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Abstract

The Linear Threshold Rank (LTR) is a centrality measure based on the
Linear Threshold Model for influence spread. In this thesis we study the
LTR on two random graph models: the Erdös–Rényi Graphs and the Random
Geometric Graphs. The main focus is on the impact the threshold definition
have on the algorithm output. Two kind of deterministic thresholds are
considered: a natural one, the percentage of neighbours that must be active;
an approximation of the first one, that replaces the number of neighbours
with the maximum number of connections a node can have.

The experiments show similar behaviors for the two thresholds on both
models (directed and undirected), even if the approximated version resulted
faster. We notice some interesting properties with phase transitions. It is
also observed that, in the connected regime and with an increasing percent-
age value in the threshold definition, the metric goes from being maximum
to count only the nodes in the initial activation set. In correspondence of
this change in the metric value, the maximum levels have a peak and the
ranking assumes values in a larger range.

After the experiments discussion, some theoretical results are proved only for
the Erdös–Rényi model.





Introduction

In a wide range of real-world cases, data can be organized as a network. Un-
derstanding which elements of the network are, according to some definition, more
relevant in the structure is often a useful way to understand data. Centrality mea-
sures aim to determine how important is an element of the network (node, vertex,
actor) within the structure itself. Some classical examples of centrality measures
are the degree metric, which judges a node important counting how many connec-
tions it has, or the betweenness metric, which considers the number of shortest
paths passing through the current vertex. In particular, when dealing with in-
teraction networks like social networks, networks of particles or communication
networks, the definition of centrality can be based on how an element can in-
fluence the others. In this work, this whole class of networks will be generally
called social networks. They are formally represented as graphs where the inter-
actions are the edges. Each edge can be associated with a numerical measure of
the interaction strength, called weight.1

An influence expansion model describes the ways in which actors influence each
other through their interactions in a social network. The most famous and studied
ones are the Linear Threshold Model and the Independent Cascade Model [30]:
the first one is based on some ideas of collective behavior [28, 44], while the second
one was proposed in marketing contexts [26].

Recently, in [42], it has been introduced a centrality measure based on the
Linear Threshold Model, called the Linear Threshold Rank (LTR). This measure
evaluates node importance depending on how many nodes it can influence during
the expansion process, assuming it able to convince his immediate neighbours.
Given this initial effort, even nodes with a low number of connections can result
highly central thanks to their neighbourhood.

In order to be able to perform the influence expansion on a graph, we need an
additional information about the resistance of each node to be influenced. This
quantity is usually not known a priori when data are collected, so finding a way to
define meaningfully the resistance values is a key problem. To this end, different

1From now on, the words graph and network, as well as node, vertex, actor and edge, link,
interaction will be used as interchangeable.



studies have been performed on benchmark networks [42, 43, 45, 23, 16] with
different resistance assignments. However, in this work, it is analysed the behavior
of the Linear Threshold Rank for the first time on random network models, defining
the resistances in a deterministic way.

The random graph models used for this purpose are the Erdös–Rényi Graphs
and the Random Geometric Graphs. The former has been chosen because it is
the simplest definition possible for a random network, so that a preliminary study
of LTR can be performed. The latter has connectivity regimes similar to the
Erdös–Rényi Graphs, so that the results can be compared with the ones on the
first model in a more immediate way. In addition, the Random Geometric Graphs
have been used in real networks modeling [5] and in continuum percolation [2, 3, 41]
- almost exclusively in two and three dimensions.

The thesis is structured in the following way:

• Chapter 1: an overview on information diffusion models is given. The Linear
Threshold Model is formally introduced together with the Linear Threshold
Rank. The main studies on the centrality measure are reviewed;

• Chapter 2: the random graph models used in the work are defined and
briefly described, in order to give to the reader all the tools needed to fully
understand the results;

• Chapter 3: the concepts of Random Graph and Influence Graph are mixed,
hence the needed definitions and notations are introduced;

• Chapter 4: the general framework of the experiments is explained. Each
numerical simulation is described in detail, organizing it in different phases.
For each phase, the results are presented and discussed;

• Chapter 5: some of the properties arose from the experiments on the Erdös–Rényi
model are formally proved;

• Chapter 6: the conclusion and future work of the thesis are discussed.



