UNIVERSITA DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Corso di Laurea Triennale in Fisica

Tesi di Laurea

Design and development of Data Quality Monitoring
protocols for the integration tests of the JUNO large

PMT electronics

Relatore Laureando
Prof. Alberto Garfagnini Alberto Coppi
Correlatore

Dr. Beatrice Jelmini

Anno Accademico 2020/2021






Contents

Introduction

1 JUNO detector

1.1 Readout Electronics . . . . . . . . . . L
1.2 Global Control Unit . . . . . . . . . . . . . e
1.2.1 GCU related hardware . . . . . . . . . . ... L Lo
1.2.2 GCU Data Management . . . . . . . . .. . . i
2 Test Protocols
2.1 GCUSEtUD . . . v v o e e
2.2 Raw Data Processing . . . . . . . . . ... L
2.3 Tests . . . . . e e
231 Test 1: Ping. . . . . . . .« e
2.3.2 Test 2: ADC Linearity . . . . . . . . . .«
2.3.3 Test 3: Stability over time . . . . . . . .. oL o

2.3.4 Test 4: Slowcontrol
3 Conclusions
A Secondary figures and plots

Bibliography

iii

20

21

23



CONTENTS CONTENTS

v



Introduction

The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment
under construction in the south of China at 700 m underground. Its main purpose is to determine
the Neutrino Mass Ordering (NMO) through the detection of reactor antineutrinos, produced in the
Taishan and Yangjiang nuclear power plants, 53 km away from the experimental hall. An excellent
energy resolution of 3% at 1 MeV and a large fiducial volume are an important ingredient for reliable
results (3 — 4o significance) within 6 years of data taking.

An important role is also played by the JUNO readout electronic chain, which digitises and processes
the signal. This work aims to design and develop a protocol for the integration tests of some compo-
nents of the JUNO electronics, to be tested after the mass production and before installation in the
experiment.

The first chapter introduces the JUNO detector: we highlight its main characteristics, with a focus
on the electronics chain which drives the acquisition and online processing of data.

The second chapter describes the protocol developed to test the Global Control Units (GCU) electronic
cards and their integration with the full electronics chain. The protocol involves short as well as long
tests for a total of 1-2 days for each GCU. The test will take place in Kunshan (China), with about
270 GCUs tested in parallel, aiming at testing about 7000 GCUs in total.

All the work described in the following has been organized in a GitLab repository [1].


https://baltig.infn.it/coppi/gcu_integration_tests

Chapter 1

JUNO detector

The JUNO detector [2, 3], shown in Figure 1.1, consists of a large acrylic sphere with a diameter
of 35.4m, called Central Detector (CD), supported by a stainless-steel truss. The sphere is filled
with 20 kton of Liquid Scintillator (LS), surrounded by 17612 20-inch PhotoMultiplier Tubes
(PMT) and 25600 3-inch PMTs. This structure is immersed in a cylindrical water pool filled with
35 kton of high-purity water which works as a shield from environmental background. The pool is also
instrumented with about 2400 20-inch PMTs, which constitutes a Cherenkov detector for cosmic
muons. Finally, the top tracker is placed at the top of the pool. Both the top tracker and the
Cherenkov detector are part of the VETO detector for cosmic muons.

Inside the CD, electron antineutrinos interact with the protons of the LS through inverse beta decay
reactions:
Ve +p — et +n

where the final state positron releases its kinetic energy through scintillation and then annihilates with
an electron, thus producing optical photons in number proportional to the energy of the incoming
antineutrino. The neutron moderates in water and finally interact with another proton through the
reaction:

n+p—>d+y

This reaction happens, on average, 200 ps after the first one, so that the antineutrino interactions have
a very clear prompt-delayed signature. Then, these optical photons can be detected by PMTs and the
energy of the antineutrino can thus be reconstructed through various methods [4, 5].

The detector has been designed to reach 3% energy resolution at 1 MeV, needed to obtain significant
results within 6 years of data gathering.

1.1 Readout Electronics

Considering the underwater architecture of the large PMTs electronics sketched in Figure 1.2(a), we
can notice that groups of three PMTs are connected to water-tight housings, also known as Under
Water Boxes (UWB), which contain the essential front-end and readout electronics of the system:

e three modules that generate the High Voltage (HV) from a low-voltage input for operating the
3 PMTs independently;

e one Global Control Unit (GCU), integrating six Analogue to Digital Units (ADU) and two
Field Programmable Gate Arrays (FPGA); the GCU performs the data digitization, buffering
and processing, and monitors and controls all the relevant parameters.

The underwater scheme is implemented to minimize the deteriorating effects of analog signal transmis-
sion over long cables. The connection between the underwater and the “dry” electronics is achieved
through two 100 m long CAT5e/CAT6 cables. The CAT5e one is reserved for slow control operations

2



CHAPTER 1.

JUNO DETECTOR

1.1. READOUT ELECTRONICS

Central detector

VETO detector

Calibration
-ACU, ROV, etc.

Acrylic sphere

Stainless-steel truss

PMT

-18,000 20" PMTs
-25,000 3” PMTs

Liquid scintillator

-20 kton LS

Top Tracker
-62 Plastic scintillator
walls

Water Cherenkov
-35 kt high-purity water
-2000 20" PMTs

Figure 1.1: Schematic view of the JUNO detector.

Signal + Hv Under Water Box > SYNC LINK: timing & tri
Global Control Unit o] SIS
V) =]
\/— | b I | n
I . ; % % = 8 links
TT | e = e | = =
Votage It 1 Sync link : © % E RMU CTU
H‘glh r:m 1A (LG) | {ADC| FPGA a E ng [ I
\/ Votage [ Lenie (s vofand] ® I .
O | ) Timing WR
! } Tont 1A (LG) [ ADC| j\
| (E e | I
Va } Async link ii 48 Ethemet i i ASYNC LINK: DAQ
[ || Gbitlinks ||
1.5-2m cable 10 Gbit fiber optic
HV+Signal 2GB RAM Gigabit Enterprise Switch DAQ server
for SN burst

(a) “Wet” electronics

(b) “Dry” or backend electronics

Figure 1.2: Schematic view of the Readout Eletronics chain

and data readout, the other one serves as synchronous link for low latency communication between
frontend and backend electronics.

The “dry” electronics is sketched in Figure 1.2(b). It can be divided in two parts: synchronous and
asynchronous link. The electronics on the synchronous link is composed by:

e Central Trigger Unit (CTU), which receives local triggers generated by the GCUs and may
send back a trigger validation signal embedded with the trigger timestamp. It is also responsible
for the synchronization of all GCUs internal clocks;

e Reorganize & Multiplex Unit (RMU), which makes 21 BEC communicate with the CTU.
To do this, 3 FPGAs are mounted, each one dealing with 7x1Gb/s input links and 126.25Gb/s
output link;

e Back End Card (BEC), which is responsible for the communication between 48 GCUs and the
RMU, the power, and the timing and trigger distribution system. To do so the Trigger and
Time Interfacing Mezzanine mounted on the BEC deals with the fan-out of the signal and
guarantees long distance high speed data transfer;

3



1.2. GLOBAL CONTROL UNIT CHAPTER 1. JUNO DETECTOR

e White Rabbit switch (WR), which is responsible for providing a 62.5 MHz clock to the CTU,
RMUs and BECs.

PMTs can detect optical photons produced by the antineutrinos interactions, “signal” in the following,
but may also acquire background events, e.g. cosmic muons, or send to GCUs false signals, coming
from the intrinsic PMT dark noise. One of the main tasks of the readout electronics is to recognize data
representing possible signal and discard the PMT dark noise. In order to do this a trigger algorithm [6]
has been implemented on the GCUs (detailed description of Trigger modes in Section 1.2.2). Note
that data acquired by GCUs represents only a small part of the total information about one event,
as photons related to a single antineutrino interaction may be revealed by different PMTs connected
to different GCUs. Subsequently, the CTU makes a global correlation in order to generate a trigger
validation which is then sent back to the GCUs, which finally transfer, through the asynchronous link,
all the fragments of the signal to the Data Acquisition system (DAQ).

