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Abstract

The supergravity action is generically invariant under local supersymmetry only
up to boundary terms. In the context of the AdS/CFT correspondence, the latter
play an essential role when implementing the technique of holographic renormaliza-
tion. We consider minimal N = 2 gauged supergravity in four dimensions and study
the holographic counterterms that ensure supersymmetry of the bulk + boundary su-
pergravity action. This provides an explicit proof that holographic renormalization
preserves supersymmetry in the considered setup.
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Chapter 1

Introduction

One of the most important developments in the study of string theory in the last
decades is represented by the AdS/CFT conjecture, proposed by Maldacena in 1997 [1]
[2] [3]. It states that there exists a duality correspondence between a theory of quan-
tum gravity, formulated in terms of string theory, de�ned on a background given by
the product of an Anti de-Sitter space (AdS) and a compact manifold, and a particu-
lar supersymmetric quantum �eld theory called SuperConformal Field Theory (SCFT)
living on the boundary of AdS.
The best studied example of Maldacena's conjecture was that type IIB superstring
theory on the ten dimensional AdS5 × S5 curved background is dual to N = 4 super
Yang-Mills theory (N = 4 SYM) with gauge group SU(N).
A �rst basic check is the matching between the symmetry groups of the two theories.
On the gravity side we have the isometry group of AdS5×S5, on the gauge side there is
the superconformal group ofN = 4 SYM: both of them are isomorphic to SU(2, 2|4) [4].

The useful feature that makes this correspondence interesting is the fact that, in
a certain regime which we explain better in the following, one has a duality between
a strongly coupled (super)conformal �eld theory and a weakly coupled (super)gravity
theory. That means we can study quantum �eld theories in strongly coupled regime
via its dual, doing classical calculations in supergravity and using the rules of the cor-
respondence to get information about the former. In order to explain better where
this feature comes from, let us very brie�y introduce the objects which live in type IIB
string theory and then study how the parameters of the two theories are related. We
will follow [4] and [5].
Originally type IIB string theory appeared to describe only closed strings. However it
was found [6] that it also includes open strings whose endpoints lie on p-dimensional
spatial hypersurfaces called Dp-branes. The D stands for Dirichlet, because the vi-
brating open strings have to satisfy a Dirichlet condition. The p-dimensional spatial
hypersurfaces (without the open string) are called p-branes. They are extended mas-
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2 CHAPTER 1. INTRODUCTION

sive and charged objects, namely interacting with the gravitational and gauge �elds,
and generalize the concepts of particles (0-branes) and strings (1-branes).
As in electro-magnetism, one can count the p-brane charges computing the �ux of the
gauge �eld, represented by a (p + 1)-form Ap+1, on a sphere surrounding the source.
In the case of an extended object with a R9−p transverse space, the expression for the
�ux reads ∫

S8−p

∗Fp+2 = N, (1.1)

where Fp+2 is the �eld strength associated to the gauge �eld Ap+1, ∗ is the Hodge
duality map, S8−p is a (8−p) dimensional sphere and N is the number of units of �ux.

After this digression, we have all the tools to come back to the relations between
the parameters of the two theories. On the gravity side we have the string coupling
constant gs, the N units of �ux of a stack of D3-branes and a length scale α′ propor-
tional to (length)2. Furthermore the gravitational coupling constant in ten dimensions
is κ2

10 = 8πG10 = 64π7g2
sα
′4. In N = 4 SYM there are the rank of the gauge group

N and the coupling constant gYM (or equivalently the t'Hooft parameter λ = g2
YMN).

We used the same symbol N for the units of �ux and the rank of the gauge group
because it turns out that they have the same value. Furthermore the brane description

in [7] implies the relation gs =
g2Y M

4π
.

The AdS/CFT duality is conjectured to hold for all values of the parameters, but it
is di�cult to formulate quantitative tests for the strong form of this correspondence.
However, it is possible to �nd a regime where string theory can be well approximated
by (classical) supergravity, where the calculations are more manageable.
Supergravity is a good approximation of string theory when the length scale ` associ-
ated to a �eld con�guration in supergravity is long compared to the string length scale√
α′, namely `2 � α′. An equivalent condition is given by a very small value of the

Riemann tensor RMNPQ ∼ 1
`2

(M , N , P and Q are ten dimensional indices), so that
higher derivative corrections to the basic supergravity action are negligible. In [5] the
authors show that `4 = 4πgsα

′2N . This means that the regime we are interested in is
gsN � 1.
Further supergravity theories su�er UV divergences. We don't know yet how to quan-
tize the superstring in AdS5× S5 and studying quantum string e�ects is very hard. In
order to suppress them we need κ2

10 to be very small, that implies the weakly interact-
ing string condition gs � 1. As a consequence of the condition gsN � 1 one obtains
N � 1, namely the large N limit.
As we mentioned before, gs is related with the �eld theory parameters as

gs =
g2
YM

4π
=

λ

4πN
� 1. (1.2)
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Thus one gets gYM � 1 and λ �xed. Further the previous equations provide

`4

α′2
= 4πgsN = g2

YMN = λ� 1. (1.3)

Thus we will choose a large value of λ, but �xed.
't Hooft argument states that the e�ective coupling of a Yang-Mills SU(N) gauged
theory in 't Hooft limit (that is large N and λ� 1 but �xed) is λ. In this limit calcu-
lations are simpli�ed also for strongly coupled CFT, because only the planar diagrams
are relevant.
Hence we found a regime in which a weakly coupled supergravity theory is dual to a
strongly coupled gauge quantum �eld theory in planar limit.

The AdS/CFT correspondence is more general than its AdS5 × S5/N = 4 SYM
incarnation: in fact it is possible to conjecture other AdS/CFT dualities. This is
the case of the correspondence between the M-theory on AdS4 × S7/Zk and a three-
dimensional SCFT, which is the example considered in this work. The SCFT is rep-
resented by ABJM (Aharony, Bergman, Ja�eris and Maldacena) theory [8], which is
a three-dimensional N = 6 superconformal Chern-Simons theory with gauge group
U(N)k × U(N)−k, where the subscripts are the level of the Chern-Simons terms1.
The ABJM theory has two parameters: the rank of the gauge group N and the Chern-
Simons level k. In the large N limit with λ = N

k
, the 't Hooft coupling of the planar

diagrams is λ itself. Furthermore, in the regime N1/5 � k one can prove that the du-
ality is again of strong/weak type and we can use 11-dimensional supergravity instead
of the entire M-theory de�ned on AdS4 × S7/Zk.

Working with supergravity in higher dimension can quickly become very compli-
cated. It is in several situations convenient to perform a dimensional reduction of the
higher-dimensional supergravity on the compact manifold so that a lower-dimensional
supergravity is obtained. Thus we perform a Kaluza-Klein (KK) reduction (or trun-
cation) on the compact manifold. In general this procedure leads to an in�nite tower
of �elds, which can be split in a �nite number of �light� modes and an in�nite tower
of �heavy� �elds. The KK truncation is called consistent if one can set all the heavy
modes to zero in the equations of motion leaving the �eld equations for the light modes
only. This is possible only when the on-shell light modes don't source the heavy ones
[9]. After one gets the solution for the equations of motion of the consistent truncated
theory, one can uplift it on the compact manifold founding the solution for the entire

1The action S of a three-dimensional Chern-Simons theory is the integral of a Chern-Simons 3-form,
namely

S =
k

4π

∫
M
Tr
(
dA ∧A+

2

3
A ∧A ∧A

)
, (1.4)

whereM is a topological manifold, A is a gauge �eld and k is a constant called level of the theory.



4 CHAPTER 1. INTRODUCTION

starting space.

Hence by employing the consistent truncation procedure, one reduces to study the
�elds on a space of lower dimension. The eleven-dimensional supergravity which admits
AdS4 × S7 as a solution has a consistent truncation in the minimal four dimensional
N = 2 gauged supergravity theory [9], which correspondingly admits an AdS4 vacuum.
This is the theory which we are going to deal with on the gravity side. On the gauge
side we have a three dimensional N = 2 superconformal �eld theory de�ned on the
boundary of AdS space, that is conformally �at. Its action reads [8]

SN=2
CS =

k

4π

∫
Tr
(
dA ∧ A+

2

3
A ∧ A ∧ A− χ̄χ+ 2Dσ

)
, (1.5)

where χ is the gaugino, D is the auxiliary �eld of the vector multiplet, and σ is the
real scalar �eld in the vector multiplet.
The supergravity theory admits also other solutions, which are just Asymptotically
locally AdS spaces (AlAdS): they look like AdS near-boundary, but are di�erent in the
interior (which we will call bulk) [10]. These correspond to deforming the dual SCFT
in various ways as we will see in a moment.
Since the SCFT lives on the boundary of the bulk space, in order to apply the corre-
spondence we need to study the near-boundary behaviour of the metric and �elds in
AlAdS. This issue imposes to use the asymptotic expansions of the metric and �elds,
which is known as the Fe�erman-Graham expansions [10]. We will see how they work
speci�cally in Chapter 2.

Finally we arrive to the AdS/CFT conjecture which can be expressed as two
fundamental statements [4]. The �rst statement is that every bulk �eld is the source
(or background �eld) of a boundary operator (with the same quantum numbers) and
they are coupled on the boundary. For instance some standard couplings are∫

ddx
(
gµνT

µν + AµR
µ
)
, (1.6)

where gµν and A
µ are the bulk metric and a gauge bulk �eld induced on the boundary,

while Tµν and R
µ are the stress-energy tensor and a conserved current of the CFT. This

example shows how a conformal �eld theory (represented by the stress-energy tensor)
couples to a generic curved spacetime gµν .
The second statement is

WCFT = −SosSUGRA, (1.7)

where WCFT is the generating functional of the connected correlation functions for the
conformal �eld theory and SosSUGRA is the on-shell supergravity action, i.e. evaluated
on a solution of the �eld equations. This holds in the regime we mentioned at the
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beginning of the introduction, that is low energies and weak gravitational coupling.
These statements bring to light important features of the correspondence. A fact which
will reveal to be fundamental for the present work is that global symmetries in CFT
correspond to gauged symmetries of the o�-shell gravity action. In the case of super-
symmetry this means that if we want to preserve it in CFT, we need to ask a local
supersymmetric o�-shell gravity action, i.e. a theory of supergravity. Furthermore the
second statement tells us that the global symmetries of the generating functional of
the connected correlation functions are the same as those of the on-shell supergravity
action. In fact local symmetry transformations in the bulk induce transformations of
the bulk �elds restricted to the boundary. From the CFT point of view, the latter
are sources of the conserved currents and their transformations are global because the
background �elds are not dynamical �elds of the CFT.
In the end let us notice that theoretically one can obtain all the correlators for CFT
only from the knowledge of the supergravity action evaluated on solutions with general
boundary conditions: this is an example of holography in physics.

We know that the correlation functions of a quantum �eld theory su�er UV diver-
gences that have to be removed through a renormalization procedure in order to save
its consistency. In a gauge/gravity theory correspondence there is a UV/IR connection,
i.e. the UV divergences of the SCFT are related to the IR ones of the gravity theory.
Hence we will explain the procedure to remove the UV divergences holographically
through the elimination of the IR divergences, the so-called holographic renormaliza-
tion procedure. In general it consists of regulating the bulk spacetime with a cut-o�
(in our case it will be a large, but �nite value of the radial coordinate), adding the
correct boundary counterterms that cancel exactly the divergences and removing the
cut-o� [10].
According to the features of the correspondence we mentioned above, in order to save
the global supersymmetry in the SCFT, we need to preserve the local supersymmetry
in the gravity theory. Usually the supergravity action is generically invariant under
local supersymmetry up to boundary terms. In AdS/CFT correspondence we need an
action that satis�es local supersymmetry including also the boundary terms. This is
caused by the fact that we can't set to zero the value of the bulk �elds at the boundary
as they correspond to �eld theory sources, and we are interested in the �eld theory
generating functional with generic sources switched on. Thus we must require that bulk
action + boundary counterterms to respect local supersymmetry, namely the variation
of counterterms needs to cancel exactly the boundary terms deriving from the bulk
action variation. This corresponds to invariance of the SCFT generating functional
under supersymmetry variations of the sources.
There are di�erent techniques to construct the appropriate counterterms and we will
analyse two of them: the standard [11] and the Hamiltonian [12] approaches. In par-
ticular the second one is used in [12], which is the article we will mainly refer to in the
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present work. The Hamiltonian approach results more systematic than the standard
one, even though sometimes it turns out to be mathematically more intricate. In the
Chapters 2 and 3 we will explain the basics of both these methods.

This work stems out from the problem studied in [12]. In particular we focus on
the renormalization problem of minimal N = 2, D = 4 gauged supergravity, a theory
that includes the gravity multiplet only, made up of the metric, one Dirac gravitino
and a graviphoton.
The counterterms which preserve local supersymmetry also at the boundary were found
by Papadimitriou in [12], using the Hamilton-Jacobi method. Our purpose will be to
prove the accuracy of those counterterms computing the explicit supersymmetric vari-
ation of the bulk + boundary action.

In Chapter 2 we present the basic features of (super)conformal �eld theories, with
particular attention to the three dimensional N = 2 SCFT. Then we analyse the anti
de-Sitter space and Asymptotically locally anti de-Sitter spaces, introducing the idea of
Fe�erman-Graham �eld expansion. After we talk about the AdS/CFT correspondence,
focusing on the two statements of the conjecture and the role of the radial coordinate.
In the end we explain how the standard approach to holographic renormalization works
and we propose a simple explicative example.

In Chapter 3 we brie�y introduce the concept of supergravity, focusing on su-
pergravity theories which admit an (Al)AdS vacuum. We propose the simple case of
N = 1, D = 4 pure AdS supergravity as an extension of N = 1, D = 4 pure su-
pergravity. Then we study in detail the minimal N = 2, D = 4 gauged supergravity
theory. We compute its supersymmetric variation and �nd that it is a boundary term.
Then we work out the supersymmetry variation of the counterterms obtained with the
Hamilton-Jacobi method. In the end we compute the near-boundary expansion for
the bulk + boundary action variation and we obtain that it vanishes, thus proving
supersymmetry of the complete action.

In Chapter 4 we summarize the result obtained and we apply it to a concrete
example, which is about the holographic relation between the partition function of
certain superconformal �eld theories and the microscopic counting of the dual black
holes entropy. In the end we present one possible development of our work.



Chapter 2

AdS/CFT correspondence

In the introduction we stated that AdS/CFT correspondence concerns the dual-
ity existing between a string theory de�ned on AdS times a compact manifold and a
SCFT living in a conformally �at spacetime, corresponding to the boundary of AdS.
The correspondence can be generalized so that AdS is deformed to an AlAdS space
and SCFT is de�ned on a generic background.
Even though the duality holds for any value of the parameters that characterise the
two theories, we will deal with the low energies and weak gravitational coupling regime,
in which classical supergravity is valid. Furthermore we will omit the analysis of bulk
�elds on the entire manifold, because the consistent truncation procedure allows us to
analyse their behaviour on a lower dimensional space by just keeping the degrees of
freedom we need. If one is interested in the behaviour of the bulk �elds on the entire
manifold, the uplift procedure allows to obtain it.
In the case of our interest, the eleven-dimensional supergravity with an AdS4 × S7

vacuum admits a consistent truncation to minimal D = 4, N = 2 gauged supergravity
[9] with an Asymptotically locally AdS vacuum. Thanks to these arguments we will
concentrate to theories with (Al)AdS vacua on the gravity side.

In this chapter we primarily give a look to the conformal theories and their su-
persymmetric extension, with particular regard to the N = 2, D = 3 SCFT algebra
and one of its representations, that is the conformal supercurrent multiplet. Then we
will analyse the AdS space and the AlAdS space, introducing the useful tool of the
Fe�erman-Graham �eld expansion. We will provide an essential introduction to the
AdS/CFT correspondence and its features, discussing separately the holographic renor-
malization procedure. As we mentioned in the introduction there are many di�erent
methods for constructing the boundary counterterms. In Section 2.6 we will present
the standard approach applied to a pure gravity theory. Instead we postpone the ex-
planation of the Hamiltonian approach to Chapter 3 because we need to introduce the
framework of supergravity in order to discuss its functioning.

7



8 CHAPTER 2. ADS/CFT CORRESPONDENCE

In this chapter we follow [4] [5] [10] [11] [13] [14] [15] [16] [17].

2.1 Conformal �eld theories

We will start discussing conformal �eld theories in �at space. Later we will discuss
how the theory can be coupled to curved space.
The conformal symmetry is de�ned through the action of its transformation on the
metric

ηαβ
∂x′α

∂xµ
∂x′β

∂xν
= Λ(x)ηµν (2.1)

with Λ(x) an arbitrary positive function of the coordinates called scale factor. Note
that Λ(x) = 1 corresponds to the Poincaré symmetry group and Λ(x) = Λ represents
a dilatation transformation.