Chapter 1

Influence Expansion

1.1 Related Work on Influence
Social influence analysis (SIA) is becoming an important research field in social

networks. SIA mainly studies how to model the influence diffusion process in
networks, and how to propose an efficient method to identify a group of target
nodes in a network [9]. Studied questions include: who influences whom; who is
influenced; who are the most influential users.

SIA models have been widely studied in the literature. In [33], they are divided
into two main categories: microscopic and macroscopic models.

Here we recall the definition of graph, in order to fix the notation.

Definition 1.1. A graph (digraph) G is an ordered pair (V,E) of sets, where

V : set of nodes
E = {{i, j} | i, j ∈ V } : set of unordered edges
or
E = {(i, j) | i, j ∈ V } : set of ordered edges

Microscopic Models
Microscopic models focus on the role of individuals interactions and examine

the structure of the influence process. The most famous and studied influence
analysis models in this category are the Linear Threshold Model (LTM) and the
Independent Cascade Model (ICM) [30]. Since the LTM will be the basis of this
thesis, here we will briefly describe only the ICM and some alternative models.

ICM. Consider a graph G = (V,E), a seed set S ⊂ V and St ⊂ V, t ≥ 0
the set of nodes that are activated at step t. At step t + 1, every node i can
activate its out-neighbour j with an independent probability pij. The process ends
when no node can be activated. Note that a node has only one chance to activate

9



10 CHAPTER 1. INFLUENCE EXPANSION

its out-neighbors after it has been activated, and the node cannot exit from the
"activated" state.

Alternative models. Some models are different from the ICM or LTM models
and their variations, and have solved information influence diffusion from a new
point of view.

Lin et al. [34] proposed a data-driven model to maximize the expected influence
in the long run. However, this model needs large amounts of data, and the accuracy
of its results requires further improvement.

Golnari et al. [27] proposed a heat conduction (HC) model. It considers a
non-progressive propagation process, and is completely different from the previous
ICM or LTM models, which only consider the progressive propagation process. In
the HC model, the influence cascade is initiated from a set of seeds and arbitrary
values for other nodes.

Wang et al. [46] studied emotion influence in large-scale image social networks,
and proposed an emotion influence model. They designed a factor graph model to
infer emotion influence from images in social networks.

Gao [22] proposed a read-write (RW) model to describe the detailed processes
of opinion forming, influence, and diffusion. However, there are three main issues
that this model needs to consider further: the many parameters of the model that
must be inferred, the proper collection of datasets about opinion influence and
diffusion, and the evaluation metrics that are suitable for this task.

Macroscopic Models
Macroscopic models consider all users to have the same attraction to informa-

tion, the same transmission probability, and identical influential power. However,
since macroscopic models do not take individuals into account, the accuracy is
lower. To improve such models, the differences between individuals should be took
into account. Epidemic models are the most common models that are used to study
social influence from a macroscopic perspective. These models were mainly devel-
oped to model epidemiological processes. However, they neglect the topological
characteristics of social networks.

Daley–Kendall model. Daley and Kendall [11] analysed the similarity be-
tween the diffusion of an infectious disease and the dissemination of a piece of in-
formation, and proposed the classic Daley–Kendall model. Since then, researchers
have improved these epidemic models in general to overcome their weaknesses.

SI and variations. A standard and basic model belonging to the Epidemics
Models class is the Suceptible Infected (SI) one, proposed in [38]. The model as-
sumes that the total number of people, equal to N , is divided into two categories: S
(susceptible) and I (infected). At time t, s(t) represents the susceptible proportion
of the total population, i(t) represents the infected proportion and s(t) + i(t) = 1.
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The λ parameter represents the daily contact rate, i.e. the proportion of the sus-
ceptible users infected by infected users in the total population.

