Ai fj\
\:Q F /‘;\
4 N
\\(//7 \\Yy

UNIVERSITA DEGLI STUDI DI PADOVA
DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Corso di Laurea Magistrale in

Ingegneria Informatica

Implementazione di un sistema multi-camera

per il pattugliamento perimetrale coordinato

Relatore Laureando
Prof. Schenato Luca Tamai Gianmario

Padova, 5 Aprile 2011

UNIVERSITY OF PADOVA
DEPARTMENT OF INFORMATION ENGINEERING

Master’s Degree in
COMPUTER ENGINEERING

Implementation of a coordinated multi-camera

perimeter patrolling system

Supervisor Eraminee
Prof. Schenato Luca Tamai Gianmario

Accademic Year
2010-2011

I was born in Tunisia,

grown in Eqypt and

i'm fighting in Libya and Yemen.
I will rise in all Arab countries
until © reach Palestine.

My name is Freedom

Abstract

Questo lavoro di tesi nasce dalla attiva collaborazione tra I’Universita di Padova
e la Videotec S.p.A..

La tesi ha lo scopo di implementare ’algoritmo di pattugliamento perimetrale
proposto dal gruppo di Sistemi di Controllo del Dipartimento di Ingegneria
dell'Informazione sul testbed fornito dall’azienda. Il suo principale obiettivo é
quello di adattare il problema teorico alle problematiche che sorgono quando
si ci scontra con vincoli pratici. Il pattugliamento perimetrale rientra tra le
caratteristiche che un sistema di videosorveglianza deve avere per essere com-
pleto ed interamente automatizzato. Nel nostro caso il sistema proposto ha un
approccio distribuito che, a differenza degli strumenti che I'azienda ha gia a dis-
posizione, fornirebbe degli spunti interessanti per quanto riguarda la gestione
delle risorse e delle telecamere in caso di guasti. Le principali problematiche che
si sono trattate sono, in primo luogo lo studio dell’algoritmo proposto e le even-
tuali estensioni da adottare per estenderlo dal semplice pattugliamento 1-D in
un ambiente 3-D. In particolare é stato suggerito un approccio per il controllo
dei parametri della telecamera PTZ (come ad esempio il controllo dello zoom e
della velocita angolare). Un altro importante contributo che é stato proposto
¢ una possibile architettura distribuita per il patrolling perimetrale che con-
senta, in uno sviluppo futuro, di integrare attivita di tracking. Dopo I’analisi
svolta é stata sviluppata una demo che ¢é stata testata del tesbed aziendale
per il controllo di due telecamere in ambiente interno. Il software sviluppato,

anche se in fase embrionale, ha subito risposto agli obiettivi proposti.

ITI

Contents

Abstract IIT1
Acronym IX
1 Introduction 1
1.1 Patrolling problem 2
1.1.1 Previouswork L. 3

1.2 Videotec company 3
1.3 Contributions 4
1.3.1 Thesisoutline 5

2 A theoretical analysis of perimetral patrolling problem 7
2.1 Definition of the problem 7
2.1.1 Distributed optimal partitioning problem formulation . . 10

2.2 Different strategies for solving the partitioning problem 10
2.2.1 Asymmetric gossip-type algorithm 11

3 Patrolling trajectories design: from 1-D to PTZ parameters 13

3.1 Patrolling trajectory generation 14
3.2 Definition of coordinate systems 16
3.3 Camera modeling 0oL 18
3.3.1 Intrinsic parameters 18
3.3.2 Extrinsic parameters 19
3.4 Cameras calibration and parameters estimation 21

3.4.1 Single camera calibration L. 21

3.4.2 Dual camera calibration 24
3.4.3 Mapping from 3D CRF point to image plane point . . . 25
3.5 Multi-camera calibration 26
3.6 Patrolling trajectory in PTZ parameters 29
3.6.1 Simple PTZ camera model 30
3.6.2 Offset based PTZ camera model 31
3.6.3 Computation of Pan and Tilt angles 33
3.6.4 Zoomcontrol 34
3.6.5 Velocity control 35
3.7 3-D patrolling trajectry from image plane points 37
3.7.1 Single camera with planar trajectory 37
3.7.2 Dual camera with 3-D trajectory 40

3.8 Review of mapping function: from image plane point to PTZ
parameters 42
3.9 Simulation 44
4 Software architecture: design and implementation 49
4.1 Requirements analysis of software 49
4.1.1 Camera component analysis 50
4.1.2 User process analysis 55
4.2 Technical consideration about software development 58
4.3 Input-Output analysis 62
4.4 Review of overall system architecture 65
4.4.1 Compute Bound controller 65
4.4.2 Transmission Bound controller 66
4.4.3 Patrolling controller 67
4.4.4 Camera controller 67
4.4.5 User controller 68
4.4.6 'Tracking controller L. 68
5 Test results 69
5.1 Testbed architecture 70
5.1.1 Computation of path and angles in testbed 71

VI

5.2 Computation angles test L. 73

5.3 Convergence testo 76
5.4 Testbed test 80
6 Conclusions and future developments 85
7 Acknowledgements 87

VII

Acronym

PTZ Pan Tilt Zoom

ACK Acknowledgment

UML Unified Model Language

SVD Singular Value Decomposition
usSB Universal Serial Bus

CGS Camera Ground System

CPGS Camera Position Ground System
IPC Inter Process Communications
CRF Camera Reference Frame

WRF World Reference Frame

IX

Chapter

Introduction

Nowadays we can assist a grown in demand of security.

In every crossroad we can find a fixed camera that controls a small area or, in
a more complex case, a group fixed camera that controls public places.

As we can see the number of cameras involved in a video-surveillance system
depends by the size of monitored area. In a big place such as oil platforms,
military bases, undergrounds and airports a camera fixed system is not a suit-
able solution.

For this reason a natural evolution of fixed camera is a PTZ camera that can
moves itself through pan (horizontally) and tilt (vertically) movement with
various levels of zoom.

Thanks to the new type of camera, large areas can be monitored with a lim-
ited number of terminals that can be moved by a user in order to tracking any
events.

However new mechanism have to be implemented to aid human operators and
for guarantee a fair coverage of areas.

In fact, thinking to large area that have to be controlled, an operator that
manages overall security system has to monitorize a lot of videos and, conse-
quently, one user cannot be sufficient to control the video-surveillance system.
From this stems the need of automated tools in order to patrol large areas and

to track activities that detect and follow an event that occurred.

Our work is focused in the implementation of perimetral patrolling tool

CHAPTER 1. INTRODUCTION

using PTZ cameras. The project is committed by Videotec S.p.A. in collabo-

ration with the Department of Information Engineering of Padova’s university.

1.1 Patrolling problem

In [1] patrol activity was defined as the act of walking around an area in order to
protect or supervise it. Taking that definition, a good patrolling strategy is one
that minimizes the time lag between two visits to the same location, ensuring
that all locations are constantly monitored. There are some interesting vari-
eties of patrolling problem that can facilitate the operator of video-surveillance
system.

Indeed we can consider the coverage area problem, that consists in finding the
optimal subdivision of the controlled area and in assigning that sub-area to
every camera.

Another important kind of outdoor system scenario is the perimeter patrolling.
Unlike previous approach, its surveillance is limited to one dimensional bound-
ary of the area to be protected.

This kind of problem can have different architectures such as distributed or

centralized.

Normally the patrolling activities are implemented in centralized struc-
tures where a central computing unit manages the information and controls
the movement of each agent.

It is easy to understand that, in this architecture, the growth in number of
agents raise up the computational complexity of the task.

This architecture evinces some leaks such as the difficulty in scheduling dif-
ferent tasks for each camera and a non scalable system, on the other hand it
guarantees rapid fault detection and the agreement between for each camera
tasks. Some more recent systems use distributed architectures. This improve-
ment brings a normal PTZ to become a smart camera that has a processing
unit and can take decisions in function of its local informations.

In other words the computational power of centralized architectures is dis-

tributed on overall system.

1.2. VIDEOTEC COMPANY

This approach has an important advantage that is scalability and it results
more robust with respect to a centralized system, in managing complex events,

in detecting fault and in adjusting patrolling bounds.

The system that we show, adopts a distributed architecture and treats the
perimetral patrolling problem in his mono-dimensional definition.
In the next subsection we will try to take a brief review on literature of handled

problems regarding distributed patrolling.

1.1.1 Previous work

In literature the patrolling problem shows analogies with the dynamic optimal
coverage in sensor networks. As shown in [2] and [3] a team of mobile agents
coordinates themselves to gain a distributed coverage of an area avoiding col-
lision.

Indeed, in robotic system some important considerations are raised up in [4]
where a multi-agent cooperative method is proposed to be robust and adaptive
to perimeter change and a efficient communication is taken into account.

In [5] and [6] through graphs analysis an optimal strategies are studied for
multi-agent patrolling.

Some interesting papers are [7] and [8] which talk about the concept of equi-
table partitioning in multi-agent robotic systems. In this scenario the mainly
idea is to portion the operational space into balanced areas of influence con-

sidering also the physical constraints of any agents.

1.2 Videotec company

The Videotec S.p.A. works in the field of video-surveillance since 1986, year of
its foundation.

It started its business being only an engineering industry, but then, reading the
evolution of the market and the growing demand of new generation cameras,
it proposed several types of camera. Nowadays the company submits many
products that work in different scenario; from simple fixed cameras to explo-

sion or vandal proof cameras.

CHAPTER 1. INTRODUCTION

Very interesting for our work is the Ulisse products line.

Ulisse products are PTZ cameras that integrate a high speed 360° rotating Pan
and Tilt head with a camera housing. These products are ideal to be used in
all kind of application for outdoor dynamic video surveillance.

Linked to its products the company has implemented a very interesting video
agent called Albert. It’s a distributed intelligence agent that cooperates with
other units detecting events and patrols areas.

In our work we used the Ulisse series cameras to implement and test the algo-

rithm proposed.

1.3 Contributions

In previous sections we saw the context of our work, we analyzed the problems
and we found some instruments to solve them.
In the next pages we will explain the core-arguments of this thesis. Now we

give to the reader the main improvements of our work.

¢ Extension of the proposed algorithm: from 1-D line to PTZ line
definition: We propose an extension of the algorithm described in 2 to
PTZ cameras. This algorithm is limited to pan movement. We expand
it also to tilt movements and we propose a new improvements to yield

more usable the patrolling system such as velocity and zoom controls.

e Design and analysis of patrolling system: we suggest a software ar-
chitecture that fit our patrolling algorithm. In particular we describe the

controllers involved in this system, their behaviour and characteristics.

e Results in Videotec Testbed: we give a briefing of our implemented

architecture and we show our results in Testbet.

1.3. CONTRIBUTIONS

1.3.1 Thesis outline

We are close to the end of this introduction and we propose a view of the thesis

structure chapter by chapter.

e Chapter 2, A theoretical analysis of perimetral patrolling problem: we
will treat the mathematical definition of the problem proposed by the
University of Padova in [9]. We will report the solution of distributed
definition and a complete description of one of the problems about vari-

ants (Synchronous Gossipe-Type Protocol).

e Chapter 3, Patrolling trajectories design: from 1-D to PTZ parameters:
in this chapter we will describe our mapping functions that bring our 1-D
definition of the patrolling path to PTZ definition. We will also propose

a suitable multi-camera calibration step for perimetral patrolling.

e Chapter 4, Software architecture: design and implementation: we will
report the analisys of requirements with UML diagrams and an input-
output analisys. Finally we will give a complete vision of our architecture

describing the controller involved.

e Chapter 5, Test results: we will give to the lector our results, in partic-
ular the computation of angles using the algorithm proposed in [12], the
convergence test of our program with a simulation of a group of cameras

and the test made by using two cameras in Videotec Testbed.

e Chapter 6, Conclusions and future developments: we will report a brief
review of our work, and an analysis of the results obtained. We will
propose some future developments such as the distributed manage of
velocity, the task assigment problem and the extension of the proposed

algorithm for covering areas.

CHAPTER 1. INTRODUCTION

Now let’s start with a theoretical analysis of the proposed algorithm in its

variants in order to introduce the 3-D extension of the patrolling line.

Chapter 2

A theoretical analysis of perimetral

patrolling problem

Starting to the previous considerations, arises the perimeter patrolling problem
that was proposed in [9].

For a more widely vision, we start explaining the mathematical definition of
the problem and the partitioning problem of the perimeter with its three ap-

proaches.

2.1 Definition of the problem

Given L as the perimeter to be patrolled, it is defined as £ = [—L, L] where
L>0.

We call N, the cardinality of the cameras that have to patrol the line. We
label the N cameras in crescent order from 1 to N.

Every camera has the following proprieties:

e it has 1-d.o.f. The field of view of each camera can change due to pan
movements only (more ahead we explain how we extend this limitation

also to tilt movement).

e it has fixed coverage range. During its movements the coverage range is

unchanged.