Let us study an in�nitesimal conformal transformation. It reads (up to the �rst
order)

x′α = xα + εα(x) +O(ε2) (2.2)

where εα(x)� 1 and substituting this expression in (2.1) we obtain

ηαβ

(
δαµ + ∂µε

α +O(ε2)
)(
δβν + ∂νε

β +O(ε2)
)

=

=ηµν + ∂µεν + ∂νεµ +O(ε2) = Λ(x)ηµν .
(2.3)

We set Λ(x) = 1 +K(x) and the equation becomes

∂µεν + ∂νεµ = K(x)ηµν . (2.4)

It is possible to �nd the expression of K(x) tracing the equation above

K(x) =
2

d
∂µε

µ. (2.5)

Thus we obtained an equation identifying the in�nitesimal conformal transformation
up to �rst order in the conformal Killing vector εµ

∂µεν + ∂νεµ −
2

d
∂ρε

ρηµν = 0. (2.6)

There are in�nite solutions for this equation in d = 2, while in d 6= 2 there is a �nite
number. In fact the possible solutions are εµ = aµ, ωµνxν , Λxµ and bµx2−2bνxνx

µ with
the respective generators P µ, Jµν , D and Kµ. Here ωµν and Jµν are antisymmetric
tensors. Let us note that the �rst operator is associated to the traslations, the second
to the Lorentz transformations, the third to the dilatations and the fourth to the special
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conformal transformations.
If we have a d-dimensional theory with d > 2, the total number of solutions is

d+
d(d− 1)

2
+ 1 + d =

(d+ 1)(d+ 2)

2
. (2.7)

Realizing a rearrangement of the transformations generators, it can be proved that the
conformal group is isomorphic to SO(2, d).
Adding furthermore the discrete conformal symmetry

xµ →
xµ
x2
, (2.8)

we obtain the full conformal group O(2, d).

Under mild conditions we can prove that a theory invariant under Poincaré and
scale transformations is also invariant under special conformal transformations (see [18]
for details on this subtle issue). In fact, constructing the conformal currents as

Jµ = T µνεν , (2.9)

where εν is each of the conformal Killing vectors, we immediately see that the conserved
currents of translation, Lorentz and dilatation symmetries imply

∂µ
(
T µνaν

)
= 0→ ∂µT

µν = 0

∂µ
(
T µνωνρx

ρ
)

= 0→ T µν = T νµ

∂µ
(
T µνΛxν

)
= 0→ T µµ = 0.

(2.10)

Now, studying the special conformal transformations current, we see that it is auto-
matically conserved. In fact

∂µ
[
T µν
(
bνx

2 − 2bρxρxν
)]

= T µν
(
2bνxµ − 2bµxν − ηµνbρxρ

)
= 0. (2.11)

If the conformal theory also satis�es supersymmetry, we add to the O(2, D) al-
gebra the supercharges Qa, the R-symmetry generators and the so-called conformal
supercharges Sa to close the algebra. That enhanced algebra is called superconformal
algebra and we have a superconformal theory. Those superconformal theories actually
play a role in the AdS/CFT correspondence.

In the next section we will summarize some aspects of supersymmetry and provide
the three dimensional N = 2 superconformal algebra structure relations.
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2.2 N = 2, D = 3 superconformal algebra

According to the Coleman-Mandula theorem in the presence of massive particles,
bosonic charges are limited to the Poincaré symmetry plus internal symmetry charges.
Furthermore the symmetry algebra of the theory is a direct sum of the Poincaré algebra
and a �nite-dimensional compact Lie algebra for internal symmetry.
If we admit a graded algebra, the situation is governed by Haag-�opusza«ski-Sohnius
(HLS) theorem and we need to add spinor (super)charges Qi

α to the symmetry algebra.
Here α is a spinor spacetime index, i = 1, . . . , N is the index labelling the number of
supercharges (and supersymmetries).
Hence supersymmetry (SUSY) theories realize the most general symmetry possible
within the framework of the few assumptions made in the hypotheses of the CM and
HLS theorems. Further, because of the structure of supersymmetry transformations,
in a certain way they unify bosons and fermions.
Moreover in theories that contain only massless �elds and are scale invariant at the
quantum level, there are the additional possibilities of conformal and superconformal
symmetries.

The case of interest for this work is the three dimensional N = 2 superconfor-
mal algebra. It contains all the generators in the supersymmetry algebra, namely
the bosonic generators of the Poincaré group Pµ and Mµν and one (complex) spinor
supercharge Qα with its conjugate Q̄α. The structure relations yield

[Mµν ,Mρσ] = i
(
ηµρMνσ − ηµσMνρ + ηνσMµρ − ηνρMµσ

)
[Mµν , Pρ] = i

(
ηµρPν − ηνρPµ

)
[Pµ, Pν ] = [Qα, Pµ] = {Qα, Qβ} = 0

{Qα, Q̄β} = 2(γµ)αβPµ + 2iεαβZ,

(2.12)

where Z is a central charge1 and we pick the gamma matrices to be real and symmetric.
In addition, it contains two new bosonic generators, Kµ andD, the generators of special
conformal transformations and dilatations, as well as the new fermionic generators Sα
and S̄α, called conformal supercharges, required to close the algebra.

1A central charge is an operator that commutes with all the other generators of the algebra.
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The (anti)commutation relations between the generators read

[Mµν , Kρ] = i
(
ηµρKν − ηνρKµ

)
[Kµ, Pν ] = −2iMµν − 2iηµνD

{Sα, S̄β} = 2(γµ)αβKµ + 2iεαβZ

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[D,Qα] =
i

2
Qα, [D,Sα] = − i

2
Sα

[D, Q̄α] = − i

2
Q̄α, [D, S̄α] =

i

2
S̄α

[Mµν , D] = 0

{Qα, Sβ} = Mµν [γ
µ, γν ]αβ + 2Dεαβ + iεαβR,

(2.13)

where R is the generator of a U(1) R-symmetry which acts as an automorphism of this
algebra, rotating the charges Qα and Q̄α by opposite phases.

Every local quantum �eld theory possesses a real, conserved, symmetric energy-
momentum tensor Tµν and every supersymmetric quantum �eld theory possesses a
conserved supersymmetry current. In the case of a supersymmetric (conformal) �eld
theory, the stress-energy tensor is embedded in the (conformal) supermultiplet. Fur-
thermore the conserved conformal currents Jµ (see eq. (2.9)) turn into the conserved
superconformal current embedded in the supermultiplet too.
By de�nition, the supercurrent is a supermultiplet containing the energy-momentum
tensor and the (fermionic) supersymmetry current(s), along with some additional com-
ponents such as the R-symmetry current. For the three dimensional N = 2 supercon-
formal theory, the supercurrent reads

(
Tµν , Iµα , Rµ

)
, (2.14)

where Iµα is the conserved superconformal current and Rµ is the conserved R-symmetry
current.

In the following of this chapter and in the next one, we will analyse one of the
fundamental statement of AdS4/CFT3 correspondence: the supermultiplet of the three
dimensional N = 2 SCFT exactly couples with the gravity multiplet of the minimal
four dimensional N = 2 gauged supergravity theory.
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2.3 Anti de Sitter space

Anti de Sitter space is a solution of the Einstein equations derived from the action

S =
1

2κ2

∫
dDx
√
−g(R− Λ), (2.15)

where D = d+ 1, κ2 = 8πGD (GD is the Newton's gravitational constant in D dimen-

sions) and Λ = − (D−1)(D−2)
`2

is the negative cosmological constant, function of D and
the curvature radius of AdS space.
The equation of motion yields

Rµν −
R

2
gµν = −Λ

2
gµν (2.16)

and tracing this equation we obtain R = D
D−2

Λ. Substituting above we have

Rµν = −D − 1

`2
gµν . (2.17)

Thus AdSD is an Einstein space. Furthermore it is a maximally symmetric space and
consequently the Riemann tensor takes the form

Rµνρσ = − 1

`2
(gµρgνσ − gµσgνρ). (2.18)

AdSD can be embedded as an hyperboloid in a �at spacetime of dimension D+ 1
with metric ηαβ = (−1,+1,+1, · · · ,+1︸ ︷︷ ︸

D−1

,−1). The hyperboloid is de�ned as

− (x0)2 +
D−1∑
i=1

(xi)2 − (xD)2 = −`2 (2.19)

with the D + 1 coordinates x0, xi and xD. It is clear from (2.19) that the isometry
group of AdSD space is O(2, D − 1).
The AdSD line element can be obtained introducing the set of intrinsic coordinates

xi = rx̄i with
D−1∑
i=1

x̄2 = 1, 0 ≤ r <∞

x0 =
√
r2 + `2 sin

( t
`

)
, 0 ≤ t < 2π`

xD =
√
r2 + `2 cos

( t
`

) (2.20)
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and using them to express the line element of R2,D−1. The result is

ds2 = −
(

1 +
r2

`2

)
dt2 +

(
1 +

r2

`2

)−1

dr2 + r2dΩ2
D−2, (2.21)

where dΩ2
D−2 is the line element of a (D − 2)-sphere.

This coordinate system is global because it covers the full AdSD space. To avoid a
periodic time-like coordinate, we extend his domain to R. We will still refer to the
universal cover of AdSD as AdSD.
Another set of global coordinates can be obtained de�ning a new radial coordinate y

as cosh
(
y
`

)
=
√

1 + r2

`2
, so that the line element becomes

ds2 = − cosh2
(y
`

)
dt2 + dy2 + `2 sinh2

(y
`

)
dΩ2

D−2. (2.22)

Later we also use the coordinate system called Poincaré patch coordinates. It
doesn't cover all AdS space, but it has a useful feature: the slices at de�ned value of
the radial coordinate are conformal to Minkowski space. The patch is de�ned by

x0 = `ux̂0

xi = `ux̂i with i = 1, · · · , D − 2

xD−1 =
1

2u

(
−1 + u2(`2 − x̂2)

)
xD =

1

2u

(
1 + u2(`2 + x̂2)

)
(2.23)

with x̂2 = −(x̂0)2 +
∑D−2

i=1 (x̂i)2, 0 < u < ∞ and −∞ < x̂0, x̂i < ∞. The restriction
to the domain of u is necessary to construct a single-valued map of the hyperboloid
coordinates.
The line element becomes

ds2 = `2
[du2

u2
+ u2

(
−(dx̂0)2 +

D−2∑
i=1

(dx̂i)2
)]
. (2.24)

There is a particular surface in this coordinate system: u = ∞. It is, mathematically
speaking, a conformal boundary2 and it is referred as the boundary of AdSD. It is a
Minkowskian R1,D−2 plane.
Other two forms in which the Poincaré patch may be described are

ds2 = `2
[dz2

z2
+

1

z2

(
−(dx̂0)2 +

D−2∑
i=1

(x̂i)2
)]

= `2
[
dr2 + e2r

(
−(dx̂0)2 +

D−2∑
i=1

(x̂i)2
)]
, (2.25)

2In the conformal compacti�cation construction, one maps a manifold M onto the interior of a
compact manifold M̃ and then call its boundary ∂M̃ the conformal boundary of the original manifold.
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where we set u = 1
z

= er.

2.4 AdS/CFT correspondence

After talking individually about the two actors of the correspondence, now we
are ready to discuss it, exhibiting some general features of the duality. Let us take
into account theories with AdSd+1 vacuum and CFTs living within a d-dimensional
spacetime conformal to Minkowski space, represented by the AdSd+1 boundary.
Let us assume that the interactions between bulk �elds (for instance metric, gauge
and scalar �elds) are described by the e�ective action SAdS. Furthermore we assume a
negative scalar potential required to have an AdSd+1 vacuum3. On the other side we
introduce the Lagrangian LCFT which rules the boundary �elds dynamic.
The �rst statement of AdS/CFT is that every bulk �eld ĥ in AdS is associated to a
boundary operator O (with the same O(2, d) quantum numbers) via their coupling on
the boundary. In particular we have

LCFT +

∫
ddxhO. (2.26)

Notice that for consistency we used h instead of ĥ, i.e. the value of the bulk �eld
induced on the boundary.
One can obtain a unique ĥ(x, z) from h(x) demanding ĥ solves the bulk �eld equation
derived from SAdS and imposing suitable boundary conditions for the solution. In
terms of path integral, h(x) represents the source of the operator O. In fact

eW [h] =

∫
DO e−

∫
ddx
(
LCFT−hO

)
(2.27)

with W [h] the generating functional of the connected correlation functions and LCFT
the Lagrangian density.
We can't say a priori which are the couplings between bulk �elds and operators, but
there are some of them that are standard∫

ddx
√
g
(
gµνT

µν + AµR
µ + Ψα

µIµα + · · ·
)
, (2.28)

where the ellipsis stands for other couplings beyond the �rst order in the �elds. gµν ,
Aµ and Ψα

µ are respectively the metric, a gauge �eld and a vector-spinor de�ned on
the background. On the other side Tµν , Rµ and Iαµ are the stress-energy tensor, a

3In the case of N = 2 minimal supergravity, which we will study in the second part of this work,
scalar �elds are absent. Therefore a negative cosmological constant is provided by gauging the global
subgroup U(1)R.
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conserved current and vector-spinor supercurrent of the CFT. Let us note that we
introduced exactly the couplings we are interested in for our work. Indeed we will see
that the gravity multiplet of the minimal four dimensional N = 2 gauged supergravity
theory is composed of (

gµν ,Ψ
α
µ, A

µ
)

(2.29)

This example shows how a conformal �eld theory (represented by the stress-energy
tensor) couples to a generic curved spacetime gµν . Indeed in Chapter 3 we will be
interested in a SCFT de�ned on a curved background, namely the boundary of an
Asymptotically locally AdS space (see Section 2.5).
In the end we want to bring the attention of the reader on the fact that gauged symme-
tries of the o�-shell gravity action correspond to global symmetries (therefore conserved
currents) in the CFT. For this reason we will ask that the counterterms variation can-
cels exactly the boundary term deriving from the bulk action variation, so that we
obtain a local supersymmetric gravity action.

The second statement of AdS/CFT is

W [h] = −SosAdS[ĥ], (2.30)

where on the right hand side we have the on-shell gravity action, i.e. evaluated on a
solution of the equation of motion ĥ(x, z). This conjecture means we can theoretically
obtain all the correlators for the CFT (that is the entire theory) from the knowledge
of the gravity action evaluated on solutions with general boundary conditions, i.e. for
generic values of boundary �elds. Furthermore if we want to preserve supersymmetry
in the CFT, we have to ask the on-shell supergravity action (plus boundary countert-
erms necessary to cancel the divergences) to be supersymmetric too.

Since the equations of motion in AdS are second order di�erential equations, we
need to specify two boundary conditions to have a well-de�ned solution.
The �rst one concerns the form of ĥ(z, x). In fact the �elds, like the metric, blow up
at the boundary and, for this reason, we can't simply set h(x) = ĥ(z = 0, x). On the
contrary the right condition to require is that ĥ can be factorized as ĥ(z, x) = f(z)h(x),
with f(z) a function of z.
The second boundary condition to be imposed on the behaviour of the �elds is their
regularity in the centre of the bulk.

Eventually we want to draw the attention to the renormalization issue. Usually
the correlation functions of a QFT su�er UV divergences. In the AdS/CFT corre-
spondence such divergences are bound to IR ones on the gravity side, in a certain way
due to the in�nite volume of AdS. In order to cancel these divergences, we need to
renormalize SAdS(ĥ) through the so-called Holographic Renormalization procedure. In
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order to perform the latter there are many di�erent methods. However we will take
into account two of them, which will be explained in Sections 2.6 and 3.5.

A very interesting feature of AdS/CFT duality is the role that the radial coordinate
of the gravity side plays. In fact it can be seen as an energy scale in the conformal
theories and it is fundamental for the holographic interpretation.
Let us consider the AdS metric in the Poincaré patch (we will �x the AdS radius to
` = 1 for simplicity)

ds2 =
dz2 + (dxµ)2

z2
. (2.31)

A dilatation xµ → λxµ in the CFT corresponds to the AdS isometry z → λz, xµ → λxµ.
Since we know that the dilatation generator of the conformal algebra is related to the
energy, we can identify u = 1

z
as an energy scale. It means that the boundary of AdS

(u→∞) is related to the UV regime in the CFT.
Thus we can better understand what we stated about the UV/IR connection in the in-
troduction. Quantum e�ects and the renormalization procedure cause UV divergences
in quantum �eld theories. For the reasoning we did before, the way to cancel them in
a gravity/gauge duality is to eliminate the IR divergences (namely long distances) on
the gravity side.

2.5 Asymptotically locally Anti de Sitter space

The AdS/CFT duality is a powerful tool to study physical theories through their
dual ones. In order to allow for truly arbitrary sources, we need to extend its validity
also to conformal �eld theories which couple with generally curved boundary, i.e. with
an arbitrary source gµν . Hence we are going to consider generalizations of AdS whose
conformal boundary is generally curved, namely Asymptotically locally Anti de Sitter
spaces (AlAdS). In the following of this section we try to understand better what they
are.

First of all we de�ne the concept of conformally compact manifold. Let us consider
a manifold M̄ with its interior M and the boundary ∂M . The metric G is conformally
compact if it has a second order pole at ∂M and, de�ned a positive function z(x) in
M with a �rst order zero at ∂M , the function g = z2G smoothly extends to M̄ . We
call g|M = g(0).
Another quantity that smoothly extends to M̄ is

|dz|2g = gµν∂µz∂νz (2.32)

and after some calculations one can shows that the Riemann tensor of G is

Rµνρσ[G] = −|dz|2g
(
GµρGνσ −GµσGνρ

)
+O(z−3), (2.33)
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with the main term proportional to z−4. Furthermore imposing the Einstein's metric
condition we obtain |dz|2g|M = 1

`2
, i.e. the curvature tensor of a conformally compact

Einstein manifold is the same of an AdS one near-boundary.
We have �nally arrived to the de�nition of Asymptotically locally AdS space: an AlAdS
metric is a conformally compact Einstein metric. Its line element can be expressed
near-boundary (z → 0) through a Fe�erman-Graham expansion as

ds2 =
1

z2

(
dz2 + gij(x, z)dx

idxj
)

gij(x, z) = g(0)ij(x) + zg(1)ij(x) + · · ·+ zdg(d)ij(x) + zdh(d)ij(x) log z2 + · · ·
(2.34)

where the metric g(0)ij is arbitrary. We can �nd the expression for the coe�cients g(k)ij,
k > 0 solving the Einstein's equations iteratively by treating z as a small parameter.
It can be proved that in a pure gravity theory all the coe�cients associated to odd
powers of z vanish until g(d)ij. Further the coe�cients g(2)ij, . . . , g(d−2)ij and the trace
and covariant divergence of g(d)ij are �xed by the equations. On the contrary, the value
of g(d)ij is related to the 1-point function expectation value of the CFT stress-energy
tensor. h(d)ij is present only for even d.

