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Riassunto 

Negli ultimi anni la comunità scientifica si è focalizzata sullo sviluppo di criteri per la 

salvaguardia ambientale che accompagnino la progettazione di un determinato bene. Questa 

tendenza si traduce anche in innovazione nella scienza e nella tecnologia con l’obiettivo di 

ridurre le emissioni di gas ad effetto serra e le quantità di sostanze che sono difficilmente 

riciclabili alla fine del loro ciclo di vita; il tutto, senza però rinunciare alle prestazioni del 

prodotto. 

Nel campo dei materiali compositi, i rinforzi fibrosi naturali e le matrici biopolimeriche 

diventano un logico approccio verso uno sviluppo sostenibile, ma l’elevato costo dei 

biopolimeri non consente loro un ampio utilizzo. La via più praticabile verso materiali 

compositi eco-compatibili risulta quindi, per ora, l’utilizzo, ove possibile, di fibre naturali nei 

materiali compositi rinforzati a fibre. Il riciclo, la biodegradabilità e la combustibilità non 

sono le uniche ragioni che promuovono lo sviluppo di tecniche innovative riguardanti le fibre 

rinnovabili. Altri vantaggi significativi derivano dalle loro elevate proprietà meccaniche 

specifiche ed il loro basso costo. Dall’altra parte, le ragioni principali che ostacolano una loro 

ampia diffusione sono: la bassa resistenza ad agenti esterni ed agli attacchi microbici, la 

sensibilità all’umidità, la bassa resistenza termica, la natura idrofila (la quale comporta una 

scarsa aderenza superficiale con la matrice polimerica idrofobica) e la mancanza di ripetibilità 

delle proprietà (essendo queste strettamente legate al luogo ed alle condizioni di coltura). 

Molti settori dell’industria, tra cui quello automobilistico, fanno ampio uso di materiali 

compositi rinforzati con fibra naturale, ma per applicazioni che non richiedono particolari 

requisiti di tipo meccanico. La tecnica utilizzata per aumentare le proprietà meccaniche delle 

fibre impiegate nel materiale composito abbraccia il campo della biomimetica, ovvero, lo 

studio dei processi biologici e biomeccanici della natura come fonte di ispirazione per il 

miglioramento delle attività e delle tecnologie umane.  

Il lavoro di tesi, è stato condotto presso il laboratorio di ricerca “Paper Coating and 

Converting” dell’Åbo Akademi University della città di Turku in Finlandia. Il gruppo di 

ricerca sta valutando l’ipotesi di migliorare le proprietà meccaniche dei rinforzi fibrosi 

naturali per materiali compositi fibro-rinforzati mediante un trattamento di 

biomineralizzazione artificiale. La biomineralizzazione è un processo estremamente 

complesso, attraverso il quale, gli organismi marini formano minerali; tale processo prevede 

la conversione di ioni in soluzione in solidi mineralizzati attraverso attività cellulari. In altre 

parole, la biomineralizzazione è un processo che prevede l’interazione tra le regioni organiche 

di questi organismi ed i componenti inorganici o ioni presenti in soluzione consentendo la 

formazione di strutture specifiche ad elevate capacità meccaniche. La componente organica 



 

(proteine, polisaccaridi e/o lipidi) di cui sono costituiti tali organismi è in grado di controllare 

la fase, la morfologia e la dinamica di crescita della frazione inorganica. Il biominerale 

formato presenterà una struttura complessa su micro e nanoscala con un’eccellente 

combinazione di tenacità, elevato modulo elastico e forza, mentre i compositi sintetici 

tradizionali tendono a diminuire in tenacità con l’aumentare del modulo elastico. In questo 

lavoro di tesi, l’obiettivo è stato l’ottenimento di un rivestimento di carbonato di calcio 

(composto prevalente nei biominerali) biomineralizzato artificialmente sulla superficie di 

fibre di lino. Tre amminoacidi (Glicina, Beta-Alanina e Licina) a tre concentrazioni differenti 

per ognuno (30·10
-3 
M, 50·10

-3 
M, 100·10

-3 
M) sono stati presi in considerazione per il 

controllo del processo di precipitazione del carbonato di calcio sulla superficie delle fibre 

naturali; tali fibre sono state poi inserite come rinforzo fibroso unidirezionale in una matrice 

copolimerica di stirene-butadiene. L’utilizzo di questi composti organici deriva da un 

precedente studio effettuato nello stesso laboratorio di ricerca, nel quale si dimostra come la 

presenza di amminoacidi diversi influenzi la morfologia cristallina del carbonato di calcio e di 

conseguenza comporti una diversa rugosità superficiale della fibra di lino modificandone 

l’adesione con la matrice polimerica e quindi le proprietà a sforzo dell’intero composito. 

Le analisi delle fibre di lino effettuate con il microscopio elettronico a scansione hanno 

permesso di valutare le diverse configurazioni nella morfologia cristallina del carbonato di 

calcio indotta dalle molecole organiche. 

I campioni di matrice polimerica rinforzata con fibre di lino biomineralizzate sono stati 

sottoposti a prova di trazione per la valutazione dei parametri meccanici ottenibili dalla curva 

sforzo-deformazione. Inoltre, le simulazioni di dinamica molecolare applicate ai sistemi 

carbonato di calcio in presenza dei diversi amminoacidi alle tre concentrazioni considerate, ha 

permesso la valutazione delle energie intermolecolari. 

Tra gli amminoacidi utilizzati, la Licina è stata riscontrata come il composto organico che 

consente le più elevate energie molecolari all’interno del sistema carbonato di calcio creando 

compositi con i più elevati valori di resistenza e rigidità. 

 



 

Abstract 

Biomineralisation is gaining increasing interest as a potential technology for coating fibres for 

use in high-performance composites. The application of molecular biology and protein 

chemistry into material engineering creates an important interface between traditional 

methods in materials design and structural biology. Artificially controlling the process of 

biomineralisation in-vitro, to create a product similar to biominerals found in nature (in-vivo), 

would allow for the development of lightweight products with excellent mechanical 

properties for a variety of applications. 

In this thesis, three amino acids were taken into account (Glycine, β-alanine and L-lycine) and 

three different concentrations for each amino acid (30·10
-3 
M, 50·10

-3 
M, 100·10

-3 
M) were 

used to artificially biomineralise natural fibres for use in natural fibres reinforced composite. 

Of the three amino acids, higher concentrations of L-lycine were found to have (a) the highest 

intermolecular energies and (b) create composites with the highest values of strength and 

stiffness. 
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Introduction 

A composite is a material of two or more components possessing characteristics of the 

individual components combined. Typical engineered composite materials include; building 

materials, metal matrix composites, ceramic composites and reinforced plastics, such as fibre-

reinforced plastics (FRP). FRP are often manufactured to meet demands for low weight and 

high mechanical properties. 

In recent years, the scientific community has focused on developing engineering criteria for 

environmental protection. There is growing interest from industry for innovation in science 

and technology where environmental protection plays a key role in material design. Many 

companies, for example, are increasingly beginning to adopt environmental management 

systems as a tool for the analysis of the environmental performance of their activities and 

their services. This also helps economically because it allows for process optimisation, a 

reduction in the amount of waste and it creates a clean image for the company. Companies 

and governmental bodies in high income countries aim for a rapid transition of the world 

economy towards “green growth”. This consists of a production mode based on clean 

techniques which are able to significantly reduce emissions of carbon dioxide and other 

greenhouse gases. New priorities promoted by scientific and technological innovation are 

based on general principles aimed at eliminating, or at least reducing, the use of processes and 

substances harmful to both humans and the environment. 

Figure “a” shows the production of plastic material in various continents amongst the world's 

largest suppliers over recent decades. The use of plastics in every sector of production 

involves a huge amount of waste that needs to be disposed (Cristaldi et al., 2010). Problems 

due to waste disposal combined with new regulations to protect the environment emphasise 

the importance of eco-composites containing a biopolymer matrix and/or natural fibres. 

Therefore, natural fibres and biopolymer matrices are a logical approach towards sustainable 

development. They are moreover a viable alternative to glass fibre composites (Mohanty et 

al., 2005). The high price of biopolymers disallows their wide use, and hence the most viable 

route towards eco-friendly composites is in the use of natural fibres in fibre reinforced 

composites (Cristaldi et al., 2010). 

Data on the global and European markets demonstrate a growing interest in biopolymers and 

reinforcements obtained by sustainable means. The average annual growth rate of bio-plastics 

from 2003 to 2007 was 38% globally and 48% in Europe. It is predicted that the worldwide 

capacity of bio-based composites will increase from 0,36 of 2007 to 2,33 million metric tons 

in 2013 and to 3,45 million metric tons in 2020 (Faruk et al., 2012). 
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Figure a Plastics production (Griskey , 1995) 

Engineering challenges related to the utility of natural fibres include; low resistance to 

chemical and to microbial attacks, moisture sensitivity, low thermal resistance, hydrophilic 

nature leading to poor surface adhesion with the polymer matrix, and the lack of repeatability 

of the properties of natural fibres. As a consequence, industry still prefers synthetic fibres for 

use in composites (carbon, glass, boron etc). Nevertheless, the production of such high 

performance synthetic fibres requires a high amount of energy expenditure and consequently 

large volumes of greenhouse gases are emitted into the atmosphere. As can be seen in Figure 

“b”, the energy required for the production of one ton of any natural fibre is negligible when 

compared with the energy required for the production of the same amount by weight of 

carbon fibre. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure b Amount of energy required to produce a ton of fibre (Cristaldi et al., 2010) 



 

It is necessary to introduce the concept of embodied energy which is a methodology for 

assessing and quantifying the total energy required for the realisation of a product – from raw 

materials extraction to disposal. Embodied energy describes the entire life cycle in 

environmental management systems to compare competitive products (Cabeza et al., 2013). A 

study of the Advanced Composites Manufacturing Centre (ACMC) of the University of 

Plymouth revealed that the energy required for the production of flax fibres can be, under 

certain conditions, higher than the energy required for glass fibres. In this study, it has been 

found that for the production of flax fibres, only mat fabrics (a randomly oriented 

reinforcement where there is not any preferential stress direction) are greener; 54 GJ/ton 

against 54.7 GJ/ton for glass fibres. Flax yarns have a higher embodied energy with respect to 

glass fibre in continuous filament production; 80GJ/ton against 31.7 GJ/ton respectively. 

Therefore, when selecting reinforcements for a given composite, it is important to evaluate 

the costs and the alternatives associated with a specific application. 

In general, environmental concerns are not the only reasons why researchers now focus on 

developing renewable fibre technology. Other significant benefits can exist such as; low 

density, low cost (wide availability), biodegradability (synthetic fibres require more energy 

for disposal), recycling and combustibility. Moreover, natural fibres pose no real hazard to 

human health. They also exhibit excellent thermal insulation, acoustic and electrical 

properties. In Table “c”, the costs of certain fibres are reported (in US Dollar/Kg). Dittenber 

and Gangarao (2012) evaluated also the relative cost to mechanical performance; in particular 

the cost is expressed per unit length capable of resisting 100KN (in US Dollar/m for amount 

of fibres able to resist tensile load of 100KN). 

Table c Costs: a comparison between natural fibres and synthetic fibres (Yan 

et al., 2014, Dittenber et al., 2012, Joshi et al., 2004) 

Fiber US Dollar/Kg US Dollar/m 

Cotton 1.55 - 2.20 0.3 – 1.25 

Flax 0.3 - 1.55  0.03 – 0.65 

0.22 - 1.10 

Hemp 0.3 - 1.65 0.05 – 0.93 

Glass 1.6 - 3.25 0.12 – 0.42 

1.3 - 2 

 

For the reasons above, the market for natural fibres is growing and there are many industrial 

sectors that make great use of them. Examples include the automotive industry, the 

agricultural sectors, the construction industry and consumer product industries. In the field of 

materials science, natural fibres are one of the more utilised reinforcements for thermoplastics 

(Mohanty et al., 2005). 
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Synthetic fibres still have superior properties to natural fibres. Biomimetics is the study of 

biological processes and systems as inspiration for human applications in order to integrate 

determined properties into synthetic materials (Weiner and Dove, 2003). Many organic 

biological materials, such as corals and sponges, have very high strength and stiffness, even 

though like natural fibres, their core is organic material. This is because they biomineralise 

and create hardened mineralised exoskeletons on their surfaces reinforcing the softer and 

weaker organic material. In this thesis, the aim is to mimic the mineralised calcium carbonate 

skeletons of corals as a coating exoskeleton to natural (flax) fibres. The hypothesis is that by 

doing so, it will be possible to match the effects of high performance synthetic fibres (such as 

glass fibre). In marine structures, the process of biomineralisation is controlled by amino 

acids and proteins. These organic “glues” essentially control the crystal growth mechanism, 

which in turn affects the morphology, properties of adhesion and interlocking of the calcium 

carbonate. 

Chapter 1 provides a general overview about composite materials, paying particular attention 

to composite materials based on natural fibres. A description of the various types of 

renewable plant fibres and of their application in the engineering field is also explained. The 

end of the chapter is focused on the flax fibre, since it is used in this thesis work. 

Chapter 2 describes surface treatments commonly applied to natural fibres to promote 

adhesion to hydrophobic polymeric matrices and to prevent damage caused by the moisture, 

since natural fibres are hydrophilic in nature. The base concepts of biomimetics and 

biomineralisation are also introduced for a better understanding of the manufacture of natural 

fibres composites, which is described in the following chapter. Moreover, a brief description 

of the crystallisation process, considering the nucleation and growth stages, is presented. 

Chapter 3 provides a description on the equipments, materials and procedures used to carry 

out the experimental work. The results obtained and a discussion are shown at the end of each 

corresponding paragraph. 

Finally, conclusions, limitations and future prospects of work are expounded. 

 



 

Chapter 1 

Composite materials and composites 

reinforced with natural fibres 

This chapter gives a brief introduction about composite materials and their fundamental 

constituents, paying particular attention to natural fiber reinforced composites materials. 

Following this is a general overview of natural fibers used in engineering and their 

applications. At the end of the chapter, the properties of flax fiber are highlighted. 

1.1 Composites: matrices and reinforcements. 

In recent years, there has been a significant increase in the demand for the design of advanced 

new materials, as traditional ones are no longer deemed able to meet the challenges of 

technological development. Material science is geared to the design of new materials that 

contain all the desirable features for specific use. High strength and stiffness, coupled to low 

weight and high impact tolerance are just a few examples. 

Composite materials comprise two or more constituents (phases) which are separated by an 

interface. In general, these constituents are divided into a continuous phase (matrix) and a 

dispersed phase (reinforcement). Composite materials are essentially multiphase structures 

and can exhibit a wide range of different physical and chemical properties at the macroscopic 

level. Each constituent has to be present in an amount of at least of 5% in engineered 

structures (Matthews and Rawlings, 2000). 

The matrix has the function of binding together reinforcements and transfering external loads 

to them. The reinforcements are responsible for the improvement of the mechanical properties 

of the matrix and the interface allows the transfer of mechanical stress from the matrix to the 

reinforcement. The binding qualities of this interface are therefore very important in 

composites design. 

There are essentially two classes of composite material. The first class is related to the type of 

reinforcement and may include; fibre reinforced composite materials, composite materials 

with particulate filler and structural composites. The second class is based on the constitution 

of the matrix phase. The main composites types in this class may be based on a polymer 

matrix (Polymer-Matrix Composite), a metal matrix (Metal-Matrix Composite) or a ceramic 

matrix (Ceramic-Matrix Composite).  
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Often, a primary motivation for choosing the matrix lies in the operating temperature. The 

matrix must be able to maintain the solid state and not become viscous, such that the external 

loads can be transferred in an appropriate manner to the reinforcement phase (Cristaldi, 2011). 

