olds νcut = 1, 2, 3 to the simulated lensing maps of the three probes considered, and applying the
tunnel finding algorithm (Davies et al., 2018) to such catalogues, we identify the lensing voids.

We follow the same procedure described in Chapter 6 for the analysis of lensing voids in the
ΛCDM scenario. Thus, as a first step it can be interesting to show the histograms of the total
number of lensing voids NV as a function of their radius RV. In this section we are interested in
the identification of the effects that massive neutrinos have on different probes and on maps that
cover a wide redshift range.

In Fig. 7.4 on the left column we show the histograms of the total number of lensing voids NV
found in the CMB-lensing, the WL map(zs = 2) and the Euclid lensing catalogs as a function of
RV. On the right column we show the histograms obtained considering the corresponding catalogs
in the massless neutrino case.

We report the total number of voids NV for the three thresholds in Tab. 7.6.

NνΛCDM
V,CMB NΛCDM

V,CMB NνΛCDM
V,zs=2 NΛCDM

V,zs=2 NνΛCDM
V,Euclid NΛCDM

V,Euclid

ν > 1 22168 21775 25700 26558 24428 24427
ν > 2 3880 3772 6448 6213 6400 6146
ν > 3 293 379 1266 1380 1655 2150

Table 7.6: Total number of voids NV in the void catalogs of CMB-lensing, WL(zs = 2), and Euclid-like
lensing map in the massive and massless neutrino cosmological scenarios.

We can observe that for the catalog with ν > 1 there are not particular differences in the total
number of lensing voids between the two cosmologies. Instead, looking at larger thresholds and
therefore larger void sizes, i.e. at catalogues with ν > 3, we clearly see that the total number of
lensing voids in the presence of massive neutrinos is smaller than in the ΛCDM scenario, in which
higher κ-peaks are rarer and therefore voids devoid of them are also rarer but of larger size. The
number of voids for the CMB-lensing case shows a variation of ∼ −23%, whereas the WL(zs=2)
and the Euclid catalogs show variation of ∼ −8% and ∼ 23%, respectively, as compared to the
massless neutrino case.

Then we study the redshift evolution of void counts in the case of CMB-lensing, focusing on
differences between the massive and massless neutrino case.

In Fig. 7.5 we show the histograms of the total number of voids as a function of their radius
RV. We consider the following redshift bins: 2.5 < z < 4, 1 < z < 2 and 0.5 < z < 1; being
low redshifts, these are the most interesting catalogs to take into account in order to observe
the effects of the presence of massive neutrinos in the simulated data. On the left we show the
νΛCDM scenario, on the right the the ΛCDM one.

Moreover in Tab. 7.7 we report the total number of lensing voids for the two cosmologies. For
what concerns the differences between the two cosmologies, the maximum number of voids found
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in all the projected section is slightly lower with respect to the scenario with massless neutrinos,
this is valid especially for ν > 3. In fact, for the lensing map that covers a redshift range of
1 < z < 2 we see a decreasing of the total number of identified voids of about the 9%, the map at
0.5 < z < 1 shows a ∆(%) of ∼ −9%, in agreement with our idea of the suppression effect of the
perturbations in the convergence field at larger signal to noise ratios at lower values of z.

From Tab. 7.7 and Fig. 7.5 we infer that the total number of voids decreases as we increase
the value of SNR from ν > 1 to ν > 2. This is due to the fact that high signal to noise ratio values
imposed (with S NR = κ/σ as in the ΛCDM case) imply selecting voids with larger radii that are
statistically less numerous than smaller voids.

Both the catalogues with ν > 2 and ν > 3 present a smaller number of lensing voids in the
massive neutrino scenario with respect to the massless neutrino case. If we take, for example, the
lensing catalog with redshift range 0.5 < z < 1, NV decreases by ∼ −2% for ν > 2 and by ∼ −9%
for ν > 3. We are detecting the neutrino effect of smoothing the convergence field, and therefore
reducing the identified lensing void number, as expected at low redshifts.

NνΛCDM
V,z4

NΛCDM
V,z4

NνΛCDM
V,z5

NΛCDM
V,z5

NνΛCDM
V,z6

NΛCDM
V,z6

ν > 1 27915 28914 2788 29316 28794 26528
ν > 2 5637 8048 7128 7008 8224 8379
ν > 3 513 508 990 1088 2012 2206

Table 7.7: Total number of voids NV in different redshift bins extracted from the CMB-lensing probe.

We now analyze the behavior of the cumulative projected density of lensing voids as a function
of RV in the νΛCDM cosmology.

In particular we consider the cumulative projected void densities n(> RV), as a function of the
void radius, for CMB-lensing, WL(zs = 2), and for Euclid lensing catalogs, as shown in Fig. 7.6.
All the curves quantitatively confirm the dependence of the void sizes on the signal to noise ratio
ν: the projected density of voids decreases as the value of their radii increases. In particular, for
the CMB-lensing case, catalogs with ν > 1 have more small voids and fewer larger voids with
none above RV = 1.2 deg, whereas all the catalogs with ν > 3 present less smaller voids but more
large voids with radii larger than RV = 3.0 deg.

The other panels in Fig. 7.6 show the cumulative projected void densities n(> RV), as a func-
tion of the void radius,for the three probes, both for the ΛCDM and the νΛCDM scenarios. Since
our purpose is underlying the main difference between these two cosmologies, we have added for
each probe a sub-panel showing the ∆RV(%) between the two number densities. Similarly to the
previous analysis we have considered three different κ-SNR thresholds.

In Tab. 7.8 we report the mean values of ∆RV(%), while in Tab. B.3 we report all the values of
∆RV(%) as a function of RV.

∆̄RV(%)ν>1 ∆̄RV(%)ν>2 ∆̄RV(%)ν>3

CMB-Lensing 19 10 1
WL(zs = 2) 33 10 9

Euclid photo-z 13 11 13

Table 7.8: Mean values of ∆RV (%) as defined in Eq.( 7.1) for the cumulative projected density of lensing
voids for the CMB-lensing map, the WL(zs = 2) map and the Euclid-like map for the three different
catalogs ν > 1, ν > 2 and ν > 3.

For what concerns the CMB-lensing void catalog in the top-right panel of Fig. 7.6 we see that
all catalogs show a ∆(%) ∼ (0 − 5)% for small values of RV; however, as we move towards large
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values of RV, and we consider voids with larger sizes for each threshold, the percent difference
with respect to the massless neutrino case are evident and positive for all the three SNR catalogs,
as the radius increases. For the ν > 1 catalog, ∆(%) ∼ 40% at RV = 0.65 deg; for the ν > 2
catalog, ∆(%) ∼ 40% at RV = 1.7 deg and for the ν > 3 catalog, ∆(%) reaches the 20% at
RV = 3.0 deg. The catalog with S NR = ν > 3 is the one that does not show particular deviations
at large RV.

The cumulative projected void density n(> RV) associated to the WL(zs = 2) catalog is shown
in the bottom-left panel of Fig. 7.6. What we observe in this case is the presence of a spike
in the value of ∆(%) for the ν > 1 catalog at RV = 1.0 deg, where the two cosmologies differ
by 245%, this means that at this particular value of the radius the projected density of voids is
very different between the two cases in analysis, but it is not related to the presence of massive
neutrinos, especially because the other two catalogues do not show the same spikes for larger
RV and they have a more continuous behavior. We attribute this spike to statistical fluctuations
between the catalogs in the different cosmologies.

The bottom-right panel in Fig. 7.6 shows the Euclid lensing case. As expected, this presents
the most significant deviations between the two cosmologies. The catalog with ν > 1 at a large
fluctuation at RV ∼ 0.9 deg where ∆(%) = 76% and then it goes rapidly towards negative values.
Also the catalog ν > 3 shows the same behavior.

