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Abstract

The leverage effect refers to the well-known relationship between returns and volatility for an
equity. When returns fall, volatility increases. In a recent study, L. Catania and N. Nonejad
(2019) evaluate the role of the leverage effect in generating density forecasts of equity returns
using well-known observation and parameter-driven conditional volatility models. These models
differ in their assumptions regarding the parametric specification, the evolution of conditional
volatility process, and how the leverage effect is specified. Catania and Nonejad’s analysis
investigates the ability of a model to generate accurate density forecasts whether the leverage
effect is incorporated or not and compares different model-types using a large number of financial
time series. As a result, for each model type, the specification with the leverage effect tends
to generate more accurate density forecasts than its no-leverage counterpart. Moreover, among
the specifications considered, the Beta-t-EGARCH model is the top performer, regardless of
whether the same weight is attached to each region of the conditional distribution or the left
tail is emphasized.
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1 Introduction

1.1 Returns

The analysis of financial time series deals with the theory and practice of asset valuation over
time. The three fundamental elements involved in financial time series analysis are prices,
returns, and volatility. Prices represent the quotation of financial assets observed in official
financial markets. Returns represent the relative change in the price of a financial asset over
a given time interval. Volatility represents the most common measure of market uncertainty.
Differently from the others, volatility is not directly observable (Tsay, 2010).

Many financial studies involve return time series instead of price time series. In fact, for
average investors, return of an asset is a complete and scale-free summary of the investment
opportunity. Furthermore, return series present more attractive statistical properties than price
series, such as stationarity and ergodicity (Danielsson, 2011).

However, there are several definitions of an asset return. Let Pt be the price of an asset at
time index t and assume the asset pays no dividends.

Definition 1 (One-period simple return). The one-period simple net return is the change
in prices observed in time interval [t− 1, t] measured in percentage, indicated by Rt:

Rt =
Pt − Pt−1
Pt−1

. (1.1)

The corresponding one-period simple gross return is:

1 +Rt =
Pt
Pt−1

. (1.2)

In order to provide a more complete set of information, it is useful to analyze different time
intervals and horizons. Thus, it is necessary to convert daily returns to monthly or annual
returns, or vice versa. A multi-period (n-period) return is given by:

Rt(n) = (1 +Rt)(1 +Rt−1) . . . (1 +Rt−n+1)− 1

=
Pt
Pt−1

Pt−1
Pt−2

. . .
Pt−n+1

Pt−n
− 1

=
Pt
Pt−n

− 1.

(1.3)

where Rt(n) is the return over the most recent n-periods from date t− n to t.
An alternative return measure is continuously compounded returns.

Definition 2 (Continuously compounded returns). The continuously compounded return
is the logarithm of gross return, indicated by Yt:

Yt = log (1 +Rt) = log
Pt
Pt−1

= logPt − logPt−1. (1.4)
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Figure 1.1: S&P 500 index returns form 01-01-2000 to 06-04-2020.

The advantages of logarithmic returns become clearer when considering multi-period return:

Yt(n) = log (1 +Rt(n)) = log ((1 +Rt)(1 +Rt−1)(1 +Rt−2) . . . (1 +Rt−n+1))

= log (1 +Rt) + log (1 +Rt−1) + · · ·+ log (1 +Rt−n+1)

= Yt + Yt−1 + · · ·+ Yt−n+1.

(1.5)

Continuously compounded multi-period returns result from the sum of continuously
compounded single-period returns. Conversely from simple returns, it is much easier to derive
the time series properties of sums than of products. As a result, to introduce and model volatility,
continuously compounded returns are undoubtedly preferable.

1.2 Volatility

There is no unique or universally accepted way to define volatility. Although it plays a very
important role in financial econometrics, there is an inherent challenge in using it. Volatility is a
latent factor, thus, can not be directly observed (Catania and Nonejad, 2019). From a statistics
point of view, it is possible to introduce volatility using financial time series properties.

Figure 1.1 shows returns series for S&P500 index from 01-01-2000 to 06-04-2020. The
autocorrelation function (ACF) is a standard graphical method to explore correlation in
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Figure 1.2: ACF for S&P 500 returns along with a 95% confidence interval.
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Figure 1.3: ACF for S&P 500 squared returns along with a 95% confidence interval.

statistical data. The ACF measures how returns on one day are correlated with returns on
previous days. Evidence for predictability and linear dependence exist if such correlations are
statistically significant.

Analyzing figures 1.2 and 1.3, a key feature of returns appears. Most autocorrelations of S&P
500 returns lie within the interval. Conversely, the ACF of squared returns is significant even at
long lags. This behavior suggests the presence of heteroskedasticity and a form of dependence
peculiar for the case. This dependence is the consequence of volatility. Considering the following
heteroskedastic model for a return time series:

Yt = µt + σtεt (1.6)

where:

• Yt represents the logarithmic return at time t;

• µt = E[Yt|Ft−1] represents the expected value of return at time t conditional to the
information set at time t− 1, Ft−1;

• εt is a sequence of independent and identically distributed (iid) random variables with
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mean zero and variance 1.

Definition 3 (Conditional volatility). The conditional volatility is the standard deviation of
returns conditional to the information set, indicated by σt.

Considering model (1.6), σt =
√
V (Yt|Ft−1).

Consequently conditional volatility is a measure of return fluctuation over time. As a result,
it is also a financial risk measure.

Unconditional volatility, indicated by σ, is defined as volatility over an entire time period.
However, it can not be considered as relevant as conditional volatility in statistical and financial
terms. First, it is recognized that squared returns (and also the absolute value of returns) are
proxies for conditional volatility. Second, since conditional volatility changes over time, it is
partially predictable. Finally, the behavior of conditional volatility process and its structure
of dependence raise important questions regarding the stability of financial markets and the
impact of price variations on the economy. Accordingly, conditional volatility process is what
affects returns behavior over time and assets. Therefore, it is fundamental to model and predict
conditional volatility in order to foster the knowledge of returns and enhance financial decisions.

The purpose of the study by Catania and Nonejad (2019) is to produce a much more thorough
set of information about returns. Accordingly, they underline the lack of knowledge regarding
the ability of conditional volatility models to generate a complete description of the conditional
return distribution (return density). Thus, they provide a comparison of density forecasts among
different volatility models.

1.3 The Stylized Facts of Financial Returns

Conditional volatility models theory is grounded on the financial returns statistical properties.
Most financial returns exhibit three statistical properties. These are often called the three stylized
facts of financial returns:

• Volatility clusters;

• Fat tails;

• Nonlinear dependence.

1.3.1 Volatility clusters

This feature of financial time series gained widespread recognition following Engle’s publication
"Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United
Kingdom Inflation," in 1982. Traditional econometric models used to assume a constant one-
period forecast variance. In order to generalize this implausible assumption, Engle introduced the
definitions of conditional and unconditional volatility. Since conditional volatility changes over
time, its cycles are widely studied. According to Danielsson (2011), the magnitudes of volatilities
of financial returns tend to cluster together. As a result, financial market goes through periods
when volatility is high and other periods when volatility is low. These phenomena are known as
volatility clusters.
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This property has massive implications in returns distribution. For example, as shown in
figure 1.3 squared returns are highly correlated being proxies for conditional volatility. Moreover,
volatility cycles generate returns changes. The relationship between returns and changes in
volatility has been of great interest for researchers and risk managers in financial markets
(Catania and Nonejad, 2019).

1.3.2 Fat tails

Most of the financial concepts developed during the first half of the 20th century rest upon
the assumption that returns follow a normal distribution (Rachev, Menn, and Fabozzi, 2005).
However, this hypothesis cannot be verified through empirical evidence. Accordingly, in his
work, Mandelbrot (1963) underlines the presence of fat tails. He highlighted that returns series
are characterized by the much higher probability of relatively large and small outcomes than
normal distribution would predict. Consequently, following Mandelbrot statement, fat-tailed
property has become one of the stylized facts of financial returns.

This property has important consequences in the field of finance. Many financial applications
regarding portfolio theory and derivative pricing break down in the absence of normality.
Moreover, the non-normality of returns is crucial in risk management. As explained in
Danielsson (2011), an assumption of normal distribution for risk calculations leads to a gross
underestimation of risk.

1.3.3 Nonlinear dependence

The final stylized fact of financial returns is nonlinear dependence. It consists on the observation
that the dependence between different return series changes according to market conditions. In
1985, Hinich and Patterson were the first to provide evidence of non-linear dependence in NYSE
stock returns. The market crash of 1987 shifted the paradigm. According to Hiremath (2014),
the crash is the major event which influenced the role of nonlinearities in dynamics of stock
returns.

This property plays a crucial role in many financial applications such as risk analysis. In
fact, nonlinear dependence explains some financial series empirical characteristics. This can be
demonstrated, for example, by empirical observations of asset prices and returns correlations. In
the former case, most of the time, the prices of assets move relatively independently from each
other, but in a crisis they all drop together. In the latter case, returns correlations are usually
lower in bull markets than in bear markets.1 Models of nonlinear dependence allow to capture
such phenomena and to change dependence structure according to market conditions.

2 The Leverage Effect

This section focuses on the relationship between equity returns and volatility. According to
financial literature, this relationship and its impacts on financial markets are known as the
leverage effect. The leverage effect outlines two crucial empirical facts:

1A bull market is a market that is on the rise and where the economy is sound; while a bear market exists in
an economy that is receding, where most stocks are declining in value (Kramer, 2020).
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• When returns fall, volatility increases, thus, returns and volatility are negatively correlated;

• This correlation is asymmetric: it depends on whether returns are negative or positive.

According to Catania and Nonejad (2019), variations in equity prices and the affinity between
price variations and volatility can imply huge losses or gains to investors involved in financial
markets. Therefore, it is not surprising that since 1950’s, the sources and the consequences of
the leverage effect are topics of great interest for financial researchers.

2.1 The standard theory

The theoretical background on which the leverage effect is rooted is the Modigliani-Miller
framework. In their work "The Cost of Capital, Corporation Finance and the Theory of
Investment" (1958), they provide the principle for modern thinking on capital structure. This
principle states that the fundamental asset of a corporation is the whole firm. (Figlewski and
Wang, 2000). Thus, considering a firm with equity and debt in its capital structure, under the
simplifying assumption that the debt is risk free, changes in firm value are entirely borne by the
stock.

From this perspective, Black (1976) and Christie (1982) elaborate the most commonly
recognized standard explanation for the leverage effect phenomenon. This theory is known
as the leverage hypothesis. It suggests that a fall in equity value increases the debt to equity
ratio. Consequently, the rise in riskiness of a firm generated translates into a higher volatility
level (Catania and Nonejad, 2019).