CHAPTER 2. A THEORETICAL ANALYSIS OF PERIMETRAL PATROLLING
PROBLEM

e it has point f.o.v..

Now, under previous assumptions, for i-th camera we define that:

o D, = [Di,inf; Dmup] C L is the total coverage length of i-th camera due

to scenario topology, agent configuration and its physical constaints.

e ¥; € [—Vimazs TVimaz) is the (bounded) speed of the i-th camera during

1ts movements.

e A, = [a;_1,a;] is the effective coverage range of i-th camera during pa-
trolling activities. Obviously 4; C D;,Vi € 1, ..., N,

e 2;i(t): RT — D, is the continuous function that map the position of the

f.0.v of the i-th camera as a function of the time variable t.

On our analysis we assume that the coverage ranges D;,7 € 1, ..., N, satify the

following interlacing constraints:
Di,inf S DiJrl,infaDi,sup S Di+1,sup (21)

We introduce a proprely cost function J to define the patrolling problem.
We can take J as a monotonic function of the time lag 7Tj,, defined as the
maximum elapsed time between two visits of the same location. More simply
the minimization problem correspond to the computation of the smallest time

lag T,, constrained to the system dynamics.

2.1. DEFINITION OF THE PROBLEM

of °f €° ©f

D2 D4
D1 D3 :

f |
Al l A2 A3 | A4 |

? : ———

| | | I
T1 | T T3 | T3 |

Bz 2.3 constrained 3.4 4.5

Figure 2.1: Fzample of perimeter patrolled by a camera set. We can see the physical
coverage D; with the optimal partition domains A;

Now for a moment, we leave out the physical constraints of each camera.
We gain the optimal coverage of the whole perimeter assuming that each cam-
era patrol the path with its maximum speed [V} ,q.] with a periodical motion
of period T. The area length |A;| and the optimal period T are obtained in
this way:

2L
N
2 iz [Vimaa |

Starting to this easy problem, we introduce the constrained solution.

|Ai| = |Vimaz| ToandT = 2T, = (2.2)

In general a bounded solution is different to an unconstrained one; this solution
could be the same only if the found solution with (1) is feasible (4; C D).
Called 75, . the optimal patrolling period with constraints, we have T, . > T,.
Appling a Divide and Conquer approach to this problem, the authors propose
in [9] this solution:

If the uncostrained solution yields A; € D;, the optimal coverage is attained
by splitting the domain into two different subproblems (L' = [—L, D; ;7] and
L" = [D; sup, L]) and considering them separately.

Being T, and T, the optimal periods for the subproblem, the global coverage

period is obtained as T, . = maxT',, T",.

In the next subsection we are going to consider the distributed scenario.
We assume that, at the begining, each camera is initialized with its partition

A;(0) that in general does not coincide with the optimal solution.

CHAPTER 2. A THEORETICAL ANALYSIS OF PERIMETRAL PATROLLING
PROBLEM

In every algorithm’s step each camera is allowed to update its bounds using
only local information comming from neighboring cameras. The goal of the
solution proposed in the next subsection is to lead the cameras to reach the

optimal steady-state configuration for patrolling extremes.

2.1.1 Distributed optimal partitioning problem formula-
tion

We assime that at time ¢ = 0 each camera is initlialized with a dominance
interval A;(0) = [a;4(0),a;,(0)] where a;;(0) and a;,(0) are respectively the
left and the right extreme of A;. We hire that the set A;(0), ..., Ay(0) statisfies

three contraints.
e physical constraint: A; C D; forie1,...,.N
e covering constraint: J;,_y, ny Ai(0) =L
e interlacing constraint: a;;(0) < a;11,4(0), a;(0) < a;41,(0)

Observe that the interlacing and the covering constraints imply that a;;(0) =
—L and ay,(0) = L. The distributed algorithm has to allow for each camera
to update its bounds using only local information coming from neighboring
cameras. During its evolution the algorithm have to meet all the three con-
straints and the set of dominance intervals have to converge to the optimal
partition.

Analyzing the type of communication between two neighboring cameras we

can obtain different solutions of the same problem.

2.2 Different strategies for solving the partition-

ing problem

The authors in [9] propose different approach. In particular they propose the
synchronous solution where, at each communication round, each camera trans-
mits to its neighbors the information related to its current dominance interval.

After that, they relaxed the synchronism and they proposed the gossip-type

10

2.2. DIFFERENT STRATEGIES FOR SOLVING THE PARTITIONING PROBLEM

communication protocol where at each iteration of the algorithm only a pair
of neighboring cameras communicate with each other.

The authors suggest another subdivision of the same protocol: they propose
the symmetric and asymmetric variants.

In the symmetric version, only one pair of neighboring cameras share their
information and the communication occurs in both directions, while in the
asymmetric one the exchange of information occurs in only one direction; this
mean for example that one camera sends only its information and the adjacent

camera reads the received data.

We can understand that the asymmetric gossip-type protocol proposed
needs less resources than the other solution proposed. For this reason we
treat only this protocol version in our work. In the following paragraph, we

are going to explain in detail the asymmetric gossip-type protocol.

2.2.1 Asymmetric gossip-type algorithm

In [9] (section VI) the authors gave the description of the asymmetric gossip-
type algorithm that doesn’t take into account the physical bounds. With
opportune changes, we report the description of this algorithm considering all

the constraints.

Now we subdivide the algorithm in two steps: the Transmission iteration

and the Extremes’ iteration.

e Transmission iteration: At each time ¢t € N, there is only one camera
that transmits its information to one of its neighbors camera. (Without
loss of generality we assume that i-th camera sends its bounds to i+1

camera,).

e Extremes’ iteration: For hdivi+ 1 camera h left unchange its bounds.

From the new information received, i-+1 camera updates its extreme as:

11

CHAPTER 2. A THEORETICAL ANALYSIS OF PERIMETRAL PATROLLING
PROBLEM

Called atemp = a”l”(??gﬂ(i)v”l, then
Divig if aremp < Dig1y
ai—l—l,l(t + 1) = ai,r(t) Zf a/temp > ai,r(t) (23)

Qtemp ~ Otherwise

Now we give the specular version of the extremes’ iteration for completeness.
We take into account the case in which i-th camera updates its bounds accord-

ing to the information coming from i+1 camera.

a; 1 (t)vit1+a; V;
Called Qtemp = -)v:-lvzquwlm l; then

Di,r Zf atemp > Di,r
air(t+1) = S air10(t) if Gremp < aiv1y (2.4)

Qtemp otherwise

We have just seen the description of the algorithm that we will adopt for
our implementation of patrolling system. We are going to introduce our ex-
tension on the original problem, in particular the introduction of PTZ cameras

and other changes due to pratical needs.

12

Chapter

Patrolling trajectories design: from 1-D

to P'I'Z parameters

To reach our targets, we have to explore the way to describe our patrolling
trajectory in the PTZ (Pan Tilt Zoom) parameters.

First of all we have to gain an istrument that generate our path defined in a
3-D enviroment, in particular a mapping function that relates the distance of
one point to the origin and the 3-D point that is linked to that distance. After
this, we will show what are the reference systems involved, the parameter for
calibrate a camera and our suggestion for calibrating a group of cameras that
have to control a perimeter. Moreover, we describe the instrument that we
have used to obtain a camera calibration using Matlab.

As we described in section 2, our model puts camera’s f.o.v as a point. It
is easy to imagine that, for an accurate patrolling activity, we want that a
camera points a specific 3-D position given as input. From this arises the
need of another mapping instrument that links a 3-D point P in the camera
reference frame with Pan and T:lt angles that bring the camera to point P.

Finally we give two possible solutions to link image plane points to 3-D point.

13

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

3.1 Patrolling trajectory generation

As we said above, we give the way to obtain the patrolling path.

Using a PTZ camera we have 2 d.o.f; it implies a logical extension of the
perimeter definition. Defined patrolled path as a 3-D line we can patrol a
more complex perimeter. Given a set of 3-D points called P,q,, we suppose to
obtain a patrolling path point-to-point definition in 3-D space. We need one
black box function that accepts in entry the distance D from the origin of the
line and returns the 3-D point P that has distance D from the origin.

In particular called S this function we have:
S:L—>P

where
LeR

P e R3

and L is the distance from the origin of the path of the 3-D point P. To gain
this function, we have to calculate the distance from the origin for each point
in Ppap and through the spline function we obtain a line that interpolate these
points. The spline, as defined in [14], is a special function defined piecewise by
polynomials. In this way we can obtain a function that could be evaluated in
the domain of distances from origin. In other words we really stretch the 3-D

patrolling path and we obtain 1-D line as shown in the following figure.

L e e
D e
S T

"W*-'.I.L-,__Aﬁh. \-'-‘\
A G- 4 i
s, N % 5
T~ ~ 0N
e e N /
z“_‘— e —-r-.,ﬁ\ 2 -~ [Lipn)] "::7

[Lp1I ™ e RN o

= -

Figure 3.1: Spline Function. The continue line is a path obtained by spline function,
the doted line is the straight line that passes for each points

Now we explain the steps to obtain this tool:

14

3.1. PATROLLING TRAJECTORY GENERATION

Algorithm 1 Algorithm that shows the use of spline function
{P is a vector composed by the points that define our trajectory}
P« def points()
{cicle that compute a vector D of distances from origin. The i-th cell corre-
spond to the distance from the origin of the i-th point}
DQ ~0
for i =1to N do
D; < distance(P;)
end for
{we compute a spline function}
S < spline(D, P)
{now we can evaluate a spline S given as ingoing parameter the distance d
and it returns the point P that is distant d from the origin}
Point « S(d)

It is easy to understand the importance of this change. In fact we can
apply our patrolling algorithm without minding the 3-D point managing, but

we only work with the indexes of the path’s array gained with spline function.

15

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

3.2 Definition of coordinate systems

In this section we are going to show what are the reference frames involved in

a PTZ camera.

[

- 400
200

Y
xwor ot Jrrid

Switch to camera-centered view

Figure 3.2: Reference system involved in PTZ camera

As we can see in Figure 3.2 there are two main reference systems:

e Camera reference frame (CRF): it is the system indicated in the image
as Z., Y, and X,

e World reference frame (WRF): it is the system indicated as Z,,Y,, and

X, in the image above

With this, we can represent the same point P in CRF and WRF.

There is a relation between CRF and WREF. In fact as we can see, a point
expressed in CRF could be translate in the WRF with a rototraslation; now

we are going to show how: Called,
e I the rotation matrix

e 1" the translaction vector

16

3.2. DEFINITION OF COORDINATE SYSTEMS

e P. the point expressed in the CRF
e P, the point expressed in the WRF

we have:
P.=RP,+T (3.1)

and the inverse relation is:
P,=R"(P.-T) (3.2)

We underline that the rotation matrix R and the translation vector T are
unique for each camera, more correctly we have to define R as R; and T as T;

where 1 is the index of the camera.

We will show in next section how to gain these parameters.

17

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

3.3 Camera modeling

In this section we are going to introduce the model that we adopt to manage a
camera. In particular we are going to explain what are the principal parameters
that allow a conversion from image plane, CRF and WRF First of all we
will introduce the intrinsic parameters that link image plane points to points
expressed in CRF and then we will show the estrinsic parameters that relate
CRF points to WRF points.

3.3.1 Intrinsic parameters

The intrinsic parameters are:

Focal length f.: The focal length in pixels.

Principal point c.: The principal point coordinates.

Skew coefficient alpha.: The skew coefficient defining the angle between

the x and y pixel axes.

Distortions k.: The image distortion coefficients (radial and tangential

distortions).

Now we are going to describe in a more explicit way the relation between image
points and 3-D points.

Let P be a point in space of coordinate vector P, = [Xc Y, ZC} in the camera

-

After including lens distortion, the new normalized point coordinate py is de-

reference frame.

X./Z,

Pn = Y,C/Zc

fined as follows:

Pa = [pd(l)] = (14 k/c(1)r? + k(2)r" + ke(5)7°)pn + dy
pa(2)

18

3.3. CAMERA MODELING

Where 7 = 22 + y2 and d, is the tangential distortion vector:

_ Qk‘c(g)xnyn + k0(4) (TQ T 2x2)
T [ReB3)? 4 202) + 2ke(4)nyn

Once distortion is applied, the final pixel coordinates P, = [x,;y,] of the

projection of P on the image plane is:

{xp = £.(1)(pa(1) + alpha = pa(2)) + cc(1)
Yp = fc<2)pd<2) + 60(2)

Therefore, in matrix notation:

Lp pa(1)
Yp | = KK |pa(2)
1 1

where KK is the camera matrix defined as follows:

fe(1) alphac = fo(1) c.(1)
KK=10 fe(2) ce(2)
0 1

3.3.2 Extrinsic parameters

Another important feature that this tool provides is the possibility to get a
corrispondence with the 3-D world centered coordinate and the 3-D camera
centered coordinate.