In general, as concerns the cumulative projected void density as a function of the void radius,
the difference between the massive and massless neutrino cases can be inferred from Tab. 7.8,
which reports the mean values of ∆RV(%). We can observe that for all the probes and all the SNR
thresholds, the void densities in the νΛCDM cosmologies are larger on the average with respect
to the ΛCDM case. This is again explained considering that free streaming massive neutrinos
suppress structure formation, so for a given threshold, the number of κ peaks decreases, and
consequently the number of voids with a given size increases when massive neutrinos are present.

Now, we focus on the evolution of void counts and investigate differences between the massive
and massless neutrino scenarios. Fig. 7.7 shows the cumulative projected density of lensing voids
at different redshifts extracted from the partial CMB-lensing catalogs.

We also report in Tab. 7.9 the values of ∆(%) mean found for each redshift bin and each SNR
threshold. All the data can be found in Tab. B.4 and Tab. B.5.

zi ∆̄RV(%)ν>1 ∆̄RV(%)ν>2 ∆̄RV(%)ν>3

19 < z < 99 2 2 -6
12 < z < 15 3 -1 11
5 < z < 11 -1 11 19
2.5 < z < 4 -2 -17 13
1 < z < 2 6 12 4

0.5 < z < 1 42 19 6

Table 7.9: Mean values of the percent residuals, ∆V (%) (as defined in Eq.( 7.1)), as a function of the
void radius, between the massive and massless neutrino cases, for the void cumulative projected density as
measured in the partial CMB-lensing maps at different redshift bins

.

Inspecting Tab. 7.9 and the sub-panels in Fig. 7.7 we see that the catalogs with threshold ν > 3
are the ones with larger deviations for large RV, so for larger void sizes. In fact, these catalogs
show a mean value of ∆(%) larger if compared to the other two catalogs. For example, the map
with 5 < z < 11 has a ∆̄RV(%)ν>3 = 19%, whereas ∆̄RV(%)ν>1 = −1% and ∆̄RV(%)ν>2 = 11%.

The maps at lower redshift ranges shows differences between the two cosmologies for the
catalogs ν > 1 and ν > 2, as well. In particular, the void catalog at 0.5 < z < 1 has a ∆̄RV(%)ν>1 =
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42% with a large fluctuation at RV ∼ 0.6 deg.
Overall, from Tab. 7.9 we can infer that on the average the massive neutrino scenario presents

a larger number of voids with respect to the massless case, at a given void radius. This difference
is present at each redshift, even if it doe not evolve monotonically with z, due probably to noise
effects present in the catalogs.

7.3 Void convergence profiles in the νΛCDM scenario

At this point of the analysis we are interested in the study of the stacked κ-profiles of lensing
voids identified from convergence maps in the case of νΛCDM cosmology, focusing on the iden-
tification of the main differences between the two cosmologies. We expect that the free-streaming
of massive neutrinos slightly modifies the κ-profiles both for different probes and at different
redshifts, especially at lowones.

As for in the massless neutrino case, we compute convergence profiles of lensing voids by
using annuli of thickness RV/Nbin, with RV being the radius of the lensing voids of our flat-sky
patches and Nbin = 15 being the number of bins that we find to the be the best one to analyse our
data. We stack all the voids and plot the κ-profiles in terms of their scaled radial distance R/RV.
Then, we average over all the 192 10x10 deg2 flat-sky patches in order to have better statistics.

We follow the same steps of the previous analysis, and we first analyze the convergence
profiles of the CMB-lensing, the WL(zs = 2), and the Euclid lensing void catalogs. Fig. 7.8
shows the obtained stacked convergence profiles of lensing voids.

As for the ΛCDM cosmology, the curves show the radial distance up to R = 1.86RV and, as
expected, we see that the convergence κ for larger R/RV decreases toward the zero value, that is
set as the background level. In all cases for R < 0.75RV we have negative convergence values,
this implies that we are inside an under-dense region in that radial range, therefore we are inside
a void. Moreover, as in the ΛCDM case, the catalogs with ν > 3 have the less under-dense voids,
and present the smallest value of κmax; this is caused by the tiny over-densities that lay inside
larger voids when we impose a larger threshold to the κ-peaks.

Once we have highlighted the main features of the κ-profiles of cosmic voids in the νΛCDM
cosmology, now we want to underline the main differences between the cosmology with massless
and the massive neutrinos.

In Eq. (7.2) we define the percent residuals for the κ and γ stacked void profiles, ∆κ
R/RV

(%)
and ∆

γ
R/RV

(%), as a function of R/RV:

∆κ
R/RV

(%) =

(
κνΛCDM

κΛCDM
− 1

)
∗ 100,

∆
γ
R/RV

(%) =

(
γνΛCDM

γΛCDM
− 1

)
∗ 100, (7.2)

where κνΛCDM and κΛCDM are the values of the convergence, while γνΛCDM and γΛCDM are the
values of the tangential shear profile, in the two cosmologies respectively.

In Fig. 7.8 we have inserted a top-left panel showing the κ-profiles associated to the three
maps for the catalogs ν > 1, ν > 2 and ν > 3 with the aim of identifying the differences between
the three probes in the case of massive neutrinos. The other panels show the κ-profiles of the two
cosmologies with a sub-panel with the ∆(%) of the κ values between the νΛCDM cosmology and
the ΛCDM one for the usual catalogs.

In Tab. 7.10 it is possible to see the mean ∆R/RV(%) values and how they change with the ν
thresholds imposed. In Tab. B.6 it is possible to find the values of ∆R/RV(%) found for each R/RV.

What we recover from the sub-panels in Fig. 7.8 is that the CMB-lensing curves show a
very similar behaviour between the two cosmologies, in fact we recover ∆̄R/RV(%)CMB

ν>1 = −4%,
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∆̄κ
R/RV

(%)ν>1 ∆̄κ
R/RV

(%)ν>2 ∆̄κ
R/RV

(%)ν>3

CMB-Lensing -4 -1 -3
WL(zs = 2) -30 -31 -32

Euclid photo-z -29 -30 -30

Table 7.10: Mean values of ∆κ
R/RV

(%) (as defined Eq. (7.2)) for the voids κ profiles, for CMB-lensing,
WL(zs = 2), and the Euclid lensing, for the three catalogs with κ-SNR thresholds ν > 1, ν > 2 and ν > 3.

∆̄R/RV(%)CMB
ν>2 = −1% and ∆̄R/RV(%)CMB

ν>3 = −3%, with a spike correspondent to the point where
κ from negative becomes positive for the ν > 2 and ν > 3 catalogs with ∆R/RV(%)CMB

ν>2,3 ∼ 35%.
These spikes highlight some statistical fluctuations between two even smaller values of the con-
vergence field κ.

The other two lensing probes show, instead, some differences. In fact, the WL(zs = 2) and the
Euclid map present important differences between the two scenarios for all the catalogs ν > 1,
ν > 2 and ν > 3, with ∆̄R/RV(%)Euclid,zs

ν>1,2,3 ∼ −30%. We indeed expect the effects of free-streaming
of massive neutrinos being more significant at lower redshifts where they are less relativistic. In
fact the WL map with zs = 2 and the Euclid-like map cover lower redshift ranges if compared to
the CMB-lensing.

Furthermore, for all the probes, we see that the ΛCDM scenario is the one with more under-
dense voids, in fact if we see the values of ∆R/RV(%) found for each R/RV in Tab. B.6 are negative
until κ are negative; when the values of the convergence become positive at R = 0.75RV the
ΛCDM curves have a bigger over-dense boundaries and the values of ∆R/RV(%) are again nega-
tive. If we take for example the WL(zs = 2) map, κWL(zs=2)

ν>1,max = 0.0022 in the ΛCDM cosmology,

whereas κWL(zs=2)
ν>1,max = 0.0021 in the νΛCDM one.