Given these definitions, we have that there will be Nλs(t)i(t) susceptible users
infected per day. Assuming at time t = 0 the proportion of patients is i0 and
noticing that di

dt
= λsi = λ(1− i)i we have{︄

di(t)
dt

= λ(1− i(t))i(t)

i(0) = i0.
(1.1)

This model can be expanded adding different kind of node labels. There are
various model developed specifically for social networks, for example SEIR (Su-
ceptible Exposed Infected Removed) model [47], S-SEIR (Single layer-SEIR) [49],
SCIR (Suceptible Contacted Infected Removed) model [15], irSIR (infection re-
covery SIR) model [8], FSIR (Fractional SIR) model [19] and ESIS (Emotional
Suceptible Infected Suceptible) model [48].

1.2 Linear Threshold Model
The Linear Threshold Model is a deterministic modelization of the influence

spread phenomena across a network: it describes step-by-step the process that
leads a network member (actor) to influence the other members [30]. One of the
key features of this model is that it is progressive: an actor that receives influence
from another actor for the first time turns its state from inactive to active in an
irreversible way.

To formalize the LTM dynamics, it is necessary to give the definition of influ-
ence graph [42].

This definition given in Def. 1.1 can be expanded in order to allow the structure
carry more information about the object it is modeling. In particular, when dealing
with interaction networks, like for example social networks, it is useful to define
the influence graphs.

Definition 1.1. An influence graph is a triple (G,w, f), where:

G = (V,E) is a graph (digraph);
w : E → R is a function on edges, called weight function;
f : V → R is the labeling function, which assigns to each node its resistance

to be influenced. It also known as activation threshold.

The above definition is clearly valid either for directed or undirected graph. For
undirected graphs, an associated directed graph can be obtained by considering
every edge in both directions. Hence, in this section the notation will assume that
the graph G is a digraph.
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1 2 3 4

Figure 1.1: Chain with n = 4.

Given an influence graph (G,w, f) and an initial set X ⊆ V of active nodes,
consider the following iterative activation process. Let Ft(X) ∈ V be the set of
active nodes at iteration t, with F0(X) = X. At each step t > 0 the LTM
prescribes that new nodes may be added if the following condition is satisfied by
each of them. Given Ft−1(X), x ∈ Ft(X) if and only if∑︂

y∈Ft−1(X)

w(y, x) ≥ f(x) (1.2)

where w(y, x) is the weight associated to the x’s incoming edge {y, x} ∈ E
and f(x) is the resistance associated to x ∈ E [30]. We put w(y, x) = 0 when
{y, x} /∈ E, i.e. when weight is not defined. The process stops when an iteration
cannot activate any new node.

The influence process is here formally defined, as done in [42]:

Definition 1.2. Let (G,w, f) be an influence graph where G = (V,E). The
spread of influence of X ⊆ V is

F (X) =
⋃︂
t≥0

Ft(X).

At each step the set of active nodes is updated in the following way:

Ft(X) = Ft−1(X) ∪ {nodes activated at step t}. (1.3)

We have that {Ft(X)}t≥0 is a strictly monotone, increasing sequence of sets.
Notice that the number of time steps t is at most equal to n − 1 when the

number of vertices in the graph is n, as if the process does not stop it incorporates
at least one vertex. The number of steps is maximized, for example, when the
graph is a chain of length n (example in Figure 1.1): under this condition the
spread of influence would increase only of one node at each step. In general, as
shown in the example in Fig. 1.2, it is true that

|Ft(X)| − |Ft−1(X)| ≥ 1 (1.4)

before the process reaches the stopping condition

Ft(X) = Ft−1(X). (1.5)