This mapping is obtained with the extrinsic parameters. In fact given P, as a
point space of coordinate vector P, = [Xw Y, Z,| in the grid reference
frame (take as world reference frame shown in Figure 3.2).

Let P, = [Xc Y. Z.| the coordinate vector of the point P, in the camera
reference frame.

Then P, and P, are related by a rigid motion equation:

Pc:RcPw_l'Tc

19

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

where R, is the rotation matrix and 7T, is the translation vector, the last one
indicates the distance between the camera center and the grid(world) center.
As we can see the extrinsic parameters aided to compute the mapping function
between CRF and WRF as we showed in equation 3.1.

Now we describe our tool that we used to compute these parameters un-

derlining its propriety and function.

20

3.4. CAMERAS CALIBRATION AND PARAMETERS ESTIMATION

3.4 Cameras calibration and parameters estima-
tion

To obtain the parameters that we have described, we used a Bouguet’s Camera
Calibration Toolbox for Matlab [15].

The toolbox we have used is based on [10]. In this paper, the authors describe
four steps to calibrate a camera in order to obtain a mapping between 3-D
reference coordinates and 2-D image coordinates. With this instrument it is
possible to calibrate a camera on a grid as we will show in Figure 3.3. Through
a relation of image pixel point of this grid and the dimension of grid’s square
that are known it can supplies the intrinsic parameter. Moreover, by the
relation of points expressed in the grid reference frame and points expressed
in the CRF, we can obtain the extrinsic parameters (this tool take the grid
system as the WRF).

This tool provides two principal tools:

e Single camera calibration: this tool provides the intrinsic and extrin-

sic parameters of a fixed camera.

e Dual camera calibration: this tool provides the intrinsic and extrinsic

parameters of both cameras to the same calibration board.

Let us define this tools starting from the single camera calibration.

3.4.1 Single camera calibration

This tool supplies our calibration parameters through these steps:

e Take some snapshot of the calibration board in different posi-
tion: As we show in Figure 3.3, we can see different images of the same

board placed in different positions.

21

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

Figure 3.3: Bouguet’s toolbox — Picture to calibrate a camera

e For each image, we indicate the WRF in the grid: As we can see

in Figure 3.4 we have to indicate the placement of WREF for each photo.

Click on the four extreme corners of the rectangular pattem (first camer = ofigin)... Image 1

100 200 300 400 a00 B00

Figure 3.4: Bouguet’s toolbox — WRF in a grid

e Extraction of grid corner : Through this command the tool provide
the recognition of the point of the WRF that we have indicated in the
previous step and after that, we can correct the wrong place corners.
(Figure 3.5)

22

3.4. CAMERAS CALIBRATION AND PARAMETERS ESTIMATION

The red crosses should be close to the image corners:

5
100 200 300 400 a00 600

Figure 3.5: Bouguet’s toolbox — Corner extraction

e Extract intrinsic parameters: in this step it provides the intrinsic

parameters as we shown in Figure 3.6.

Calibration results after optimization (with uncertainties):

Focal Length: fo = [657.38254 657.74391] & [0.28487 0.28937 |

Principal point: ve o= [302.71656 242.33386 | ¢+ [0.59115 0.55716 |

Skew: alpha_c = [6.60042] + [0.80819] => angle of pixel axes = 89.97595 + 0.01092 degrees

Distortion: ke = [-0.25349 0.11868 -0.00678 0.00065 0.08000] + [0.80231 6.08942 0.06012 0.00612 6.80000]
Pigel error: err = [B.11743 6.11585]

Note: The numerical errors are approximately three times the standard deviations (for reference).

Figure 3.6: Bouguet’s toolbox — Intrinsic Parameters

e Extract extrinsic parameters: After we have chosen a picture that
indicates the final position of the grid and thus our WRF, through an
extraction of grid corner for this image we gain the extrinsic parameters

for WRF and CRF. (Figure 3.8 and Figure 3.7)

23

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

Image points (+) and reprojected grid points (o)

200

450

100 200 300 A00 S00 B00

Figure 3.7: Bouguet’s toolboxr — Image of WRF in the grid

Extrinsic parameters:

Translation vector: Tc_ext = [-94.617156 -184.818867 FO6.209711]
Rotation vector: omc_ext = [-1.451113 -1.827859 -8.179185]
Rotation matrix: Rc_ext = [-8.843583 B.875946 -B0.488436
B.765974 8.3380832 B.546825
B.641392 -8.3484178 -B.585684]
Pixel error: err = [B.18156 8.88783]

Figure 3.8: Bouguet’s toolbox — Extrinsic Parameters

3.4.2 Dual camera calibration

As we said before, this tool provides a calibration of two cameras to the same

grid, in particular we have to operate these steps to calibrate them:

e Place the grid in different positions and for each placement take for the

right and the left camera an image.(as we have seen in Figure 3.3)

e Calibrate separately the two cameras with their picture and gain the

intrinsic and extrinsic parameters as we have shown in subsection 3.4.1.
e Use the stereo calibrate tool to obtain the extrinsic parameter for each

camera: as we show in Figure 3.9 we gain the graphical representation

of our calibrate steps and the parameters that we have obtained.

24

3.4. CAMERAS CALIBRATION AND PARAMETERS ESTIMATION

Extrinsic parameters

200 O

Figure 3.9: Bouguet’s toolbox — Intrinsic Parameters

3.4.3 Mapping from 3D CRF point to image plane point

We have just described the mapping between image and 3-D world. Now, given
a 3-D point P, we can compute the normalized point and finally we gain the
pixel coordinates of a point P, in the image.

It is also possible to produce the inverse mapping. In fact, given a pixel point
P, in the image we can produce the normalized point p, with the function

provided by the Bouguet’s toolbox called:
normalize(P,, f., c., k., alpha.) (3.3)

Similarly to the intrinsic parameters, the uncertainties attached to the esti-
mates of the extrinsic parameters omc, T, are also computed by the toolbox.

Those uncertainties are stored in the vectors omc_error, Tc_error.

We will see in the next section how to use The Camera Calibration Toolbox
for Matlab to reach our scope, in particular how to gain a suitable calibration
steps for our cameras system. In the next section we are going to introduce our
proposal for calibrating a group of camera that have to do patrolling activity

along a trajectory.

25

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

3.5 Multi-camera calibration

Given a set of N 3-D points expressed in world reference frame, for translating
that points in a camera system we have to store for each camera the extrinsic
parameters obtained calibrating them in the same world/grid frame. But it
is an awful constraint because in a real situation we cannot have all cameras
directed to the same point.

Among the constraints of the perimetral patrolling problem we can find
one particular feature. The visual fields of consecutive cameras have to be
overlapped, then we can calibrate the cameras two by two and take the grid

frame of the first camera as the world frame. As we have shown in Figure 3.10,

3° camera 4° camera
2° Grid -
I-I- --:.
1°Grid = = 3°Grid

--I.
1° camera 2° camera

Figure 3.10: Camera calibration two by two.

if we take a random camera it borders with at most two cameras, then it has
two distinct extrinsic parameters that it uses for translating a point received
by a neighboring camera in his camera reference frame. Now we show how we

have to operate.

26

3.5. MULTI-CAMERA CALIBRATION

Take the firs board as the WRF of the overall patrolling system and taking
C; as the i-th cameras with 1 <7 < N, we define:

° Rg Lese and T urest - are the rotational matrix and the translaction vector
that allow to translate a point from WREF of the left grids of the camera
to the CRF of the i-th cameras.

° R; Right and T: gRight are the rotational matrix and the translaction vector
that allow to translate a point from WRF of the right grids of the camera
to the CRF of the i-th cameras.

We note that these parameters are given by the extrinsic parameters obtained
by a calibration to the grid. Now we show a diagram (Figure 3.11) that explains
what are the definition of variables. Now called G; as the j-th grid, where

Grid WRS
e

ujfr |r

1
|,I|' £ 'f/ \ o Fight

Left camera Right camera
RS RS

Figure 3.11: FEzplanation of parameters for cameras calibration two by two.

1 < j < N (N is the cardinality of the grids); for each G; we define a function
g{eﬂ that translates a point from j-th grid to its left neighbor grid. We have:

Giosr : Po, = Po, (3.4)

where
Pg, €eR% Py, , eR®

are respectively the point of the starting grid and the point of the left grid of

27

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

the Pg Let us define this function:

gljeft<PGj) = (R?;left>T ((R;RightPGj + T;Right) - T;left) (35)

After this function definition we obtain a chain of functions that allows us to
compute a mapping function from a point in anyone grids to the first grid. In
fact, starting to k-th grid to obtain a function that translates a point from that

grid to the firts grid we have:

Gt (-Gt (G (Pay))) (3.6)

Whereas the calibration between two consecutive cameras is provided by
Camera Calibration Toolbox for Matlab as we have seen in 3.4.2, then our
setting system is a suitable solution.

Until now, we have spoken about the camera calibration and we have pro-
posed a suitable system to obtain the trajectory definition. Starting from this
issues, in the next subsection we are going to treat about the computation of
pan and tilt angle necessary to move the camera pointing a 3-D point given in
the entrance with the aim to describe the patrolling path with Pan, Tilt and

Zoom parameters.

28

3.6. PATROLLING TRAJECTORY IN PTZ PARAMETERS

3.6 Patrolling trajectory in PTZ parameters

As we said above, we have to gain a mapping from 3-D point to pan and tilt
angles. First of all, to gain these angles that bring a camera to point a specific
point P we have to introduce a mathematical model for PTZ camera.

The camera’s reference frame spoted a point in the world as a triplet of pa-
rameter as shown in Figure 3.2.

Given a point in the space called P, if this point is in the center of the camera

o

Indeed, the coordinates x and y of P are 0 while z-coordinate is a constant. We

image plane, it has the normalized point:

X./Z,

DPn = Y,C/Zc

present two models to compute pan and tilt angles, the first one is an intuitive
solution while the second one is more complex and design the cameras that we

use.

29

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

3.6.1 Simple PTZ camera model

Now we give the following theoretical model for stylizing a camera that is

proposed in [11].

Tilt

w

Pan

N

[

Figure 3.12: Camera reference frame. The red pyramid is the camera and in blu
we denote the reference system.

As evidenced in the reduced model in Figure 3.12 using a rotation around
x and y axes we can gain the pan and tilt rotation respectively.
Now, given in entrance a 3-D point P, we have to compute the pan and tilt
angle that bring the camera to point P. In an analog mode we can compute a
pair of angles that, through rotations around x and y axes, brought a point on
z axis. Those angles are the inverse pan and tilt angle. We show how to find
these angle.

Given a point P = [x Yy z} and we call the above angles 6 and ¢

where 6 is the inverse pan angle and ¢ the inverse tilt angle. Now we have:

1 0 0 cos 6 0 sind| |x
0 cos¢p —sing 0 1 0 yl = 0
0 sing cos ¢ —sinf 0 cosf| |z Va2 +y? 4 22

Given this matrix equation, it is easy to obtain Pan and Tilt angle through

the solution of trigonometric equations with cramer’s rule.

30

3.6. PATROLLING TRAJECTORY IN PTZ PARAMETERS

This model unfortunately is not realistic. In fact we have supposed that the
rotation axes are centered to the same point (the origin of the system).

In a lot of PTZ cameras (such as our Ulisse cameras) this model is not suitable
because the camera has axes that are non-centered.

Now we offer an offset based model that is suggested in [12] by ETH control
group.

3.6.2 Offset based PTZ camera model

A realistic PTZ camera do not only has pan and tilt axes that are intersected.

In fact taking our Ulisse PTZ camera shown in Figure 3.13 we can see how the

Figure 3.13: Technical detail of Ulisse Compatc camera.

movements engine are off-axes.
The model proposed by ETH is presented in the next figure (N.B. : Pay at-
tention, camera reference system is not the classical system that we have show

in Figure 3.2).

31

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

Figure 3.14: Offset camera model .

As we can see, given a combination C'(pan, tilt) of pan and tilt rotation and
a point P obtained by a calibration of a camera starting to C, we can translate
P = [Zoc; Yoe; Zoc) in the original camera system (XY Z)y. through the series
of matricians operations proposed in 3.7. We call original camera system, the

camera reference system obtained where pan and tilt angles are both 0.

0 D Lo Loe
P,=10]| +Ry 0 + R(;, Yo | + | Yoc (3.7)
H 0 Zo Zoc

Where:

e D x, y,andz, are the offset shown in Figure 3.14. Respectively D is
the offset between pan and tilt axes, where x,, y, and z, are the offset

between tilt axes and the camera’s hole.

o 17y and Ry are rotation matrices. IRy is the rotation matrix along tilt

axis (Y-axis) and Ry is the rotation matrix along pan axis (Z-axis).

e H is the height of camera from ground.