Another thing that emerges from the plots in Fig. 7.8 is that even at larger values of the stacked
radial distance R/RV ∆(%) differs a lot between the two cosmologies analyzed although the plots
in the corresponding panel do not show the same behaviour. The values of the convergence κ
differs from the νΛCDM and the ΛCDM scenarios, but these differences are not clearly visible
because we are taking into account data of the order of 10−5 − 10−6.

Following the steps of the analysis of lensing voids in the ΛCDM cosmology, now it can be
interesting to show the κ-profiles at different redshift ranges both in the ΛCDM cosmology and
in the massive neutrino scenario. Our aim in this section is to highlight the main differences that
arise in the presence of massive neutrinos and to analyse the evolutionary κ-profile of voids when
we we place ourselves in a νΛCDM cosmology.

In Fig. 7.9 we show the convergence profiles associated to the two scenarios we are con-
sidering: the ΛCDM scenario with massless neutrinos and the νΛCDM scenario with massive
neutrinos. All the sub-panels show instead the ∆(%) in the two cosmologies.

Beside the expected behaviour of the κ-curves, that we recover also in this scenario, we want
to underline what are the main differences between the convergence profiles in the two cosmology.
In order to better quantify these differences we write in Tab. 7.11 the mean values of ∆R/RV(%)
found for all the redshift ranges in analysis, in Tab. B.7 and Tab. B.8 we insert the single values
of ∆R/RV(%) found for each R/RV.

The flat-sky patches containing information about the convergence field in the redshift range
19 < z < 99 shows a quasi total overlap with ∆̄R/RV(%)ν>1 = −3% and ∆̄R/RV(%)ν>2=-1%, al-
though for big values R/RV values we see some deviations between the two scenarios for the
catalog ν > 3, that is the one that contains the less number of voids and the more rich in over-
densities due to its higher threshold. For what concerns the map in the 12 < z < 15 redshift
range the deviations between the two cosmologies are still small (∆̄R/RV(%)ν>1 = −3% and
∆̄R/RV(%)ν>2 = −3%); again, for the ν > 3 catalog, we see an oscillatory trend of ∆R/RV(%),
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zi ∆̄κ
R/RV

(%)ν>1 ∆̄κ
R/RV

(%)ν>2 ∆̄κ
R/RV

(%)ν>3

19 < z < 99 -3 -1 15
12 < z < 15 -3 -3 5
5 < z < 11 5 1 32
2.5 < z < 4 -3 -2 8
1 < z < 2 11 5 6

0.5 < z < 1 -14 -10 -11

Table 7.11: Mean values of ∆κ
R/RV

(%) (as defined Eq. (7.2)) for void κ profiles extracted from the catalogs
of the partial CMB-lensing maps in different redshifts bins with κ-SNR thresholds: ν > 1, ν > 2 and ν > 3.

we can think that the differences might be caused by the intrinsic nature of the catalog. The dif-
ferences between the massive and massless neutrino scenarios start being more visible below the
redshift 2.5 < z < 4.

We can see that as the redshift ranges of our maps decrease, the differences between the two
cosmologies become slightly more visible, especially for the catalogs ν > 1 and ν > 2, although
they are still very small; for small radii, the ΛCDM case has a slightly bigger κmin with respect
to the values of the minimum of the convergence κ found in the νΛCDM cosmologies as already
seen for the three probes in Fig. 7.8.

7.4 Void shear profile in the νΛCDM scenario

The last step in our analysis of lensing voids with peak statistics is the study of the stacked tan-
gential shear profiles of the same lensing voids both for different probes and for maps at different
redshift ranges with the purpose of identifying the main differences with respect to the massless
neutrino scenario.

We calculate the tangential shear profile of voids γt(r) from the convergence profile using the
same equation of the previous Chapter Eq. (7.3) (Davies et al., 2018):

γt(r) = κ̄(< r) − κ(r), (7.3)

where κ(r) corresponds to the value of the convergence profile at the radial distance r and κ̄(< r)
is the mean enclosed convergence within r. As for the convergence profile we average over all
the sections we have divided the original full-sky maps into in order to have better statistics.

In Fig. 7.10 it is possible to see the plots of the stacked tangential shear profiles of the three
probes (CMB-lensing, WL(zs = 2) and map Euclid-like) for the usual thresholds in the top-left
panel, the other panels show the stacked tangential shear profile of each lensing map with a sub-
panel associated of the ∆R/RV(%) between the ΛCDM and the νΛCDM cosmology, with ∆(%)
being calculated via Eq. (7.2).

It can be interesting to notice that, following the correspondent κ-profiles of Fig. 7.8, the
CMB-lensing γt-profile shows very small discrepancies between the two scenarios; whereas the
effects of the presence of massive neutrinos are visible for the WL map with zs = 2 and for the
Euclid-like redshift distribution map.

From a quantitative point of view, the mean differences between the two cosmologies of the
three probes are inserted in Tab. 7.12; Tab. B.9, instead, contains all the ∆R/RV(%) for each value
of the stacked radial distance R/RV .

We see that, beside some random spikes, the cosmology with massless neutrinos present
bigger negative value of the tangential shear, in fact almost all the values of ∆R/RV(%)(%) are
negative, especially for the catalogs ν > 1 and ν > 3.
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∆̄
γ
R/RV

(%)ν>1 ∆̄
γ
R/RV

(%)ν>2 ∆̄
γ
R/RV

(%)ν>3

CMB-Lensing -4 -4 3
WL(zs = 2) -30 -31 -33

Euclid photo-z -29 -30 -26

Table 7.12: Mean values of ∆
γ
R/RV

(%) (as defined Eq. (7.2)) of the stacked tangential shear of the CMB-
lensing map, the WL(zs = 2) map and the Euclid-like redshift distribution map for the three catalogs ν > 1,
ν > 2 and ν > 3.

The two lensing maps that show the major evidences are the WL(zs = 2) and the Euclid-like
redshift maps, both have a ∆R/RV(%) ∼ −30% for all the thresholds. The CMB-lensing map, as
major fluctuations in γt(r), however the differences between the two scenarios are very difficult to
identify and lay in the error bars. Now, similarly to what we have done in the previous section, we
want to see how the stacked tangential shear profiles of lensing voids evolve at different redshifts
z. We plot these γt-profiles in Fig. 7.11.

Two are the main things we notice from this plot. First of all the behaviour of the curves in the
case of massive neutrinos is similar to the behaviour of the correspondent curves in the ΛCDM
cosmology: as the redshift we are looking at decreases, also the absolute value of the maximum
γt increases, as we expect if we think to the evolutionary history of cosmic voids. Moreover
these curves show relatively small discrepancies with respect to the ones of the massless neutrino
scenario. If for the κ-profiles we have found ∆(%) ∼ −30%, for the tangential shear profile
∆(%) ∼ −(5 − 6)% for the lensing maps at lower redshifts as it can be seen in Tab. 7.13.

zi ∆̄
γ
R/RV

(%)ν>1 ∆̄
γ
R/RV

(%)ν>2 ∆̄
γ
R/RV

(%)ν>3

19 < z < 99 -0.5 -3 28
12 < z < 15 -3 -3 80
5 < z < 11 -3 -9 -37
2.5 < z < 4 -5 -8 -2
1 < z < 2 -4 -4 -9

0.5 < z < 1 -4 -8 10

Table 7.13: Mean values of ∆
γ
R/RV

(%) (as defined in Eq. (7.1)) mean of the tangential shear of lensing
maps z1, z2, z3, z4, z5 and z6 for the catalogs ν > 1, ν > 2 and ν > 3.

7.5 Summary of Chapter 7

In this Chapter we present quantitative results obtained from the analysis of cosmic voids in the
νΛCDM model, and identify the differences between the massless and massive neutrino cases.