Table 1.1 shows the operating temperatures of some matrices. 

Table 1.1: Operating temperatures of the main matrices for composite 

materials (Cristaldi, 2011) 

Matrices Operating Temperature [ºC] 

Polymer matrix < 250 

Metal matrix < 1000 

Ceramic matrix > 1000 

 

Rises in temperature can change the mechanical, electrical and optical responses of 

composites up to an order of magnitude,  and up to three orders of magnitude for the diffusion 

of humidity (Mahieux, 2005). 

Ceramic matrix composites produce materials with characteristics of high temperature 

resistance and high tolerance to damage caused by thermal shock (Chawla, 1993). 

Reinforcements for this type of refractory and chemically inert (strong covalent atomic bonds) 

matrix are usually used to increase the fracture toughness (Boccaccini et al., 2001). Given the 

high elastic modulus of the matrix, the fibres are able to effectively dissipate fracture energy. 

Metal matrix composites ensure high thermal conductivity and a high coefficient of thermal 

expansion. This allows for the reduction of thermal stresses (Xuan-Hui et al., 2011). In certain 

applications, the coefficient of thermal expansion may be too high and the addition of 

reinforcement allows this to be controlled. 

Polymeric matrices may be thermoplastic or thermoset. Thermoplastic matrices are formed by 

linear polymeric chains, or linear with little side branching. Importantly, they are not cross-

linked and for this reason, these products are meltable and therefore suitable for use in 

common composite manufacturing technologies such as; extrusion, blow moulding and 

injection molding. By applying heat, it is possible to model the shape of thermoplastic 

material, which is advantageous for recycling. However, depending on the type of polymer 

there are a finite number of heating-cooling cycles beyond which it is possible to see the 

effects of degradation. Thermoplastic polymers can be further divided into amorphous and 

semi-crystalline polymers. Amorphous polymers are characterised by tangled chains and they 

have a glass transition temperature which separates the glassy (below the Tg) and rubbery 

(above the Tg) phases. Amorphous polymers do not have a true melting temperature, hence 

they do not melt, but rather they soften within a given temperature range. Semi-crystalline 

polymers exhibit both an amorphous fraction and a crystalline fraction. The amorphous region 

behaves exactly as amorphous polymers and therefore it is characterised by a glass transition 
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temperature, while the crystalline region, in which the chains are ordered, has a true melting 

temperature (Brazel and Rosen, 2012). For these polymers, it is possible to calculate the 

degree of crystallinity by thermal measurements or by measuring density. From the point of 

view of mechanical properties, crystallinity generally makes the material stiffer, but a 

polymer with a high degree of crystallinity is also very brittle. The amorphous regions, in fact, 

increase toughness, that is, the ability to deform without breaking. 

Thermosetting matrices consist of cross-linked chains. Strong intermolecular bonds prevent 

softening and the application of sufficient heat leads to the chemical degradation, or charring, 

of the polymer. In contrast to thermoplastic polymers, in most of the thermosetting polymers, 

hardening takes place by means of the heat application or through a chemically catalysed 

reaction (Modesti, 2012).  

In terms of environmentally responsible engineering, biodegradable polymers are gaining 

importance in the market as potential substitutes for current synthetic polymers. 

Biodegradable polymers can be obtained from renewable sources, such as biomass, and from 

non-renewable sources, such as those derived petrochemically. High cost and poor 

mechanical properties are the greatest disadvantages of biodegradable polymers. For the 

moment, the advantages of biopolymers cover only the environmental aspect. 

Polymeric matrices have the following properties; low density, high corrosion resistance, high 

thermal insulation and high dielectric/dimagnetic properties. Reinforcements in polymers are 

primarily used to increase the tensile, the flexural and the impact properties (Fancey, 2010).  

The most common polymers used in natural fibres reinforced composites are polyesters, 

epoxy resins and phenolic resins (thermosets), and polyethylene, polystyrene and 

polypropylene (thermoplastics) (Mohanty et al., 2005). 

In most cases, the reinforcing phase of a composite is harder, stronger and stiffer than the 

matrix, whether it be particulate or fibre. The particle reinforcements often have an aspect 

ratio (defined as the ratio of the fibre length to the diameter) close to unity and hence are able 

to yield the characteristics of isotropy in the composite. The physical and chemical properties 

of a composite loaded with particles depend strongly on the quality of the material they are 

made from. This may include the shape (spherical, cubic, or irregular), the size and their 

volume fraction within the matrix. Often they perform the role of fillers, occupying a certain 

volume fraction of the matrix. This is essentially to reduce the cost of the matrix and increase 

its dimensional stability. Despite the reinforcing effect of the particles, they generally do not 

contribute a great deal to the mechanical properties of the material when used as a filler 

(Chawla, 2012). For high strength/weight ratio (specific resistance) and the high elastic 

modulus/weight ratio (specific modulus), long fibres are superior reinforcements. The fibres 

may be continuous (long), with an aspect ratio greater than 1000, or they may be 

discontinuous (short) aligned/randomly arranged, with an aspect ratio between 10 and 1000 

(Lee, 1992). It is clear that given the high length/diameter ratio, the final product will have 
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distinctly anisotropic features, but this is not a disadvantage as it is also possible to align the 

fibres in the direction of loading via simple manufacturing routes. From the point of view of 

the quality of the material, a distinction can be made between synthetic fibres and natural 

fibres. Until a few years ago, synthetic fibres were the only alternative on the market for 

composite materials. From amongst them, glass fibre is the most commonly used due to its 

high strength/weight ratio, its low density and mostly importantly, its relatively low cost. 

Carbon fibres have excellent mechanical properties due to the particular structure of the 

graphite together with an extremely low density, however these fibres are considerably more 

expensive to fabricate than glass fibres. Another type of fibre is the aramid fibre, which is 

primarily known for its high resistance to traction. At present, these fibres are at the top of the 

range on the market, however, given the general high costs involved, they are usually utilised 

in niche areas. Natural fibres are those originating in plants and animals. For engineering 

applications, such as for use in composites, plant fibres are the most common and suitable 

(Cristaldi, 2011). 

 
Figure 1.1 Summary diagram of composite materials 

In addition to the major constituents, coupling agents can be added to composites. These work 

at the matrix-reinforcement interface and they are often used when there are problems of 

wettability between the matrix and the reinforcement. In the cases where the matrix is 

hydrophobic and the reinforcement is hydrophilic, it can be necessary to add a coupling agent 
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to improve the wettability and/or to promote the formation of bonds at the interface. In this 

way the materials will transmit external stresses more effectively. Other functions of coupling 

agents may include protection of the fibre surface and the reduction of static electricity (Kim 

and Mai, 1999, National Research Council of the National Academies, 2005). Figure 1.1 

summarises the main classifications of composites materials. 

1.2 Renewable plant fibres 

Natural fibres have become popular as reinforcement in composite materials (Müssig, 2010). 

New regulations for environmental protection and the life cycle of the product have changed 

the criteria that must be taken into account in materials selection and design.  

The variety of natural fibres in nature is enormous. From plants, flax, hemp, jute, and sisal are 

amongst the most commonly used in engineering composites. Figure 1.2 provides an 

overview of organic plant natural fibres. 

Figure 1.2 Schematic representation of reinforcing bio-fibres classification (Abdul-Khalil, 

2012) 

Plant fibres are composed of cellulose, hemicellulose and lignin. There are also small 

percentages of other compounds, such as pectin, waxes, ash and water-soluble substances. 

The chemical and physical structure of the fibre is the decisive variable when it comes to their 

functionality in technical applications (Müssig, 2010). 
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Plant fibres are themselves natural composite materials consisting of a matrix of amorphous 

lignin and hemicellulose reinforced by microfibres (microfibrils) of crystalline cellulose. Each 

single strand of fibre has a diameter of at least 10 micrometres, while the microfibrils have a 

diameter of about 10 nanometres and are in turn formed by 30-100 macromolecules of 

cellulose (Dittenber and Gangarao, 2012). 

The main component of plant fibres is cellulose. It is synthesised in plants from more simple 

carbohydrates. Cellulose is a natural linear polymer obtained by polycondensation of glucose 

units (C6H12O6) (Nelson and Cox, 2000). 

The structural hierarchy of plant fibres starts from the polymer chains made up of thousands 

of glucose units (see Fig.1.3). Cellulose chains in some places are arranged parallel and, by 

means of strong intermolecular hydrogen bonds, they are capable of forming very stable and 

hydrophobic crystal structures with a high tensile strength. In addition to the crystalline 

regions, there are some less ordered amorphous zones which decrease considerably the 

mechanical properties of the fibre itself, from that of the crystalline cellulose. The cellulose 

macromolecules build up to form microfibrils (Müssig, 2010). Hemicellulose, the second 

most abundant heteropolymer (Akin et al., 1990), is made up of a large number of 

polysaccharides different in both composition and structure. Unlike cellulose, it is easily 

hydrated, it has a low molecular weight and a branched structure. Hemicellulose constitutes 

the main component of the matrix. The significant differences between cellulose and 

hemicellulose have been mentioned in several studies for their considerable importance 

during the manufacturing process and for functional attributes (Müssig, 2010). Lignin is an 

organic complex formed by aliphatic and aromatic groups and it is responsible for the 

strength, rigidity and protection from microbial attacks outside of the cell walls. Pectin is a 

heteropolysaccharide, that contributes to the structure of the matrix. Despite its relative low 

fraction, it has a fundamental role in the process of transformation of the plant fibres. 

The physical properties of natural fibres depend essentially on two factors, (1) the chemical 

composition and (2) the microfibrillar angle, or, average angle of orientation of microfibrils, 

relative to the axis. The latter affects numerous mechanical properties of the fibre, in 

particular, a small angle leads to a high strength and stiffness, while higher angles promote 

the ductility (John and Anandjiwala, 2008). 

The main advantages of natural fibres include the following: 

- Low cost. 

- Low specific weight, which means a higher specific strength and specific stiffness compared 

with the glass fibres. 

- They are from a renewable resource and their production requires low levels of energy. Thus 

during the production phase, the relative volumes of emitted greenhouse gases are very low 

and in particular, the balance between CO2 captured in the growth phase and CO2 emitted 

during the combustion phase (in the case the fibres are used as combustible) is equal to zero. 



Composite materials and composites reinforced with natural fibres 11 

- Better working conditions when compared with synthetic fibres; dermatological and 

respiratory problems are reduced. 

- They are biodegradable and biocompatible, hence the life cycle of the fibre ends without by-

products or waste. As said previously, thermal recycling is possible where the fibres are used 

as fuel. 

- They have high electrical resistance. 

- They have good properties of thermal and acoustic insulation. 

- They do not lead to any serious abrasion of the processing equipment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.3 Schematic diagram of the hierarchy of a typical plant cell wall (Müssig, 2010) 

In terms of disadvantages these can be listed as; climatic/soil conditions affecting the 

uniformity of the chemical composition and of the physical structure, poor resistance to 

moisture (causing swelling and dimensional instability), poor resistance to high temperatures 

and low durability. It is clear that the advantages outweigh the disadvantages and in the case 

of the latter, it is possible to find remedies based on the chemical treatments of the fibres and 
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their surfaces. In the following table, Table 1.2, physical data related to the typical reinforcing 

fibres, both vegetable and synthetic, are shown. 

Table 1.2 Physical data of the most important fibres for composites (Mohanty 

et al., 2005) 

Fiber Density 

[g/cm
3
] 

Diameter 

[μm] 

Tensile 

strength 

[MPa] 

Young’s 

Modulus 

[GPa] 

Elongation 

at break 

[%] 

Flax 1.5 40-600 345-1500 27.6 2.7-3.2 

Hemp 1.47 25-500 690 70 1.6 

Jute 1.3-1.49 25-200 393-800 13-26.5 1.16-1.5 

Kenaf - - 930 53 1.6 

Ramie 1.55 - 400-938 61.4-128 1.2-3.8 

Nettle - - 650 38 1.7 

Sisal 1.45 50-200 468-700 9.4-22 3-7 

PALF - 20-80 413-1627 34.5-82.5 1.6 

Abaca - - 430-760 - - 

Oil Palm 

EFB 

0.7-1.55 150-500 248 3.2 25 

Oil palm 

mesocarp 

- - 80 0.5 17 

Cotton 1.5-1.6 12-38 287-800 5.5-12.6 7-8 

Coir 1.15-1.46 100-460 131-220 4-6 15-40 

E-glass 2.55 <17 3400 73 2.5 

Kevlar 1.44 - 3000 60 2.5-3.7 

Carbon 1.78 5-7 3400-4800 240-425 1.4-1.8 

 

In summary, the mechanical properties of plant fibres are generally lower than those of 

synthetic origin. The strength and tensile modulus of natural fibres are less than those of 

synthetic fibres, but the difference between the two categories of fibres is attenuated if the 

mechanical properties are factored to the density. 

1.3 Applications of natural fibres 

The use of natural fibres is not new. Before man-made synthetic fibres, the only alternative 

for reinforcing composite materials was in vegetable or mineral fibres, and the associated 

technologies were quite advanced (Brown, 1947). The driving force for the use of this type of 

fibre, however, has changed. It has gone from having a purely technical purpose to having 
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both technical and environmental purpose (Müssig, 2010). In the past, natural fibres have 

been used in various applications; from shellac compounded by wood flour in the field of 

photography during the 1850s, to the use of flax fibre reinforced phenolic resin for airscrews 

in aeronautics in the 1930s (McMullen, 1984). Further, from fibre-reinforced soy-protein 

plastic discovered by Henry Ford in 1941 used in a prototype car (Materials,2010), to the 

monocoque construction of Trabant which includes the bonnet, the roof, the wings and the 

doors made by a thermosetting phenolic resin reinforced with cotton fibres, in 1958, in the 

automotive industry. Nowadays, composite materials reinforced with natural fibres are widely 

used in the construction industry and in the automotive field.  

 

 

Figure 1.4 Usage of natural fibres in the automotive industry in Germany. Utilization in 

thermoplast (red) and thermoset (blue) (Nova-Institut, Germany) 

The automotive industry is one of the most avid users of natural fibre composites designed 

especially for indoor applications, such as doors panels, seats, covers, hat rack, dashboards, 

brake pads and windshields. The DEFRA (Department of Environment, Food and Rural 

Affairs) of 2002, expects a growth in the use of natural fibres for automotive components, of 

about 54% per year. In the U.S. about 1.5 million vehicles are using natural plant fibres, such 

as jute, hemp and kenaf, to reinforce polymer matrices (Alves et al., 2010). Further evidence 

for this comes from the chart above which shows the trend in the use of natural fibres in the 

automotive industry in Germany (Figure 1.4). 
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The driving force for the automotive industry towards using natural fibres is mainly due to 

their low cost and their low density. The low cost includes the acquisition of raw materials 

and the disposal of the product at the end of its life. In fact, they can be easily recycled or 

used as fuel. In the U.S. the number of landfills for the disposal of waste produced by the car 

industry has been reduced from 8000 to 2314 over a 10-year period (1988-1998) (Anil et al., 

2003). A comparative LCA study, conducted by the authors Joshi et al. (2004), shows that, at 

the same performance level, natural fibres reinforced composites have higher fibre content 

than glass fibre reinforced composites, which reduces the cost of the polymeric matrix and the 

amount of pollutants at the end of the life-cycle. The low weight furthermore ensures a 

significant reduction of the fuel consumption (Mohanty et al., 2005).  