A simpler version of this theory is presented in Figlewski and Wang (2000).
Consider a firm with equity and debt in its capital structure and assume the debt is risk free.

Let V = E + D, represent the total firm value. E = N ∗ S denotes the total current market
value of the firm’s N outstanding shares of stock with current market price S. D is the value of
the debt. Suppose there is a random change in overall firm value, ∆V .

All of the change in firm value will flow through the stock, so ∆E = ∆V . A percentage
change in the stock price is produced as follows.

∆S

S
=

∆E

E
=

∆V

V
∗ V
E

=
∆V

V

(
E +D

E

)
=

∆V

V

(
1 +

D

E

)
(2.1)

The percentage change in the stock price equals the percentage change in firm value times
one plus the debt / equity ratio. The more levered the firm is (high D/E), the more volatile the
stock will be relative to the total firm. That is expressed in the following equation.

σS = σE = σV ∗ L (2.2)

where σS is the volatility of the return of the stock; σE is the volatility of total equity; σV
is the volatility of the firm; and L = (1 + D/E) is the measure of leverage. If σV is constant,
the stock volatility σS will rise when the stock price goes down and fall when it goes up. Hence,
the empirical observed connection between stock returns and volatility changes is understandable
and consistent with the established principles of modern finance.
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2.2 Alternative interpretations

The consequences provoked by the leverage effect on financial markets are plentiful. For this
reason, trying to analyze them using solely the leverage hypothesis will lead to incomplete results.
Consequently, in financial literature scholars are feeling the need for alternative theories.

In this context, Bekaert and Wu (2000) investigate the time-varying risk premiums theory,
a different interpretation for the relationship between equity returns and volatility.

Time-varying risk premiums theory introduces a new point of view to study the leverage effect
based on the concept of the volatility feedback. The volatility feedback is the set of consequences
on stock prices caused by the volatility changes and the volatility clustering. Accordingly, since
the volatility of the returns can be very different at different times, it seems plausible that
changes in volatility may have important effects on required stock returns, thus, on the level
of stock prices. As highlighted by Bekaert and Wu (2000), an anticipated increase in volatility
raises the required return on equity, leading to an immediate stock price decline.

In their work "Asymmetric Volatility and Risk in Equity Markets" (2000) Bekaert and Wu
find that is important to include leverage ratios in volatility dynamics, but that their economic
effects are mostly dwarfed by the volatility feedback mechanism. In fact, volatility feedback
is enhanced by a phenomenon called covariance asymmetry. This phenomenon consists on the
increasing of the conditional covariances with the market, namely the firm risk measure. It is
asymmetric because it is statistically significant only following negative market news.

Moreover, Bekaert and Wu’s work is remarkable due to the stocks it focus on. Whereas most
of the preceding empirical analysis has focused on U.S. stock returns, their empirical application
uses Japanese stock returns from the Nikkei Index. Their results indicate that asymmetry is an
important feature of stock market volatility in every market.

Thanks to Bekaert and Wu’s work, volatility feedback theory has been categorized as one of
the most accredited explanations for the negative relation between equity returns and volatility.
As a result, its differences and advantages compared to the leverage hypothesis have been widely
studied.

The main difference between the leverage hypothesis and the volatility feedback theory
are the roles played by return shocks and volatility changes. The leverage hypothesis claims
that return shocks lead to changes in conditional volatility. The volatility feedback hypothesis
contends that return shocks are caused by changes in conditional volatility. Furthermore, the
volatility feedback theory emphasizes the asymmetric behavior of the volatility. Which effect
is the main determinant of the negative relationship between returns and volatility remains
an open question. However, it appears clear that the leverage hypothesis cannot explain the
full volatility response. Therefore, it is appropriate to analyze some of the most interesting
explanations based on the volatility feedback.

French, Schwert and Stambaugh (1987) examine the intertemporal relation between risk and
expected returns. In particular, they find evidence that the expected market risk premium,
namely the expected return on a stock portfolio minus the risk-free interest rate, is positively
related to the volatility of the stock market. Although their empirical result does not explain the
leverage effect at the firm level (explained by Bekaert and Wu’s covariance asymmetry), their
work was fundamental to lighten up the attention on the volatility feedback theory.
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Campbell and Hentschel (1992) underline that the volatility feedback has the potential to
explain crucial empirical facts about stock returns. In particular, they find evidence that large
negative stock returns are more common than large positive ones, so stock returns exhibit
negative skewness. In fact, the volatility feedback amplifies large negative stock returns and
dampens large positive returns, increasing the potential for large crashes. Moreover, they point
out the necessity to modify the classic formulation of the conditional volatility models in order
to include the asymmetric behavior of volatility.

Finally, Figlewski and Wang (2000) demonstrate the lack of empirical evidence of the leverage
hypothesis. In fact, they argue that the asymmetry is the real nature of the phenomenon.
Focusing on large stocks contained in the Standard and Poors 100 stock index (OEX) they
observe that the leverage effect appears to be much more related to falling stock prices than to
leverage per se. Consequently, the leverage effect should more properly be termed as a "down
market effect".

In conclusion, even if the true explanation for the phenomenon is yet to be determined, the
leverage effect has become one of the stylized facts that it is felt need to be incorporated into
models of time-varying volatility (Figlewski and Wang, 2000).

3 Conditional Volatility Models

This section presents the classes of conditional volatility models used in this analysis. Due
to conditional volatility nature, conditional volatility models are particular specifications of
time-varying parameter models. Cox (1981) categorizes time series models with time-varying
parameters into two classes: observation-driven models and parameter-driven models.

In an observation-driven model, current parameters are deterministic functions of lagged
dependent variables as well as contemporaneous and lagged exogenous variables. In this
approach, although parameters are stochastic, they are perfectly predictable one-step-ahead
given past information. The likelihood function for observations-driven models is available in
closed-form through the prediction error decomposition. This feature leads to simple estimation
procedures and contributes to the popularity of this class of models in applied econometrics and
statistics.

In parameter-driven models, parameter vary over time as dynamic processes with
idiosyncratic innovations. Analytical expressions for the likelihood function are not available
in closed-form for these models. Likelihood evaluation, therefore, becomes more involved for
parameter-driven models, typically requiring the use of efficient simulation methods (Koopman,
Lucas, and Schart, 2016).

As regards conditional volatility, in an observation-driven model conditional volatility is a
deterministic function of lagged observations and conditional volatilities. In the parameter-
driven specification, conditional log-volatility is modeled as an unobserved model with
idiosyncratic innovations. (Catania and Nonejad, 2019).
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3.1 Observation-driven Conditional Volatility Models

3.1.1 GARCH Models

By far, the most popular approach to model conditional volatility is the Generalized
Autoregressive Conditional Heteroscedasticity specification, introduced in Engle (1982) and
Bollerslev (1986).

As previously mentioned, Engle (1982) defines the distinction between the previous
implausible assumption of a constant conditional volatility and the modern time-varying
conditional volatility. Thus, Engle proposes a new class of stochastic processes called
Autoregressive Conditional Heteroscedastic (ARCH) processes. These processes are mean
zero, serially uncorrelated with nonconstant variances conditional on the past, but constant
unconditional variance. For such processes, the recent past gives information about the one-
period forecast variance (Engle, 1982).

In order to understand the reason for which ARCH framework represents the most attractive
approach to model conditional volatility, it seems appropriate to analyze Engle’s steps to
formalize the ARCH model.

If a random variable yt is drawn from the conditional density function f(yt|yt−1), the forecast
of today’s value based upon the past information, under standard assumptions, is simply
E[yt|yt−1], which depends upon the value of the conditioning variable yt−1. The variance of
this one-period forecast is given by V (yt|yt−1). This expression recognizes that the conditional
forecast variance depends upon past information and may, therefore, be a random variable.

However, for econometric models previous to Engle’s work, the conditional variance does not
depend upon yt−1. In particular, considering the first order autoregression:

yt = γyt−1 + εt εt ∼ IID(0, σ2)

E[yt|yt−1] = γyt−1 E[yt] = 0

V (yt|yt−1) = σ2 V (yt) =
σ2

1− γ2

It is clear the necessity to introduce heteroscedasticity in the conditional variance term to
allow the forecast variance to depend upon the past information. The standard approach of
heteroscedasticity is to introduce an exogenous variable xt, which predicts the variance. With
a known zero mean, the model might be yt = εtxt−1 and the conditional variance σ2xt−1.
However, this standard solution is unsatisfactory, because it requires the exogenous variable to
be completely specified. Due to this difficulty, this correction is rarely considered in financial
time series.

An alternative model that allows the conditional variance to depend upon the past realization
of the series is the bilinear model described by Granger and Andersen (1978). In their formulation
the model is yt = εtyt−1 and the conditional variance is σ2y2t−1. However, the unconditional
variance is either zero or infinity, which makes this an unattractive formulation.

It is Engle’s solution the formulation that fills the previous gap, providing the generalization
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required.

yt = εth
1
2
t

ht = α0 + α1y
2
t−1 V (εt) = 1

Adding the assumption of normality, it can be more directly expressed in terms of Ft, the
information set available at time t:

yt|Ft−1 ∼ N(0, ht) (3.1)

ht = α0 + α1y
2
t−1 (3.2)

The variance function can be expressed more generally as

ht = h(yt−1, yt−2, . . . , yt−p, α) (3.3)

where p is the order of the ARCH process and α is a vector of unknown parameters.
The ARCH model has a variety of characteristics, which makes it attractive for econometric

applications. For example, it allows to capture important stylized facts of financial time series,
such as volatility clustering. Moreover, the likelihood function is available in closed form via the
error decomposition. (Catania and Nonejad, 2019).

Conversely, the ARCH model presents also some weaknesses (Tsay, 2010):

• Although the ARCH model is simple, it often requires many parameters to adequately
describe the volatility process for an asset return;

• The model assumes that positive and negative shocks have the same effects on volatility
because it depends on the square of the previous shocks;

• The ARCH model is rather restrictive. For instance, α1 of an ARCH(1) model must be in
the interval [0, 13 ] if the series has a finite fourth moment. In practice, it limits the ability
of ARCH models with Gaussian innovations to capture excess kurtosis;

• ARCH models are likely to overpredict the volatility because they respond slowly to large
isolated shocks to the return series.

As a result, this model still needs some degree of specification. For this reason, Bollerslev
notices that empirical applications of the ARCHmodel call for a more parsimonious specification,
which keeps the attractive characteristics of Engle’s framework. In his work "Generalized
Autoregressive Conditional Heteroskedasticity" (1986) he introduces a generalization of the
ARCH model. His GARCH model is:

εt|Ft−1 ∼ N(0, ht), (3.4)

ht = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjht−j

= α0 +A(L)ε2t +B(L)ht,

(3.5)
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where L is the lag operator, and

p ≥ 0, q > 0

α0 > 0, αi ≥ 0, i = 1, . . . , q,

βj ≥ 0, j = 1, . . . , p.