1.2 Global Control Unit

i fyup ©
i Y

OO ) -
oh . ) >

JJJJJJJJJ

M W Top side i S

(a) Last version of GCU hardware. HV connections, ADUs, FPGA and DDR are highlighted

TO BACK-END
TO PMTs ELECTRONICS

before laser weldi|‘|1

(b) GCU inside the UWBox. HVUs are also
mounted

Figure 1.3

The GCU, shown in Figure 1.3, is the intelligent component of the read-out electronics. It is used to
perform the readout of the analog signals coming from the PMTs board and to handle all the data
packaging, processing and buffering. In case of a supernova explosion, the trigger rate for interesting
events will increase, probably to a point where the managing of the data readout via Ethernet would
be impossible to be sustained; this has led to the decision of implementing a buffer capable to store

4



CHAPTER 1. JUNO DETECTOR 1.2. GLOBAL CONTROL UNIT

at least one second of raw data. To perform this task a DDR3 Random Access Memory (RAM) has
been assembled in the GCU. A slow control and monitoring system has been implemented to handle
the technical aspects of the experiment, such as high voltages and temperatures, reporting and acting
on changes in the status of the electronics. Both DAQ and slow control operations are carried
out via IPbus [7], through the asynchronous link. The IPbus is a communication protocol for
controlling hardware devices. It consists of a virtual bus with 32-bit word addressing and 32-bit data
transfer.

The GCU also provides support for the global synchronization process. All of JUNO’s GCUs (about
7000) must be synchronized and aligned within a global time in order to tag the triggered events with
the correct timestamp. The required time accuracy is 16 ns. BEC, RMU and CTU are synchronized
through the White Rabbit Network [8], which exploits the Precision Time Protocol, also known
as IEEE-1588 protocol [9]. The Timing, Trigger and Control system [10], developed at CERN, is used
as a base for the distribution of synchronous broadcast and individually-addressed messages between
the BEC and GCUs. The clock used for alignement and synchronization runs at 62.5 MHz (i.e. 16 ns
of pulse width). The GCU board also presents a 62.5 MHz oscillator that provides a local clock signal
used for the [PBus transmissions. The signal processing is carried out by a Xilinx Kintex 7 FPGA,
while the reprogramming controller relies on a Xilinx Spartan 6 FPGA.

1.2.1 GCU related hardware

In this section the main hardware components that can be found inside the UWB connected to the
GCU board are described. Note that every UWB is connected to three large PMTs. Every PMT is
thus identified by a channel number ranging from 0 to 2. The logical pattern which describes how the
GCU main hardware components work together is shown in Figure 1.4.

SPIFlash dmmmp I

SPIFlash 4mmp Virtual h
JTAG e |TAG I
* [
L LS 4
Slow ctrl Channel 1 I
*
P «—

DDR3

|

|

|

|

I

(ot ADC

| v e o Mﬁ» o -mw—bu;er-bﬁazr 0 i -; T|h
| cotrollor m——

| SP[I'I?CI' DaIa{T&Q] altart
| RS5485 Pmmsamg

DDR3 CU’I

SRAM

I

I

I

I

|

CaIl
Isolators —
Tng

Channel 0
accpt @

Driver 4 Sys_ck

I

& Sync Links : MMCM I
Receiver il T 4 I
I

MMCM Jitter Cleaner fcal]

Figure 1.4: GCU hardware logical pattern: the main components are represented.

High Voltage Units

Each PMT is equipped with a voltage divider. The GCU board provides the connections for three
High Voltage Units (HVU), also anchored in the UWB (Figure 1.3). For each PMT, a single HV
potential will be generated and sent to the PMT through a coaxial cable, about 1.5m long. Note
that the possible signal generated by the PMT is transmitted through the same cable, thus the two
signals are coupled. All voltages required for the photo cathode, the field shaping electrodes, and any
PMT-specific are derived from this HV potential through the voltage divider. The output voltage
range goes from 800V to 3000 V. The maximum anode current is 300 pA. The PMTs will have their
cathodes on ground potential, consequently the output of the signal will be on positive HV. Individual
HYV units are monitored locally by a micro-controller inside the unit interfaced to the PMT electronic
channel, and the parameters are set by the user through the GCU.

5



1.2. GLOBAL CONTROL UNIT CHAPTER 1. JUNO DETECTOR

Analog to Digital Units

The Analogue to Digital Unit (ADU) is composed by an Application Specific Integrated Circuit
(ASIC) assembled in the GCU, that digitizes the input signal. The ADU features two TLG121G
Analogue to Digital Converters (ADC), developed by Tsinghua University [11]. A single ADC
digitizes at 14 bit with a rate of 1 Gsps (total bitrate sent to FPGA is 42 Gbps). The digital interface
is based on a Double Data Rate (DDR) parallel bus. The data is synchronized with a 500 MHz clock.
This sampling clock is granted by an external Phase-locked loop mounted on the ADU that receives
the GCU system clock of 62.5 MHz. The input analogue signal from the PMT is processed by the
ADU in the following steps:

1. the signal is provided to the Front End Chip (FEC) component [12], that has the function of
protection for the following electronics and is also a current amplifier ASIC with different gains,
designed to optimize the input for the following components.

2. The two FEC generated outputs go through a TransImpedance Amplifier (TIA) to convert
the current signal to a voltage signal through both high (for low energy events) and low (for
high energy events) gain. This ensures that ADCs never saturates so that we can collect every
detail of the event.

3. The voltage outputs are later converted from a single-ended logic to a differential logic using
amplifiers.

4. The signal is finally digitized by the two ADCs into 14-bits words.

5. The 14 bit words coming from each ADC are sent out to the FPGA in Low-Voltage Differential
Signaling logic.

The raw digitized stream presents a baseline at a positive value that allows data to be represented by
the unsigned data type despite the negative nature of the signal pulses.

It is interesting to notice that the communications between PMTs and

GCUs (power and signal) goes through a single coaxial cable similar to w 2
the one shown in Figure 1.5. The power to the PMT is in Direct Current

(DC) while the signal of an event is in the form of an inverted peak. To

purify the signal from the DC power base a capacitor is introduced in series

before the signal enters FEC. The circuit thus build is similar to an High

Pass Filter and can be studied through Laplace transforms:

-1
T(s) = Zo _ (sC) T=RC -1 1
Zoc+Zp R+ (sC)71 s+71
1%
Vpe(s) ~ -2 Figure 1.5: Coaxial
SV Ve connectors
Vout(s) - VDC(S)T<3> - 70 + 0

s  s+711
‘/OUt(t) = Lil[vout(s)] = ‘/0(1 — eit/T)

where T'(s) is the transfer function of the High Pass Filter, Vpc(s) is the power signal approximated
to be at a fixed value of Vj and V() is the signal we obtain. It is clear that after a few times 7 the
signal coming from DC power drops to zero.

Testpulser circuit

The testpulser circuit is sketched in Figure 1.6. The signal, which is a reversed peak is generated
through the following steps:

1. an input voltage, Vpac, is set by the user on ADCO_TPL point. This is done through IPBus and
a Digital to Analog Converter (DAC);



CHAPTER 1. JUNO DETECTOR 1.2. GLOBAL CONTROL UNIT

X
=\
S

” 4
\ V4
S\e1097

\
N

DIFFERENTIATOR
ADCO_TPL

= s
A
Hyﬁ\ \/ \/

G
A A FECINO
® ci1g | A \f \\’ ‘ =

V [ \ \350?
|

V ¥V /
R1020 R1025
47K A 249

V DAC

oV

Testo
11‘1'0 V+5 [+9VAMP_ADCO
: WO ' iy
| om- ADCO_CAL =
? 3 ND - (i ”4 A\v/”\/\‘\;
RYD11
. TS5A3166-Q1 ’77

GND - -
GND

Figure 1.6: Testpulser circuit sketch

2. the user sets also a time interval, At. The “A” node is then connected to ground through the
integrated circuit and subsequently disconnected. This steps are executed recursively after At
interval;

3. a very narrow square peak is thus generated on the “A” node with a frequency of f = 1/At of
the form V4 = Vpac(O(t —to) — O(t)), where O(t) is the Heaviside step function.

4. this waveform is the input of a differentiator circuit, which shapes the input to be similar to a
PMT signal; the output is sent to FEC.