Our next result shows that, given X, the set F (X) can be computed efficiently.
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Algorithm 1 LTM Influence expansion algorithm.
1: Given (G,w, f): influence graph, X initial set
2: Initialize total = 0, Q empty queue (FIFO)
3: for v ∈ G.V \X do
4: v.active = FALSE
5: v.influence = 0
6: v.level = −1

7: for v ∈ X do
8: v.active = TRUE
9: v.influence = 0

10: v.level = −1
11: ENQUEUE(Q, v)

12: total = length(Q)
13: while Q not empty do
14: v = DEQUEUE(Q)
15: for u ∈ G.neighbours[v] do
16: if not u.active then
17: u.influence = u.influence+ w(u, v)
18: if u.influence ≥ f(u) then
19: u.active = TRUE
20: total = total + 1
21: ENQUEUE(Q, u)

22: u.level = v.level + 1
return total

Theorem 1.3. Let (G,w, f) be an influence graph and X a subset of nodes of G.
There is an algorithm that, with input (G,w, f) and X, computes the spread of
influence F (X) with time complexity of O(|E| + |V |) when G is represented with
adjacency list, in O(|V |2) when represented with adjacency matrix.

Proof. In order to implement efficiently the computation the F (X) defined in
Def. 1.2 we use a different but equivalent approach, see Algorithm 1.
The code has three main steps: first, it labels the vertices as active or not
(v.active); then, for each vertex it is computed the currently received influ-
ence (v.influence), initially set to 0; finally, a queue Q (FIFO - First In First
Out data structure) is used as a temporary placement for activated nodes whose
influence have not been expanded yet.
Initially the vertices in Q are only the initial active nodes in X. While the queue is
not empty, The algorithm will process the vertices as wrote in lines 13-22: the first
active node v in the queue is extracted and the neighbours receive its influence.
The w(u, v) influence exerted on u, a neighbour of v, is added to the influence
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parameter. If the level of influence reaches or exceed the threshold, v is deemed
as active and added to the back of the queue.

Now we can prove by induction that the algorithm is correct:

1. Observe that the queue respects the order of activation of the vertices, since
it is a FIFO structure. Initially F0(X) = X is activated, and placed on the
queue. When the algorithm finishes processing those vertices in F0(X), all
the vertices in F1(X) \ F0(X) have been placed at the end of the queue and
the ones in F0(X) deleted from it;

2. Iteratively, when the algorithm finishes treating the last vertex in Ft(X), all
and only the vertices in Ft(X) \ Ft−1(X) are in the queue. Therefore, when
the queue is empty, no more vertices can be activated, and the set of active
vertices coincides with F (X).

For the complexity part, observe that:

1. lines 3-11: we have two loops that initialize the parameters. The cost is
obviously Θ(|V |);

2. line 12: constant cost Θ(1);

3. lines 13-22: the while loop stops in at most in |V| iterations, since once
we extract a vertex from the queue it never enters it again; for each vertex,
we update the information of its neighbours (constant cost if efficiently im-
plemented with a doubly linked list). The cost of the loop depends on the
computational cost of the not active neighbours retrieval for each node.
When we have an adjacency list, in the worst case - i.e. when all neighbours
are not active - this cost is O(|neigh(i)|) with {neigh(i)}i∈V disjointed sets;
when an adjacency matrix is O(|V |).
Hence, for the first case the total cost for the list exploration is the sum of
O(|neigh(i)|) over all the nodes i ∈ V , equal to O(|E|). Since the access to
the lists is O(|V |), then the cost of the whole lines is O(|V |+ |E|).
In the second case, the two nested loops have same maximum number of
iterations O(|V |), so the total cost is O(|V |2).

Hence, the claim follows.

In Algorithm 1, we have added some counters to keep track of relevant param-
eters that we will use to analyse the properties of the process.