Directive 2000/53/EC on “End of Life Vehicles” (ELVs), became law in 2000. The purpose 

of this directive is the reduction of waste arising from ELVs and the increasing of the 

recovery of the vehicle. This law set the year 2005 as the deadline for achieving the objective 

of recycling 85% of the weight of the vehicle. This percentage was increased to 95% for 2015 

(Reuter et al., 2006). The most practical way to work towards the legislation is to use thermo-

chemical treatments, such as pyrolysis or gasification, in order to reduce the environmental 

impact of solid waste and to establish a new source of energy. This new energy source results 

from the decomposition of organic material. Another method is to employ innovative 

recycling concepts and renewable raw materials based on natural compounds (Srogi, 2008). 

The first companies that lead the development of natural fibres in automotive components are 

German, such as Audi, BMW, Mercedes-Benz and Daimler Chrysler. Nevertheless, now 

virtually every automobile industry develops and inserts natural based composites inside their 

vehicles (Mohanty et al., 2005). In 1996, Mercedes-Benz included, in its E-Class, many 

components made from natural fibres, such as an epoxy resin reinforced with jute fibres for 

door panels, in 2000, Audi launched the A2 equipped with door trim panels made of 

polyurethane reinforced with flax and sisal fibres and, since 2003, BMW uses epoxy resin 

impregnated composites with a content of natural fibres, such as flax and hemp, by 70%. 

Recently, consideration is being made into the use of these materials in outdoor applications. 

In 2004, Daimler Chrysler replaced the glass fibres with plant fibres of abaca to manufacture 

spare tyres for Mercedes-Benz A-Class and, in 2008, Lotus has succeeded in replacing the 

same synthetic fibre by hemp fibre to make lighter body parts (Koronis et al., 2007). In Table 

1.3, other examples of automotive manufacturers utilising natural fibres are shown. 
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Table 1.3 Current well-established applications of natural fibres in 

automotive vehicles (Mohanty et al., 2005) 

 

Automotive manufacturer Model and application 

Audi A2, A3, A4, A4 Avant, A6, A8: Seat back, 

side and back door panel, boot lining, hat 

rack, space tire lining 

BMW 3, 5 and 7 series and others: door panels, 

headliner panel, boot lining, seat back 

Daimler/Chrysler A, C, E, S class: door panels, 

windshield/dashboard,business table, piller 

cover panel. A class, Travego bus: exterior 

under body protection trim. M class: 

instrumental panel (now in S class: 27 parts 

manufactured from bio fibres, weight 43 kg) 

Fiat Punto, Brava, Marea, Alfa Romeo 146, 156 

Ford Mondeo CD 162, Focus: door panels, B-

piller, boot liner 

Opel Astra, Vectra, Zafira: headliner panel, door 

panels, pillar cover panel, instrumental panel 

Peugeot New model 406 

Renault Clio 

Rover Rover 2000 and others: insulation, rear 

storage shelf/panel 

Saab Door panels 

SEAT Door panels, seat back 

Volkswagen Golf 4, Passat Variant, Bora: door panel, seat 

back, boot lid finish panel, boot liner 

Volvo C70, V70 

Mitsubishi Space star: door panels. Colt: instrumental 

panels 

 

As said previously, the market of natural fibre composites is not confined to the automotive 

industry, but fits comfortably into various sectors. The numerous applications, in which the 

natural fibres are used nowadays, are summarised in Figure 1.5. 
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Figure 1.5 Promising nontextile applications of blast fibres (Mohanty et al., 2005) 

1.4 Flax fibres 

The scientific name of flax is Linum usitatissimum. Flax is a natural composite fibre formed 

mainly of cellulose and lignin (Müssig, 2010) and it is categorised as vegetable bast fibres 

(Stillfried, 2012). In Table 1.4 is shown the chemical composition of flax fibres as reported by 

different authors. 

Table 1.4 Chemical composition of flax fibres (Yan et al., 2013) 

Cellulose 

[%] 

Hemi-

cellulose [%] 

Pectin 

[%] 

Lignin 

[%] 

Wax 

[%] 

Moisture 

content [wt.%] 

Authors 

64.1 16.7 1.8 2.0 1.5 10.0 (Lewin and Pearce, 1998) 

67 11 - 2.0 - - (Lilholt et al., 1999) 

73.8 13.7 - 2.9 - 7.9 (Khalil et al., 2000) 

65 - - 2.5 - - (Troger et al., 1998) 

62-72 18.6-20.6 2.3 2-5 1.5-1.7 8-12 (Dittenber and G., 2012) 

71-75 18.6-20.6 2.2 2.2 1.7 10.0 (Cristaldi et al., 2010) 



Composite materials and composites reinforced with natural fibres 17 

This ligno-cellulosic fibre is one of the most promising alternatives to replace glass fibres as 

reinforcement in engineering composites (Zafeiropoulos et al., 2001). The high content of 

crystalline cellulose makes it strong and stiff. Its incorporation into composites results in an 

improvement of properties, such as, the stiffness, the tensile strength, the light weight, the 

manageability and the anisotropy (Baiardo et al., 2004, Baley et al., 2006). The following 

Table 1.5 shows that the physical and mechanical properties of flax fibres are comparable to 

those of glass fibres. 

Table 1.5 Physical properties, tensile properties and specific tensile 

properties of flax and glass fibres (Bos et al., 2004, Hull and Clyne, 1996) 

Property E-glass Flax fibres 

Diameter [μm] 8-14 10-80 

Density [g/cm
3
] 2.56 1.4 

E-modulus [GPa] 76 50-70 

Tensile strength [GPa] 1.4-2.5 0.5-1.5 

Elongation to fracture [%] 1.8-3.2 2-3 

Specific E-modulus  

[GPa per g/cm
3
] 

30 36-50 

Specific tensile strength 

[GPa per g/cm
3
] 

0.5-1 0.4-1.1 

 

In Table 1.6, are shown the results of a study from LCA-comparative concerning non-

renewable resources required for their production. This table compares flax and glass fibre 

properties. It can be seen that the energy required for the cultivation, the extraction and the 

production of flax fibres is about 5 times lower than for the manufacture of glass fibres, which 

is heavily dependent on non-renewable oil-based energy sources. As a consequence of this, in 

the case of glass fibres, the emissions of greenhouse gases will be significantly higher (Joshi 

et al., 2004). The low density, the low price, the low amount of energy required, the 

biodegradability and the ease of processing flax has led to a continuous growth in use, starting 

from 1990, in larger volume engineering markets (Celli, 2012). Moreover, at the end of the 

life-cycle of flax fibres energy recovery is possible to since they have a good calorific value 

(Stamboulis et al., 2001). Globally 350k tonnes of flax are produced every year (Scheifele et 

al., 2001) and according to a report of the Flax Council of Canada (2012), the demand of flax 

fibres in Europe is increasing by more than 50% every year. 

Given the increase in the prices of the oil, considering the energy consumption and taking into 

account new environmental standards, traditional materials can no longer meet market 

demands. For this reason, the future for flax fibre reinforced composites is promising and 



18 Chapter 1 

thorough research will be necessary for the optimisation of each single process step; from 

plant breeding to the technologies associated in obtaining the final product. 

Table 1.6 Non-renewable energies requirements for the manufacture of glass 

and flax fibres (Joshi et al., 2004) 

Nonrenewable energy requirements [MJ/kg] 

Glass fibre mat Flax fibre mat 

Raw materials                                         1.7 Seed production                                      0.05 

Mixture                                                  1.0 Fertilizers                                                1.0 

Transport                                                1.6 Transport                                                0.9 

Melting                                                 21.5 Cultivation                                              2.0 

Spinning                                                 5.9 Fibre separation                                          2.7 

Mat production                                      23.0 Mat production                                        2.9 

Total                                                    54.7 Total                                                     9.55 
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Surface treatments and biomineralisation 

The purpose of this chapter is to provide an initial overview of the main surface treatments 

that are carried out on natural fibers to ensure a better fit to the matrix. Following this are 

subsections covering concepts related to biomimetics and biomineralisation. The final 

argument concerns the phenomenon of nucleation and growth that occurs in the process of 

biomineralisation. 

2.1 Reinforcement – matrix interface in composites based on 

natural fibres and characterisation methods 

The interface plays a key role as regards the load bearing and fracture behaviour of a fibre 

reinforced composite. Excellent properties for both reinforcement and matrix are not 

sufficient for a wholly functioning composite. In order to increase the mechanical 

performance of the matrix with the reinforcements, specific features of the interface should be 

optimised. In fact, external loads are transferred from the matrix to the reinforcements via the 

interface and a weak interface will result in a very weak composite. Generally, strongly 

bonded fibre/matrix interfaces give high strength and stiffness to the composite, , while weak 

interfaces ensure a high resistance to reinforcement fracture, but exhibit low properties of 

composite strength and stiffness (American Society of Testing and Materials, 1969). The 

problem of weak adhesion may arise when a hydrophobic polymeric matrix is reinforced by 

hydrophilic natural fibres. The result is poor wetting that creates poor adhesion of the fibres to 

polymeric materials as well as a high affinity to moisture. These are the biggest drawbacks to 

the use of natural fibres in composites (Gound, 2011). Surface treatments are often applied to 

fibres to lower the interfacial energy. This means that treatments will decrease interfacial 

tension at the surfaces (Gauthier et al., 1998). The interface can also form a real distinct phase 

inside the composite; in some cases this phase is characterised by only few atoms, while in 

others the interphase can be considerably thicker. In this way, between the matrix and the 

reinforcement there is a discontinuity in both physical and chemical properties and the 

characteristics of the interface is determined by the treatment applied (Matthews and 

Rawlings, 2000).  

During composite manufacture, there is a stage in which the matrix is in a liquid state, or in a 

viscous state, so it can flow onto and wet the reinforcements. Wettability is the main concept 
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during this stage. Wettability defines the ability of a liquid to spread over a solid surface and 

the degree of wettability is determined by a force balance between adhesive forces (which 

depend on the interactions between solid particles and liquid particles) and cohesive forces 

(they are attractive forces between particles of the liquid which tend to prevent the spreading). 

Wettability between a liquid and a solid surface can occur in a gas medium, or in an 

immiscible liquid medium. Wettability is completely described by the contact angle that is the 

angle made by the tangent to the interface liquid/fluid and the tangent to the solid surface. 

Good wettability is described by a contact angle smaller than 90⁰ and it means that the liquid 

wets the solid, while a contact angle wider than 90⁰ describes a situation in which the liquid 

does not wet the solid and it translates in poor wettability. In the case of water, good 

wettability is hydrophilicity while poor wettability is hydrophobicity. From a thermodynamic 

point of view, good wettability occurs when the interfacial tension of the wetting substance is 

lower than that of the substrate. Figure 2.1 shows a drop of liquid on a dry surface making a 

contact angle (Matthews and Rawlings, 2000). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1 A liquid over a solid in equilibrium with a contact angle θ 

All surfaces have an associated energy and the surface tension quantifies this energy. The 

surface tension is the ratio between the work required to obtain an infinitesimal increase of 

area and the infinitesimal increase of area itself, hence the unit of measure is referred to as the 

enery per unit area. The surface tension of solid-gas, liquid-gas and solid-liquid interfaces are 

γSG ,γLG, γSL, respectively. For each increase of area or interface, dA, between solid and liquid, 

an addition of energy is required for the new solid-liquid and liquid-gas interfaces. Hence, the 

following: 

 

                                                                      (2.1) 
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is the energy required for the formation of the new solid-liquid and liquid-gas interfaces. The 

energy recovery due to the decrease of solid-gas interface is given by: 

 

                                                                      (2.2) 

 

In order to have a spontaneous spreading of the liquid on a solid surface: 

 

                                                                   (2.3) 

 

and dividing by dA, (2.3) gives (2.4): 

 

                                                                  (2.4) 

 

The Spreading Coefficient SC, can be defined by the following equation: 

 

                                                                (2.5) 

 

SC has to be positive for wetting. It is worth mentioning the Young’s equation (2.6) is able to 

describe the balance of forces that occurs inside and outside the wet drop on a dry solid 

surface; 

 

                                                                 (2.6) 

 

where the contact angle is given by Equation (2.7): 

 

          
         

   
                                                  (2.7) 

 

The bond between the matrix and the reinforcement occurs once the matrix is in contact with 

the reinforcement. The main bonds are mechanical, electrostatic, chemical and reactive. 

Moreover, they can coexist or change, from one to another, during the manufacturing stages 

of the composite. 

Mechanical bonding consists of the interlocking of two surfaces if there exists an appropriate 

surface roughness. This kind of bonding is not usually adequate for technical applications, 

though it provides good resistance to shear. Electrostatic bonding occurs when the surfaces 

have opposite charges. Since this is a short range bond, it is affected by the intimacy of 

contact between the matrix and the reinforcement. The chemical bond is characterised by real 

chemical bonds between different groups existing both in the matrix and in the reinforcement. 
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On a surface there are compatible groups required for forming the appropriate bonds with 

groups available on the opposite surface. Often, dressing the fibre with coupling agents is 

necessary. For example, silanes are widely used as coupling agents for hydrophilic natural 

fibres so as to ensure good bonding with the non-polar and relatively hydrophobic polymeric 

matrix (Abdelmouleh et al., 2007). Interdiffusion, or reactive bonding, takes place when 

atoms or molecules from both the matrix and the reinforcement interdiffuse mutually at the 

interface, resulting in molecular entanglements in the case of polymers. More generally, 

reactive bonding depends on the number of molecules involved per unit area at the interface 

and on the thickness over which the molecules have diffused. This type of bond is frequent in 

composites made by metal or ceramic matrix composites because they are processed under 

high temperatures and the diffusion coefficient is affected by temperature. In particular, the 

diffusion coefficient (Dd) increases exponentially with the temperature according to the 

following Arrhenius-type equation (2.8)(Matthews and Rawling, 2000): 

 

            
  

  
                                                  (2.8) 

 

where D0 is the pre-exponential factor independent of temperature and Qd is the activation 

energy. 

It is now important to write a general overview of the physical and chemical properties of 

natural fibres to better understand the significance of each treatment. It must be pointed out 

that both the physical and chemical properties of natural fibres are highly variable as a 

function of growth location, the conditions during growth and the extraction methods. All this 

affects the fraction of cellulose, the degree of polymerisation, the orientation of filaments, the 

crystallinity and the geometrical properties (such as diameter, specific area and aspect ratio). 

However, the properties can be changed by means of appropriate treatments. For example, a 

progressive increase in the degree of crystallinity can be achieved by eliminating less 

organised regions through dissolution with chemicals or under attack of microorganisms. 

Using this method, it is possible to obtain a 100% degree of crystallinity.  

The main component of natural fibres is cellulose. It is made up of anhydro-D-glucose repeat 

units which have three hydroxyl groups (OH) that are able to form both intermolecular and 

intramolecular hydrogen bonds. Hence they have a hydrophylic nature. It has to be stressed 

that the characteristic of hydrophilicity is found both on the surfaces and in the bulk of natural 

fibres. Cellulose swells in polar media, such as water, dimethylformaldeide and 

dimethylsulfoxyde through its structural organisation, which allows for the entrapment of 

molecules, and because of its hydroxyl groups, which form hydrogen bonds with water 

molecules. Non-polar media, such as benzene, toluene and aliphatic hydrocarbons encourage 

hydroxyl groups into the structure that is full of holes (Gauthier et al., 1998). The amount of 
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water adsorbed into the fibre depends on an equilibrium between its concentration inside the 

fibre and its partial pressure in the medium. Water absorption is affected by the purity of the 

cellulose (untreated fibres can absorb at least twice as much water as treated fibres) and by the 

degree of crystallinity. This is because only OH groups from the amorphous regions are 

available to interact with water. The crystalline regions are rigid and already electrostatically 

bonded, making it harder for them to readily interact with water (Gauthier et al., 1998). 