Therefore, in the ARCH(q) process the conditional variance is specified as a linear function of
past sample variances only, whereas the GARCH(p,q) process allows lagged conditional variances
to enter as well.

Despite being more parsimonious, the standard GARCH model has the same weaknesses
as the ARCH model. Modifications of the standard GARCH formulation allow the model to
account for numerous stylized facts of financial returns. Financial returns often exhibit excess
conditional kurtosis, which is not properly accounted for by the conditional Gaussian distribution
in equation (3.4). Bollerslev (1987) introduces the Student-t-GARCH model, which substitutes
the conditional Gaussian distribution in equation (3.4) with the Student-t distribution.

The conditional volatility equation (3.5) responds equally to positive and negative shocks.
Namely, it does not account for the leverage effect. To address this issue, several researchers
suggest different solutions, all introducing the asymmetric impact of negative and positive return
innovations directly in the conditional volatility equation. One example is the Zakoian (1993)
and Glosten, Jagannathan, and Runkle (1994) formulation of the T-GARCH or GJR-GARCH
model. The T-GARCH (1,1) process with asymmetric response on volatility is defined by the
following dynamic equation:

εt ∼ ID(0, ht) (3.6)

ht = γ + αε2t−1 + ρD−t−1ε
2
t−1 + βht−1, (3.7)

where

D−t−1 =

1, if εt−1 < 0

0, if εt−1 ≥ 0

In this model positive innovations have an impact measured by the coefficient α, whereas
negative ones have an impact measured by α + ρ. If ρ is a positive value, the leverage effect is
accounted for by the model. This model is one of the most popular asymmetric GARCH models.

An alternative GARCH model with asymmetric response to innovations is the E-GARCH
(exponential GARCH) by Nelson (1991). E-GARCH (1,1) formulation is:

εt = ehtζt ζt ∼ ID(0, 1) (3.8)

ht = γ + α(|ζt−1| − E[|ζt−1|]) + ρζt−1 + βht−1 (3.9)

In this model γ is the level of conditional log-volatility, α and β determine the impact of
past observations and conditional volatilities on ht, and ρ controls the leverage effect. Due
to the exponential link in function (5.1), conditional volatility is always positive and the only
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constraint imposed during the estimation procedure to ensure stationarity of ht is |β| < 1.
When the innovation ζt > 0, then α + ρ determine the response to past observations. When
ζt < 0, then the magnitude of the response is α − ρ. Evidently, when ρ < 0, the leverage
effect is accounted for by the model (Catania and Nonejad, 2019). Due to the limited number
of restrictions imposed by Nelson’s formulation and its liability proved by its use in following
literature (Harvey and Sucarrat (2014) and Harvey and Lange (2018)), this model is considered
a useful tool to generate conditional volatility forecasts.

Furthermore, in an interesting study, Hansen and Lunde (2005) 330 GARCH-type models in
terms of their ability to describe the conditional variance and to generate accurate conditional
volatility forecasts. The out-of-sample comparison study finds no evidence that a simple
GARCH(1,1) is outperformed by more sophisticated models in the context of exchange rate data.
Conversely, the simple GARCH (1,1) model is inferior to models that incorporate the leverage
effect in the context of equity return data. Confronting such a high number of models, this study
demonstrates the importance and the diffusion of GARCH framework for the understanding of
conditional volatility.

3.1.2 GAS models

Recently, Creal, Koopman, and Lucas (2013) and Harvey (2013) propose a new class
of observation-driven models referred to as Generalized Autoregressive Score (GAS) or,
equivalently, Dynamic Conditional Score (DCS) models. Similar to GARCH, estimation of GAS
models is straightforward using maximum likelihood techniques. However, contrary to GARCH,
the mechanism to update the parameters occurs through the scaled score of the conditional
distribution for the observable variables (Catania and Nonejad, 2019).

Creal, Koopman, and Lucas (2013) argue that the score function is an effective choice for
introducing a driving mechanism for time-varying parameters. In particular, by scaling the
score function appropriately, standard observation-driven models, such as the GARCH, can be
recovered. Consequently, the GAS model has the same advantages of the other observation-
driven models. For this reason, extensions to asymmetric, long memory, and other more
complicated dynamics can be considered without introducing further complexities. The main
difference among GAS and the other observation-driven approaches is that the GAS model is
based on the score, thus, it exploits the complete density structure and not just means and
higher moments. Creal, Koopman, and Lucas explain the main GAS framework characteristics
through their basic GAS model specification.

Let the N × 1 vector yt denote the dependent variable of interest, ft the time-varying
parameter vector, xt a vector of exogenous variables (covariates), all at time t, and θ a vector
of static parameters. Define Y t = (y1, . . . , yt), F

t = (f0, f1, . . . , ft), and Xt = (x1, . . . , xt). The
available information set at time t consists of (ft,Ft), where

Ft = (Y t−1, F t−1, Xt−1), t = 1, . . . , n

The assumed conditional distribution that generates yt is the observation density:

yt ∼ p(yt|ft,Ft; θ) (3.10)
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Furthermore, the assumed mechanism for updating the time-varying parameter ft is given by
the familiar autoregressive updating equation

ft+1 = γ +

p∑
i=1

Aist−i+1 +

q∑
j=1

Bjft−j+1 (3.11)

where γ is a vector of constants, coefficient matrices Ai and Bj have appropriate dimensions for
i = 1, . . . , p and j = 1, . . . , q, while st is an appropriate function of past data, st = st(yt, ft, Ft; θ).
The unknown coefficients in (3.11) are functions of θ; namely γ = γ(θ), Ai = Ai(θ), and Bj =

Bj(θ) for i = 1, . . . , p and j = 1, . . . , q. The main contribution of Creal, Koopman, and Lucas’s
work is the particular choice for the driving mechanism st that is applicable over a wide class of
observation densities and nonlinear models.

Their approach is based on the observation density in function (3.10) for a given parameter
ft. When an observation yt is realized, the time-varying parameter is updated to the next period
t+ 1 using (3.11) with

st = St∇t, ∇t =
∂ ln p(yt|ft,Ft; θ)

∂ft
, St = S(t, ft,Ft; θ) (3.12)

where S(·) is a matrix function.
The use of the score function for updating ft is intuitive. It defines a steepest ascent direction

for improving the model’s local fit in terms of the likelihood or density at time t, given the current
position of the parameter ft. This provides the natural direction for updating the parameter. In
addition, the score depends on the complete density, and not only on the first- or second-order
moments of the observations yt. This distinguishes the GAS framework from most of the other
observation-driven approaches in the literature.

In addition, via its choice of the scaling matrix St, the GAS model allows for additional
flexibility in how the score is used for updating ft.

Considering the basic model yt = htεt where the Gaussian disturbance εt has zero mean
and unit variance, while ht is a time-varying standard deviation. It is simple to show that the
GAS(1,1) model with St = I−1t|t−1 and ft = h2t reduces to:

ft+ = γ +A1(y
2
t − ft) +B1ft (3.13)

which is equivalent to the standard GARCH(1,1) model as given by:

ft+1 = γ + α1y
2
t + β1ft, ft = h2t (3.14)

As previously mentioned, the flexibility of GAS framework allows the model to account for
numerous stylized facts of financial time series. As regards this analysis, a deeper look at how
a GAS model specifies the leverage effect seems appropriate. Similar to GARCH, the leverage
effect is incorporated directly in the conditional volatility equation. There will be an additional
parameter (as ρ in GARCH model), which regulate the asymmetric response to negative and
positive innovations.

As a result, GAS model is a class of observation-driven models with similar degree of
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generality as nonlinear non-Gaussian state space models, which, compared to GAS, are more
complicated to estimate. In a recent and interesting study, Koopman, Lucas, and Schart (2016)
have identified two main findings about GAS models using Monte Carlo simulations.

First, when the data generating process is a state space model, the predictive accuracy of a
(misspecified) GAS model is similar to the one of a (correctly specified) state space model. This
holds, in particular, when the conditional observation density for the GAS specification allows
for heavy tails. For the nine model specifications considered, the loss in mean square error from
using a GAS model instead of the correct state space specification is most of the time inferior
to 1% and never higher than 2.5%.

Second, they have found that GAS models outperform many of the familiar observation-
driven models in terms of generating accurate forecasts. By relying on the full density structure
to update the time-varying parameters, GAS models capture additional information in the data
that is not exploited by traditional observation-driven models.

They conclude that it is possible to obtain high predictive accuracy for many relevant time-
varying models without the need to specify and estimate cumbersome and computationally
brutal parameter-driven models. In most cases, a GAS model alternative is available, and it
is both accurate and considerably easier to estimate. Therefore, GAS models are effective new
tools for conditional volatility study that often lead to important forecasting gains.

3.2 Parameter-driven Conditional Volatility Models

3.2.1 Stochastic Volatility Models

An alternative to GARCH and GAS models is represented by the stochastic volatility (SV)
model introduced in Taylor (1986), which is the example of parameter-driven volatility model in
this analysis. In SV framework, conditional log-volatility is modeled as an unobserved process
with idiosyncratic innovations. Typically, it is assumed that conditional log-volatility follows an
autoregression of order one, AR(1), which is the simplest ARIMA model specification. (Catania
and Nonejad, 2019).

A closed form likelihood function is not available for the SV framework. The difficulty
in likelihood evaluation is the reason for the limited empirical applications of these models.
However, scholars provide several methods for simulated maximum likelihood (SML) estimation
in order to use SV models and analyze their advantages compared to GARCH-type models.

In SV models, unlike the GARCH framework, both the mean and the log-volatility equations
have separate error terms. Accordingly, the basic SV model specification is (Malik and Pitt,
2011):

yt = εte
(
ht
2
) (3.15)

ht+1 = µ(1− φ) + φht + σηηt, t = 1, . . . , T (3.16)

where (
εt

ηt

)
∼ N(0,Σ), Σ =

(
1 0

0 1

)
(3.17)

Here yt is the observed return, ht are the unobserved time-varying log-volatilities, µ is the
drift in the state equation, ση is the variance of log-volatility and φ is the persistence parameter.
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Typically, it is imposed that |φ| < 1, so that it results in a stationary process with the initial
condition that

h1 ∼ N(0, σ2η/(1− φ2)). (3.18)

In some regards, SV has proven to be more attractive than GARCH-type models. Jacquier,
Polson, and Rossi (1994) find that compared to GARCH, SV yields a better and more robust
description of the autocorrelation pattern of the squared returns. Kim, Shephard, and Chib
(1998) demonstrate that a simple SV model typically fits data just as well as more heavily
parameterized GARCH models. Both the studies provide also a practical likelihood-based
framework to analyze inference and prediction for stochastic volatility models.