32

3.6. PATROLLING TRAJECTORY IN PTZ PARAMETERS

3.6.3 Computation of Pan and Tilt angles

Given this model, it is easy to obtain a corrispondence between points in the
ground and pan and tilt angles. In fact given a point P, = |2y, Yu, 0] we have
to compute 6 and ¢ to obtain a P,. = [d, 0, 0], where d is the distance between
the point and the camera (under the assumption that the target is centered

we have y,. = 2z, = 0). Let us to explain in detail how to gain pan and tilt

angles.
01 D T Zoc
A= 0| = 0|+ Ry Yo| + 10
03 0 Zo 0
we have

D + (2, + Toe) COS ¢ + 2,80 ¢
A= Yo

2o €08 ¢ — (x, + x,C) Sin P
substituting A in 3.7
01 cosl — dysinf = x,,

A=< 0;sinf — dycosf =y,
H—|—(53:0

with appropriate changes we can obtain:

91 cosfsinf — dysin 0 = x,, sin O
A =< 6§ cosfsinf — 6 cos® 0 = 1, cos
H+463=0

Now, from the first two equations we can derive

ot & /2 — 2203 + 2292

3.8
ry + ya, (3.8)

cosf =

this yelds two solutions, but since we know x,, and y,, we can see what is the

correct root.

33

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

For gaining ¢ we use the fact that 63 = —H, from this stems:

H(To 4 Toe) £ /28 — H222 + (2, + Toe)?22
(Tp + Toe)? + 22

sin g =

(3.9)

As we can see x,. is unknown since we have only z,, and y,. Considering the

offset much smaller than x,. we can approximate x,. as:

VW9 - Dy

We gain two solutions for ¢ from our equation, thus we have to choose the

suitable solution starting from the values of z,, and ¥, and H.

3.6.4 Zoom control

It is also important, in order to aid the human operator, to obtain for each
camera’s video an image that has the same rate between real and digital di-
mension. In other words when we frame an object and we know its sizes, we
want to have similar images independently from its distance from the camera.

For this reason we have to set a new zoom function Z defined as:
Z : D_ > [Zmina Zma:c]

where, given a specific model of camera, z,in, Zmas are respectively the mini-
mum and maximum values of zoom supported. For simplicity we can set D; as
the distance between an object and i-th camera. Given D;, we can link a level
of zoom z,, and obtain a ratio between them that we call R, = Z% Using
that ratio we set:

Z = (3.10)

34

3.6. PATROLLING TRAJECTORY IN PTZ PARAMETERS

3.6.5 Velocity control

When an operator manages the video-surveillance system in his monitor flows
the video stream from each camera that, we suppose, is doing patrolling ac-
tivities along a perimeter. To aid the operator’s work we have to patrol our
perimeter with an acceptable velocity (for example 5m/s) and each camera
have to do its movement keeping the patrol velocity along the path constant.
This restriction simplifies the computation of the camera’s bounds because the
velocity data are no longer necessary, but it implies an additional problem:
keeping constant the patrolling velocity along the perimeter, we obtain vari-
able velocities in pan (Vpan;) and tilt (Vtilt;) movements. Analyzing more in
deep this problem we can find new constraints for our cameras. Indeed, taking

one camera, it has two velocity constraints that we define in this way:

oV, that is V, <V, <V

a . a . > a .
pan; pang oo pan; PANG o

o V.

atilt;

that is Vatiltimm

<V,. <V

tilt; — 7 Otilty

where VoV, s Vapan, > Vayan, are values depending on the type
of camera tl;ln;jé we arglgnalyzin,gt o
Picking up the definition of our problem given in precedence, we can see how
the velocity constraint in section 2 change. In fact we have to find the max
value for the linear velocity that satisfies the two constraints reported above
during patrolling activity along the path; but it isn’t easy because the path
that one camera have to control changes during patrolling, thus a camera
has different values of linear velocity during the evolution of the algorithm.
Moreover our algorithm is a distributed one and it implies that one camera
can have only local information; but to find a global common value for velocity
is a very complex activity that involves our algorithm in all its parts.
In order to solve this problem we can make an off-line search for this value
that let us set a correct value for the patrolling velocity along the path.
Another important issue that we propose is how to compute the angular
velocities to keep constant the linear velocity along the trajectory. For each

movement of our camera from two points we have:

e V; the constant velocity along the patrolling path.

35

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

e dp,_,p,, the distance between the starting point (F;) of this movement

and its next point (Pj11).
e Af; the relative pan angle to move a camera from P; to P;;.
o A¢; the relative tilt angle to move a camera from P; to Pjq.

frist we compute:
Ab; = |0Pz - 0P¢+1|

sz'—>P1:+1 = |‘PZ - B+1|
and thus we can simply gain the time elapsed for traveling from P; to P,y as

_ dPiHPz'H

T;
Vi

finally, the angular velocities for this movement

Ab;
apan; A1
Vopan: = (3.11)
Ag;
‘/;Ltilti - T, (3.12)

From these values we can obtain another mapping function that relate points

to angular velocities.

36

3.7. 3-D PATROLLING TRAJECTRY FROM IMAGE PLANE POINTS

3.7 3-D patrolling trajectry from image plane

points

In order to get out a 3-D patrolling path to apply the distributed algorithm
described in chapter number 2 we must find a simply mechanism for a human
to set up the principal path’s points. We call principal path point a corner
point that describes a broken line that approximates an ideal patrolling path.
In fact we could not be satisfied to gain a simply list of some 3-D points, but
we have to find a relation between image points, that are given by a human,
and 3-D points of the world. We are going to present two principal solutions
to obtain this relation. The first method impose a restriction for which all the
3-D points must lies in the ground; the second, using two cameras, shows how
to compute a 3-D point that is placed everywhere in the space starting from

two pixel points.

3.7.1 Single camera with planar trajectory

In our targets we have to move a camera through pan, tilt and zoom move-
ments. For reducing the number of freedom degrees we choose to mind only
pan and tilt. With this simplification we only need a list of 3-D points that
lie in the same plane; it implies that z coordinate is the same for every points
that belong to the path.the

For gaining a 3-D point that lie in a plane starts to image’s 2-D points we
use the method of Bouguet’s software called normalize (that we have show in
3.4.3). In fact, after a calibration step, from a 2-D pixel point and camera

calibration parameters a function produces a normalized point p,, that is:

-

where P, = [XC Y, Zc] is a point expressed in a camera reference frame

X./Z,

Pn = Y,C/Zc

and P, = [Xw Yo Zw} is a point expressed in world reference frame.
But points lies in the same plane and in order to allow a simply conversion

from 3-D point expressed in one camera reference system to another camera

37

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

reference system we set the z-coordinate of a point expressed in the world
reference system to a constant k, (7, = k). We set k = 0 for simplicity.

In this way through eztrinsic parameters of every camera we can translate a
point from the world system to the camera system. In fact, as it was explained
in the previous sections there is a relation between 3-D points expressed in the

world reference system and points expressed in the camera reference system.

X Tes Teig Teys X te,
Yo | = |Ten Tcyo Teos Yo | + |te
Z, Tesq Teso Tcss Zy leg

Thus,
Xc - rchw + Tclzyw + Tclgzw + tcl

Y;: = Ty Xw + TCQQYUJ + Teos Zw + tCQ
Zc = Tc;ngw + 7/‘032}/111 + 7ac;:,gzw + tC3

But we have posed Z,, = 0 thus,

XC — TCUX”LU + T312Yw + tcl
Yo = 1oy Xu + gy Yoo + ey
Zc - TCng’w + r532Yw _|— tc3

Now if we want to find the world centered 3-D coordinate given a normalized
point p,, we have to resolve the next system of equation where X,, and Y,, are
unknowns.

_ Tcllxw+rclzyw+tcl
pn(]-) - TC31Xw+7'632Yw+tCS

. 7'021Xw+7‘022yw+tc2
pn<2> o 7’631Xw+7"632Yw+tC3

extracting X,, and Y,, we gain the follower parameter:

J=7re, — Pu(D)7res,
H =71 —pu(2)re,
L=rc, — pn(2)re,
K=r. — n(l)rclg
Ty = —te,pn(1) +
Ty = —te,pn(2) +

38

3.7. 3-D PATROLLING TRAJECTRY FROM IMAGE PLANE POINTS

And,

_ —JH
A= K+L

_ _HTy
B = K+Tp

Thus,

Y, = =h—XuJ (3.13)

With this method we have found a mapping from 2D to 3-D world-centered
points, but this system has an important weakness. In fact, given an image
recovered by a camera with a defined zoom, we have a bounded vision of
the world and for gaining a complete definition of patrolling path we have to
implement a complex mechanism. This tool must gather all the information
coming from each camera and adds them (according to common points that
must be defined) in order to describe the path in a suitable world reference
system. This changes are not treated in this thesis because we want to focus
the implementation of the algorithm proposed.

Now we are going to propose a possible solution to multi-camera calibration

in a perimeter.

39

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

3.7.2 Dual camera with 3-D trajectory

As we can see the previous method has a limitation that constrains our work.
Now we introduce a method that links a 3-D point with two pixel points. As

we show in Figure 3.15 we can see a schema that describes our enviroment.

Figure 3.15: A suitable model of distributed system.

Now take a point P, defined as:

It can be translated in the CRS of our cameras, we call P! and P? where the
first is expressed in the first camera system and the second is expressed in the

other camera. We have:

X1
P'=R'P,+T"|Y}

P2 =R’P,+T? |v?

As we mentioned in section 3.3 we have a relation between point expressed in

40

3.7. 3-D PATROLLING TRAJECTRY FROM IMAGE PLANE POINTS

the CRF and pixel point and, in order to do it, we used the normalized tool

provided by Camera Calibration Tool for Matlab in 3.4.3. In fact we have:

| xlzi] el
o YNz |y
2 = x2/z2| |2
oz |

applying the method that we have used in the previous subsection we have

.Z'l _ rglle+r212Yw+rgl3Zw+ti1 332 _ rglleJrrquerrzlSZertgl

o gy Xuwbreg, Yutreg, Zuttl n ey Xuwtrdy, Yutri, Zo g
(3.14)

L — Tay XwtrlcaoYutrd,, ZuttL, 2 = 72, XwtrienYu+rl, Zo+tZ,

" 7"PlfslX”+7%32Yw+ré33Z’”H%B " T331Xw+rf2~32Yw+T'23332w+t33

Now we have three unknown parameters (X,,Y, and Z,) and four equations
and we are able to extract the coordinates of point P,

The issues that we propose in this section are not important for our work
because it is focused on the definition of patrolling trajectory in the pan, tilt
and zoom parameters. To clarify our work we are going to introduce a review

of our proposed mapping functions.

41

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

3.8 Review of mapping function: from image

plane point to PTZ parameters

To summarize all the features we discovered, we propose the following schema:

From image plane points to 3-D Patrolling trajectory in PTZ parameters
WRF points
; : From -D point to
Single camera = el
Multi-camera wﬁh e Trajectory definition pa;!nzr;edsti\t Zoom control
G frajecto using spline
calibration step i 9sp
function

Dusl camera with

SRR Velocity control

P E—

Figure 3.16: Review of mapping function.

Let us describing the block diagram above:

e Multi-camera calibration step: As we described in section 3.5 we
calibrate our set of cameras. This allows us to obtain the extrinsic and
intrinsic parameters for each camera and a function that translate a point

from anyone grid to the first grid take as the world reference system.

e From image plane points to 3-D WRF points: this step is obtained
by the procedures described in section 3.7. The procedures are two. In
the first we impose that the patrolling path lies on the ground, while the

second method does not forces any conditions.

e Trajectory definition using spline function: as we have shown in
section 3.1, we set up a continuously path using spline function. Starting
from the 3-D points that are supply from the previous step we gain a
corrispondence from distance from the origin of the Trajectory and 3-D

point and vice versa.

e Patrolling trajectory in PTZ parameters: To translate a point from
3-D definition to PTZ definition we have to:

42

3.8. REVIEW OF MAPPING FUNCTION: FROM IMAGE PLANE POINT TO PTZ
PARAMETERS

— Compute pan and tilt angles to bring a 3-D point in the center of
the image. (subsection 3.6.3)

— Compute zoom parameters that keep the object observed to the

same dimension during the patrolling activity. (subsection 3.6.4)

— Compute the angular velocity in tilt and pan movements for each

point. (subsection 3.6.5)

43

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

3.9 Simulation

In this section we are going to test all the mapping function that bring a 1-D

trajectory definition to PTZ definition with pan and tilt velocities.

First off all, we describe our simulation environment. It is composed by:

< 800

Figure 3.17: Simulation environment

e One PTZ camera modelled as a Ulisse Compact Camera

e Trajectory definition per point (see red crosses in Figure 3.17) and its

spline approximation (see green line in Figure 3.17)

We note that in this figure, the camera is oriented as pan and tilt equals to
zero. Running our simulation code written in Matlab, we gain the following

diagram:

44

3.9. SIMULATION

e Camera position in 1-D trajectory definition: Starting from a
patrolling path described in our problem definition in section 2, we obtain

a chart in which we analyze camera position along the time.