Methods used for the treatment of natural fibres are of the physical, physico-chemical and 

chemical type, but the aims of treatments are usually the same; (1) the removal of 

contaminants from the surface and (2) improved  properties of adhesion between the matrix 

and reinforcement in the composite. Physical treatments are typically used to separate single 

filaments in order to raise the reinforcement surface area and thus increase the adhesion of 

fibres to hydrophobic matrices. Methods for improving interfacial adhesion include; 

ultrasound, ultraviolet and electrical discharge methods, such as corona and cold plasma, 

which alter the polarity of the natural fibre surface (Mukhopadhyay and Fangueiro, 2009). 

Cold plasma is one of the most interesting modern technologies. It is generated by applying a 

potential difference between two electrodes placed in a chamber containing a rarefied gas. 

The applied cold plasma cleans the surface to promote adhesion of coupling agents, and 

ablates or etches to make a rougher surface, which in turn increases the interlocking, the 

crosslinking or branching of molecules, subsequently strengthening the surface layer. The 

surface can also be modified by means of functional groups or free radicals that are able to 

interact with the functional groups at the matrix interface (Mukhopadhyay and Fangueiro, 

2009). Thanks to the low operating temperature used in the cold plasma method, surface 

treatment leaves the bulk properties generally unchanged. For these reasons, this method is 

particularly suitable for the treatment of temperature sensitive materials, such as synthetic 

polymers and natural fibres. Moreover, this is a clean treatment because it does not need 

solvents, it uses a low concentration of reactants and it works under atmospheric pressure 

(Zhou et al., 2011). The gases used to increase the hydrophobicity of natural fibres may be 

sulphur-hexafluoride, or more generally, fluorocarbon-based gas (Hochart et al., 1999) and 

hexamethyldisiloxane (Vautrin-UI et al., 2000). 

Physico-chemical treatments include surface fibrillation, also called mercerisation, and other 

methods applied during the manufacturing of the composite (Mohanty et al., 2005). 

Amongst the various processing treatments available, the use of enzymes during manufacture 

of natural fibres leads to the removal of organic compounds or pollutants (Islam, 2013). This 

technology has many benefits including; cost reduction, the improvement of the product 

quality and the energy and water saving benefits (Bledzki et al., 2010). 

Coupling agents are typically used in chemical treatments of natural fibres. Coupling agents 

are substances, commonly polymers, which are added in low concentrations as a superficial 

treatment to make the fibres more compatible in composites applications. They have the 
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chemical ability to interact with both the hydroxyl groups (OH) of the cellulosic fibre and 

with functional groups at the matrix interface, creating thus, molecular continuity across the 

entire interfacial regions of the composite (Mohanty et al., 2005). The bonding is typically 

covalent, secondary (such as hydrogen bonding and van der Waals forces), polymer molecular 

entanglements and mechanical interlocking. Mechanical interlocking is itself often due to the 

change in the roughness and structure of the fibre surface (Ashori, 2008). In addition, the use 

of coupling agents minimises the sensitivity of the fibre to moisture. This occurs as the 

coupling agents limit the presence of hydroxyl groups. The most commonly used coupling 

agents in natural fibre composites in a polymeric matrix are copolymers containing maleic 

anhydride (anhydride groups may react with hydroxyl groups of the cellulose forming ester 

bonds, while the other end of the molecule may entangle with the polymeric resin), sodium 

hydroxide, acetic acid, acrylic acid, peroxide potassium permanganate, benzoyl chloride, 

silanes, isocyanates and titanates. A few chemical methods are described below. 

Silanes are multifunctional molecules that are able to make a bridge between cellulose 

molecules via hydrogen bonds, and within the polymer via stable covalent bonds (Maya and 

Anandjiwala, 2008). The general chemical formula of silane is X3SiR and when chosing the 

functional groups X and R, each combination of cellulose/resin should be evaluated. In 

particular the chemical properties of both surfaces have to be known. R is the organic 

functional group that reacts with the polymer, while X is the group that interacts with the 

cellulose. It is important that X groups are able to hydrolyse in aqueous solution in order to 

form more reactive silanol groups that can form hydrogen bonds with the hydroxyl groups of 

the cellulose. Silanol molecules have a high affinity for each other; during the hydrolysis 

process, silanol molecules interact with each other and start forming polysiloxane oligomers 

of SiOSi bonds. This step should be minimised to leave silanols free for adsorption to the 

natural fibre. Once silanes molecules are hydrolised, the next stage involves adsorption on the 

fibre surface. Here, the reactive monomers and oligomers react with the hydroxyl groups by 

means of hydrogen bonds. Finally, when heated surface grafting may be possible, where 

hydrogen bonds between silanols and hydroxyl groups are replaced by reversible covalent 

SiOC bonds. The competition of alkoxy hydrolysis and silanol condensation with hydroxyl 

groups of the natural fibre depends on the temperature, the solvent and the concentration of 

silanes (Xie et al., 2010). A schematic of the mechanism is presented in Figure 2.2. 

Among the different types of silanes, aminosilanes are the most commonly used as coupling 

agents for both thermoplastic and thermoset polymeric matrices (Xie et al., 2010). 
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Isocyanates are one of the more promising coupling agents for thermoplastic matrices 

reinforced by natural fibres and in particular, the use of poly(methylene)-poly(phenyl) 

isocyanate (PMPPIC) has shown the best results in respect of mechanical properties. 

 

Figure 2.2 Schematic representation of the mechanism of interaction of silane with the 

natural fibre (Mohanty et al., 2005) 
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This improvement was found to be due to the strong covalent bonds formed with the hydroxyl 

groups within the cellulose (Pickering and Ji, 2004). The isocyanate group –N=C=O is highly 

reactive with –OH groups and can form the urethane group shown in Figure 2.3. 

It is important to take into account that the presence of moisture is a big disadvantage for the 

isocyanate reaction. Isocyanate groups tend to react more readily with water than with the 

hydroxyl groups of cellulose (Jayamol et al., 2001). 

 

 
Figure 2.3 Formation of the urethane group between cellulosic fibre and isocyanate 

(Jayamol et al., 2001) 

Sodium hydroxide plays an important role in the formation of charged intermediate species on 

the fibre surface, allowing for the nucleophilic addition of compounds, such as alkyl halides, 

epoxides, benzoyl groups, acrylonitrile and formaldeide, in the reactions of etherification and 

benzoylation. Concerning the latter reaction, the inclusion of the benzoyl group (C6H5C=O) 

into the fibre promotes hydrophobic behaviour. Benzoyl chloride is used the most. Figure 2.4 

shows the mechanisms of these reactions (Susheel et al., 2009). 

 

                             O                            (a) 

 

                                                        (b) 

 

 
Figure 2.4 Alkaline pre-treatment for the activation of the cellulose hydroxyl groups (a) 

and reaction schemes for the etherification (b) and benzoylation (c) (Susheel et al., 2009) 

Acetylation of natural fibres is a treatment resulting in higher dimensional stability and 

stabilisation against moisture. These characteristics arise through the substitution of 

hydrophilic hydroxyl groups with acetyl groups from acetic anhydride in acetic acid 

(CH3COOH) (Susheel et al., 2009). The mechanism of the reaction is presented in Figure 2.5. 
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Figure 2.5 Acetylation of natural fibre with acetic anhydride (Sreekala et al., 2000) 

The use of organic peroxides is another common treatment used to inhibit natural fibre 

hydrophilicity by removing hydroxyl groups from the fibre. This method is particularly useful 

due to its easy processability resulting from the easy decomposition of peroxides into free 

radicals (RO∙), which are capable of reacting with both hydrogen groups of the matrix and the 

hydroxyl groups of the natural fibre. The reactions are shown in Figure 2.6. 

 

                                                                   (a) 

 

                                                              (b) 

 
Figure 2.6 The mechanism of the peroxide treatment of the cellulose; decomposition of the 

peroxide (a) and reaction between the free radical and the cellulose of the fibre (b) 

(Susheel et al., 2009) 

Chemical treatments that make the natural fibre surface more compatible to a hydrophobic 

matrix can be applied using different methods to the fibre surface and/or by modifying the 

cell wall. The spraying method forms a surface coating, but the inside of the cell wall is left 

untreated. If deemed necessary to modify the fibre surface and the cell walls, the 

impregnation method may be used (Xie et al., 2010). The impregnation method is a surface 

and bulking treatment that considerably improves the properties of the composite more than 

surface methods. However, it has disadvantages including; high consumption of energy 

during the drying process, difficulty in controlling the molecular size to allow molecules to 

enter the cellulose structure and, in the case of short fibres, the problem of fibres aggregation 

that hinders dispersion within the cell walls (Xie et al., 2010). 

An example of surface and bulking treatment is the impregnation of natural fibres in a liquid 

monomer; these monomers polymerise in-situ by the administration of heat, radiation or 

through the presence of a catalyst (Jayamol et al., 2001). 

Another method of surface chemical modification is termed graft polymerisation of natural 

fibres (already covered in part in the section on silanes coupling agents). Grafting can be 

carried out before compounding a composite, whereby coupling agents are added by means of 

solution or vapour, or, during compounding at the mixing temperature of the matrix. The 

efficiency of grafting depends on the type of the initiator, on the monomer to be grafted and 

on the operating conditions. The degree of grafting can be changed by varying the ratio of 

monomer/cellulose, the reaction time and the concentration of the initiator, though it is 
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important to take into account the accessibility of cellulose free radicals to the monomers 

(only amorphous regions are available for the diffusion of monomers), the life-time of free 

radicals formed on the cellulose and the cellulose-monomer interaction. The first stage of the 

grafting process involves the activation of free radicals on the cellulose. The activation of 

radicals occurs in several ways; by physical means, chemical means (such as 

dehydrogenation, depolymerisation or the formation of an unstable metal complex), radiative 

means (through the administration of a high-energy ionising radiation) and by enzymatic 

means. The second and final stage involves treatment with solution or vapour from 

monomers; such as vinyl, acrylonitrile, methyl methacrylate or styrene, compatible with the 

matrix. The resulting copolymer has suitable properties both for increasing interfacial 

adhesion and for reducing the affinity of the natural fibre to moisture (Jayamol et al., 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.7 Pull-out test principle and corresponding graph (Matthews and Rawlings, 

2000) 
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Several methods can be used for micromechanical characterisation as a means of determining 

the adhesion strength of fibre in a polymer matrix. The test methods for assessing the 

adhesion between a single fibre and the matrix are the most common. These tests are based on 

the calculation of the maximum value of stress transferred from the matrix to the fibre. The 

presence at the same time of many factors, such as adhesive forces, cohesive forces and the 

properties of the interface, makes these tests difficult to carry out. The complexity of the 

fibre-matrix interphase is demonstrated by the large number of the mechanical 

characterisation methods available and their variations adapted to each individual application 

(Herrera-Franco and Drzal, 1992). Below, the most common single fibre-based methods are 

described. Other characterisation tests have been reported in (Narkis et al., 1988, Outwater 

and Murphy, 1969, Wu, 1989). 

The pull-out method involves testing a single fibre partially embedded into a matrix block 

whereupon the free portion of the fibre is axially pulled out of the matrix. In Figure 2.7 a 

schematic representation of the pull-out test is shown and below the resulting graph that 

includes the debonding phase and the pull-out phase. 

The length of the embedded fibre, its diameter and the force/speed applied are variables which 

affect the value of the interfacial shear strength. The following equation (2.9) provides a 

model to calculate the arithmetic mean of the interfacial shear strength. The assumption 

behind this equation is that the shear stress is uniformly distributed throughout the embedded 

fibre surface. 

 

  
 

   
                                                                 (2.9) 

 

In (2.9), F is the maximum load measured prior to debonding of the fibre, d is the diameter of 

the fibre and l is the fibre embeddment length (Matthews and Rawlings, 2000). 

When a single fibre is fully embedded in a matrix block, single-fibre fragmentation testing is 

possible. In this test, the fibre is subjected to a tensile load and the transfer of the stress from 

the matrix to the fibre depends on the strength of bonding between them. The fibre is 

subdivided into a number of fragments (the energy is dissipated at the expense of the 

deformation and breakage), which become smaller during the loading process until the 

lengths of fibre fragments are so small that the tensile stresses induced in the fibre can no 

longer reach the fibre tensile strength. In other words, the lengths of the fragments do not 

allow transfer of the tensile strength to the fibre (Mohanty et al., 2005). The Figure 2.8 below 

shows the loading process. 
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Figure 2.8 Schematic representation of the single-fibre fragmentation method 

This final length, also called critical length, is the indirect variable used in the calculation of 

an interfacial shear stress. The shear stress is defined according to Equation (2.10) developed 

by Kelly and Tyson (1965): 

 

  
  

 
 

 

  
                                                             (2.10) 

 

where σf and lc are the maximum tensile stress of the fibre and the critical length, respectively, 

and d is the diameter of the fibre. The statistical distribution of the fibre fragments required to 

carry out the value of the critical length, fits the Weibull Distribution. For this reason the 

equation above has been modified including Weibull´s parameters as (Drzal et al., 1980): 

 

  
  

   
    

 

 
                                                      (2.11) 

 

in which, α and β are the shape and the scale parameters of the Weibull distribution, 

respectively, and Γ is the gamma function (Mohanty et al., 2005). 

Micro or nano-indentation testing is another common method for assessing the strength of 

interfacial bonding. The test works at the cross sectional area; the sample must thus have an 
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adequate thickness and the surface should be polished to a finish suitable for microscopic 

examination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Schematic representation of the micro-indentation method (Matthews and 

Rawlings, 2000) 

Considering Figure 2.9, it can be seen that the indentor is loaded axially at the centre of the 

cross section of the fibre and, depending on the force applied, the fibre is pressed down and 

forced to slide along the fibre-matrix interface. Considering a distance u from the original 

point at which the area of the fibre, normal to the axis of the indenter, lies in the plane of the 

surrounding matrix surface, the following equation (2.12) can be used for the calculation of 

the interfacial shear stress. 

 

  
  

       
                                                           (2.12) 

 

where F and Ef are the force applied and the Young´s modulus of the fibre, respectively, R is 

the radius of the fibre and u is the sliding distance. For a standard pyramidal indentator, the 

distance u can be calculated as: 

 

                                                                (2.13) 
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where b is half the diagonal length of the indentation on the matrix surrounding the fibre, 

while a is half the diagonal of the indentation on the fibre (Matthews and Rawlings, 2000). 

2.2 Biomimetics 

It is well known that synthetic chemistry, which includes an enormous knowledge reflecting 

reaction know-how, has been and still has very successful in the field of materials 

engineering. Nevertheless, the chemistry of biological systems is leading the development of 

numerous research endeavours in various sectors of engineering. These include processes and 

systems similar to the synthetic chemistry, but at higher levels of organisation.  