As a result, Malik and Pitt (2011) collect an high number of alternatives to provide a unified
methodology for conducting likelihood-based inference on the unknown parameters of a general
class of discrete-time stochastic volatility models. Moreover, they extend the basic formulation
of the SV model in order to incorporate the leverage effect. Differently from observation-driven
models, the leverage effect is expressed through a correlation coefficient between return and log-
volatility innovations. Consequently, the leverage effect is introduced modifying the Σ matrix
in equation (3.21). The SV model specification with leverage effect is, therefore:

yt = εte
(
ht
2
) (3.19)

ht+1 = µ(1− φ) + φht + σηηt, t = 1, . . . , T (3.20)

where (
εt

ηt

)
∼ N(0,Σ), Σ =

(
1 ρ

ρ 1

)
(3.21)

and ρ measures the leverage effect.
Finally, Malik and Pitt (2011) propose a new hybrid volatility model, the SV-GARCH model,

which attempts to bridge elements of SV and GARCH specifications. This model nests the
standard GARCH model as a special case. It has the attractive feature of inheriting the same
unconditional properties of the standard GARCH model and, adding a single parameter in the
specifications, it also enables the consideration of the conditional heavy-tailed distribution of
log-returns.

In conclusion, practical difficulties have kept financial researchers from using the SV model
even though it offers a natural alternative to ARCH, and has some advantages in prediction of
unobserved variances.

4 Forecast evaluation methodology

This section presents the forecast evaluation methodology used in the analysis by Catania and
Nonejad (2019). According to Gneiting and Raftery (2007), with the continued proliferation
of probabilistic forecasts in financial, environmental and meteorological applications, there is a
critical need for principled techniques for the comparison and ranking of density forecasts.

In order to evaluate density forecasts from different volatility models, it is useful to follow
Amisano and Giacomini’s (2007) framework. In this framework, density forecasts are considered
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in a time series context, in which a rolling window consisting of the past m observations is used
to fit a density forecast for the observation that is k time steps ahead. Specifically, suppose that
Z1, . . . ,ZT is a stochastic process, which can be partitioned as Zt = (Yt,Xt) where Yt is the
variable of interest and Xt is a vector of predictors. Suppose that T = m + n + k. At times
t = m, . . . ,m+n, density forecasts f̂t+k and ĝt+k for Yt+k are generated, each of which depends
only on Zt−m+1, . . . ,Zt. In this framework, the only requirement imposed on how the forecasts
are produced is that they are measurable functions of data in the rolling estimation window.
A forecast evaluation methodology is a tool that compares and ranks the competing density
forecasting methods (Gneiting and Ranjan, 2011).

The comparison typically uses a proper scoring rule. A scoring rule is a loss function S(f, y),
whose arguments are the density forecast f and the realization y of the future observation Y .
The density forecast is ideal if the sampling density of Y is indeed f . Hence, it is critically
important that a scoring rule be proper, in sense that

Ef [S(f, Y )] =

∫
f(y)S(f, y)dy

≤
∫
f(y)S(g, y)dy = Ef [S(g, Y )]

(4.1)

for all density functions f and g. A scoring rule is strictly proper if (4.1) holds, with equality if
and only if f = g almost surely. Clearly, a strictly proper scoring rule prefers the ideal forecaster
over any other. Scoring rules are taken to be negatively oriented penalties, therefore, the lower,
the better.

Density forecast methods are then ranked by comparing their average scores. Specifically, if

S̄fn =
1

n− k + 1

m+n−k∑
t=m

S(f̂t + k, yt+k) S̄gn =
1

n− k + 1

m+n−k∑
t=m

S(ĝt + k, yt+k) (4.2)

then f is preferred if S̄fn < S̄gn, and g is preferred otherwise. Amisano and Giacomini (2007)
consider tests of equal forecast performance based on the test statistic

tn =
√
n
S̄fn − S̄gn
σ̂n

, (4.3)

where

σ̂2n =
1

n

k−1∑
j=−(k−1)

m+n−|j|∑
t=m

∆t,k∆t+|j|,k and ∆t,k = S(f̂t + k, yt+k)− S(ĝt + k, yt+k), (4.4)

as proposed by Diebold and Mariano (1995). Assuming suitable regularity conditions, the
statistic tn is asymptotically standard normal under the null hypothesis of equal forecast
performance.

In Catania and Nonejad’s analysis, density forecasts from different volatility models are
evaluated based on the weighted Continuous Ranked probability Score (wCRPS), introduced in
Gneiting and Ranjan (2011). The wCRPS method has advantages over the usually employed
log-score criterion (the logarithm of the predictive density evaluated at the observed outcome),
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Table 4.1: This table reports the weight functions for wCRPS. φ(z) and Φ(z) denote the pdf
and cdf of a N ∼ (0, 1) distribution.

Emphasis Weight function

Uniform w(z) = 1
Center w(z) = φ(z)
Tails w(z) = 1− φ(z)/φ(0)
Right tail w(z) = Φ(z)
Left tail w(z) = 1− Φ(z)

namely, it is less sensitive to outliers and can better account for predictions that are close to
but not equal to the outcome. Furthermore, Gneiting and Ranjan (2011), using a GARCH (1,1)
specification, demonstrate that it is invalid to use weighted log-scores to emphasize certain areas
of the distribution.

The wCRPS for a model i measures the average absolute distance between the empirical
cumulative distribution function (CDF) of yt+h, which is simply a step function in yt+k, and the
predicted CDF that is associated with model i’s predictive density. Furthermore, the comparison
between the empirical and the predicted CDF can also be weighed by a function that emphasizes
particular regions of interest, for example, the center or the tails of the predictive density. We
define wCRPS for model i at time t+ h conditional on the information set at time t as

wCRPSit+h|t =

∫ ∞
−∞

w(z)

(
F̂ it+h|t(z)− I(yt+h<z)

)2

dz, (4.5)

where w(z) is the weight function and F̂ it+h|t(z) is the h-step ahead cumulative density function
of model i, evaluated at z. The simplest case is w(z) = 1, in which the same amount of weight on
each region of the predictive density is considered. Besides, different alternative formulations of
w(z) is considered, see Table 4.1. Through the weight function, a better understanding of where
the eventual improvements from one specification relative to another come from is obtained.
However, (4.5) is not available in closed form. Therefore, the following approximation is used:

wCRPSit+h|t ∼
(yu − yl)
K − 1

K∑
k=1

w(yk)

(
F̂ it+h|t(yk)− I(yt+h<yk)

)2

, (4.6)

where
yk = yl + k

yu − yl
K

. (4.7)

In (4.6), yu and yl are the upper and lower values, which define the range of integration. The
accuracy of the approximation can be increased to any desired level by K. In this analysis, the
set values are yl = −100, yu = 100,K = 1000, which work well for daily returns in percentage
points. The model with lower average wCRPS, thus awCRPS, is always preferred. In other
words, if the ratio of awCRPS for model i over j is greater than one, model j is preferred to
model i and vice versa.
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5 Data and models

A large number of financial time series are the analytical tool to study on the one hand the ability
of a model to generate accurate density forecasts whether the leverage effect is incorporated or
not, and, on the other hand, to compare different conditional volatility model-types. This section
introduces data and models used in this analysis.

According to Catania and Nonejad (2019), too little is known about the ability of well-
known observation and parameter-driven models to generate accurate density forecasts. Indeed,
most research focuses on conditional volatility forecasts without a complete description of the
conditional return distribution. Therefore, a large-scale analysis using a large number of different
time series seems in order.

In particular, following Koopman, Lucas, and Schart (2016), four volatility models - three
observation-driven and one parameter-driven - are considered. For each model-type the analysis
will address a version with and a version without the leverage effect. An out-of-sample density
forecast comparison is performed using more then four hundred financial time series, in order to
achieve the following purposes:

• determine to what extent accounting for the leverage effect enables a model to generate
accurate density forecasts;

• which model-type performs best at a given forecast horizon;

• how do results change across forecast horizons and returns.

5.1 Econometric framework

Let y1, . . . , yT denote a T × 1 sequence of returns. It is assumed that the observed return at
time t, thus yt, is generated from yt = Λ(ht)εt, where ht is the conditional log-volatility at time
t, Λ(·) is a nonlinear link function, and εt is a white-noise process. The h(h ≥ 1) step ahead
conditional density of yt is ,then, p(yt+h|Ft, θ), where Ft denotes the information set at time t
and θ is the vector of model parameters that govern ht. Model comparison is performed using
the weighted Continuous Ranked Probability Score (wCRPS) criterion of Gneiting and Ranjan
(2011).

5.2 Data

The analysis is divided in two parts. First, the time series of daily Dow Jones (DJ) returns from
March 3, 1902 to April 15, 2016 is considered, for a total of 30921 daily observations. The sample
contains numerous historical events, such as World Wars (missing observations are removed),
economic depressions, oil and financial crisis, the Arab-Israeli Wars and the Great Recession in
2008.

Second, shorter data sets from January 5, 2004 to December 31, 2014 are considered. These
data sets consist of 2768 observations for a cross sectional dimension of 432 firms from the
S&P500 index. The index composition considered is that of January 1, 2016. Using the Global
Industry Classification Standard (GCIS) groups of firms are classified in 11 economic sectors, see
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Table 5.1: Information regarding sectors in the S&P500 index.

Sector Mcm Total debt Leverage Nof

Consumer discretionary 12.41 3.15 77.85 70
Consumer staples 28.29 6.64 80.52 32
Energy 14.39 6.97 58.11 32
Financials 21.34 7.58 67.77 56
Health care 25.76 6.36 60.10 53
Industrials 15.46 3.41 75.59 57
Information technology 18.32 2.63 54.13 54
Materials 14.90 5.57 109.65 23
Real Estate 18.73 6.49 116.64 24
Telecommunication services 16.57 20.23 143.85 5
Utilities 19.41 13.88 119.72 26

Table 5.1. The number of firms - "Nof" in Table 5.1 - for each sector oscillates between twenty
and sixty, apart from telecommunication services, which contains only five firms and consumer
discretionary, which displays seventy firms.

Overall, the sample is heterogenous with respect to both the level of capitalization and the
use of debt, as shown in Table where "Mcm" 5.1 stands for Median market capitalization. Price
series are converted into the logarithmic percentage return series, using 100× ln(Pt/Pt−1), where
Pt and Pt−1 are the prices respectively at time t and t− 1.