Camera position in 1-D patrolling trajectory
1400 T T T

1200 —

1000 - =

800 - 1

Camera position

600 - —

400 - =

200 ul

L
0 50 100 150 200 250 300
Time [1]

Figure 3.18: 1-D camera position along the time

e Pan angle: We describe the movements of our camera in its Pan angle

along the time.

45

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

Pan angle in 3-D patrolling trajectory
T T T

1 | 1
0 50 100 150 200 250 300
Time [t]

Figure 3.19: Pan diagram

e Tilt angle: We describe the movements of our camera in its Tilt angle

along the time.

Tilt angle in 3-D patrolling trajectory
T T T

Tilt [7]

68 | L | L
0 50 100 150 200 250 300

Time [t]

Figure 3.20: Tilt diagram

e Zoom parameter: We describe the variation of Zoom parameters along

the time.

46

3.9. SIMULATION

Figure 3.21: Zoom diagram

e Pan angular velocity parameter: We describe the variation of Pan’s

velocity during the time.

Figure 3.22: Pan angular velocity diagram

47

CHAPTER 3. PATROLLING TRAJECTORIES DESIGN: FROM 1-D TO PTZ
PARAMETERS

e Tilt angular velocity parameter: We describe the variation of Tilt’s

velocity during the time.

Tilt angular velocity in 3-D patrolling trajectory
T T T

Time [1]

Figure 3.23: Tilt angular velocity diagram

These are the diagrams, obtained with our simulation program. We can see a

few proprieties of them in particular:

e figurename 3.19 evidence how Pan angle depends more on trajectory
definition then the height of camera and the distance of patrolling path

to the camera.

e figurename 3.20 and figurename 3.21 show how Tilt and Zoom parameters
depend largely on camera height and the distance between camera and

trajectory.

Starting from this proposed analysis we are going to introduce a possible
software architecture for the Videotec Testbed.
The software architecture that we are going to explain does not depend on
camera calibration step, in particular we impose that we have the 3-D defi-
nition of our path with a spline function and we compute offline all the PTZ

parameters that describe our trajectory.

48

Chapter I

Software architecture: design and

implementation

In next sections we will go in the detail of our patrolling software describing

its component. Let us start with the software’s analisis of requirements.

4.1 Requirements analysis of software

In light of the above consideration, we summarize the requirements of the
system and define how it works. To describe as well the requiremens we choose
to use UML to design our components. Our patrolling system is made by
two main components: an user and a camera. The next figure describes a

distributed system.

49

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

Camera Camera

Coaxial & USB Coaxial & USB

-
r—

Agent Agent

User process

Figure 4.1: A suitable model of distributed system.

Now we are going to present the camera component. In a first instance
we are going to present a statechart diagram that models the behavior of the
component and its state along the time; after that, we will propose an activity
diagram that shows what are its steps and controllers. Finally we will present

an usecase diagram for the user component.

4.1.1 Camera component analysis

The camera component must manages only one camera and move it along
patrolling path which was defined before. To describe its behavior over time,
we can take it as a finite states machine. In fact this type of diagram emphasizes

state’s definitions and how the process changes its state over time.

20

4.1. REQUIREMENTS ANALYSIS OF SOFTWARE

Ready [command=[SIGCUIT)suspend]
set up varables freefciose
[afer{CLKZ sec)] Patroliing [after{CLK1 sec)]
doPatrodling
e »
Adjust Extremes Delivery
recaive_bound send_bound
fcommand=[switch tracking model/suspand)]

Tracking

Auto Tracking
Manual Tracking

Figure 4.2: UML Statechart diagram for Patrolling component.

In Figure 4.2 we propose our statechart diagram that describes camera
process.
First of all, we can see six main states that are activated by switching condi-

tions. Now we give a description of camera component for each state:
e Ready: it is lunched and set up the initial enviroment variables.
e Dead: it is aborted after a user’s command.

e Patrolling: it does the patrolling activity, such as move camera and

controls it zoom and velocity.

e Adjust Extremes: it receives and computes the new bound of patrolling
path according to its red data. This state stems by the Extremes’ itera-

tion of our patrolling algorithm proposed in section 2.2.1.
e Delivery: it sends its bound to neighboring cameras.

e Tracking: it does tracking activities. This state includes the Auto track-

ing and the Manual tracking state.

We summarize the description of the diagram in the next table.

ol

CHAPTER 4. SOFTWARE ARCHITECTURE

: DESIGN AND IMPLEMENTATION

Start state Final state Event Guard Procedure
Ready Patrolling inizialize
enviroment
variabiles
Patrolling Adjust Ex- after CLK,
tremes sec
Patrolling Delivery after CLK;
sec
Patrolling Auto- command re- command=auto- suspend
tracking ceived tracking
Patrolling Manual- command re- command=manual- suspend
tracking ceived tracking
Patrolling Dead command re- command=SIGQUIT suspend
ceived

Table 4.1: Statechart table for diagram in Figure 4.2

The table proposed above shows which are the state transitions, the events
and the conditions that make the changes possible and the procedure that the

process has to execute.
This diagram is focused in the description of process state but it doesn’t

explain very well the activity that it must do during the evolution over time.

In order to do that we could be aided by the activity diagram in Figure 4.3.

52

4.1. REQUIREMENTS ANALYSIS OF SOFTWARE

Setup vanables

> X

Wait CLKZ sec Wait CLK1 sec

Send patrolling bounds Compute bounds

Warn adjacent cameras

Sitch to patrolling

Figure 4.3: UML Activity diagram for Patrolling component.

For an easy lecture of the diagram we have to think how the processor’s
time needs to be associated to the patrolling activities. Moreover, this type of
diagram shapes very well the communications signals between camera process

and user process. In this diagram we can see six activities of camera process:

e Setup variables: it sets up the enviroment variables.
e Send patrolling bounds: it sends its bound to neighboring cameras.

e Compute bound: it receives the neighboring’s bound and compute its

new bound.

e Warn adjacent camera: it warns its neighboring that it has to leave

the patrolling activity for entering in the tracking activity.
e Track: it does the tracking activity.

e Patrol: it does the patrolling activity. It moves the camera from the left

to the right bounds, computed in compute bound activity.

23

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

e Quit: it deallocates the memory and closes the process.

There are also four interrupt signals that are modeled: three are ingoing and

one is outgoing. Let us analyse them in the next table:

Signal Description Type

Switch to tracking warns the camera component that must switch ingoing
to tracking mode

Switch to patrolling warns the camera process that must set up the ingoing
environment variables and goes in patroling
mode

Terminate warns the camera component that must empty ingoing
the variables that were used and quit

Warn user process warns user process that, after the quit activity, outgoing
it is off

Table 4.2: Description of the signals of Figure 4.3

We have just concluded the analysis of camera process. Now we are going

to do a fast review of user’s functions to control the camera process.

54

4.1. REQUIREMENTS ANALYSIS OF SOFTWARE

4.1.2 User process analysis

HUSBSR

Take systam's
“\ snapshot each T sec

Figure 4.4: UML Usecase diagram for User component.

The diagram reported in Figure 4.4 shows what are the principal instru-
ments of user for managing the camera through the communication between
user and camera process. In the next table we clarify the usecase diagram

describing the features for each state.

%)

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

Usecase: Start Patrolling

Features Description

Actors User

Description User starts the patrolling system

Preconditions -

Main flow user executes the program and start the patrolling system
Other flow -

Postconditions -

Usecase: Switch Tracking Mode

Features Description

Actors User

Description User communicates to one camera to switch to tracking.

Preconditions The patrolling system has to be started

Main flow User chooses a camera C; that he wants to controll and
switch it to tracking mode. He can choose between auto-
tracking and manual-tracking modalities

Other flow If the choosen camera doesn’t exist or it is already in track-
ing mode, it displaies a warning message

Postconditions the choosen camera are suspend from patrolling activities

Usecase: Switch Patrolling Mode

Features Description

Actors User

Description User communicates to one camera to switch to patrolling
mode.

Preconditions The patrolling system has to be started

Main flow User choose a camera C; that he wants to controll and
switch it to patrolling mode.

Other flow If the choosen camera doesn’t exist or it is already in pa-
trolling mode display a warning message

Postconditions the choosen camera are suspend from his previous activities

(eg: tracking activity)

26

4.1. REQUIREMENTS ANALYSIS OF SOFTWARE

Usecase: Take snapshot one camera

Features Description

Actors User

Description User queries one camera to know its state.

Preconditions The patrolling system has to be started

Main flow User chooses a camera C; and query it.

Other flow If the choosen camera doesn’t exists display a warning mes-
sage

Postconditions the choosen camera returns to user its state

Usecase: Take system’s snapshot each T sec

Features Description

Actors User

Description User launches this command and a the system start to
query each camera every T sec, for each query each pro-
cess respond with its state.

Preconditions The patrolling system has to be started, if not this com-
mand start it.

Main flow User launches this this command at the beginning

Other flow User can start first the patrolling system than launches this
command.

Postconditions A continuously polling is made by the query component. It

monitors processes evolution.

Usecase: Quit

Features Description

Actors User

Description User closes the application and stops patrolling system.
Preconditions The patrolling system has to be started

Main flow User stops the overall system

Other flow -

Postconditions all patrolling process are killed

Table 4.3: Description case by case of the usecase diagram

We will see in the section 4.4.5 that this analysis is more important, in fact
this step aided us and allows us to saved a lot of time, especially in the debug

step of the system.

o7

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

4.2 Technical consideration about software de-

velopment

In previous sections we have described the UML diagram that describes the
system requirement and the testbed architecture that we used. Submitted of
our consideration and to the constraint that we have to use the C language,
in order to use the serial library with the aim of moving the cameras, steams
the following considerations. Starting to Figure 4.1 we have to implement a
software in a centralized structure underline in the following figure.

To adjust our analysis to our testbed architecture we have to take into consid-

Camera Camera

Coaxial & USB Coaxial & USB

Camera ¢ 3 Camera
controller controller

N\

User controller

Figure 4.5: Testbed architecture.

eration the interface of communication that is possible to use with C language.
There are two communication interfaces in order to obtain our scope. The
first one is the communication interface that is used to communicate between
two neighbouring cameras and it has to be a publish /subscribe protocol. The
second one is the interface between the user and the camera component and it
uses an interrupt protocol. For our project we chose the IPC libraries [16], in

our particular case we used the libraries:

e types.h and ipc.h: They provide the definition of type variables and main

functions.

e signal.h: it provides the interrupt communication signals

28

4.2. TECHNICAL CONSIDERATION ABOUT SOFTWARE DEVELOPMENT

e msg.h:it provides the send/receive method to communicate throug com-

ponent.

Finally, to complete our analogy, we treat all component as process that live
in the same machine.
To explane more precisely the architetcure that we implemented, we present

two component diagrams that clarify the structure of our process.

User component

I
|
|

1
sinterfaces
Signal

+sigralf)
il

f—————

Patrolling component |

Patrolling component i+1

winterfaces
Messages

________ tmsgsnd() R e
HSEEY()

Figure 4.6: UML Patrolling Component diagram of the communication interfaces.

29

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

As we can see in Figure 4.6 we propose an UML component diagram that

clarify the communication interface between processes. In particular there are:

e signal interface: it is the interface between user process and all the

patrolling process. It provides two functions, such as:

— signal(INT,fnc): signal handler for interrupt INT. When an INT
interrupt is lunched, the program catches the signal and executes

the function fnc.

— kill(IDP,INT): it sends an interrupt signal of INT type to a process
which has IDP id.

e snd/rcv interface: it is the interface between two processes. Each one

of them controls only one camera. It provides two function, such as:

— msgsnd(): after establish an one-directional communication chan-
nel between processes, the sender can sand a message through the

channel using this function.

— msgrev(): similar to the previous function, but it provides, a receive

function for the receiver process.

winterfaces
Messages

wmsgsndll [~}
+Hmsgrevy)

]
Tracking Controller Send bound centroller
]
Shared e
Tracking controller memory Compute bound comroller
T
I

Patrolling controller
alnterfacen

Signal |

+signal(}
kI

Figure 4.7: UML Component diagram of the communication interfaces between Pa-
trolling and Tracking component.

60

4.2. TECHNICAL CONSIDERATION ABOUT SOFTWARE DEVELOPMENT

The second component diagram (Figure 4.7) shows the structure of pa-
trolling process, in particular it proposes a subdivision in components that
cooperate each other. Looking at the analisys of activity diagram that we
proposed in section 4.1.1 we can see four principal activities: Send patrolling
bound, Compute bound, Patrol and Track. Analizing more deeply these activ-

ities we find three propriety that we have to take into account:

e Palrol activity only has to control the camera: when we control a cam-
era, using the serial function provided by Videotec, we have to manage
the signals using USB interface. In particular when we communicate a
movement command to the camera we must wait a rotational time before
forwarding another command. During this time our application must not
idle, but it can do another available activity. For this reason and to keep
separately the camera control from the other activity, we have to de-
cide to implement a unique component that is dedicated only to camera

managment. It is the Patrolling controller shown in Figure 4.7.

e Send patrolling bound and Compute bound: this two activities are in-
dipendent from the other camera controller activities. They could be
executed in concurrency to the Patrol activity and moreover they could
be executed in parallel. For this reason we decided to implement two
distinct component: The Send bound controller and Compute bound con-

troller shown in section 4.4.3.

e Track activities are external to our scope: for this reason we implemented
another process that is the tracking process that is launched when the

patrolling process is suspended.