We show the procedure to obtain explicitly the coe�cients for the Fe�erman-
Graham metric expansion near-boundary in a simple example, namely a pure gravity
theory. We will refer to [11] however with di�erent convention on Riemann tensor4.
Furthermore the authors of the article set ` = 1. We will reinstate the factors ` at the
end of Section 2.6 in the expression of counterterms, in order to compare it with the
one found by Papadimitriou in [12] with the Hamilton-Jacobi method.
It will be useful to have the metric in the form

ds2 =
dρ2

4ρ2
+

1

ρ
gij(x, ρ)dxidxj

gij(x, ρ) = g(0)ij + · · ·+ ρ
d
2

(
g(d)ij + h(d)ij log ρ

)
+ · · · .

(2.35)

The pure gravity theory is described by the Einstein-Hilbert action plus a cosmological
constant term

S =
1

16πGN

∫
M

dd+1x
√

detGµν

(
R− 2Λ

)
. (2.36)

On a manifold M with boundary ∂M , we also have the Gibbons-Hawking term

SGH =
1

16πGN

∫
∂M

ddx
√

det gij2K, (2.37)

4Our convention on Riemann tensor is de�ned in Appendix A. It di�ers from the one in [11] for a
minus sign. In fact their convention is R σ

µνρ = ∂µΓ σ
νρ − Γ σ

µτ Γ τ
νρ − µ↔ ν.
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where gij is the metric on the boundary and K = gijKij is the trace of the extrinsic
curvature Kij of the boundary surface. In Section 3.5 we will discuss its expression
in the framework of radial ADM decomposition formalism. This term is necessary to
have a well posed Dirichlet problem5.
Einstein's equation for the bulk action is

Rµν −
1

2
RGµν = −ΛGµν (2.38)

and inserting (2.35) in (2.38), we have

ρ
(
2g′′ − 2g′g−1g′ + Tr(g−1g′)g′

)
−Ric(g)− (d− 2)g′ − Tr(g−1g′)g = 0

(g−1)jk(∇ig
′
jk −∇kg

′
ij) = 0

Tr(g−1g′′)− 1

2
Tr(g−1g′g−1g′) = 0,

(2.39)

where the derivative with respect to ρ is denoted by the prime, ∇i is the covariant
derivative constructed from the metric g and Ric(g) is the Ricci scalar of the boundary
metric g.
One can solve this system of equations iteratively, di�erentiating successively with
respect to ρ and setting ρ = 0. The �rst coe�cient of the expansion results

g(2)ij = − 1

d− 2

(
Rij −

1

2(d− 1)
Rg(0)ij

)
. (2.40)

Beside the metric, also the other �elds living in AlAdS can be expanded near-
boundary through a Fe�erman-Graham expansion. Let us call F a generic �eld with
its spacetime and internal indices suppressed. The expansion is

F(x, ρ) = ρm
[
f(0)(x) + ρf(2)(x) + · · ·+ ρn

(
f(2n)(x) + f̃(2n)(x) log ρ

)
+ · · ·

]
(2.41)

As in the metric case, we can �nd the value of the coe�cients f(2m), m > 0 solving
iteratively the �eld equations for F . Through this procedure one can �x all the coe�-
cients apart from f(0) and another one that we call f(2n), where n depends on the �eld

5The variation of Einstein-Hilbert action yields the sum of two contributions. The former is
proportional to Einstein tensor, while the latter is a boundary term which contains the variation of
the metric δgµν and variations of the derivatives of the metric δ(∂σgµν). Setting δgµν = 0 on the
boundary is not su�cient to kill all the surface contributions. However �xing both the metric and the
derivatives of the metric on the boundary is uncomfortable.
For this reason Gibbons and Hawking (and York) proposed to add the boundary term SGH , whose
variation cancels the terms involving δ(∂σgµν). So setting δgµν = 0 becomes su�cient to make the
action stationary.
More details about this issue can be found e.g. in [19].
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considered. f(0) is the source function for the dual operator living in the conformal the-
ory, while f(2n) is related to the 1-point function expectation value of the same operator.

2.6 Holographic Renormalization: Standard Approach

Although we relaxed the requests on the gravity side, the statements of AdS/CFT
still apply. Every bulk �eld ĥ is associated to a boundary operator O and its on-shell
asymptotic value h represents the �eld theory source of the operator. The fundamental
statement of AdS/CFT correspondence now reads

eWCFT [h] ≡
∫
DO e−

∫
∂AlAdS hO = e−S

os
SUGRA[ĥ] (2.42)

where ∂AlAdS is the boundary of an asymptotic locally AdS and SosSUGRA is the on-
shell supergravity action, namely evaluated on a solution.

After talking about these general features, we go into the substance of the issue.
Let us take into account a generic bulk �eld F , like the one we expanded in Section
2.5 (the metric is included too).
The �rst step to holographically renormalize an on-shell supergravity action is to reg-
ularize it, i.e. setting a cut-o� at ρ = ε (with ε a small parameter) and evaluating
the boundary terms at that value of ρ. In this way we can manipulate the divergent
quantities at the boundary, taking the limit ε → 0 at the end of calculations. The
regularized action takes the form

Sreg[f(0), ε] =

∫
ρ=ε

ddx
√
g(0)

[
ε−νa(0) + ε−(ν−1)a(2) + · · · − a(2ν) log ε+O(ε0)

]
(2.43)

with ν a positive number depending on the conformal dimension of the dual operator
and a(2k) local functions of the source f(0).
In order to cancel the divergences, we introduce the boundary counterterms de�ned as

Sct[F(x, ε), ε] = − divergent terms in Sreg[f(0), ε] (2.44)

where, for a matter of covariance, the boundary counterterms are expressed as function
of the �eld F(x, ε) living on the surface ρ = ε with the induced metric γij = gij(x, ε)/ε.
To do that we need to express the source as f(0) = f(0)(F(x, ε), ε) from (2.41) and then
we can evaluate the coe�cients a(2k) = a(2k)(f(0)(F(x, ε), ε)).
Finally we de�ne the subtracted action as

Ssub[F(x, ε), ε] = Sreg[f(0), ε] + Sct[F(x, ε), ε], (2.45)
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which is �nite in the limit ε→ 0. Hence we get the renormalized action

Sren[f(0)] = lim
ε→0

Ssub[F(x, ε), ε]. (2.46)

We would like to focus the attention of the reader on two issues. Firstly we de�ne a
subtracted action because we need it to compute the correlators. Indeed the functional
derivatives of the on-shell supergravity action must be taken before the evaluation of
the limit ε→ 0.
Secondly, if we want to keep a certain global symmetry in the conformal theory, for
example supersymmetry, we need to request the sum Sct + Sreg to be invariant under
the symmetry made local.

Now we want to show an explicit example of holographic renormalization. We
will study the case of a pure gravity theory, which we analysed in Section 2.5, closely
referring to [11].
The regulated action is

Sreg =
1

16πGN

[∫
ρ≥ε

dd+1x
√
g
(
R[g]− 2Λ

)
+

∫
ρ=ε

ddx
√
γ2K

]
=

= − 1

16πGN

∫
ddx
[∫

ε

dρ
d

ρ
d
2

√
det gij(x, ρ)+

+
1

ρ
d
2

(
−2d

√
det gij(x, ρ) + 4ρ∂ρ

√
det gij(x, ρ)

)∣∣∣
ρ=ε

]
.

(2.47)

Evaluating Sreg for the solution we found in Section 2.5, we obtain

Sreg =
1

16πGN

∫
ddx

√
det g(0)

(
ε−

d
2a(0) + ε−

d
2

+1a(2) + · · ·
)
, (2.48)

where

a(0) = −2(1− d) a(2) =
(d− 4)(d− 1)

(d− 2)
Trg(2) a(2m) = · · · . (2.49)

Notice that the coe�cients a(0) and a(2) are local functions of g(0) and its curvature
tensor. This fact is true for all a(2m), m ≥ 0.
In order to write the boundary counterterms in a covariant way, we need to express
them in terms of the induced metric γij = 1

ε
gij(x, ε). Inverting the relation between γij

and g(0)ij perturbatively in ε, one �nds

√
g(0) = ε

d
2

(
1− 1

2
Trg−1

(0)g(2) + · · ·
)√

γ

Trg(2) =
1

2(d− 1)

1

ε

(
−R[γ] + · · ·

) (2.50)
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Putting all together and reinstating the factors ` by dimensional analysis, we have the
covariant counterterms

Sct =
1

16πGN

∫
ρ=ε

ddx
√
γ
[2(1− d)

`
− `

d− 2
R[γ] + · · ·

]
. (2.51)

Finally we have the renormalized action following (2.45) and (2.46).
A similar procedure can be adapted to remove the divergences due to other �elds, such
as a gauge �eld or fermion �elds.

In the article [12] which we refer to in Chapter 3 for our calculations, the author
uses a di�erent approach to holographic renormalization, namely the Hamiltonian for-
malism approach. We will explain how this method works in the next chapter, making
use directly of the case studied in [12].
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Chapter 3

Holographic Renormalization in
Supergravity

The parameters of global SUSY transformations are constant anti-commuting Ma-
jorana spinors εα. In supergravity SUSY is gauged, also with the Poincaré generators,
since they are related to each other in the superalgebra. This means that gravity is
included and the parameters of SUSY transformations become functions of spacetime
coordinates.
We are interested in such theories because we saw that in order to preserve the global
supersymmetry in a SCFT, we need to ask a theory (necessarily of gravity) that is
locally supersymmetric. Further we are interested in theories which admit an (Al)AdS
vacuum for our purposes: for this reason we will refer to these supergravities in this
chapter.
The minimal content of a supergravity theory is represented by the gauge or gravity
multiplet, which is composed by the metric gµν(x) (or equivalently a frame �eld eαµ(x)),
N Majorana vector-spinor �eld Ψµ(x) and other �elds, depending on the theory we
are taking into account. In the basic case of N = 1, D = 4 supergravity, the gauge
multiplet does not contain additional �elds. Instead the gauge multiplet of a minimal
N = 2, D = 4 supergravity (which is the case of interest in [12]) includes one gauge
�eld, the graviphoton, in addition to the metric and two Majorana gravitinos.
The gravity multiplet of this theory precisely couples to the supercurrent of its dual
theory, i.e. N = 2 SCFT in three dimensions. In fact, as we mentioned in the previous
chapter, its supermultiplet is composed by

(
Tij, Iai , Ri

)
. (3.1)

We used the indices i and a instead of µ and α in order to make the notation compliant
with the one used in this chapter. The boundary values of the gravity multiplet �elds

23
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are the sources of the supercurrent components, namely∫
d3x
√
g
(
gijT

ij + AiR
i + Ψa

i I ia + · · ·
)
. (3.2)

where g is the determinant of the induced metric on the boundary.

In many cases, as the example provided in Chapter 4, one is eventually interested
in evaluating to on-shell a bosonic solution. Thus we are interested in �xing the bosonic
terms such that SUSY is preserved for this particular solution. In order to do this,
we need to consider quadratic terms in the fermions as well as the pure bosonic terms
and counterterms, because their supersymmetric variation talks each other. Thus our
analysis will be restricted to quadratic order in fermions in the action.

We begin in Section 3.1 introducing the simplest example of supergravity theory,
that is N = 1, D = 4 pure supergravity.
In Section 3.2 we discuss the case of N = 1, D = 4 pure AdS supergravity, which is an
extension of the previous one.
In Section 3.3 we introduce the action of minimal N = 2, D = 4 gauged AdS super-
gravity and the variations of the �elds.
In Section 3.4 we compute in full details the supersymmetric variation of the bulk ac-
tion, proving that it results in a boundary term.
In Section 3.5 we describe the Hamilton-Jacobi method for holographic renormalization
and we �nd the covariant counterterms for N = 2, D = 4 gauged AdS supergravity.
In Section 3.6 we study the near-boundary behaviour of bulk + boundary action vari-
ation.
In the end in Section 3.7 we prove that the bulk + boundary action variation exactly
vanishes in the limit r →∞.

3.1 N = 1, D = 4 pure supergravity

The simplest theory of supergravity, i.e. N = 1, D = 4 pure supergravity, consists
of the Hilbert and Rarita-Schwinger actions only. Its explicit form reads

S ≡ 1

2κ2

∫
d4x e

(
R− ψ̄µγµνρDνψρ

)
≡ S2 + S3/2, (3.3)

where e stands for the determinant of the frame �eld eaµ, R is the Ricci scalar and the
gravitino covariant derivative is given by

Dµψν =
(
∂µ +

1

4
ωµabγ

ab
)
ψν . (3.4)
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We omitted the Christo�el symbols in the previous expression because their symmetric
indices are contracted with γµνρ (which is completely antisymmetric) in S3/2.
In order to prove the invariance of the action under local supersymmetry, we need the
supersymmetric transformation rules. They read

δeaµ =
1

2
ε̄γaψµ, δe =

1

2
eε̄γρψρ, δψµ = Dµε. (3.5)

The prove of the invariance of the action under local supersymmetric transforma-
tions is really straightforward. Indeed the variations of the two pieces yield

δS2 =
1

2κ2

∫
d4x

[(
2eδeaµebν + δeeaµebν

)
Rµνab + eeaµebνδRµνab

]
=

=
1

2κ2

∫
d4x e

(
Rµν −

1

2
gµνR

)(
−ε̄γµψν

)
,

δS3/2 = − 1

κ2

∫
d4x eε̄

←−
Dµγ

µνρDνψρ =
1

2κ2

∫
d4x e

(
Rµν −

1

2
gµνR

)(
ε̄γµψν

)
,

(3.6)

where we omitted the boundary terms. The calculations in full details can be found in
Chapter 9 of [5].
Notice that δS2 is proportional to the geometric part of Einstein equation, as one could
expect.

A very simple extension of this supergravity theory is N = 1, D = 4 pure AdS
supergravity. We are interested in this theory because it represents a close example
to the supergravity theory we want to study, namely N = 2, D = 4 gauged AdS
supergravity. For this reason we will discuss it in the next section.

3.2 N = 1, D = 4 pure AdS supergravity

N = 1 four dimensional pure AdS supergravity doesn't require new �elds com-
pared to the theory of the previous section. One starts de�ning the gravitino covariant
derivative as

D̂µψν ≡
(
Dµ −

1

2`
γµ

)
ψν =

(
∂µ +

1

4
ωµabγ

ab − 1

2`
γµ

)
ψν , (3.7)

where the Christo�el symbols are omitted because they will be contracted with γµνρ

in the action. From this de�nition we obtain the relation[
D̂µ, D̂ν

]
ε =

1

4

(
Rµνab +

1

`2

(
eaµebν − ebµeaν

))
γabε ≡ R̂µνabγ

abε, (3.8)
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which implies

R̂µa ≡ Rµνabe
bν = Rµa +

3

`2
eaµ,

R̂ ≡ R̂µae
aµ = R +

6

`2
.

(3.9)

Substituting the quantities in the expression (3.3) with the �hat�-quantities, we
obtain the action of the theory

S ≡ 1

2κ2

∫
d4x e

(
R̂− ψ̄µγµνρD̂νψρ

)
=

=
1

2κ2

∫
d4x e

(
R− ψ̄µγµνρDνψρ −

1

`
ψ̄µγ

µνψν − 2Λ
)

≡ S2 + S3/2 + Sm + SΛ,

(3.10)

where the negative cosmological constant is Λ = − 3
`2
.

As the previous case, we provide the supersymmetric transformation of the �elds

δeaµ =
1

2
ε̄γaψµ, δe =

1

2
eε̄γρψρ, δψµ = D̂µε. (3.11)

The corresponding variation of the action

δS2 =
1

2κ2

∫
d4x

[(
2eδeaµebν + δeeaµebν

)
Rµνab + eeaµebνδRµνab

]
=

=
1

2κ2

∫
d4x e

(
Rµν −

1

2
gµνR

)(
−ε̄γµψν

)
,

δS3/2 = − 1

κ2

∫
d4x eε̄

(←−
Dµ +

1

2`
γµ

)
γµνρDνψρ,

δSm = − 1

κ2

∫
d4x eψ̄µγ

µν
(
Dν −

1

2`
γν

)
ε,

δSΛ =
3

2κ2`2

∫
d4x ε̄γµψνgµν .

(3.12)

After some algebra and integrations by parts, one sees that δS is the integral of a total
derivative. Thus the action S is locally supersymmetric up to boundary terms.

In the following section we will analyse the four dimensional N = 2 supergravity
action, which is very similar to the N = 1, D = 4 one. It is supersymmetric up to
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boundary terms too, but we want to employ it in the AdS/CFT correspondence. That
means we can't simply set to zero the �elds on the boundary of AdS in order to have
a supersymmetric action as it would result in possibly unwanted boundary conditions,
because we wish to keep arbitrary boundary values of the �elds. Indeed, as mentioned
in the previous chapter, from the AdS/CFT correspondence point of view we inter-
pret the on-shell action as the generating functional of the connected functions and
the boundary values of bulk �elds as the sources in the dual CFT. Hence we desire to
keep an arbitrary dependency of the generating functional from the sources in order
to prove that the conformal quantum �eld theory generating functional is supersym-
metric. Thus we need to add speci�c supersymmetric counterterms whose variation
cancels the one of the bulk action.