5.3 Models

5.3.1 GARCH model

As regards observation-driven conditional volatility models, the conditional volatility ht depends
on its own lagged values and the lagged values of the observed return yt in a deterministic way.
In this analysis, the simplest specification considered is the t-EGARCH(p,q) model introduced
in Nelson (1991). In particular, Catania and Nonejad find that specifying p = 1 and q = 1

generally works well, and increasing the number of parameters does not add any significant
improvement in terms of generating density forecasts. Thus, the t-EGARCH(1,1) model is given
by:

yt = e(ht/2)εt εt ∼ St(ν), (5.1)

ht+1 = γ + α(|εt| − E[|εt|]) + ρεt + βht, (5.2)

where St(ν) stands for the Student-t distribution with ν > 2 degrees of freedom. The choice of
the Student’s t distribution in equation (5.1) follows Bollerslev’s intent of capturing the excess
conditional kurtosis exhibited by financial returns. In equation (5.2), γ is the level of conditional
log-volatility, α determines the impact of past observations, β determines the impact of past
conditional volatilities and ρ regulates the leverage effect. The inclusion of the term E[|εt|]
implies that |εt| − E[|εt|] is a Martingale difference sequence with respect to Ft−1. Thus, the
unconditional log-volatility level, h̄, is given by γ

1−β . Moreover, as previously mentioned, the
exponential link in equation (5.1) ensures that the only constraint imposed in the estimation
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procedure to provide stationarity of ht is |β| < 1. Clearly, if ρ is negative the leverage effect is
accounted for by the model, as the magnitude of the response to a negative innovation is α− ρ.
The t-EGARCH (1,1) specification that does not incorporate the leverage effect has ρ = 0.

5.3.2 GAS model

The example of a GAS model in this analysis is the Beta-t-EGARCH(p, q) model introduced by
Harvey (2013). This model specification is based on the previously introduced t-EGARCH model
and shares its most attractive features, such as the exponential link function (see equation (5.1))
and the heavy-tailed Student’s t distribution. Moreover, the Beta-t-EGARCH model allows the
variance, or scale, to be driven by an equation that depends on the conditional score of the last
observation. As a result, Beta-t-EGARCH specification belongs to the DCS or GAS framework,
and represents a model that is more flexible and practically useful (Harvey and Sucarrat, 2014).

Accordingly, the classic EGARCH specification in Nelson (1991) is sensitive to outliers and
has the unfortunate theoretical property that unconditional moments do not exist when the
conditional distribution is Student’s t. The GAS model resolves these problems and, in doing
so, yields a specification, which is open to the development of a full asymptotic theory for the
distribution of the maximum likelihood estimator. (Harvey and Lange, 2018).

Similar to t-EGARCH, p and q are set as 1, thus, the Beta-t-EGARCH(1,1) model is given
by:

yt = e(ht)εt εt ∼ St(ν) (5.3)

ht+1 = γ + αµt + sgn(−εt)ρ(µt + 1) + βht, (5.4)

where in (5.4) sgn(x) returns the sign of the variable x and µt is the score of the distribution of
yt with respect to ht given as µt = ((ν + 1)ε2t /((ν − 2) + ε2t ))− 1. According to Harvey (2013),
the model reported in (5.3) and (5.4) has the nice property of being more robust to extreme
observations compared to the simpler t-EGARCH. The inclusion of the leverage effect for the
Beta-t-EGARCH model is also more intuitive then for t-EGARCH. Indeed, since µt+1 is always
positive if εt < 0, then the volatility level at time t + 1 is increased by an amount ρ(µt + 1) if
ρ > 0.

The robustness property of Beta-t-EGARCH relative to t-EGARCH can be easily seen by
comparing the response of ht to εt. Indeed, taking apart the leverage effect controlled by ρ, the
response of ht for t-EGARCH is piece-wise linear in εt, while for Beta-t-EGARCH is a smooth
function bounded by ν.

Furthermore, as reported in Harvey and Sucarrat (2014), an announcement made
by the computer firm Apple illustrates the robustness of Beta-t-EGARCH. On
Thursday, September 28, 2000 a profit warning was issued (CNN Money, see
http://money.cnn.com/200/09/29/markets/techwrap/, retrieved November 1, 2011), which led
the value of the stock to plunge from an end-of-trading value of $26.75 to $12.88 on the
subsequent day. In terms of volatility, this fall was a one-off event, since it apparently had no
effect on the variability of the price changes of the following days. Firstly, volatility forecasts were
performed using the t-GARCH model and the Beta-t-EGARCH model. Following this process,
the forecasts were compared to observed absolute returns in order to verify their accuracy. As
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a result, the t-GARCH forecast of one-step volatility exceeded absolute returns for almost two
months after the event. Thus, a clear-cut example of forecast failure. Conversely, the Beta-t-
EGARCH forecasts remained in the same range of variation as the absolute returns. Thus, a
robust prediction.

5.3.3 Semi-parametric GARCH model

The t-EGARCH and Beta-t-EGARCH models both assume the same parametric specification
for the innovation εt, namely εt ∼ St(ν). In order to investigate the role of the leverage
effect in a semi-parametric framework, the semi-parametric EGARCH model is also considered.
Particularly, the SPEGARCH(1,1) is given by:

yt = e(ht/2)εt εt ∼ IID(0, 1) (5.5)

ht+1 = γ + α|εt|+ ρ(εt) + βht, (5.6)

where εt ∼ IID(0, 1) means that εt is an IID sequence of white-noise shocks with mean 0 and
variance 1. It is important to notice that, contrary to (5.1) - (5.2), (5.6) does not include E[|εt|]
due to the obvious lack of parametrical assumption of εt in (5.5).

5.3.4 SV model

In the context of parameter-driven models, the stochastic volatility (SV) model is considered.
The SV model is given by:

yt = e(ht/2)εt, εt ∼ N(0, 1) (5.7)

ht+1 = µ+ φht + σηt, ηt ∼ N(0, 1), (5.8)

where µ is the level of conditional log-volatility, φ and σ, respectively denote the persistence and
the conditional volatility of volatility. The leverage effect is incorporated assuming correlation
between εt and ηt, i.e. E[ηtεt] = ρ and |ρ| < 1. Thus, a negative shock at time t increases
volatility at time t+ 1.

For each model presented in this section, a version with leverage and a version without are
considered, as described in Table 5.2.

6 Empirical results

This section presents the empirical results obtained by the evaluation of the density forecasts
produced by the models in Table 5.2. In this analysis, the models are used to obtain and evaluate
h = 1, 5, and 20 days ahead forecasts. The multi-step ahead distribution (h > 1) is estimated
by standard Monte Carlo simulation techniques.

According to Catania and Nonejad, 10000 observations from the one step ahead distribution,
thus yt+h|Ft, are initially sampled. Subsequently, for each l = 2, . . . , h the time-varying
parameters are updated using the variance updating equations and the sampling from the one-
step ahead distribution, conditional on previous simulated draws, is iterated until the end of
the forecast horizon. Accordingly, last simulated observations are draws from the distribution
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Table 5.2: This table lists the model labels together with a brief description of the models.
The acronym ’NL’ denotes ’no leverage’.

Model Description

t-EGARCH t-EGARCH model
t-EGARCH-NL t-EGARCH without the leverage effect, i.e. ρ = 0 in the estimation

procedure
Beta-t-EGARCH Beta-t-EGARCH model
Beta-t-EGARCH-NL Beta-t-EGARCH without the leverage effect, i.e. ρ = 0 in the estimation

procedure
SPEGARCH semi-parametric EGARCH model
SPEGARCH-NL SPEGARCH without the leverage effect, i.e. ρ = 0 in the estimation

procedure
SV Stochastic Volatility model
SV-NL Stochastic volatility model without the leverage effect, i.e. ρ = 0 in the

estimation procedure

yt+h|Ft. In the SPEGARCH case, in which there is no parametrical assumption on εt, random
draws are sampled from past observations.

Each forecast is based on the re-estimation of the underlying model using a rolling window
of 1000 observations, which corresponds to roughly 4 years of data. At each step, as a new
observation arrives, the model is re-estimated and a density forecast h periods ahead is computed
using the recursive method of forecasting.

As regards DJ data, the out-of-sample period consists of 29921 observations running from
July 7, 1905 until April 15, 2016.

In the context of S&P500 equity returns (given the remarkable number of return series
considered), the models are re-estimated every 40 days instead of each day in order to reduce
the computational burden. Accordingly, the parameters are fixed within the 40 days window,
and only data are updated. The out-of-sample period consists of 1768 observations running from
December 24, 2007 until December 31, 2014.

6.1 Dow Jones

6.1.1 Leverage effect

The analysis starts from a pairwise model comparison, where the version of the models that
considers the leverage effect is compared with its non-leverage counterpart. The results in Table
6.1 report the ratios of awCRPS for the model with the leverage effect over the version without
the leverage effect. For instance, the column "t-EGARCH" reports the average wCRPS of t-
EGARCH over t-EGARCH-NL for various choices of w(z), see Table 4.1, at h = 1, 5 and 20. The
apexes a, b, and c indicate rejection of the null-hypothesis of equal predictive ability according
to the Diebold and Mariano (1995) test at 1%, 5%, and 10%, respectively.

Considering the uniform case in which w(z) = 1 weights equally across the conditional
distribution, at h = 1 for each model-type, the version that accounts for the leverage effect is
able to generate statistically significant more accurate density forecasts than the version without
leverage effect. On average, reductions in awCRPS around 3 to 5 percent are obtained, in fact
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Table 6.1: Pairwise density forecast comparison using daily DJ returns.

Model t-EGARCH Beta-t-EGARCH SPEGARCH SV

h = 1

Uniform 0.997(a) 0.997(a) 0.997(a) 0.995(a)

Center 0.998(a) 0.998(a) 0.998(a) 0.997(a)

Tails 0.994(a) 0.995(a) 0.994(a) 0.992(a)

Tail-r 0.996(a) 0.996(a) 0.995(a) 0.994(a)

Tail-l 0.998(a) 0.998(a) 0.998(a) 0.997(a)

h = 5

Uniform 0.996(a) 0.999(b) 0.995(a) 0.999(a)

Center 0.997(a) 1.000 0.997(a) 0.999(a)

Tails 0.993(a) 0.998(a) 0.992(a) 0.997(a)

Tail-r 0.995(a) 0.999(c) 0.995(a) 0.998(a)

Tail-l 0.996(a) 0.999(c) 0.995(a) 0.999(a)

h = 20

Uniform 0.986(a) 1.001(a) 0.985(a) 0.999(a)

Center 0.987(a) 1.001(a) 0.986(a) 0.999(a)

Tails 0.983(a) 1.001(a) 0.983(a) 0.999
Tail-r 0.986(a) 1.001(a) 0.986(a) 0.999(b)

Tail-l 0.986(a) 1.001(a) 0.984(a) 1.000(c)

the ratio awCRPS is 0.997 for t-EGARCH, SPEGARCH and Beta-t-EGARCH and 0.995 for
SV. At h = 5 and h = 20, incorporating the leverage effect does not result in any major
change for Beta-t-EGARCH and SV. Conversely, Beta-t-EGARCH-NL statistically outperforms
Beta-t-EGARCH at h = 20. Differently, t-EGARCH and SPEGARCH dominate their no
leverage counterpart by more than 10 percent at h = 20, with a ratio awCRPS 0.986 and
0.985, respectively.