We have considered the three probes with different redshift distributions: CMB-lensing,
WL(zs=2), and the Euclid-lensing, all full-sky for simplicity.

Using CMB-lensing partial catalogs in redshifts bins 19 < z1 < 99, 12 < z2 < 15, 5 < z3 < 11,
2.5 < z4 < 4, 1 < z5 < 2 and 0.5 < z6 < 1, we study also how the evolution of κ counts, as well
as of void counts and profiles changes in the presence of massive neutrinos.

From each map we have, again, identified three different catalogues imposing three κ-SNR
thresholds νcut: ν > 1, ν > 2 and ν > 3.

In particular, first we have recovered the behaviour of the mean cumulative projected density
of κ-peaks as function of the signal to noise ratio ν = κ/σ. We have computed for each probe
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the values of the percent residuals ∆(%), that highlight the differences between the two cosmo-
logical scenarios considered in this work. We observe that the cumulative projected density of
convergence peaks presents the same behavior as for the massless neutrino case.

Interestingly, when we inspect catalogs with large values of the signal to noise ratio ν, we
observe how massive neutrinos smooth out the perturbations on the convergence field and make
higher ν peaks rarer.

The same happens when we analyze the partial CMB-lensing catalogs as a function of red-
shifts. As expected, we observe the main differences at low redshift, although they are only few
%, given the small neutrino mass considered in this work, Mν = 0.16 eV.

Then, we have build void catalogs applying the 2D tunnel finding algorithm to the κ-peak
catalogs used as void tracers.

We notice how the total number of voids in each catalog changes with the value of the radius
RV and how, for high SNR thresholds, and low z, the total number of voids, NV, as a function of
the void radius, increases as with decreasing redshift. However, considering the difference with
respect to the massless neutrino case, we can observe that NV decreases for fixed radius, and this
is explained by structure suppression due to free streaming neutrinos, especially at low redshifts.

Finally we have studied the behavior of the stacked void convergence profile, κ, and the
stacked void tangential shear profile γt, as a function of the stacked radial distance R/RV.

For the three probes we have recovered also in this different model that the Euclid-lensing and
the WL(zs=2) void catalogs have a very similar trend between the two, whereas the CMB-lensing
catalog shows larger fluctuations in the convergence profiles, and in the tangential shear profiles
as well.

Moreover we have found that, even if the CMB-lensing profiles do not show significant varia-
tions in the convergence and shear profiles between the massless and massive neutrino scenarios,
for the low redshift lensing probes, void profiles tend to be much less under-dense at the depth,
especially for large thresholds values. This can be related to the presence of massive neutrinos,
suppressing structure formation especially at low redshifts (where they are non relativistic) and
at nonlinear scales. The same effect can be seen on the boundaries of these voids, where massive
νs make the accumulation of matter on the walls smoother, as expected. When we take into ac-
count the partial CMB-lensing catalogs at different redshifts, we observe that, as expected in the
νΛCDM scenario, the redshift evolution of lensing voids is similar to the ΛCDM case. However,
we can notice that, at lower redshifts, the smoothing effect due to the presence of neutrinos is
more evident, as expected.
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Figure 7.3: Cumulative projected density of convergence peaks as a function of ν = κ/σ in the νΛCDM
cosmology for the partial CMB-lensing convergence maps in the redshift bins: 19 < z < 99, 12 < z < 15,
5 < z < 11, 2.5 < z < 4, 1 < z < 2 and 0.5 < z < 1. The sub-panels show the ∆ν(%) (as defined in
Eq. (7.1)) of the the projected density between the νΛCDM scenario and the ΛCDM one.
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Figure 7.4: LEFT panels: histogram of the total number of voids as a function of their radius RV for the
CMB-lensing, the WL (zs = 2), and the Euclid lensing void catalogs in the νΛCDM cosmology. RIGHT
panels: the same as in the left panels, but in the massless neutrino scenario. In all cases we consider the
κ-peak catalogs with SNR thresholds: ν > 1, ν > 2, ν > 3, shown as different color bars (red, green, and
blue respectively).
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Figure 7.5: Number of voids as a function of their radius RV at different redshift bins in the νΛCDM (LEFT
panels) and ΛCDM (RIGHT panels) cosmologies from CMB-lensing partial catalogs in the redshift bins
defined in Tab. 7.1. Color bars are the same as Fig. 7.4.
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Figure 7.6: TOP-LEFT: Cumulative projected density of voids from the CMB-lensing map (olive), the
WL map(zs = 2) (red) and the lensing map with Euclid-like redshift distribution (blue) in the νΛCDM
cosmology. Different line-styles correspond to different void catalogs identified in this work: ν > 1 (solid),
ν > 2 (dash-dotted), ν > 3 (dotted). TOP-RIGHT: Cumulative projected density of lensing voids as
function of their radius RV for the CMB-lensing map; the sub-panel shows the ∆(%) between the νΛCDM
scenario and the ΛCDM one for the three catalogs analyzed. BOTTOM-LEFT: Cumulative projected
density of voids as function of their radius RV for the WL(zs = 2) map; the sub-panel shows the ∆(%)
between the νΛCDM scenario and the ΛCDM one for the three catalogs analyzed. BOTTOM-RIGHT:
Cumulative projected density of voids as function of their radius RV for the lensing map with Euclid-like
redshift distribution; the sub-panel shows the ∆(%) between the νΛCDM scenario and the ΛCDM one for
the three catalogs analyzed. ∆(%) are defined in Eq. (7.1).
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Figure 7.7: Cumulative projected density of lensing voids as a function of their radius RV for CMB-lensing
maps at different redshift ranges. We show both the curves of the ΛCDM cosmology and the ones of the
νΛCDM cosmology for the three void catalogs identified in this work: ν > 1, ν > 2 and ν > 3. The
sub-panels show the ∆(%) as defined in Eq. (7.1) between the massive and massless neutrino scenarios.
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Figure 7.8: TOP-LEFT: Stacked convergence profile of voids from the CMB-lensing map (olive), the
WL map with zs = 2 (red) and the lensing map with Euclid redshift distribution (blue) in the νΛCDM
cosmology. Each curve is averaged over all of the voids found in each of the sections we have projected
the original full-sky maps into. Different line-styles correspond to different void catalogs identified in this
work: ν > 1 (solid), ν > 2 (dash-dotted), ν > 3 (dotted). TOP-RIGHT: Stacked convergence profile of
voids for CMB-lensing map; the sub-panel shows the ∆(%) between the convergence κ in the νΛCDM
scenario and the ΛCDM one. BOTTOM-LEFT: Stacked convergence profile of voids for WL map zs = 2;
the sub-panel shows the ∆(%) between the convergence κ in the νΛCDM and the ΛCDM cosmologies.
BOTTOM-RIGHT: Stacked convergence profile of voids for lensing map with Euclid redshift distribution;
the sub-panel shows the ∆(%) between the convergCDM scenario and the ΛCDM cosmology. Note that in
all sub-panels ∆(%) are defined in Eq. 7.2. Error bars in all profiles are the variance of each bin in radius
w.r.t. all the voids found in our flat sections.
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Figure 7.9: Stacked convergence profiles of lensing voids averaged over all the voids found in CMB-
lensing map at different redshift ranges as a function of the scaled radial distance R/RV both in the ΛCDM
scenario and in the νΛCDM one for the three void catalogs ν > 1, ν > 2 and ν > 3. The sub-panels show
the ∆κ