3.3 Minimal N = 2 D = 4 gauged AdS supergravity

We are going to study the minimal N = 2 gauged supergravity in four dimensions
and verify that its action is invariant under supersymmetry transformations up to a
boundary term. Then we will add the correct boundary counterterms to make the
action supersymmetric invariant at the boundary too.
That theory includes the gravity multiplet only, made up of the metric Gµν , one Dirac
gravitino (or equivalently two real Majorana gravitinos) Ψµ and a graviphoton Aµ,
gauge �eld of the gauged U(1)R group1.
This theory was found by Freedman and Das in 1977 [20]. There the rigid SO(2) ∼
U(1)R symmetry rotating the two independent Majorana gravitinos present in the
ungauged theory, is made local by introduction of a minimal gauge coupling g = 1

`

between the graviphoton and the gravitino. Local supersymmetry then requires a
negative cosmological constant and a gravitino mass term.
Thus the bulk action reads

S =
1

2κ2

∫
d4x
√
−G
[
R− F µνFµν − 2Λ− Ψ̄µγ

µνρ
(←→
∇ ν +

2i

`
Aν

)
Ψρ−

− 2

`
Ψ̄µ

(
γµν +

i`

2

(
γµνρσFρσ + 2F µν

))
Ψν

]
,

(3.13)

where the gravitational constant κ and the cosmological constant Λ are de�ned as

κ2 = 8πG4, Λ = − 3

`2
. (3.14)

1The U(1)R gauged group is a subgroup of the complete R-symmetry group U(2)R. We could only
gauge this abelian subgroup because the gravity multiplet only contains one vector �eld.
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The covariant derivative of the gravitino is

∇µΨν = ∂µΨν +
1

4
ωµαβγ

αβΨν − ΓρµνΨρ, (3.15)

where ωµαβ is the spin connection and Γρµν is the Christo�el connection.
The supersymmetric variations are

δeαµ =
1

2

(
ε̄γαΨµ − Ψ̄µγ

αε
)
,

δAµ =
i

2

(
Ψ̄µε− ε̄Ψµ

)
,

δΨµ = ∇µε+
i

4

(
γ νρ
µ − 2δνµγ

ρ
)
Fνρε−

1

2`

(
γµ − 2iAµ

)
ε,

δΨ̄µ = ε̄
←−
∇µ +

i

4
ε̄
(
γρνµ − 2δνµγ

ρ
)
Fνρ +

1

2`
ε̄
(
γµ − 2iAµ

)
.

(3.16)

We can also obtain the variation of the inverse vielbein from (3.16)

eαµe
ν
α ≡ δνµ → δ(eαµe

ν
α) = 0 = δeαµe

ν
α + δeναe

α
µ

=⇒ δeµα = −1

2

(
ε̄γµΨα − Ψ̄αγ

µε
)
.

(3.17)

3.4 The variation of the bulk action

First of all we compute explicitly the variation of each term in the bulk action
shown in Eq. (3.13), recalling that we work at quadratic order in the gravitino terms.
The result already appeared in Appendix C of [12], but we have performed the com-
putation and checked it in full detail.
Let us label the di�erent pieces

S =
1

2κ2

∫
d4x
√
−G
[
R︸︷︷︸
(a)

−F µνFµν︸ ︷︷ ︸
(b)

− 2Λ︸︷︷︸
(c)

−Ψ̄µγ
µνρ
(←→
∇ ν︸︷︷︸
(d)

+
2i

`
Aν︸ ︷︷ ︸

(e)

)
Ψρ−

− 2

`
Ψ̄µ

(
γµν︸︷︷︸
(f)

+
i`

2

(
γµνρσFρσ︸ ︷︷ ︸

(g)

+ 2F µν︸ ︷︷ ︸
(h)

))
Ψν

]
.

(3.18)

We will omit the Christo�el symbols in the covariant derivative of the gravitino because
they are always contracted with the gamma matrices and there is no torsion.

Bosonic terms It is useful to remind the expression for the variation of
√
−G.

It is known that log(detA) = Tr(logA). Then

δ log(detA) = δTr(logA) = Tr(δ logA) = Tr(A−1δA) =
δ detA

detA
. (3.19)
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Taking A = Gµν in (3.19), we obtain

δG = G ·GµνδGµν = G · δ(GµνGµν)−G · δGµνGµν = −G · δGµνGµν (3.20)

and using (3.20), the variation of
√
−G is

δ(
√
−G)

δGµν
δGµν =

√
−G
2

(−Gµν)δG
µν . (3.21)

We start computing Einstein-Hilbert action

(a) : δ(
√
−GR) = −R

√
−G
2

GµνδG
µν +

√
−G δR

δGµν
δGµν =

=
√
−G
(
Rµν −

1

2
RGµν +Gρσ δRρσ

δGµν

)
δGµν =

= −
[√
−G
(
Rµν −

1

2
RGµν

)
ε̄γµΨν + h.c.

]
+
√
−GGρσδRρσ,

(3.22)

where h.c. denotes the hermitian conjugate.
Let us study the variation of the Riemann tensor

δR ρ
µν σ = 2∂[µδΓ

ρ
ν]σ + 2δΓρ[µ|τ |Γ

τ
ν]σ + 2Γρ[µ|τ |δΓ

τ
ν]σ = 2∇[µδΓ

ρ
ν]σ, (3.23)

with the last step justi�ed by

∇[µδΓ
ρ
ν]σ = ∂[µδΓ

ρ
ν]σ + Γρ[µ|τ |δΓ

τ
ν]σ − Γτ[µν]δΓ

ρ
τσ︸ ︷︷ ︸

=0

−Γτ[µ|σ|δΓ
ρ
ν]τ . (3.24)

From (3.23) it follows that

δRρσG
ρσ = 2Gρσ∇[τδΓ

τ
ρ]σ = ∇τ

(
GρσδΓτρσ

)
−∇ρ

(
GρσδΓττσ

)
=

= ∇µ

(
GρσδΓµρσ −GµσδΓττσ

)
.

(3.25)

It is useful to prove that
∫

d4x
√
−G∇µj

µ =
∫

d4x ∂µ(
√
−Gjµ).

Preliminarily we demonstrate the equivalence Γρµρ = ∂µ(log
√
−G). Indeed

Γρµρ =
1

2
Gρσ(∂µGρσ + ∂ρGµσ − ∂σGµρ) =

1

2
Gρσ∂µGρσ,

∂µ(log
√
−G) =

1

2
∂µ log(− detGρσ) =

1

2
∂µ log

∣∣detGρσ

∣∣ =

=
1

2
∂µTr logGρσ =

1

2
Tr ∂µ logGρσ =

1

2
Tr Gρσ∂µGντ =

=
1

2
Gρσ∂µGρσ.

(3.26)
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Thus we obtain that

∇µj
µ = ∂µj

µ + Γρρµj
µ = ∂µj

µ +
1

2
∂µ log(−G)jµ = ∂µj

µ +
∂µG

2G
jµ =

=
1√
−G

∂µ(
√
−Gjµ).

(3.27)

Hence the last term in (3.22) reads

GρσδRρσ =
1√
−G

∂µ
[√
−G
(
GρσδΓµρσ −GµσδΓττσ

)]
. (3.28)

Now we need to write the explicit form of δΓµρσ. Let us start from

∇λGµν = 0 = ∂λGµν −GτνΓ
τ
µλ −GµτΓ

τ
νλ (3.29)

and di�erentiating it, we obtain

0 = ∂λδGµν − δGτνΓ
τ
µλ − δGµτΓ

τ
νλ −GτνδΓ

τ
µλ −GµτδΓ

τ
νλ =

= ∇λδGµν −GτνδΓ
τ
µλ −GµτδΓ

τ
νλ.

(3.30)

We sum (3.30) with itself where we change λ↔ µ and we subtract itself with


µ→ λ

ν → µ

λ→ ν

;

we get

∇λδGµν −GτνδΓ
τ
µλ −GµτδΓ

τ
νλ +∇µδGλν −GτνδΓ

τ
λµ −GλτδΓ

τ
νµ−

−∇νδGλµ +GτµδΓ
τ
λν +GλτδΓ

τ
µν = 0

=⇒ 2GτνδΓ
τ
µλ = ∇λδGµν +∇µδGλν −∇νδGλµ

=⇒ δΓρµλ =
1

2
Gνρ
(
∇λδGµν +∇µδGλν −∇νδGλµ

)
.

(3.31)

By plugging the last equation into (3.28), we have

√
−GGρσδRρσ = ∂µ

(√
−G∇ν

(
ε̄γ(µΨν)

)
−
√
−G∇µ

(
ε̄γρΨρ

))
+ h.c.. (3.32)

Thus the �nal form of (3.22) is

(a) : δ(
√
−GR) = −

√
−G
(
Rµν −

1

2
RGµν

)
ε̄γµΨν+

+ ∂µ

(√
−G∇ν

(
ε̄γ(µΨν)

)
−
√
−G∇µ

(
ε̄γρΨρ

))
+ h.c..

(3.33)
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The variation of Maxwell and cosmological constant actions are straightforward.
They read

(b) : δ(
√
−GF 2) = −F 2

√
−G
2

GµνδG
µν + 2

√
−GF ρ

µ FνρδG
µν+

+ 4
√
−GF µν∇µδAν =

=
(
F 2

√
−G
2

Gµν − 2
√
−GF µρF ν

ρ

)
ε̄γµΨν−

− 2i
√
−GF µν∇µ

(
ε̄Ψν

)
+ h.c.,

(3.34)

(c) : δ(
√
−G · 2Λ) = 2Λ

−
√
−G

2
GµνδG

µν = Λ
√
−GGµν ε̄γ

µΨν + h.c.. (3.35)

Fermionic terms We are going to study the variation of the fermionic terms using
the identities in Appendix A. The �rst one is the Rarita-Schwinger action

(d) : δ
(√
−GΨ̄µγ

µνρ←→∇ νΨρ

)
=

=
√
−GδΨ̄µγ

µνρ∇νΨρ −
√
−G∇ν

(
δΨ̄µ

)
γµνρΨρ + h.c. =

= 2
√
−GδΨ̄µγ

µνρ∇νΨρ −
√
−G∇ν

(
Ψ̄µγ

µνρΨρ

)
+ h.c. =

= 2
√
−GδΨ̄µγ

µνρ∇νΨρ − ∂ν
(√
−GΨ̄µγ

µνρΨρ

)
+ h.c. =

= ∂µ
(
2
√
−Gε̄γµνρ∇νΨρ −

√
−GδΨ̄νγ

νµρΨρ

)
− 2
√
−Gε̄γµνρ∇µ∇νΨρ︸ ︷︷ ︸

(A)

+

+
2

`

√
−Gε̄γµν∇µΨν −

2i

`

√
−GAµε̄γµνρ∇νΨρ+

+
i

2

√
−Gε̄

(
γτσµ − 2δσµγ

τ
)
Fστγ

µνρ∇νΨρ︸ ︷︷ ︸
(B)

+ h.c.,

(3.36)

where in the second equivalence we integrated by parts the second term and remem-
bered ∇µγν = 0. In the last step we integrated by parts the �rst term and used (A.12).

Let us elaborate the terms (A) and (B). Remembering the equivalence [∇µ,∇ν ]Ψρ =
1
4
Rµναβγ

αβΨρ, we get

(A) = −2
√
−Gε̄γµνρ∇µ∇νΨρ = −2

√
−Gε̄γµνρ · 1

2
[∇µ,∇ν ]Ψρ =

= −1

4

√
−Gε̄γµνργαβR αβ

µν Ψρ.
(3.37)
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Then using (A.13), the equation above becomes

−2
√
−Gε̄γµνρ∇µ∇νΨρ =

1

2

√
−Gε̄

(
R ρ
µνβ γ

µνβ +R ν
µνβ γ

ρµβ −R µ
νµβ γ

νρβ
)

Ψρ−

− 1

2

√
−Gε̄

(
Rµργ

µΨρ +Rνργ
νΨρ −RGρσγ

ρΨσ
)
,

(3.38)

where the �rst term is zero because R[µνβ]ρ = 0 and R[µν] = 0. Thus we obtain

− 2
√
−Gε̄γµνρ∇µ∇νΨρ = −

√
−G
(
Rµν −

1

2
RGµν

)
ε̄γµΨν . (3.39)

Now we deal with the term (B), using (A.14) and (A.15)

(B) =
i

2

√
−Gε̄

(
γτσµ − 2δσµγ

τ
)
Fστγ

µνρ∇νΨρ =

=
i

2

√
−Gε̄

(
4γσ[ρδ

τ
ν]︸ ︷︷ ︸

(C)

+4δσ[ρδ
τ
ν]

)
Fτσ∇νΨρ − i

√
−Gε̄F σ

µ

(
γ µνρ
σ + 3δ[µ

σ γ
νρ]︸ ︷︷ ︸

(D)

)
∇νΨρ.

(3.40)

Writing explicitly (C) and (D), one sees that their sum vanishes.

The �nal form of (3.36) is

(d) : δ
(√
−GΨ̄µγ

µνρ←→∇ νΨρ

)
= ∂µ

(
2
√
−Gε̄γµνρ∇νΨρ −

√
−GδΨ̄νγ

νµρΨρ

)
+

+
2

`

√
−Gε̄γµν∇µΨν − 2i

1

`

√
−GAµε̄γµνρ∇νΨρ−

−
√
−G
(
Rµν −

1

2
RGµν

)
ε̄γµΨν + i

√
−GF στ ε̄

(
−γ νρ

τσ + 2δ
[ρ
[τδ

ν]
σ]

)
∇νΨρ + h.c.

(3.41)

There is a second piece in the Rarita-Schwinger action, due to the gauging of
U(1)R. Its variation reads

(e) : δ
(√
−GΨ̄µγ

µνρAνΨρ

)
=
√
−GδΨ̄µγ

µνρAνΨρ + h.c. =

=
√
−G∇µ

(
ε̄γµνρAνΨρ

)
−
√
−Gε̄∇µAνγ

µνρΨρ−

−
√
−Gε̄Aνγµνρ∇µΨρ +

i

4

√
−Gε̄

(
γστµ − 2δτµγ

σ
)
Fτσγ

µνρAνΨρ+

+
1

2`

√
−Gε̄

(
γµ − 2iAµ

)
γµνρAνΨρ + h.c. =

= ∂µ
(√
−Gε̄γµνρAνΨρ

)
− 1

2

√
−Gε̄FµνγµνρΨρ +

√
−Gε̄Aµγµνρ∇νΨρ+

+
1

`

√
−Gε̄γµνAµΨν +

i

4

√
−Gε̄

(
γστµ − 2δτµγ

σ
)
Fτσγ

µνρAνΨρ + h.c..

(3.42)
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In the last step we used − i
`

√
−GAµγµνρAνΨρ = 0 and ∇µAνγ

µνρ = 1
2
Fµνγ

µνρ.
We manipulate the last term in (3.42) using (A.14) and (A.15)

i

4

√
−Gε̄

(
γστµ − 2δτµγ

σ
)
Fτσγ

µνρAνΨρ =

=
i

4

√
−Gε̄FτσAν

(
4γσ[ρδ

τ
ν] + 4δσ[ρδ

τ
ν]

)
Ψρ − i

2

√
−Gε̄F σ

µ

(
γ µνρ
σ + 3δ[µ

σ γ
νρ]
)
AνΨρ =

= − i

2

√
−Gε̄F στγ νρ

τσ AνΨρ + i
√
−Gε̄F στ · 2δ[ρ

[τδ
ν]
σ]AνΨρ.

(3.43)

The �nal form of (3.42) is

(e) : δ
(√
−GΨ̄µγ

µνρ∇νΨρ

)
= ∂µ

(√
−Gε̄γµνρAνΨρ

)
− 1

2

√
−Gε̄FµνγµνρΨρ+

+
√
−Gε̄Aµγµνρ∇νΨρ +

1

`

√
−Gε̄γµνAµΨν−

− i

2

√
−Gε̄F στγ νρ

τσ AνΨρ + 2i
√
−Gε̄F στδ

[ρ
[τδ

ν]
σ]AνΨρ + h.c..

(3.44)

The variation of the gravitino mass term is

(f) : δ
(√
−GΨ̄µγ

µνΨν

)
=
√
−GδΨ̄µγ

µνΨν + h.c. =

=
√
−G
[
∇µε̄γ

µνΨν +
i

4
ε̄
(
γρσµ − 2δσµγ

ρ
)
Fσργ

µνΨν+

+
1

2`
ε̄
(
γµ − 2iAµ

)
γµνΨν

]
+ h.c..

(3.45)

Integrating by parts the �rst term and manipulating the second one through (A.16)
and (A.17), we have

i

4

√
−Gε̄

(
γρσµ − 2δσµγ

ρ
)
Fσργ

µνΨν =
i

4

√
−Gε̄F στγ ν

στ Ψν −
i

2

√
−Gε̄F στγσΨτ . (3.46)

The �nal form of (3.45) is

(f) : δ
(√
−GΨ̄µγ

µνΨν

)
=

= ∂µ
(√
−Gε̄γµνΨν

)
−
√
−Gε̄γµν∇µΨν +

3

2`

√
−Gε̄γνΨν−

− i

`

√
−GAµε̄γµνΨν +

i

4

√
−Gε̄F στ

(
γ ν
στ − 2γσδ

ν
τ

)
Ψν + h.c..