The recent interests that researchers have on biomaterials produced by means of biological 

processes, is due to the presence of several factors including, environmental regulations and 

increases in the cost of energy and oil. Moreover, biological materials have attractive and 

complex structures that result in an excellent combination of toughness, high elastic modulus 

and high strength. Whilst traditional synthetic composites tend to decrease in toughness with 

an increase of the elastic modulus (Mann, 1996), biological composites are able to increase 

toughness while maintaining stable properties of stiffness. The concept of using biological 

systems as models for the design of engineering materials is continuously rising and this can 

be evidenced by the number of publications. Between the years 2000 and 2005, there have 

been 111822 publications made on biological materials and 2553 on biological composites. 

These data can be comparable to the considerably lower number of publications on the same 

topics between 1950 and 1999 (Brown, 2005). A new field of research, called Biomimetics, 

has emerged as a result of the more in-depth knowledge accrued on biological structures and 

function. Biomimetics is an interdisciplinary collaboration between chemists, engineers, 

biologist, material scientists and nanotechnologists with the ultimate aim of studying 

biological structures and their physical and chemical properties (Sarikaya and Aksay, 1995), 

in order to incorporate their technology into new materials and products (Heuer et al., 1992). 

In other words, biomimetics seeks to integrate biological features from unique functional 

biostructures, into the design and the synthesis of artificial systems (Romano, 2012). 

Applications for biomimetics, as enhanced composites materials, can be found in the diverse 

fields of engineering (Kokubo et al., 1999, Thummalapalli and Donaldson, 2012), medicine 

(Petrini et al., 2013, Lu et al., 2013, Ma, 2008, Bitton et al., 2009), nanotechnology (Hilt, 

2004, Peppas, 2004) and robotics (Wang et al., 2010, Shahinpoor, 2003). It is worth 

mentioning a classical example of inspiration from nature for the development of bioinspired 

engineering products; the invention of Velcro (Vincent, 2006). Velcro, or hook and loop 

fastener, was developed by the Swiss engineer George de Mestral, in 1948, and was inspired 

by the strong interlocking properties of the seeds of the burdock plant, which uses hooks to 

catch onto anything with a closed loop. 
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In the field of composite materials, inspiration may come from the unique mechanical 

characteristics of materials existing in nature. Shells and teeth are good examples, because 

their high tensile strength is comparable to engineering ceramics, such as silicon carbide and 

alumina.  In Table 2.1, the mechanical properties of a few selected synthetic and biological 

materials are presented. In this table, it can be noted that the mechanical properties of the 

femur bone of a bovine are similar, or higher to that of short glass fibre reinforced 

polyethylene terephtalate and to glass bead reinforced polybutylene terephtalate (Mann, 

1996). 

Table 2.1 The mechanical properties of synthetic and biological materials 

(Mann, 1996) 

Material Tensile Strength 

[MPa] 

Tensile Modulus 

[GPa] 

Work of fracture 

[J/m
2
] 

Continuous fibre 

PEEK/AS4, 

perpendicular 

73 8.3 - 

Polybutylene 

terephthalate/Glass 

beads 

95 4.9 - 

Polyethylene 

terephthalate + short 

glass fibre 

165 20 3200 

Bone 220 20 1700 

Dentine 250 12 550 

 

Figure 2.10 provides a qualitative comparison between natural materials and common 

engineering materials correlating elastic modulus to density. 

Therefore, synthetic composite materials can be mechanically improved by designing their 

microarchitectures in mimicry of designs found in many biological materials. Researchers are 

trying to design materials, or hybrid materials, with the same characteristics of biostructures 

and this would provide benefits not only from a technological perspective, but also from an 

economic perspective.  This is because many of the raw materials involved in the manufacture 

of biomimetic products can be sought directly from nature itself. There is also a potential 

environmental benefit, since biological processes operate in a closed-cycle which eliminates 

problems associated with waste and pollution. 
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Figure 2.10 Elastic modulus/density relationships for natural materials and engineered 

materials (Alam, 2013) 

2.3 Biomineralisation 

Biomineralisation is an extremely complex process through which organisms form minerals. 

The process of biomineralisation causes the conversion of ions in solution to mineralised 

solids through cell activities. Biomineralisation is assumed to be the interaction of the organic 

regions of these organisms with the inorganic components and it allows for the formation of 

specific crystal structures. These are termed ’biominerals’ and contain both mineral and 

organic components making them essentially, composite materials. The organic component 

forms the glue-like matrix which changes the properties of the mineral compound. These 

properties include the phase, the morphology and the growth dynamics. The final properties 

of the natural composite are different from those of the pure mineral (Weiner and Dove, 

2003). The aim in studying biomineralisation is in understanding how organisms are able to 

control a process that allows them desirable properties. There is in fact controllability at the 
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nanoscale on the size of the crystals, on the shape and on the crystallographic orientation. The 

final result is a material with remarkable mechanical properties such as ultra-high strength 

and fracture toughness (Weiner and Dove, 2003). Therefore, a biomineral consists of 

nanometre-sized crystals glued together by a network of organic molecules (proteins, 

polysaccharides and/or lipids) (Zhang et al., 2013), produced by the organism that controls 

the process of biomineralisation. Each single crystal may possess a different morphology if 

compared with its inorganic counterpart. It is reported that calcium carbonate formed by 

biomineralisation processes in abalone sheells is able to increase its fracture energy by almost 

3000 times the equivalent of inorganic calcium carbonate (Massimino, 2010). The organic 

component of the composite releases the mechanical energy by means of a phenomenon 

named weaving. The macromolecules, that constitute the softer fraction of the biomineral, 

spread the external load applied about the entire structure, but at gradually decreasing length 

scales such that there is a significant dissipation of mechanical energy (Fratzl, 2007). The 

final biomineral is a material with the properties of both rigidity and  ductility (Massimino, 

2010). Another important characteristic of biomineralised materials is the ability of resistence 

at the corrosion and abrasion.  

In nature, about 50% of biominerals contain a form of calcium (Lowenstam and Weiner, 

1989), and this can be explained by its function of primary importance in cellular metabolism 

(Lowenstam and Margulis, 1980, Simkiss and Wilbur, 1989, Berridge et al., 1998). In 

particular, calcium carbonate presents itself in different crystalline forms, these being calcite, 

aragonite and vaterite.  Approximately 25% of biominerals include a form of phosphate and 

most of them originate from a controlled mineralisation process. Another widespread 

biomineral is silica, which exists in hydrated form as water is needed for the organic 

component to retain strong bonds to the silica. It should be noted that each category of 

mineral includes at least one hydrated phase and crystalline phases often have a previous 

hydrated form. This is due to the lower energy barrier required for nucleation and growth 

(Weiner and Dove, 2003). 

The nucleation and growth of crystals in aqueous solution requires a certain level of 

supersaturation. It is for this reason that biological systems isolate a determined zone from the 

external environment in order to create the best conditions for biomineralisation. In particular, 

they are able to regulate the flow of matter, ions (usually cations) and components, 

maintaining the constraint of the electroneutrality. In fact, in a solution of electrolytes; cations 

and anions are not independent but rather, the amount of each of them is strictly connected to 

the constraint of electroneutrality in the solution. In particular, if an electrolyte Mν
+
Xν

-
 is 

dissolved in a medium with a high dielectric constant, like water, the dissociation into ν
+ 

positive ions with a charge z
+ 
and ν

- 
negative ions with a charge z

- 
occurs. The following 

equations (2.14) and (2.15), in which charges are shown in a normalised units (z
+
=1 for a 

proton), summarise the concept of electroneutrality (Praustnitz et al., 1999). In particular, 
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(2.14) represents the equilibrium dissociation of an electrolyte and (2.15) the constraint of 

electroneutrality of the solution. 

 

            
      

                                          (2.14) 

 

                                                              (2.15) 

 

Ions involved in the process of biomineralisation may include Na
+
, K

+
, Ca

2+
 Mg

2+
, HCO3

-
, Cl

-
 

and SO4
2-

. Solutions with high ionic strengths have to be studied in terms of ionic activity and 

not in terms of concentration. Hence to define supersaturation an accurate activity coefficient 

model is required. In the study of equilibrium between ions in a solution, it is necessary to 

take into account two important concepts. The first is that inside the solution the dissociation 

forces generate a quantity of particles, or ions, greater than the same solution without these 

forces. This affects the calculation of colligative properties which depend on the number and 

not on the quality of distinct particles that form the solution. The second concept is that 

among this quantity of ions inside the solution, only a certain quantity can participate in a 

determined phenomenon, such as a chemical process or a physico-chemical process. This is 

because some particles are solvated by the solvent which shields them electrically. Therefore, 

the activity a, is the effective concentration in a solution, or rather the actual number of 

particles involved in a phenomenon. The activity of the solute is different with respect to the 

initial analytical concentration and, considering an i-species, they are related by the following 

equation (2.16): 

 

                                                                    (2.16) 

 

where γi and ci are the activity coefficients of the i
th

 species and the concentration of the i
th

 

species, respectively. The ideal electrolytic solution has an activity coefficient equal to 1 for 

each i-species and this can be obtained by a solution with a high level of dilution. In this case, 

ions are too far apart to influence each other. According to the relationship above, if the 

activity coefficient tends to unity, the activity of the i
th

 species tends to the value of the 

concentration of the i
th

 species. The activity coefficient is dependent on the concentration of 

the electrolyte, but at the same concentration, electrolytes containing ions with multiple 

charges affect the activity coefficients of ions more heavily if compared to electrolytes 

containing ions with a single charge (Praustnitz et al., 1999). For this reason, the ionic 

strength of the solution can be introduced by (2.17): 

 

          
 

 
     

                                                  (2.17) 
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where i is the ionic species, mi and zi are the concentrations expressed by molality and the 

charge of the ion. Table 2.2 shows the molality of the main ions present in seawater. 

According to this data, the ionic strength measured is I = 0.72 mol kg
-1 

(Clegg and Whitfield, 

1991). 

Table 2.2 Concentration of major ions in oceanic seawater (Clegg and 

Whitfield, 1991) 

Component Molality [mol/Kg] 

Na
+
 0.486 

Mg
2+

 0.055 

Ca
2+

 0.011 

K
+
 0.010 

Cl
-
 0.566 

S  
   0.029 

 

The charged particles, or ions, interact according to the Coulomb’s law (2.18): 

 

    
      

       
 
                                                       (2.18) 

 

where z
+
 is the charge on the cation and z

-
 is the charge on the anion, r is the distance between 

ions, εr and ε0 are the dielectric constant of the medium (solvent in this case), in which  

charges are immersed, and the dielectric constant of the vacuum, respectively. Given that 

within an electrolyte solution there are both positive and negative ions, it is difficult to 

calculate the activity coefficients of individual ions (Praustnitz et al., 1999). To circumvent 

this conundrum the mean ionic activity coefficient (described by the equation (2.19)), can be 

used: 

 

      
  

   
  

 
 

                                                  (2.19) 

 

where ν = ν+ + ν-. Moreover, defining the mean ionic molality, m±, as: 

 

      
  

   
  

 
 

                                                (2.20) 

 

it is possible to obtain the mean ionic activity, a±, as: 
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                                      (2.21) 

 

where γ±
(m) 

is the molality activity coefficient. Based on the principles of electrostatics, Debye 

and Hückel proposed a semi-empirical relationship (2.22) for the calculation of the activity 

coefficient in aqueous solutions: 

 

    
   

 
               

      
                                              (2.22) 

 

where z+ and z-
 
are charges on ions, I is the ionic strength and A, b are the parameters of 

Debye-Hückel equation. 

Two classes of biomineralisation processes exist; biologically induced mineralisation and 

biologically controlled mineralisation. The difference lies in the degree of biological control. 

Biologically induced mineralisation is characterised by the heterogeneity of the structure, the 

morphology and the particle size. Moreover, the biomineral includes certain amounts of 

impurities. Cell surfaces promote the nucleation and growth of extracellular phases in an open 

environment, instead of in a defined control volume, and the mineral formed is dependent on 

both the organism and the environment. In other words, the same organism in different 

environmental conditions is able to induce the precipitation of different compounds. In 

biologically controlled mineralisation the organism controls all stages by means of 

macromolecules. This includes the nucleation, the growth, the shape, the structure, the 

polymorphism, the orientation and the final location of the deposited mineral. It occurs inside 

a well-defined control volume, where the composition of the solution is tightly regulated. In 

this case, the organism does not modify ambient supersaturation conditions in order to induce 

mineralisation (often the minerals are deposited under conditions of undersaturation), but 

rather, it exploits the interactions between organic molecules and minerals. As an example, 

the calcium ion is regulated by certain biological systems at concentrations of about 10
-7 

M. It 

is worth stressing that due to the low solubility of the major minerals involved in the 

biomineralisation processes, it is difficult to mimic this mechanism artificially, since it is not 

easy to manipulate conditions of supersaturation (Weiner and Dove, 2003). 

The tiny particle sizes guarantee high mechanical properties, thanks to the intimate contact 

between the matrix and the reinforcement. This is similar to synthetic nanocomposites, except 

that such composites have high energy demands in manufacture due to the high temperatures 

and pressures often required. Moreover, the release of nanoparticles can pose risks to human 

health and to the environment (Brinton et al., 1993).  

For these reasons, biomineralisation is gaining increasing interest as a potential technology 

for coating and high-performance composites (Alam, 2013). The application of molecular 

biology and protein chemistry into material engineering provide an important interface 
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between traditional methods in materials design and structural biology. Efforts to reach this 

aim have led to significant step forward, but there remains a lack of understanding as to the 

role of the interface between the mineral and organic constituents (Li and Kaplan, 2003). 

Artificially controlling the process of biomineralisation in-vitro, similar to that found in 

nature (in-vivo), would allow for the development of lightweight products with excellent 

mechanical properties for a variety of applications (Belcher et al., 1998). These applications 

may range from automotive to electronics, or from prosthetics  to construction. 

2.4 Crystal engineering 

The study of biomineralisation is undoubtedly a very difficult task. An organism is 

characterised by different complex compounds, such as enzymes and macromolecules. In the 

process of biomineralisation there exists a complicated synergy of events. The making of a 

compartment around the nucleation site is to control the crystal shape, to manage ion channels 

for regulating the flow of matter, and to make available organic macromolecule functional 

groups  for controlling crystal orientation (Massimino, 2010). To simplify this biological 

process we can divide it into four phases (Mann, 1996); (1) molecular organisation (2) 

molecular recognition at the interface with the solution (3) regulation and the control of the 

crystal orientation and (4) the real cell process. The first is the preliminary stage to 

mineralisation and consists of the formation of a compartment of organic walls around a 

nucleation point. The second exposes functional groups which act as fingerprints for the 

nucleation of the inorganic compound. The third phase consists of the equilibrium phase 

change. This is to control the morphology and through the introduction of impurities that may 

block crystallite attachment, a specific orientation of mineral crystals can be forced during 

growth. The final phase involves the implementation of networks to form a nanocomposite 

with superior mechanical properties. Organic molecules provide strong control from the start 

to the end of the growth of crystals. The second and the third phases of the process require 

some further focus since these phases include the nucleation and growth of crystals. In effect, 

crystal engineering examines the intermolecular interactions during these processes, in order 

to develop molecular solid-state structures with desired physical and chemical properties 

(Anthony et al., 1998). 

Crystallisation is a first-order phase transition in which a molecule goes from a solvated state 

with a high Gibbs free energy, to a state with lower Gibbs free energy in the crystalline lattice 

(De Yoreo and Vekilov, 2003). All characteristics of the latter state depend on the criterion of 

minimum energy, or lower-energy state (Kashchiev, 2000). In biological mineralisation, 

organisms are able to change the energetic barriers so as to control the growth kinetics and 

then the final equilibrium state. The driving force of both the nucleation and growth is the 

difference between the quantity of the Gibbs free energy at the initial state, that corresponds 
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to the solution without the crystalline phase, and the quantity at the final state. This 

corresponds to the solution plus the crystalline phase. The resulting quantity of which may be 

expressed by the difference in the chemical potential (Gibbs free energy per molecule or 

atom) between the initial and final state of each crystallising species (2.23) (De Yoreo and 

Vekilov, 2003). 