Field Programmable Gate Array

All of the tasks the GCU board has to execute, are performed on a FPGA which is an Integrated Circuit
designed to be configured by a customer or a designer after manufacturing (hence field-programmable).
In an FPGA all the operations are computed by its hardware circuitry and components. FPGAs are
vastly used in physical facilities and front-end electronics. For the purposes of the JUNO experiment,

a Xilinx Kintex-7 (XC7K160T-2LI FFG676) is used.

Sensors for slow control monitoring
The following is a list of sensors inside the GCU board which we can use for hardware monitoring:

e HV.ch(0,1,2): High Voltage value provided by HVU, one per channel;

temp.ch(0,1,2): temperature of the HVU, one per channel,

temp.box: hot spot of the GCU, close to FPGA. This is useful to check if the GCU is overheating;

VCCINT [13]: FPGA internal supply voltage. It must be around 0.95V;

VCCBRAM [13]: the supply voltage for FPGA RAM memorires. It must be around 0.95V;

VCCAUX [13]: FPGA auxiliary suplly voltage. It must be around 1.80V;

VREFP [13]: external reference voltage for FPGA internal ADC. It must be around 1.25V;

7



1.2. GLOBAL CONTROL UNIT CHAPTER 1. JUNO DETECTOR

e VREFN [13]: external reference voltage for FPGA internal ADC. It must be connected to the
ground pin of a source around 1.25V.

Each sensor can be read through IPBus, so that all these values can be monitored during tests as well
as during data taking sessions.

1.2.2 GCU Data Management

In this section, a description of the working principles of the GCU Data Management is given. We are
describing the data flow from the PMTs to the local memory, and the subsequent flow towards DAQ.

Trigger modes

The JUNO experiment foresees running in two trigger modes: trigger validation mode and auto-trigger
mode. In both cases, a trigger algorithm is used to recognize events: employing a specific threshold
level, it determines if there are any possible signals, labels them with a timestamp and saves them in
a Level 1 (L1) cache. Both options are discussed more closely in the following.

In case of Trigger Validation Mode, each GCU generates a trigger request whenever an event is
detected above threshold and waits for a trigger validation signal. The local trigger requests coming
from the GCUs are processed by the CTU. If the CTU validates an event, it forms a global triggering
decision and sends a command to the GCUs to save the fragment of the validated event in a First-
In-First-Out (FIFO) memory. The command includes a timestamp, used to save the correct event.
Clearly, for this step, GCUs and CTU must be properly synchronized in time, thus the communication
goes through the synchronous link. The simplest trigger decision is based on multiplicity, therefore
information from all of the channels above threshold is required. Monte Carlo studies [14] have shown
that collecting the total number of active channels within a 300 ns window is sufficient to suppress the
background from dark noise random coincidences and to guarantee 100% efficiency for the detection
of U, events. An important aspect regarding energy reconstruction that potentially favors a global
trigger is the fact that this is the only configuration that will allow the recording of waveforms for
channels in which the PMT signals are below an individual triggering threshold, i.e. the detection of
low-charge photoelectron.

In Auto Trigger Mode any event (including dark noise pulses and background events) that exceeds
the acquisition threshold for a single photoelectron is buffered for a fixed time window (hundreds of
nanoseconds) in the FIFO memory and then transmitted, on request, to DAQ.

Raw Data Format

The official JUNO DAQ software requests data from the GCUs FIFO units which then transmit their
content through the asynchronous link to store it on the DAQ server in binary files, one per channel.
The final structure of acquired data is still under development, but the general idea is that data
are grouped in data packets and each packet is composed of a variable number N, of sequences of
16 bits, which are referred to as words and read as hexadecimal values, and stored in binary files.
Every data packet is wrapped by two sequences of 8 words, the header and the trailer, which allow
to recognise and separate each packet from the others, providing also important information which
uniquely characterises that specific data packet. In the current raw data structure [15], the header is
composed of the following words:

1. the header starting word (0x805a, in hexadecimal numeral system), which is fixed for all the
data packets;

2. the GCU channel number, which can be 0, 1 or 2 and occupies 2 out of 16 bits, and in the
future will also include the data type, which identifies if the data packet was acquired through
the DDR3 RAM (supernova events), default acquisition or other types (2-3 bits);

3. the data packet size, referred to as trigger window (in future this may be referred to as
"waveform window”), including header and trailer, given in units of 8 words;

8



CHAPTER 1. JUNO DETECTOR 1.2. GLOBAL CONTROL UNIT

4. the cyclic trigger count, a number that increases every time the GCU triggers until it reaches
its maximum value of Oxffff (equal to 65535 in decimal numeral system) and starts again from
0x0000;

5. the timestamp, a 64 bits sequence (4 words, may be reduced to 3 words, granting almost a
month of continuous data taking anyway) which represents the time reference given in units of
8 ns;

The trailer is composed of:
1. the trailer starting sequence, a 6-words pattern fixed for all the data packets;
2. the GCU ID number;
3. the trailer ending word (0x0869), which is fixed for all the data packets.

In future the 5th and 6th words may be used for firmware version checksum, thus avoiding misunder-
standings during raw data processing and analysis in debug and test sessions.

The addition of other information in place of unused bits is under discussion.

An example of the final digitized waveform, extracted from a data packet, is shown in Figure 1.7.

wf_chO
16000

14000

12000

ADC counts

10000

8000

6000

4000

2000

\H%\Hz\\\;\H%\Hz\\\%\\\z\\\

e
100 120 140 160 180 200 220
time [ns]

N S RS S IS IO LA I N BN L
20 40 60 80

o

Figure 1.7: Example of the final digitized waveform obtained from a data packet



Chapter 2

Test Protocols

The first chapter highlighted that GCUs are the fundamental piece which enable the JUNO detector
to be a potential innovation in the field of neutrino interactions. We remind that they will be installed
in Under Water Boxes, connected to PMTs, and they must run for at least 6 years in order to achieve
the significance required to determine the Neutrino Mass Ordering. The mass production of these
boards is starting and the installation is planned for spring 2022. Thus the need of a test protocol
which guarantees the correct behaviour of GCUs becomes urgent.

Three experimental setups are involved to develop and execute the test protocol.
The first one is a mock-up installation at Laboratori Nazionali di Leg-
naro (LNL). It is composed of 13 working GCUs and a BEC. GCUs are
mounted inside special boxes which provide fans as cooling system and dis-
posed on two racks, as shown in Figure 2.1. The machine used for DAQ
and raw data processing as well as debugging of scripts and programs have
the following technical specifications:

e OS: Ubuntu 18.04 LTS
e CPU: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz, 20 cores 40

threads
e RAM: 32 GB
e Storage: Hard Disks Figure 2.1: Rack with

e Softwares: gcc 7.5.0, ROOT v6-18-04, Python 3.x GCUs at LNL

Another mock-up installation has been set up at the Institute of High Energy Physics, Beijing,
China and is composed of 11 GCUs. This setup will be used as proof of portability of all the softwares
we used at LNL and to collect more data. Finally, a facility in Kunshan, China, has been built for
mass production and test purposes. Here, GCUs will be mounted inside UWBs, then tested for 1-2
days; if the UWB passes the tests, it will be laser welded and finally sent to the experimental site for
installation. The amount of GCUs that have to be tested is ~ 7000, about 270 at a time due to test
room dimensions and space available to place these components.

The first step of the work was to define our goals:
1. provide a few, easy, and clear steps to set up GCUs through user-defined settings;
2. write easy-to-run scripts which enable semi-automatic data acquisition;

3. provide a semi-automatic and fast data processing and analysis over a relatively large amount
of data;

4. provide quick, graphical way to check for problems together with detailed analysis for each GCU.

10



CHAPTER 2. TEST PROTOCOLS 2.1. GCU SETUP

All the protocol scripts and programs, as well as other people’s work we rely on, has been grouped
and uploaded to a GitLab repository [1]. Here we created two branches:

1. master, where we focus on the implementation of tests data acquisition and analysis
2. setup-dev, where we focus on the simplification of setup process

This is the status of the repository on 6th September 2021. We plan to modify and update the
setup-dev branch, adding the automatic configuration of BEC and CTU, in sight of the integration
tests in Kunshan.