(3.47)
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In the end we study the variation of (g) and (h) terms

(g) : δ
(√
−GΨ̄µγ

µνρσΨνFρσ
)

=
√
−GδΨ̄µγ

µνρσΨνFρσ + h.c. =

= ∂µ
(√
−Gε̄γµνρσΨνFρσ

)
−
√
−Gε̄γµνρσ∇µΨνFρσ−

−
√
−Gε̄γµνρσΨν∇µFρσ +

1

2`

√
−Gε̄γνρσΨνFρσ −

i

`

√
−Gε̄AµγµνρσΨνFρσ+

+
i

4

√
−Gε̄

(
γτωµ − 2δωµγ

τ
)
Fωτγ

µνρσΨνFρσ + h.c.,

(3.48)

where we used (A.18) in the last step. Further we notice that the third term vanishes
because of the Bianchi identity.
Finally we manipulate the last term of (3.48) remembering (A.19)

i

4

√
−Gε̄

(
γτωµ − 2δωµγ

τ
)
Fωτγ

µνρσΨνFρσ =

=
3i

2

√
−Gε̄δ[ν

ω δ
ρ
τγ

σ]ΨνFρσF
ωτ − i

2

√
−Gε̄F ν

µ γ
µσρΨνFρσ−

− i

2

√
−Gε̄F τ

µ

(
γνσµΨνFτσ + γνµρΨνFρτ

)
,

(3.49)

where the last line vanishes because

F τ
µ Fτσγ

νσµ = F τ
σ Fτµγ

νµσ = −F τ
µ Fτσγ

νσµ = 0. (3.50)

The �nal form of (3.48) is

(g) : δ
(√
−GΨ̄µγ

µνρσΨνFρσ
)

=

= ∂µ
(√
−Gε̄γµνρσΨνFρσ

)
−
√
−Gε̄γµνρσ∇µΨνFρσ +

1

2`

√
−Gε̄γνρσΨνFρσ−

− i

`

√
−Gε̄AµγµνρσΨνFρσ +

3i

2

√
−Gε̄δ[ν

ω δ
ρ
τγ

σ]ΨνFρσF
ωτ−

− i

2

√
−Gε̄F ν

µ γ
µσρΨνFρσ + h.c..

(3.51)

The variation of (h) yields

(h) : δ
(√
−GF µνΨ̄µΨν

)
=
√
−GF µνδΨ̄µΨν + h.c. =

=
√
−G∇µε̄F

µνΨν +
1

2`
ε̄F µν

(
γµ − 2iAµ

)
Ψν+

+
i

4

√
−Gε̄

(
γστµ − 2δτµγ

σ
)
FτσF

µνΨν + h.c..

(3.52)
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Adding up all the contributions, we obtain that the total variation of the action
(3.13) is

δS =
1

2κ2

∫
d4x

{
−
√
−G
(
Rµν −

1

2
RGµν

)
ε̄γµΨν︸ ︷︷ ︸

(a)

+

+ ∂µ

(√
−G∇ν

(
ε̄γ(µΨν)

)
−
√
−G∇µ

(
ε̄γρΨρ

))
−Λ
√
−GGµν ε̄γ

µΨν︸ ︷︷ ︸
(b)

−

−
[(
F 2

√
−G
2

Gµν − 2
√
−GF µρF ν

ρ

)
ε̄γµΨν︸ ︷︷ ︸

(c)

−2i
√
−GF µν∇µ(ε̄Ψν)︸ ︷︷ ︸

(d)

]
−

−
[
∂µ
(
2
√
−Gε̄γµνρ∇νΨρ −

√
−GδΨ̄νγ

νµρΨρ

)
+

2

`

√
−Gε̄γµν∇µΨν︸ ︷︷ ︸

(e)

−

−2i

`

√
−GAµε̄γµνρ∇νΨρ︸ ︷︷ ︸

(f)

−
√
−G
(
Rµν −

1

2
RGµν

)
ε̄γµΨν︸ ︷︷ ︸

(a)

+

+ i
√
−GF στ ε̄

(
−γ νρ

τσ︸ ︷︷ ︸
(g)

+2δ
[ρ
[τδ

ν]
σ]︸ ︷︷ ︸

(d)

)
∇νΨρ

]
−

− 2i

`

[
∂µ
(√
−Gε̄γµνρAνΨρ

)
− 1

2

√
−Gε̄FµνγµνρΨρ︸ ︷︷ ︸

(h)

+
√
−Gε̄Aµγµνρ∇νΨρ︸ ︷︷ ︸

(f)

+

+
1

`

√
−Gε̄γµνAµΨν︸ ︷︷ ︸

(i)

− i

2

√
−Gε̄F στγ νρ

τσ AνΨρ︸ ︷︷ ︸
(`)

+2i
√
−Gε̄F στδ

[ρ
[τδ

ν]
σ]AνΨρ︸ ︷︷ ︸

(m)

]
−

− 2

`

[
∂µ
(√
−Gε̄γµνΨν

)
−
√
−Gε̄γµν∇µΨν︸ ︷︷ ︸

(e)

+
3

2`

√
−Gε̄γνΨν︸ ︷︷ ︸
(b)

−

− i

`

√
−GAµε̄γµνΨν︸ ︷︷ ︸

(i)

+
i

4

√
−Gε̄F στ

(
γ ν
στ︸︷︷︸
(h)

−2γσδ
ν
τ︸ ︷︷ ︸

(n)

)
Ψν

]
−

− 2i
[√
−G∇µε̄F

µνΨν︸ ︷︷ ︸
(d)

+
1

2`
ε̄F µν

(
γµ︸︷︷︸
(n)

−2iAµ︸ ︷︷ ︸
(m)

)
Ψν+

+
i

4

√
−Gε̄

(
γστµ︸︷︷︸
(o)

−2δτµγ
σ︸ ︷︷ ︸

(c)

)
FτσF

µνΨν

]
−
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− i
[
∂µ
(√
−Gε̄γµνρσΨνFρσ

)
−
√
−Gε̄γµνρσ∇µΨνFρσ︸ ︷︷ ︸

(g)

+

+
1

2`

√
−Gε̄γνρσΨνFρσ︸ ︷︷ ︸

(h)

− i

`

√
−Gε̄AµγµνρσΨνFρσ︸ ︷︷ ︸

(`)

+

3i

2

√
−Gε̄δ[ν

ω δ
ρ
τγ

σ]ΨνFρσF
ωτ︸ ︷︷ ︸

(c)

− i

2

√
−Gε̄F ν

µ γ
µσρΨνFρσ︸ ︷︷ ︸

(o)

]
+ h.c.

}
,

(3.53)

where we mark with the same letters pieces that cancel each others.

In the end, the variation of the action S results in a boundary term

δS =
1

2κ2

∫
d4x

{
∂µ

[√
−G∇ν

(
ε̄γ(µΨν)

)
−
√
−G∇µ

(
ε̄γρΨρ

)
−

− 2
√
−Gε̄γµνρ∇νΨρ +

√
−GδΨ̄νγ

νµρΨρ −
2i

`

√
−Gε̄γµνρAνΨρ−

− 2

`

√
−Gε̄γµνΨν − i

√
−Gε̄γµνρσΨνFρσ

]
+ h.c.

}
.

(3.54)

3.5 Holographic Renormalization in the Hamiltonian

formalism

Since the supersymmetric variation of S results in a boundary term, in order to
make it vanish we need to add counterterms. We will need that the variation of such
counterterms cancels the boundary term (3.54). Papadimitriou found them in the ar-
ticle [12].
In this section we will explain the procedure employed, i.e. the Hamilton-Jacobi method
for holographic renormalization.
However let us preliminarily introduce the radial ADM (after Arnowitt, Deser and
Misner) decomposition of the dynamical variables, necessary to express an AlAdS su-
pergravity theory in the Hamiltonian formalism. According to that, we can see the
bulk space as a foliation by r-slices Σr, where r is the radial coordinate

2 (see Appendix
A of [12]).
We can decompose all the �elds in the sum of the radial and the transverse components.

2To be more precise, in the case of AlAdS the radial coordinate may not be well-de�ned in the
whole space, but it is at least in the neighbourhood of the boundary.
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For example, in the speci�c case of [12]

ds2 = Gµνdx
µdxν = (N2 +N iNi)dr

2 + 2Nidrdx
i + gijdx

idxj

A = Ardr + Aidx
i, Ψ = Ψrdr + Ψidx

i,

µ, ν = t, x, y, r i, j = t, x, y

(3.55)

where gij, Ai and Ψi are dynamical �elds on Σr, while the lapse function N , the
shift functions N i, Ar and Ψr are non dynamical �elds. It means that computing
the conjugate momenta of the last four �elds we obtain as many constraints. Once
we compute these constraints, we can �x the values of the four �elds in a convenient
way. A choice particularly useful for the holographic renormalization procedure is the
so-called Fe�erman-Graham gauge, which sets

N = 1, N i = 0, Ar = 0, Ψr = 0, . (3.56)

In the aforementioned gauge, the vielbeins and the inverse vielbeins become

eαr = (0, 0, 0, 1), erα = (0, 0, 0, 1), eαi = (eai ,03), eiα = (eia,03)

α = 1, . . . , 4 a = 1, 2, 3
(3.57)

with eai the vielbeins on Σr. Furthermore the vielbeins allow to decompose the gamma
matrices in the radial and the transverse components

γr = γαerα = γ3, γi = γαeiα = γaeia. (3.58)

Exactly like for the chirality projectors, we can de�ne the radiality projectors as

γ± =
1

2
(1± γr) with Ψ± = γ±Ψ. (3.59)

They are useful because the positive and negative radiality spinors have di�erent
Fe�erman-Graham expansions.

A quantity that will play a role in the calculations is the extrinsic curvature Kij of
Σr and its trace K. Thus we report their expressions in the radial ADM decomposition
formalism

Kij =
1

2N

(
ġij −DiNj −DjNi

)
, K ≡ Kijg

ij, (3.60)

where the dot represents the radial derivative and Di is the covariant derivative. In
the Fe�erman-Graham gauge they read

Kij =
1

2
ġij, K =

1

2
ġijg

ij (3.61)
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which are the expressions we will use in the following.

We come back to the holographic renormalization issue. According to AdS/CFT
postulates, one computes the stress-energy tensor, a conserved current and a scalar
operator of the SCFT as

Tij =
2
√
g

δSosSUGRA
δgij

,

J i =
1
√
g

δSosSUGRA
δAi

,

O =
1
√
g

δSosSUGRA
δϕ

.

(3.62)

These expressions remember the relation of the Hamilton-Jacobi theory (see Appendix
B for more details)

pα =
∂S
∂qα

, (3.63)

where we identify Hamilton's principal function S, the generalized coordinates qα and
the conjugate momenta pα respectively with the supergravity action SosSUGRA evaluated
on-shell, the sources Jα and the boundary operators Oα. Thus we can develop an anal-
ogy between the Hamilton-Jacoby theory in classical mechanics and the Holographic
Renormalization in AdS/CFT correspondence.
We can also extend the coordinate space adding a new coordinate τ, an abstract time
that is related with an energy scale µ in CFT. Exactly like in classical mechanics, we
introduce the conjugate momentum to τ, namely the abstract Hamiltonian operator
H =

∫
ddxh(x), with h(x) the Hamiltonian density. The dynamics of the system is

described by the Hamilton's equations

J̇α =
δH
δOα

, Ȯα = − δH
δJα

, Ḣ =
∂H
∂τ

(3.64)

and the Hamilton's principal functional S, like in the Hamilton-Jacobi theory, satis�es

Oα =
δS[Jα, τ]

δJα
, H = −∂S[Jα, τ]

∂τ
. (3.65)

Remembering the role of the radial coordinate r as an energy scale in the AdS/CFT
correspondence, we can identify r with the time τ.

After this introduction, let us start to see how this method works. The action
of the supergravity theory is (3.13). We need to add the standard Gibbons-Hawking
counterterm �xed for the presence of the Dirac gravitino

SGH =
1

2κ2

∫
∂Mε

d3x
√
−g
(
2K + Ψ̄iγ

ijΨj

)
. (3.66)
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Firstly we express the action in Hamiltonian formalism, namely using the radial coor-
dinate r. In order to do this, we plug the radial ADM decomposition of the �elds in the
action S and perform a radiality decomposition of the spinors. The result is expressed
in (3.1) and (3.2) of [12]. The presence of the Gibbons-Hawking term ensures that we
have a well-posed Dirichlet problem, as we explained in Section 2.6.

Secondly we obtain the conjugate momenta of the dynamical variables eai , Ai, Ψ+i

and Ψ̄+i, which are shown in (3.4) of [12]. In the following we will call generically F
the dynamical variables and πF their conjugate momenta.
The radial Lagrangian doesn't present radial derivatives of the �elds N , N i, Ar and
Ψr. Thus their conjugate momenta vanish identically and they are non-dynamical
variables. They give rise to constraints, as we will see in the next step.
Then we can write down the radial Hamiltonian as the Legendre transform of the
Lagrangian with respect to the dynamical variables (equation (3.8) of [12]). After
some algebraic manipulations, the radial Hamiltonian can be written as a sum of the
non-dynamical �elds multiplied by some complicated functions. For instance

H =

∫
d3x (NH + · · · ) (3.67)

with H expressed in (3.12a) of [12].
Since the conjugate momentum of N vanishes identically, we have

π̇N = 0 = −δH
δN

= H. (3.68)

This is exactly one of the constraints we mentioned. The same argument hold for the
other non-dynamical variables.

Coming back to the radial Hamiltonian expressed in terms of F , we can derive
their radial evolution through half of the Hamilton's equations (see (3.14) and (3.15)
of [12]) and the Hamilton-Jacobi expressions, summarized as

πF =
δS[F ]

δF
, (3.69)

where S[F ] is the Hamilton's principal function. Indeed, putting the Hamilton-Jacobi
expressions into the constraint equations, we obtain a set of Hamilton-Jacobi equations
for S. Following the analogy which we started the section with, notice that the func-
tional S coincides with the on-shell action evaluated at r = r0.
Once the solution S[F ] is found, we substitute the conjugate momenta πF with (3.69)
in the Hamilton's equations. Thus we have �rst order di�erential equations for the
radial evolution of the dynamical variables, instead of the second order ones in the
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standard approach.

Hence the issue reduces to �nd the functional S. We show how to do this in the
following procedure.
We introduce the dilatation operator δD, constructed knowing the leading asymptotic
behaviour of F . It is de�ned as

δD =

∫
d3x

∑
F

cFF
δ

δF
(3.70)

with cF the coe�cient of the exponent of er/` in the leading asymptotic term of the
�eld F .
The dilatation operator δD allows us to �nd a solution S =

∫
d3xL for the Hamilton-

Jacobi equation in the expansion form

S = S(0) + S(1) + · · · =
∫

d3x
(
L(0) + L(1) + · · ·

)
, (3.71)

where all the terms of the expansion are eigenfunctions of δD (i.e. δDS(n) = (3−n)S(n))
and covariant functionals of the induced �elds. Higher orders of S are subleading
relative to the lower ones.
From the relation (3.69), we obtain∑

F

πFδF = δL + ∂iv
i (3.72)

with ∂iv
i a generic total derivative. Applying the equation above to a local scaling

transformation generated by δD, we have∑
F

cFπF(n)F = (3− n)L(n) (3.73)

where πF(n) is the n-th term in the momentum expansion. L(n) is de�ned up to a total
derivative ∂iv

i
(n).

Then combining Hamilton's equations, Hamilton-Jacobi expressions, the expansion
(3.71) and (3.73), we �nally obtain S(0)

S(0) =
2

κ2`

∫
d3x
√
−g. (3.74)

Now plugging the expansion of S in the constraints derived from the non dynamical
variables, we get a tower of linear equations for L(n), n > 0. Papadimitriou �nds the
expressions for L(n) up to the fourth order. We are interested only in L(2) for our
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purposes, because L(1) and L(3) vanish and L(4) goes to zero in the limit r →∞.
The second term in the S expansion is

S(2) =
`

2κ2

∫
d3x
√
−g
(
R[g] + Ψ̄+i

←−
D jγ

ijkΨ+k − Ψ̄iγ
ijkDjΨk

)
, (3.75)

where R[g] is the Ricci scalar constructed with the radial slice metric and

DiΨj ≡ ∇iΨj +
i

`
AiΨj = ∂iΨj +

1

4
ωiabγ

abΨj − Γkij[g]Ψk +
i

`
AiΨj (3.76)

is the gauge covariant derivative on the radial slice.
Thus the covariant counterterms action is immediately determined

Sct = −
(
S(0) + S(2)

)
+ SGH . (3.77)

Notice that the purely geometric terms of the counterterms are the same of (2.51).

