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Introduction 
 

 

During the recent decades a growing production of waste in the industrialized countries due 

to several factors occurred as the increase of population and improvements of economic 

conditions that have lead to an increase in goods consumption. 

This situation, which in recent years has become a major problem especially for some 

countries, has developed in the population the concept of environmental sensibility, raising 

the waste problem as one of the more complex question that today’s society needs to solve 

as an act of responsibility towards the future generations. 

The reduction of the production of waste, a more moderate exploitation of the available 

resources and a better management and treatment of waste are three key elements to adopt to 

increase sustainability, but also the knowledge of the mechanical behavior of waste can be 

helpful to a proper landfill design, improving in this way its maintenance and duration. 

Of particular interest are the problems of landfill stability located close to urban settlements 

and road infrastructure; in these cases it’s necessary to prepare all the necessary precautions 

to ensure the safety of people and especially on site workers. The release of odors, dust and 

greenhouse gases with other problematic consequences can be generated after a situation of 

landfill instability. In addition, also a seismic event of particular intensity may compromise 

the activity of a landfill and for this reason it has to be considered as an important element in 

a stability analysis. 

This study focuses its attention on the analysis of slope stability for the Este municipal solid 

waste landfill, located in the south-western part of the Province of Padua and controlled by 

the waste treatment company S.E.S.A. S.p.a., considering also the seismic contribution. Two 

different types of  analysis methods are been considered, one related to the limit equilibrium 

(as specified by Italian legislation) and another one that utilized a finite element approach. 

Both methods are been implemented by the use of specific computer softwares: SLOPE/W 

for the limit equilibrium methods and PLAXIS for the finite element method. 
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1. Italian regulation about landfill slope stability 
 

 

The Ministerial Decree of 14 January 2008 gives new technical legislation rules for the 

constructions (“Norme Tecniche per le Costruzioni – NTC08”) in Italy. This act was active 

since July 2009 and defines the basics for project, execution and tests for all types of 

construction regarding terms as safety, utilization and durability of the structures. 

Geotechnical aspects of the constructions are presented in Chapter six of NTC, also 

including slope stability analysis and seismic contribution: these studies have to be 

considered in the geological and geotechnical reports of the site. In the geological report all 

the general and specific geological aspects are examined, while in the geotechnical report 

the chosen criteria for the geological investigations, interpretation of the obtained results and 

studies related to the elaboration of the geological model, safety measures and analysis 

during operating period are presented. 

Regarding the slope stability analysis, the study must be conducted with the Limit 

Equilibrium Methods considering the method of slices.  

The analysis of the seismic contribution must be done with the pseudo-static method (that 

will be discussed later). 
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2. Site description 
 

 

This section has been prepared in order to illustrate general and technical aspects about the 

interested area, located in the municipality of Este (Padua). 

The landfill is a property of S.E.S.A. (Società Estense Servizi Ambientali) S.p.a. company, a 

limited liability company with mixed capital (public and private) that deals with waste 

collection and treatment. 

A briefly description of the site illustrates the activities of the company, while some aspects 

that can be related to landfill stability as geological, seismic and hydrological properties of 

the area are provided basing on studies made by local authorities and professional technical 

reports ([4], [5], [25]). 

 

2.1 Geographical Information 
 

Este is located in the south-western part of the Province of Padua (Fig. 2.1), in the south part 

of the Euganean hills. Currently the municipality of Este has an area of 32.76 km2 and a 

population of about 17,000 inhabitants.  

The site of interest is located approximately 3 km west of the city center and 1.5 km east of 

the neighboring city of Ospedaletto Euganeo (Fig. 2.2). 

The coordinates that localize the site are: 

 

Latitude: 45° 13’ 35’’ N 

 

Longitude: 11° 37’ 20’’ E 
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Fig. 2.1 – Este location 
 
 

 
 

Fig. 2.2 – Landfill location 
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2.2 Stratigraphy and Structure 
 

From the geologic and geomorphologic point of view, the area of interest is located inside 

the western part of the Po valley, delimitated on the north and on the east by the Pre-Alps, 

on the west by Lessini mountains, Berici and Euganean Hills and on the south by Adige 

river and Adriatic coast. 

This area is mainly characterized by agricultural activities and consists of a flat morphology, 

crossed by a dense irrigation network interrupted by the surrounding Euganean Hills.  

Po Valley is formed by thick layers of sedimentary materials due to the succession of glacial 

and interglacial phases; near Este the sedimentary cover goes to about 450 meters deep. 

These layers are characterized by loose materials of fluvial origin in the area next to the 

Euganean Hills, while in the medium and lower area of the plain there are fluvial and marine 

deposits. 

The following figure shows the stratigraphy of the site: these information are obtained 

thanks to stratigraphic data, resulting from geological surveys carried out for the landfill 

extension project and from an extensive documentation of existing information. 

 

 
Fig. 2.3 – Stratigraphy of the landfill site 
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From the ground level to a variable depth between 3.60 and 4.50 m there is an alternation of 

clay and silty layers. Inside this level there is always a sandy silt layer that starts from 0.30 – 

0.80 m from the ground level having a variable thickness between 0.60 and 1.50 m. 

From about 3.60 – 4.50 m to a maximum depth of 6.90 m there is a fine silty sand layer, 

with a variable thickness between 0.25 and 2.40 m. 

Below 6.90 m depth until about 14 m from the ground level there is a dense turnover of clay 

and silty layers along with some peat layers (for a maximum thickness of 20 cm) located 

between 5.0 and 8.50 m depth. These peat layers are not found in the northern part of the 

landfill. 

Starting from 14 m to about 20 m depth there is a gray fine silty sand layer. 

It’s important to note that the average depth of the landfill is about 3-4 m depth, and the 

geotechnical surveys have found a mean permeability of 10-10 m/s for the clay and silty 

samples of the first layer starting from the ground surface, while previous studies have found 

a permeability of about 2.3 x 10-9 – 1.24 x 10-10 m/s for these materials. These values are 

conform to the guidelines of the Allegato 1 of the Legislative Decree 36/2003 that indicates 

a minimum permeability value of 1 x 10-9 m/s for natural materials utilized as substratum for 

non hazardous waste landfill; the prerogative of a natural barrier system having a thickness 

higher or equal to 1 m is also respected. 

 

2.3 Hydrological properties  
 

The territory surrounding the plant presents a flat morphology and is crossed by numerous 

canals and drains (Fig. 2.4) connected to the local irrigation network. 

Brancaglia canal flows 800 m to the east of the landfill, but in the immediate proximity are 

present the following dykes: “Scolo delle Monache” (250 m from the south east side of the 

landfill), “Scolo Meggiotto” (near to the west side) and “Scolo Maceratoi” (20 m from the 

previous dyke), all with a thickness not superior to 4 meters and with a depth between 3 and 

5 meters from the ground surface. There also small ditches (50 – 80 cm of depth) along the 

north and south side of the plant.  
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Fig. 2.4 – Irrigation network in the proximity of the plant. 

 

Regarding the subsoil, samples made by Geodelta company have localized two distinct 

groundwater aquifers:  

- the first is located inside a discontinuous sandy layer that starts from 3.6 – 4.5 m depth 

until 7 m depth; 

- the second is located inside a deeper sandy layer located over 14 m depth. 

In order to avoid possible contamination problems, the entire plant is delimited by a 

bentonite barrier system. 
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2.4 Climate of the site 
 

The climate of the site belongs to the Mediterranean category with continental 

characteristics, alternating cold winters to hot humid summers. 

The rainfall is not too much elevate and is between 600-800 mm/year. The rainfall 

distribution is a bimodal type, with an absolute maximum during spring season (May) and a 

relative maximum during autumn season (October); the absolute minimum is in general in 

January and the relative minimum in August. 

Fig. 2.5 shows the average monthly rainfall for Este during the last 30 years. 

 

 
Fig. 2.5 – Este’s average monthly rainfall (mm) for the last 30 years (Source: P.A.T.I.) 

 

The trend of the average temperatures presents a peak in July and minimum in January (Fig. 

2.6). The maximum temperatures exceed the 29 °C, a situation typical for a continental 

climate with weak circulation, while the minimum temperatures are around the - 2 °C. 
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Fig. 2.6 – Este’s average monthly temperature for the last 30 years (Source: Vicenza weather station) 

 

2.5 Seismology 
 

Earthquake hazard can lead to a lot of problematic consequences for the landfill 

management systems (like damages to barrier and cover systems and to leachate and biogas 

extraction pipes) but also the stability can results very modified after a seismic event, as 

happens to Chiquita Canyon landfill in California, where the Northridge earthquake of 17 

January 1994 with a magnitude of 6.7 caused a progressive landslide of the lateral sides 

(Matasovic et al., 1998). 

With reference to the P.A.T.I. (Piano di Assetto del Territorio Intercomunale), which is a 

municipal plan for the disposition of the neighboring municipalities, Este is considered as a 

part of Veneto region with low seismic risk (class 4). Regarding the Ordinance of the 

President of the Council of Ministers (O.P.C.M.) 3519/96 and 3519/06, twelve new areas of 

seismic hazard are been classified (Fig. 2.7): Este is classified with a peak ground 

acceleration between 0.050 and 0.075 g, a very low range if compared with others belonging 

to the Veneto region. 

In Italy there is a specific legislation relative to the landfill construction criteria and in this 

study the seismic hazard as be considered as a key factor for the slope stability study of the 

landfill. 
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Fig. 2.7 – Veneto seismic risk map (map taken from the P.A.T.I. of Este municipality dated May 2012. The 

seismic risk is based on the maximum ground acceleration with a probability of exceedance of 10% in 50 

years). 

 

2.6 S.E.S.A. waste treatment activities 
 

S.E.S.A. company plays an important role in the waste management and treatment for the 

province of Padua. The principal activities of the society are: 

- collection and transport of urban waste and assimilated; 

- collection and transport of hazardous and not hazardous waste; 

- landfill management for urban, assimilated and not hazardous waste; 

- anaerobic digestion plant and composting plant management; 

- management of a power station plant for the production of electrical and thermal energy 

(for a nominal power respectively of 1,416 MWe and 1,345 MWt) powered by landfill 

biogas; 

- management of four digestors for the residual organic fraction of municipal solid waste 

that supply six engines for electric and thermal energy production (for a nominal power 

respectively of 1,416 MWe and 1,345 MWt); 

- management of a methane co-generation plant (3,048 MWe and 3,077 MWt) that supports 

the district heating system; 

- management of a mechanical treatment plant for sorted and unsorted residual waste; 

- receiving and storage of urban waste and dry goods; 
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- receiving and storage of hazardous waste; 

- remediation of contaminate sites; 

- design, construction, installation and maintenance of the plants. 

Fig. 2.8 shows an aerial view of the Este S.E.S.A. plant.  
 
 

 
 

Fig. 2.8 – Este S.E.S.A. waste treatment plant 
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2.7 S.E.S.A. landfill description 
 

2.7.1 General information 
 

The plant is a controlled landfill and was classify as a landfill of first category after 

provincial legislation of 1984, where it was firstly disposed municipal solid waste (MSW) 

and waste similar to municipal (RSA); then it was classified as non hazardous waste landfill 

considering the Legislative Decree n. 36/2003. 

The waste come from the municipalities belonging to “Bacino Padova 3”, a group of 37 

neighboring municipalities of the south-east region of the province of Padua (for a total 

surface of 704.3 km2 and almost 142,000 inhabitants) that is responsible for management of 

separate collection system.  

The entire landfill occupies a total area of 130,000 m2 for a total volume of about 1,520,000 

m3; recently, it was authorized by the Province a new landfilling area (“Lotto Ovest” and 

“Lotto Nord”) of 44,500 m2 that will occupy a total volume (considering also provisional 

and final top cover) of  about 566,000 m3. 

The total quantity of waste disposed into landfill presents an almost completely decreasing 

trend during the last years, as shown in Fig. 2.9; the reason for this is due to the 

improvements made in the separate collection systems of “Bacino Padova 3” in order to 

recover as much material as possible. 

 

 
Fig. 2.9 – Material sent to landfill per year since 2005 
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2.7.2 Principal administrative deeds 
 

This landfill was designed in the 60s and over the years changes to the initial plan have been 

made in order to increase the available volume for waste disposal maintaining also an 

adequate level of safety; in this paragraph the principal authorizations and approvals 

obtained over the years are presented. 

The first dumping area was active since the 60s, before that S.E.S.A. company obtained the 

management of the area in 1995.  

Veneto Region with the Decree n.117/AMB dated 16/07/1986 and the Decree n.508 dated 

22/02/1991 approved the adjustment and completion of the first dumping area named “Lotto 

1”. The second dumping area named “Lotto 2” was approved by the municipality of Este 

with deliberation by the council n. 56 dated 03/06/1991 and authorized by the Regional 

Committee Resolution n.701 on 12 February 1992. The union of the two landfill bodies was 

approved on 20 May 1997 according to the Regional Committee Resolution n.1813. 

A third dumping area named “Lotto 3” (named also “Ecosistema project”) was approved by 

the Veneto Committee Resolution on 17/03/1998 with deliberation n.791; an update of this 

project considering also particular safety measures was approved on 16 June 2000 with 

deliberation n.1696. 

The management of a power plant for production of electrical and thermal energy powered 

by the landfill biogas and the authorization for the installation and exercise of another power 

plant for production of electrical and thermal energy powered by the biogas produced by the 

anaerobic digestion plant of the organic fraction of the MSW was authorized by the 

Regional Committee Resolution n.3032 dated 10/10/2003. 

The plan for another enlargement of the dumping area (95,000 m3) named “Ampliamento 

Lotto 3” was approved by the Province of Padua with the Measure n.4941/EC/2004 dated 30 

December 2004 according to the Legislative Decree n.36/2003; S.E.S.A. company obtained 

the authorization for the disposal of MSW, waste similar to municipal and non hazardous 

semi-solid sludge on 8 August 2005 with the Measure of the Padua Province 

n.4999/EC/2005 according to Leg. Decrees n.36/2003 and n.22/97 Art.28 and to Regional 

Law n.3/2000 Art.26. Recently some new dumping areas (“Lotto Ovest” and “Lotto Nord”) 

were authorized for the exercise but nowadays have not yet been realized. 
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S.E.S.A. landfill obtained also the Italian reference for the Integrated Pollution Prevention 

and Control named “Autorizzazione Integrata Ambientale” (A.I.A.) with the Measure of the 

Padua Province n.60/IPPC/2008 that was subsequently updated until 2018. 

The entire plant received also specific environmental quality certifications like the UNI EN 

ISO 14001 in the 2004 and the UNI EN ISO 9001 in the 2008. 

 

2.7.3 Sectors and subsectors  
 

The entire existing landfill site occupies a total surface of 130,000 m2 for a total volume of 

1,520,300 m3. A new dumping area of 44,500 m2 located in the western and northern part of 

the landfill has been projected and authorized but not yet realized: Fig. 2.10 shows an aerial 

view of the landfill site (black line delimits the existing landfill site while red line delimits 

the designed dumping area). 

 

 
Fig. 2.10 – Aerial view of the existing (black line) and designed (red line) landfill site  

 

The evolution of the landfill site started from the 60s with the first dumping area now named 

as “Lotto 1”. In the 90s has been authorized and realized the second large landfill zone 
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named “Lotto 2” and then during the 2000s also “Lotto 3” has been realized. “Lotto Ovest” 

and “Lotto Nord” are the last two main sites authorized for the landfilling (Fig. 2.11). 

 

 
Fig. 2.11 – Scheme of the landfill dumping areas 

 

In this paragraph the principal data of sectors and relative subsectors are described. Table 

2.1 reassumes the main data (surfaces and volumes). 

 

LOTTO 1: the first dumping site was active from the ’60 until the 1995, when S.E.S.A. 

company obtained the control of the zone. This area has a trapezoidal shape for 

a total surface of 72,000 m2 for a volume of about 750,000 m3. 

LOTTO 2: the project for the extension of the landfill site was prepared by Este municipality 

in January 1991 basing on geological and hydro- geological surveys. This site 

has a rectangular shape for a total surface of about 32,000 m2 and 251,000 m3 

of volume and is located in the northeastern part of “Lotto 1”; it’s subdivided 
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in 3 subsectors (S.1, S.2 and S.3), each of them subdivided in 4 basins (“Vasca 

A, B, C, D”) as shown in Fig. 2.12.  