2.1 GCU setup

Every GCU will be connected to computing machines through CAT5e and Gigabit Enterprise Switches
based network. In order to individually address each GCU, a QR code is printed on each board,
providing a unique MAC Address. These addresses are then written into a file, usually /etc/ethers,
where they are associated to an Internet Protocol (IP) address (e.g. 10.10.10.x at LNL setup). Note
that networks usually exploit only the last number of the IP address, thus allowing only 256 (1 byte =
8 bit = 28 sequences) possible connections. The network in Kunshan has to expand this range using
also the second to last number.

The first part of the work was to reorganize and make more simple the configuration process. We
considered the following configurable parameters:

e gcu num, the number of GCUs attached to the network;

e threshold.fixed value, which tells the scripts if the user wants the threshold value to be fixed
for all GCUs;

e threshold.th_value, the value of the user-defined fixed threshold;

e threshold.auto_value, which tells the scripts if the user wants the threshold value to be cal-
culated individually by the GCU for each channel. The GCU then takes some baseline samples
and calculates mean and standard deviation;

e threshold.n_sigmas, the number of sigmas the user wants the threshold value to be away from
the baseline mean value;

e pretrigger, the number of words, which is the time in units of 8 ns, read before the waveform
falling edge (Figure 1.7), with an offset of about 22 words. For example, if we set the time the
GCU starts recording the waveform at 0 and we want the falling edge to be at 144 ns, then
pretrigger = 144/8 + 22 = 40;

e trigger window, the number of words acquired for each event, including header and trailer.
Subtracting 2 we obtain the signal duration in units of 8 ns;

e store, together with other similar parameters, it is now useless as for DAQ we are using the
official JUNO software;

e create_ethers, which following a fixed pattern, creates the ether file, thus skipping the manual
addition of MAC and IP addresses;

e global trg.global trigger[global _trigger_enable, global_trigger_list] through which
the user can choose which GCUs to run in local Auto Trigger Mode or in Trigger Validation
Mode.

For this purpose, we upgraded the python script quick_start.py and renamed it in quick_start2.py.
This script creates a Makefile based on the parameters the user set in the JSON file setting. json,
shown in Figure 2.2. The Makefile then takes care of creating all the files needed for connection
and runs all the scripts needed for configuration. In setup-dev branch, we got rid of Makefile, by
including its instructions inside the script quick_start_nomake.py. We provide also the bash script

11


https://baltig.infn.it/coppi/gcu_integration_tests

2.2. RAW DATA PROCESSING CHAPTER 2. TEST PROTOCOLS

{
"gcu_num" : 13,
"threshold” : { "fixed_value” : true, "th_value" : 10000,
"auto_value”: false, "n_sigmas": 5},
"pretrigger" : 35,
"trigger_window" : 5@,
"store" : {
"store_data” : false,
"binary_store" : false,
"acq_path" : "/dev/null"”
}
"create_ethers” : false,
"glob_trg" : {
"global trigger" : false,
"global_trigger_enable" : false,
"global_trigger_list" : @
}
}

Figure 2.2: Content of the settings.json file used to set configuration parameters

template_setenv.sh which sets some useful environment variables and must be modified accordingly,
renamed as setenv.sh and run before running tests. All these steps are grouped inside the bash script
setup.sh, so that the user have simply to:

1. set his/her own settings in settings. json;
2. set his/her own settings in setenv.sh, open a terminal and run source setenv.sh;

3. run . setup.sh n if no BEC is installed, . setup.sh y otherwise.

2.2 Raw Data Processing

Binary data collected through the DAQ software have to be processed in order to make them more
accessible, get rid of useless bits, save disk space, and make their analysis and plotting easier.

The tool gcu-proc, developed by Katharina von Sturm and Riccardo Callegari [16], takes binary data
as input and processes them to obtain a ROOT [17] file. This can be done in two different ways:

1. analyzing each channel binary data independently;

2. analyzing all channels together in order to group events with the same timestamp, thus providing
a reliable reconstruction of the charge deposited during the event.

The output is a ROOT file containing a TTree with several useful quantities, like the waveforms, the
values of the baseline and noise, the waveform minimum. The complete structure of the TTree is
shown in Figure A.1. The file contains also the settings specified for the processing of the data. In the
first case, each vector has size 1 and the TTree has as much entries as the number of the acquired
events; in the second case each vector has the size equal to the number of channels active during
acquisition.

2.3 Tests

In this Section, we describe in detail the purpose of each test, what type of data we need, how we
acquire them, how we do the analysis and the outputs we obtain.

All the analysis programs are written in C++ and based on the ROOT framework [17]. Pursuing
adaptability, we exploit the BOOST libraries [18], a C++ library providing excellent and powerful

12



CHAPTER 2. TEST PROTOCOLS 2.3. TESTS

tools for easy programming. In particular, we use boost_program options to read options from
command line. This allows us to use positional arguments, that is arguments associated to a variable
by their position in the command line instead of their associated option. This means that, e.g., if
we have to analyze the files in a folder all together we can simply run: ./<program> -x <some
option> * where the asterisk will be substituted by all filenames inside the current folder.

All the programs can be executed in two different modes: interactive and non-interactive. In interactive
mode, the results of the analysis are saved into ROOT files and also plotted to interactive TCanvases.
In this way, the user can zoom the graph to directly spot possible problematic behaviours of a GCU and
look for its specific results in the output files in a second moment. To end the program, a Ctrl+c must
be sent to the terminal. In non-interactive mode, no TCanvases are displayed. If running these scripts
through a Secure Shell (SSH) tunnel, this can save some time. The program exits automatically after
having analyzed all data and having written the output files. All the programs can be automatically
compiled by mean of a Makefile located in analysis/ folder.

We know that a large number of GCUs will be tested in Kunshan, with a different setup with respect
to the one in Legnaro. Thus we initially decided that testing the GCUs performances by comparison
with fixed values was unsuitable. For example, we could acquire a large amount of events from all
GCUs and define a mean value for the baseline and its standard deviation (o), and use these values
for comparison. However, the baseline value can be changed through the firmware, potentially making
our tests useless. In order to avoid this situation, we plot values we expect to be similar versus the
channel ID, which is ID = 10 GCU,, + ch,,, where GCU,, is the GCU number (starting from 0) ad
ch,, is the channel number inside that GCU. The large amount of GCUs ensures that outliers are
noticeable. These tests are run in Auto Trigger Mode, as we want all the signals read by GCUs to be
saved and analyzed.

2.3.1 Test 1: Ping

This test simply checks that all GCUs are connected and running. The analysis program is located in
analysis/ping/test_ping. This is the only program which takes care of both data acquisition and
analysis. Available command line options are shown in Figure 2.3.

Available options:

-h [ --help ] print this message

-f [ --file ] arg (=/etc/ethers) ethers file (usually located in /etc/ )

-¢ [ --c-pkt ] arg (=100) how many packets to send

-s [ --pkt-size ] arg (=56) packets size in bytes (8 bytes are added for
ICMP header)

-0 [ --output ] arg output filename without extension

-1 [ --interactive ] arg (=1) show interactive canvas (need ctrl+c to

close program)

Figure 2.3: Available options for the ping test program

Data acquisition

As first step, a ping command is summoned. By default, 100 packets of size 64 KBytes are sent to
each GCU. The IP addresses are recovered by default from the file etc/ethers. The options -f -w 1
are used in order to send packets as fast as they come back and wait no more than 1 second for each
GCU. The command output is written into a data file in a special way so that useful values can be
easily recovered in the next step. Note that the ping tool directly calculates the mean response time
and its standard deviation.

Data analysis

The mean response time and its standard deviation as well as the packet loss fraction are recovered
from the data file and plotted together versus the GCU,, as shown in Figure 2.4. The mean response
time depends on the length of CAT5e cables used to connect GCUs to the PC on the asynchronous

13



2.3. TESTS CHAPTER 2. TEST PROTOCOLS

average respone time (0 equals error)

°
2 g
o

LI LI AL AL L L

o

2 4 6 8 12
GCU ID (from 0)
packet loss fraction (0 is good)
< :
S - :
3 . O SOOI SUOONE
g r
"é =
808
g F
€ 08|
g =
L
I T
0 - i i i i 1
0 2 4 6 8 12
GCU ID (from 0)

Figure 2.4: Ping test performed with 13 GCUs at LNL. There is no packet loss and the response time is
similar for all GCUs

Available options:

-h [ --help ] print this message

-f [ --file ] arg filenames to analyze

-n [ --num-gcu ] arg number of GCUs used in acquisition

-m [ --min-adc ] arg (=22@0) value of ADC output below which it saturates

-5 [ --start ] arg (=0) analyze events strating from =x=

-0 [ --output ] arg output filename without extension

-1 [ --interactive ] arg (=1) show interactive canvas (need ctrl+c to close
program)

Figure 2.5: Available options for the ADC linearity test program

link. We expect it to be different from zero. On the other hand the packet loss fraction has to be
zero. The TCanvas is saved in ROOT, PDF, and PNG files.