 

   
         

 
                                                 (2.23) 

 

where Gold and Gnew are the Gibbs free energy of the old and the new phases, respectively, M 

is the total number of molecules in the system, and μold and μnew are the chemical potential at 

the equilibrium of the old and the new phases, respectively. The greater the difference 

between the chemical potentials of the same species in the two states, the greater the driving 

force for crystallisation (Mullin, 1992). A brief description of the thermodynamic drivers of 

the nucleation and growth follow (Mann, 2001). 

The solubility, at a givent temperature, is the maximum amount of solute that dissolves in a 

solvent. Considering the following general reaction (2.24) of an ionic solid containing 

univalent ions: 

 

                  
         

                                      (2.24) 

 

it is possible to obtain the equilibrium constant, also called solubility product, Ksp, as: 

 

                                                             (2.25) 

 

in which [M
+
] and [X

-
] are the effective concentrations (activities) of ions in a solution in 

equilibrium with the solid phase. Given the hypothesis of a slightly soluble salt, the 

concentration of the solid [MnXm] that will settle to the bottom, is considered constant at the 

equilibrium, hence it is incorporated inside the solubility constant. This solubility product is a 

measure of the activity product at the equilibrium (Mann, 2001). 

Moreover, knowing that the Gibbs free energy per molecule of a solution, ΔGsol, can be 

described by (2.26): 

 

                                                                (2.26) 
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where T is the temperature, KB is the Boltzmann constant and Ksp is the equilibrium constant, 

or solubility constant, it is possible to write the change in chemical potential as follows: 

 

                       
  

   
                            (2.27) 

 

where Δμ is referred to the whole system (Δμ = ΣΔμi), AP is the activities product and  σ is the 

supersaturation. The factors which affect AP and Ksp are the temperature and the composition 

of the solution, but the latter is the main variable used by biological systems in order to 

control the crystal growth (De Yoreo and Vekilov, 2003). From (2.27) can be seen as the 

supersaturation is the thermodynamic driving force for inorganic precipitation (Mann, 2001). 

Crystallisation is the formation of a crystalline solid by means of the processes of nucleation 

and growth. In the case of a phase transition from a liquid to a solid state, nucleation consists 

of the formation of crystal clusters, which will form the nuclei required for the subsequent 

growth phase. The formation of these clusters is due to a spontaneous process that minimises 

the Gibbs free energy. Despite that in biomineralisation processes, this does not often occur 

(homogeneous nucleation), its description is necessary in order to understand nucleation at the 

surface of an organic matrix. Therefore, considering a homogeneous nucleation, the Gibbs 

free energy of formation of a nucleous, ΔG, constitutes a contribution of volume (or bulk), 

ΔGb, and one of surface (or interface), ΔGi. The difference of which is the function in the 

graph below (Figure 2.11). In the equations under the graph, σ is the supersaturation, ΔGv is 

the free energy per mole associated with solid-liquid phase change and Vm is the molar 

volume. 

The plot shows a maximum point that corresponds to the value of the critical radius, or 

critical size, of the nucleus over which there is a significant decrease in the free energy. In 

order to achieve crystallisation, this energetic barrier must be overcome. The maximum of the 

function is when the derivative dΔG/dr = 0, from which one can derive the expression for the 

critical radius. Before the critical size, the contribution of the interfacial energy is dominant. 

Hence it will lead to an increase of the total free energy and consequently to the dissolution of 

the nucleus. Over the critical size, the bulk contribution becomes such that the energy 

connected to the increase of the surface can be neglected. The value of the critical size can be 

modified by altering the concentration of compound supersaturation and the value of the 

interfacial energy. At the same concentration the smaller the value of surface tension, the 

smaller will be the critical radius (De Yoreo and Vekilov, 2003). In order to demonstrate the 

strong influence of the values of supersaturation and the surface tension, the equation for the 

homogeneous nucleation rate is shown below (Abraham, 1974, Neilsen, 1964): 
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                                         (2.28) 

 

Equation (2.29) is for the nucleation rate of a spherical nucleus with the explicit terms of 

supersaturation, σ, and surface tension, α. In (2.29), A is the pre-exponential factor, ΔG
*
 is the 

value of the free energy barrier at the critical size and the parameter B includes all factors 

other than supersaturation and interfacial energy. 

Figure 2.11 Qualitative trend of ΔG as a function of the radius of the nucleus. The 

combination of the functions ΔGi and ΔGb, which equates to ΔG, present a point of 

maximum at a critical cluster size r*. The equations for the contribution of the bulk and 

interface energy are also presented (Mann, 2001) 

The nucleation rate is seen to be a function of the 2
nd

 and 3
rd

 powers in the exponential, of the 

supersaturation and of the surface tension, respectively (De Yoreo and Vekilov, 2003). Once 

it has surpassed a critical size, the growth of the crystal depends on the flux of molecules 

attaching to the crystal surface and the flux of molecules detaching from the surface. In other 

words, the growth rate is limited by the mass transport to the surface. Variables which affect 

both the kinetics of attachment and detachment and the shape of crystals are many. They 

include the temperature, the strength of bonding of the crystal, the pH, the ionic strength of 
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the compound, the bulk concentration, the barrier to desolvation, the amount of impurities at 

the surface of the crystal and the presence of particular compounds. 

Therefore, the crystallisation mechanism is characterised by a large number of factors which 

provide a wide number of opportunities for the modification of the nucleation and growth 

processes. This explains why it is challenging to understand the variables involved in 

biological mineralisation. 

2.5 Calcium carbonate 

Calcium carbonate is a chemical compound with the formula CaCO3. This substance is a 

white solid at ambient temperature and is slightly soluble in water (0.014 g/l at 293 K). 

Calcium carbonate is one of the most common natural compounds on earth. It can be found in 

rocks, such as limestone, travertine, chalk and tufa; and in marine sediments or organisms, 

such as shells, corals and sponges. In the marine environment, organisms biomineralise by 

abiotic precipitation and either biologically induced or controlled precipitation (Morse et al., 

2007). Given the wide availability in nature, this compound is generally extracted by mining 

or quarrying, though it can also be produced industrially from calcium oxide. 

The reaction initially involves the formation of calcium hydroxide by reaction between 

calcium oxide and water. Following this reaction, carbon dioxide is injected into the slurry for 

the precipitation of calcium carbonate. This chemical compound decomposes under heat 

(thermal decomposition, also said calcination), or by reaction with a strong acid. In both 

cases, it releases carbon dioxide (Teir et al., 2007). 

Pure calcium carbonate has three different crystalline forms: calcite, aragonite and 

vaterite(Feng et al., 2000). The conventional configurations are rhombohedral, orthorhombic 

and hexagonal, respectively (Stillfried, 2012). At ambient temperature and pressure, calcite is 

the thermodynamically most stable, followed by aragonite (slightly less stable than calcite) 

and vaterite. There are also metastable forms, such as amorphous calcium carbonate (ACC) 

which is highly unstable (Addadi et al., 2003), the crystalline monohydrate form and the 

hexahydrate calcium carbonate (Stillfried, 2012). The former is often present as transient 

precursor of more stable crystalline calcite and aragonite (Addadi et al., 2003). Many studies 

have demonstrated the influence of the crystalline morphology of calcium carbonate by the 

presence of proteins (Feng et al., 2000), (Aizenberg et al., 1996) and amino acids (Orme et 

al., 2001), (Briegel et al., 2012). 
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Chapter 3 

Experimental work 

The aim of this chapter is to provide, initially in Section 1, a background of previous work on 

the topic and a description of the experiments carried out. From Section 2 to Section 5, the 

experiments are detailed from the microscale to the macroscale. Section 2 will focus on 

molecular dynamic simulations, performed using the software Ascalaph Designer, for the 

calculation of the intermolecular energy of the system. Section 3 will describe the method 

used for the manufacture of the natural fibre reinforced composites and the SEM (scanning 

electron microscope) micrographs taken to evaluate the differences in the morphology of 

calcium carbonate. The last two paragraphs are about mechanical testing. The results and the 

discussion of each experiment are provided in the last part of each corresponding paragraph. 

3.1 Background on previous work 

The main idea behind this work is in creating natural fibre coral-mimicking composites with 

improved mechanical properties over unmineralised fibre-reinforced composites. We try to 

functionalise natural fibres by nucleating and precipitating calcium carbonate as a coating on 

the fibre surface and through mimicking biomineralisation. The objective is to assess the 

viability of using such fibres as advanced reinforcements for rubber. 

Alam et al., (2013) published a work in which are described the effects of fibre-surface 

morphology on the mechanical properties of Porifera-inspired rubber-matrix composites. Flax 

fibres were soaked in acetic acid solutions containing ground calcium carbonate. In particular, 

one solution contained 1 g CaCO3, 30 ml acetic acid and 400 ml distilled water, whilst the 

other solution contained four times more the amount of CaCO3 with 10 ml acetic acid and 400 

ml distilled water. The composite was made with fibres aligned unidirectionally in a matrix of 

SBR (styrene-butadiene rubber) (Alam et al., 2013). The manufacture of fibres using the 

solution with 1 g CaCO3 resulted in smaller mineralised patches than the solution containing 4 

g CaCO3. The fibre coating characterised by small mineralised precipitates provided superior 

mechanical strength to the composite than the un-mineralised fibre composite. It has been 

hypothesised that this phenomenon is essentially due to the increase of surface roughness on 

the fibres, which leads to an improvement of the mechanical interlocking. Moreover, it was 

observed that there is a critical thickness of the surface treatment over which the properties of 

the whole composite exhibit inferior mechanical properties than the material made by un-
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treated fibres (Alam et al., 2013). Since the composite was compression moulded, the effects 

of pressure on the surface treatment were studied using the finite elements models based on 

scanning electron microscope micrographs. In particular, three structures were studied; (1) the 

natural fibre surface with small mineralised patches treatment, designed as cuboids, (2) the 

total covering, designed by an enveloping cylindrical shell, and (3) as in (2), but with a crack 

perpendicular to the fibre axis. The structure with small mineralised regions allows for higher 

operating pressure during compression moulding. The space between them lowers the local 

stresses, induced during the manufacture, that in turn increases the critical point at which the 

fibre starts failing. The same benefit can be obtained with a determined size of the crack 

running through the total covering of the fibre (case (3)). Moreover, it is shown that treatment 

(1) provides efficiency in terms of volume of material used (since only under the critical 

volume fraction of calcium carbonate is possible to perceive the improvement) and also in 

view of minimising damages during manufacture (Alam et al., 2013). 

Stillfried et al. (2013) published a work on the improvements of the flexural properties of flax 

fibres treated with a Crispatotrochus-mimicking coating. It was shown that a thin-film of 

calcium carbonate as a coating on the fibre surface increases the ability of the material to 

absorb mechanical energy and to resist buckling. In this case, a solution of water with 

poly(acrylic) acid 25 wt% was prepared and 0.5 g ground calcium carbonate were dissolved 

into it. After mixing 50 ml of the resulting mixture with 400 ml of distilled water, 35 g of flax 

fibres were soaked. The fibres were cut to 2 cm lengths and separated from each other. The 

results of the bending tests, carried out using a Messmer Buchel-bending resistance tester 

(rate 5˚/s and gauge length 5 mm), show an important improvement of the mechanical 

performance in flexion over uncoated fibres. In particular, at the same angle (45˚), treated 

fibres have a seven times higher flexural stress, σf, and a six times higher flexural modulus. 

Considering the factorisation by density, these parameters were five times and four times 

higher, respectively, to uncoated fibres. Equation (3.1) quantifies the flexural stress: 

 

   
  

 
                                                             (3.1) 

 

where F is the load applied to the fibre, l is the length of the cantilever in bending, and W is 

the section modulus (for details about calculations see Stillfried et al., 2013). The wide gap, 

between flexural properties factorised by density of coated and uncoated fibres, underlines the 

usefulness of this surface treatment in improving the performance of engineered natural 

fibres, in which both strength and stiffness are highly desirable (Stillfried et al., 2013). 

Moreover, it has been demonstrated there is an increase of absorption of mechanical energy of 

about ten times more than the flax fibres without the coating. All these considerations are 
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quantified in the following Table 3.1, where the values are presented as mean values ± the 

standard deviation. 

Table 3.1 Flexural properties of un-treated and treated flax 

fibrescharacterized by 500 nm coating thickness (Stillfried et al. 2013) 

 Uncoated Coated Coated/Uncoated 

σf [MPa] 69.7 ± 25.1 548.4 ± 176.9 7.9 

σf/ρ [KN m Kg
-1

] 47.0 ± 17.0 240.2 ± 77.5 5.1 

Ef [GPa] 0.83 ± 0.3 5.08 ± 1.6 6.1 

Ef/ρ [MN m Kg
-1

] 0.56 ± 0.2 2.22 ± 0.71 4.0 

Uf [MJ m
-3

] 2.9 ± 1.1 29.6 ± 9.5 10.2 

 

In Table 3.1, Ef is the flexural modulus and Uf is the mechanical energy. A finite-element 

analysis was carried out in order to assess the dependence of coating thickness on the flexural 

modulus of the natural fibres. The simulations showed there is an optimal coating thickness at 

80 nm, after which the flexural modulus decreases (Stillfried et al., 2013). Once again, as 

published in the work of Alam et al. (2013), it was demonstrated that higher coating 

thicknesses than the critical size contribute to decrease the mechanical properties of the fibres, 

or more generally, of the composite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1 Bending tests results (Fagerlund et al, 2013) 
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composite. In particular, the work starts from the results obtained by a research group in the 

laboratory of “Paper Coating and Converting” at Åbo Akademi University in Turku (Finland). 

The final results of this research are presented in Figure 3.1. 

It is seen that the process of biomineralisation of calcium carbonate is affected by the types of 

amino acid present; in other words, depending on the organic molecule, the crystalline 

morphology of calcium carbonate changes (Fagerlund et al., 2013). As a consequence, the 

change of crystal morphology involves a change in the roughness of the natural fibre surface. 

This means that mechanical interlocking between the matrix and the fibre is dependent on the 

crystal morphology of the mineral deposited on the fibre surface. The histogram in Figure 3.1 

shows the bending tests carried out after soaking the flax fibres in solutions of calcium 

carbonate in solutions with different amino acids. The crystals increased the bending 

resistance of the fibres compared to uncoated fibres. As it can see from the graph above, the 

control (pure calcium carbonate fibre coating) is the most resistant to bending load, but it 

expresses also a certain degree of brittleness. The fibres treated with amino acid addition, 

contrarily, decrease the chances of brittle failure and thus the amino acids increase the 

durability of the fibre coating. In particular, the sample, made by an artificial 

biomineralisation process in the presence of L-Lycine, is both strong and flexible (Fagerlund 

et al., 2013). 

In this thesis work, the three amino acids from the previous work were taken into account 

(Glycine, β-alanine and L-lycine) and three different concentrations for each amino acid were 

considered for the manufacture of the natural fibres reinforced composite (30·10
-3 
M, 50·10

-3 

M, 100·10
-3 

M). The tests carried out are explained in the following sections of this chapter. 