                     The works for the realization of the sectors started in August 1995 and finished 

in October 1998. The unification of “Lotto 1” with “Lotto 2” was authorized by 

the Regional Committee Resolution in 1997 with an increase of volume equal 

to 69,300 m3. 

 
Fig. 2.12 – Scheme of sectors and subsectors of “Lotto 2” 

 

LOTTO 3: the project of this rectangular area placed at the left part of “Lotto 2” was also 

named “Progetto Ecosistema” and considered a new dumping site of about 

20,000 m3, for a volume of 355,000 m3 taking into account also the later union 

of this site with “Lotto 1”. In 2004 was design an extension of rectangular 

shape named “Ampliamento Lotto 3” of about 6,000 m2 and 95,000 m3 as 

volume, considering the waste settlement and the lost of mass due to the biogas 

production. 

                  “Lotto 3” is subdivided into two main sectors (S.1 and S.2) composed by other 

two basins (“Vasca A,B”); also “Ampliamento Lotto 3” is formed by two 

distinct basins named “Vasca A” and “Vasca B” (Fig. 2.13). 
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Fig. 2.13 – Scheme of sectors and subsectors of “Lotto 3” and “Ampliamento Lotto 3” 

 

LOTTO OVEST: this rectangular shape site (named also “Settore 1” of the new dumping 

site) has been projected but not yet realized, it will occupy an area of 

about 10,500 m2 located in the north-western part of the landfill (at the 

left side of “Ampliamento Lotto 3”). 

LOTTO NORD: this new configuration will include a new rectangular shape area of about 

34,000 m2 as surface, subdivided into three sectors (“Settore 2,3,4”) 

located in the northern part of the existing landfill. The total volume of 

“Lotto Ovest” and “Lotto Nord” will be equal to about 566,000 m3, 

considering also the daily and final top cover materials. 

                  
Table 2.1. Principal data of the S.E.S.A. landfill sites (* = authorized but not yet realized). 

 SURFACE 
(m2) 

VOLUME 
(m3) 

LOTTO 1 72,000 750,000 
LOTTO 2 32,000 251,000 

Unif. L1 - L2  69,300 
LOTTO 3 20,000 

355,000 
Unif. L1 - L3  
AMPL. L3 6,000 95,000 
LOTTO* 
OVEST 10,500 

566,000 LOTTO* 
NORD 34,000 
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2.7.4 Bottom liner systems 
 

S.E.S.A. landfill presents different bottom liner systems because of the development over 

the years of the legislation regarding this particular aspect. For example “Lotto 1”, the part 

of landfill that was active since the 60s (i.e. when a specific legislation that regulates the 

entire landfill management was completely absent) doesn’t present any type of artificial 

impermeabilization layer; nonetheless, as specified by the study of the stratigraphy of the 

site, the natural clay layer at the bottom of the landfill could guarantee a minimum control of 

leachate. 

“Lotto 2”, “Lotto 3” were completed under the S.E.S.A. management and present the same 

type of bottom liner system (Fig. 2.14). “Lotto Ovest” and “Lotto Nord” will have a similar 

barrier system. 

 

 
Fig. 2.14 – Scheme of “Lotto 2”,”Lotto 3” barrier system 

 

2.7.5 Top cover systems 
 

Similar to the various bottom liner systems, also the final top cover systems present some 

differences relatively to the dumping sites of the landfill due to the different legislation 

constraints that had to be respected over the years. The following figures show these 

differences among the distinct landfill zones. 

Leveling layer (in Italian “Strato di regolarizzazione”) is a particular stratus that permits the 

correct installation of the overlying strata and can be composed by excavation soil, compost 

or remediation soil but it has to respect particular concentrations according to CER 170504. 
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Fig. 2.15 – Scheme of the final top cover of “Lotto 1” 

 

The top cover of “Lotto 2” and “Lotto 3” (also including “Ampliamento Lotto 3”) is updated 

to the regulations of Legislative Decree n.36/2003 that involves more protection layers (Fig. 

2.16). As specified by the Veneto Committee Resolution n.1696/2000 that approved this 

type of final cover, the final configuration of these layers has to respond to the criteria of: 

- isolation of waste from the external environment; 

- minimization of water infiltration; 

- reduction as much as possible of the necessity of maintenance; 

- minimization of erosion phenomena; 

- resistance to settlement phenomena. 

The various compost layers have the function of anti – clogging protection. 

The final top cover of “Lotto Ovest” and “Lotto Nord” will be installed in order to respect 

the guidelines of Legislative Decree n.36/2006, and it will have the same features of the top 

covers of “Lotto 2” and “Lotto 3”. 
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Fig. 2.16 – Final top cover of “Lotto 2” ,“Lotto 3”, “Lotto Ovest” and “Lotto Nord” 

 

2.7.6 Biogas management 
 

Starting from the 1997 drilling operations and wells installation were realized in order to 

extract the biogas from the landfill along with the realization of a co-generation plant for the 

energy recovery. The gas is constantly sucked by an aspirator and then conveyed to the co-

generator. A part of the produced energy is used for the maintenance of the plant while the 

other remaining quantity is sell to the ENEL company.  

The extraction and collection biogas system is a kind of the so-called vertical-horizontal, 

where the wells are the vertical elements made in HDPE and the HDPE pipes that connect 

each well to the control station are the horizontal transport elements. The control station 

monitors all the pipes belonging to a certain landfill area managing the depression with 

specific control valves. 

From the different control stations the main pipe is connected to the co-generation plant 

(Fig. 2.17) that is formed by an engine that produces electrical and thermal energy with a 

nominal power of 1.41 kWh.  
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Fig. 2.17 – Co-generation plant GE Jenbacher supplied by landfill biogas 

 

The thermal energy produced, along with the energy derived from the anaerobic digestion 

systems, is sent to a district heating network that is able to supply particular public services 

like the primary and secondary schools, the library and the municipal building of 

Ospedaletto Euganeo and two schools and the civil hospital of Este. 

The quantities of biogas extracted over the last seven years are listed in Table 2.2. 

 

Table 2.2. Quantities of biogas extracted from the landfill per year since 2006. 

Year Extracted biogas (Nm3) 

2006 1,784,501.44 

2007 6,573,811.39 

2008 4,821,830 

2009 4,601,020.5 

2010 4,303,262.2 

2011 3,172,361.4 

2012 1,747,621.1 

 

The constant decreasing quantity of the extracted biogas can be explained as a consequence 

of the lower discharge of waste into the landfill during time, considering also that the 

biodegradable quantities are less than in the past due to the improved separate collection 

system and technologies that utilized this waste fraction (for example the anaerobic 

digestion for the putrescible organic fraction). 
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2.7.7 Leachate management 
 

The leachate management system is formed by 35 extraction wells, HDPE pipes that 

constitute the conveying network, two inox steel storage tanks for a total capacity of 50 m3 

and a control station for the monitoring. Over the years there have been upgrading and 

adjustment operations were made in order to improve the catchment network. 

The blowdown of the wells occurs with submergible pumps connected to the external 

storage tanks, maintaining always a low hydraulic head inside the wells; leachate is then 

taken with tankers by the S.E.S.A. operators and sent to the Este’s wastewater treatment 

plant or to the internal physical-chemical plant reducing transportation costs and also 

environmental impact. 

The leachate analysis is made every three months with the samples taken from the adduction 

pipes of the different landfill sectors connected to the storage tanks; another analysis on the 

leachate sampled directly from the storage tanks is made once a year. 

The drainage network (that will be the same also for the new projected sectors) is formed by 

HDPE corrugated pipes with saw teeth profile with an external diameter of 200 mm and an 

internal diameter of 171 mm. The network is placed inside a wasp nest gravel that has a 

thickness in the higher point equal to 60 cm. 

The landfill bottom presents a double inclination of one degree and each sector is divided by 

anchor trenches of trapezoidal section in order to favor the leachate drainage. The drainage 

pipes of each sector are connected to two external concrete wells where electrical 

submergible pumps are installed. The pumps are linked to the storage tanks with HDPE DN 

75 pipes. 

The quantity of the extracted leachate over the last seven years is shown in Table 2.3. 

 

Table 2.3. Leachate extracted since 2006. 

Year Extracted leachate (ton) 

2006 10,779.94 

2007 12,549.3 

2008 11,294.71 
2009 9,990.74 

2010 11,076.65 

2011 7,095.04 

2012 12,968.97 
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The variation of the quantities of the extracted leachate over the years is partially explained 

by the yearly rainfall quantity: for example, as shown in Table 2.4 for the year 2012, the 

trends of the rainfall and leachate quantities are similar. 

 

Table 2.4. Correlation between extracted leachate and rainfall in 2012. 

 
 

2.7.8 Monitoring and control plan 
 

The entire S.E.S.A. site is monitored by a Plan for Supervision and Control (PSC), an 

official document that regards different phases of the landfill like construction, management 

and post-closure. This document was approved by the Province of Padua and indicates rules 

for the control and monitoring of all activities in the landfill that could have potential 

impacts on the environment and public health. 

In addition it comprehends also the timely measures that have to be taken in case of 

incidents, the guarantee of a constant training of the management staff and the guarantee to 

the access to all the principal functioning data and results of the monitoring campaign. 

The types of control carried out for the landfill are: 

- controls for the input waste and sludge; 

- controls during management phase; 

- environmental controls. 

The environmental controls regards: 

- leachate: registration of the quantity of leachate monthly extracted and chemical analyzes 

performed every three months on particular parameters (pH, temperature, conductibility, 
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ammonia nitrogen, nitrates, nitrites, chlorides, sulfate, metals, iron and manganese. Every 

year the analyzes regards also other parameter such as COD and hydrocarbons; 

- biogas: monthly evaluation of the parameters of methane, oxygen and carbon dioxide; 

- surface water: annual analysis on particular parameters in the surrounding draws. The 

monitoring regards: temperature, pH, conductivity, COD, BOD5, ammonia nitrogen, 

nitrates, nitrites, chlorides, sulfate, metals, organohalogen compounds, pesticides, solvents, 

hydrocarbons; 

- groundwater: ten control wells are installed for the monthly measurement of the levels of 

the shallow and deep aquifers. Every three months controls are performed to evaluate 

temperature, pH, conductibility, permanganate oxidability, ammonia nitrogen, nitrates, 

nitrites, chlorides, sulfate, metals, iron and manganese. Every year the analyzes is extended 

to other parameters like BOD5 and PAH; 

- air quality: two points for semiannual examination of hydrogen sulfide and ammonia and 

for annual examination of dusts; 

- weather-climate parameters: daily measurements of precipitations, temperature, wind 

direction and intensity and atmospheric humidity; 

- landfill morphology: semiannual examination of volume occupied by waste and available 

volume for the disposal; 

- external noise: annual phonometric investigation on the perimeter of the site. 
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3. General slope stability concepts 
 

 

3.1 Introduction 
 

One of the most critical aspects that an engineer must take into account during the design 

and the management of a landfill is the space saving: this is not only a question of 

sustainability with ecological footprint consideration, but it’s also a delicate issue due to the 

numerous administrative permits to obtain in order to respect different constraints like the 

proximity to residential areas or sensitive natural sites. 

This aspect can be solved with a reduction of the dimension of the incoming waste to the 

landfill, for example through compaction of compressible waste, but also diminishing the 

ratio between horizontal and vertical dimension of the landfill with the result of a higher and 

inclined structure along the slopes. 

To implement this second procedure the elaboration of a stability analysis is fundamental, 

not only during the project phase, but also during the operational and post operational period 

because some particular waste can change their properties during time (because of 

degradation processes and changes of unit weight) leading for example to different shear 

strength parameters and pore water pressure, i.e. two of the most critical characteristics for 

the stability. 

Moreover, the issue of slope stability is crucial for other reasons: the safety of on-site 

workers, the protection of investments made in improving the level of engineering of the 

landfill (like the biogas collection system) and the prevention of large remediation costs 

(Gharabaghi et al., 2007). Also the introduction of geosynthetic materials through the liner 

systems has increase the attention to this study due to the carefulness that has to be paid to 

the integrity of the liners during time.  

The study of this problem is very complex due to the heterogeneity of waste and to the 

ability to obtain geotechnical parameters such as density, moisture content, friction angle 

and cohesion; laboratory measures present limitations not only for the heterogeneous nature 

of MSW, but also for the erratically changing of properties within the landfill during time 

(Vajirkal, 2000). 
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Usually, literature data indicate the cone penetrometer test as the most accurate procedure to 

obtain these particular waste parameters, thanks to the high accuracy and minimal efforts 

and costs of this device that it’s able to characterize a large area in a short time period 

(Vajirkar, 2000). 

There are two different types of calculation to study the slope stability analysis: the Limit 

Equilibrium Methods (LEM) and the Finite Element Methods (FEM); the main difference is 

that the LEM are based on the static of equilibrium while the FEM are related to the stress – 

strain relationship. 

Both methods will be discussed on this thesis and the Este’s S.E.S.A. landfill slope stability 

will be evaluated using two different calculation softwares that represent these analyses 

approaches: SLOPE/W for the LEM and PLAXIS for the FEM.  

 

3.2 Factors of influence 
 

Instability of landfills results in most cases as a combination of gravitational forces and 

water pressures; when gravitational forces are out of balance the failure occurs. Water plays 

the role of lubricant diminishing the resisting forces causing gradually an increasing of 

sliding mass velocity that finally leading to the failure. Gravitational forces and water are 

two of the main causes of the instability. This paragraph presents a briefly description for 

the factors of influence of the stability ([27],[38],[39],[40]) excluding the seismic 

contribution that will be discussed further in more detail. 

  
Landfill geometry 

 

The main factors that influence the stability are those which characterize the geometry such 

as height and angles of side slopes of the landfill. In order to maintain stability is important 

that bottom, top cover and side slope liners are designed as flat as possible, because 

instability might occur if the projected slopes were steeper than the friction angle between 

the materials; the erosion can be limited with a soil vegetation layer in the top cover.  

 

Shear strength 
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This factor is crucial for the stability because characterizes the interaction between different 

materials such as geosynthetic liners and soil; moreover, also the strength characteristics of 

waste are important because moisture content and organic waste (for co-disposal landfill 

cases) can determine a reduction in the stability.  

 

Unit weight of waste 

 

This parameter is essential because gives an idea of the compressibility of the waste mass; 

unfortunately, there are significant uncertainties regarding its value. It’s very difficult to 

obtain a certain value, because unit weight values vary significantly not only among 

different sites but also within the same site. 

Compaction effort, layer thickness, overburden stress, moisture content, variations in waste 

constituents (like size and density), state of decomposition and degree of control during 

placement (like thickness of daily cover) are the factors that influence unit weight of waste. 

A study conducted by Zekkos et al. (2006) proposed an hyperbolic function to describe the 

relationship between MSW unit weight and depth. 

 

Water content and pore water pressure 

 

Water content of landfill can change due to several factors like waste composition, time of 

year, rising groundwater accumulation and meteorological conditions. Seepage forces may 

reduce the resisting forces along the failure surface increasing the driving forces.  

Pore pressure can be influenced also by leachate and co-disposal of biosolids. This can lead 

to an increase of MSW unit weight decreasing the effective stress which eventually lead to 

shear strength reduction affecting the landfill stability. For the opposite reason a diminishing 

of the pore water pressure lead to an increase of effective vertical stress making the landfill 

more stable.  

 

Settlement 

 

Shafer (2000) proposed two different types of settlement that affect landfill stability. One is 

related to the uniform settlement that, thanks to densification, increase the unit weight of 

waste favoring the stability; the other one is the localized differential settlement that 
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promotes surface water to infiltrate within the mass, potentially increasing pore water 

pressure and piezometric head in the waste mass. This second type of settlement can be 

related to the presence of biosolids which have high compressibility creating local 

settlement zones which have a negative consequence for the stability. 

 

External loadings 

 

External loads such as daily top cover, final cover, the movement of vehicles, traffic and 

stockpiles of materials can affect the landfill stability. 

 

Landfill management 

 

Some particular operations can be done in order to improve landfill stability, such as the mix 

of biosolids with MSW before landfilling. Also other landfill management systems like 

biogas and leachate extraction wells should be monitored regularly in order to prevent any 

damage to the barrier layers. 