2.3.2 Test 2: ADC Linearity

The linearity test checks for strange behaviour of the ADC. To do this, we use the testpulser circuit
described in Section 1.2.1. Currently, it is activated and controlled through IPBus protocol. We set
different testpulser amplitudes and recover the mean baseline and the waveform minimum (Figure 1.7)
of each event.

Data acquisition

Data can be automatically acquired by mean of gcu_acq/run_test2.sh script. User can modify this
script to set its own range of pulse amplitudes. The script has to be run as “. run_tes2.sh <gcu>
<optional:channel> <optional:frequency (Hz)>” where <gcu> is the number of GCUs con-
nected, <channel> are the channels the user wants to test (by default '0 1 2’) and <frequency> is
the frequency of the pulses sent to the ADC. A 300 seconds time data taking is carried out for each
chosen pulse amplitude.

Data are automatically moved to data/<current_date>/Test2_linearity/run<x>/tp_Amp<y>,
processed by gcu-proc without event building, and saved to data/tierl/<same_as_inputpath>.
Data analysis

The program analysis/linearity/test_linearity is used to analyze data. Available command
line options are shown in Figure 2.5. Note that ”file” is a positional argument. Data are analyzed
recovering the pulse amplitude from data path. Thus it is important to stick to the default paths

14



CHAPTER 2. TEST PROTOCOLS 2.3. TESTS

structure. Then, an histogram of the difference between baseline and waveform minimum is built
for each channel of each GCU for each amplitude, filling it with all the corresponding events. The
mean and the standard deviation are calculated from these histograms and inserted in linearity plots,
like the one shown in Figure 2.6(a). All the linearity plots obtained during a test at LNL with 13
GCUs are shown in Figure A.2 in appendix. Before filling the histograms, the program checks if the
waveform minimum is below min-adc option value and, if so, that amplitude is labelled as saturation
amplitude. If for one channel no saturation is found, this value is set to UINT32_MAX = 2!6 — 1. The
phenomenon of saturation happens when the input to the ADC is too large to be represented by 14
bits. Then, a graph with the smallest saturation amplitudes versus ID is built. In Figure 2.6(b),
data were taken by using the high gain ADU, thus leading to a saturation amplitude of about 20000
DAC counts. We expect that in the final version of the firmware no saturation happens as the GCU
automatically switches to the best suitable ADU. The linearity graphs are finally fitted through linear
regressions, ranging from 0 to the last amplitude before saturation. The angular coefficient and its
error are plotted together with the normalized x?, as shown in Figure 2.6(b). All the graphs, except

saturation amplitudes

3 3
5,60000
Q- -
£ 50000
. Iy 3
gcu_4 (bsl-min) vs amp & 40000
— 30000
) = 3
2 £ 3
§ 11000 - 200003 - o
o = / 10000
Q = =
< 10000 ok
' = 20 40 60 80 100 120
€ c ch ID (gcu_id*10 + ch_id)
£ 9000
a = angular coefficient of linear regressions
8000 5 08 Hwo 3
F g 075 ® | ! N
7000 - / —— gCU4_Ch0 ; 06E I (gb m o P @ 600 %
= S 06F E 3
[ = = ‘ —500 E
6000 gCU4—Ch1 § 05k o
E / ——gcud_ch2 o 04F " g
5000 / & g3E oo
40005 / 0'2; - » L - L] L] - - E:::
B T Qe L = -3
6000 8000 10000 12000 14000 16000 18000 20000 of = =0
0 20 40 60 80 100 120
DAC amp [a.u.] ch ID (geu_id*10 + ch_id)

(a) Example of a linearity plot for the three channels of one (b) Top: saturation amplitude vs channel ID
GCU Bottom: results from the linear fit vs channel ID, in blue
the normilized x>

Figure 2.6: Results from a linearity test performed with 13 GCUs at LNL. DAC amplitude ranges from 5000
to 21000 by step of 1000 DAC counts.

histograms, are saved in ROOT, PDF, and PNG files.

Comments on the obtained results

First of all, we notice that IDs 00 and 12 have the max saturation amplitudes. In fact, this is a known
issue in the LNL setup as these channels are dead. Thus, their linearity graphs are not built.

Moreover, as we can see from Figure 2.6(a), we expect every ADC to be linear with respect to the
pulse amplitude and the histograms to have a really tight distribution thus leading to very small errors
in the linearity graphs. This leads to a very large x? = O(10?) in the fitting results. Despite x? is not
the most suitable variable to verify the accuracy of the fit because of the small number of data, we
chose to depict this value in Figure 2.6(b) as sometimes happens that it approaches zero or is greater
with respect to other channels results, thus indicating some strange behaviour. This happens for IDs
02, 50, and 71; for example, the behaviour for ID 71 is shown in Figure 2.7(a). This straightforwardly
means that the correspondent histograms have a large distribution. Investigating this phenomenon,
we discovered that, despite we set the GCUs in Auto Trigger Mode, some waveforms are misaligned,
as shown in Figure 2.7(b).

15



2.3. TESTS CHAPTER 2. TEST PROTOCOLS

geu_7 (bsl-min) vs amp wf_ch0
o 16000 WF_oh0_copy
7 E a - Entries 700
g E : < r Mean 350.3
g 12000 E 14000 [— Std Dev 204.6
g TomE / 12000i
é 10000; / g 4
3 9oou§ / 10000 e
8000 ; 8000f—
7000 so00—
0 E / —— gcu7_ch0 =
B Ug / gcu7_ch1 4000—
5000 e —=— geu7_ch2 0ol
4000 7 : E
S S ISR SIS RTINS SNERTEN AU BRI SR 0 L L L L] | |
6000 8000 10000 12000 14000 16000 18000 20000 100 200 300 400 500 600 700
DAC amp [a.u.] time [ns]
(a) Linearity plot for GCU 7 (b) Waveforms misalignement for channel 1 of GCU 7

Figure 2.7: Highlight of some unexpected behaviours from one GCU

2.3.3 Test 3: Stability over time

During the acquisition of data, we expect some values to be stable. This means that, if we measure
these quantities over time, their distribution has to be narrow. As we exploit a fixed amplitude pulse,
the quantities we consider for this test are: waveform minimum position (min bin), baseline mean,
baseline sigma and charge reconstructed by each channel. Please note that these values are correlated
to gcu-proc settings, so the user have to correctly set them in order to have reliable results.

Data acquisition

Data can be automatically acquired by means of gcu_acq/testpulse/run_test3.sh script. The script
has to be run as “. run_test3.sh <gcu>" where <gcu> is the number of GCUs connected. The
user can modify the script in order to change the duration of data acquisition, the test pulse frequency,
and its amplitude. By default data are taken for one day at a frequency of 0.5 Hz. We suggest 0.1-1 Hz
as frequency range, in order to occupy less space on hard disks. The pulse amplitude is fixed at 15000
DAC counts, thus suitable for testing the high gain ADU, but another one day data taking can be
performed with an amplitude of 50000 DAC counts to test also the low gain ADU.

Data are automatically moved to data/<current_date>/Test3_stability/run<x>/tp_Amp<y>,
processed by gcu-proc without event building, and saved to data/tierl/<same_as_inputpath>.

Data analysis

The analysis program is located in analysis/stability/test_stability. Available command line
options are shown in Figure 2.8. Note that ”file” is a positional argument.

Available options:

-h [ --help ] print this message

-f [ --file ] arg filenames to analyze

-n [ --num-evts ] arg (=10) number of events to analyze

-e [ --every ] arg (=1) events are analyzed each e events

-b [ --building ] arg (=0) specify if input files have been processed w/
or w/o event building

-0 [ --output ] arg output filename without extension
-1 [ --interactive ] arg (=1) show interactive canvas (need ctrl+c to close
program)

Figure 2.8: Available options for the stability test program

Given the frequency, the user can adjust "num-evts” and ”every” to plot an event every <x> seconds.