3.2 Molecular modelling: molecular dynamic simulations 

The software Ascalaph Designer was used with the aim of calculating the intermolecular 

energy of the system under consideration. The algorithm within the software for the molecular 

dynamic simulations is designed for the simulation of interactions between biomolecules. 

This was modified, in order to make it able to calculate the intermolecular energy between 

inorganic molecules and organic macromolecules. It is important to clarify that the reliability 

of these modifications has to be further demonstrated by writing a new script specifically for 

the interactions between inorganic compounds and organic macromolecules. The results may 

be also affected by the equations of the force field, which in the case of the interaction 

between inorganic and organic molecules are less accurate than e.g. a universal force field. 

For the construction of the molecular models, the charges of atoms of calcium carbonate 

molecules were changed in agreement with the work of Wang and Becker (2009); the charges 

that ensure the electroneutrality of the molecule of calcium carbonate are shown in the Table 

3.2. In this way, a more accurate predictive model was developed. Three-dimensional 
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boundary conditions were used in the simulations. All simulations were carried out using NPT 

ensembles, where the number of particles, N, the pressure, P, and the temperature, T, were 

kept constant. In particular, the temperature was fixed at 298.15 K, under vacuum conditions. 

Table 3.2 Partial charges implemented in the algorithm for a non-ideal 

system (Wang and Becker, 2009) 

Atom Partial Charge 

Ca +2.000 

C +1.123 

O -1.041 

 

There were no constraints imposed to molecules as all of them were free to move inside the 

simulation cell. The time step implemented in all molecular dynamic simulations was 2.5 fs 

(femtosecond), which is equivalent to 10
-15 

s. The system was allowed to equilibrate until 

100000 number of steps, which is equivalent to 250 ps simulation time, following the simple 

Equation (3.2) below: 

 

                                                              (3.2) 

 

where MDs time [ps] is the molecular dynamic simulation time, Nsteps [adm] is the number 

of steps and Tstep [fs] is the time per step. 

Initially, the intermolecular energy between a single molecule of amino acid and a single 

molecule of calcium carbonate was calculated (Table 3.3). 

Table 3.3 Intermolecular energy between calcium carbonate and different 

amino acids 

 Glycine + CaCO3 L-lycine + CaCO3 β-alanine + CaCO3 

Intermolecular 

energy [cal/mol] 

-510 / -515 -575 -510 / -515 

 

The negative intermolecular energy means that there are attractive between the molecules. It 

can be seen that the range of the intermolecular energy is comparable to Van Der Waals’ 

forces, London forces, ion-induced dipole and dipole-dipole interactions. L-lycine expresses 

more intermolecular energy (in modulus) than Glycine and β-alanine; the difference between 

L-lycine and Glycine/β-alanine systems is about 60 cal/mol. The construction of the 

simulation systems were done using the following simple calculations; for the construction of 

the system, the number of molecules was necessary. 
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The number of moles were calculated multiplying the molarity by the volume (for these 

simulations 1 lt of solution was considered) for all systems, following the Equation (3.3): 

 

     
 

 

 
                                                            (3.3) 

 

where m [g] is the mass of the compound, Mmol [g/mol] is the molar mass of the compound, V 

[lt] is the volume of the solution and M [mol/lt] is the molarity espressed in the number of 

moles of the solute into the volume of the solution. Rearranging the (3.3), it was found the the 

number of moles and, multiplying by the Avogadro’s number (NA = 6,023·10
23

), the number 

of molecules of each concentration was calculated. The values of the number of molecules of 

amino acids constituting the system are given by the following equations: 

  

                                             
           

   
                 (3.4) 

 

                                             
           

   
                 (3.5) 

 

                                               
           

   
                (3.6) 

 

where nAA,30, nAA,50, nAA,100 are the number of molecules of amino acid in the system 30·10
-5

 M, 

50·10
-5

 M, 100·10
-5

 M, respectively. 1 g calcium carbonate was considered, hence considering 

the molecular mass of calcium carbonate, the number of moles is given by Equation (3.7): 

 

        
      

     

        
 

   
 
                                         (3.7) 

 

In the same way, as in the calculation of the number of molecules of amino acids, the number 

of molecules of calcium carbonate is given by Equation (3.8): 

 

      
                                         

           

   
                (3.8) 

 

where nCaCO3, is the number of calcium carbonate molecules. In order to build the system, 

ratio R between the number of amino acid molecules and the number of calcium carbonate 

molecules was calculated. This ratio describes, the number of molecules which have to be 

drawn in the simulation cell. In particular, in the case of 30·10
-5

 moles, for each 33 molecules 
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of calcium carbonate, a molecule of amino acid has to be drawn; whilst for 50·10
-5

 moles, for 

each 20 molecules of calcium carbonate one amino acid has to be drawn. Finally, for 100·10
-5

 

moles, one amino acid molecule is drawn for each 10 molecules of calcium carbonate. The 

values of R, expressed in decimal numbers, and the real number of molecules in the 

simulation systems are shown in Table 3.4. 

Table 3.4 Values for the ratio R and number of molecules drawn in the 

system 

Number of moles 

[mol] 

R (nAA/nCaCO3) n.molecules  

A.A. 

n.molecules 

CaCO3 

30·10
-5

 0.03 2 66 

50·10
-5

 0.05 2 40 

100·10
-5

 0.1 2 20 

 

For the comparison, the system devoid of amino acid was also taken into account. This 

system was designed by replacing each molecule of amino acid with a molecule of calcium 

carbonate. Figure 3.2 gives only a few examples of the simulation systems built. 
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          (b) 
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Figure 3.2 Qualitative pictures for the simulation systems with molecules of Glycine at 

100·10
-5

M (a), 50·10
-5

M (b), 30·10
-5

M (c). Control system for 30·10
-5

moles (d) 

Since the calcium carbonate molecules were hand-drawn, the geometrical configuration of 

these molecules was performed with the geometry optimiser within the software. It was a 

simple but necessary adjustment for an initial molecular geometry. 

Figure 3.3, Figure 3.4 and Figure 3.5 show the total intermolecular energy as a function of the 

number of steps.  
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Figure 3.3 Intermolecular energy as a function of the number of steps for the simulation 

systems at 30·10
-5

 M 

 
Figure 3.4 Intermolecular energy as a function of the number of steps for the simulation 

systems at 50·10
-5

 M 
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Figure 3.5 Intermolecular energy as a function of the number of steps for the simulation 

systems at 100·10
-5

 M 

The higher the intermolecular energy the greater the interaction between molecules. In all 

simulations, the control system turned out to be the strongest in terms of dissociation energy 

of the total system. In all concentrations, L-lycine shows the highest intermolecular energy 

among simulation systems with amino acids creating also a more compact structure than 

observed in the β-alanine and Glycine systems. This means that this organic molecule is able 

to minimise the energy of the system more effectively than the other amino acids. In other 

words, the calcium carbonate particles become more stable with the presence of L-lycine. 

Between the β-alanine and Glycine systems there is a gap of only about 250 cal/mol and their 

behaviour is very similar at the equilibrium (corresponding to 100000 number of steps). 

Comparing the values in Table 3.3, it is clear that the intermolecular energy is a linear 

function of the number of molecules. Hence, there are no synergistic effects within the 

structures that raise the intermolecular energies further. Moreover, it seems to exist a 

correspondence with the data for the bending tests (Figure 3.1). Although at different length 

scales, the control turned out to be the strongest in terms of bending force (mN) and 

intermolecular energy, respectively. In bending tests, the control sample is followed by the L-

lycine sample as in the results of the simulation. Also in the bending tests β-alanine and 

Glycine systems show similar characteristics. 
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3.3 Manufacture of natural fibre reinforced composites and SEM 

(Scanning Electron Microscope) 

For the manufacture of the crystallised-natural fibre reinforced composite, materials and 

chemicals were obtained from commercial sources and they were used without further 

purification. Flax fibres, the reinforcement of the matrix, were from FLAXLAND, UK. The 

latex used as the matrix for the composite was E-SBR latex (Emulsion polymerised Styrene-

Butadiene Rubber). Table 3.5 provides the properties of the E-SBR latex. 

Table 3.5 Physical and mechanical properties of E-SBR 

Property Minimum value Maximum value Units measure 

Density 0.94 0.95 Mg/m3 

Elastic limit 12 21 MPa 

Tensile Strength 10 25 MPa 

Young’s modulus 0.002 0.01 GPa 

Elongation 250 700 % 

Glass transition 

temperature 

210 215 K 

 

Before the production of fibre reinforced composite samples, flax fibres were mineralised in 

solutions containing different types of amino acid monomers at three different concentrations. 

The three different concentrations for each amino acid used (β-alanine, Glycine, L-lycine) 

were the same concentrations used in the molecular dynamics simulations (30·10
-5

 M, 50·10
-5

 

M, 100·10
-5

 M), but based on 0.25 lt of solution.  
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                                                (c) 

 

    
        

  
    

         
                                           (d) 

 

Figure 3.6 Precipitation reaction of calcium carbonate 
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In this way, nine samples were made, using three different amino acid used at three 

concentrations. Equation (3.3) was used to calculate the amount in grams of amino acid in 

0.25 lt of solution. In order to deposit the calcium carbonate onto the fibre surfaces, calcium 

nitrate tetrahydrate and sodium bicarbonate (Sigma-Aldrich) were used. The reaction 

mechanism by which calcium carbonate deposits onto fibres surfaces is shown in Figure 3.6. 

Reactions (a) and (b) represent the dissociation of salts into the solution, whilst the reaction 

(c) provides the equilibrium between the bicarbonate ion and the carbonate ion. Finally, in the 

reaction (d), the formation reaction of calcium carbonate is given. The driving force of the 

precipitation reaction of calcium carbonate is given by the formation of an insoluble salt at the 

expense of the less stable soluble salts (Conte, 2014); in other words, among soluble salts, 

there will be the formation of the salt with the lowest solubility. The solubility at 293 K of the 

calcium nitrate, sodium bicarbonate and calcium carbonate are 121.2 g/100ml, 95.5 g/l, 0.014 

g/l, respectively. In Table 3.6 details about the amount of compounds inside the solutions are 

shown; solutions are expressed in molarity of amino acid. 

Table 3.6 Details of solutions 

Solution Ca(NO3)2·4H2O 

[g] 

NaHCO3 

[g] 

Glycine [g] L-lysine [g] β-alanine [g] Distillate 

water [ml] 

30·10
-5

 M 1 1 0.00563025 - - 250 

30·10
-5

 M 1 1 - 0.01096425 - 250 

30·10
-5

 M 1 1 - - 0.0066822 250 

50·10
-5

 M 1 1 0.00938375 - - 250 

50·10
-5

 M 1 1 - 0.01827375 - 250 

50·10
-5

 M 1 1 - - 0.011137 250 

100·10
-5

 M 1 1 0.0187675 - - 250 

100·10
-5

 M 1 1 - 0.0365475 - 250 

100·10
-5

 M 1 1 - - 0.022274 250 

 

The procedure for the preparating the solutions follows: 1 g calcium nitrate tetrahydrate, 1 g 

sodium bicarbonate and the fixed amount of amino acid were added into 250 ml of distilled 

water. After 30 min of mixing over a magnetic stirring, 35 g flax fibres were soaked into the 

solution and the entire contents was mixed for 2 min. Subsequently, the solution with flax 

fibres was left to dry at room temperature for ten days, in order to allow for the deposition of 

calcium carbonate onto the fibres surfaces. 
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Figure 3.7 Representation of a step during the manufacture of the composite: the spreading 

of the first thin layer of latex where some flax fibres have been placed on top 

After mineralising flax fibres, 17.5 g combed flax fibres obtained from each dried solution 

were weighed for the production of flax fibres reinforced composite tiles of the size of about 

10 cm length, 10 cm width and 3 mm thickness. These fibres were stretched in order to make 

a composite material reinforced with unidirectional fibres.  

Two aluminium blocks (15 cm legth, 12 cm width and 5 mm thickness) were used for 

compression moulding and were covered by parchment paper to avoid sticking of the 

composite material through bonding of the latex. 100 ml SBR latex was weighed and 

deposited over the parchment paper. The fibres were placed over the latex layer after 

stretching fibres one more time (Figure 3.7). It is very important to carefully align the fibres 

in the same direction, otherwise the results of mechanical testing may be affected by fibre 

anisotropy. Another thin layer of latex was spread over flax fibres and again another layer of 

fibres was put over it. This procedure was repeated until all 17.5 g flax fibres were used. 

Finally, the other aluminium block covered with the parchment paper was placed on top. 

Through a manual press, the excess of latex was removed and the composite tile was formed. 

Figure 3.8 shows a schematic drawing of the final configuration. 
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Figure 3.8 Schematic representation of the moulding process (Stillfried, 2012) 

The final composite tile, with the two aluminium blocks still in contact, was put into an oven 

at  0  C for one hour, after which the block on the top was removed. The assembly was left 

into the oven at the same temperature for three hours and after this time has passed, the 

bottom metal block was also removed. The parchment paper allows the transmission of heat 

to dry the latex-fibre mixture. Water molecules are able to penetrate through the paper thus 

drying the tile.  

 
Figure 3.9 Mineralised flax fibres reinforced composite tile 
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To ensure complete drying, the composite was kept into the oven at  0  C for another twelve 

hours. After this time has elapsed, the paper was easily removed from the composite and this 

was left for an hour more into the oven. The tile was then taken out of the oven and allowed 

to cool. This procedure was repeated for all samples described in Table 3.6 and also for flax 

fibres without any treatment (control sample). It is worth mentioning that the whole procedure 

for the manufacture of the composite is an entirely manual procedure, hence the values 

obtained from the following mechanical tests may be subjected by operative errors, such as 

human errors. In particular, the maintenance of the same moulding pressure, which could 

otherwise affect the fraction of the latex in the composite, as well as ensuring fibre 

unidirectionality are complex tasks when carried out manually. The manufacture of the 

material may have affected the tensile testing data. In figure 3.9, an example of a final flax 

fibre reinforced composite tile is shown. 

SEM pictures of mineralised flax fibres were taken to better understand the crystalline 

morphologies obtained by the different mineralisation treatments. In Appendix (Annex A) are 

shown the most representative SEM pictures in terms of crystalline morphology of calcium 

carbonate. There are some similarities with the SEM pictures of the research work done by 

Fagerlund et al. (2013). β-Alanine seems to form a surface with densely packed cones and 

some round undefined structures. The crystal structure affected by Glycine presents a similar 

configuration, but more rational with rectangle-shaped prisms. The structure affected by L-

lycine shows a mushroom-like morphology and closer observation (5000x, 8000x) reveals the 

crystal structure was made up of thin layers (Fagerlund et al. 2013). 

3.4 Tensile testing 

All composite tiles, obtained by each mineralisation treatment of Table 3.6, were cut into 

“dog bone” form in order to subject them to tensile tests. Details about dimensions of the dog 

bone shaped composite sample (Figure 3.10) are presented in Table 3.7. 