Now we can also determine the Fe�erman-Graham expansion of the �elds. Indeed
by plugging the expression of S into (3.69) and these in the Hamilton's equation, we
have a set of �rst order derivative equations for the �elds, which can be solved order
by order in powers of er/`, starting from the higher power of the asymptotic behaviours
of the �elds. In the case of our interest, the Fe�erman-Graham expansions result

eai = er/`eai(0)(~x) + e−r/`eai(2)(~x) + e−2r/`eai(3)(~x) + · · ·
eia = e−r/`ẽia(0)(~x) + e−2r/`ẽia(1)(~x) + e−3r/`ẽia(2)(~x) + e−4r/`ẽia(3)(~x) + · · ·
Ai = A(0)i(~x) + e−r/`A(1)i(~x) + e−2r/`A(2)i(~x) + · · ·

Ψ+i = e
r
2` Ψ(0)+i(~x) + e−

3r
2` Ψ(2)+i(~x) + e−

5r
2` Ψ(3)+i(~x) + · · ·

Ψ−i = e−
r
2` Ψ(1)−i(~x) + e−

3r
2` Ψ(2)−i(~x) + e−

5r
2` Ψ(3)−i(~x) + · · · ,

(3.78)

where eai(0), e
a
i(3), A(0)i, A(1)i, Ψ(0)+i and Ψ(2)−i are undetermined, while the other coef-

�cients are determined by the procedure (see (4.27) of [12]). Let us note that we can
switch between the expressions (2.41) and (3.78) thanks to the change of coordinate
ρ = e−2r/`.
For the calculations of Section 3.7 we will only need one of the coe�cients determined
by the procedure, namely

Ψ(1)−i = − `
2

(
γ `k
i(0) + 2δ

[k
i γ

`]
(0)

)
D(0)kΨ(0)+`, (3.79)

where γ `k
i(0) ≡ γ bc

a eai(0)ẽ
`
b(0)ẽ

k
c(0), γ

`
(0) ≡ γaẽ`a(0) and D(0)k is the gauge covariant derivative

constructed with g(0)

D(0)iΨj = ∇(0)iΨj +
i

`
AiΨj. (3.80)
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3.6 Near-boundary behaviour

In this section we are going to analyse the asymptotic behaviours of bulk action
and boundary counterterm variations, keeping only the divergent and �nite terms of
the expansions. Then we will prove that their sum vanishes.
For this purpose we need to �nd out the supersymmetric variations of the �elds at the
boundary.

Asymptotic behaviour of supersymmetric �elds variations First of all we de-
compose the �elds through the radial ADM decomposition and we impose the Fe�erman-
Graham (FG) gauge. In order to keep the gauge conditions we need to set the super-
symmetric variation of the radial components of the �elds equal to zero.3 Hence we
obtain some useful relations

δAr =
i

2
Ψ̄rε+ h.c. = 0 ∀ε =⇒ Ψr = 0,

δΨr = 0 = ∇rε+
i

4

(
γ νρ
r − 2δνrγ

ρ
)
Fνρε−

1

2`

(
γr − 2iAr

)
ε.

(3.81)

In order to solve this equation iteratively, we make an ansatz for the ε

ε = e
r
2`η(0)+(~x) + e−

r
2`η(1)−(~x) + e−

3r
2`

(
η(2)+(~x) + η(2)−(~x)

)
+ · · · (3.82)

with η(n)+(~x) and η(n)−(~x) of de�nite �radiality�, i.e.

γ3η± = ±η± η̄±γ
3 = ∓η̄±. (3.83)

Therefore expanding the second equation of (3.81) and making use of the expressions
in (3.78) and Appendix C, at e

r
2` and e−

r
2` orders we get

∂rε−
1

2`
γrε = 0, (3.84)

whose solution is
ε = e

r
2`η(0)+(~x) + e−

r
2`η(1)−(~x), (3.85)

where η(0)+(~x) and η(1)−(~x) are arbitrary spinors.

At e−
3r
2` order, the starting equation yields

− 3

2`
η(2)+ −

3

2`
η(2)− +

1

4
ω(2)rabγ

abη(0)+ +
i

4
γ3ij

(0)F(0)ijη(0)+ +
i

2`
γi(0)A(1)iη(0)+−

− 1

2`
η(2)+ +

1

2`
η(2)− = 0 (3.86)

3In a more complete view of this problem, we might impose that all transformations under which
the action is symmetric have to preserve the FG gauge, as in Appendix B of [12].



3.6. NEAR-BOUNDARY BEHAVIOUR 43

which implies

=⇒ η(2)+ =
`

8
ω(2)rabγ

abη(0)+ +
i`

8
γ3ij

(0)F(0)ijη(0)+

=⇒ η(2)− =
i

2
γi(0)A(1)iη(0)+.

(3.87)

At e−
5r
2` order we get

− 5

2`
η(3)+ −

5

2`
η(3)− +

1

4
ω(3)rabγ

abη(0)+ +
1

4
ω(2)rabγ

abη(1)− +
i

4
γ3ij

(0)F(1)ijη(0)++

+
i

4
γ3ij

(0)F(0)ijη(1)− +
i

`
γi(0)A(2)iη(0)+ +

i

2`
γi(0)A(1)iη(1)− −

1

2`
η(3)+ +

1

2`
η(3)− = 0,

(3.88)

which yields

=⇒ η(3)+ =
`

12
ω(3)rabγ

abη(0)+ +
i`

12
γ3ij

(0)F(1)ijη(0)+ +
i

6
γi(0)A(1)iη(1)−

=⇒ η(3)− =
`

8
ω(2)rabγ

abη(1)− +
i`

8
γ3ij

(0)F(0)ijη(1)− +
i

2
γi(0)A(2)iη(0)+.

(3.89)

Now we can �nd the asymptotic behaviour for the variation of the �elds (remember
that a term composed by two parts of opposite �radiality� vanishes)

δeai ' δ
(
er/`eai(0) + e−r/`eai(2) + e−2r/`eai(3)

)
'

'1

2

(
e

r
2` η̄(0)+ + e−

r
2` η̄(1)− + · · ·

)
γa
(
e

r
2` Ψ(0)+i + e−

r
2` Ψ(1)−i + · · ·

)
+ h.c.,

where the symbol ' means that we stop the Fe�erman-Graham expansion at the order
we will need in the calculations. The expression yields

=⇒ δeai(0)(~x) =
1

2
η̄(0)+γ

aΨ(0)+i + h.c.

δeai(2)(~x) =
1

2

(
η̄(0)+γ

aΨ(2)+i + η̄(1)−γ
aΨ(1)−i + η̄(2)+γ

aΨ(0)+i

)
+ h.c.

δeai(3)(~x) =
1

2

(
η̄(0)+γ

aΨ(3)+i + η̄(2)−γ
aΨ(1)−i + η̄(1)−γ

aΨ(2)−i+

+ η̄(3)+γ
aΨ(0)+i

)
+ h.c.

(3.90)
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The same argument holds for the other �elds

δẽia(0)(~x) =− 1

2
η̄(0)+γ

i
(0)ẽ

j
a(0)Ψ(0)+j + h.c.

δẽia(2)(~x) =− 1

2
η̄(0)+

(
ẽja(0)ẽ

i
b(2) + ẽja(2)ẽ

i
b(0)

)
γbΨ(0)+j −

1

2
η̄(1)−γ

i
(0)ẽ

j
a(0)Ψ(1)−j−

− 1

2

(
η̄(0)+γ

i
(0)ẽ

j
a(0)Ψ(2)+j + η̄(2)+γ

i
(0)ẽ

j
a(0)Ψ(0)+j

)
+ h.c.

δẽia(3)(~x) =− 1

2
η̄(0)+

(
ẽja(0)ẽ

i
b(3) + ẽja(3)ẽ

i
b(0)

)
γbΨ(0)+j −

1

2
η̄(2)−γ

i
(0)ẽ

j
a(0)Ψ(1)−j−

− 1

2
η̄(1)−γ

i
(0)ẽ

j
a(0)Ψ(2)−j −

1

2

(
η̄(0)+γ

i
(0)ẽ

j
a(0)Ψ(3)+j + η̄(3)+γ

i
(0)ẽ

j
a(0)Ψ(0)+j

)
+

+ h.c.

(3.91)

δA(0)i =− i

2

(
η̄(0)+Ψ(1)−i + η̄(1)−Ψ(0)+i

)
+ h.c.

δA(1)i =− i

2

(
η̄(0)+Ψ(2)−i + η̄(2)−Ψ(0)+i

)
+ h.c.

δΨ(0)+i =D(0)iη(0)+ −
1

`
γi(0)η(1)−

δΨ(1)−i =D(0)iη(1)− +
1

2
ω(0)ia3γ

a3η(2)+ +
1

2
ω(2)ia3γ

a3η(0)+ +
i

4
γ jk
i(0)F(0)jkη(0)+−

− i

2
γj(0)F(0)ijη(0)+ −

1

2`
γi(0)η(2)+ −

1

2`
eai(2)γaη(0)+,

(3.92)

where we used the expressions of Appendix C.

Asymptotic behaviour of the bulk action variation In order to analyse the
asymptotic behaviour of bulk action variation, we need to remind the Stokes' theorem

∫
M

d4x ∂µj
µ =

∫
∂M

d3xnµj
µ, (3.93)

where nµ = (0, 0, 0, 1) is the normalized vector orthogonal to the radial slices.

Combining (3.93) and the expressions of Appendix C, we can compute the asymp-
totic expansion of the bulk action SUSY variation δS, which has been found to be
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expression (3.54). It reads

δS =
1

2κ2

∫
d3xnr

{√
−g
[1

2
∇i

(
ε̄γrΨjg

ij
)︸ ︷︷ ︸

(A)

+
1

2
∇i

(
ε̄γiΨr

)︸ ︷︷ ︸
(B)

− ∂r
(
ε̄γiΨi

)︸ ︷︷ ︸
(C)

−

− 2 ε̄γrij∇iΨj︸ ︷︷ ︸
(D)

+ δΨ̄iγ
irjΨj︸ ︷︷ ︸

(E)

− 2i

`
ε̄γrijAiΨj︸ ︷︷ ︸

(F )

−

− 2

`
ε̄γriΨi︸ ︷︷ ︸

(G)

− iε̄γrijkΨiFjk︸ ︷︷ ︸
(H)

]}
+ h.c.,

(3.94)

where we mark the di�erent pieces in order to analyse them separately. Each expansion
will be stopped to the �nite term because at the end of calculations we will take the
limit r →∞.

Let us start from the asymptotic behaviour of (A). It yields

(A) :
1

2

√
−g∇i

(
ε̄γrΨjg

ij
)
' − 1

2`
e3r/`

√
− det(g(0))η̄(0)+γ

i
(0)Ψ(0)+i+

+
1

2
er/`
√
− det(g(0))

[
− 1

2`
Tr(g−1

(0)g(2))η̄(0)+γ
i
(0)Ψ(0)+i+

+∇(0)i

(
−η̄(0)+Ψ(1)−jg

ij
(0) + η̄(1)−Ψ(0)+jg

ij
(0)

)
−

− 1

`
η̄(0)+

(
ẽia(2)γ

aΨ(0)+i + γi(0)Ψ(2)+i + γk(0)Ψ(0)+jg(0)ikg
ij
(2)

)
−

− 1

`
η̄(2)+γ

i
(0)Ψ(0)+i −

1

`
η̄(1)−γ

i
(0)Ψ(1)−i

]
+

+
1

2

√
− det(g(0))

[
∇(0)i

(
−η̄(0)+Ψ(2)−jg

ij
(0) + η̄(2)−Ψ(0)+jg

ij
(0)

)
−

− 1

`
η̄(0)+

(
ẽia(3)γ

aΨ(0)+i + γi(0)Ψ(3)+i + γk(0)Ψ(0)+jg(0)ikg
ij
(3)

)
+

+
1

2`
η̄(0)+γ

k
(0)Ψ(0)+jg(3)ikg

ij
(0) −

1

`
η̄(3)+γ

i
(0)Ψ(0)+i −

1

`
η̄(2)−γ

i
(0)Ψ(1)−i−

− 1

`
η̄(1)−γ

i
(0)Ψ(2)−i

]
,

(3.95)

where we used Γrik = −1
2
∂rgik ' −1

`
e2r/`g(0)ik + 1

2`
e−r/`g(3)ik.
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The near-boundary behaviour of (B) reads

(B) :
1

2

√
−g∇i

(
ε̄γiΨr

)
' − 1

2`
e3r/`

√
− det(g(0))η̄(0)+γ

i
(0)Ψ(0)+i−

− 1

2`
er/`
√
− det(g(0))

[1

2
Tr(g−1

(0)g(2))η̄(0)+γ
i
(0)Ψ(0)+i+

+ η̄(0)+

(
ẽia(2)γ

aΨ(0)+i + γi(0)Ψ(2)+i + γi(0)Ψ(0)+kg(0)ijg
jk
(2)

)
+

+ η̄(2)+γ
i
(0)Ψ(0)+i + η̄(1)−γ

i
(0)Ψ(1)−i

]
−

− 1

2`

√
− det(g(0))

[
η̄(0)+

(
ẽia(3)γ

aΨ(0)+i + γi(0)Ψ(3)+i + γi(0)Ψ(0)+kg(0)ijg
jk
(3)

)
−

− 1

2
η̄(0)+γ

i
(0)Ψ(0)+kg(3)ijg

jk
(0) + η̄(3)+γ

i
(0)Ψ(0)+i+

+ η̄(2)−γ
i
(0)Ψ(1)−i + η̄(1)−γ

i
(0)Ψ(2)−i

]
.

(3.96)

The (C) term expansion is

(C) :
√
−g∂r

(
ε̄γiΨi

)
' −2

`
er/`
√
− det(g(0))

(
η̄(0)+γ

i
(0)Ψ(2)+i+

+ η̄(0)+ẽ
i
a(2)γ

aΨ(0)+i + η̄(1)−γ
i
(0)Ψ(1)−i + η̄(2)+γ

i
(0)Ψ(0)+i

)
−

− 3

`

(
η̄(0)+ẽ

i
a(3)γ

aΨ(0)+i + η̄(3)+γ
i
(0)Ψ(0)+i + η̄(0)+γ

i
(0)Ψ(3)+i+

+ η̄(2)−γ
i
(0)Ψ(1)−i + η̄(1)−γ

i
(0)Ψ(2)−i

)
.

(3.97)

The asymptotic behaviour of (D) is

(D) : 2
√
−gε̄γrij∇iΨj ' 2e3r/`

√
− det(g(0))η̄(0)+γ

3ij
(0)(∇iΨj)(0)−+

+ 2er/`
√
− det(g(0))

{1

2
Tr(g−1

(0)g(2))
(
η̄(0)+γ

3ij
(0)(∇iΨj)(0)−

)
+

+ η̄(0)+

[
γ3ij

(0)(∇iΨj)(2)− +
(
ẽia(0)ẽ

j
b(2) + ẽia(2)ẽ

j
b(0)

)
γ3ab(∇iΨj)(0)−

]
+

+ η̄(1)−γ
3ij
(0)(∇iΨj)(1)+ + η̄(2)+γ

3ij
(0)(∇iΨj)(0)−

}
+

+ 2
√
− det(g(0))

{
η̄(0)+

[
γ3ij

(0)(∇iΨj)(3)−+

+
(
ẽia(0)ẽ

j
b(3) + ẽia(3)ẽ

j
b(0)

)
γ3ab(∇iΨj)(0)−

]
+ η̄(1)−γ

3ij
(0)(∇iΨj)(2)++

+ η̄(2)−γ
3ij
(0)(∇iΨj)(1)+ + η̄(3)+γ

3ij
(0)(∇iΨj)(0)−

}
,

(3.98)
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where we used (C.2) and (C.13) to simplify the expression above.

The (E) term reads
(E) :

√
−gδΨ̄iγ

irjΨj. (3.99)

However δS includes the hermitian conjugate of every terms we marked. Further in
Eq. (3.92) we computed the near-boundary expression for δΨi. For this reason we
prefer to study the asymptotic behaviour of the hermitian conjugate of (E) (which we
call (Ē)), that is

(Ē) :
√
−gΨ̄jγ

i3jδΨi '

' er/`
√
− det(g(0))

(
Ψ̄(0)+jγ

i3j
(0)δΨ(1)−i + Ψ̄(1)−jγ

i3j
(0)δΨ(0)+i

)
+

+
√
− det(g(0))

(
Ψ̄(0)+jγ

i3j
(0)δΨ(2)−i + Ψ̄(2)−jγ

i3j
(0)δΨ(0)+i

)
.

(3.100)

The asymptotic expansions of (F ), (G) and (H) terms read

(F ) :
2i

`

√
−gε̄γrijAiΨj '

' 2i

`
er/`
√
− det(g(0))

(
η̄(0)+γ

3ij
(0)A(0)iΨ(1)−j + η̄(1)−γ

3ij
(0)A(0)iΨ(0)+j

)
+

+
2i

`

√
− det(g(0))

[
η̄(0)+γ

3ij
(0)A(1)iΨ(1)−j + η̄(1)−γ

3ij
(0)A(1)iΨ(0)+j+

+ η̄(0)+γ
3ij
(0)A(0)iΨ(2)−j + η̄(2)−γ

3ij
(0)A(0)iΨ(0)+j

]
,

(3.101)

(G) :
2

`

√
−gε̄γriΨi '

' −2

`
e3r/`

√
− det(g(0))η̄(0)+γ

i
(0)Ψ(0)+i−

− 2

`
er/`
√
− det(g(0))

[
η̄(0)+ẽ

i
a(2)γ

aΨ(0)+i + η̄(0)+γ
i
(0)Ψ(2)+i+

+ η̄(2)+γ
i
(0)Ψ(0)+i − η̄(1)−γ

i
(0)Ψ(1)−i +

1

2
Tr(g−1

(0)g(2))η̄(0)+γ
i
(0)Ψ(0)+i

]
−

− 2

`

√
− det(g(0))

[
η̄(0)+ẽ

i
a(3)γ

aΨ(0)+i + η̄(0)+γ
i
(0)Ψ(3)+i+

+ η̄(3)+γ
i
(0)Ψ(0)+i − η̄(2)−γ

i
(0)Ψ(1)−i − η̄(1)−γ

i
(0)Ψ(2)−i

]
,

(3.102)

(H) : i
√
−gε̄γrijkΨiFjk '

' i
√
− det(g(0))

(
er/`η̄(0)+γ

rijk
(0) Ψ(0)+iF(0)jk + η̄(0)+γ

rijk
(0) Ψ(0)+iF(1)jk

)
.
(3.103)



48 CHAPTER 3. HOLOGRAPHIC RENORMALIZATION IN SUPERGRAVITY

Asymptotic behaviour of counterterms variation We are going to study the
asymptotic behaviour of the counterterms action variation. As in the bulk action case,
we will stop the expansion to the �nite term. Let us remember the boundary action

Sct = SGH + S(0) + S(2) =
1

κ2

∫
∂Mε

d3x
√
−g
[1

2

(
2K + Ψ̄iγ

ijΨj

)
− 2

`
−

− `

2

(
R[g] + Ψ̄+i

←−
D j γ̂

ijkΨ+k − Ψ̄+iγ̂
ijkDjΨ+k

)]
, (3.104)

where ∂Mε is a �nite cuto� surface, g is the determinant of the induced metric gij,
K ≡ gijKij is the trace of the extrinsic curvature Kij of the radial slice. As we did in
all this work, we set the Fe�erman-Graham gauge.