16



CHAPTER 2. TEST PROTOCOLS 2.3. TESTS

For example, to plot one event every minute from a dataset taken for one day at 1 Hz:

tacq = 1 day = 864005
f=1Hz
Nevts, tot = tacq * f = 86400
every=1min- f —1=159
TNevts, tot

numevts = ————— = 1440
every + 1

Then, the program simply builds value versus ID graphs, accordingly with user options, which are
the projection of 3D graphs to 2D graphs through suppression of the time coordinate. An example is
shown in Figure 2.9. We chose this type of format because it is simpler to spot a strange behaviour
and identify the channel ID. These graphs are saved to ROOT, PDF, and PNG files.

Position of min bin distribution (1000 events per ch) Baseline mean value distribution (1000 events per ch)
00 S S S A 5 : : : :
5, * ; 11800f—---+-"" e . JEEE AR SR Freoroerees e L AR
K 700 e c HE ] : : :
H * I : : : :
5 * £ 11750+ Lt (XTTEPTCINY FRPCIRPPRYS TRPPRPCIRS bos :’ -----
ER10] T TR PR SO PP P CERPPPTCTRY PEPTTRPPR TRPPPPCOR SRCTRN ° I : : "
= < : : : :
500 & 11700f=-------" A AR peeseeeee MR AL
« : : : :‘
Q N . . .
400 11650 -+ T L AR R e B
300 » 5 y
11600f—+++--- e g [T SR Mg e
200 L . “' [ 2
100 - - 11550 oo S P IO A O SO S S
i Loow o 1 i 1 1 i i i i 1 1
0 20 40 60 80 00 120 0 20 40 60 80 100 120
ID [geu_id*10 + ch_id] ID [geu_id*10 + ch_id]
Baseline sigma distribution (1000 events per ch) Charge revealed by each channel distribution (1000 events per ch)
I £ T CLRCRCTRTE SROPIRP S AR SRR froseeseeadss R TECNS TITRCTPRTE TIPS TP
© H 0] H
5 6 : £ o008 ; 7 : e ]
-] S S FEPT SR T Yo | M Y S U TR PP
> s i g N "g PR NN Ned
£ gE s O S AR S S F ST TN N .
3 : 008 =-ee W W
8 et* [* : Loe : : :
"""""""""""""" e HEER SR e I S S
' ‘. " AR 00
o R T B O O R
PR PR P | I 1 1 n PR PR
100 120 0 20 40 60 80 100 120
ID [geu_id*10 + ch_id] ID [geu_id*10 + ch_id]

Figure 2.9: Results from stability test performed with 13 GCUs at LNL. Data were taken for 1 day at 0.5 Hz
and one event per minute is plotted.

Comments on the obtained results

Besides dead IDs 00 and 12, which are not displayed as they didn’t acquire any data, we notice that
IDs 02 and 50 have a strange behaviour. In fact, the position of the waveform minimum and the
charge reconstructed have a very large distribution, despite most of the values are in the same range
as others IDs. These results confirm the waveforms misalignement spotted in the previous test.

2.3.4 Test 4: Slowcontrol

This test aims to keep track of all the values that the sensors installed on the GCU measure. We
do this through IPBus protocol and neither the DAQ software, nor the testpulser are involved. Thus
Slowcontrol can be performed in parallel with all other tests to save time and also to verify the correct
functionality of the components while they are working and stressed. We focus on the temp.box
sensor as it is located in the hottest spot of the GCU, on the FPGA, and it can reveal if the UWB is
overheating. In Figure A.3 in appendix, other sensors’ readouts are shown.

17



2.3. TESTS CHAPTER 2. TEST PROTOCOLS

Data acquisition

To acquire data, we use the scripts gcu_acq/slowcontrol/monitor.sh, in which we define some
functions, and gcu_acq/slowcontrol/monitor_start.sh, which calls these functions and starts the
acquisition. The latter can be run as “./monitor_start <gcus:13> <sleep:time-in-seconds>",
where the first argument is the number of GCUs attached to the system and the second one is the
time interval between two consecutive measurements. We made this script executable so that, when
the user is connected through SSH tunneling, it can be run in background by means of nohup [19]. All
readable sensors are acquired, together with their acquisition time, and data are saved to the path
data/<current_date>/Test4_slowcontrol/run<x>/, in a special csv-like format, ROOT inter-
pretable. To read sensors, we use programs written by lvano Lippi on behalf of INFN-LNL, which
test one sensor at a time, thus every measure takes about 1 second per GCU. The acquisition is
continuous, until a kill signal is sent to the process.

Data analysis

The analysis is performed by analysis/slowcontrol/test_slowcontrol. Available command line
options are shown in Figure 2.10. Note that ”data-id” is a positional argument and it represents the
sensors whose data are used for the plots.

Available options:

-h [ --help ] print this message

-p [ --path ] arg acquisition path of data you want to
analyze(e.g. ../data/20210721/slowcontrol/runl/
)

-f [ --filename ] arg filename (before "_GCUx_monitor.data")

-d [ --data-id ] arg data identifiers you want to plot (you can find
them in "identifiers.txt")

-n [ --num ] arg number of GCUs used during acquisition

-0 [ --output ] arg output filename without extension

-1 [ --interactive ] arg (=1) show interactive canvas (need ctrl+c to close
program}

Figure 2.10: Available options for the slowcontrol test program

The program then reads data and paints them into different TCanvases, with 5 GCUs each. An
example of temp.box plot can be found in Figure 2.11. These plots are saved in ROOT, PDF, and
PNG files.

Comments on the obtained results

We note that GCUs 3, 7, 11 and 12 present a ~ 2 °C higher temperature with respect to other GCUs.
This effect may be caused by their different position in the rack or small differences in the cooling

system. Assuming a room temperature of 25°C, we see that the temperature difference between the
room and the FPGA is about 22 to 25 °C.

It is also interesting to compare these results to the ones obtained during the under water test [20]
carried out at Y-40 The Deep Joy, a pool 42.15m deep filled with thermal water. This test took place
on May 23-25 and involved one GCU which was in a UWB. The sealed box has been slowly immersed
to the deepest point of the pool, turned on and the testpulser was finally activated. In Figure 2.12
results are displayed.

Note that inside UWBs the GCUs can dissipate heat only passively. Despite this, the FPGA tem-
perature, revealed by the temp.box sensor, stabilizes around 56 °C after about 1 hour from when the
GCU was switched on. As the water temperature is about 33 °C, we obtain a temperature difference
AT ~ 23°C, very similar to the result obtained at LNL. It is shown also that the baseline slightly
moves down as temperature rises to its stable value.

18



CHAPTER 2. TEST PROTOCOLS 2.3. TESTS

temp.box vs time for GCUs 0-4 temp.box vs time for GCUs 5-9
o o
H o0 s E Horal
£ e 3 b gt O
® oo RS v
E —=— temp.box for GCU 7
o temp box for GOU B
E emptcio G009
485 1 [
of- VW!*—* anhﬁmnmﬂ%ﬁw ik
E [ |‘wyy g1 n\‘l‘ml\lwv L ; 8 i
o ] 475E w i ‘ | m I
I Ilrllll‘| 47—
i 1 E
gy E i
S 1 L L B S R T N R
20210721 18:00 20210722 00:00 20210722 06:00 20210722 12:00 W 20210721 18:00 20210722 00:00 20210722 06:00 20210722 12:00 W
ime ime
(a) (b)
temp.box vs time for GCUs 10-14
? E
:';_ 51}“ b 4
5O M . &%H.M‘L
T i e *\W "
F Rgiti '
49—
" empeeeroou o
T
48
[
time
(c)
Figure 2.11: Results from a slowcontrol test performed with 13 GCUs at LNL. Only readings from the
temp.box sensor are shown.
o 116801
Q ,
< ,
o 11678/
T E
541 & 11676
g 1674
% =
S 511 116721 :
g' 11670 — k
2 481 11668 —
< c
O 11666
o E
WL 45 11664 —
11662[—
Eov 1 N T B B ‘
g;% 5o- P 500- ' 11660 05 1 15 2 2 3
23/05 22:00 24/05 10:00 24/05 22:00 25/05 1 time [h]

(a) Results from slowcontrol test. Read temp.box sensor. (b) Results from stability test. Baseline value is monitored
over time.