 

Vegetation 

 

Vegetation is important not only for aesthetic reasons but also for its property against 

erosion processes; moreover, vegetation on landfill slopes improves the slope stability 

because the vegetation roots add cohesion to the top soil acting as a reinforcement. 

 

3.3 Types of landfill’s failure 
 

Landfill slope failures are usually due to the loss of shear strength by the multilayer 

composites, to a change in geometrical properties such as the steepening of an existing slope 

or to an excessive settlement of waste. The typical geotechnical failure types are also 

possible depending on site-specific conditions (like the type of cover used) and the 

placement and geometry of the MSW mass. 

In this paragraph potential failure modes are briefly described. Figures are taken from 

“Geotechnical aspects of landfill design and construction” by X. Quian, R.M. Koerner, D.H. 

Gray. 
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Failure of the final cover system  

 

The protection soil that acts as final top cover can slide on the below liner system if the 

slope is too steep or too long (Fig. 3.1); this can occurs especially during periods of heavy 

rainfalls. 

The solution can be the replace of soil unless the failure surface is placed within the liner 

system; in this case, the question of long term stability remains and the implications are 

more complicated. 

 

 
Fig. 3.1 – Failure of the final cover system 

 

Failure of liner system components from anchor trenches 

 

Geomembranes, geotextiles and geonets are components of the geosynthetic liner systems 

that are fixed into anchor trenches at the slope in order to avoid the tearing and the sliding 

down of component; the pull out of the liners from the anchor trenches that cause the failure 

can occur if these components are not properly installed (Fig. 3.2). 

 

 
Fig. 3.2 – Failure of liner system components from anchor trenches 

 

 

 



- 38 - 
 

Rotational failure within the waste mass 

 

This type of failure is completely independent of the liner system (Fig. 3.3): it involves a 

movement of a large amount of material from the circular failure surface located within the 

waste body to the toe of the slope. The reasons of this instability are a too steep waste slope, 

high liquid content or lack of waste placement control. 

 

 
Fig. 3.3 – Rotational failure within the waste mass 

 

Rotational failure through waste mass, liner and foundation soil 

 

Failure can starts from the bottom soft soil propagating until the waste mass; the failure 

plane may be at or within the liner system, or in the soft subsoil (Fig. 3.4). One reason can 

be the excessive waste weight. These types of instability have occurred in both unlined and 

lined sites involving up to 500,000 m3 of waste. 

 

 
Fig. 3.4 – Rotational failure through waste mass, liner and foundation soil 

 
Rotational failure of soil slope, toe or base 

 

The soil mass behind the waste body or beneath the site could presents instability and then 

failing. The failure occurs along the slope, at the toe or within the foundation soil (Fig. 3.5). 
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The reasons can be a too steep slope or the soft foundation soil properties, not involving 

liner system or waste properties like shear strength or unit weight.  

 

 
Fig. 3.5 - Rotational failure of soil slope, toe or base 

 

Translational failure by movement along the bottom liner system 

 

This type of instability can occur with the waste mass sliding above, within or beneath the 

liner system at the base of the waste body (Fig. 3.6). The failure plane is almost linear and 

can propagate from the toe up through the waste or continue in the liner system along the 

back slope (Quian et al., 2002). These failures have occurred at both clay-lined sites and 

geo-synthetically-lined sites. The largest observed volume involved was up to 1,000,000 m3 

of waste. 

 

 
Fig. 3.6 - Translational failure by movement along the bottom liner system 
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3.4 Seismic contribution 
 

The seismic or dynamic forces are usually oscillatory, multi-directional and act only for 

moments in time; in order to represent the dynamic loading the static forces are usually 

involved in this type of study. After the shaking the slope may not completely collapse, but 

there may be some unacceptable permanent deformations.  

As required also by Italian Legislation, a pseudostatic analysis can be performed to consider 

the dynamic effects, describing the effects of earthquake shaking by accelerations that create 

inertial forces which act in the horizontal and vertical directions at the centroid of each slice. 

This type of analysis is a sort of extension of the limit equilibrium method with the addiction 

of the component of inertia that represents the action of the seismic effect. Seismic 

contribution is considered introducing static forces applied to the center of gravity of the 

mass potentially sliding and proportional to the weight W of the interested mass (Fig. 3.7). 

 

 
Fig. 3.7 – Inertial forces of the seismic contribution 

 

These forces are defined as: 

 

    
         

 
          

 

                   

 

where: 

 

- W = slice weight; 

-    = coefficient of the maximum acceleration reduction; 
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-      = maximum seismic acceleration estimated for the site of interest; 

- g = gravity acceleration (9.81 m/s2); 

 

The value of      is defined basing on the stratigraphic (stratigraphic coefficient Ss) and 

topographic (topographic coefficient ST) situation: 

 

                          

 

The coefficient ag represents the maximum horizontal acceleration for the site of interest 

considering hard ground soil (“A” type for subsoil categories). 

Referring to the NTC08 for the Italian legislation, all these coefficients can be found in 

order to set the values of KH and KV to the computer programs. 

The value of βS can be found in the NTC08 (Tabella 7.11.I) as shown in Tab. 3.1. 

 

Table 3.1. Coefficient of maximum acceleration reduction (Tabella 7.11.I, NTC08). 

 
 

As shown in Figure 2.7, the value of ag for the Este’s area is between 0.050 and 0.075 g. 

From Tab. 3.1 results that the value of βS is equal to 0.20. 

The coefficient ST, referring to the NTC08 (Tabella 3.2.VI), is found in relation to the 

topographic category (Este is a T1 category, flat territory with isolated peaks and slopes less 

than 15°) giving a value of ST = 1.0 (Tab. 3.2). 
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Table 3.2. Topographic coefficients (Tabella 3.2 VI, NTC08). 

 
 

To find the value of Ss is firstly necessary to define the value of another coefficient F0 that 

from the Appendixes of  NTC08 is taken equal to 2.49 (basing on latitude and longitude of 

the site), and considering a C type (“Tabella 3.2 II” of NTC08) for SESA landfill subsoil 

category (deposits of coarse grained soils with medium thickness or fine grained soils with a 

medium consistency), the following formula gives a value for the Ss coefficient: 

 

                  
  

 
       

 

The calculation gives a results higher than 1.5; in this case, the value that has to be 

considered is SS = 1.5. 

Now it’s possible to define amax, KH  and KV: 

 

                  = 1.5 ∙ 1.0 ∙ 0.075 = 0.1125 g 

 

   
         

 
        

 

                    

 

The two last values will be inserted in the two calculation softwares.  
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4. Slope Stability Analysis methods 
 

 

4.1 Introduction 
 

Slope stability analysis is carried out in order to evaluate the safe design of natural (where 

instability is usually due to the erosion) or artificial slopes (generated by cuttings, 

excavations or building of embankments) and the conditions for the equilibrium: generally, 

instability is the result of a combination of gravitational forces and water pressures, usually 

the main causes of the failure mechanisms. 

The main purpose of this type of study is the identification of endangered areas establishing 

a factor of safety for the potential slip surfaces considering factors as safety, reliability and 

economics in the long period establishing also potential remedial measures for the most 

critical cases. 

Before the introduction of powerful personal computers, stability analysis was performed 

graphically or using hand-calculations; simplifying hypothesis had to be taken to find 

solutions, and the concept of numerically dividing a larger soil body into smaller parts was 

the most adopted simplification. 

Nowadays geotechnical engineers have a lot of possibilities thanks to the use of computer 

software products that permit to deal with a lot of variables like complex stratigraphy, highly 

irregular pore-water pressure conditions, almost any type of slip surface shape, concentrated 

and distributed loads and different linear and nonlinear shear strength models. 

The software possibilities ranges from limit equilibrium techniques through finite element 

limit approaches, and as easily predictable each methods presents its pros and cons: for 

example, limit equilibrium is the most commonly used and presents simple solution 

techniques, but it can results unsuitable if the slope fails by complex mechanisms (like 

internal deformations, progressive creep, etc.). 

During the last decade new applications are been developed as the Slope Stability Radar, a 

system to remotely scan a rock slope to control the spatial deformations of the face, 

detecting small movements with sub-millimeter accuracy by using interferometry 

techniques.   
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4.2 General concepts of Limit Equilibrium Methods  
 

The study of the stability of the earth structures is the oldest type of numerical analysis in 

geotechnical engineering (SLOPE/W tutorial manual). The first studies were introduced 

early in the 20th Century: in 1916 Patterson presented a stability analysis of the Stigberg 

Quay in Gothenberg (Sweden), where the first idea of dividing a potential failure mass into 

slices was proposed. One of the reasons the limit equilibrium approach was adopted so 

quickly is that solutions could be founded by hand-calculations. 

During the next few decades this study was developed and improved by other engineers like 

Fellenius and Janbu, until the 1960’s when the coming of electronic computers led this 

technique to more rigorous formulations such as those elaborated by Morgenstern and Price 

and by Spencer. 

All these methods are similar each other but they are also different due to the hypotheses 

made; nevertheless, there are some general hypotheses that are common to all the limit 

equilibrium methods (Favaretti): 

 

1 - Mohr-Coulomb failure criterion is satisfied along the hypothetical failure surface, which 

may be a straight line, circular arc, logarithmic spiral or other irregular surface. The MC 

failure criterion represents the linear envelope that is obtained from a plot of shear strength 

of a material versus the applied normal stress (Fig. 4.1). The relation is expressed as: 

 

                

 

where:    is the shear strength at failure on the failure plane,   is the intrinsic cohesion of the 

material (and the intercept of the failure envelope),    is the normal stress at failure on the 

failure plane and   is the angle of internal friction (and the slope of the failure envelope). 

This equation can contain the pore water pressure u in cases of drained conditions (effective 

stress): 
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Fig. 4.1 – Representation of the MC failure criterion  

 
2 - Two dimensional sections are analyzed, assuming plain strain conditions. 

3 - The actual strength of the soil is compared with the value required for the equilibrium of 

the soil mass giving a measure of the factor of safety (FOS). 

Usually the FOS is defined as the ratio between the ultimate shear strength (  ) and the 

mobilized shear strength (   at incipient failure: 

 

FOSτ =   

 
 

 

The shear strengths can be studied in two different ways: the first is the so called “total 

stress approach” while the second is the “effective stress approach”. 

The first regards short term loading conditions, usually for clayey slopes or slopes with 

saturated sandy soils with the pore pressure not dissipated; the second approach is used for 

long term conditions in all kind of soils where drained known conditions prevail. This 

second way to obtain the shear strength is particularly important for lands where intensive 

rainfall may occur over a long period, and the water table can rise significantly after a 

rainstorm (Favaretti). 

There also other formulations to define the FOS, as one that assumes the safety factor to be 

constant along the slip surface, defining it with respect to the moment equilibrium (generally 

utilized for the analysis of rotational landslides): 

 

FOSm =    
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where     is the sum of the resisting moments and     is the sum of the driving moments. 

The force equilibrium is generally used to translational or rotational failure that can be 

composed by planar or polygonal slip surfaces: 

 

FOSf =    

   
 

 

where     is the sum of the resisting forces and     is the sum of the driving forces.  

It’s important to note that the simplest slope stability analysis methods cannot fulfill both 

force and moment equilibrium simultaneously and that these definitions can be very 

different in the values and the meaning. Nevertheless, most design codes do not present a 

clear requirement on what FOS they are referring, and only a single safety factor is specified 

in many of these codes. 

The instability of slopes occurs when the FOS   1.0, but in practice this is not completely 

true because the failure is also caused by the velocity of the sliding soil mass; usually, until 

F = 1.25 failure doesn’t occur (Favaretti, 2010). 

4 - Soils are treated as rigid-plastic materials and due to this hypothesis the analysis does not 

consider deformations. 

Limit equilibrium methods can be subdivided in two principal categories: 

 

 methods that consider only the whole soil body (Taylor method, Culmann method); 

 methods that subdivide the mass into many slices (that can be vertical or non vertical 

like for the Sarma’s method) considering the equilibrium of each slide (method of 

slices). 

 

In this study only the methods of slice will be presented because are those used by computer 

programs and the only types of calculation methods provided for by law; moreover, methods 

that considers the whole soil body are useful for slopes with homogeneous materials. 
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4.3 LEM – Method of slices  
 

In order to calculate the mobilized strength for a drained soil, the distribution of the effective 

normal stresses along the failure surface must be known: this is usually done by subdividing 

the failure mass of the slope into smaller slices, studying each singular slice as a unique 

sliding block (Fig. 4.2). The Method of slices (Mos) can study the problem considering 

complex slope geometries, non homogeneous soil conditions and the influence of external 

loads. 

 

 
Fig. 4.2 – Non-homogeneous soil mass subdivided into vertical slices along the failure surface 

 

The method of slices has been developed in different terms based on the hypotheses made 

by the authors. Fellenius (1936) introduced the first method, also known as the Ordinary or 

the Swedish method, for a circular slip surface. In 1955 Bishop introduced a new 

relationship for the base normal force, and the equation for the FOS hence became non 

linear. In the mid-1950s also Janbu advanced a simplified method for non circular failure 

surfaces, discretizing a potential sliding mass into vertical slices; in 1973 Janbu developed a 

further development of its previous simplified method. Later, thanks also to the advent of 

electronic computers, Morgenstern-Price (1965), Spencer (1967), Sarma (1973) and others 

contributed to the analysis including different assumptions on the interslice forces. In 1986 a 

procedure of General Equilibrium Method was made by Chugh as a development of the 

Morgenstern-Price and Spencer methods, satisfying both force and moment equilibrium 

conditions. 

The interslice forces are related to a number of factors linked to the characteristics of 

materials and their estimation is complicated in the limit element methods; for this reason, 
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simplified assumptions are made in most approaches either to neglect both or one of them. 

Nevertheless, the most accurate methods consider these forces in their analysis.  

Anyhow, all these methods can be subdivided in three categories basing on the different 

hypotheses (Favaretti, 2010): 

 

- assumptions on interslice force direction (Bishop, Morgenstern-Price, Spencer); 

- assumptions on the thrust line position (Janbu); 

- assumptions on the interslice forces distribution (Sarma). 

 

As previously discussed, other suppositions are those that tend to divide a slide mass into n 

smaller slices (and so the irregular base of the slice can be approximated to a chord) and the 

FOS is considered constant along the failure surface. 

Each slice is affected by a general system of forces (Fig. 4.3) and the thrust line is defined as 

the line that connects the points of application of the interslice forces Ei and E(i+1). Its 

location can be assumed or determined with a method that satisfies the complete 

equilibrium, but the simplified methods neglect the location of this force because of the 

impossibility to satisfy the complete equilibrium for the failure mass.  

 

 
 

Fig 4.3 – Forces affecting a singular slice (Source: Environmental Geotechnics course)  
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In fact for this system there are (6n – 2) unknowns but only four equations (4n) for each 

slice can be written for the system equilibrium limit (Tab. 4.1); for this reason the solution is 

statically indeterminate. 

 

Table 4.1. Equations and unknowns of the limit equilibrium of each slice (Source: 

Environmental Geotechnics course). 

 
 
Considering Table 4.1, the total unknowns are: 
 

6n – 2 – 4n = 2n -2 
 

An assumption to reduce the unknowns number is usually to consider the normal forces on 

the base of the slices acting at the midpoint; with this hypothesis the number of remaining 

unknowns becomes: 

 

5n – 2 – 4n = n – 2 

 

These are the general assumptions that characterized the available methods of analysis that 

will be discussed in the further subchapter. 
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4.3.1 General formulation 
 

The assumption is based on a body of soil sliding along a general surface ABCD (Fig. 4.4); 

the entire soil mass is subdivided into n elementary vertical slices separated by n - 1 vertical 

boundaries.  

 
Fig. 4.4 – Soil body subdivided into n vertical slices 

 

The stability is satisfy if both force and moment equilibrium conditions are respected for 

each slide and in case of drained conditions and if           along the failure surface, 

the FOS can be defined as: 

 

   
  

 
  

  

  
  

            

  
 

 
 
Considering the equilibrium of the entire soil body, the internal interslice forces (E i to En 

and X2 to Xn) must vanish; moreover, with the hypothesis that no external forces are acting 

on the end of the slices (E1 = E(n+1) = X1 = X(N+1) = 0), a first value of F can be obtained only 

referring to the forces equilibrium: 

 

 

 
  

     

    

 

   

                                               

 

   

 

 

where: 

-       
 

   
                            ; 
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- ru = coefficient of pore water pressure =          

     

Considering the moment equilibrium of slice i around pivot O and that the moments of all 

internal forces (Ei, Xi) must vanish for the entire body, an expression for the equilibrium of 

moments  can be obtained: 

 

   
 

  

    

 
                               

      
       

  

    

 
               

     

 
   

   

 
           

 

 

In cases of circular failure surface (ai = R, fi = 0 and xi = Risenα) the previous equation 

becomes: 

 

   
 

 

    

 
                               

         
    

 

 

 

4.3.2 Fellenius method/OMS 
 

The Ordinary Method of slices (OMS) was made by Fellenius and is one of the simplest 

method of slices.  