 

Figure 3.10 Dog bone shaped composite sample (Stillfried, 2012) 
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Table 3.7 Sample size 

L1 [mm] L2 [mm] L3 [mm] B1 [mm] B2 [mm] 

75 58 ± 2 25 ± 0.5 10 ± 0.5 5 ± 1 

 

In Table 3.7; L1 is the overall length of the sample, L2 is the distance between the grips of the 

machine, L3 is the gauge length, B1 is the width of the ends of the samples and B2 is the 

width of the trunk of the sample. The thickness of samples is 3 mm ± 1 mm. Tensile tests 

were performed using a testing machine, model INSTRON 8872 (Figure3.11a) at ambient 

conditions. The tensile test consists in subjecting the sample to an equal and opposite force 

applied orthogonally to its cross section(Figure 3.11b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            (a)                                                                                             (b) 
Figure 3.11 Testing machine model INSTRON 8872 (a) and particular during the pulling 

stage (b) 

The system was set so that the machine is able to maintain a constant pulling velocity of 0.2 

mm/min by varying the stress applied to the sample. During the tests, the outputs (the force 

applied and the corresponding position of the grips of the machine) were processed with 

Excel to obtain the values of the stress (or engineering stress) and strain (or engineering 

strain). It could be possible obtain a load-length of sample curve, but the data would would 

not take into account the geometrical affects of the sample. Stress, σ [Pa], is defined as the 

ratio of the force applied, F [N], to the initial cross sectional area, A0 [m
2
] (Equation 3.9), 

whilst the strain, ε [dimensionless], is defined as the change in length, Δl [m], per unit of the 

original length, l0 [m] (Equation 3.10). 
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                                                                 (3.9) 

 

   
  

  
                                                               (3.10) 

 

The stress - strain curve shows a linear elastic trend following the Hooke’s law (σ = Eε) when 

the load applied is sufficiently low; the material stretches elastically and once the force is 

removed, it returns to its original length. This constant of proportionality, E [Pa], is named 

Young’s modulus or the elastic modulus and it represents the slope of the straight line in a 

region of elastic deformation. The elastic part of the curve ends when the yield stress, σy [Pa], 

is reached. After this point the material begins to deform permanently (plastic region). In fact, 

the yield stress is the transition point from the elastic to the plastic range. The ultimate stress, 

σult [Pa], refers to the maximum value of load withstood by the material before failing. 

Resilience represents the ability of a material to absorb energy when it is deformed elastically 

and to release the same amount of energy when the load is removed. The modulus of 

resilience, U [J/m
3
], allows the calculation of the maximum amount of energy per unit volume 

that can be absorbed by the material without creating an irreversible deformation (Equation 

3.11): 

 

  
  

 
                                                            (3.11) 

 

Three samples per each treatment shown in Table 3.6 (and for the control sample) were tested. 

It is important to clarify that each group of samples corresponds to a certain treatment and has 

a wide range of stress values (differences of about 30 MPa among samples belonging to the 

same group/treatment). This made it hard to differentiate between them. The median for each 

group was plotted as the sample set was low. Given the wide range of stress values of the 

samples, it was demonstrated that three samples are not enough for the consolidation of this 

theory. The evaluation of close values may be misleading. The reliability of these values can 

be ascertained only by increasing the number of samples in each test group. In Figure 3.12, 

3.13 and 3.14 are reported engineering stress-strain curves for median sample from each 

group. In Annex C, the minimum and maximum values for the ultimate stress of all samples 

tested are reported. In each figure, the control sample (flax fibres reinforced composite 

without any treatment) is also reported. The plots are parametrised by the molarity of amino 

acid used. The stress values are given in MPa, whilst the strain values are shown in 

percentage of the real value (ε% = (Δl/l0)·100). The trend of the curves shows similarities in all 

composites in that once the ultimate stress is reached, the samples experience severe structural 

failure. All composites that were subjected to the treatment showed good improvement over 
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the control sample. All composites tested with the 30·10
-5

 M treatment of each amino acid 

show an higher gap between the ultimate stress and the fracture point. 

 
Figure 3.12 Stress - strain diagrams of composites (30·10

-5
 M) 

 
Figure 3.13 Stress - strain diagrams of composites (50·10

-5
 M) 
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Figure 3.14 Stress - strain diagrams of composites (100·10

-5
 M) 

The composite treated with L-lycine at 50·10
-5

 M and 100·10
-5

 M has the best mechanical 

properties in terms of Young’s modulus, stiffness and ultimate stress value. L-lycine provides 

the best mechanical properties also considering the 30·10
-5

 M, with the exception of the 

ultimate stress, but this value is very close to the highest value of the graph. Composites 

treated with Glycine and β-Alanine have similar curves to each other with negligible 

differences (about 5 MPa). There is the tendency for an increase in mechanical performance 

with the addition of amino acid. It was hypothesised that this could be due to the greater 

influence on the crystal morphology of calcium carbonate, hence on the mechanical 

interlocking between the matrix and the fibres. Values of the Young’s modulus calculated 

from the stress-strain curves above are shown in the Figure 3.15. These graphs provide a clear 

indication of mechanical improvement within the elastic region. The elastic modulus reflects 

the stiffness of a material (Portela et al., 2010), hence, at all concentrations, flax fibres 

mineralised with L-lysine exhibited more stiffness than the others. Notably, a value of the 

elastic modulus equal to 5.5 GPa at 100·10
-5

 M was measured. 

These results are in agreement with Fagerlund et al. (2013) and with the previous results 

obtained in molecular dynamic simulations, in which fibres treated with Glycine and β-

Alanine revealed similar properties in terms of bending strength and intermolecular energy, 

while L-lycine had a greater influence on the mechanical properties of the whole composite. 
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(c) 
Figure 3.15 Young’s modulus of flax fibres reinforced SBR treated with different amino 

acids at 30·10
-5

 M (a), 50·10
-5

 M (b) and 100·10
-5

 M (c) 

0 

0,5 

1 

1,5 

2 

2,5 

3 

3,5 

Control Glycine B-Alanine L-lycine 

[G
P

a]
 

Young's Modulus 
(AA conc. 50x10-5M) 

0 

0,5 

1 

1,5 

2 

2,5 

3 

3,5 

4 

Control B-Alanine Glycine L-lycine 

[G
P

a]
 

Young's Modulus 
(AA conc. 30x10-5M) 

0 

1 

2 

3 

4 

5 

6 

Control Glycine B-Alanine L-lycine 

[G
P

a]
 

Young's Modulus 
(AA conc. 100x10-5M) 



64 Chapter 3 

In Table 3.8 are reported the values of the modulus of resilience calculated from stress - strain 

diagrams according to Equation (3.11). The following Equation 3.12 provides an analysis on 

the units of measure of the resilience modulus: 

 

  
  

 
 

   

    
 
   

   
 

       

       
 

   

    
                                         (3.12) 

 

The transformation from [N·m] to [J] is possible because the dimension [m] refers to a change 

in length or a displacement Δl; in other words, a constant force on a point which moves a 

displacement in the direction of the force produces a work measured in [J]. 

Table 3.8 Modulus of resilience of flax fibres reinforced SBR treated with 

different amino acids at different concentrations 

Concentration Mineralisation treatment Modulus of Resilience [J/m
3
] 

 

30·10
-5

 M 

Control 4602 

L-lycine 2285 

Glycine 2424 

β-Alanine 49000 

 

50·10
-5

 M 

Control 4602 

L-lycine 5454 

β-Alanine 5454 

Glycine 6250 

 

100·10
-5

 M 

Control 4602 

Glycine 2000 

L-lycine 2272 

β-Alanine 9878 

 

The modulus of resilience expresses an inverse proportionality to the elastic modulus. Even 

though Glycine and β-Alanine exhibited similarities in the previous tests, β-Alanine showed a 

significant ability to absorb mechanical energy in its elastic state.  

3.5 Nano-indentation testing 

Nano-indentation testing was carried out to measure the hardness of the composite. The 

indentation is made in a line over the cross section of the fibre embedded in an epoxy resin. 

The preparation of the samples follows. Some flax fibres obtained by each mineralisation 

treatment (see Table 3.6) were cut into 2-3 cm length and they were put into a small bowl 

vertically.  
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Table 3.9 Amount in grams and compounds used for the preparation of the 

epoxy resin for four cross-sections 

 

Mixture Compound Amount [g] 

A Epon 812 11.68 

DDSA 15.43 

B Epon 812 16.14 

MNA 14.52 

 

For the preparation of the epoxy resin, the following chemical compounds were used:  

-Epoxy Embedding Medium (Sigma-Aldrich) 414 2 1000 ml Liquid 25038-04-4 

-Epoxy Embedding Medium, Accelerator (Sigma-Aldrich) 414 250 ml Liquid 90-72-2 

-Epoxy Embedding Medium, hardener MNA (Sigma-Aldrich) 414 1000 ml Liquid 5134-21-8 

-Epoxy Embedding Medium, hardener DDSA (Sigma-Aldrich) 414 1000 ml Liquid 25377-

73-5 

Initially, two different mixtures were prepared in a fume cupboard following the amounts for 

four cross-sections reported in Table 3.9. The amounts detailed in the table were calculated 

for ten samples. The final resin was obtained mixing together 20 g A, 20 g B and 0.6 g 

accelerator. 

 
Figure 3.16 Cross-sections of mineralised flax fibres for nano-indentation testing 

These quantities are always referring to four cross-sections. The resin was mixed in paper 

cups; first mix A in a cup and mix B in another cup for blending carefully with disposable 
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pipettes and spatulas. After putting blend A and B together in another clean paper cup, 

accelerator was added and the cup of mixed resin was put into a vacuum oven (200mbar, 10 

min) for gas release. 8 g of the mixed resin were weighed and ten forms (one per each sample) 

with mineralised flax fibres placed vertically were filled evenly. The samples were put again 

into the vacuum oven (200mbar, 10 min) to release air bubbles. It is important to check that 

the samples stand nicely in the bottom of forms. Finally, all samples were put overnight (16-

24 h) into an oven at 60˚C without vacuum for hardening. 

After hardening, the samples were taken out from the oven and let in the fume cupboard for a 

few minutes. The mixed resin with fibres were extracted from the forms and rinsed with warm 

water. The samples were marked with a pen (Figure 3.16). 

The grinding instructions, followed for obtaining polished and flat cross-sections, are 

presented. Edges of samples were ground by hand so that they fit exactly into the holder.  

 
Figure 3.17 Grinding machine to smooth cross-sections of the samples 

The grinding machine (Figure 3.17) was set with 5 N pressure and 50 rpm speed; P 320 was 

the grinding paper placed on the turntable and both the plate and the holder spun in the same 

direction (Comp mode). It was important to place the water tap on the grinding plate to avoid 

overheating. Once the right diameter of the samples was reached, the samples were inserted 

into the holder for the automatic grinding of the cross-sections. The machine was set with 20 
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N pressure, 30 s grinding time and 200 rpm speed. P 320 was used as grinding paper and 

again the plate and the holder spun at the same direction. 

The surfaces were checked for smoothness. If the cross-sections had an irregular or scratched 

surface, the last grinding stage was repeated setting new parameters for the pressure and/or 

the grinding paper. 

All samples were sent to the “Biological and Biomimetic Material Laboratory” of Nanyang 

Technological University in Singapore for nano-indentation testing. The hardness, H, was 

calculated following Equation 3.9: 

 

  
    

  
                                                          (3.13) 

where Fmax [N] is the maximum load applied with a corner-cube and Ar [m
2
] is the residual 

indentation area, and the Young’s modulus was measured as a function of the stiffness of the 

material. For further details about nano-indentation, see Section 2.1. Nano-indentation results 

demonstrate that, considering the flax fibres reinforced composite material formed by an 

epoxy resin matrix, there are not differences between samples. The hardness measured for all 

samples tested resulted in the same (H = 0.2-0.3 GPa) and the Young’s modulus values 

(around 8-9 GPa) do not allow for the determination of differences concerning mechanical 

properties. Nano-indentation results are reported in Annex B. For the evaluation of the 

residual indentation area, SPM (Scanning Probe Microscopy) images for probed regions of 

each sample are also reported. It is hypothesized that if the matrix of the composite is too 

tough, there are not important interlocking phenomena able to provide a significant difference 

between mineralised natural fibres and unmineralised. Probably, the mineralised layer upon 

natural fibres do not ensure the bonding between the epoxy resin matrix and the flax fibre; in 

other words, during the loading stage, in which the fibre is pressed down into the material, the 

fibre coating is removed because unable to support the load. 

 





 

Conclusions 

L-lycine has the strongest influence inside the calcium carbonate system in terms of 

intermolecular energy when compared to other systems containing Glycine and β-Alanine. 

These results correlate well to the work done by Fagerlund et al. (2013) in view of bending 

strength. The functionalisation and the mineralisation of natural fibre surfaces using a bio-

inspired mineralisation approach was successful in that calcium carbonate was mineralised 

onto fibre surfaces with different crystal structure as demonstrated by SEM pictures. To 

reduce the chances of human error, manufacture of the composite tiles could follow a 

standardised procedure. In fact, the production of the natural fibre reinforced composite tile 

was quite difficult to do manually as the effects of moulding pressure and latex fractions can 

have a significant effect on the mechanical properties of natural fibre based composites. From 

tensile testing, it is ascertained that flax fibres mineralised with calcium carbonate and L-

lycine yield the best composite mechanical properties. Mineralised fibres using Glycine and 

β-Alanine showed a very similar behaviour to each other. These results are also in agreement 

with Fagerlund et al., (2013) and with molecular dynamic simulation results. In these 

researches, fibres treated with Glycine and β-Alanine showed similar characteristics of 

bending strength and intermolecular energy with a calcium carbonate system, while L-lycine 

demonstrated greater influence on the mechanical properties of bending fibres, as well as a 

more strongly bonded structure inside a calcium carbonate system. However, given there is a 

wide range in the stress values of the samples, the reliability of these values need to be double 

checked by increasing the number of test samples. Nano-indentation testing on flax fibre 

reinforced epoxy resin did not provide clear results. It is hypothesised that tough matrices 

make it hard to differentiate between the different mineralisation treatments. 

 





 

Appendix 

ANNEX A: SEM pictures of mineralised flax fibres. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Flax fibres mineralised with β-Alanine (30·10

-5
 M) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flax fibres mineralised with Glycine (100·10
-5

 M) 
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Flax fibres mineralised with L-lycine (50·10

-5
 M) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Flax fibres mineralised with L-lycine (50·10

-5
 M) 
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ANNEX B: Nano-indentation results 

 

 

 

 

 

 

 

 

 

Max applied load. = 500 N 

No. of indents/sample = 10 

Load function (Loading-holding-unloading) = 5-2-5 seconds 

 

 Sample SPM image of probed region Results [GPa] 

Pure  E= 9.8 ± 0.6 

H= 0.3 ± 0.0 

Bala 30  E= 9.4 ± 0.3 

H= 0.2 ± 0.0 

Bala 50  E= 7.8 ± 0.4 

H= 0.2 ± 0.0 

5m 
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Bala 

100 

 E= 8.6 ± 0.9 

H= 0.2 ± 0.0 

Gly 30  E= 9.7 ± 0.7 

H= 0.2 ± 0.0 

Gly 50  E= 8.1 ± 0.6 

H= 0.2 ± 0.0 

Gly 

100 

 E= 9.5 ± 0.8 

H= 0.3 ± 0.0 

Lys 30  E= 7.3 ± 0.3 

H= 0.2 ± 0.0 

Lys 50  E= 9.9 ± 0.8 

H= 0.2 ± 0.0 
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Lys 

100 

 E= 8.7 ± 0.4 

H= 0.2 ± 0.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 Appendix 

ANNEX C: Minimum and maximum values for the ultimate stress 

Ultimate stress [MPa] 

A.A. concentration Amino Acid Min Max 

30·10
-5

 M Glycine 42 48 

β-Alanine 45 51 

Lycine 44 55 

50·10
-5

 M Glycine 38 52 

β-Alanine 44 54 

Lycine 52 65 

100·10
-5

 M Glycine 56 70 

β-Alanine 68 75 

Lycine 70 86 

Control - 22 51 
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