R/RV
(%) (see Eq. 7.2 ) between the κ-values in the νΛCDM cosmology and the ΛCDM one. Error

bars in all profiles are the variance of each bin in radius w.r.t. all the voids found in our flat sections.
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Figure 7.10: TOP-LEFT: Stacked tangential profile of voids from the CMB-lensing map, the WL map
with zs = 2 and the lensing map with Euclid redshift distribution in the νΛCDM cosmology. Each curve
is averaged over all of the voids found in each of the sections we have projected the original full-sky maps
into. Different line styles correspond to different voids catalogs: ν > 1 (solid), ν > 2 (dash-dotted), ν > 3
(dotted). TOP-RIGHT: Stacked convergence profile of voids for CMB-lensing; the sub-panel shows the
∆
γ
R/RV

(%) between the tangential shear γt in the νΛCDM scenario and the ΛCDM cosmology. BOTTOM-
LEFT: Stacked tangential shear profile of voids for WL map zs = 2; the sub-panel shows the ∆

γ
R/RV

(%)
between the tangential shear γt in the νΛCDM scenario and the ΛCDM cosmology. BOTTOM-RIGHT:
Stacked tangential shear profile of voids for lensing map with Euclid redshift distribution; the sub-panel
shows the ∆

γ
R/RV

(%) between the tangential shear γt in the νΛCDM scenario and the ΛCDM cosmology.
Error bars in all profiles are the variance of each bin in radius w.r.t. all the voids found in our flat sections.
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Figure 7.11: The stacked tangential shear profiles of lensing voids found in convergence maps in the
ΛCDM and the νΛCDM scenario. The coloured lines show the average profile for the void catalogs used
in this work ν > 1, ν > 2 and ν > 3 at different redshift ranges. The sub-panels show the ∆

γ
R/RV

(%) between
the γt-values in the νΛCDM cosmology and the ΛCDM one. The shaded regions instead show the mean
uncertainties.
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Conclusions

In this thesis we have analyzed the properties of cosmic voids, focusing on the voids identified
from lensing convergence maps, the so-called VOLEs (VOids from LEnsing). From a theoretical
point of view, voids are under-dense regions of the Mpc scale Universe. It is this peculiar charac-
teristic that makes them unique probes for cosmological parameters (Hamaus et al., 2016) as dark
energy and massive neutrinos (Pisani et al., 2015)).

Voids can be identified as under-densities of the matter field using galaxies as tracers (Na-
dathur et al., 2017); however, other methods have been developed in the literature to find voids.
In particular, in this thesis we have adopted the so-called κ-peak statistics, where first peaks are
identified in the convergence field, and then they are used as void tracers applying a particular
void finder, which identifies voids as regions devoid of κ peaks above a certain SNR threshold.
The identidied voids are therefore lensing voids.

In this thesis we study the convergence field directly, being the convergence field the projected
line-of-sight density field weighted by the lensing kernel (Davies et al., 2018). Therefore lensing
voids are simply under-density regions in the projected matter density field.

In particular, we have analyzed the statistical properties of lensing voids, considering two
different cosmological scenarios: the standard ΛCDM cosmology with massless neutrinos, and
the νΛCDM one with massive ν, of total mass Mν =

∑
mν=0.16 eV. We have also considered three

different lensing probes, characterized by different source redshift distributions: CMB-lensing,
WL(zs = 2), and convergence maps characterized by a Euclid photometric redshift distribution of
galaxies. For semplicity, all the probes are considered full-sky.

We have also studied the evolution with redshift of κ counts, as well as void counts. Finally,
we have analyzed how these properties change when we consider the case massive neutrinos. In
this part of the analysis we have observed how the effects of massive neutrinos start to be visible at
low redshifts, as expected since at such redshifts they are non relativistic and their free streaming
suppress structure formation, especially at nonlinear scales.

In this work, we have shown the properties of lensing voids, starting from the DEMNUNi set
of cosmological simulations (Carbone et al., 2016) and the lensing maps obtained via direct ray-
tracing across their dark matter distribution as provided by the Lens2Hat code (Calabrese et al.,
2015; Fabbian et al., 2018; Hilbert et al., 2020). We have applied to these full-sky simulated
convergence maps the 2D tunnel-finding algorithm adapted by (Cautun et al., 2018) in order to
look for lensing voids within the convergence field via the κ peak statistics.

Since the 2D void finder works with lensing maps in the flat-sky approximation, we have
projected the full-sky DEMNUni maps onto a two-dimensional Cartesian plane, partitioning the
original full-sky maps into 192 10x10 deg2 patches, using the partitioning algorithm described by
(Davies et al., 2019). These 192 flat-sky sections were the starting point of our analysis.

We have investigated the cumulative projected density distribution of κ-peaks as a function of
the SNR ν = κ/σ, identified in our catalogs. These distributions show the expected decrease as
the signal to noise ratio ν = κ/σ increases, with a flattening of the curves at negative values of ν.
Moreover, we have found that probes at lower redshifts have associated peaks with much larger
signal to noise ratio. This can be related to the fact that weak lensing at low redshifts is much
more affected by non-linear structure evolution with respect to CMB-lensing.

A similar behaviour has been recovered from the partial CMB-lensing maps representing lens
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regions in different redshift bins.
As a next step, we have produced three peak catalogs imposing several thresholds on SNR

νcut = 1, 2, 3. This allows us to discriminate the different properties of voids as we select specific
amplitudes of matter perturbations in the convergence field.

We compute the histograms of the void number, NV, identified in the full-sky catalogs, as a
function of their radius RV. In this case, we observe that the number of voids for the catalogs with
ν > 2 and ν > 3 increases at lower redshifts, highlighting the effective evolution of such voids.

The void cumulative projected density shows a similar behavior, with voids of larger size
being fewer than smaller voids, as expected given the corresponding trend in the κ projected
densities. In particular, when we compare the three probes, we see how the CMB-lensing catalogs
differ, by more than one order of magnitude, from the other two in the case of ν > 3, which
corresponds to very large voids. This is related to the fact that in the CMB-lensing catalogs the
convergence peaks with ν > 3 are much rarer if compared to what we can find for the other
observables, then the identified voids are much larger and more numerous with respect to the
other probes.

Next, we have analysed the stacked void convergence profiles κ and the shear profiles γt, as
function of the radial distance R/RV.

Inspecting the stacked profiles of lensing voids at different redshifts we can recover what we
expect: at lower redshifts, voids seem to be much more under-dense (i.e. with a larger depth)
whereas on their boundaries we find much more structures (i.e. higher walls at their boundary).
This is evidence of an effective evolution of our lensing voids.

Then, we have performed the same analysis on cosmic voids in the case of the νΛCDM, to
compare how the properties of lensing voids change when we consider massive neutrinos, and
how the free-streaming of these massive particles influences their evolution with redshift.

We have found that these massive particles smooth out the perturbations in the convergence
field; thus, in the cumulative projected density of convergence peaks, we have recovered that the
ΛCDM model has a larger number of κ-peaks with higher signal to noise ratio with respect to the
model with massive neutrinos. Obviously, this is more visible at low redshifts.

The fact that the convergence maps in the νΛCDM model have fewer peaks with high signal
to noise ratio explains how the total number of lensing voids changes in the presence of massive
neutrinos: in fact, we have observed that catalogs with ν > 2 and ν > 3 have a smaller number of
voids with respect to the corresponding ΛCDM case.

Finally, from the stacked void convergence profiles, κ, and tangential shear profiles, γt, in the
presence of massive neutrinos we have inferred that the effect of massive neutrinos consists of a
smoothing of the perturbations of the convergence field: voids seem to be much less under-dense
with respect to the massless neutrino case at their depth and, at the same time, they presents
smaller walls.

Generally speaking, when we consider partial CMB-lensing catalogs at different redshifts, the
effects of massive neutrinos starts being observable at z ∼ 1 − 2, even if differences with respect
to the massless neutrino case are only few %, due to the low value of neutrino mass considered.