The hypotheses are: 

 

- circular failure surfaces; 

- only moment equilibrium condition; 

- no consideration of the interslice forces Ei and Xi (and so also the location of these forces 

zi is equal to 0). There are: 

 

(5n – 2) – (n – 1) – (n – 1) – (n – 1) = 2n + 1 unknowns  ˂ 4n equations 

 

The FOS is equal to: 
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The advantage of this method is its simplicity in solving the FOS, since the equation does 

not require an iteration process. 

 

4.3.3 Bishop’s rigorous method 
 

This method is very common in practice of slope stability analysis, and its assumptions are: 

 

- circular failure surfaces; 

- both forces and moments equilibrium are satisfied; 

- interslice vertical forces Xi (n – 1 unknowns) defined as: Xi = λ f(x) where λ is a constant 

unknown (“+1”) and f(x) a known function. The number of unknowns and equations 

become: 

 

(5n – 2) – (n – 1) + 1 = 4n unknowns = 4n equations 

 

In this way the problem is determinate and the equations of equilibrium are satisfied.  

It’s important to note that there are several combinations between λ and f(x) that satisfy the 

problem, but some of these are not possibles because there are two other aspects that have to 

be respected: 

 

- shear strength along vertical interslice surfaces must be less than the failure strength of soil 

because these surfaces can’t reach the failure condition (τi = Xi/Ai ˂ τf = c’ + σ’tanϕ’); 

- the thrust line must be located inside the sliding body (Fig. 4.5). A solution where the 

thrust line is located externally to the soil body is not phisically acceptable. 

 

 
Fig. 4.5 – Thrust line position 
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4.3.4 Bishop’s simplified method  
 

The hypotheses of this method are: 

 

- circular failure surfaces; 

- only moments equilibrium condition; 

- neglection of the interslice vertical forces Xi. There are: 

 

(5n – 2) – (n – 1) = 4n - 1 unknowns ˂ 4n equations 

 

and so the problem is overdeterminated. 

Considering that Xi = 0, λ = 0 and ΔXi = 0 the FOS is equal to: 

 

   
 

 

    

 
                           

         
    

 

 

The solution of the Bishop’s method can be found with an iterative procedure: 

 

- assume an initial value of F → F0; 

- calculate mα,i with F0 for each slice; 

- determine F using mα,i (if F = F0 the procedure is complete, otherwise the iteration 

procedure continues). 

 

4.3.5 Janbu’s simplified method  
 

The assumptions are: 

 

- any type of failure surface; 

- only force equilibrium condition; 

- interslice vertical forces Xi = 0 (similarly to the Bishop’s simplified method) leading to an 

overdeterminated solution that will not satisfy the conditions of the moment equilibrium. 

The FOS is equal to: 
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In order to correct the overestimated value of the FOS, Janbu presented a correction factor f0 

> 1 that has to be multiplied to the previous calculated safety factor to obtain a final value of 

FOS. This correction factor is a function of the slide geometry and the strength parameters 

of the soil (Fig. 4.6); in cases of surface intersecting different soil types, the curve c – ϕ is 

generally used to estimate the f0 value. 

 
Fig. 4.6 – Estimation of the corrective factor f0 (Source: Environmental Geotechnics course) 

 

As an alternative, the corrective factor f0 can also be calculated with the following formula: 

 

         
 

 
      

 

 
 
 

  

 

where b1 depends on the soil type: 

- b1 = 0.69 for c only soils (i.e. for clayey soils); 

- b1 = 0.31 for ϕ only soils (i.e. soils without cohesion); 

- b1 = 0.5 for c and ϕ soils. 
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4.3.6 Janbu’s generalized method  

 

This is an advanced procedure of Janbu’s method and the hypotheses are: 

 

- any kind of failure surface; 

- both force and moment equilibrium conditions satisfied, since it assumes a location of the 

thrust line (leading to 4n – 1 unknowns) suggesting also that the actual position of the thrust 

line is an additional unknown, and thus equilibrium can be respected if the assumption 

selects the correct thrust line. This line is searched using an iteration procedure until the 

equilibrium is reached.  

 

4.3.7 Morgenstern – Price method  
 

The assumptions are: 

 

- any kind of failure surface; 

- both force and moment equilibrium conditions satisfied; 

- the interslice force inclination can vary with an arbitrary function f(x) (leading the number 

of unknowns equal to 4n): 
  

  
        

 

where: 

- λ = scale factor of the assumed function; 

- f(x) = interslice force function that varies continuously along the slip surface. 

 

4.3.8 Spencer’s method 
 

This method derives from the previous method and satisfies static equilibrium by assuming 

that the interslice force inclination can vary with a constant but unknown function f(x) = 

constant. 
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4.3.9 Lowe – Karafiath’s method  
 

The hypotheses are: 

 

- any kind of failure surface; 

- only force equilibrium is satisfied assuming that the interslice forces are inclined at an 

angle equal to the average of the slope ground surface angle β and slice base angle α; this 

simplification leads to 4n – 1 unknowns failing to satisfy the moment equilibrium. 

Considering θ = inclination of the interslice resultant force the two equations are: 

 

            

 
  

  
      

 

4.3.10 Corps of Engineers method  
 

The approach is similar to the previous one, but the assumption on the inclination of the 

interslice forces θ can be done in two different types: it considers θ parallel to the slope 

ground surface inclination β (i.e. θ = β) or equal to the average slope inclination between the 

left and right end points of the failure surface. This hypothesis makes the problem 

overdetermined and moment equilibrium is not satisfied.  

 

4.3.11 Sarma’s method  

 

This method is quite different from the other ones because it was implemented for non-

vertical slice or for general blocks (wedge method). It assumes a relationship for the 

interslice forces similar to the Mohr-Coulomb expression: 

 

           

 

where: 

- c and ϕ are the shear strength parameters (cohesive component and material friction angle); 
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- h is the slice height. 

 

This assumption makes the problem solvable both for force and moment equilibrium (the 

interslice forces are adjusted until the FOS satisfies the two equilibrium equations). 

It’s important to note that this method works best when the cohesion is zero or at least very 

small: if c = 0, the interslice shear is directly proportional to the normal as with all the other 

approaches. 

 

4.3.12 General limit equilibrium formulation 

 

The GLE formulation was studied by Fredlund at the University of Saskatchewan in the 

1970s (Fredlund and Krahn 1977; Fredlund et al. 1981). This approach regroups the key 

elements used by the various methods and can be utilized both for circular and non circular 

failure surfaces. 

This technique is based on two factor of safety expressions and allows for a range of 

interslice shear-normal force hypotheses. One equation gives the FOS with respect to 

moment equilibrium (Fm), while the other equation gives the safety factor related to 

horizontal force equilibrium (Ff). 

The relationship between the interslice forces is defined in the same manner of the equation 

proposed by Morgenstern and Price (1965): 

 
  

  
        

 

Some important considerations on this method and the others can be done plotting in a 

diagram as the two FOS vary with λ (Fig. 4.7): 
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Fig. 4.7 – Presentation of the most common mos methods (Fredlund and Krahn 1977) 

 

The above diagram permits to understand the differences between the FOS from the various 

methods, and to study the influence of the selected interslice force function. 

Two of the assumptions of the Bishop’s simplified method (BSM) are the not consideration 

of the interslice vertical shear forces and the solution only for the moment equilibrium. For 

the GLE terminology if the shear forces Xi = 0 means that λ = 0, and the FOS for the BSM 

falls in the moment curve in Figure 4.7 where lambda is zero. 

A similar consideration can be done for the Janbu’s simplified method (JSM) that also 

ignores the interslice vertical forces Xi satisfying only the force equilibrium: the FOS for the 

JSM falls in the vertical axis of the diagram where λ = 0 on the force curve. 

The Morgenstern and Price method (M-PM) and the Spencer method (SM) satisfy both 

moment and force equilibrium: for this reasons their FOS falls where the two curves cross, 

and the distinction on which of these methods fall on the crossover point depends on the 

chosen interslice force function (constant X/E ratio for SM and any general appropriate 

function for M-PM). 

Other methods like the Corps of Engineers and the Lowe-Karafiath have the FOS falling on 

the force curve, since they only respect the force equilibrium. 
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4.3.13 Considerations on the interslice force function  

 

The interslice shear force Xi is assumed to be associated to the interslice normal force Ei by 

the equation Xi/Ei = λf(x). f(x) can’t be determine for a general problem and the different 

methods apply different values for the function. 

A case where f(x) = 1.0 is equivalent to the Spencer method (where f(x) is considered a 

constant value) and can be used for sandy soils. In fact, sandy soils means an effective 

cohesion c’ = 0; the MC expression can be applied to the interslice force relation (Xi/Ei = 

tanϕ’) and so the value of λ results equal to tanϕ. 

f(x) = senx is an alternative very used as the association of the f(x) to a trapezoidal or 

clipped-sine shape (Fig. 4.8, [3]): these types of function are very used for methods like 

Morgenstern-Price and GLE where both moment and force equilibriums are satisfied 

simultaneously. 

 

 
Fig. 4.8 – Shape of interslice force functions 

 

In general, the most commonly used functions are the constant and the half-sine functions. 

The half sine function is used by default by SLOPE/W program also because this particular 

function tends to concentrate the interslice shear forces towards the middle of the sliding 

mass and diminishes the interslice shear in the crest and toe areas (SLOPE/W tutorial 

manual).  

Sarma’s method uses an equation similar to the MC expression to relate the interslice shear 

and normal forces (X = ch + Etanϕ): this approach can result interesting due to the 

correlation between the material properties and the interslice forces, but actually can be 



- 60 - 
 

useful only in cases of cohesion equal to zero (as specified before), where the interslice 

shear becomes directly proportional to the normal force. If a cohesion value is specified, the 

interslice shear force X starts to become independently of the interslice normal force E, 

leading to convergence difficulties (SLOPE/W tutorial manual). 

 

4.3.14 Summary of the method of slices approaches 

 

The methods discussed in the previous paragraphs present some similarities and some 

differences. Table 4.2 reassumes these concepts. 

 

Table 4.2. Summary of LE method of slices. 

Method ∑F = 0 ∑M = 
0 Assumptions 

Fellenius/OMS - √ Neglects both Xi and Ei 

Bishop’s rigorous  √ √ Xi = λ f(x)  

Bishop’s simplified  √* √ Xi = 0 

Janbu’s simplified  √ - Xi = 0 

Janbu’s generalized √ √** Considers Xi and Ei acting on the 
thrust line 

Morgenstern and Price √ √ 
  

  
        

Spencer √ √ Constant inclination (Xi/Ei = const) 

Lowe – Karafiath √ - Resultant inclination at   
          

Corps of Engineers √ - Two hypotheses on   
Sarma √ √ For general blocks,            

*= force equilibrium only for Ei  

** = M equilibrium satisfied if thrust line position correctly selected 

 

Fellenius method is the easier method and its factor of safety can be easily obtained without 

any iterative calculation and can be solved by hand or spreadsheet calculation; it’s well 

known to be very conservative since sometimes it presents results that can be 20-30 % 

higher than those obtained with other methods. For this reason it’s now rarely used in 

practice. 
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The Bishop’s method is one of the most worldwide used methods even if its use has been 

reccomanded only for circular failure surfaces (Abramson et al., 2002), but its analysis is 

simple for hand calculation and the convergence is fast. 

Janbu’s simplified method presents only few convergence problems and can be used also for 

a non circular failure surfaces which is commonly observed in sandy-type soils. 

The Janbu’s rigorous method consists in the introduction of the correction factor f0 but the 

methods to calculate this factor are based on limited case studies and for this reason the use 

of these factors are questioned for some engineers if applied to complicated non-

homogeneous soil slopes. 

Morgernstern-Price and Spencer methods consider both force and moment equilibriums and 

being careful to the thrust line position are two methods suggested by computer softwares 

like SLOPE/W, since they meet the criteria of fulfillment of all equations of statics 

considering both shear and normal interslice forces. 

The Lowe-Karafiath method and the Corps of Engineers methods are based on hypotheses 

on the interslice force functions and satisfy only the moment equilibrium; usually the first 

one gives results close to that obtained with the Janbu’s rigorous method even though the 

moment equilibrium is not satisfied. The Corps of Engineers method in some cases may lead 

to a high factor of safety, and to account this problem some engineers prefer to adopt a 

lower inter-slice force angle (Duncan and Wright, 2005). 

Sarma’s method is particular due to the hyphoteses made on the interslice force function 

equation, as explained in the previuos paragraph, but in some cases (soils with zero 

cohesion) it can be very useful. 

The General limit equilibrium formulation is usually adopted to provide a framework for 

discussing, describing and understanding all the other methods, since it can compare the 

various FOS of the other methods (SLOPE/W tutorial manual). The main difficulty in using 

the GLE procedure is related to the requirement that the user verify the reliability and 

reasonableness of the calculated safety factor, preventing its use for automatic search 

techniques that try to identify the critical failure surface (Favaretti, 2010). 

Regarding the factor of safety values, Ambramson et al. (2002) found that for circular 

failure surfaces the Bishop’s simplified method always gives higher FOS values than 

Janbu’s simplified method; this value falls within ± 5% of the safety factor calculated with 

the more rigorous methods. However, the safety factor can differ by ± 15% as compared 

with the results calculated by Spencer and Morgenstern-Price methods. 
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4.4 General concepts of Finite Element Method 
 

Limit element methods are based on the assumptions that results give stresses and forces 

that satisfy force equilibrium of each slice making also the same safety factor for each of 

them. These concepts lead to some limitations related to the impossibility to obtain realistic 

stress distributions along the slip plane or within the potential sliding mass. In order to 

consider also this question, the finite element approach establishes the stress distribution in 

the ground surface and then applies these stresses in a stability analysis. 

Finite Element Method (FEM) is a numerical analysis based on differential equations to 

solve problems of engineering and mathematical physics useful for cases with complicated 

geometries, loadings and material properties. This method was originated from the need to 

solve complex elasticity and structural analysis problems in civil and aeronautical 

engineering and then developed also to other branches of the engineering. 

FEM is based on a simplified physical model that wants to represent the real object 

characteristics under investigation by using mathematical models based on a discretization 

procedure.  

The discretization consists in dividing the model body into an equivalent system of many 

smaller bodies or units (finite elements) interconnected at points common to two or more 

elements (nodes) and or boundary lines and/or surfaces. 

Reassuming, the key factors of the geometry of a FEM (Fig. 4.9) are: 

 

- points: determine the start and end of lines and can be used also to define concentrated 

loads; 

- lines: are used to define physical boundaries of the geometry, the model boundaries and 

discontinuities in the geometry (for example walls or separation of distinct soil layers); 

- clusters: are areas that are fully enclosed by lines and defines zones where the soil 

properties are homogeneous. 

 

When the geometry model is complete a finite element model can be formed, basing on the 

composition of clusters and lines of the geometry model. 
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Fig. 4.9 – Components of the geometry model of a FE analysis 

 

The three key components of a finite element mesh are (Fig. 4.10): 

 

- finite elements: smaller (usually triangular) units  in which cluster is divided; 

- nodes: points that define the elements and usually there are 15-node elements or 6-node 

elements. Adjacent elements are connected through their common nodes. The displacement 

are calculated at the nodes during the FE analysis. 

- stress points: points where stress and strain are calculated. A 15-node triangular element 

contains 12 stress points and 6-node triangular elements has 3 stress points. 

 

 
Fig. 4.10 – Components of a finite element mesh 

 

In this thesis the study with the FEM of the slope stability of Este’s landfill is done using the 

PLAXIS program, a finite element software that has been developed specifically for the 

analysis of deformation and stability in geotechnical engineering projects. 
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5. Definition of the input sections and parameters 
 

 

5.1 Chosen landfill sections for the calculation 
 

Shafer (2000) suggested that landfill sections for the study of slope stability are to be 

selected where both the liner and waste grades are sloping downward at the steepest 

combination of grades.  