We have isolated the three components that compose the patrolling pro-
cess. We decided to implement them by threads and they can communicate

each other through a shared memory because they belong to the same process.
From these techical considerations stems the need of an analysis that spots

the parameter that we must give as input of our process. In order to obtain

this, we are going to introduce an input-output analysis of our process.

61

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

4.3 Input-Output analysis

We take into account the user process and we present the following table that
describes its features in order to spot the scope, the ingoing and the outgoing

parameters.

Scope: Controls the cameras connected to the workstation and initializes
the sequence of patrolling processes. Through interrupt signals
queries a patrolling process P; and controls the evolutions of the
overall system.

In parameters: -

Out parameters: N processes where N is the number of camera connected via usb
to the workstation.

Table 4.4: Input-output analysis for user process

From table 4.4 we can see how the user process creates one controller for
each camera. This feature is created only for our testbed. In a future devel-
opment will not be necessary to create processes, because they are launched,

everyone of them, in its agent since beginning.

Very interesting is the analysis of the camera process that is reviewed in
table 4.5.

62

4.3. INPUT-OUTPUT ANALYSIS

Scope:

To move the camera C;, given as input, along a patrolling path P
delimited by a;; and a; , with a costant patrolling velocity v;.
At first instance a;; = D; iny and a;» = D; sup.

Through the comunication channels, the camera C; comunicates
its patrolling bounds (a;; and a;) to the camera C;1; and C;_;.
Ci+1 updates its patrolling bounds according to recieved param-
eters from C;.

N.B. we set the constant velocity along patrolling path as always
feasible with the camera angular velocity constraints during the
evolution of the algorithm.

In parameters:

e (;: id of the camera connected via usb.

® a;; = D;iny and a;, = D; gup: at the first instance we set
the patrolling physical constraints of the camera as input
for a;; and a; ..

e v;: constant velocity along the patrolling path.

e SNDch, s, ,: communication channel between c¢; and
¢;—1 cameras. Camera ¢; send its bound to ¢;_1.

o RCVche, e, ,: communication channel between ¢; and
c;—1 cameras. Camera c¢; receive the messages comming
from c¢;_1.

e SNDch¢, ¢, .,: communication channel between c; and
c;+1 cameras. Camera c; send its bound to ¢;41.

e RCVche,s¢,,,: communication channel between c¢; and
c;i+1 cameras. Camera c¢; receive the messages comming
from c¢;41.

e CLK1: time between two consecutive transmission steps.

o CLK2: time between two consecutive computing bound
steps.

Out parameters:

e At every trasmission step, the proccess comunicate through
message channels (che, ¢, , and che, sc,,,) its new com-
puted bound to processes (P;_1 and P;y1).

® Pgiate,: process state. It could be [patrolling, manual track-
ing, stop, ready, auto-tracking]. Tt is returned when user
process query patrolling process.

e a;; and a;,: it have to return it’s patrolling bounds when
it receives an interrupt by the user process.

Table 4.5: Input-output analysis for camera process

63

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

A very important specification, reported above, is the choose of velocity’s
parameter. This parameter has to be chosen offline. In fact it must be a
feasible parameter during the entire evolution of our algorithm. Other notable
parameters are the clocks (for the trasmission and the computing bound step)
and the communication channels that are four for each camera due to the

one-directional feature of our send/receive protocol.

64

4.4. REVIEW OF OVERALL SYSTEM ARCHITECTURE

4.4 Review of overall system architecture

In order to give to the lector a complete vision of the architecture, we are
going to describe in detail each component of our system. In particular we will
see the Compute bound controller, the Transmission Bound controller (for both
controllers we will describe their way of communication), the Camera controller
and the User controller. We underline that both controller (Trasmission and
Compute bound controller) communicate via shared memory. In other words
they save its sensible data (such as bounds variable) in the same memory
location. We will see this feature in the Camera controller diagram and in the
section 4.4.4.

4.4.1 Compute Bound controller

In order to describe the Compute Bound controller we take into account the

diagram in Figure 4.8.

Compute Bound controlier

sendéraceive O—
Receiver contraller

Shared #
memary
\,_g
Left bound controller

Figure 4.8: UML Component diagram of the Compute Bound Controller.

65

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

As we can see the main controller is composed by two sub-controller:

e Receiver controller: it controls the two ingoing channels for messages
that are comming from its neighbouring cameras and receive the messages

and save it into the enviroment variable.

e Left bound controller: it computes the new left bound of the patrolling

portion of path.

e Right bound controller: it computes the new right bound of the pa-
trolling portion of path.

4.4.2 Transmission Bound controller

Transmission Bound controller

? Sender controller
T

Figure 4.9: UML Component diagram of the Trasmission Bound Controller.

In light of the diagram in Figure 4.9 we have only one sub-controller:

e Sender controller: it sends to the neighbouring cameras its patrolling

bounds using the send command improved by msg.h interface.

66

4.4. REVIEW OF OVERALL SYSTEM ARCHITECTURE

4.4.3 Patrolling controller

The target of this controller is simply to control the movement of one camera.

Its features are displayed in Figure 4.10.

Patrolling controller

serial_ulisse 0—4% " I
ovement controller

»

Shared
mBmony

Figure 4.10: UML Component diagram of the Patrolling Controller.

The main sub-component (Movement controller) use the serial library to
move its assigned camera. It moves its camera with a position command
function and realizes the velocity control function proposed in section 3.6.5. In
section 3.6.4 we have proposed a zoom control for our patrolling system. This
improvement, unfortunately, cannot be implemented in our testbed because

the available space isn’t sufficient to make a review of our proposed changes.

4.4.4 Camera controller

As we mentioned, the Camera controller diagram Figure 4.7 has the target to
clarify the communication interface among camera components. As we can see
each component of the camera component communicates each other via shared
memory. Let us see what are the main variables that camera controller has to
save in the shared memory. In order to describe it we propose the following
table:

As we can see in the table above, there is only one controller, that accesses
in write mode, for each variable type. This implies that it is not neccessary to

do some mutex variables.

67

CHAPTER 4. SOFTWARE ARCHITECTURE: DESIGN AND IMPLEMENTATION

Variables type Compute Bound C. Trasmission Bound C. Patrolling C.
R W R W R W
Bounds Variables X X X
Ingoing channels X
Outgoing channels X

Table 4.6: Analysis of the type of access of the variables, in Camera controller

4.4.5 User controller

Starting from the proposed diagram Figure 4.4 we can see the main functions
that we need to implement. Now we propose the command that we imple-

mented:
e start: it starts the patrolling system

e snap [i]: it queries the i-th patrolling process through a SIGHUP inter-
rupt.

e sys snap [s]: it creates a thread that poll each patrolling process using

the function snap.

e switch [if: it changes the target of the i-th camera. If the i-th camera
is doing patrolling, it switches the camera into tracking activity and vice

versa. It warns the camera using SIGCHLD interrupt.

e quat: it closes the system. It has to warn all the processes using SIGQUIT
interrupt. The warned process has to execute the exit function and frees

all the memories.

4.4.6 Tracking controller

The last one controller that we analize is the Tracking controller. It is outside
our scope, but for completeness we implemented it. In particular we have to
implement an instrument that is able to manage the user command (in par-
ticular switch [if, sys snap [s] and quit). In order to obtain this, we reuse the
interrupt manage structure that we have implemented for patrolling controller

and adjust it to the tracking controller requirements.

68

Chapter

Test results

In the previous chapter we have explaned the theoretical analysis for our prob-
lem. In particular we have spoken about the mathematical definition of the
problem in chapter 2. Then we have proposed the key proposals for PTZ man-
agement in chapter 3 (in particular in section 3.6.3 we have analized the way
to compute the pan and tilt angles to direct the camera to a given point). In
chapter 4 we have suggested a suitable architecture for our patrolling software.
After this complex analysis, in this chapter we are going to show what are the
results gained using the proposed methods. We will see three main tests of the

proposal that we have given:
e Test of the angles computation proposed in section 3.6.3.

e Test of the convergence of our perimetral patrolling software proposed in

chapter 4.
e Test of the entire system in the Videotec testbed.

Now, Before explaining our tests we are going to introduce our testbed.

69

CHAPTER 5. TEST RESULTS

5.1 Testbed architecture

The Videotec testbed that we used is composed by two cameras of different
type: we used an Ulisse Compact camera and an Ulisse standard camera. They
have different characteristics that we have to take into account. In the next

table we can see their features:

Camera type Angular Velocity Tilt Offset

Max Min Max Min | pan-tilt tilt-hole pan-hole
Ulisse Compact | 120°/s 0.1°/s 90 -90 | 124mm 60mm 20mm
Ulisse standard | 30°/s 0.1°/s 90 40 na na na

Table 5.1: Camera features table. For angular velocity we mean the wvelocity of
PTZ camera in position control and the offset for stardard Ulisse are
not aviable because they depend by camera installation

Their position are shown in the following figure:

CPGs
A

3000

CGE "

Figure 5.1: Testbed pan. Layout of cameras and their reference systems

70

5.1. TESTBED ARCHITECTURE

As we can see the Testbet that we have at our disposal is limited and we
must take the necessary measures for operating with it in order to realize a
demo of our patrolling software. The cameras could be controlled through a
serial interface (USB) and for the implementation of patrolling software we
used a centralized control interface.

After this presentation of our testbed, we are going to explain the procedure
that we have taken to compute the patrolling path and the angles associated

to each point.

5.1.1 Computation of path and angles in testbed

Due to limitated available space and to the testbed’s features exposed in the
previous section we decided to do a semplification of our enviroment of work.
In fact, as we show in Figure 5.1, we took, as the global patrolling path, a
straight line of 3 meters from point A to point B. In order to take in considera-
tion our mapping functions (described in section 3.8) in our testbed we do not
mind the first two steps but we suppose to start from a 3-D definition of our
trajectory poin by point and, after that we apply the step describes in section

3.1 and the mapping function that we have seen in section 3.6.

Now we introduce the steps that we made to setting up the enviroment of

our testbed.

e Setting up the ground system for each camera: Every camera must
have a ground system (CGS), against which we compute the coordinate
of two starting point A and B. For each CGS we defined we have to
gain the phase shift angle (¢) between the position ground system of one
camera (CPGS), due to its poistion in the space, and the CGS that we

use for convenience.

e Compute the coordinate of the points that describe our path:
For each CGS that we have defined we compute the coordinate of our
points. This measures are affected by error because we used a meter for

gaining them.

71

CHAPTER 5. TEST RESULTS

e Compute a spline function to each CGS’s point measured: For
each path definition against to one CGS, we computed a spline function
to gain the complete definition of our patrolling path with respect to

each camera.

e Offline angle computation: For each spline that we obtained, we
computed the angles that corrispond to each point in the spline that we

evaluated.

All these steps are implemented using Matlab. The output that this procedure
yields is a vector where each cell is composed by three values: the pan and
the tilt angles and the distance from the next point in the ground. Now we

propose our tests starting to the computation of angles test.

72

5.2. COMPUTATION ANGLES TEST

5.2 Computation angles test

In section 3.6.3 we have described the process of angles computation; in par-
ticular we have seen that given a 2-D point P = [x,,; ¥, through our method
we gain Pan and T'ilt. Our test was done in the Videotec testbed (section 5.1)
and we used the method described in section 5.1.1. First of all we give the

starting image of our test. As we can see in Figure 5.2 the red cross indicates

+ Image center

® Target

Figure 5.2: Starting image of our angles test.

the image center and the red-yellow circle shows the target point that we have

to reach. This image is taken with the Ulisse Compact camera, it has:
Pan : 119°
Tilt - 39°
Zoom : 2.36 X

After applying our angle computation function we gain the new angle that

bring our camera to point the red-yellow circle shown before. We gain:

Pan : 122°

73

CHAPTER 5. TEST RESULTS

Tilt : 37°

The image recovered after an absolute movement of the computed angles is:

Image center

Target

In this image comes evident that the calculated angles do not bring the
camera to point the target indicated. We underline that the Figure 5.3 is
taken with a different level of zoom with respect to the starting image (Fig-

ure 5.2), its zoom is 10x. Now we analize the possible errors (see Figure 5.3)

e Error due to measure of the target "by hand": As we said in
section 5.1, due to the limit of our testbed we have to measure by hand the
ground coordinate of the target point. This modus operandi introduce
a measurement error that drugs our starting data. To give an idea of
the error that we introduced with the Bouguet’s toolbox, in 3-D space
a point has the sensitivity of the millimeter, while when we measure a
3-D point in the space we have to consider a large space (more or less 3

square meters as shown in Figure 5.1).

e Error due to measure of rotational angle of the camera: As we
show in Figure 5.1 we measured the angle between the CPGS and the

74

5.2. COMPUTATION ANGLES TEST

CGS that we chose. This measure is taken "by hand" and this procedure

introduce a possible error.