Further works will investigate how these effect change whit the total neutrino mass Mν, which
in cosmologies more general than the ΛCDM one, can assume larger values than the one consid-
ered in this work.
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Appendix A

Check of κ-profiles in the ΛCDM
scenario

In the analysis of the lensing voids and their properties we have done several checks on conver-
gence profiles of maps in the ΛCDM cosmology to explain the presence of the concavity that
affects all the profiles as they approach the center of the voids. In particular, we have computed
several κprofiles using different values of the resolution Nside associated to the projected square
patches. Having chosen the value of Nside for the flat-sky patches that suits our data (that is the
one that maintain the same resolution of the full-sky maps), we have selected different values of
RV and checked how the concavity of the κ-profiles changes as we impose a selection criterion on
the radius as well.

A.1 κ-profiles for different Nside

First, in the analysis of lensing voids in the ΛCDM cosmology, we have projected the full-sky
maps on a 2-dimensional plane and we have created flat-sky square patches with an Nside of
(4096x4096) pixel. All of the full-sky maps used in this thesis are characterized by a

Nside = 2Nres , (A.1)

with Nres = 12, this means that the Nside associated to our maps is Nside=4096.
In the procedure of projecting the full-sky maps on to a plane and then extrapolating our

square sections, we have maintained a resolution of (4096,4096) pixel. The κ-profiles that we
obtain with an Nside = 4096 in the case of the CMB-lensing and the WL(zs = 2) are shown in
Fig. A.1. We see clearly the presence of a concavity at small values of R/RV, that correspond
to radial points that are inside the actual radius RV of the void, especially for the catalog ν > 1.
From a physical point of view, the presence of this inflection point seems to imply that the lensing
voids we have found in our maps are still fixed basins, however if we extrapolate their asymptotic
behaviour, it seems to go toward infinitely negative values of κ.

First of all we have that a resolution of (4096x4096) for our projected sections that is higher
than the actual resolution of the original full-sky map. This is the reason why we have decided to
proceed with the analysis of the κ-profiles associated to the same maps, but starting from different
values of Nside for our flat square patches. In particular we have considered several resolution
values: Nside = 4096, 2048, 1024, 709. The results of this analysis are shown in Figure A.2.

From Fig. A.2 it is possible to infer two main things. First of all, the behaviour of the curves
gets better as we increase the signal to noise ratio, this means that the ν > 3 catalog shows a better
behaviour than the ν > 1 one for both the lensing maps; this can be caused by the fact that we
are considering voids with larger radii obtained from catalogs with larger ν = κ/σ. Besides, as
the resolution of our flat square patches decreases, the concavity shows an improvement even if it
still affects the profiles.
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Figure A.1: Stacked convergence profiles of the CMB-lensing map (left) and the WL(zs=2) map (right) in
the case of the three void catalogs ν > 1, ν > 2 and ν > 3 as a function of the stacked radial distance R/Rv.
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Figure A.2: Convergence profiles of CMB-lensing map (left) and lensing map with zs = 2 (right) averaged
over all the sections with different resolution values Nside. Different linestyles (solid, dashed, and dotted)
refer to different value for the SNR threshold (ν > 1, 2, 3 respectively).

It is possible to compute what should be the right value of Nside for our flat sections that
maintains unchanged the resolution of the original full-sky map, simply by taking the ratio of the
surface (100 deg2 for flat-patches, 40000 deg2 for the full-sky) discretized and represented into
pixel grid, this is:

100
N2

side,flat

=
40000

12N2
side,full−sky

(A.2)

Since Nside,full−sky is set by our full-sky maps, Nside,full−sky = 4096, we can recover a value of
Nside,flat=709 for our projected sections. This is why we have decided to use in our analysis an
Nside,flat = 709 for our flat square patches: not to introduce changes in the resolution of the full-sky
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maps and in order not to underestimate or overestimate the resolution of the convergence field.

A.2 κ-profile for different RV values

A second check on our profiles is based on the selection of the radii of our lensing voids.
In Fig. A.3 we show the convergence profiles of the CMB-lensing map and the WL map with

zs = 2 averaged over all the projected sections in the ΛCDM scenario.
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Figure A.3: Convergence profile of CMB-lensing map (left) and WL map with zS = 2 (right), averaged
over all the sections with a resolution of Nside = 709 and different RV,min selected.

In both cases we plot the κ-profiles obtained from void catalogs with ν > 1, ν > 2 and ν > 3;
in particular, we plot also the curves computed by choosing the catalog ν > 1 and selecting from
this catalog all lensing voids with radii RV > 0.2 deg and RV > 0.5 deg. It means that we are
selecting voids with associated radius RV larger than a certain value.

Imposing a certain cut on the radius RV does not change the concavity of the void κ-profiles,
as can be seen by Fig. A.3. This could be interpreted as the profile is fully due to the native
resolution of the full-sky lensing maps we have analyzed in this work. Even if a full-sky resolution
of Nside = 4096 is extremely large, when projected to 10x10 deg2 patches, it translates into a lower
resolution when compared to the one usually adopted in flat-sky analyses. This means that we
smooth out small scale structures with respect to the latter case, which is e.g. considered in Davies
et al. (2018). In fact, works in preparation (Vielzeuf et al. 2021, in prep.), that cross-correlate our
same set of simulated CMB-lensing maps with void catalogs obtained applying the 2D void finder
from Sánchez et al. (2017); Vielzeuf et al. (2019) directly to the DM halo lightcones constructed
from the DEMNUni simulations, show that CMB-lensing void profiles start to become convex as
the smoothing scale in the void-finder is decreased.
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Appendix B

Values of ∆(%) between the νΛCDM
and the ΛCDM cosmologies

Here we show some of the percent residuals ∆ν,RV,R/RV(%) obtained both from the three probes we
have analyzed: the CMB-lensing map, the weak lensing zs = 2 map and the Euclid-like redshift
distribution map and for the six CMB-lensing summed maps: 19 < z1 < 99, 12 < z2 < 15,
5 < z3 < 11, 2.5 < z4 < 4, 1 < z5 < 2 and 0.5 < z6 < 1.

B.1 ∆(%) of the cumulative projected density of lensing peaks

∆(%)CMB ∆(%)zs=2 ∆(%)Euclid

-1.6 -0.7 -0.9
-1.6 -1.1 -1.1
-1.6 -1.3 -0.7
-1.6 -0.6 0.1
-1.7 -0.1 0.1
-1.8 0.7 -0.3
-1.9 0.3 -1.0
-2.0 0.9 -3.1
-2.5 0.6 -5.2
-2.3 -3.2 -7.5
-2.1 -5.6 -11.7
-3.7 -10.2 -12.8
-6.1 -9.6 -12.8

Table B.1: Values of ∆ν(%) for the cumulative projected density of κ-peaks as function of ν = κ
σ

for the
three probes: the CMB-lensing map, the WL(zs = 2) map and the Euclid-like redshift distribution map.
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∆(%)z1 ∆(%)z2 ∆(%)z3 ∆(%)z4 ∆(%)z5 ∆(%)z6

0.03 -0.3 -0.1 -0.4 -0.2 -0.3
-0.04 -0.3 -0.1 -0.4 -0.3 -0.7
-0.2 -0.4 -0.1 -0.5 -0.4 -0.6
-0.6 -0.4 0.1 -0.5 -0.3 -0.5
-0.8 -0.4 0.1 -0.4 -0.1 -0.4
-0.5 -0.3 0.1 -0.4 -0.05 -0.4
1.3 -0.5 0.04 -0.3 -0.4 -1.6
5.1 -1.0 0.2 0.4 -1.1 -2.5
1.2 -2.3 0.4 0.3 -3.0 -4.6
20.5 -3.3 1.5 0.4 -5.7 -7.7
32.9 -4.0 1.8 0.8 -7.3 -10.3
53.8 -4.9 4.9 2.1 -4.9 -13.8
78.7 -3.9 3.8 4.5 -7.8 -20.3

Table B.2: Values of ∆ν(%) for the cumulative projected density of κ-peaks as function of ν = κ
σ

for the
six CMB-lensing summed maps at different redshift ranges.