S.E.S.A. company provided a series of sections (Fig. 5.1) relating both to the old landfill 

(“Lotto 1”) and to the latest sectors (“Lotto 2” and “Lotto 3”): referring to these sections (1-

1, 2-2, 3-3, 4-4, A-A, B-B, C-C) the three steepest ones are chosen in order to start the 

calculation procedure through the two computer softwares SLOPE/W for the Limit 

Equilibrium methodology and PLAXIS for the Finite Element approach. 

 

 
Fig. 5.1 – Planimetry and sections of SESA landfill 
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The cross sections studied are: 

 

- 4-4: it’s located in the south – western part of the site and refers only to the oldest landfill 

named “Lotto 1”; its study is important to evaluate the stability of the oldest part of S.E.S.A. 

landfill. Another reason is because in the northwest part of “Lotto 1” a new dumping area 

has been designed (“Lotto Ovest”) leading the evaluation of the stability of the near old site 

as an issue of particular importance. Moreover, older waste presents a higher organic 

fraction content than those dumped after an appropriate separate collection system (that 

started with the fill of “Lotto 2”): this condition can lead to a higher instability if compared 

to the other situations due to the higher water content into the waste mass. In addition, old 

landfill presents a final top cover very different if related to the other protection types of the 

landfill without any type of bottom liner systems. The analysis (as also for the other chosen 

sections) has been performed considering only an half of the section (Fig. 5.2); indeed the 

two halves are almost equals both in shape as also for the top and bottom liner systems. This 

section has the highest point at about 15 meters from the ground surface and presents a long 

part of the section (about 36 m) practically linear and two steepest slopes (the first of 12 m 

of horizontal length, the second of 6 m) of 31 degrees, divided by a berm of 8 meters. The 

landfill bottom (about 3 m below the ground surface) doesn’t present any type of protection 

but is placed inside a natural clay barrier with some silty layers. 

 

 
Fig. 5.2 – Left half part of section 4-4 
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- 2-2: it presents a steepest inclination if compared to section 1-1 and is near to other 

S.E.S.A. waste treatment activities like the composting and anaerobic digestion plant. This 

part is composed by “Lotto 1” and “Lotto 3” dumping zones; the study of the slope stability 

of this section is important because in the northern part of “Lotto 3” there are other S.E.S.A. 

waste treatment activities (such as the composting treatment plant, Fig. 2.8) and the 

verification that the landfill slope is stable is fundamental primarily to guarantee the safety 

of the onsite workers and to not cause any damage to other neighboring activities. 

The analysis is performed considering the left half section (Fig. 5.3), even if the two half 

sections are not completely equal. The right section presents the union between the old 

landfill and “Lotto 3”, and, as previously said, the bottom barrier system of the old landfill 

part doesn’t present any type of protection; anyway, the stability of “Lotto 1” has been 

already analyzed with section 4-4. This section has the maximum height at about 20 m from 

the ground surface and presents a long (124 m) and almost flat surface followed by a 31 

degrees slope with a horizontal length of 13 m, a berm and another 31 degrees slope 

(horizontal length = 7 m). The slope has natural soil/compost and clay as protection. 

 

 
Fig. 5.3 - Left half part of section 2-2 

 

- A-A: it has a steepest inclination if compared to section B-B. Its study is done without 

considering the future landfill extension (“Lotto Ovest” in this case) because no waste has 

been dumped in this new area (delimitated by the red line) that it’s only been designed for 

future landfilling operations. Section A-A (Fig. 5.4) is formed by “Lotto 2” and “Lotto 3” 

dumping zones and, as described in the landfill description chapter, on the left side there will 
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be installed a new dumping area called “Lotto Ovest” and on the right side of section A-A 

there is the composting plant of S.E.S.A. activities. These considerations are the critical 

aspects that leads to evaluate the stability of this landfill section.  

Also for this case, the study has been done considering only an half of the entire section due 

to the nearly symmetry between the two parts, and the left one will confine with the future 

landfill sector. 

The section, similarly to section 2-2, has a long (140 m) and almost flat surface, two steepest 

slopes (with horizontal length respectively of 7 and 14 m) separated by a berm; at the 

ground water level a clayey trapezoidal shape berm (h = 5 m, major base = 6.5 m, minor 

base = 3.5 m ) is placed. Soil and clay are the materials that cover the slope. 

 

 
Fig. 5.4 - Left half part of section A-A  

 

These sections will be considered also for the FEM analysis with PLAXIS.  

 

5.2 Geotechnical input data 
 

5.2.1 Material properties 

 

The material properties data present some critical aspects for this study: the impossibility to 

obtain direct values coming from soil samples of the site is one of the limit of the evaluation 

of slope stability for this site. For this reason, literature data have been assumed as material 

properties of Este’s S.E.S.A. landfill (Tab. 5.1). This problem has been partially overcame 

thanks to the possibility (only for SLOPE/W software) to assign a probability distribution to 
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all input parameters. In this way, a variability of the input parameters is considered. 

Moreover, most of the materials are naturally formed materials and their physical properties 

vary from point to point even if parts of an apparently homogeneous soil. Laboratory results 

found that most soil properties can be considered as random variables corresponding to a 

normal distribution function (SLOPE/W tutorial manual). For these reasons, the input 

parameters for SLOPE/W software (i.e. cohesion, friction angle and unit weight) are been 

assumed to be normally distributed. 

In addition, once that the calculation procedure is completed,  a Monte Carlo scheme (with 

2000 Monte Carlo trials) is used to compute a probability distribution of the resulting safety 

factors.  

Data regarding the subsoil are taken from data regarding investigations on soils with similar 

characteristics located in the proximity of the site of interests and typical literature values. 

The values of cohesion and angle of internal friction are been diminished by some 

corrective-precautionary factors (1.25 both for c and tanϕ) as required by the Italian 

normative NTC 08. The corrective factor relating to the unit weight is 1.0. 

 

Table 5.1. Material properties for Este’s S.E.S.A. landfill (MC model). 

MATERIAL 
Dry unit 
weight 

(kN/m3) 

Saturated 
unit weight 

(kN/m3) 

Cohesion 
(kPa) 

Internal 
friction 
angle (°) 

Young’s 
modulus 
(kN/m2) 

Poisson’s 
ratio 

(-) 
Reference 

Natural soil  11.0 16.0 8.0 19.6 2000 0.2 Pistolato (2013) 

Compost 6.8 16.4 0 14.8 5000 0.25 Omari et al. (2012) 
Compacted 

clay 16.0 18.0 24.0 29.2 20000 0.4 Look (2007) 

Leveling layer 18.2 21.2 0 33.8 100000 0.35 Omari et al. (2012) 

Gravel 18.0 20.0 0 28.3 75000 0.3 Look (2007) 
Clay with silty 

layers 17.0 18.0 4.0 20.4 12000 0.4 Soil investigations 
and literature data 

Fine silty sand 16.0 19.0 0 24.7 15000 0.3 Soil investigations 
and literature data 

Clay with silty 
layers and peat 16.0 18.0 4.0 20.4 12000 0.35 Soil investigations 

and literature data 
Gray fine silty 

sand 16.0 20.0 0 33.8 20000 0.3 Soil investigations 
and literature data 

 

5.2.2 Waste properties considerations  

 

The issue relating to the waste properties is very delicate. In fact, MSW have some 

constitutive similarities in common with natural soils, but they present also particular 

characteristics as the great deformability for some elements present in the MSW, a physical 
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and mechanical instability of the organic components and the presence of pore fluids, i.e. 

leachate and biogas (Favaretti, 2010). 

Although waste is heterogeneous, many studies show that municipal solid waste has 

mechanical properties that vary in a consistent and predictable way (Dixon et al., 2004). 

 

Shear strength parameters 

 

Regarding the shear strength parameters, the factors that affect their behavior are: 

compressibility, organic and fiber content of waste and degradation extent (Dixon et al., 

2004). Tests carried out at the University of Rome (1995) were part of a research program 

aimed at the mechanical characterization of waste based on in situ and laboratory tests and 

on the systematic observation of the behavior of Italian landfills (Grisolia et al., 1995). 

Triaxial tests were conducted on artificially reconstructed waste samples in order to simulate 

the waste characteristics. The composition of the waste studied was: cloth and wood 6%, 

paper 32%, plastic 8%, rubble 32% and organic matter 22%, with a water content w = 40%. 

Preliminary tests, like some compressibility measurements, were carried out in order to 

verify that the behavior and characteristics of the reconstructed material matches the 

undisturbed waste samples taken from the landfill.  

The results indicated that adopting a level of deformations similar to that commonly found 

for soils at the scale of laboratory samples (named 15-20%), the shear strength values that 

could be adopted for waste landfill are a cohesion values c = 5 - 10 kPa and a friction angle 

of about ϕ = 24°- 30°. Other studies (Dixon et al., 2004) conducted with direct shear tests, 

shown a cohesion between 0 and 24 kPa and an angle of internal friction varying between 22 

and 42 degrees. For design situations, a cohesion value in the range of 0-30 kPa and an 

internal friction angle of 20-35° would seem reasonable values (Omari, Boddula, 2010).  

 

Unit weight 

 

Factors that govern the unit weight are principally waste composition and landfill 

operational practices (compaction effort, cover soil placement and liquid management) 

during waste placement and the effective confining stress currently acting on the waste; 

although the scarcity of literature data about MSW unit weights, internally consistent waste 

composition and waste handling practices and predictable confining stress effects suggest 



- 70 - 
 

the existence of a characteristic profile of unit weight versus depth for many landfills. Based 

upon analysis of available laboratory and field data, a characteristic MSW unit weight 

profile represented by a hyperbolic function was found to exist for individual landfills 

(Zekkos et al., 2006). Figure 5.5 shows this trend for tests carried out for some landfills. 

Another study (Fassett et al., 1994) indicated some statistical values for MSW unit weight 

considering different literature data: for good compaction conditions, a value of around 10.0 

kN/m3 is normally accepted for design conditions.  

 

 
Fig. 5.5 – MSW unit weight trends from in situ tests for individual landfills (Zekkos et al., 2006) 

 

Compressibility 

 

Mechanisms related to waste compression have been summarized by Manassero et al. 

(1996) as listed in Table 5.2. 

 

Table 5.2. Mechanisms of waste compression and factors controlling magnitude of 

settlement (Manassero et al., 1996). 
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It can be assumed that the total settlement is composed by two main components: a primary 

and a secondary compression. Primary compression consists in the physical compression of 

particles (distortion, bending, crushing and particle orientation) and consolidation 

(especially for saturated waste bodies). Usually, this type of compression occurs in a short 

period of time (few days or few weeks) and incrementally linear compression models can be 

used to calculate primary settlements. Secondary compression includes creep effects 

(mechanical compression under constant stress) and degradation processes (chemical and 

biological); biodegradation is the main component for the secondary compression, and can 

be influenced by a wide range of interrelated factors (moisture content, temperature and 

stress level) varying spatially and timing within the landfill. 

 

Lateral stiffness 

 

Stiffness parameters like shear modulus G, Young’s modulus E and Poisson’s ratio υ are 

used to quantify the response of a material to a change in stress. These parameters are 

related by the equation: 

   
 

       
 

 

Tests conducted by Dixon and Jones (1998) and Dixon et al. (2000) on MSW samples 

observed a general trend of increasing stiffness with stress (and hence also with depth) level, 

with the older waste (12-15 years old and partly degraded) that appears to be less stiff than 

fresh waste (1-5 years old). 

 

Horizontal in situ stress 

 

The difficulty to measure in situ vertical stress of MSW is related to the act of introducing a 

measuring instrument that alter the stress being measured (Dixon et al., 2004). For a body at 

rest, horizontal stress σh can be related to vertical stresses σv by the coefficient of each 

pressure at rest K0: 

 

    
  

  
 



- 72 - 
 

A laboratory study made by Landva et al. (2000) concluded that K0 for fresh waste would be 

equal to about 0.35-0.4, while for MSW with less reinforcing material than the sample 

analyzed would have a K0 value around to 0.5. 

 

Hydraulic properties 

 

Hydraulic conductivity of waste is important due to the influence on the leachate pressure 

distribution and hence on the magnitude and distribution of effective stresses and therefore 

on shear strength. The heterogeneity nature of MSW varying point to point the waste 

permeability but field and laboratory studies provided some important considerations. 

Waste structure, the use of low permeability daily cover layers and stress levels play the 

major role to determine hydraulic waste conductivity (Dixon et al., 2004). A study 

conducted by Powrie and Beaven (1999) found that the permeability of non-degraded MSW 

could diminish by over three orders of magnitude to approximately 10-8 m/s between 

placement and burial to a depth of 60 m  due to compression. 

 

5.2.3 Waste properties for Este’s landfill 
 

MSW properties for Este’s landfill are been selected considering the different landfill 

sectors analyzed. “Lotto 1” (studied with section 4-4) is the old landfill of Este that was 

active since the 60s until the 1995 when a separate collection system was completely absent.  

Due to the impossibility to establish waste values directly for this old site, literature data 

([15], [28]) are been implemented, considering top and bottom waste data obtained from old 

MSW landfills (Tab. 5.3). 

 

Table 5.3. Waste properties for “Lotto 1”. 

MATERIAL 
Dry unit 
weight 

(kN/m3) 

Saturated 
unit weight 

(kN/m3) 

Cohesion 
(kPa) 

Internal 
friction 
angle (°) 

Young’s 
modulus 
(kN/m2) 

Poisson’s 
ratio 

(-) 
Top waste (5 m)  9.4 10.8 10.0 30.0 1000 0.25 

Bottom waste 11.0 15.4 30.0 20.0 2500 0.45 

 

These values seems reasonable: older and deeper waste present a high cohesion and a low 

friction angle due to the increased fineness of the waste thanks to degradation processes, 

while for more recently dumped waste a low cohesion and a high friction angle can be 
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considered for the characteristics of the waste similar to a granular material; the unit weight 

is higher for bottom waste due to advanced compression and degradation processes that 

provided to a voids reduction increasing the waste mass per unit volume (Omari, Boddula, 

2010). 

“Lotto 2” and “Lotto 3” were active since the end of the 90s until nowadays. For the 

sections that represented these sectors (2-2 and A-A), data estimated for the Ca’ Rossa (VE) 

landfill (Tab. 5.4) have been used (even if there isn’t a distinction between top and bottom 

waste properties); this landfill presents some similarities with the new part of S.E.S.A. 

landfill because it was active from the early 90s until 2009 and was designed for the dump 

of MSW coming from municipalities of the Venetian province.  

 

Table 5.4. Waste properties for “Lotto 2” and “Lotto 3”. 
Dry unit 
weight 

(kN/m3) 

Saturated 
unit weight 

(kN/m3) 

Cohesion 
(kPa) 

Internal 
friction 
angle (°) 

Young’s 
modulus 
(kN/m2) 

Poisson’s 
ratio 

(-) 
9.0 10.0 20.0 22.0 300 0.33 

 

In order to take into account the variability of the input data, also for each of the waste input 

parameters a normal distribution function has been considered. 

 

5.2.4 Pore water pressure 

 

From the data of Este’s geological data, the shallow groundwater table is located inside a 

discontinuous sandy layer (4-5 m from the ground surface), while the second is placed inside 

the deeper sandy layer (starting from about 14 m depth) and is not considered in the 

calculation because has no influence on the analysis.  

The entire landfill site, except for a part of the old landfill, is delimitated by a bentonite 

barrier system installed until 7 m depth inside the second clay layer in order to avoid 

possible contamination to the groundwater aquifers, but due to precautionary reasons its 

influence has not been considered in the analysis. 

 

5.2.5 Reinforcement of soil – structure interaction 
 

Section 4-4 doesn’t present any type of geosynthetic material: “Lotto 1” represents the 

landfill active from the 60s until 1995 and any type of particular cover was provided. The 
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other two sections presents a geotextile and a 2 mm HDPE geomembrane as parts of the 

bottom barrier system. 