These are the possible sources of error in our angles computation. More-
over, working in a limited environment, the computational errors are more
evident; in fact in order to be able to work in this environment, we have to
use an high level of zoom and it underlines the possible mismatch between
computed angle and the target point.

If we work in outdoor environments these error are less evident. It is also possi-
ble to reduce the errors using the corrispondence between focal lenght and pixel
dimension in order to find the relation between one pixel point and the cor-

rispondent point in the CGS, but this improvement is not treated in this thesis.

Now we are going to prove the convergence of our implemented software

with a simulation.

7

CHAPTER 5. TEST RESULTS

5.3 Convergence test

For this test we simulate a patrolling system composed by five cameras with

these specifics: The patrolled perimeter can be assumed as a line that is defined

Camera Left bound Right bound Trasmission B. Clock Compute B. Clock

1 0 30 4 sec 4 sec
2 20 35 4 sec 4 sec
3 30 60 4 sec 4 sec
4 50 80 4 sec 4 sec
5 70 100 4 sec 4 sec

Table 5.2: Specification of cameras for convergence test

as a vector [0; 100] and all the cameras have the same velocity.

main_user

start

|shap

|SHAPSHOT process=2689 time=Mon Mar 21 104039 2011
left patralling bounds 70
right patrolling bound: 100
statuzi patrolling

SNAPSHOT process=2687 time=Mon Mar 21 10:40:39 2011
left patrolling bound: 30
right patrolling bound: B
status} patralling

SNAPSHOT process=2685 time=Mon Har 21 10:40:39 2011
left patrolling boundi O
right patrolling bound: 30
status? patrolling

SNAPSHOT process=2636 time=Hon Har 21 10:40:39 2011
left patrolling bound: 20
right patrolling bound: 35
statuzt patrolling

SNAPSHOT process=2623 time=Mon Har 21 10:40:39 2011
left patrolling bound: &0
right patralling bound: S0
statuzt patrolling

Figure 5.4: [mage test — Start of our patrolling software.

As we can see in the Figure 5.4 we start the system and we gain the con-
figuration described in the above table.

After a few seconds, the system reaches the convergence as shown in Figure 5.5.

76

5.3. CONVERGENCE TEST

right patrolling bound: 80
statust patrolling

snap
SHAPSHOT process=2687 time=Mon Mar 21 104140 2011
left patrolling bound: 35
right patralling bound: 56
statust patrolling
SMAPSHOT process=2688 time=Mon Mar 21 10:41:40 2011
left patrolling bound: 56
right patrolling bound: 78
statusy patrolling
SHAPSHOT procesz=2E89 time=Mon Mar 21 104140 2011
left patrolling bound: 78
right patrolling bound: 100
statust patrolling
SHAPSHOT process=2685 time=Mon Mar 21 10:41:40 2011
left patrolling bound: 0
right patrolling bound: 20
statuzy patrolling
SNAPSHOT process=2686 time=Mon Mar 21 10:41:40 2011
left patralling bound: 20
right patrolling bound: 35
status} patrolling

Figure 5.5: Image test — Convergence reached.

In this image we can see which is the optimal subdivision of patrolling
spaces; in particular we observe that the second camera (process 2686) responds
to its physical bounds. In fact, if we suppose that all the cameras do not have
any physical bounds, each camera should patrol a portion of path that is long
20.

Now we show what happen when we unplug (e.g. switch to patrolling) one
camera. With the command switch we warn the fourth camera as we report

in Figure 5.6.

77

CHAPTER 5. TEST RESULTS

main_user
zwitch 3
process 2798 has been warned: Success
anap

SMAPSHOT process=2796 time=Mon Mar 21 10:48:06 2011
left patralling bound: 20
right patrolling bound: 38
status? patrolling

SHAFSHOT process=2797 time=Mon Har 21 10:48:00 2011
left patrolling bound: 35
right. patrolling bound: B&
ztatust patrolling

SMAPSHOT process=2795 time=Hon Mar 21 10:48:06 2011
left patrolling bound: ©
right patrolling bound: 20
status: patrolling

SMAPSHOT process=2739 time=Mon Mar 21 10:48:05 2011
left patrolling bound: 77
right patrolling bound: 100
status? patrolling

SHAPSHOT process=2798 time=fon Har 21 1034800 2011
status? manual tracking

asyz_znap 1

START SMAPSHOT DOF SYSTEM press enter to stop snapshots

Figure 5.6: Image test — Switching the fourth camera.

After a few seconds, the adjacent cameras become aware of the absence of
the fourth camera and they resize their bounds in order to cover the area of

the deficient camera, as we can see in Figure 5.7.

main_user

right patralling bound: 35
status: patrolling

SMAPSHOT process=2798 time=Mon Mar 21 10:48:21 2011
status: manual tracking

SHAPSHOT process=2798 time=Mon Mar 21 10:48:22 2011
status: manual tracking

SMAPSHOT process=2797 time=Mon Mar 21 10:48:22 2011
left patrolling bound: 35
right patrolling bound: BO
status! patrolling

SMAPSHOT process=2796 time=Mon Mar 21 10:48:22 2011
left patralling bound: 20
right patrolling bound; 35
status? patrolling

SMAPSHOT process=2795 time=Mon Mar 21 10348322 2011
left patrolling bound: ©
right patrolling bound: 20
statust patrolling

SHAPSHOT process=2739 time=Mon Mar 21 10:48:22 2011
left patrolling bound: 700
right patrolling bound: 100
status: patrolling

Figure 5.7: Image test — Convergence reached even the fourth camera is unplugged.

We reconnect the camera and the system come back to the optimal coverage
state (Figure 5.8).

78

5.3. CONVERGENCE TEST

(] — 10

main_user

switch 3

process 2738 has been warned; Success

snap
SHAPSHOT process=2797 time=Hon

Har 21 10243333 2011

left patrolling bound: 35

right patralling bound:

status: patrolling
SHAPSHOT process=2799 time=Hon
left patrolling bound:

right patrolling bound:

status: patrolling
SHAPSHOT process=2796 time=Hon
left patrolling bound:

right patrolling bound:

status: patrolling
SMAPSHOT process=2795 time=Hon
left patrolling bound:

right patrolling bound:

status: patrolling
SHAPSHOT process=2798 time=Hon
left patrolling bound:
right patrolling bounds:
status: patrolling

B0

Har 21 10:43:33 2011
7

100

Har 21 10:43:33 2011
b1

35

Har 21 10:43:33 2011

20

p=

Har 21 10:43¢28 2011
50
a0

Figure 5.8: Image test
reaching of steady optimal convergence state.

Finally we close our system as we can see in the last figure (Figure 5.9).

Come back to patrolling of the fourth camera and the

@S ™ main_user

right patrolling bound: 20
statusi patrolling
SNAPSHOT process=2796 time=Mon Mar 21 10350313 2011
left patrolling bound: 20
right patrolling bound; 35
statusy patrolling
SNAPSHOT process=2798 time=Mon Har 21 10:50:13 2011
left patrolling bound: 56
right patrolling bound; 78
status? patrolling
SNAPSHOT process=2797 time=Mon Mar 21 10350313 2011
left patrolling bound: 35
right patrolling bound: 56
status: patrolling
SNAPSHOT process=27399 time=Mon Har 21 10:50:13 2011
left patrolling bound; 78
right patrolling bound: 100
statust patrolling
SNAPSHOT process=2735 time=Mon Mar 21 10350313 2011
left patrolling bound: 0
right patrolling bound: 20
statuz: patrolling

quit

process
Process
Process
Process
process

Process returned

statust patrolling
SMAPSHOT process=2797 time=Mon Mar 21 10:50:13 2011
left patrolling bound: 35
right patrolling bound: 56
statust patrolling
SHAPSHOT process=2793 time=Mon Mar 21 10:50:13 2011
left patrolling bound: 78

right patralling bound: 100
statust patrolling
SMAPSHOT process=2795 time=Mon Mar 21 10:R0:13 2011
left patralling bound: O

right patrolling bound: 20
status} patrolling

2796 has
2793 haz
2795 has
2797 haz
2738 ha=

been
been
been
been
been

0 (o)

cloged
closed
closed
cloged
closed

Press EWTER to continue,

Figure 5.9: Image test — Closing of our patrolling system.

carrectly
correctly
carrect.ly
correctly
carrectly

execution time : 185,117 =

79

CHAPTER 5. TEST RESULTS

5.4 Testbed test

In this section we analize the results of our test in the Videotec’s testbed. As
we mentioned in section 5.1, we have two cameras of different type and our
test consists in patrolling a line of three meters, as we can see in Figure 5.1.

We initialize the system with these parameters shown in the next table:

Camera Left bound Right bound Trasmission Clock Compute Clock Velocity
1 0 15 5 sec 5 sec 5m/s
2 0 15 5 sec 5 sec 5m/s

Table 5.3: Specification of cameras for the test on testbed

Our test consists of four steps:

1. Start the patrolling system: we launch our system with the command
sys_snap 1 and we gain a continuously monitoring of the process until

the system reaches the convergence state.

2. Switch the camera from patrolling to tracking activity: through
the command switch we close the patrolling activity and we launch the

tracking for the Ulisse standard camera.

3. Wait the camera to detect what is happened and observe its
behaviour: we wait few seconds before the Ulisse Compact camera dis-
covers that its neighbor camera are in tracking mode and we observe that

it comes back to its original bounds.

4. We reinsert the Ulisse standard camera we plug this camera to the

patrolling system and we wait the convergence state.

80

5.4. TESTBED TEST

Now we are going to show our results:
The images that we have taken are composed by three principal elements shown
in Figure 5.10.

&3 Applicatians places “system @/2|@ B M tracklab 4 () e B [8] e visr 1, 347 6M
= CcAM1 (%]

_—
Trovato ulisse numero 4
© camera is on and its input data filename is 1.conf

1 camera is on and its input data filename is 2.conf
Welcome to Distributed Patrolling Program

Patrolling comnands

nan: show principal patrolling command
start: start patrolling system

i take a snapshot of system and see all active pro
sys_snap [s]: track the systemoing snapshot every s seconds
switch [id]: switch process from track to patrol or viceversa

quit: quit

1
[l [fmain.user~ .. Il = Tsave for wid... |8 Ttracklab@trai.. [fmain.c- ho... [cam1 I3 camz [tmenu functs... Il Tshare -Fle B... | ftracklab-Fl... 'E) man user |l 88 {rracklsb@rra... | ez RIS

Figure 5.10: Testbed’s test — figures schema.
The Figure 5.11 and Figure 5.12 show the point one of our test. As we can

see the two cameras start from the same location and they do their activity.

In the terminal of Figure 5.12 we can see the convergence state of our system.

81

CHAPTER 5. TEST RESULTS

tracklab 4) [B [¥] s iar 1, 342 0M

&3 Applications places “system @2/ @ B M
cAM1

answer
answer [PC1TM4EXPO7800, 6000 , 5743Z]
Trovato ulisse numero 4
SNAPSHOT process=19814 time=Tue Mar 1 15:42:32 2011
left patrolling bound: 0
right patrolling bound: 15
us: ready
SNAPSHOT process=19817 time=Tue Mar 1 15:42:32 2011
left patrolling bound: 0
right patrolling bound: 15
status: ready
SNAPSHOT process=19817 time=Tue Mar
SNAPSHOT process=19818 time=Tue Mar
left patrolling bound: ©
right patrolling bound: 15
status: read)
1eft patrolling bound: 0
right patrolling bound: 15
status: ready

T ———
I8 main user 1'% Ttracklab@tra,

[l [fmain user .. I = Tsave for wid... || 88 ltracklab@tra. fmain.c- tho... |[31 cam1 '3 camz fmenu functi... | Ishare - File 8... Il - Ttrackiab - Fl

Figure 5.11: Testbed’s test — start of the system.

&3 Applicatians _places “system @@ Bl B

o caML

left patrolling bound: 0
right patrolling bound: 15
: ready
=19817 time=Tue Mar
rolling bound: ©
trolling bound: 7
read,

=19818 time=Tue Mar 1 15:42:42 2011
left patrolling bound: 7
right patrolling bound: 15
status:
SNAPSHOT process=19817 time=Tue Mar 1 15:42:43 2011
left patrolling bound: 0

y
SNAPSHOT process=19818 time=Tue Mar
left patrolling bound: 7
right patrolling bound: 15
status: ready

[l [Tmain user .. I = Tsave for vd... || 8 ftrackiab@tra. fmain.c- tho.... || cAML 0 camz "4 menu functy... [[.= Tshare -Fle B... | = ftracklab -l /D) manuser |l M ftracklab@tra. | s LIIRE |

Figure 5.12: Testbed’s test — state of convergence reached.