B.2 ∆(%) of the cumulative projected density of voids

∆(%)CMB ∆(%)zs=2 ∆(%)Euclid

ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3

-3.0 -2.9 -5.8 -2.5 -2.5 -3.1 -2.6 0.9 -6.0
-0.1 -2.3 -5.4 -0.8 -0.2 -4.4 -0.4 0.8 -5.5
3.7 -1.8 -5.6 0.9 1.4 -3.9 0.7 1.8 -5.5
6.6 0.1 -3.4 2.3 2.5 0.1 2.6 2.0 -4.1
9.7 1.3 -1.5 5.2 4.6 2.1 4.3 5.6 0.3
15.0 2.7 -2.3 7.0 8.6 3.3 5.9 7.7 7.5
18.5 5.9 3.9 9.3 13.2 10.7 8.4 11.4 16.5
27.3 5.3 7.5 13.9 14.9 16.9 10.3 10.8 33.7
34.0 5.5 -1.7 9.8 9.9 27.5 17.4 8.8 66.9
44.6 12.5 4.7 10.77 14.2 25.8 34.1 2.9 75.7
39.0 12.9 12.2 17.9 13.9 2.1 75.6 15.1 -33.3
32.5 42.1 20.2 81.5 18.4 38.7 41.1 43.9 -
20.8 49.9 - 274.5 25.9 8.6 -26.0 36.9 -

Table B.3: Values of ∆RV (%) for the cumulative projected density of lensing voids as function of their
radius RV for the CMB-lensing map, the WL(zs = 2) map and the Euclid-like map for the three catalogs
identified in this thesis ν > 1, ν > 2 and ν > 3.
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∆(%)z1 ∆(%)z2 ∆(%)z3

ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3

0.2 -1.4 8.6 -1.3 -3.9 -1.0 -2.1 -0.2 -0.4
0.3 -2.4 4.2 0.8 -3.8 -1.7 -1.7 4.2 -1.0
1.1 -3.2 1.0 4.6 -3.3 -2.1 -0.8 6.4 -0.3
1.4 -4.5 -0.3 9.9 -2.3 -1.4 -0.6 6.1 1.9
1.6 -4.1 -1.5 16.0 -3.6 -0.6 0.1 9.6 4.5
0.8 -4.1 -2.3 22.3 0.6 -4.1 0.1 17.6 2.0
3.4 -1.7 -8.0 25.8 1.7 -0.3 -2.7 20.3 1.0
6.9 11.7 -17.1 17.2 7.2 0.3 -3.3 15.8 2.7
9.4 14.0 -14.1 19.7 9.5 0.7 -0.1 24.2 8.1
4.8 38.1 -10.3 -4.9 -1.5 -17.6 2.7 27.8 7.6
-2.6 -15.8 1.6 -46.4 -4.6 -36.6 -8.9 26.7 5.7
0.7 - -26.8 -27.2 - -11.7 0.6 10.1 11.2
-2.8 - -18.4 -0.9 - 221.8 - -30.9 197.9

Table B.4: Values of ∆RV (%) for the cumulative projected density of lensing voids for partial CMB-lensing
maps at redshift ranges 19 < z1 < 99, 12 < z2 < 15, 5 < z3 < 11.

∆(%)z4 ∆(%)z5 ∆(%)z6

ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3

-0.9 -7.2 -4.5 -0.3 -2.1 -5.0 0.3 -1.5 -3.4
-1.3 -9.6 -6.0 -1.2 -0.8 -4.8 0.6 -1.5 -3.2
-0.9 -9.4 -5.2 -1.3 0.1 -3.5 1.8 -0.6 -1.1
-0.1 -14.0 -4.3 -0.8 0.7 -2.6 3.3 0.7 -1.4

0.0001 -10.1 -1.0 1.1 3.6 0.8 6.4 3.5 1.1
2.9 -8.6 1.9 2.7 4.5 2.0 8.8 6.0 4.8
5.8 4.7 13.9 4.0 10.6 -3.2 14.2 9.9 11.4
3.6 -35.9 23.3 8.9 18.4 3.6 16.8 20.7 19.4
4.4 -63.4 22.1 14.6 20.6 -9.9 18.9 27.5 24.9
-7.5 - 30.0 14.6 18.3 22.0 34.1 34.1 30.1
-1.2 - 11.2 23.4 14.4 32.1 25.8 63.9 6.4

-11.9 - 99.4 25.9 -3.4 17.0 110.3 46.7 -4.3
-24.6 - -5.5 -15.7 65.3 2.4 310.1 33.1 -5.2

Table B.5: Values of ∆RV (%) for the cumulative projected density of lensing voids for the CMB-lensing
maps at 2.5 < z4 < 4, 1 < z5 < 2, 0.5 < z6 < 1.

B.3 ∆(%) of the stacked convergence profile
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∆(%)CMB ∆(%)zs=2 ∆(%)Euclid

ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3

-4.1 -4.3 6.9 -30.6 -31.2 -32.9 -28.7 -30.2 -25.2
-4.7 -3.4 -6.4 -30.0 -30.0 -33.6 -29.0 -28.3 -26.3
-4.5 -4.81 -6.1 -29.8 -29.0 -30.3 -28.8 -30.4 -29.1
-4.5 -5.6 -8.9 -29.3 -29.9 -28.9 -29.2 -29.1 -27.8
-4.3 -6.9 -13.1 -29.8 -31.4 -28.0 -29.5 -29.3 -27.9
-3.6 31.8 39.7 -33. -42.4 -30.3 -27.2 -27.3 -30.0
-4.7 -5.0 -4.6 -31.0 -30.7 -32.4 -30.3 -29.9 -32.2
-4.8 -4.5 -4.9 -31.0 -30.8 -31.6 -29.8 -30.0 -31.8
-3.5 -3.5 -2.0 -30.9 -30.6 -31.8 -29.4 -30.6 -31.0
-3.0 -3.8 -4.3 -31.0 -30.0 -30.4 -29.3 -30.6 -31.2
-2.8 -2.3 -0.9 -30.7 -30.1 -30.1 -29.5 -30.1 -31.2
-1.9 -1. -8.5 -30.3 -30. -31.3 -29.5 -29.5 -31.6
-1.8 -3.1 -18.1 -30.3 -30.4 -34.9 -28. -30.4 -29.2
-1.5 -2.3 -14. -30.5 -31.8 -35.4 -29.4 -32.1 -33.7

Table B.6: Values of ∆R/RV (%) for the convergence profiles of the CMB-lensing map, the WL(zs = 2) map
and the Euclid-like lensing map for the three different catalogs ν > 1, ν > 2 and ν > 3.