In order to consider the geosynthetics contribution, the SLOPE/W program considers some 

reinforcement parameters. The first is the factored pullout resistance (FPR) per unit length 

of geosynthetic (kN/m/m) that is intended as the applied bond resistance of the fabric to the 

soil. Considering a factor of safety (FS) dependency, this factor is calculated as: 
 

     
  

        
  

          
         

       
 

 

where: 

- PR = calculated pullout resistance (kPa), the skin friction of the reinforcement bond; 

- SIA = interface adhesion (kPa), the cohesion at the contact point between material and 

geosynthetic; 

- σ’v = the effective overburden stress (kPa), directly calculated by the program according to 

the position of the geosynthetic; 

- δ = interface shear angle (°), the contact angle between material and geosynthetic; 

- SAF = surface area factor (interface factor, between 0 and 2), used at the contact point 

between the fabric and the soil; 

- RRF = resistance reduction factor (-) to account for nonlinear distribution stress reduction 

over the embedded length. 

 

The second reinforcement parameter is the factored tensile capacity (FTC), i.e. the 

maximum pullout force that has not to be exceed. It’s defined as: 
 

     
  

      
 

where: 

- TC = tensile capacity (kN), the maximum capacity that the reinforcement can bear without 

breaking; 

- RF = reduction factor (-) to take into account installation damage, creep and durability. 

 

Parameters considered for 2 mm HDPE geomembrane: 

SIA = 0 kPa (cautionary value), δ = 25°, SAF = 1, RRF = 1.5, TC = 249 N, RF = 1. 
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Parameters considered for the non woven PP geotextile: 

SIA = 0 kPa, δ = 30°, SAF = 1, RRF = 1.5, TC = 725 N, RF = 1. 

 

5.2.6 Imposed loading 
 

The loading imposed to the system is the seismic contribution, inputting the two seismic 

coefficients previously found (Paragraph 3.4): KH = 0.002 and KV = 0.001.  
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6. Calculation procedure using LEM software: 

SLOPE/W 
 

 

6.1 Introduction 
 

SLOPE/W is a component of a complete suite of geotechnical products named GeoStudio 

and it has been designed and developed to be a general software tool for the stability 

analysis of earth structures. This software, as the FEM program PLAXIS, implements a two-

dimensional analysis: this hypothesis is considered as appropriate for slope design and 

yields a conservative estimate for the factor of safety because the end effects (resisting 

forces along the lateral sides of the sliding mass) are not included (Duncan, 1996; Stark and 

Eid, 1998). 

The geotechnical problem can be solved after an input procedure that involves the following 

five components: 

 

- analysis definition: basic and geometric assumptions to define the problem; 

- soil properties: parameters used to describe the soil materials; 

- pore-water pressure: definition of the pore water pressure condition; 

- reinforcement of soil - structure interaction: nails, anchor, geosynthetic and others;  

- imposed loading: surcharges or dynamic earthquake loads. 

 

Characteristics such as soil properties, pore-water pressure conditions, reinforcement of 

geosynthetic and seismic loadings are already been discussed in the previous paragraph. 

Regarding the analysis definition, the Morgenstern-Price method (i.e. one of the approaches 

that satisfies both moment and force equilibrium) and half-sine function method are been 

selected for the analysis. 

The direction of the slip surface was chosen to follow a right-left path for all of the sections. 

The methods for the selection of the slip surfaces are decided according to the focus of the 

study (evaluation of the stability of the top cover system along the steepest slopes and 

evaluation of the stability of the entire landfill section). 
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The slip surface has been considered to have 30 slices, each with a minimum depth of 0.1 m 

and a minimum slice width of 0.1 m. 

One of the basic assumptions which has to be made to solve the problem (i.e. to find the 

minimum factor of safety for the critical failure surface) is the definition of the method to 

find the failure surfaces. 

 

6.2 Slip surface shapes 
 

One of the key argument in a slope stability analysis is the determination of the position of 

the critical slip surface with the lowest factor of safety. This procedure is done with a trial 

operation, creating possible slip surfaces and computing the associated FOS. Once that the 

procedure is complete, the trial slip surface with the lowest safety factor is considered as the 

critical slip surface. 

There are many different methods to define the shape and positions of trial slip surfaces; in 

this chapter the two most used methods are presented, considering examples provided by 

SLOPE/W tutorial manual. 

 

6.2.1 Grid and radius method 

 

The trial slip surface is an arc of circle that is a portion of a circle that cuts through the 

slope; the circle can be defined specifying the centre and the radius. Many slip surfaces can 

be specified defining a grid of circle centers and a range of defined radii.  

An example taken from the SLOPE/W tutorial manual is shown is Fig. 6.1. 

 

 
Fig. 6.1 – Grid and radius method  
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The grid above the slope represents a grid of rotation centers and each point of the grid is a 

circle center for the trial slips. This example has 36 grid points. 

The trial circle radii are specified with radius or tangent lines, and in case of lines these are 

defined by four corners of a box, specifying also the number of increments between the 

upper and lower corners (in the above example, there are five increments in the box for a 

total number of radius lines equal to six).  

Once that the grid and the box are defined, the program starts the calculation finding the trial 

slip surfaces formed by circles (Fig. 6.2), generated from the grid points (i.e. rotation 

centers), that are tangent to the lines of the box (that define the radii of the circles).  

 

 
Fig. 6.2 – Example of trial slip surface 

 

The trial slip surface is located where the circle cuts the soil section. In the example the 

program will compute FOS for 216 (36 centers of rotation multiplied by the six tangent 

lines) trial slip surfaces. The box of the tangent lines can be located at any convenient 

position forming any quadrilateral shape (Fig. 6.3). 

 

 
Fig. 6.3 – Specification of radius lines 
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There are also other possibilities to find trial slip surfaces using grid and radius method, as 

one that provide the radius line box collapsing to a point or to a single line, a possibility 

useful for the case to evaluate possible failure surfaces passing through the toe of the slope. 

 

6.2.2 Entry and exit method 

 

One of the problem relating to the previous method is the difficulty to visualize the extents 

and/or range of trial slip surfaces; this limitation can be solved by specifying the location 

where the trial slip surfaces will enter the ground surface and where they will exit. The entry 

and exit method is a variation of the grid and radius method. 

Fig. 6.4 presents two red lines along the ground surface and represent the entry and the exit 

of the trial slip surfaces. The number of entries and exits can be defined as the number of 

increments along these two lines. 

 

 
Fig. 6.4 – Entry and exit lines for trial slip surfaces 

 

In order to form the various trial slip surfaces, the software connects a point along the entry 

line (A, in Fig. 6.5) with a point of the exit line A’. At the mid-point of line AA’, a 

perpendicular line is created by the program and radius points A”, B”, C” along the 

perpendicular line are created to form the required third point of a circle with center G. This 

radius point together with the entry and exit points are used to form the equation of a circle 

and then the procedure is repeated finding different slip surfaces. In Figure 6.6 the critical 

slip surface is the darker shaded area.  

Finally, SLOPE/W controls also that some physical impossibilities are not taken into 

account. 
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Fig. 6.5 – Scheme of the entry and exit method 

 

 
Fig. 6.6 – Critical slip surfaces 

 

 

6.3 Analysis of section 4-4 
 

The section can be directly imported from the AUTOCAD program to the SLOPE/W 

software and the different steps for the analysis can be initialized (Fig. 6.7).  
 

 

 



- 81 - 
 

 

 
Fig. 6.7 – Section 4-4 imported into SLOPE/W software 

 

6.3.1 Stability Analysis of the top cover system along the steepest slopes 

 

This section presents three different inclinations: one has an horizontal length of 36 m and is 

almost linear, while the other two (12 and 8 m of horizontal length respectively) have an 

inclination of 31 degrees. The assessment of the stability of the top cover system has been 

done for these two parts of the section, with the hypothesis that focus the research of the 

minimum FOS involving the movement of all the different layers (natural soil, compost, 

clay and leveling layer). The research of the critical slip surface that meets this requirement 

has been done applying the grid and radius method, inserting the “radius line box” inside the 
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top cover system (Fig. 6.8): the grid has 36 centers of rotation with six tangent lines, with 

the possibility to obtain 216 factors of safety.  

 

 
Fig. 6.8 – Application of the grid and radius method to find the critical slip surface for the first slope of section 

4-4 

 

The minimum calculated factor of safety, that is the only one of the entire study minor than 

1.0 (FOS = 0.99) involves a movement only for soil and compost layers (Fig. 6.9a), while a 

higher safety factor (FOS = 2.00) regards the instability of the first slope considering the 

entire top barrier system (Fig. 6.9b). 

 

 
Fig. 6.9 a,b – Critical slip surfaces that involves the top barrier system for the first slope of section 4-4 

 

The analysis on the second steepest slope of the 4-4 section (the nearest one to the ground 

surface) has been done with the same hypothesis of the previous slope, implementing a grid 

and radius method for searching the critical failure surface and inserting the radius box 

inside the cover system (Fig. 6.10). Similarly to the previous slope, the minimum critical 



- 83 - 
 

slip surface involves a movement only for the soil and compost layers (FOS = 1.48, Fig. 

6.11a), while the most critical surface that involves a displacement for all the top cover 

layers (Fig. 6.11b) present a FOS = 3.25, indicating a very good stability for the entire 

barrier system in this part of the landfill. 

 

 
Fig. 6.10 - Application of the grid and radius method to find the critical slip surface for the second slope of 

section 4-4 

 

 
Fig. 6.11 a,b - Critical slip surfaces that involves the top barrier system for the second slope of section 4-4 

 

6.3.2 Stability Analysis of the entire landfill section 

 

The stability of the entire landfill body is firstly evaluated finding the critical slip surface 

with the Entry and Exit method in order to find the surface passing across the toe of the 

entire slope (Fig. 6.12). 
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Fig. 6.12 – Slope stability analysis of the entire section 4-4 (failure surface passing through the toe) 

 

The slope results to be very stable: FOS = 2.02, showing a critical failure surface passing 

through the toe of the slope passing also through the landfill bottom (that doesn’t present 

any type of barrier for this old landfill part). 

It has been evaluated also the stability where the critical slip surface could pass through the 

ground surface (Fig. 6.13); this part of soil will be interested by the future designed landfill 

enlargement (“Lotto Ovest”, Fig. 5.1). The FOS = 1.88 indicates a good stability also for 

this case. 

 

 
Fig. 6.13 - Slope stability analysis of the entire section 4-4 (failure surface passing through the base) 
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Another possible critical failure surface could be the one passing through the bottom of the 

landfill body; this possible failure case has been considered with the application of the grid 

and radius method, applying the radius box inside the location of the landfill bottom (about 

3 m depth. The calculation (Fig. 6.14) gives results indicating a very high stability also for 

this case: FOS = 2.24 for Morgenstern-Price method. 

 

 
Fig. 6.14 – Slope stability analysis of the entire section 4-4 (failure surface passing through landfill bottom) 

 

6.3.3 Stability Analysis of the entire landfill section varying waste parameters 
 

All the calculated FOS for the stability of the entire landfill body present very safety 

conditions, but as previously discussed the waste parameters are very variables and obtained 

from literature data; for these reasons, a study has been conducted in order to establish how 

the FOS can vary using different waste characteristics to find which might be the worst 

situations. 

It has been calculated the safety factor using Morgenstern-Price method, analyzing nine 

possible combinations for different waste input parameters: as suggested by some studies 

([9], [42]) a value of about 10.0 kN/m3 as unit weight can be normally accepted for all of the 

waste strata, and as suggested by a study conducted on MSW Italian landfills (Grisolia et al., 

1995), shear strength parameters are been varied between 0 and 10 kPa for the cohesion and 

20 and 30 degrees for the internal friction angle (these trial and precautionary parameters are 

considered as already reduced by the corrective factor of NTC). The study has been 

conducted for failure surfaces passing both at the toe of slope and on the base of ground 
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surface, and for slip surfaces passing through the landfill bottom, always considering a 

Monte Carlo scheme with 2000 trials and a normal probability density functions for the 

input parameters. Results are listed in Tables 6.1. 

 

Table 6.1. Stability analysis for section 4-4 varying waste characteristics. 

 
Unit 

weight 
(kN/m3) 

Cohesion 
(kPa) 

Internal 
friction 
angle (°) 

FOS for circular failure surface 
passing… 

at the 
slope toe 

through 
the base 

through the 
landfill 
bottom 

Type 1 10 0 20 1.14 1.16 1.71 
Type 2 10 0 25 1.43 1.45 2.14 
Type 3 10 0 30 1.76 1.77 2.51 
Type 4 10 5 20 1.49 1.49 1.97 
Type 5 10 5 25 1.79 1.79 2.35 
Type 6 10 5 30 2.11 2.10 2.72 
Type 7 10 10 20 1.80 1.79 2.22 
Type 8 10 10 25 2.11 2.05 2.56 
Type 9 10 10 30 2.45 2.24 2.93 

 

The worst cases are, as expected, those related to the lower shear strength values; however, 

the stability is respected also in these cases. In Chapter 8 a sensitivity analysis on the 

parameters and considerations on the calculated factors of safety are presented. 

 

6.4 Analysis of section 2-2  
 

As for section 4-4, the section is directly imported from the AUTOCAD program to the 

SLOPE/W software and the different steps for the analysis can be initialized (Fig. 6.15). 
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Fig. 6.15 – Section 2-2 imported into SLOPE/W software 

 

6.4.1 Stability Analysis of the top cover system along the steepest slopes 

 

As section 4-4, also this section presents three different inclinations: one very long (124 m) 

and practically linear, while the other two have an inclination of 31 degrees. The assessment 

of the stability of the top cover system has been done for these two parts of the section, 

assuming that the focus of the study is the research of the minimum FOS involving the 

movement of all the different layers (natural soil, compost, gravel, clay and leveling layers). 

The research of the critical slip surface that meets this requirement has been done applying 

the grid and radius method, inserting the “radius line box” inside the top cover barrier 

system. The minimum calculated safety factor (FOS = 2.64) regards the movement only for 
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a small part of soil, while the lower FOS regarding the movement of the entire top cover 

barrier of the first slope (Fig. 6.16) is equal to 3.29, indicating a very good stability for this 

part of top cover. 

 

 
Fig. 6.16 - Critical slip surface that involves the entire barrier system for the first slope of section 2-2 

 

The second steepest slope of section 2-2 (the nearest one to the ground surface) has been 

analyzed considering the same hypothesis of the previous slope, implementing a grid and 

radius method for searching the critical failure surface and inserting the radius box inside the 

cover system. The most critical slip surface that involves all layers is shown in Fig. 6.17. 

 

 
Fig. 6.17 - Critical slip surface that involves the entire barrier system for the second slope of section 2-2 
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The result for the M-P method indicates that the slope is very stable (FOS = 2.83) also for 

the slope near the base of the 2-2 section; moreover, this value is also the minimum 

calculated safety factor and involves all the top cover layers. 

 

6.4.2 Stability Analysis of the entire landfill section 

 

The entire landfill body stability is evaluated finding the critical slip surface with the Entry 

and Exit method in order to find the surface passing across the toe of the entire slope (Fig. 

6.18). The calculated safety factor is equal to 1.75. As for section 4-4, it has been studied 

also the stability for cases where the critical slip surface could pass through the ground 

surface (Fig. 6.19). For this case, FOS = 1.81. 

 

 
Fig. 6.18 – Slope stability analysis of the entire section 2-2 (failure surface passing through the toe) 
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Fig. 6.19 - Slope stability analysis of the entire section 2-2 (failure surface passing through the base) 

 

The grid and radius method has been applied in order to find the critical slip surface passing 

through the landfill bottom barrier, which is formed by a leachate drainage layer (min. 50 

cm), geotextile, clay (50 cm), 2 mm HDPE geomembrane and 50 cm of clay (Fig. 6.20). The 

safety factor results equal to 3.05 indicating a very good stability, with a circular failure 

surface passing through the geosynthetics and bottom layers (leachate captation layer and 

clay) without involving the natural fine silty sand layer. 
 

 
Fig. 6.20 – Slope stability analysis of the entire section 2-2 (failure surface passing through landfill bottom) 

 

For this section has been evaluated also the sliding stability of bottom materials on the two 

geosynthetic liners (a geotextile is placed between the drainage layer and the shallow clay 
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layer, while a 2 mm HDPE geomembrane subdivides the two clay layers). The analysis is 

made with the grid and radius method, considering the material just below the geosynthetic 

as impenetrable; in this way the impenetrable layer causes the trial slip surface to follow the 

liner. The thin region just above the impenetrable material presents properties representative 

of the frictional sliding resistance between the cover material and the liner, i.e. the shear 

strength along that portion of the sliding surface that follows the material considered as 

impenetrable. The critical slip surface tangent (Fig. 6.21) to the geotextile liner presents a 

safety factor equal to 2.24, while for sliding surfaces tangent to the geomembrane (Fig. 6.22) 

the FOS results equal to 2.74. 