Definition 1.4. Let (G,w, f) be an influence graph where G = (V,E). A node is
said to be visited at step t if the condition in equation (1.2) has been checked at
this step.
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Figure 1.2: A simple example is proposed in order to clarify the mechanism of
the LTM. At level t = 0 only the initial set X = {b} is activated; at t = 1 the
neighbours of b receive the its influence and only d has a resistance value low
enough to be activated, the other neighbour c is just visited (its level variable is
updated to 1 but it is not active); at level t = 2 the node c is reached by the
influence of b and d so it is activated. The only inactive node at t = 2 is a: it
cannot be reached by any influence, since it has no incoming connection. Its level
will remain −1 and in this case the maximum level and the spread level are the
same.

Definition 1.5. Let (G,w, f) be an influence graph where G = (V,E). The set
of visited nodes starting from the initial activation set X is

visited(X) =
⋃︂
t≥0

visitedt(X).

Notice that the sequence {visitedt(X)}t≥0 is monotone but not strictly, since
nodes can be visited more than one time during the influence spread process.

Definition 1.6. Let (G,w, f) be an influence graph where G = (V,E).
The level of a node x ∈ V starting from the initial activation set X is the value
of t at which it has been visited for the last time. If x is never visited, the level is
assumed to be −1.

Looking at the Algorithm 1, we can see that the update of the level attribute is
done outside the if condition (line 22). This explains why the definition Def. 1.6
talks about visited nodes, not active ones. Of course, when a node is activated
(enters the Ft(X) set for some level t) its level cannot be updated anymore.

Definition 1.7. Let (G,w, f) be an influence graph where G = (V,E).
The spread level kX from the initial activation set X is defined as

kX = min{t ≥ 0 | Ft−1(X) = Ft(X)}

and it is the maximum level an active node can reach starting from X.
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Algorithm 2 BFS algorithm.
1: Given G: graph, x ∈ V initial node
2: Initialize component_size = 1, Q empty queue (FIFO)
3: for v ∈ G.V \ {x} do
4: v.active = FALSE
5: v.distance = −1

6: x.active = TRUE
7: x.distance = 0
8: while Q not empty do
9: v = DEQUEUE(Q)

10: for u ∈ G.neighbours[v] do
11: if not u.active then
12: u.active = TRUE
13: u.distance = v.distance+ 1
14: component_size = component_size+ 1
15: ENQUEUE(Q, u)

return component_size

Because of the observation after Def. 1.2, we have kX < |V |.

Definition 1.8. Let (G,w, f) be an influence graph where G = (V,E).
The maximum level from the initial activation set X is defined as

max_levelX = min{t ≥ 0 | visitedt−1(X) = visitedt(X)}

and it is the maximum level a node can reach starting from X.

Remark 1.9. By definition of all the considered quantities, we can easily see that
the following equivalence holds

max_levelX − kX =

{︄
0 if F (X) = visited(X)

1 if F (X) ̸= visited(X)

since the only possible case for F (X) ̸= visited(X) is F (X) ⊂ visited(X), when
there are inactive node connected with nodes in F (X) but not enough influenced.

The level, as defined in Def. 1.7, is the t at which a node is activated. It is
important to underline that, differently from a graph traversal, more than one
node can be added to the Ft(X) set for each t. This means that the level is not
interpretable as a time, since in order to add all the activable node to the current
active set more than one iteration of the while cycle can be performed (lines 13-22
of Alg. 1). Depending on how the influence expansion is implemented, it could
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be connected to the notion of distance from the initial activation set X. In the
algorithm reported in Alg. 1 the spread level variable is actually correlated to the
distance a node have from the set X, since it cannot assume a smaller value. This
property can be explained by comparing this algorithm with the Breadth-First
Search (BFS) one (Alg. 2): the two algorithms explore the graph in a similar way
(the adjacent of a node are visited and a FIFO queue is used to store the influenced
nodes, lines 13-21 of Alg. 1, lines 6-12 of Alg. 2); on the other hand, the LTM
add a constrain for the visited node to be activated, which radically change the
order in which the nodes are added to the queue. The set of active nodes returned
by the LTM algorithm can be interpreted as a influenced component, given the
similar way the variables total (LTM) and component_size (BFS) are updated in
the two algorithms.