∆(%)z1 ∆(%)z2 ∆(%)z3

ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3

-0.05 -4.1 15.0 -2.9 -2.8 69.9 -2.8 -11.5 -46.3
-1.3 0.03 -14.8 -2.8 -4.3 23.0 -3.2 -4.2 -21.9
-1.3 -3.9 -14.7 -1.8 -2.8 3.9 -3.6 -4.7 -7.3
-2.0 -3.7 -13.9 -2.9 -4.0 -26.0 -5.0 -5.3 -19.8
-1.2 -1.7 -9.3 -3.3 -2.1 8.5 -5.9 -7.1 -18.1
1.9 -4.1 -6.5 -7.5 3.8 -33.3 13.3 -13.7 -21.1
-0.6 0.4 3.9 -2.9 -3.2 5.0 -2.4 -1.9 -1.8
-1.02 -1.3 3.7 -3.2 -1.9 6.4 -2.4 -2.4 3.2
-1.9 -2.4 -1.8 -2.8 -1.8 18.6 -0.4 -0.9 19.8
-4.1 -4.8 -4.4 -0.3 -2.0 -6.4 -0.3 1.3 31.8
-5.6 -1.4 22.4 -2.5 1.7 -14.9 5.5 3.9 45.5
-7.6 -4.6 29.5 -7.4 -3.0 6.4 8.5 16.1 187.3
-7.5 0.5 243.4 -7.0 -14.3 -10.5 17.7 24.4 117.9
-8.4 21.0 -41.9 3.5 1.5 20.7 48.5 17.2 179.6

Table B.7: Values of ∆R/RV (%) of the convergence profiles associated to the lensing maps z1, z2 and z3 for
the usual void catalogs ν > 1, ν > 2 and ν > 3.
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∆(%)z4 ∆(%)z5 ∆(%)z6

ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3

-6.0 -10.1 -4.8 -5.2 -3.8 -12.0 -3.9 -7.4 14.5
-3.7 -4.6 7.5 -4.3 -5.9 -2.5 -4.8 -7.4 -5.8
-4.4 -3.6 -5.1 -6.1 -4.0 -3.9 -4.5 -4.6 -6.0
-4.0 -4.1 -13.8 -5.8 -6.3 -9.2 -5.0 -5.8 -5.2
-3.2 -3.9 -11.9 -7.1 -6.0 -10.3 -5.1 -5.0 -5.8
2.7 -4.2 17.7 13.8 -11.4 -28.1 -70.3 -4.4 9.4
-4.7 -4.6 -6.3 -5.4 -3.4 2.2 -6.1 -8.0 -10.7
-4.0 -5.4 -8.2 -4.6 -3.1 -1.0 -6.6 -7.4 -7.9
-4.7 -6.0 2.9 -2.0 2.8 15.3 -7.1 -7.7 -12.9
-4.5 -5.4 -3.1 4.3 6.3 17.0 -8.8 -12.7 -4.0
-3.9 -4.8 10.1 16.9 6.4 20.0 -12.7 -9.1 -15.2
-6.7 2.4 58.4 31.1 11.4 23.6 -28.9 -18.6 -12.6
4.0 10.1 54.0 37.1 15.2 16.7 -42.7 -21.9 -31.6
5.8 9.5 21.4 91.1 67.1 63.1 -40.1 -17.9 -53.8

Table B.8: Values of ∆R/RV (%) of the convergence profiles associated to the lensing maps z4, z5 and z6 and
the usual void catalogs ν > 1, ν > 2 and ν > 3.

B.4 ∆(%) of the stacked tangential shear profile

∆(%)CMB ∆(%)zs=2 ∆(%)Euclid

ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3

-2.6 -6.3 52.1 -32.2 -34.5 -31.2 -28.1 -35.2 -22.0
-4.2 -2.9 11.0 -31.0 -32.9 -36.7 -28.9 -28.1 -21.1
-4.3 -3.0 6.3 -30.8 -30.7 -35.1 -28.6 -30.1 -25.4
-4.4 -3.4 2.5 -30.2 -29.8 -33.6 -28.7 -29.7 -26.1
-4.3 -4.2 -1.6 -30.3 -30.1 -32.0 -28.9 -29.7 -26.5
-4.5 -4.7 -3.4 -30.4 -30.5 -32.1 -29.5 -29.7 -29.0
-4.5 -4.5 -3.6 -30.4 -30.6 -31.7 -29.2 -29.7 -29.0
-4.0 -4.1 -1.7 -30.2 -30.4 -31.9 -28.9 -29.9 -27.6
-4.0 -4.3 -2.4 -30.1 -30.2 -31.4 -28.8 -29.7 -26.8
-4.1 -4.0 -1.3 -29.9 -30.2 -31.4 -28.8 -29.5 -26.2
-4.0 -3.9 -2.8 -29.8 -30.4 -31.8 -28.7 -29.3 -25.9
-4.1 -4.4 -3.8 -29.8 -30.3 -32.8 -28.6 -29.5 -24.8
-4.2 -4.4 -2.0 -29.8 -30.6 -32.8 -28.7 -29.8 -25.6

Table B.9: Values of ∆R/RV (%) of the tangential shear profiles of the CMB-lensing map, the WL(zs = 2)
map and the Euclid-like map for the three different catalogs ν > 1, ν > 2 and ν > 3.
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∆(%)z1 ∆(%)z2 ∆(%)z3

ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3

3.3 -14.4 364.9 -3.2 0.9 482.5 -1.8 -29.2 -97.4
0.4 -0.1 44.8 -4.3 -4.4 184.9 -2.1 -13.8 -62.1
0.3 -1.8 7.9 -2.3 -2.6 117.1 -1.6 -9.7 -39.7
-0.8 -3.5 -2.2 -2.5 -4.1 34.7 -2.4 -7.4 -34.7
-0.7 -2.6 -5.2 -3.0 -4.1 34.7 -2.4 -6.5 -29.9
-0.8 -1.5 -1.4 -2.7 -3.2 15.2 -3.2 -5.3 -18.4
-1.0 -2.3 -1.1 -2.8 -2.5 15.1 -3.2 -5.3 -14.9
-1.3 -3.2 -6.6 -2.6 -2.8 25.9 -2.9 -6.4 -22.3
-1.4 -3.9 -8.2 -2.2 -3.1 20.7 -3.6 -6.9 -27.1
-1.2 -3.2 -3.9 -2.6 -2.6 22.9 -3.4 -7.5 -29.1
-1.2 -3.7 -5.2 -2.9 -3.5 29.9 -3.6 -6.8 -27.1
-1.0 -3.2 -2.5 -2.7 -4.7 29.8 -3.6 -7.3 -35.3
-0.9 -1.9 -13.9 -2.3 -3.1 32.6 -3.2 -8.7 -38.9

Table B.10: Values of ∆R/RV (%) of the tangential shear profiles of lensing maps z1, z2 and z3 for the usual
catalogs ν > 1, ν > 2 and ν > 3.

∆(%)z4 ∆(%)z5 ∆(%)z6

ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3 ν > 1 ν > 2 ν > 3

-11.8 -23.8 -37.6 -7.5 1.6 -33.2 -1.0 -7.5 92.5
-6.0 -13.5 9.5 -3.0 -5.9 -13.0 -3.9 -11.3 24.7
-5.6 -9.3 14.5 -4.5 -2.9 -5.2 -3.8 -7.8 10.7
-5.3 -7.8 2.4 -4.5 -4.2 -5.8 -4.1 -7.6 6.1
-4.3 -6.0 -7.3 -4.7 -3.9 -2.7 -4.76 -6.8 -0.8
-4.8 -5.6 -4.5 -5.0 -4.4 -4.4 -5.1 -7.2 -4.0
-4.4 -5.9 -5.7 -5. -4.2 -5.4 -5.3 -6.8 -2.9
-4.9 -6.4 1 -4.6 -3.2 -4.2 -4.7 -6.6 -0.3
-4.9 -6.4 -2.2 -4.5 -3.8 -6.8 -4.3 -7.3 4.2
-4.8 -6.0 0.7 -4.5 -4.7 -9.0 -4.1 -6.2 2.9
-5.1 -5.5 5.0 -4.8 -4.9 -10.7 -4.5 -7.1 4.7
-4.5 -5.1 1.8 -5.0 -5.2 -12.4 -4.0 -6.9 3.4
-4.6 -5. -1.5 -5.0 -3.8 -11.2 -4.1 -6.2 1.9

Table B.11: Values of ∆R/RV (%) of the tangential shear profiles of lensing maps z4, z5 and z6 for the usual
catalogs ν > 1, ν > 2 and ν > 3.
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