 

 
Fig. 6.21 – Sliding stability for failure surfaces tangent to the geotextile liner of section 2-2 

 

 
Fig. 6.22 – Sliding stability for failure surfaces tangent to the geomembrane liner of section 2-2 
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6.4.3 Stability Analysis of the entire landfill section varying waste parameters 

 

As for the previous analyzed section, also the stability of section 2-2 has been studied 

considering different waste input parameters (Tab. 5.2) due to the high uncertainty of these 

waste values. 

The study has been done considering the first three analyzed possible failure mechanisms 

(Tab. 6.2), while possible effects of the change of waste input parameters on the 

geosynthetic liners are discussed in Chapter 8.  

 

Table 6.2. Stability analysis for section 2-2 varying waste characteristics. 

 
Unit 

weight 
(kN/m3) 

Cohesion 
(kPa) 

Internal 
friction 
angle (°) 

FOS for circular failure surface 
passing… 

at the 
slope toe 

through 
the base 

through the 
landfill 
bottom 

Type 1 10 0 20 1.02 1.24 1.95 
Type 2 10 0 25 1.28 1.48 2.33 
Type 3 10 0 30 1.56 1.74 2.74 
Type 4 10 5 20 1.31 1.46 2.13 
Type 5 10 5 25 1.57 1.72 2.51 
Type 6 10 5 30 1.85 1.99 2.92 
Type 7 10 10 20 1.56 1.67 2.31 
Type 8 10 10 25 1.84 1.93 2.69 
Type 9 10 10 30 2.14 2.21 3.09 

 

 

6.5 Analysis of section A-A 
 

The section is firstly drawn with AUTOCAD program and then imported into SLOPE/W 

software (Fig. 6.23), considering the three subsectors of “Lotto 3”. 
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Fig. 6.23 – Section A-A imported into SLOPE/W software 

 

6.5.1 Stability Analysis of the top cover system along the steepest slopes 

 

The slope profile is similar to the other two sections, presenting a long slope almost linear 

and two other slopes more inclined (30 degrees instead of 31 degrees of the other sections 

studied). The top barrier system is the same of section 2-2 and the hypotheses to evaluate the 

two steepest slopes of the profile are the same of the two previous sections. 

The FOS of the first slope for the entire top barrier system that involves a large part of soil 

and clay (Fig. 6.24) is equal to 3.35, indicating a very good stability for this part of top 

cover. The second steepest slope of the section has a factor of safety equal to 2.97, 

evidencing a high stability also for this part of the slope profile. The most critical slip 

surface that involves all layers is shown in Figure 6.25. 
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Fig. 6.24 - Critical slip surface that involves the entire barrier system for the first slope of section A-A 

 

 
Fig. 6.25 - Critical slip surface that involves the entire barrier system for the first slope of section A-A 

 

6.5.2 Stability Analysis of the entire landfill section 

 

As for the other two sections, the entire landfill body stability has been studied finding the 

critical slip surface with the Entry and Exit method in order to find the safety factor 

associated to the critical surface passing across the toe of the entire slope (FOS = 1.75, Fig. 

6.26) and through the ground surface, where a clay berm is present to separate this sector 

from the future designed sector named “Lotto Ovest” (FOS = 1.81, Fig. 6.27). To evaluate 

the stability for a critical failure surface passing through the landfill bottom (Fig. 6.28), the 

grid and radius methodology has been applied as for the other two cases, finding a safety 
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factor equal to 2.54 and a circular failure surface that involves the damage of the fabric 

liners and a possible groundwater contamination. For all of these possible failure 

mechanisms the safety is well respected. 

 

 
Fig. 6.26 – Slope stability analysis of the entire section A-A (failure surface passing through the toe) 

 

 
Fig. 6.27 – Slope stability analysis of the entire section A-A (failure surface passing through the base) 
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Fig. 6.28 – Slope stability analysis of the entire section A-A (failure surface passing through the bottom) 

 

Similarly to section 2-2, also for this case has been evaluated the stability for possible 

sliding surfaces along the two geosynthetic liners (geotextile and HDPE geomembrane). 

The lower FOS involving a movement of a circular failure surface tangent to geotextile (Fig. 

6.29) is equal to 2.12, while in the case of sliding along the geomembrane (Fig. 6.30) the 

FOS results equal to 2.45, with a sliding mass causing a damage to the upper geotextile. 

 

 
Fig. 6.29 – Sliding stability for failure surfaces tangent to the geotextile liner of section A-A 
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Fig. 6.30 – Sliding stability for failure surfaces tangent to the geomembrane liner of section A-A 

 

6.5.3 Stability Analysis of the entire landfill section varying waste parameters 

 

Results listed in Table 6.3 illustrates the FOS for the various failure mechanisms of section 

A-A varying the waste input parameters. 

 

Table 6.3. Stability analysis for section A-A varying waste characteristics. 

 
Unit 

weight 
(kN/m3) 

Cohesion 
(kPa) 

Internal 
friction 
angle (°) 

FOS for circular failure surface 
passing… 

at the 
slope toe 

through 
the base 

through the 
landfill 
bottom 

Type 1 10 0 20 1.03 1.16 1.34 
Type 2 10 0 25 1.28 1.42 1.71 
Type 3 10 0 30 1.55 1.68 2.11 
Type 4 10 5 20 1.31 1.41 1.57 
Type 5 10 5 25 1.57 1.68 1.94 
Type 6 10 5 30 1.86 1.95 2.33 
Type 7 10 10 20 1.57 1.65 1.80 
Type 8 10 10 25 1.84 1.92 2.16 
Type 9 10 10 30 2.12 2.21 2.51 
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7. Calculation procedure using FEM software: 

PLAXIS 
 

 

7.1 Introduction 
 

The finite element analysis has been performed using PLAXIS 2D software, drawing the 

three sections of the landfill directly into the program. The analysis has been done 

considering initial material and waste characteristics and waste characteristics related to the 

worst cases among the different case studies examined with SLOPE/W software (i.e. lower 

FOS and higher probability of failure, with “Type 1” waste parameters). 

For section 2-2 and A-A the top cover barrier has been considered as a single block having a 

density of 2000 Kg/m3, as indicated by a previous study (Mandato et al., 2003) conducted on 

this part of S.E.S.A. landfill.  

Regarding the general settings of the model, a 15 nodes per elements model with a plane 

strain type of model has been chosen, because the geometry of the landfill is more or less a 

uniform cross section with a corresponding stress state and loading scheme over a certain 

length perpendicular to the cross section, and seismic coefficients are been inserted to 

consider the earthquake effect. Standard fixities (full fixity at the base and roller condition at 

the vertical sides) are been chosen as boundary conditions. An elastic-plastic model (Mohr-

Coulomb model) is selected to simulate the behavior of the materials and the input 

parameters are those listed in Table 5.1; due to the impossibility to import a probability 

density function into PLAXIS for these materials, some parameters are been modified in 

order to not consider too restrictive conditions. 

After the definition of the model geometry and material parameters the entire section is 

divided into triangular elements in order to perform the finite element analysis; the entire 

composition of the finite elements is called mesh. For this calculation a very fine mesh has 

been chosen as definition of the global coarseness of the geometry. 

Initial conditions provide initial pore water pressure (piezometric line at 5 m depth placed 

inside the fine silty sand layer) configuration, paying particular attention to the boundary 

conditions; all the analyzed sections must to have the right vertical boundary closed due to 
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the symmetry of the configurations which consider only an half of the section. Once that the 

pore water conditions are been defined, the initial geometry has been changed to consider 

the initial situations when the waste were not present.  

Initial stresses are been defined by the K0-procedure: this methodology determines the initial 

vertical stress σv0’ and the initial horizontal stress σh0’. These values are related by the 

coefficient of lateral earth pressure K0 (σh0’ = K0 σv0’) that is defined as K0 = 1 – senφ 

(Jaky’s formula) where φ is the friction angle of each material.  

The calculation is done inserting a simulation of the loading of waste and top cover barrier 

system into the entire landfill section, while the global safety factor has been computed by 

the phi-c reduction methodology. Discussions about the obtained results are reported in the 

next Chapter. 

 

7.2 Phi-c reduction safety analysis 
 

Phi-c reduction is the method used by PLAXIS to calculate a global factor of safety. The 

program defines the FOS as a ratio between the true shear strength and the computed 

minimum strength required for the equilibrium: 

 

     
         

           
 

 

where c and φ are the input strength parameters and σn is the actual normal stress 

component, while parameters cr and φr are reduced strength parameters that are just large 

enough to maintain equilibrium. This consideration is the basis of the Phi-c reduction 

method where the cohesion and the tangent of the friction angle are reduced in the same 

proportion: 

 
 

  
  

    

     
       

 

The reduction of the shear strength parameters in controlled by the total multiplier ∑Msf 

which is increased in a step-by-step procedure (usually 100 steps are sufficient to arrive at a 

state of failure) until failure occurs; the factor of safety is defined as the value of ∑Msf at 
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failure, provided that at failure a more or less constant value is obtained for a number of 

successive load step procedures. 

 

7.3 Analysis of section 4-4 
 

The old landfill sector represented by section 4-4 is directly drawing into the PLAXIS 

program (Fig. 7.1) with the general settings and conditions discussed in paragraph 7.1 and 

waste properties of Table 5.3. The generated mesh is shown in Fig. 7.2.  

 

 
Fig. 7.1 – Section 4-4  

 

 
Fig. 7.2 – Generated mesh of section 4-4 
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The calculated FOS results equal to 1.27; it has been evaluated also the case of different 

waste input parameters (“Type 1” condition: γ = 10 kN/m3, c’ = 0 kPa, φ’ = 20°): in this case 

the FOS results equal to 1.11. 

 

7.4 Analysis of section 2-2 
 

Left half of section 2-2 is drawn directly into the PLAXIS program (Fig. 7.3). As previously 

said, top cover barrier systems of sections 2-2 and A-A are been assumed as constant loads 

of 2000 Kg/m3 (same hypothesis made by a previous slope stability analysis of the site, [20]) 

for the longest and almost linear part of the cover (including natural soil, compost layer, 

water drainage layer, compost, compacted clay, compost, biogas captation layer, compost 

and leveling layer) and 800 Kg/m3 for the part of the slope covered only by natural soil and 

compost. Generated mesh with very fine coarseness is illustrated in Fig. 7.4.  

 

 
Fig. 7.3 – Section 2-2 
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Fig. 7.4 – Generated mesh of section 2-2 

 

The calculated safety factor results equal to 2.57, indicating a very good stability; using the 

“Type 1” waste characteristics, FOS is reduced to 1.6. 

 

7.5 Analysis of section A-A 
 

Section A-A presents the same hypotheses of section 2-2. The section and the relative 

generated mesh with PLAXIS are shown in Figures 7.5 and 7.6. Considering the initial 

waste parameters, FOS results equal to 2.38, while inserting modified waste parameters FOS 

= 1.35.  
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Fig. 7.6 – Section A-A 

 

 
Fig. 7.7 – Generated mesh of section A-A 
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8. Discussion of the results 
 

 

This Chapter analyzes more deeply the results obtained by the calculations with SLOPE/W 

and PLAXIS softwares: the Monte Carlo approach used with SLOPE/W permits to evaluate 

the results with a probabilistic point of view, while the PLAXIS program allows to observe 

which are the most critical zones (top cover, bottom barrier, waste body) of the sections for 

the slope stability.  

Regarding the SLOPE/W program, considering the different case studied varying the input 

parameters, it’s possible to obtain a probability density function for the different factors of 

safety and the related probability of failure and reliability index, that are two useful indices 

to evaluate the stability or the risk level of the slope. Moreover, a sensibility analysis has 

been done to establish which are the most influential parameters for such possible cases. 

The probability of failure is defined as the probability to obtain a safety factor less than 1.0 

and is determined by counting the number of FOS below 1.0 and then taking this number as 

a percentage of the total number of converged Monte Carlo trials; it’s helpful to show the 

level of risk of instability for the slope under investigation. 

The reliability index   is defined as: 

 

   
       

 
 

 

where: 

-   = mean of the trial factors of safety; 

-   = standard deviation of the trial factors of safety. 

This index defines the stability by the number of standard deviations separating the mean 

factor of safety from its defined value of 1.0 and can be interpreted as a method to normalize 

the FOS with respect to its uncertainty level. Once that the probability distribution is known, 

the reliability index can be related directly to the failure probability (Fig. 8.1). 
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Fig. 8.1 – Relationship between the reliability index and the probability of failure (example taken from 

SLOPE/W manual) 

 

The sensitivity analysis avails to understand which parameters have the major influence of 

the slope stability. The parameters are normalized to a value ranging between 0.0 and 1.0: 

0.0 means the lowest value and 1.0 means the highest value for the studied parameter; the 

sensitivity range is then plot with the factor of safety to evaluate the influence on it. 

This analysis is defined by the mean, the Delta factor (i.e. the range between the values of 

the parameters) and the steps from mean (the number of increments to both sides of the 

mean); for example, to define values [10, 12, 14, 16, 18, 20, 22], the mean is 16, the delta 

factor is 2 and 3 is the number of steps from the mean. The Delta factor has been assumed as 

the 5% of the mean value of input material and 5 steps are been considered on both sides of 

the mean value. This study has been conducted on the worst conditions related to the studies 

on the lower safety factor with the higher probability of failure. 

As described in the previous paragraphs, varying input parameters the worst cases are those 

presenting the lower waste shear strength values; these particular cases are analyzed more 

deeply in order to establish their probability of failure and reliability indices. Also for these 

cases a sensitivity analysis has been conducted in order to evaluate the influence of the input 

parameters (both for materials and waste) on the factor of safety. 

 

8.1 Section 4-4 
 

Table 8.1 reports the probability of failure and reliability indices for all of the analyzed cases 

for section 4-4 of the old landfill sector. 
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Table 8.1. Probability of failure and reliability indices for section 4-4. 

Case studies 

Circular failure surface passing… 

at the slope toe through the base through the landfill 
bottom 

FOS P. of  
failure 

Reliab. 
index FOS P. of  

failure 
Reliab. 
index FOS P. of  

failure 
Reliab. 
index 

Initial case 2.02 0% 16.07 1.88 0% 13.15 2.24 0% 16.79 

Type 1 
(γ = 10 kN/m3, c = 

0 kPa, ϕ = 20 °) 
1.14 0.25% 2.64 1.16 0.1% 3.01 1.71 0% 7.87 

Type 2 (γ = 10 
kN/m3, c = 0 kPa, 

ϕ = 25 °) 
1.43 0% 5.36 1.45 0% 5.68 2.14 0% 9.49 

Type 3 (γ = 10 
kN/m3, c = 0 kPa, 

ϕ = 30 °) 
1.76 0% 7.11 1.77 0% 7.35 2.51 0% 11.92 

Type 4 (γ = 10 
kN/m3, c = 5 kPa, 

ϕ = 20 °) 
1.49 0% 8.19 1.49 0% 5.61 1.97 0% 10.57 

Type 5 (γ = 10 
kN/m3, c = 5 kPa, 

ϕ = 25 °) 
1.79 0% 9.81 1.79 0% 7.47 2.35 0% 13.48 

Type 6 (γ = 10 
kN/m3, c = 5 kPa, 

ϕ = 30 °) 
2.11 0% 10.55 2.10 0% 8.81 2.72 0% 13.38 

Type 7 (γ = 10 
kN/m3, c = 10 kPa, 

ϕ = 20 °) 
1.80 0% 10.99 1.79 0% 11.04 2.22 0% 14.79 

Type 8 (γ = 10 
kN/m3, c = 10 kPa, 

ϕ = 25 °) 
2.11 0% 12.06 2.05 0% 14.51 2.56 0% 14.97 

Type 9 (γ = 10 
kN/m3, c = 10 kPa, 

ϕ = 30 °) 
2.45 0% 15.99 2.24 0% 14.72 2.93 0% 14.63 

 

As can be seen from the above Table, the most critical cases for section 4-4 are those 

presenting a probability of failure major than 0 %, i.e. the “Type 1” cases for circular failure 

surfaces passing at the toe of the slope and through the ground surface; the first case has a 

FOS lower than the other case and has a higher probability of failure equal to the 0.25 %. 