1.3 Linear Threshold Rank
Starting from the LTM for influence expansion, a new centrality measure has

been proposed in [42]. It assigns to each node a centrality value in the [0, 1]
interval by considering the number of actors of the graphs it is able to affect with
its influence.

Definition 1.1. Let (G,w, f) be an influence graph, with G = (V,E) and x ∈ V
an actor. The Linear Threshold Rank of x, denoted by LTR(x), is given by

LTR(x) =
|F ({x} ∪ neigh(x))|

|V |

where neigh(x) = succ(x) ∪ pred(x) = {y ∈ V | (x, y) ∈ E ∨ (y, x) ∈ E}: set of
all the nodes with a connection with x.

The choice of the neigh(x) set definition is crucial to determine which kind of
property our ranking is going to capture. The consequences of this choice have
been studied in [45, 23, 43, 16], together with modifications of the LTR. Here some
of the most relevant results are summarized. Notice that all the studies reported
below have performed analyses on real data (benchmark networks, for example the
arXiv network1, the Higgs network2 and the Wikipedia voting network3), while this
work will focus on the LTR features on some graph models.

In [45] the LTM is studied with a threshold of simple majority (the labeling
function defined as f(x) = 0.5 ·

∑︁
y∈neigh(x) wyx). The definition of the neighbour-

hood set has been stated as the set of successors of a node (Forward Linear Thresh-
old Ranking, FLTR): this has been justified with a theoretical example, which have

1https://arxiv.org/archive/gr-qc
2http://snap.stanford.edu/data/higgs-twitter.html, reference paper: [12]
3http://snap.stanford.edu/data/wiki-Vote.html, reference paper: [32]

https://arxiv.org/archive/gr-qc
http://snap.stanford.edu/data/higgs-twitter.html
http://snap.stanford.edu/data/wiki-Vote.html
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shown that other definitions might have resulted in height of the rankings which
does not reflect the real cases. The example is the following: consider a Twitter
network where nodes correspond to Twitter accounts. In this framework, edge
(i, j) belongs to the graph when j is a follower of i. Imagine that node i decides
to follow a celebrity with many followers: that should not imply an increase in the
influence rank of node i, since they are not able to spread their influence through
this new connection. However, the LTR defined with neigh(i) = succ(i) ∪ pred(i)
increases in this case: this celebrity-node becomes part of the initial activation
set of node i and therefore leads to a higher LTR. This setting obviously lead to
a misinterpretation of the influence spreading process that happens in real-world
cases.

In addition, two more general rankings based on LTM have been studied: the
Discounted Linear Threshold Rank (DLTR) and the Fading Linear Threshold Rank
(FALTR). These last two measures of centrality are different implementations of
the same idea: evaluate the relevance of a node not only considering the number
of actors it is able to influence, but also how much time steps it needs to achieve
the actors activation. The former method have given results similar to the LTR’s
ones, with the relevant difference of having less nodes with the same metric value.
This means that, with properly set parameters, the DLTR can better distinguish
the role of a node in the considered network. The latter model, FALTR, had the
same advantages of DLTR and the disadvantage of having a higher computational
cost.

In [23] different aspects of the LTR have been taken into consideration: the
study of the discounted version of the LTR has been expanded; the role of the
neighbourhood has been analysed for DLTR and for the standard LTR; a Bounded
Linear Threshold Rank (BOLTR) has been defined and compared with LTR.
Again, the threshold used is the simple majority.

Regarding the DLTR, the conclusions are similar to the ones produced in [45]:
the results and the execution costs are almost the same of the LTR, with the
advantage of having more differentiation on the metric outputs.

For the analysis of the neighbourhood role, it has been defined in three different
ways: succ(x) ∪ pred(x) (LTR), only succ(x) (Forward flavoured, FLTR), only
pred(x) (Backward flavoured, BLTR). The centrality measures produced by LTR
and BLTR are highly similar and seem to associate to each node a false potential
of influence, above the one that has in a real world networks. The FLTR gave
different results, more in line with the real world cases.