82

5.4. TESTBED TEST

In Figure 5.13 we rappresent the point two of the test and in Figure 5.14

we show how only one camera moves.

42 Applicatians _places “system Q@i[=|@ B B tracklab €4 s & [8] Tue W
o cAML [

SNAPSHOT process=19818 ti 1 15:42:59 2011
SNAPSHOT process=19817 time=Tue Mar 1 15:42:59 2011
left patrolling bound: &

right patrolling bound: 7
status: ready
left patrolling bound: 7
right patrolling bound: 15
status: ready
SNAPSHOT process=19818 time=Tue Mar 1 15:43:00 2011
left patrolling bound: 7
right patrolling bound: 15
status: ready
SNAPSHOT process=19817 time=Tue Mar 1 15:43:00 2011
left patrolling bound: 0
right patrolling bound: 7
status: ready

switch 1
iracess 19818 has been warned: Success

[l [fmain user~ ... I Tsave for vid... | 8 ftracklab@trai.. | fmain.c-ho... [T caml I3 camz 1% fmenu functs... Il Tshare - Fle B... | = ftracklab - ... I'E} man user |l & ftracklab@tra... | ez CIOHE 1

Figure 5.13: Testbed’s test — we warn Ulisse Standard camera.

Finally, in the last picture (Figure 5.15), we replug the camera to the sys-

tem.

As we can notice the images are not prefectly centered to the target line:
only one camera (Ulisse Compact) is closed to the path. It is caused by the
error introduced into the measures (as we have shown in 5.2).

We underline that the offsets are available only for the Ulisse Compact camera

thus the angles computation for the Ulisse standard are affected by offset error.

83

CHAPTER 5. TEST RESULTS

&3 Applicatians _places “system @@ B B
~ RN [=%]

status: manual Tracking

SNAPSHOT process=19817 time=Tue Mar 1 15:43:21 2011
Left patrolling hound: 0
cight patrolling bound:

st 3
SNAPSHOT process=19818 time=Tue Mar 1 15:43:21 2011
status: manual tracking
SNAPSHOT process=19817 time=Tue Mar 1 15:43:22 2011
left patrolling bound: ©
right patrolling bound: 15
+ read)
s5=19818 time=Tue Mar 1 15:43:22 2011
manual tracking
SNAPSHOT process=19817 time=Tue IEI 1 15:43:23 2011
left patrolling bound: &
right patrolling bound: 15
status: ready
SNAPSHOT process=19818 time=Tue Mar 1 15:43:23 2011
status: manual tracking

[l [Tmain user .. I = Tsave for vd... |8 ftrackiab@tra. fmain.c- tho.... [cAML 0 camz "4 menu funct... [[.= Tshare -Fle B... | = ftracklab -l ') manuser |l M ftracklab@tra. | s LIRS |

Figure 5.14: Testbed’s test — only Ulisse Compact camera moves itself.

&3 Applications places “system @2/ @ B M tracklab €4) e & [8] Tus Mar 1, 343 0M
- -

SNAPSHOT process=19817 time=Tue Mar
1eft patrolling bound: &
right patrolling bound: 15
status: ready
SNAPSHOT process=19818 time=Tue Mar 1 15:43:29 2011
status: manual tracking
SNAPSHOT proces:

=19817 time=Tue Mar 1 15:43:29 2011
left patrolling bound: ©
right patrolling bound: 15
status: ready

switch 1
process 19818 has been warned: Success

[PCITMAEXPO6108, 6400, 5743V]
imvatn ulisse numero 4

[l [fmain user .. I = Tsave for d... || 8 ltrackiab@tra. fmain.c - tho.... [caml o camz 1% tmenu functi... I Tshare - Fle 8... Il = rtrackiab - Fl... 'Y man usar || & ftracklab@tra

Figure 5.15: Testbed’s test — reconnection of the Ulisse Standard camera.

84

Chapter

Conclusions and future developments

Along this thesis we have treated all the features of perimetral patrolling prob-
lem with PTZ cameras, in particular the extension of the problem proposed in
[9]. The changes we have proposed are one first solution for our problem; in
fact in order to obtain a complete video surveillance system it is necessary to
analyze other improvements that we will give in this chapter. Let us analyze

our proposed improvements and their goodness:

e Extension of the proposed algorithm. From 1-D line to PTZ
definition: we have treated this improvement in chapter 3. In the sec-
tion 3.8 we have explained a diagram block in order to manage the entire
system, from 2-D image plane point to PTZ parameters that describes
anyone 3-D trajectory. It is evident that the calibration procedure de-
pends from the calibration tool that we use. In a future context, we
suggest to adopt another calibration toolbox to gain a more precisely
step of calibration and for creating a multi-camera calibration step that
we described in section 3.5.

In our thesis we have proposed a possible controller for the zoom and
the velocity. It is evident that they must be tested in a more complex
testbed in order to measure their effective state and improve them. In
particular, in a future development, Videotec propose some tests in its
outdoor testbed in Schio. From these tests it could be possible to dis-
cover some improvements, for example we can implement and analyze

the zoom control proposed or try to improve the velocity control with

85

CHAPTER 6. CONCLUSIONS AND FUTURE DEVELOPMENTS

the one provided by Videotec’s cameras.

e Software architecture: in the chapter 4 we have proposed our architec-
ture for patrolling software. In particular we made a distributed analysis
but we implemented this software in a centralized structure. In future,
we could change the interface of communication in order to adapt our
software to the Videotec’s agent that is called Albert.

From this analysis stems the need to obtain more results in future tests with

different configurations of the testbed.

There are also some improvements that we can discover analyzing the prob-
lem in its completeness. As we can see in section 4.3 the choice of velocity was
made offline. In fact we have to test different velocities along different path’s
segments and we have to take the minimum of these. In a future development
we will try to formulate a new distributed algorithm that adjusts the velocity
during the evolution of the algorithm.

Another important feature that we have to take into account is the develop-
ment of a mechanism that chooses for each camera the correct activity to be
assigned. This problem is called Task assignment problem. A solution to this
problem is given in [13] by the Automated Control Group of the Padova’s Uni-
versity. Starting from our work it is possible to extend and to implement new
tools that cover also these requests.

In order to realize an extension of our algorithm, it is possible to change the
target of our problem from patrolling along a perimeter to patrolling in an area.
We could think about an extension of this algorithm such as a preprocessing
step that consists in finding a path that, defined a zoom function, covers areas
instead of a simple 1-D line. In fact, in our analysis, we have taken the f.o.v of
one camera as a point, but in a real situation, it is an area that depends from
the level of zoom that we adopt.

In conclusion, our work is one of the first steps to gain a complete distributed
video surveillance system. We handled the first problems that arise adapting
the theoretical problem to the PTZ cameras. We are sure that our progress
could be helpful for the future problems, in particular when we are in presence

of integration problems with PTZ cameras.

86

Chapter

Acknowledgements

e Ringrazio la mia famiglia che, nonostante tutte le difficolta, mi ha sempre
sostenuto. Ringrazio anche i parenti tutti, in particolare coloro che non

ci sono pill: sono sempre nei miei pensieri.

e I miei amici di infanzia, con loro ne ho passate tante e di tutti i tipi.

Grazie di cuore.

e [miei colleghi di universita per i continui scambi di opinione e per questi
lunghi 5 anni passati insieme. Sopratutto per i momenti di grande im-
pegno, i lavori di gruppo, le pause tra una lezione e l'altra e le pause
pranzo in cui si iniziava a parlare del piu e del meno e si finiva a parlare
dei grandi problemi che affliggono il mondo. I soliti discorsi noiosi da

ingegneri.

e Ringrazio Piero Donaggio per tutto cio che mi ha insegnato in questi sei

mesi di tirocinio.

e Ringrazio il professore Luca Schenato che si é dimostrato, in ogni mo-
mento, disponibile e cordiale. Sono convinto che se tutti i professori

fossero come lui i problemi dell’Universita italiana si dimezzerebbero.

e Ed infine, ringrazio te. Tu che in questi anni sei sempre stata al mio
fianco in ogni momento anche in quelli pitt bui, e sai che ce ne sono

stati tanti. Questa laurea é anche un po tua, se sono arrivato a questo

87

CHAPTER 7. ACKNOWLEDGEMENTS

importante traguardo é grazie a te. Da oggi 5 Aprile 2011 inizia una
nuova avventura che spero mi porti a costruire un futuro assieme a te.

Ti amo.

88

Bibliography

1]

2]

3]

4]

5]

6]

7]

18]

F.R. Abate, Ed., The Ozford Dictionary and Thesaurus: The Ultimate
Language Reference for American Readers, Oxford University Press, 1996.

I. Hussein and D. Stipanovic, Effective coverage control using dynamic
sensor networks, dec. 2006, pp. 2747 - 2752.

[. Hussein and D. Stipanovic, Effective coverage control using dynamic

sensor networks with flocking and guaranteed collision avoidance, jul.
2007, pp. 3420 - 3425.

D. Kingston, R. Beard, and R. Holt, Decentralized perimeter surveillance
using a team of uavs, Robotics, IEEE Transactions on, vol. 24, no. 6, pp.
1394 - 1404, dec. 2008.

Y. Chevaleyre, Theoretical analysis of the multi-agent patrolling problem,
sep. 2004, pp. 302 - 308.

A. Almeida, G. Ramalho, H. Santana, P. Tedesco, T. Menezes, V. Corru-
ble, and C. Y., Recent advances on multi-agent patrolling, Lecture Notes
in Computer Science, vol. 3171, p. 4747483, 2004.

M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo, Equitable partitioning
policies for mobile robotic networks, IEEE Transactions on Automatic
Control, Provisionally Accepted, 2008.

M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo, Equitable partitioning
policies for robotic networks, in ICRA’09: Proceedings of the 2009 IEEE

89

BIBLIOGRAPHY

19]

[10]

[11]

[12]

[13]

international conference on Robotics and Automation. Piscataway, NJ,
USA: IEEE Press, 2009, pp. 3979 - 3984.

R. Carli, A. Cenedese, L. Schenato, Distributed Partitioning Strategies for
Perimeter patrolling, Proceedings of the ACC’11, 2011.

J. Heikkila, O. Silven, A Four-Step Camera Calibration Procedure with
Implicit Image Correction, In Proc. of IEEE Computer Vision and Pattern
Recognition, pp. 1106-1112, 1997.

P. Desai, K.S. Rattan, Indoor Localization and Surveillance using Wireless
Sensor Network and Pan/Tilt Camera, Proceedings of the IEEE 2009
National, 2010.

D. M. Raimondo, S. Gasparella, D. Sturzenegger, J. Lygeros, M. Morari,
A tracking algorithm for PTZ cameras, 2010.

A. Cenedese, F. Cerruti, M. Fabbro, C. Masiero, L. Schenato, Decen-
tralized task assignment in camera networks, Conference on Decision and
Control CDC10, 2010

90

Sitography

[14] http://en.wikipedia.org/wiki/Spline_(mathematics)
[15] http://www.vision.caltech.edu/bouguetj/calib_doc/

[16] http://en.wikipedia.org/wiki/Inter-process_communication

91

http://en.wikipedia.org/wiki/Spline_(mathematics)
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://en.wikipedia.org/wiki/Inter-process_communication

	Abstract
	Acronym
	Introduction
	Patrolling problem
	Previous work

	Videotec company
	Contributions
	Thesis outline

	A theoretical analysis of perimetral patrolling problem
	Definition of the problem
	Distributed optimal partitioning problem formulation

	Different strategies for solving the partitioning problem
	Asymmetric gossip-type algorithm

	Patrolling trajectories design: from 1-D to PTZ parameters
	Patrolling trajectory generation
	Definition of coordinate systems
	Camera modeling
	Intrinsic parameters
	Extrinsic parameters

	Cameras calibration and parameters estimation
	Single camera calibration
	Dual camera calibration
	Mapping from 3D CRF point to image plane point

	Multi-camera calibration
	Patrolling trajectory in PTZ parameters
	Simple PTZ camera model
	Offset based PTZ camera model
	Computation of Pan and Tilt angles
	Zoom control
	Velocity control

	3-D patrolling trajectry from image plane points
	Single camera with planar trajectory
	Dual camera with 3-D trajectory

	Review of mapping function: from image plane point to PTZ parameters
	Simulation

	Software architecture: design and implementation
	Requirements analysis of software
	Camera component analysis
	User process analysis

	Technical consideration about software development
	Input-Output analysis
	Review of overall system architecture
	Compute Bound controller
	Transmission Bound controller
	Patrolling controller
	Camera controller
	User controller
	Tracking controller

	Test results
	Testbed architecture
	Computation of path and angles in testbed

	Computation angles test
	Convergence test
	Testbed test

	Conclusions and future developments
	Acknowledgements