Figure 2.12: Results from tests at Y-40 with 1 GCU inside the UWB.

19



Chapter 3

Conclusions

The JUNO large PMTs electronics test protocol has been designed, developed and tested on the LNL
setup. We achieved a fast and simple GCUs setting up, easy-to-use scripts for semi-automatic data
acquisition, and developed analysis program. We defined a fixed structure for data saving and results
printing and drafted a step by step manual, trying to reduce human fallacy.

The analysis programs are very efficient, especially in non-interactive mode, taking only a few seconds
to obtain the results. This reduces downtime. They occupy a small amount of RAM and don’t stress
the CPU in running time, also on less powerful machines. They rely on very common tools as the
BOOST libraries and the ROOT framework, thus granting portability on almost all machines used
for scientific purposes. The results shown highlight also that they are effective in spotting strange
behaviours of GCUs, providing a quick tool to identify broken boards.

The protocol will be used for the integration tests of the electronics during the mass production phase
and it will be a basis for the tests carried out during the installation in JUNO, in spring 2022. Thus,
it will be tested also at IHEP, providing another useful test platform to gather data on the protocol
behaviour, its usability, and its reliability.

A future possible development is to define some values to be compared between different setups.
For example we want to define a reconstructed charge value in the stability test, associated with its
standard deviation; if any GCU present a different value (out of a range defined through the standard
deviation) for this quantity it is automatically marked as problematic. The objective is to produce a
single output where GCUs are marked with “passed/not passed” labels, preserving the possibility to
consult all the plots and tools already implemented.

20



Appendix A

Secondary figures and plots

The Figure A.1 shows the complete structure of the eventTree saved in the output ROOT file of
gcu-proc.

root [2] eventTree->Print . *Br 10 :e : vector<unsigned char> *
*Entries : 1720 : Total Size= 26465 bytes File Size = 3052 *
*Tree reventTree : Tree of acquired events * *Baskets : 2 : Basket Size= 32000 bytes Compression= 8.51 *
*Entries : 1720 : Total = 7949236 bytes File Size = 1594056 * *.. . B TS *
* : : Tree compression factor = 4.99 * *Br 11 ¢ vector<int> : N
*Entries : : Total Size= 31637 bytes File Size = 3010 *
*Br ® :ref_timestamp : ref_timestamp/D « *Baskets : : Basket Size= 32000 bytes Compression= 10.34 *
“Entries : 1720 : Total Size- 14370 bytes File Size = 8157 * :é' R R :
*Baskets : 1 : Basket Size= 32000 bytes Compression= 1.70 * ro e : p .
L. « *Entries : 1720 : Total Size= 38511 bytes File Size = 6437 *
*Br 1: : vector<unsigned long> « :Easkets : 2 : Basket Size= 32000 bytes Compression= 5.91 :
*Entries : : Total Size= 38523 bytes File Size = 12708 * *Er . ol «
] : : = = * . : X : .
*Baskets : : Basket Size 32000 bytes Compression=  2.99 ¥ ppirie; 1720 : Total Size= 38511 bytes File Size = 5959 *
Br 2 tactive ch i mctive chyT . :Baskets : 2 : Basket Size= 32000 bytes Compression= 6.38 :
:EntrLes 1720 Total Size= 7462 bytes File Size = 150 : *Br 14 :baseline : vector<doubles *
rBaskets : 1 : Basket Size= 32000 bytes Compression= 40.41  * sEntries : 1720 : Total Size= 38517 bytes File Size = 8874 *
---------------------------------------------------------------------------- *Baskets : 2 : Basket Size= 32000 bytes Compression= 4.28 *
*Br 3 :multiplicity : multiplicity/I L SO SRS «
*Entries : 1728 : Total S:Lze= 7477 bytes File S5ize = 153 * #Br 15 :baseline_sigma : vector<double> *
*Baskets : 1 : Basket Size= 32000 bytes Compression= 45.52 * xEntries : 1720 : Total Size= 38553 bytes File Size = 17308 *
e e e e e e e e e e e * *Baskets : 2 : Basket Size= 32000 bytes Compression= 2.20 *
*Br 4 :gcu_id : vector<unsigned short> K e et et ea e e ea e eeaea e, *
*Entries : 1720 : Total Size= 28185 bytes File Size = 2726 * *Br 16 :charge : vector<double> *
*Baskets : 2 : Basket Size= 32000 bytes Compression= 10.16 * *Entries : 1720 : Total Size= 38505 bytes File Size = 15148 *
I * *Baskets : 2 : Basket Size= 32000 bytes Compression= 2.51 *
*Br 5 :ch_id : vector<unsigned short> R R T L LR LT TR T T TR *
*Entries : 1720 : Total Size= 28179 bytes File Size = 2727 = *Br 17 :total_charge : total _charge/D *
*Baskets : 2 : Basket Size= 32000 bytes Compression= 10.15 = *Entries : 1720 : Total Size= 14365 bytes File Size = 10032 *
K e e e + *Baskets : 1 : Basket Size= 32000 bytes Compression= 1.38 *
*Br 6 :ch_number : vector<unsigned short> R L PR PR E R *
*Entries : 1720 : Total Size= 28203 bytes File Size = 2732 = 'Br 18 itotal_charge_v2 : total_charge_v2/0 N
*Baskets : 2 : Basket Size= 32000 bytes Compression= 10.14 = *Entries : 1720 : Total Size= 14380 bytes File Size = 10035
*Baskets : 1 : Basket Size= 32000 bytes Compression= 1.38 *
............................ . . .
*Br 7: : vector<unsigned short= et
Br 19 :trg_time : vector<double> *
*| : : = = -
*S”tlz‘i's : 5. g°t:1t g.‘ze_ gg;gg E":es E‘le Size - *Entries : 1720 : Total Size= 38517 bytes File Size = 3508 *
. askels : i Baskel olze= yles Lompression= . ‘Baskets : 2 : Basket Size= 32000 bytes Compression= 10.84 *
............................................................................ " *
:Er 8 Epkt_ste vector<unsigned short> ) : *Br 20 itrg_time_cfd : vector<doubles *
Entries : 1720 : Total Size- 28197 bytes File Size = *Entries : 1728 : Total Size= 38541 bytes File Size = 5068 *
:Easkets : 2 : Basket Size= 32000 bytes Compression= : *Baskets : 2 : Basket Size= 32000 bytes Compression= 7.508 *
............................................................................ * *
*Br 9 :valid_data : vector<int> ) * #Br 21 :waveforms : vector<vector<double> > *
*Entries : 1720 : Total Size= 31649 bytes File size = 3025 * +Entries : 1720 : Total Size= 7350899 bytes File Size = 1459565 *
*Baskets : 2 : Basket Size= 32000 bytes Compression= 10.29 * +Baskets : 246 : Basket Size= 32000 bytes Compression= 5.03 *
* * x *

Figure A.1: ROOT TTree structure of binary data independently processed with gcu-proc

We show also other results from the linearity test performed at LNL with 13 GCUs in Figure A.2.
Note that GCU 0, 5 and 7 exhibit the same strange behaviour due to waveform misalignment.