Referring to the results obtained with different choices of w(z), it is possible to highlight
the role of the leverage effect. The models that incorporate the leverage effect tend to predict
the tails of the conditional distribution better than the models without the leverage effect. In
particular, at h = 1 all levered versions outperform their no levered counterpart by 5 percent
or more. Conversely, fewer improvements are obtained once the center of the predictive density
is emphasized. This is particularly notable for SV at h = 1 as compared to SV-NL, where the
improvements are around 8 percent at the tails, 5 percent in the uniform case and 3 percent
when the center is focused.

Increasing the forecast horizon, there are major differences between the different model-types.
SPEGARCH and t-EGARCH are able to predict the tails and the center of the conditional
distribution significantly better than their non-leverage counterpart. At h = 20 the two
levered GARCH specifications outperform t-EGARCH-NL and SPEGARCH-NL by 15 percent
on average, with a reduction of 17 percent if the tails are emphasized. Conversely, the trend
is reversed for Beta-t-EGARCH and SV. As h is increased, the improvements are of smaller
magnitudes and Beta-t-EGARCH-NL outperforms its levered counterpart at h = 20.
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6.1.2 Business cycle

According to Catania and Nonejad, the connection between the business cycle and relative
forecast performance can potentially shed light on the sources of the predictive gains provided
by the model with the leverage effect. Therefore, it is useful to use the long DJ returns series
to understand the relationship between the historical events and the predictive gains furnished
by the models that account the leverage effect.

Catania and Nonejad find that the gains from the model with the leverage effect are typically
concentrated near the peak, the highest point between the end of an economic expansion and
the start of a contraction, and the trough, the period marking the end of declining economic
activity and the transition to expansion. The former is very evident in the context of the Great
Recession, where notable gains are obtained in favor of the model with the leverage effect. The
latter is very evident, with regards to the period after the recession in the early 1980s and during
the 2000s. Differently both specification (i.e. with and without the leverage) generate similar
density forecasts during calm periods.

Moreover, Catania and Nonejad underline the differences between models that account for
the leverage effect and their relative performance. Beta-t-EGARCH and Beta-t-EGARCH-NL
generate very similar density forecasts, except for the Great Recession period where the levered
version is better. Conversely, SV gains over SV-NL are concentrated during the 1950s and 1960s.

6.1.3 Models comparison

Other interesting results are obtained from the comparison between different model-types. In
particular, Table 6.2 reports the ratios of awCRPS for the range of the models considered over
the t-EGARCH-NL. Different forecast horizons, h = 1, 5, 20 and also different weight functions,
w(z), are considered. The apexes a, b, and c indicate rejection of the null-hypothesis of equal
predictive ability relative to t-EGARCH-NL according to the Diebold and Mariano (1995) test
at 1%, 5%, and 10%, respectively. In order to save space Beta-t-EGARCH-NL and Beta-t-
EGARCH are indicated by β-t-EG-NL and β-t-EG, respectively.

At h = 1, all models except SV-NL and SPEGARCH-NL generate statistically significant
more accurate density forecasts than the benchmark t-EGARCH-NL model. Beta-t-EGARCH
shows the highest reductions in awCRPS, followed by SV and t-EGARCH. In particular, Beta-
t-EGARCH outperforms t-EGARCH-NL by 9 percent when the weight function emphasizes the
tails of the conditional distribution.

At h = 5, Beta-t-EGARCH is again the top performer, followed by Beta-t-EGARCH-NL and
SV. The two versions of the GAS model outperform the benchmark model by at least 9 percent
for each weight function considered. Moreover, Beta-t-EGARCH-NL shows higher reductions
in awCRPS compared to t-EGARCH and SPEGARCH and very similar density forecasts as
SV. Furthermore, both the SV versions outperform the GARCH specifications. Accordingly,
compared to Beta-t-EGARCH and SV, t-EGARCH and SPEGARCH are not able to generate
more accurate density forecasts.

At h = 20, Beta-t-EGARCH-NL is now the top performer. As previously observed (see
Table 6.1), the levered version of Beta-t-EGARCH is outperformed by Beta-t-EGARCH-NL at
the furthest forecast horizon. Beta-t-EGARCH and Beta-t-EGARCH-NL show reductions in
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Table 6.2: Density forecast comparison using Dow Jones returns.

Model t-EGARCH β-t-EG-NL β-t-EG SPEGARCH-NL SPEGARCH SV-NL SV

h = 1

Uniform 0.997(a) 0.998(a) 0.995(a) 1.001(a) 0.998(a) 1.001(a) 0.997(a)

Center 0.998(a) 0.998(a) 0.996(a) 1.001(b) 0.999(a) 1.001(a) 0.998(a)

Tails 0.994(a) 0.997(a) 0.991(a) 1.002(b) 0.996(a) 1.000 0.993(a)

Tail-r 0.996(a) 0.998(a) 0.994(a) 1.002(a) 0.997(a) 1.001(a) 0.996(a)

Tail-l 0.998(a) 0.998(a) 0.995(a) 1.001 0.998(c) 1.001(c) 0.997(a)

h = 5

Uniform 0.996(a) 0.991(a) 0.990(a) 1.002(a) 0.997(a) 0.994(a) 0.992(a)

Center 0.997(a) 0.994(a) 0.994(a) 1.001(a) 0.998(a) 0.996(a) 0.995(a)

Tails 0.993(a) 0.985(a) 0.983(a) 1.002(a) 0.994(a) 0.988(a) 0.985(a)

Tail-r 0.995(a) 0.991(a) 0.991(a) 1.001(b) 0.996(a) 0.993(a) 0.992(a)

Tail-l 0.996(a) 0.991(a) 0.990(a) 1.002(a) 0.998(a) 0.994(a) 0.993(a)

h = 20

Uniform 0.986(a) 0.968(a) 0.969(a) 1.002(a) 0.987(a) 0.973(a) 0.973(a)

Center 0.987(a) 0.973(a) 0.974(a) 1.002(a) 0.988(a) 0.977(a) 0.976(a)

Tails 0.983(a) 0.958(a) 0.959(a) 1.002(a) 0.984(a) 0.965(a) 0.964(a)

Tail-r 0.986(a) 0.968(a) 0.969(a) 1.000 0.986(a) 0.973(a) 0.972(a)

Tail-l 0.986(a) 0.968(a) 0.969(a) 1.003(a) 0.988(a) 0.973(a) 0.973(a)

awCRPS around 40 percent when the tails are emphasized and around 30 percent in the other
cases. SV and SV-NL have a predictive gain around the 35 percent in awCRPS relative to the
tails and around the 25 percent in the other cases compared to t-EGARCH-NL. As regards
t-EGARCH and SPEGARCH, they outperform their non-leverage counterparts with gains that
increase relative to farther forecast horizons.

6.1.4 Frequency

The precedent analysis is repeated changing the data frequency. Accordingly, weekly DJ returns
from 1921 to 2016 are considered and using the models in Table 5.1 density forecasts h = 1

(a week), h = 4 (a month) and, h = 12 (a quarter) step-ahead are generated. The models
comparison is reported in Table 6.3. The apexes a, b, and c indicate rejection of the null-
hypothesis of equal predictive ability relative to t-EGARCH-NL according to the Diebold and
Mariano (1995) test at 1%, 5%, and 10%, respectively. In order to save space Beta-t-EGARCH-
NL and Beta-t-EGARCH are indicated by β-t-EG-NL and β-t-EG, respectively.

At h = 1, Beta-t-EGARCH is the top performer, however, all models that account for the
leverage effect produce very similar results and outperform their non-leverage counterpart. When
the weight function emphasizes the tails of the conditional distribution, Beta-t-EGARCH-NL is
able to generate density forecasts as accurate as ones generated by levered models.

At h = 4, t-EGARCH and SPEGARCH and their non-leverage counterpart generate similar
density forecasts, while Beta-t-EGARCH-NL and SV-NL outperform their levered specifications.
Beta-t-EGARCH-NL is also the top performer providing the highest reductions in awCRPS, in
particular when the tails are emphasized.

At h = 12, the same pattern is observed. Beta-t-EGARCH-NL is again the top performer,
outperforming Beta-t-EGARCH by about 2 percent.

In conclusion, it appears that the leverage model’s ability to outperform its non-leverage
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Table 6.3: Density forecast comparison using Dow Jones returns.

Model t-EGARCH β-t-EG-NL β-t-EG SPEGARCH-NL SPEGARCH SV-NL SV

h = 1

Uniform 0.997(a) 0.998(a) 0.996(a) 1.000 0.997(b) 1.000 0.997(a)

Center 0.999(b) 1.000 0.999 0.999(a) 0.998 1.001 0.999(b)

Tails 0.996(a) 0.996(a) 0.994(a) 1.001 0.997(a) 1.000 0.996(a)

Tail-r 0.996(a) 0.998(b) 0.995(a) 1.001 0.997(b) 1.001(c) 0.997(a)

Tail-l 0.998 0.997(b) 0.997(b) 1.000 0.998 0.999 0.997(b)

h = 4

Uniform 1.000 0.991(a) 0.993(a) 1.003(a) 1.000 0.995(a) 0.996(a)

Center 1.001 0.998(a) 0.999(b) 1.000 0.999 0.999(b) 1.000
Tails 0.999 0.986(a) 0.988(a) 1.005(a) 1.001 0.992(a) 0.993(a)

Tail-r 1.000 0.991(a) 0.992(a) 1.003(a) 1.001 0.996(a) 0.997(b)

Tail-l 1.000 0.992(a) 0.993(a) 1.003(a) 1.000 0.994(a) 0.996(a)

h = 12

Uniform 0.994(a) 0.972(a) 0.975(a) 1.004(a) 0.996(a) 0.978(a) 0.980(a)

Center 0.995(a) 0.987(a) 0.988(a) 1.001 0.995(a) 0.989(a) 0.990(a)

Tails 0.993(a) 0.961(a) 0.965(a) 1.007(a) 0.996(a) 0.969(a) 0.972(a)

Tail-r 0.994(a) 0.973(a) 0.975(a) 1.003(a) 0.996(a) 0.979(a) 0.980(a)

Tail-l 0.994(a) 0.971(a) 0.974(a) 1.005(a) 0.996(a) 0.977(a) 0.979(a)

counterpart depends on the choice of data frequency.