Let us examine the variation of (3.104) term by term, making use of the expansions
in Appendix C. We start from S(0) variation

δS(0) =− 2

κ2`

∫
d3x

√
−g
2

gijδgij '

'− 1

κ2`

∫
d3x

√
− det(g(0))

[
e3r/`gij(0)δg(0)ij+

+ er/`
(
gij(0)δg(2)ij + gij(2)δg(0)ij +

1

2
Tr(g−1

(0)g(2))g
ij
(0)δg(0)ij

)
+

+ gij(0)δg(3)ij + gij(3)δg(0)ij

]
.

(3.105)

The near-boundary behaviour of δSGH reads

δSGH =
1

2κ2

∫
d3x δ

[√
−g
(
2K + Ψ̄iγ

ijΨj

)]
'

' 1

κ2

∫
d3x
√
−g
(1

2
gijδgijK +

1

2

(
Ψ̄iγ

ijδΨj + h.c.
)

+ δK
)
'

' 1

κ2

∫
d3x

√
− det(g(0))

{
e3r/`

(1

2
gij(0)δg(0)ijK(0) + (δK)(0)

)
+

+ er/`
[1

2
Tr(g−1

(0)g(2))
(1

2
gij(0)δg(0)ijK(0) + (δK)(0)

)
+

+
1

2

(
gij(2)δg(0)ij + gij(0)δg(2)ij

)
K(0) +

1

2
gij(0)δg(0)ijK(2)+

+
1

2

(
Ψ̄(0)+iγ

ij
(0)δΨ(1)−j + Ψ̄(1)−iγ

ij
(0)δΨ(0)+j + h.c.

)
+ (δK)(2)

]
+

+
1

2

(
gij(3)δg(0)ij + gij(0)δg(3)ij

)
K(0) +

1

2
gij(0)δg(0)ijK(3)+

+
1

2

(
Ψ̄(0)+iγ

ij
(0)δΨ(2)−j + Ψ̄(2)−iγ

ij
(0)δΨ(0)+j + h.c.

)
+ (δK)(3)

}
.

(3.106)
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The asymptotic expansion of δS(2) is

δS(2) =− `

2κ2

∫
d3x δ

[√
−g
(
R[g] +

(
Ψ̄+i

←−
D jγ

ijkΨ+k + h.c.
))]
'

'− `

2κ2

∫
d3x
√
−g
{1

2
gijδgijR[g] + δR+

+
[
Ψ̄+i

←−
D jγ

ijkδΨ+k + δΨ̄+i

←−
D jγ

ijkΨ+k + h.c.
]}
'

'− `

2κ2

∫
d3x

√
− det(g(0))

{
er/`
{1

2
gij(0)δg(0)ijR(2) + (δR)(2)+

+
[(

Ψ̄+i
←−
D j

)
(0)
γijk(0) δΨ(0)+k +

(
δΨ̄+i

←−
D j

)
(0)
γijk(0) Ψ(0)+k + h.c.

]}
+

+
[(

Ψ̄+i
←−
D j

)
(1)
γijk(0) δΨ(0)+k +

(
δΨ̄+i

←−
D j

)
(1)
γijk(0) Ψ(0)+k + h.c.

]}
.

(3.107)
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3.7 Supersymmetric invariance of bulk + boundary

action

Finally we have all the tools to prove the supersymmetric invariance of the total
action up to subleading terms that vanish when we take the limit r →∞. The variation
of the total action can be summarized as

δS + δSct =
1

κ2

∫
d3x

√
− det(g(0))

(
e3r/`A+ er/`B + C +O(e−r/`)

)
(3.108)

with the three terms de�ned as

A =
(
− 1

2`
η̄(0)+γ

i
(0)Ψ(0)+i + η̄(0)+γ

ij
(0)(∇iΨj)(0)− +

1

`
η̄(0)+γ

i
(0)Ψ(0)+i + h.c.

)
−

− 1

`
gij(0)δg(0)ij +

1

2`
gij(0)δg(0)ijg

k`
(0)g(0)k` +

1

`

(
gij(0)δg(0)ij + δgij(0)g(0)ij

)
,

(3.109)

B =

{
1

4
∇(0)i

(
−η̄(0)+Ψ(1)−jg

ij
(0) + η̄(1)−Ψ(0)+jg

ij
(0)

)
+

3

2`
η̄(0)+ẽ

i
a(2)γ

aΨ(0)+i+

+
3

2`
η̄(0)+γ

i
(0)Ψ(2)+i −

1

2`
η̄(0)+γ

k
(0)Ψ(0)+jg(0)ikg

ij
(2) +

3

2`
η̄(2)+γ

i
(0)Ψ(0)+i−

− 1

2`
η̄(1)−γ

i
(0)Ψ(1)−i + η̄(0)+

[
γij(0)(∇iΨj)(2)− +

(
ẽia(0)ẽ

j
b(2) + ẽia(2)ẽ

j
b(0)

)
γab(∇iΨj)(0)−

]
−

− η̄(1)−γ
ij
(0)(∇iΨj)(1)+ + η̄(2)+γ

ij
(0)(∇iΨj)(0)− + Ψ̄(1)−iγ

ij
(0)δΨ(0)+j+

+
i

`

(
η̄(0)+γ

ij
(0)A(0)iΨ(1)−j − η̄(1)−γ

ij
(0)A(0)iΨ(0)+j

)
+

i

2
η̄(0)+γ

ijk
(0) Ψ(0)+iF(0)jk + h.c.

}
−

− 1

`

(
gij(0)δg(2)ij + gij(2)δg(0)ij

)
+

1

2

(
gij(2)δg(0)ij + gij(0)δg(2)ij

)
K(0)+

+
1

2
gij(0)δg(0)ijK(2) + (δK)(2) −

`

2

{
1

2
gij(0)δg(0)ijR(2) + (δR)(2)+

+
[(

Ψ̄+i

←−
D j

)
(0)
γijk(0) δΨ(0)+k +

(
δΨ̄+i

←−
D j

)
(0)
γijk(0) Ψ(0)+k + h.c.

]}
+

+
1

2
Tr(g−1

(0)g(2))
[(
− 1

2`
η̄(0)+γ

i
(0)Ψ(0)+i − η̄(0)+γ

3ij
(0)(∇iΨj)(0)−+

+
1

`
η̄(0)+γ

i
(0)Ψ(0)+i + h.c.

)
− 1

`
gij(0)δg(0)ij +

1

2
gij(0)δg(0)ijK(0) + (δK)(0)

]
(3.110)
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and

C =

{
1

4
∇(0)i

(
−η̄(0)+Ψ(2)−jg

ij
(0) + η̄(2)−Ψ(0)+jg

ij
(0)

)
+

+
2

`
η̄(0)+ẽ

i
a(3)γ

aΨ(0)+i +
2

`
η̄(0)+γ

i
(0)Ψ(3)+i +

2

`
η̄(3)+γ

i
(0)Ψ(0)+i−

− 1

2`
η̄(0)+γ

i
(0)Ψ(0)+kg(0)ijg

jk
(3) +

1

4`
η̄(0)+γ

i
(0)Ψ(0)+kg(3)ijg

jk
(0)+

+ η̄(0)+

[
γij(0)(∇iΨj)(3)− +

(
ẽia(0)ẽ

j
b(3) + ẽia(3)ẽ

j
b(0)

)
γab(∇iΨj)(0)−

]
−

− η̄(1)−γ
ij
(0)(∇iΨj)(2)+ − η̄(2)−γ

ij
(0)(∇iΨj)(1)+ + η̄(3)+γ

ij
(0)(∇iΨj)(0)−+

+ Ψ̄(2)−iγ
ij
(0)δΨ(0)+j +

i

`

[
η̄(0)+γ

ij
(0)A(1)iΨ(1)−j − η̄(1)−γ

ij
(0)A(1)iΨ(0)+j+

+ η̄(0)+γ
ij
(0)A(0)iΨ(2)−j − η̄(2)−γ

ij
(0)A(0)iΨ(0)+j

]
+

i

2
η̄(0)+γ

ijk
(0) Ψ(0)+iF(1)jk + h.c.

}
−

− 1

`

(
gij(0)δg(3)ij + gij(3)δg(0)ij

)
+

1

2

(
gij(3)δg(0)ij + gij(0)δg(3)ij

)
K(0) +

1

2
gij(0)δg(0)ijK(3)+

+ (δK)(3) −
`

2

[(
Ψ̄+i
←−
D j

)
(1)
γijk(0) δΨ(0)+k +

(
δΨ̄+i

←−
D j

)
(1)
γijk(0) Ψ(0)+k + h.c.

]
.

(3.111)

After some algebraic calculations one obtains

A =0

B =∇(0)i

(
−1

4
η̄(0)+Ψ(1)−jg

ij
(0) +

1

4
η̄(1)−Ψ(0)+jg

ij
(0) + η̄(0)+γ

ij
(0)Ψ(1)−j−

− 1

2
η̄(1)−γ

ij
(0)Ψ(0)+j −

`

2
Ψ̄(0)+iγ

ijk
(0)D(0)kη(0)+ + h.c.

)
−

− `

2
∇(0)i

(
gjk(0)δΓ

i
(0)jk − gik(0)δΓ

j
(0)jk

)
C =∇(0)i

(
−1

4
η̄(0)+Ψ(2)−jg

ij
(0) +

1

4
η̄(2)−Ψ(0)+jg

ij
(0) + η̄(0)+γ

ij
(0)Ψ(2)−j+

+ iη̄(0)+γ
ijk
(0)A(1)jΨ(0)+k + h.c.

)
.

(3.112)

Hence the variation of the total action results in a covariant derivative on a radial
slice. In order to make it vanish, we can set the �elds to zero in the limit (xi)2 →∞.
Otherwise, in Euclidean signature, we can assume the boundary is compact, hence the
boundary term obtained by integrating (3.112) vanishes.
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By imposing one of these two conditions, we can safely take the limit r → ∞ and
�nally achieve our purpose: we proved that the counterterms cancel the divergences of
the bulk action and we obtained a local supersymmetric theory also at the boundary.



Chapter 4

Conclusions and applications

In Chapter 3 we showed explicitly how the counterterms found through the Hamilton-
Jacobi method cancel the infrared divergences and the �nite terms of the bulk action
supersymmetric variation. In order to obtain our result, we needed to �x an additional
condition. In Lorentzian signature we imposed the requirement on the boundary �elds
behaviour, i.e. their values vanish in the limit (xi)2 → ∞. Alternatively, working in
Euclidean signature, we assumed the boundary is compact.
This argument proves the correctness of the holographic renormalization procedure
employed in Section 3.5 and the invariance under local supersymmetry of the bulk +
boundary action of minimal N = 2 four dimensional gauged supergravity.
Furthermore, according to what we said in Chapter 2 about the AdS/CFT correspon-
dence, the generating functional of connected functions of the dual theory (namely
N = 2 three dimensional SCFT), which coincides with minus the on-shell supergravity
action, results UV renormalized after the holographic renormalization procedure.

The case studied from the theoretical point of view has important applications,
for instance in the �eld of black holes and microscopic counting of their entropy. In
particular we have an example in [21]. The authors �nd a holographic relation be-
tween the partition function Z of N = 2 three dimensional SCFTs compacti�ed on a
Riemann surface Σg of genus g > 1 and the entropy of a supersymmetric magnetically
charged AdS4 black hole SBH , which is a bosonic solution for the minimal N = 2 four
dimensional gauged supergravity action.
Our work result is important for [21] because we proved the correctness of the countert-
erms found in [12], which holographically renormalize the minimal N = 2 gauged four
dimensional supergravity action preserving invariance under supersymmetry variations
of the boundary �elds, to be identi�ed with the �eld theory sources. Because of this
latter property and since the symmetries between the two theories match, it means
that the correct dual theory for N = 2 three dimensional SCFT is the one represented
by the bulk action (3.13) + the boundary terms (3.104). Furthermore, since we renor-
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malized the action, we can obtain �nite quantities from the supergravity theory and
compare them with their holographic dual realization in quantum �eld theory.

We will retrace the steps made in [21] in order to �nd the holographic relation
between Z and SBH . All of the following results are valid in the large N limit, that we
brie�y discussed in the introduction of our work.
The action is the one in (3.13) with the gravitino sets to zero, namely

IEinst+Max = − 1

2κ2

∫
d4x
√
−G
(
R + 6− 1

4
F 2
)

(4.1)

Notice we have the relations 1
2
Fhere = Fthere, which is an irrelevant rescaling of the �eld

strength, and ` = 1. The magnetically charged AdS4 black hole solution is given by

ds2
4 = −

(
ρ− 1

2ρ

)2

dt2 +
(
ρ− 1

2ρ

)−2

dρ2 + ρ2ds2
H2 ,

F =
dx1 ∧ dx2

x2
2

,
(4.2)

where ds2
H2 = 1

x22

(
dx2

1 + dx2
2

)
. The entropy of this extremal black hole is given in terms

of the horizon area by the standard Bekenstein-Hawking formula

SBH =
Area

4G
(4)
N

=

(
g− 1

)
π

2G
(4)
N

(4.3)

where G
(4)
N is the four dimensional Newton's constant. One of the result obtained in

[21] is that the on-shell supergravity action coincides with minus the black hole entropy.
In order to evaluate the action on the solution (4.2), we need to add the counterterms
that cancel the divergences. The correct ones are

Icount =
1

κ2

∫
d3x
√
−g
(

2 +
1

2
R[g]−K

)
, (4.4)

that are the terms we found in Chapter 3 (see Equation (3.104)) with the gravitino
sets to zero. However the integral IEucl = IEinst+Max + Icount is not well-de�ned when
explicitly evaluated on the extremal solution (4.2), because the integrand vanishes,
while the integration over the time leads to in�nity. In order to solve this issue, one
needs to consider a non-extremal deformation of the solution and evaluate the regulated
action on it. There are two non-extremal deformations: one amounts to allowing for a
generic magnetic charge Q under the graviphoton, and the other to adding a mass η.
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The non-extremal solution, discussed in [22] and [23], reads

ds2 = −V (ρ)dt2 +
1

V (ρ)
dρ2 + ρ2ds2

H2 ,

F = 2Q
dx1 ∧ dx2

x2
2

,

V (ρ) = −1− 2η

ρ
+
Q2

ρ2
+ ρ2,

(4.5)

with the extremal solution restored for Q → 1
2
and η → 0. Evaluating the action on

this generic solution they obtain

IosEucl =
2πρ0

(
g− 1

)
2ρ0G

(4)
N

∣∣∣ρ2
0 + η

ρ0
− Q2

ρ20

∣∣∣
(
Q2 − ρ4

0 + ηρ0

)
, (4.6)

where ρ0 is the horizon radius, i.e. the value of ρ which solves the equation V (ρ) = 0.
Notice that for the extremal black hole solution ρ0 → 1√

2
.

Taking the extremal limit for IosEucl they have

IExtr = −
π
(
g− 1

)
2G

(4)
N

+O
((
Q− 1

2

)1/2
)

+O
(
η1/2

)
. (4.7)

Comparing this result with the entropy formula (4.3), they �nd

SBH = −IExtr. (4.8)

On the other hand, according to AdS/CFT conjecture, the gravitational on-shell action
is related to the partition function of the dual CFT theory as IExtr = − logZ. Therefore
they obtain the sought holographic relation

logZ = SBH , (4.9)

which shows that black hole entropy can be identi�ed with the logarithm of the parti-
tion function of the CFT theory de�ned on the boundary of the black hole itself.
Although the black hole is a bosonic solution, the fact that the holographic countert-
erms are such that supersymmetry of the bulk+boundary action is preserved is crucial
for the supergravity and �eld theory results to match.

In the end we brie�y discuss a natural development of the present work. It consists
to work out the holographic counterterms in matter coupled N = 2 gauged supergrav-
ity, whose fermionic part is only partially known, and to check again supersymmetry
of the bulk + boundary on-shell action. In this case, there would be radical di�erences
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with respect to the case of minimal N = 2 gauged supergravity. Indeed, while for the
latter there are not ambiguities related to the �nite counterterms, for the former there
are ambiguities. Holographic renormalization has been discussed for matter coupled
N = 2 gauged supergravity with vacua that have conformally �at boundaries (see [24],
[25], [26], [27], [28], [29]), but no one has discussed yet vacua with arbitrary curved
boundaries.