Fig. 8.2 shows the relationship between the probability of failure and the factor of safety for 

the most critical case (FOS = 1.14, P. of failure = 0.25 % and reliability index = 2.64). This 

circumstance is for a “Type 1” material properties for circular failure surface passing 

through the toe of the slope. 

 



- 107 - 
 

 
Fig. 8.2 – Probability distribution function of the 2000 Monte Carlo factors of safety showing probability of 

failure 

 

The graph shows the probability of the factor of safety to be less than a certain value on the 

x-axis. For this situation the maximum obtainable FOS is 1.49 and the probability to obtain a 

factor of safety minor than 1.5 is equal to 100 %. The probability to obtain failure conditions 

remain very low (0.25%) but to evaluate which are the most sensitive input parameters on 

the factor of safety a sensitivity analysis has been conducted. 

A sensitivity analysis has been done on the material properties (Fig. 8.3) and on the waste 

properties (Fig. 8.4). The only subsoil layers interested in possible failure surfaces are the 

two shallowest layers (clay with silty layers and fine silty sand). 
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Fig. 8.3 – Sensitivity analysis for material properties 

 

From the above Figure, it’s possible to say that the compacted clay cohesion and the natural 

soil cohesion have the higher positive influence on the safety factor (an increase of their 

values lead to an increase of the FOS); the unit weight of compacted clay and compost have 

the higher negative influence on the compute of the factor of safety. 

 

 
Fig. 8.4 – Sensitivity analysis for waste properties 

 

Figure 8.4 shows that the waste angle of internal friction presents the only positive effect on 

the stability (a value of 1.0 means that for the higher values of internal friction angle the 
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factor of safety results to have the higher values). The cohesion is set fix to 0 that is the most 

precautionary value, while the variation of the unit weight doesn’t present any influence on 

the FOS value. 

A sensitivity analysis has been done also for the critical case of the stability of the first 

slope, where a FOS = 0.99 identified a critical slip surface involving a small movement only 

for soil and compost layers (Fig. 6.9a). For this particular case (the only one for this analysis 

with a FOS ˂ 1.0) the probability of failure is equal to 17.4 %. The sensitivity analysis for 

top barrier materials of old landfill is shown in Fig. 8.5. 

 

 
Fig. 8.5 – Sensitivity analysis for top barrier material properties 

 

Cohesion of natural soil and angle of internal friction of compost have the higher positive 

influence on the FOS values, while unit weights of natural soil and compost have the higher 

negative influence. 

The PLAXIS program permits to identified the most critical zones of the section, 

considering both initial waste parameters (FOS = 1.27, Fig 8.6) and modified waste 

parameters (FOS = 1.11, Fig. 8.7). 
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Fig. 8.6 – Zones of influence for section 4-4 

 

 
Fig. 8.7 – Zones of influence for section 4-4 varying waste parameters 

 

Figure 8.6 shown that for this section the most critical zone for the slope stability is the top 

cover barrier system along the first steepest slope, similarly to the result obtained with 

SLOPE/W where a critical situation was seen in this part of the section (Fig. 6.9a). 

Modifying waste input parameters to a situation close to “Type 1” waste shear strength 

properties, the stability is always satisfied (FOS = 1.11) but for this extreme situation the 

failure surface found with PLAXIS is a nearly circular failure surface passing at the toe of 

the slope and involving the entire top barrier system and also a part of the upper waste close 

to the barrier (Fig. 8.7). 
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8.2 Section 2-2 
 

Table 8.2 reports the probability of failure and reliability indices for all of the analyzed cases 

for section 2-2. 

 

Table 8.2. Probability of failure and reliability indices for section 2-2. 

Case studies 

Circular failure surface passing… 

at the slope toe through the base through the landfill 
bottom 

FOS P. of  
failure 

Reliab. 
index FOS P. of  

failure 
Reliab. 
index FOS P. of  

failure 
Reliab. 
index 

Initial case 1.75 0% 11.61 1.81 0% 13.34 3.05 0% 17.27 

Type 1 
(γ = 10 kN/m3, c = 

0 kPa, ϕ = 20 °) 
1.02 10.55% 1.19 1.24 0% 5.06 1.95 0% 11.65 

Type 2 (γ = 10 
kN/m3, c = 0 kPa, 

ϕ = 25 °) 
1.28 0% 4.40 1.48 0% 7.49 2.33 0% 12.62 

Type 3 (γ = 10 
kN/m3, c = 0 kPa, 

ϕ = 30 °) 
1.56 0% 6.50 1.74 0% 8.93 2.74 0% 12.88 

Type 4 (γ = 10 
kN/m3, c = 5 kPa, 

ϕ = 20 °) 
1.31 0% 5.97 1.46 0% 8.84 2.13 0% 13.85 

Type 5 (γ = 10 
kN/m3, c = 5 kPa, 

ϕ = 25 °) 
1.57 0% 8.32 1.72 0% 10.48 2.51 0% 14.30 

Type 6 (γ = 10 
kN/m3, c = 5 kPa, 

ϕ = 30 °) 
1.85 0% 9.57 1.99 0% 11.76 2.92 0% 14.99 

Type 7 (γ = 10 
kN/m3, c = 10 
kPa, ϕ = 20 °) 

1.56 0% 9.35 1.67 0% 11.77 2.31 0% 15.65 

Type 8 (γ = 10 
kN/m3, c = 10 
kPa, ϕ = 25 °) 

1.84 0% 10.95 1.93 0% 12.84 2.69 0% 15.77 

Type 9 (γ = 10 
kN/m3, c = 10 
kPa, ϕ = 30 °) 

2.14 0% 12.16 2.21 0% 13.14 3.09 0% 16.15 

 

Waste parameters are been changed also for cases of possible sliding movements on 

geosynthetic liners, but already in the worst possible case (Type 1 condition) the stability is 

well respected (FOS = 1.60, P. of failure = 0% and R. index = 8.72 for sliding on geotextile 

liner; FOS = 1.64, P. of failure = 0% and R. index = 9.06 for sliding on geomembrane liner). 
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The most critical case among those studied is related to Type 1 waste parameters conditions 

for circular failure surface passing at the toe of the slope: in this case the safety factor is 

equal to 1.02 presenting a probability of failure of 10.55% (Fig. 8.8).  

A sensitivity analysis on soil and waste properties has been made in order to assess which 

are the materials and parameters that have the higher (positive or negative) influence on the 

factor of safety. Fig. 8.9 shows the sensitivity analysis graph for materials involved in the 

failure surface (not the subsoil materials). Sensitivity analysis for waste parameters is 

reported in Fig. 8.10. 

 

 
Fig. 8.8 - Probability distribution function of the 2000 Monte Carlo factors of safety showing probability of 

failure 
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Fig. 8.9 – Sensitivity analysis for material properties 

 

Cohesion of natural soil and clay and angle of internal friction of gravel have the higher 

positive influence on the safety factor, while unit weights of gravel, compost and soil 

present the higher negative influence on the calculation of the FOS. 

 

 
Fig. 8.10 – Sensitivity analysis for waste properties 
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safety factor is equal to less than 1.3. Figures 8.11 and 8.12 show the most critical zones for 

the stability implementing PLAXIS procedure. The first case presents a FOS = 2.57, 

indicating a good stability and pointing out a circular failure surface passing nearly the 

landfill bottom involving a consistent part of the waste mass. 

 

 
Fig. 8.11 – Zones of influence for section 2-2 

 

Figure 8.12 shows the circular failure surface for the most critical case, varying waste 

characteristics: also in this case the stability is respected (FOS = 1.6) but yet again the most 

crucial zone is the part related to the first steepest slope of the section. 

 

 
Fig. 8.12 – Zones of influence for section 2-2 varying waste parameters 
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8.3 Section A-A 
 

Table 8.3 reports the probability of failure and reliability indices for all of the analyzed cases 

for section A-A. 

 

Table 8.3. Probability of failure and reliability indices for section A-A. 

Case studies 

Circular failure surface passing… 

at the slope toe through the base through the landfill 
bottom 

FOS P. of  
failure 

Reliab. 
index FOS P. of  

failure 
Reliab. 
index FOS P. of  

failure 
Reliab. 
index 

Initial case 1.75 0% 11.72 1.81 0% 12.71 2.54 0% 12.49 

Type 1 
(γ = 10 kN/m3, c = 

0 kPa, ϕ = 20 °) 
1.03 6.4% 1.41 1.16 0.05% 3.51 1.34 0% 4.99 

Type 2 (γ = 10 
kN/m3, c = 0 kPa, 

ϕ = 25 °) 
1.28 0% 4.51 1.42 0% 6.28 1.71 0% 7.55 

Type 3 (γ = 10 
kN/m3, c = 0 kPa, 

ϕ = 30 °) 
1.55 0% 6.58 1.68 0% 8.09 2.11 0% 8.97 

Type 4 (γ = 10 
kN/m3, c = 5 kPa, 

ϕ = 20 °) 
1.31 0% 5.99 1.41 0% 7.62 1.57 0% 7.95 

Type 5 (γ = 10 
kN/m3, c = 5 kPa, 

ϕ = 25 °) 
1.57 0% 8.35 1.68 0% 9.89 1.94 0% 9.80 

Type 6 (γ = 10 
kN/m3, c = 5 kPa, 

ϕ = 30 °) 
1.86 0% 9.59 1.95 0% 10.78 2.33 0% 12.85 

Type 7 (γ = 10 
kN/m3, c = 10 
kPa, ϕ = 20 °) 

1.57 0% 9.54 1.65 0% 10.91 1.80 0% 10.62 

Type 8 (γ = 10 
kN/m3, c = 10 
kPa, ϕ = 25 °) 

1.84 0% 11.42 1.92 0% 12.17 2.16 0% 11.87 

Type 9 (γ = 10 
kN/m3, c = 10 
kPa, ϕ = 30 °) 

2.12 0% 12.06 2.21 0% 13.10 2.51 0% 14.36 

 

Type 1 waste parameters condition has been applied also to the cases of possible sliding 

movements along the geosynthetic liners placed in the landfill bottom. The stability is well 

respected for the case of a possible sliding both on the geotextile (FOS = 1.70, P. of failure = 

0%) and on the geomembrane (FOS = 2.12, P. of failure = 0%). 

Similarly to the other sections, the most critical case is related to Type 1 condition for 

circular failure surface passing at the toe of the slope: in this case, FOS = 1.03 with a P. of 
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failure of 6.4 % (Fig. 8.13). A sensitivity analysis (Fig. 8.14) has been done to study which 

cover materials and waste parameters have the higher influence of the calculation of the 

safety factor. 

 
Fig. 8.13 - Probability distribution function of the 2000 Monte Carlo factors of safety showing probability of 

failure 

 

 
Fig. 8.14 – Sensitivity analysis for material properties 

 

Cohesion of natural soil and clay and angle of shear strength of gravel have the higher 

positive effect on the FOS, while unit weight of soil, gravel and compost present the higher 

negative effect on the FOS. These considerations are the same of those made for section 2-2, 

due to the similar section geometry and top cover barrier system of the previous analyzed 
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section. As for the two other sections, the only waste parameter which has a positive effect 

on the factor of safety is the angle of internal friction: for this section FOS augments from 

0.8 until about 1.3 (Fig. 8.15). 

 

 
Fig. 8.15 - Sensitivity analysis for waste properties 

 

PLAXIS software confirms the slope stability both considering initial conditions (FOS = 

2.38) and modified waste parameters (FOS = 1.35). Fig. 8.16 shows a critical zone around 

the toe of the slope and near the clay berm that will separate “Lotto 3” from the future sector 

named “Lotto Ovest”. Fig. 8.17 is related to the most critical waste input properties 

condition; the stability is reached but the crucial region is, also for this case, the one nearly 

the higher steepest slope. 
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Fig. 8.16 – Zones of influence for section A-A 

 

 
Fig. 8.17 – Zones of influence for section A-A varying waste parameters 
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9. Conclusions  
 

 

The study on the evaluation of the slope stability analysis of Este S.E.S.A. landfill has been 

conducted in order to assess which are the most critical zones of the profile of the chosen 

studied sections and to estimate which material and waste characteristics have the most 

positive or negative influence on the stability. These goals have been reached thanks to the 

use of two-dimensional computer programs which are based on two different approaches of 

analysis methods: SLOPE/W applies the considerations of the limit equilibrium methods 

while PLAXIS executes a finite elements analysis.   

The three chosen landfill sections present profiles with the steepest slopes among those of 

the entire site: one section (4-4) refers to the oldest landfill sector whilst the other two (2-2, 

A-A) are very similar and refer to the newest landfill sectors. In order to consider the spatial 

variability of the physical properties of materials, the input parameters for SLOPE/W 

software are been assumed to be normally distributed, and decreased by some specific 

corrective factors as provided by Italian legislation; moreover, a distinction between the 

estimation on the waste properties for the different landfill sectors (the one related to the old 

landfill and the other two representing the more recently dumped waste) has been done in 

order to consider the difference between waste dumped when a separated collection system 

was completely absent and the nowadays situation where the waste are landfilled after an 

appropriate primary selection and separated collection system (that started at the end of the 

90s) made by the S.E.S.A. plant and municipalities. In addition, due to the not complete 

reliability of these estimations for the difficulty to obtain precise waste parameters that 

varying continuously in time and space, waste physical properties are been modified in order 

to consider different physical waste properties implementing also extreme situations with 

very low values. Finally, it’s important to underline that for both methods also the seismic 

contribution has been considered as required by the recent Italian normative (Norme 

Tecniche di Costruzione, 2008). 

SLOPE/W allowed the implementation of different possible circular failure surfaces among 

the landfill sections, giving safety factors related to the limit equilibrium method of 

Morgenstern-Price, one of the most used approach that satisfy both force and moment 
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equilibriums. Then, a sensitivity analysis along with the calculation of the probability of 

failure and reliability index has been done for all of the case studied.  

PLAXIS program has been used to estimate the stability to confirm if the most critical cases 

and zones of the analyzed sections are the same of those found with the SLOPE/W software. 

One of the two most critical cases found is the one related to possible circular failure surface 

passing through the top cover barrier of the first steepest slope of the 4-4 section profile: this 

situation presents the lower safety factors and the higher probability of failure, and, even if 

for only one case among the 216 possible cases studied with SLOPE/W, a FOS = 0.99 has 

been computed, with a failure surface involving a quantity only for natural soil and compost. 

A situation for the same part of the slope that involves the entire movement of the top barrier 

(soil and compost but also clay and leveling layer) presents a higher safety factor equal to 

2.00. Also PLAXIS program computes a low safety factor (FOS = 1.27) for 4-4 section of 

the old landfill, identifying the first steepest slope of the profile as the most critical zone 

(Fig. 8.6). The sensitivity analysis shows that the material parameters presenting the higher 

positive influence on the safety factor are the cohesion of natural soil and the friction angle 

of compost, while the ones that negatively influence the FOS computation are the unit 

weights of soil and compost. A solution to improve the stability of this part of landfill could 

be the planting of more vegetations or trees. 

The other critical case is the one associated to the circular failure surface that could pass at 

the toe and the base of the slope: these situations present low computed factors of safety 

(around 1.7 – 1.8) for all the sections if compared to the other situations studied (like failure 

surface passing through the landfill bottom or tangent to the geosynthetic liners). This is 

confirm also in two cases of the analysis made with PLAXIS. Material parameters that 

seems to have a positive effect on the FOS calculation are the cohesions of soil and clay and 

the friction angle of the gravel, while material physical properties that show a negative 

influence on the safety factor are the unit weights of soil, compost and gravel. A solution to 

augment the safety on this part of the landfill could be the installation of a berm of length 

equal to the involved part of the base on the instability in order to improve the resisting 

forces. 

A suggestion to increase the reliability of the obtained results could be the investigations 

with cone penetration test as method to estimate the properties of shear strength of waste, 

that seems to have no negative effects on the FOS estimation; anyway, the continuous 
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variation in time and space of waste physical parameters is well known due to the different 

steps of degradation processes that interested a municipal solid waste landfill. 
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