6.2 S&P 500

6.2.1 Leverage effect

The same models are used to generate density forecasts at h = 1, h = 5, and h = 20 using daily
S&P500 equity returns. Differently from DJ analysis, Catania and Nonejad report the results
as in Table 6.4, which indicate the percentages of times where the model with the leverage
effect generates more accurate density forecasts than the model without the leverage effect for
each model-type. According to Table 4.1, different weight functions, w(z), are considered. The
change of methodology for the representation of the results is not explicitly described by the
authors.

For each model-type, the specification that accounts for the leverage effect tends to generate
more accurate density forecasts than the model without the leverage effect. Considering the
uniform case, thus w(z) = 1, the improvements from considering the leverage effect follow the
same patterns observed with DJ returns series. Accordingly, the improvements decrease with
regards to Beta-t-EGARCH and SV as h increases, whereas the opposite is true for t-EGARCH
and SPEGARCH.

The most interesting results are obtained when w(z) = 1 − Φ(z), namely the left-tail is
emphasized by the weight function. Indeed, the percentages in this case are considerably higher
than the remaining cases. This is primarily due to the fact that compared to DJ, equity return
series contain more frequent negative extreme observations.

Lastly, in the remaining specifications of the weight function, results obtained are very similar
as the uniform case.
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Table 6.4: Pairwise density forecast comparison using daily S&P500 equity returns.

Model t-EGARCH Beta-t-EGARCH SPEGARCH SV

h = 1
Uniform 82 89 74 89
Center 77 79 69 85
Tails 82 89 75 89
Tail-r 46 57 39 61
Tail-l 91 96 86 94
h = 5
Uniform 88 70 84 76
Center 78 62 77 72
Tails 90 73 84 77
Tail-r 71 59 72 66
Tail-l 94 79 90 82
h = 20
Uniform 99 51 94 45
Center 99 33 95 38
Tails 99 54 93 47
Tail-r 97 44 92 41
Tail-l 100 53 95 53

6.2.2 Models comparison

Given that models that account for the leverage effect pairwise outperform their non-leverage
counterparts, it appears appropriate to compare density forecasts between the levered versions
of the models. Table 6.5 reports the percentages of time where each leverage model is able to
generate more accurate density forecasts than the other leverage models when w(z) = 1.

Here, we find that Beta-t-EGARCH is the clear top performer. Regardless the forecast
horizon, Beta-t-EGARCH is able to generate more accurate density forecasts then the other
leverage models for at least the 98 percent of time. Selecting the second best model is more
difficult. t-EGARCH slightly outperforms SV at h = 1, whereas it is outperformed by SV at
h = 5 and h = 20. SPEGARCH is always outperformed by the other models, except at h = 20

where it outperforms t-EGARCH.
Table 6.6 reports the percentages of time where each leverage model is able to generate more

accurate density forecasts than the other leverage models when w(z) = 1−Φ(z), namely the left
tail is emphasized. Analyzing the left tail, which is of interest for risk managers, results again
confirm the superior performance of Beta-t-EGARCH. The same pattern previously observed
occurs for the the second best model. Increasing the forecast horizon, SV outperforms the two
GARCH models.

6.2.3 Economic sectors

Next, the difference between the model that accounts for the leverage effect and the model
without the leverage effect is analyzed by decomposing equities according to sectors reported in
Table 5.1. Tables 6.7 and 6.8 report the results of the pairwise comparison in the uniform case
and when the left tail is emphasized respectively.
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Table 6.5: Density forecast comparison using daily S&P500 equity returns, w(z) = 1.

Model t-EGARCH Beta-t-EGARCH SPEGARCH SV

h = 1
t-EGARCH 1 81 54
Beta-t-EGARCH 99 99 98
SPEGARCH 19 1 33
SV 46 2 67
h = 5
t-EGARCH 0 66 43
Beta-t-EGARCH 100 99 99
SPEGARCH 34 1 34
SV 57 1 66
h = 20
t-EGARCH 1 45 24
Beta-t-EGARCH 99 98 100
SPEGARCH 55 2 27
SV 76 0 73

Table 6.6: Density forecast comparison using daily S&P500 equity returns, w(z) = 1− Φ(z).

Model t-EGARCH Beta-t-EGARCH SPEGARCH SV

h = 1
t-EGARCH 4 82 59
Beta-t-EGARCH 96 98 93
SPEGARCH 18 2 36
SV 41 7 64
h = 5
t-EGARCH 0 65 41
Beta-t-EGARCH 100 100 98
SPEGARCH 35 0 36
SV 59 2 64
h = 20
t-EGARCH 0 42 19
Beta-t-EGARCH 100 100 100
SPEGARCH 58 0 23
SV 81 0 77
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Table 6.7: Density forecast comparison using daily S&P500 equity returns by sectors, w(z) = 1.

Model t-EGARCH Beta-t-EGARCH SPEGARCH SV

h = 1
Consumer discretionary 76 89 80 89
Consumer staples 84 91 66 84
Energy 100 81 84 78
Financials 77 80 71 88
Health care 91 92 68 94
Industrials 91 98 88 98
Information technology 81 100 70 94
Materials 83 91 78 91
Real Estate 67 71 62 67
Telecommunication services 40 60 20 80
Utilities 65 92 73 88
h = 5
Consumer discretionary 84 67 83 81
Consumer staples 78 75 78 78
Energy 84 38 84 41
Financials 95 70 93 79
Health care 92 89 83 89
Industrials 95 82 86 89
Information technology 80 83 74 80
Materials 83 74 78 74
Real Estate 88 29 79 38
Telecommunication services 80 80 80 100
Utilities 100 54 96 65
h = 20
Consumer discretionary 99 40 94 47
Consumer staples 97 56 88 59
Energy 100 38 97 22
Financials 100 55 98 61
Health care 98 66 85 47
Industrials 98 53 95 47
Information technology 100 65 89 37
Materials 100 26 100 30
Real Estate 100 25 96 21
Telecommunication services 100 60 100 60
Utilities 100 58 100 62
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Table 6.8: Density forecast comparison using daily S&P500 equity returns by sectors, w(z) =
1− Φ(z).

Model t-EGARCH Beta-t-EGARCH SPEGARCH SV

h = 1
Consumer discretionary 86 96 90 91
Consumer staples 91 97 78 88
Energy 100 91 91 81
Financials 88 91 84 98
Health care 94 98 81 96
Industrials 93 98 89 96
Information technology 93 98 89 96
Materials 87 96 83 96
Real Estate 88 96 79 96
Telecommunication services 60 80 60 100
Utilities 100 100 100 96
h = 5
Consumer discretionary 94 76 90 83
Consumer staples 91 78 84 78
Energy 97 62 91 66
Financials 96 80 98 80
Health care 100 92 91 92
Industrials 96 89 95 93
Information technology 91 85 81 87
Materials 87 78 87 87
Real Estate 88 50 83 50
Telecommunication services 80 80 80 80
Utilities 100 77 100 81
h = 20
Consumer discretionary 100 49 97 51
Consumer staples 97 56 91 53
Energy 100 44 97 31
Financials 100 55 98 73
Health care 98 74 85 57
Industrials 100 53 95 49
Information technology 100 59 93 46
Materials 100 30 100 43
Real Estate 100 25 96 33
Telecommunication services 100 60 100 80
Utilities 100 62 100 69
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Table 6.9: Density forecast comparison from S&P500 equity returns, h = 1, w(z) = 1.

Model t-EGARCH β-t-EG-NL β-t-EG SPEGARCH-NL SPEGARCH SV-NL SV

Alcoa 1.001 0.993(a) 0.993(a) 1.004(a) 1.003(a) 0.997(b) 0.998
American Express 1.001 0.991(a) 0.992(a) 1.002(b) 1.002 0.992(a) 0.996(b)

Boeing 0.997(a) 0.995(a) 0.993(a) 1.000 0.996(a) 0.998(c) 1.001
Caterpillar 0.998(c) 0.993(a) 0.991(a) 1.004(a) 1.000 0.998(c) 1.001
Chevron 0.997(a) 0.992(a) 0.993(a) 0.999 0.995(b) 0.998(c) 1.000
Walt Disney 0.996(a) 0.992(a) 0.989(a) 0.999 0.995(a) 0.998(c) 1.000
General Electric 0.998(b) 0.990(a) 0.987(a) 1.000 0.998(c) 0.992(a) 0.996(b)

IBM 0.998(b) 0.995(a) 0.992(a) 1.001 0.998(c) 0.998(c) 1.000
Intel 1.003(a) 0.993(a) 0.993(a) 1.001(b) 1.002(b) 1.001 1.002(b)

Johnson & Johnson 0.996(a) 0.999 0.993(a) 0.999 0.996(a) 0.995(a) 1.001
JPMorgan 1.005(b) 0.993(a) 0.991(a) 1.005(a) 1.003(c) 0.991(a) 0.995(a)

Coca-cola 0.996(a) 0.997(b) 0.993(a) 1.002(b) 0.999 0.997(b) 1.002(b)

McDonald’s 0.999 0.995(a) 0.994(a) 1.000 0.999 1.000 1.001
Merck 0.998(a) 0.994(a) 0.990(a) 1.008(a) 1.004(b) 0.999 1.000
Microsoft 1.000 0.994(a) 0.993(a) 1.005(a) 1.006(a) 1.001 1.002
Pfizer 0.998(b) 0.995(a) 0.994(a) 1.000 1.036 1.000 1.001
Procter & Gamble 0.997(a) 0.993(a) 0.991(a) 1.003(a) 1.039 1.000 1.002(b)

AT&T 1.001 0.994(a) 0.993(a) 1.003(a) 1.004(a) 0.996(a) 0.998
Walmart 1.001 0.998(c) 0.998 1.000 1.000 1.003(b) 1.003(a)

ExxonMobil 0.997(a) 0.998(b) 0.997(a) 1.002(b) 0.999 0.999 1.004(a)

In the former case, generally, for each model, the specification with the leverage effect tends
to outperform the one without the leverage effect. Moreover, similar trends as Table 6.4 are
observed even when equities at sector-level are considered. Beta-t-EGARCH and SV generate
more accurate density forecasts than their non-leverage counterparts, but their gains decrease
as h increases. For t-EGARCH and SPEGARCH the opposite is the case. Furthermore, there
are interesting variations within sector and forecast horizons. For instance, the percentages in
favor of Beta-t-EGARCH and SV are higher in the financial and healthcare sectors and lower
in real estate and telecommunications.