Appendix A

Conventions

In this appendix we brie�y enumerate some conventions employed in this work.
The metric is �mostly positive�, i.e. (−,+, . . . ,+). The Riemann tensor is

Rµνρσ = gρρ′
(
∂µΓρ

′

νσ − ∂νΓρ
′

µσ + Γρ
′

µτΓ
τ
νσ − Γρ

′

ντΓ
τ
µσ

)
=

= eaρe
b
σ

(
∂µωνab − ∂νωµab + ωµacω

c
ν b − ωνacω c

µ b

) (A.1)

with the a�ne connection Γρµν and the spin connection ω ab
µ de�ned by

Γρµν =
1

2
gρσ
(
∂µgνσ + ∂νgµσ − ∂σgµν

)
ω ab
µ = 2eν[a∂[µe

b]
ν] − e

ν[aeb]σeµc∂νe
c
σ.

(A.2)

The Ricci tensor and scalar are obtained contracting the Riemann tensor with the
metric, namely

Rµν = R ρ
µ νρ, R = Rµνg

µν . (A.3)

The covariant derivatives for a spinor and a vector read

∇µλ = ∂µλ+
1

4
ω ab
µ γabλ

∇µV
ν = ∂µV

ν + ΓνµρV
ρ.

(A.4)

The Dirac spinor conjugate is de�ned as

λ̄ = iλ†γ0. (A.5)

Let us introduce the Cli�ord algebra for the gamma matrices in four dimensions.
It is de�ned by

{γµ, γν} = 2gµν . (A.6)
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We will employ a representation of gamma matrices which satis�es(
γ0
)2

= −14,
(
γi
)2

= 14 i = 1, 2, 3. (A.7)

Further we remember the well known relation(
γµ
)†

= γ0γµγ0 (A.8)

In the context of supersymmetry and supergravity theories, it is useful to rearrange
the gamma matrices in the following way

γµν = γ[µγν] =
1

2

[
γµ, γν

]
(A.9)

γµνρ = γ[µγνγρ] =
1

2

{
γµ, γνρ

}
(A.10)

and more generally,

γµ1···µn = γ[µ1···µn] =

{
1
2

[
γµ1 , γµ2···µn

]
for even n

1
2

{
γµ1 , γµ2···µn

}
for odd n.

(A.11)

We enumerate some useful expressions for the contraction of two gamma matrices in
four dimensions

γµγ
µνρ = 2γνρ (A.12)

γµνργαβ = 6γ
[µν

[βδ
ρ]
α] + 6γ[µδν[βδ

ρ]
α] (A.13)

γσγ
µνρ = γ µνρ

σ + 3δ[µ
σ γ

νρ] (A.14)

γστµγµνρ = 4γ
[σ
[ρδ

τ ]
ν] + 4δ

[σ
[ρ δ

τ ]
ν] (A.15)

γρσµγµν = γρσν + 4γ[ρδσ]
ν (A.16)

γργµν = γρµν + 2δρ[µγν] (A.17)

γµγ
µνρσ = γνρσ (A.18)

γτωµγµνρσ = 6γ[νδ
[ω
ρ δ

τ ]
σ] (A.19)



Appendix B

Hamiltonian mechanics

In this appendix we remind some aspects of the Hamilton-Jacobi theory for clas-
sical system. It will turn out to be useful when we will explain the holographic renor-
malization procedure in terms of Hamiltonian formalism in Section 3.5.

Let us consider the action

S =

∫ t

dt′L(qα, q̇α, t′) (B.1)

where L is the Lagrangian of the system, qα are generalized coordinates in the con�g-
uration space and q̇α are the respective velocities.
In the Hamiltonian formalism, we de�ne the conjugate momenta pα of qα as

pα =
∂L

∂q̇α
(B.2)

The evolution of a Hamiltonian system is described by the Hamilton's equations

q̇ =
∂H

∂p
ṗ = −∂H

∂q
(B.3)

with the so-called Hamilton's function or Hamiltonian H, which is achieved from the
Lagrangian performing a Legendre transform, i.e. H =

∑
pαq̇

α − L.
The di�culty of solving an Hamiltonian system is located in the integration of (B.3).

We know that a canonical transformation, which we write as

Q = f(q, p, t) P = g(q, p, t) (B.4)

preserves the formalism of Hamilton's equations, conjugating the Hamiltonian H to
another one K.
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The Hamilton-Jacobi method is a procedure that exploits a canonical transformation
to simplify the integrating issue. Indeed it conjugates H to another Hamiltonian K
easier to integrate. Therefore it moves the problem to the research of the generating
function of the canonical transformation that makes this work.

Time-independent system For a time-independent system one can prove that
there exists a generating function W(qα, Pα) which satis�es

pα =
∂W
∂qα

(qα, Pα) Qα =
∂W
∂Pα

(qα, Pα) (B.5)

and W(qα, Pα) is a solution for the (reduced) Hamilton-Jacobi equation

H
(
qα,

∂W
∂qα

(qα, Pα)
)

= E (B.6)

with E some constant.

Time-dependent system For a time-dependent system we add to Hamilton's equa-
tions the following one

Ḣ =
∂H

∂t
(B.7)

Furthermore there is a generating function S(qα, Pα, t) which satis�es

pα =
∂S
∂qα

(qα, Pα) Qα =
∂S
∂Pα

(qα, Pα) (B.8)

and S(qα, Pα, t) is a solution for the Hamilton-Jacobi equation

H
(
qα,

∂S
∂qα

(qα, Pα, t), t
)

+
∂S
∂t

= 0 (B.9)

Notice that the Hamilton-Jacobi formalism for time-dependent system reduces to
the time-independent one setting

S(qα, Pα, t) =W(qα, Pα)− Et (B.10)

where the function S is known as Hamilton's principal function, while W is called the
characteristic function.



Appendix C

Fe�erman-Graham expansions

We compute and report the Fe�erman-Graham expansions of di�erent quantities
valid for the N = 2 gauged four dimensional supergravity theory. We will stop the
asymptotic expansions to the needed order with regard to the calculations in Chapter
3. We will work in Fe�erman-Graham gauge.

Vielbeins and inverse vielbeins The following tautologies

δij ≡ ẽiae
a
j '

(
e−r/`ẽia(0) + e−2r/`ẽia(1) + · · ·

)(
er/`eaj(0) + e−r/`eaj(2) + · · ·

)
,

δba ≡ ẽiae
b
i '

(
e−r/`ẽia(0) + e−2r/`ẽia(1) + · · ·

)(
er/`ebi(0) + e−r/`ebi(2) + · · ·

) (C.1)

yield the expressions

eaj(0)ẽ
i
a(0) = δij, ebi(0)ẽ

i
a(0) = δba,

ẽia(1)e
a
j(0) = 0 =⇒ ẽia(1) = 0,

eaj(2)ẽ
i
a(0) = −ẽia(2)e

a
j(0), ebi(2)ẽ

i
a(0) = −ebi(0)ẽ

i
a(2),

eaj(3)ẽ
i
a(0) = −ẽia(3)e

a
j(0), ebi(3)ẽ

i
a(0) = −ebi(0)ẽ

i
a(3).

(C.2)

These equivalences are widely used to simplify the expressions of Chapter 3.

Spin connection The expressions of the spin connection read

ω a3
i = 2eν[a∂[ie

3]
ν] − e

ν[ae3]σeiγ∂νe
γ
σ =

= eν[a∂ie
3]
ν − eν[a∂νe

3]
i −

1

2
ejae3rei3∂je

3
r +

1

2
er3eajeic∂re

c
j =

=
1

2
∂re

a
i +

1

2
eajeib∂re

b
j,

(C.3)
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ω ab
i = 2ej[a∂[ie

b]
j] − e

j[aeb]keic∂je
c
k,

ω ab
r = ei[a∂re

b]
i , ω a3

r = 0.
(C.4)

Their asymptotic expansions are

ωia3 '
1

`
er/`ηabe

b
i(0) +

1

`
e−r/`ηbcẽ

j
a(2)e

b
i(0)e

c
j(0) +

1

2`
e−2r/`

(
3ηbcẽ

j
a(3)e

b
i(0)e

c
j(0) − ηabebi(3)

)
=

= er/`ω(0)ia3 + e−r/`ω(2)ia3 + e−2r/`ω(3)ia3,

ωrab '
1

`
e−2r/`ηc[b

(
ẽia](2)e

c
i(0) − ẽia](0)e

c
i(2)

)
+

1

`
e−3r/`ηc[b

(
ẽia](3)e

c
i(0) − 2ẽia](0)e

c
i(3)

)
=

= e−2r/`ω(2)rab + e−3r/`ω(3)rab,

ωiab ' 2ηc[bẽ
j
a](0)∂[ie

c
j](0) − ẽ

j
[a|(0)|ẽ

k
b](0)ηcde

c
i(0)∂je

d
k(0)+

+ e−2r/`
[
2ηc[b

(
ẽja](0)∂[ie

c
j](2) + ẽja](2)∂[ie

c
j](0)

)
−

−
(
ẽj[a|(2)|ẽ

k
b](0) + ẽj[a|(0)|ẽ

k
b](2)

)
ηcde

c
i(0)∂je

d
k(0) − ẽ

j
[a|(0)|ẽ

k
b](0)ηcd

(
eci(0)∂je

d
k(2) + eci(2)∂je

d
k(0)

)]
=

= ω(0)iab + e−2r/`ω(2)iab.

(C.5)

Metric and its variation In order to study the variation of bulk and boundary ac-
tions, we need to employ the asymptotic expansion of the metric. Its explicit expression
is

ds2 = dr2 + gijdx
idxj = dr2 + eai e

b
jηabdx

idxj ≡
≡ dr2 +

(
e2r/`g(0)ij(~x) + g(2)ij(~x) + e−r/`g(3)ij(~x) + · · ·

)
dxidxj '

' dr2 +
(
er/`eai(0) + e−r/`eai(2) + · · ·

)(
er/`ebj(0) + e−r/`ebj(2) + · · ·

)
ηabdx

idxj
(C.6)

which implies

=⇒ g(0)ij = ηabe
a
i(0)e

b
j(0)

g(2)ij = ηab
(
eai(0)e

b
j(2) + eai(2)e

b
j(0)

)
g(3)ij = ηab

(
eai(0)e

b
j(3) + eai(3)e

b
j(0)

)
.

(C.7)

We obtain the asymptotic expansions of gij with the same argument

gij(0) = ηabẽia(0)ẽ
j
b(0)

gij(2) = ηab
(
ẽia(0)ẽ

j
b(2) + ẽia(2)ẽ

j
b(0)

)
gij(3) = ηab

(
ẽia(0)ẽ

j
b(3) + ẽia(3)ẽ

j
b(0)

)
.

(C.8)
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Hence the variation of the metric δgij and its inverse δgij read

δg(0)ij = ηab
(
δeai(0)e

b
j(0) + eai(0)δe

b
j(0)

)
δg(2)ij = ηab
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j(0)

)
,
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δgij(2) = ηab

(
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b(2) + ẽia(0)δẽ
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)
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j
b(3) + δẽia(3)ẽ
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b(0) + ẽia(3)δẽ

j
b(0)

)
.

(C.9)

Determinant of the metric In order to study the expansion of the determinant of
the metric we manipulate it in an useful way

ds2 = dr2 + e2r/`
[
g(0)

(
1 + e−2r/`(g−1

(0)g(2)) + · · ·
)]
ij

dxidxj

G = g = e6r/` det(g(0)ij) det
[
1 + e−2r/`(g−1

(0)g(2)) + · · ·
]
k`
'

' e6r/` det(g(0)ij)
(
1 + e−2r/`Tr[(g−1

(0)g(2))k`] + · · ·
)
.

(C.10)

Thus we obtain

=⇒
√
−G =

√
−g ' e3r/`

√
− det(g(0))

√
1 + e−2r/`Tr(g−1

(0)g(2)) '

' e3r/`
√
− det(g(0)) +

1

2
er/`Tr(g−1

(0)g(2))
√
− det(g(0)),

(C.11)

where we have used the two equivalences valid for small A: det(1 +A) ' 1 + TrA and√
1 + A ' 1 + 1

2
A.

Covariant derivative of the supersymmetric spinor parameter and gravitino
In order to study the variation of bulk + boundary action, we need to compute the
near-boundary expansions of ∇iε and ∇iΨj. The �rst reads

∇iε = ∂iε+
1

4
ωiαβγ

αβε '

' 1

2
e

3r
2`ω(0)ia3γ

a3η(0)++

+ e
r
2`

(
∇(0)iη(0)+ +

1

2
ω(0)ia3γ

a3η(1)−

)
+ e−

r
2`

[(1

2
ω(0)ia3γ

a3η(2)−

)
+

+
(
∇(0)iη(1)− +

1

2
ω(0)ia3γ

a3η(2)+ +
1

2
ω(2)ia3γ

a3η(0)+

)]
≡

≡ e
3r
2` (∇iε)(0)− + e

r
2` (∇iε)(1)+ + e−

r
2`

(
(∇iε)(2)+ + (∇iε)(2)−

)
,

(C.12)
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with ∇(0)i the covariant derivative de�ned through g(0).

The asymptotic expansion of the gravitino covariant derivative yields

∇iΨj ≡ ∂iΨj +
1

4
ωiαβγ

αβΨj '

' 1

2
e

3r
2`ω(0)id3γ

d3Ψ(0)+j + e
r
2`

(
∇(0)iΨ(0)+j +

1

2
ω(0)id3γ

d3Ψ(1)−j

)
+

+ e−
r
2`

[(
∇(0)iΨ(1)−j +

1

2
ω(0)id3γ

d3Ψ(2)+j +
1

2
ω(2)id3γ

d3Ψ(0)+j

)
+

+
(1

2
ω(0)id3γ

d3Ψ(2)−j

)]
+

+ e−
3r
2`

[(
∇(0)iΨ(2)+j +

1

4
ω(2)ideγ

deΨ(0)+j +
1

2
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1

2
ω(2)id3γ
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)
+

+
(
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1

2
ω(3)id3γ

d3Ψ(0)+j +
1

2
ω(0)id3γ

d3Ψ(3)+j

)]
≡

≡ e
3r
2` (∇iΨj)(0)− + e

r
2` (∇iΨj)(1)+ + e−

r
2`

(
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)
+

+ e−
3r
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(
(∇iΨj)(3)+ + (∇iΨj)(3)−

)
.
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We intentionally omitted the Christo�el symbols in ∇iΨj because its symmetric indices
are always contracted with two antisymmetric indices of the gamma in the bulk and
boundary actions.
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Extrinsic curvature, Ricci scalar and gauge covariant derivative of gravitino
In the variation of counterterms action, a number of quantities and their variations ap-
pear. We report their near-boundary expansions, remembering that we are interested
in terms with up to two fermionic �elds.

Let us start from the trace of the extrinsic curvature of a radial slice and its
supersymmetric variation

K =
1

2
gij∂rgij '

' 1

`
gij(0)g(0)ij +

1

`
e−2r/`gij(2)g(0)ij +

1

`
e−3r/`

(
gij(3)g(0)ij −

1

2
gij(0)g(3)ij

)
≡

≡ K(0) + e−2r/`K(2) + e−3r/`K(3),

δK =
1

2
δgij∂rgij +

1

2
gij∂rδgij '

' 1

`

(
δgij(0)g(0)ij + gij(0)δg(0)ij

)
+

1

`
e−2r/`

(
δgij(2)g(0)ij + gij(2)δg(0)ij

)
+

+
1

`
e−3r/`

[(
δgij(3)g(0)ij + gij(3)δg(0)ij

)
− 1

2

(
δgij(0)g(3)ij + gij(0)δg(3)ij

)]
≡

≡ (δK)(0) + e−2r/`(δK)(2) + e−3r/`(δK)(3).

(C.14)

In S(2) term of Section 3.6 there are the Ricci scalar of a radial slice R[g], the
gravitino gauge covariant derivative ∇iΨj and their variations.
The expansion of the former yields

R[g] =
(
∂iΓ

i
jk − ∂jΓiik + Γii`Γ

`
jk − Γij`Γ

`
ik

)
gjk '

' e−2r/`
(
∂iΓ

i
(0)jk − ∂jΓi(0)ik + Γi(0)i`Γ

`
(0)jk − Γi(0)j`Γ

`
(0)ik

)
gjk(0) ≡

≡ e−2r/`R(2),

(C.15)

where Γkij near-boundary behaviour is

Γkij[g] ' 1

2
gk`(0)

(
∂ig(0)j` + ∂jg(0)i` − ∂`g(0)ij

)
≡ Γk(0)ij[g]. (C.16)

Its variation reads

δR = Rij[g]δgij +∇i

(
gjkδΓijk − gikδΓ

j
jk

)
'

' e−2r/`
[
−η(0)+γ

i
(0)Ψ(0)+kR

k
i(0) +∇(0)i

(
gjk(0)δΓ

i
(0)jk − gik(0)δΓ

j
(0)jk

)]
≡

≡ e−2r/`(δR)(2)

(C.17)
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In the end the expansions of the gauge covariant derivative of gravitino and its variation
yield

Ψ̄+i

←−
D j = ∂jΨ̄+i −

1

4
Ψ̄+iωjabγ

ab − Γkij[g]Ψ̄+k −
i
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r
2`A(1)jΨ̄(0)+i ≡
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r
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)
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+ e−
r
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)
(1)
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δ
(
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)
' ∂jδΨ̄+i −

1

4
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' e
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e−
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)
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+ e−
r
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(
δΨ̄+i

←−
D j

)
(1)
.

(C.18)

where D(0)i is the gauge covariant derivative constructed with g(0).
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