21



APPENDIX A. SECONDARY FIGURES AND PLOTS

gou_0 (bsk-min) vs amp geu_1 (bsl-min) vs amp gou_2 (bsk-min) vs amp
£ ool | N S S )
£ ol et 2 o — o
£ o TaphErors H gouT_ol X
i o et § o] e gout_eht —o gou2_ch1
oo u0_ct o] o TGraphErrors —e—geu2_ch2
0
w0
oo
5000) 000
4000) H o N H N v v N N v T N N o o00) v N N N N N .
i) NF i)
T T e e T R )
o) [ o a1
gou_3 (bsk-min) vs amp geu_4 (bsl-min) vs amp gou_5 (bsk-min) vs amp
£ ronfneeies | R SR TERRT R :
£ o f == gou3_oho $ T==goud_cho .gcu5 <5
5 oo —o— goud_cht £ o o goud_cht +gcu5_ch1
sooo] o= geu3_ch2 —e—goud_ch2 -
goud of goud_cf ool =0 925 _ch?
sooofie [ S
sooof
sooof- s
==t ——ek etttk —~tnit
R amplau]

geu_6 (bsh-min) vs amp gou_8 (bsk-min) vs amp

o -« + PR

o ADC couris

—o= gouB_cho
—o- goud_ch1
—e— gous_ch2

o= goub_cho
~o~ goub_ch1
h2

o ADC courts]

——gourd
—o— gou7_ch1

[ OAC amp 0]

gou_9 (bskmin) vs amp geu_10 (bsl-min) vs amp. geu_11 (bsl-min) vs amp.

o= geud_cho
sooof —o— goug_ch1
—e— geug_ch2

—o= geut0_cho
~o— goul0_ch1
—e— gcut0_ch2

o= gouTi_cho
~o— gout1_ch1
—e— gcull_ch2

bsin i (ADC couns]
bsinmin ADC curts]

H H H H H H H H H H i H H
e b T o oo b~ e

C L R

g
SACampinul

gou_12 (bsl-min) vs amp.

o= geutz_cho
5 sl o geut2_eht
—e— geut2_ch2

Figure A.2: Linearity plots of all 13 GCUs at LNL. DAC amplitude ranges from 5000 to 21000 DAC counts.

In Figure A.3 there are two plots obtained from the same data taking shown as slowcontrol test results
example. We depict two different values, read from HV.chO and VCCBRAM sensors. We see that these
potentials are very stable.

HV.chO vs time for GCUs 5-9

§ 800.4 —
s F
G 800.2—
Z E [—— Hv.choforacus
800 == | o Hv.chofor GCU 6
7998 E [~ nvenoreou?
E HV.cho for GCU 8
799.6 — HV.ch0 for GCU 9
= 2021072‘1-18:00 20210752—00:00 202107&2-06:00 20210752-12:00
time
VCCBRAM vs time for GCUs 5-9
§ 0.99— | ‘ —e— VCCBRAM for GCU §
% 0.988 — —e— VCCBRAM for GCU 6
§ E —e— VCCBRAM for GCU 7
> 0.986 :_ VCCBRAM for GCU 8
0.984 __ VCCBRAM for GCU 9
0.982f—
B 111110 101011 0RO 0 001000 i

1 1 - 1 1
20210721-18:00 20210722-00:00 20210722-06:00 20210722-12:00

Figure A.3: Results from slowcontrol test performed with 13 GCUs at LNL. Readings from HV.chO and
VCCBRAM from GCUs 5 to 9 are shown

22



Bibliography

[1] Alberto Coppi and Beatrice Jelmini. Sept. 2021. URL: https://baltig.infn.it/coppi/gcu_
integration_tests.

[2] Angel Abusleme et al. JUNO Physics and Detector. 2021. arXiv: 2104.02565 [hep-ex].

[3] Fengpeng An et al. “Neutrino physics with JUNO”. In: Journal of Physics G: Nuclear and
Particle Physics 43.3 030401 (Feb. 2016). 1ssN: 1361-6471. DO1: 10.1088/0954-3899/43/3/
030401. arXiv: 1507.05613. URL: http://dx.doi.org/10.1088/0954-3899/43/3/030401

[4] W. Wu et al. “A new method of energy reconstruction for large spherical liquid scintillator
detectors”. In: Journal of Instrumentation 14.03 (Mar. 2019), P03009-P03009. poI: 10.1088/
1748-0221/14/03/p03009. URL: https://doi.org/10.1088/1748-0221/14/03/p03009

[5] Zhen Qian et al. “Vertex and energy reconstruction in JUNO with machine learning methods”.
In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment 1010 (Sept. 2021), p. 165527. 1sSN: 0168-9002. DOTI:
10.1016/j.nima.2021.165527. URL: http://dx.doi.org/10.1016/j.nima.2021.165527.

[6] Filippo Marini. “Design and tests of the FPGA embedded trigger algorithms for the large PMT
JUNO Electronics”. 2018. URL: http://tesi.cab.unipd.it/59743/.

[7] C. Ghabrous Larrea et al. “IPbus: a flexible Ethernet-based control system for xTCA hardware”.
In: Journal of Instrumentation 10.02 (Feb. 2015), pp. C02019-C02019. por: 10.1088/1748~
0221/10/02/c02019. URL: https://doi.org/10.1088/1748-0221/10/02/c02019

[8] CERN. White Rabbit Official CERN website. URL: https://white-rabbit.web.cern.ch/.

[9] D. Pedretti et al. “Nanoseconds Timing System Based on IEEE 1588 FPGA Implementation”.
In: IEEFE Transactions on Nuclear Science 66.7 (July 2019), pp. 1151-1158. 1sSN: 1558-1578.
DOI: 10.1109/tns.2019.2906045. URL: http://dx.doi.org/10.1109/TNS.2019.2906045

[10] CERN. The TTC Website. URL: https://ttc.web.cern.ch/.

[11] Ru Jin et al. “Reliability study of custom designed ADC for the Jiangmen underground neutrino
observatory”. In: Radiation Detection Technology and Methods 4 (Apr. 2020), pp. 203-207. DOTI:
10.1007/s41605-020-00171-3.

[12] Yan X.B. et al. “FEC”. In: JUNO internal document database JUNO-doc-2432-v1 (Apr. 2017).

[13] XILINX. Kintex-7 FPGAs Data Sheet: DC and AC Switching Characteristics. Mar. 2021. URL:
https://www.xilinx .com/support/documentation/data_sheets/ds182_Kintex_7_Data_
Sheet .pdf.

[14] T. Adam et al. JUNO Conceptual Design Report. 2015. arXiv: 1508.07166 [physics.ins-det].

[15] Filippo Marini. “New Header/Trailer structure”. In: JUNO internal document database JUNO-
doc-7449-v1 (Aug. 2021).

[16] Riccardo Callegari. “Characterization and tests of 39 channels of the JUNO large PMT elec-
tronics”. 2020. URL: http://tesi.cab.unipd.it/65100/.

[17] CERN. ROOT Data Analysis Framework. URL: root.cern.

[18] BOOST C++ Libraries. URL: https://www.boost.org/.

[19] nohup. URL: https://en.wikipedia.org/wiki/Nohup.

[20] Katharina von Sturm et al. UWbozx test in deep water in collaboration with Y-40. May 2021.

23


https://baltig.infn.it/coppi/gcu_integration_tests
https://baltig.infn.it/coppi/gcu_integration_tests
https://arxiv.org/abs/2104.02565
https://doi.org/10.1088/0954-3899/43/3/030401
https://doi.org/10.1088/0954-3899/43/3/030401
https://arxiv.org/abs/1507.05613
http://dx.doi.org/10.1088/0954-3899/43/3/030401
https://doi.org/10.1088/1748-0221/14/03/p03009
https://doi.org/10.1088/1748-0221/14/03/p03009
https://doi.org/10.1088/1748-0221/14/03/p03009
https://doi.org/10.1016/j.nima.2021.165527
http://dx.doi.org/10.1016/j.nima.2021.165527
http://tesi.cab.unipd.it/59743/
https://doi.org/10.1088/1748-0221/10/02/c02019
https://doi.org/10.1088/1748-0221/10/02/c02019
https://doi.org/10.1088/1748-0221/10/02/c02019
https://white-rabbit.web.cern.ch/
https://doi.org/10.1109/tns.2019.2906045
http://dx.doi.org/10.1109/TNS.2019.2906045
https://ttc.web.cern.ch/
https://doi.org/10.1007/s41605-020-00171-3
https://www.xilinx.com/support/documentation/data_sheets/ds182_Kintex_7_Data_Sheet.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds182_Kintex_7_Data_Sheet.pdf
https://arxiv.org/abs/1508.07166
http://tesi.cab.unipd.it/65100/
root.cern
https://www.boost.org/
https://en.wikipedia.org/wiki/Nohup

	Introduction
	JUNO detector
	Readout Electronics
	Global Control Unit
	GCU related hardware
	GCU Data Management


	Test Protocols
	GCU setup
	Raw Data Processing
	Tests
	Test 1: Ping
	Test 2: ADC Linearity
	Test 3: Stability over time
	Test 4: Slowcontrol


	Conclusions
	Secondary figures and plots
	Bibliography