In the latter case, the pattern is very similar. The models that account for the leverage effect
are able to predict the left tail of the conditional distribution better than their non-leverage
counterparts.

6.2.4 Equities returns

Following Koopman, Lucas, and Schart (2016), density forecasts from twenty equities returns
series are considered and the awCRPS ratios over the t-EGARCH-NL at h = 1, h = 5, and h = 20

are reported respectively in Tables 6.9, 6.10, 6.11. The apexes a, b, and c indicate rejection of
the null-hypothesis of equal predictive ability according to the Diebold and Mariano (1995) test
at 1%, 5% and 10 %, respectively. The weight function specification considered is w(z) = 1,
thus the uniform case, with similar results for the other cases. In order to save space Beta-t-
EGARCH-NL and Beta-t-EGARCH are indicated by β-t-EG-NL and β-t-EG, respectively.

At h = 1, both Beta-t-EGARCH versions consistently outperform the benchmark t-
EGARCH-NL for all equities considered. Generally, Beta-t-EGARCH is the top performer,
but for American Express and Chevron Beta-t-EGARCH-NL outperforms its levered version.
As a result, compared to t-EGARCH, SPEGARCH and SV, Beta-t-EGARCH delivers the most
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Table 6.10: Density forecast comparison from S&P500 equity returns, h = 5, w(z) = 1.

Model t-EGARCH β-t-EG-NL β-t-EG SPEGARCH-NL SPEGARCH SV-NL SV

Alcoa 1.002(b) 0.986(a) 0.987(a) 1.003(a) 1.002(b) 0.994(a) 0.993(a)

American Express 0.995(c) 0.979(a) 0.983(a) 1.004(a) 0.994(b) 0.984(a) 0.984(a)

Boeing 0.994(a) 0.989(a) 0.989(a) 1.000 0.993(a) 0.995(a) 0.998
Caterpillar 0.997(b) 0.990(a) 0.988(a) 1.000 0.996(b) 0.999 1.002
Chevron 0.998(b) 0.988(a) 0.992(a) 0.998 0.996(a) 1.000 1.000
Walt Disney 0.991(a) 0.984(a) 0.982(a) 0.995(a) 0.992(a) 0.993(a) 0.997(c)

General Electric 0.994(a) 0.978(a) 0.976(a) 0.998(b) 0.994(a) 0.982(a) 0.986(a)

IBM 0.996(a) 0.989(a) 0.987(a) 1.005(a) 0.997(b) 0.994(a) 0.997(b)

Intel 1.002(a) 0.989(a) 0.989(a) 0.999 1.001 0.999 0.999
Johnson & Johnson 0.995(a) 0.988(a) 0.984(a) 1.000 0.994(a) 0.986(a) 0.991(a)

JPMorgan 1.006(a) 0.978(a) 0.979(a) 1.009(a) 1.001 0.983(a) 0.984(a)

Coca-cola 0.993(a) 0.985(a) 0.983(a) 1.008(a) 1.003(b) 0.990(a) 0.993(a)

McDonald’s 1.000 0.993(a) 0.993(a) 0.999 1.000 1.002 1.001
Merck 0.995(a) 0.989(a) 0.982(a) 1.002(c) 0.995(a) 0.997(b) 0.998(c)

Microsoft 1.001 0.988(a) 0.988(a) 1.003(a) 1.004(b) 0.997(c) 0.998
Pfizer 0.998(b) 0.989(a) 0.990(a) 1.004(a) 1.039 0.998 1.000
Procter & Gamble 0.993(a) 0.983(a) 0.980(a) 1.002(b) 1.031 0.995(a) 0.998
AT&T 0.997(b) 0.988(a) 0.987(a) 1.002(b) 1.001 0.990(a) 0.992(a)

Walmart 1.000 0.997(c) 0.997(c) 1.002(b) 1.002(c) 1.008(a) 1.008(a)

ExxonMobil 0.999 0.995(a) 0.996(b) 1.000 1.000 1.000 1.001

Table 6.11: Density forecast comparison from S&P500 equity returns, h = 20, w(z) = 1.

Model t-EGARCH β-t-EG-NL β-t-EG SPEGARCH-NL SPEGARCH SV-NL SV

Alcoa 0.994(a) 0.953(a) 0.953(a) 1.000 0.988(a) 0.970(a) 0.969(a)

American Express 0.959(a) 0.929(a) 0.934(a) 1.001 0.959(a) 0.942(a) 0.941(a)

Boeing 0.981(a) 0.962(a) 0.967(a) 0.997(a) 0.978(a) 0.975(a) 0.975(a)

Caterpillar 0.983(a) 0.969(a) 0.970(a) 0.991(a) 0.974(a) 0.985(a) 0.984(a)

Chevron 0.987(a) 0.971(a) 0.976(a) 0.999 0.986(a) 0.984(a) 0.981(a)

Walt Disney 0.977(a) 0.960(a) 0.960(a) 0.994(a) 0.982(a) 0.975(a) 0.974(a)

General Electric 0.984(a) 0.936(a) 0.934(a) 0.993(a) 0.982(a) 0.952(a) 0.956(a)

IBM 0.982(a) 0.963(a) 0.962(a) 1.007(a) 0.986(a) 0.975(a) 0.974(a)

Intel 0.998(a) 0.973(a) 0.973(a) 0.998(a) 0.992(a) 0.986(a) 0.986(a)

Johnson & Johnson 0.991(a) 0.963(a) 0.961(a) 0.997(a) 0.987(a) 0.963(a) 0.963(a)

JPMorgan 0.989(a) 0.920(a) 0.919(a) 1.005(a) 0.978(a) 0.928(a) 0.932(a)

Coca-cola 0.983(a) 0.950(a) 0.949(a) 1.006(a) 0.993(a) 0.961(a) 0.962(a)

McDonald’s 0.995(a) 0.979(a) 0.981(a) 1.000 0.997(b) 0.993(b) 0.992(a)

Merck 0.989(a) 0.977(a) 0.969(a) 0.992(a) 0.976(a) 0.982(a) 0.983(a)

Microsoft 0.995(a) 0.961(a) 0.961(a) 0.988(a) 0.987(a) 0.976(a) 0.976(a)

Pfizer 0.990(a) 0.969(a) 0.970(a) 1.007(a) 1.037 0.982(a) 0.983(a)

Procter & Gamble 0.985(a) 0.960(a) 0.955(a) 0.987(a) 0.994 0.974(a) 0.975(a)

AT&T 0.990(a) 0.965(a) 0.964(a) 0.999 0.991(a) 0.974(a) 0.975(a)

Walmart 0.995(a) 0.985(a) 0.985(a) 1.004(a) 0.999 1.000 1.000
ExxonMobil 0.990(a) 0.975(a) 0.977(a) 0.996(a) 0.990(a) 0.983(a) 0.982(a)
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consistent pattern. Furthermore, SV-NL outperform SV in the majority of the equities.
At h = 5, Beta-t-EGARCH and Beta-t-EGARCH-NL are again the top performers.

They outperform the other models by at least 5 percent for each equity. The magnitude of
improvements of the GAS specification over t-EGARCH and SV increase as h increases. For
instance, referring to Chevron, Beta-t-EGARCH outperform SV by 8 percent and t-EGARCH
by 6 percent. For General Electric, the gains are about 10 percent and 14 percent over SV and
t-EGARCH.

At h = 20, the pattern is very similar. Indeed, among the twenty returns series and the
three forecast horizons considered, Beta-t-EGARCH-NL outperforms t-EGARCH, SPEGARCH
and SV models. t-EGARCH is able to generate more accurate forecasts than t-EGARCH-NL,
whereas SV and SV-NL generate similar forecasts. Finally, as h increases, SV and SV-NL
outperform the GARCH models.

6.3 Summary

The empirical results reported provide the following acknowledgements:

• For each model-type, the specification with the leverage effect is able to generate more
accurate density forecasts than the specification without the leverage effect. In particular,
Beta-t-EGARCH and SV perform relatively better than their non-leverage counterparts
at h = 1 and h = 5 compared to h = 20, whereas the opposite trend is observed for
t-EGARCH and SPEGARCH. Thus, the parametric specification and how the leverage
effect is incorporated affect the out-of-sample performance at different forecast horizons.
Moreover, the specification that accounts for the leverage effect is able to predict the tails
and, in some cases, also the center of the conditional distribution significantly better than
the non-leverage model. The last point is very evident in the context of the S&P500 index
when the left tail is emphasized.

• The business cycle and the choice of data frequency have relationships with the leverage
effect. Indeed, predictive gains from the model with the leverage effect are concentrated
near the peaks and the troughs. Conversely, when the data frequency decreases from
daily to weekly observations, adding the leverage effect has a negative impact during quiet
periods. Moreover, the non-leverage model is able to predict the left tail just as well as
the model with the leverage effect at the weekly sampling frequency.

• Results indicate that Beta-t-EGARCH is the top performer. Furthermore, Beta-t-
EGARCH-NL outperforms t-EGARCH, SPEGARCH and SV in some cases. Accordingly,
the choice of the evolution of the conditional volatility process can play just as an
important role as incorporating the leverage effect with regards to generating accurate
density forecasts.

• Beta-t-EGARCH is the preferred model taking into consideration the following two aspects.
First it is the model that generates the most accurate density forecasts. Second it is a
model that guarantees recursive model estimation in a rather parsimonious way, that is

33



able to obtain parameters estimates for every out-of-sample observation, while maintaining
a reasonable computation time.

7 Conclusions

This study describes the work by Catania and Nonejad (2019), who examine the role of the
leverage effect with regards to generating density forecasts of equity returns using well-known
observation and parameter-driven conditional volatility models. The conditional volatility
models considered differ in the parametric specification, the evolution of the conditional volatility
process, and how the leverage effect is specified.

Considering daily Dow Jones and more than four hundred equities from S&P500 index
returns series, the main finding obtained is that the models with the leverage effect tend to
generate statistically significant more accurate density forecasts compared to their non-leverage
counterparts. Predictive gains from models with the leverage effect tend to mainly concentrate
on the onset of recessions.

A comparison between volatility models demonstrates that Beta-t-EGARCH is the top
performer. Moreover, Beta-t-EGARCH-NL outperforms t-EGARCH, SPEGARCH and SV.
Therefore, besides accounting for the leverage effect, the choice of the parametric specification
and evolution of the conditional volatility process is important with regards to generating
accurate density forecasts.
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