The last considered aspect of the LTR was the BOLTR, defined depending on
a parameter representing the maximum spread level a node is allowed to reach.
This ranking showed to be almost identical to the standard LTR even with low
values of the bound: this shows that the LTR is, on these graphs, not able to
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influence nodes at high distance from the initial set.

In [43] it is defined a generalization of the LTR based on a flexibilization at the
level of neighbourhood considered for the initial activation: the Linear Threshold
Rank of x at level l, where l represents the maximum distance a node can have
from the seed of the influence expansion in order to be included in the neighbour-
hood. This metric, applied in combination with different definition of the labeling
function, for the first time defined not only as a simple majority, have shown that
it can be obtained even more distinguishable ranking values by using higher levels
of neighbours. The threshold used are: minimum influence (f(x) = 1), maximum
influence (f(x) =

∑︁
y∈neigh(x) wyx), simple majority, random.

In [16] the main focus was on the labeling function definition for the FLTR.
Three possible definitions have been considered: with the percentage of required
active nodes constant on all nodes, randomly generated and generated by another
measure of centrality. Note that the weights of the graphs have been normalized
s.t. the sum of the incoming weights for a specific node is always less than one and
the thresholds can be picked in the [0, 1] interval.

The constant labeling function case showed that an inflection point in the
[0.2, 0.5] interval exists, where the number of influenced actors decreases quickly.

The random threshold assignment showed to allow the nodes to have high
capability of influence, even if the interval from which the labels are sampled is
[0.5, 1].

For the third kind of f initialization, the centrality measures used as threshold
were Betweenness [20], ICR [29], PageRank [37] and the same FLTR. The last two
gave really similar results (compared through different correlation coefficients). In
general, this assignments based on other metrics seem to be more restrictive with
respect the other two tried in this work, i.e. low values of ranking are generated.

In this work we will focus on only one version of the LTR, the following one:

Definition 1.2. Let (G,w, f) be an influence graph, with G = (V,E) and x ∈ V
an actor. The Forward Linear Threshold Rank of x, denoted by FLTR(x),
is given by

FLTR(x) =
|F ({x} ∪ succ(x))|

|V |
where succ(x) = {y ∈ V | (x, y) ∈ E} is the set of all the x successors.

In the undirected graph case it is equivalent to the LTR.
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Chapter 2

Random Graphs

Depending on the definitions of the sets V and E (see Def. (1.1)) a graph can be
deterministic, random, dynamic (it evolves in time) or assume any kind of flavour
that best suits the data we want to represent.

In this section we will focus on two well known definition of random networks,
describing some of their main properties: the Erdös–Rényi and the random ge-
ometric graphs. With the term random we refer to graphs with a probability
distribution defined over them.

2.1 General definitions
In order to fix the notation that will be used in the section, some basic defini-

tions on graphs are recalled.

Definition 2.1. Given a graph G = (V,E), the degree d(i) of a vertex i ∈ V is
defined to be the number of vertices connected with i by an edge. More formally:

d(i) =
∑︂

j∈V \{i}

1({i, j} ∈ E) .

In the case of directed graph, the degree can be defined as in-degree dIN(i) consid-
ering only the predecessors, out-degree dOUT (i) only with successors or the total
degree d(i) = dIN(i) + dOUT (i) .

Definition 2.2. Given a graph (digraph) G = (V,E), a node i ∈ V is said to be
isolated if d(i) = 0.

Definition 2.3. Given a graph G = (V,E), a connected component C = C(G)
is a subgraph of G s.t. C = (V ′, E ′) with V ′ ⊂ V, E ′ ⊂ E where any two vertices in
V ′ are connected to each other through a path and vertices of V ′ are not connected
to vertices of V \ V ′. When the size of C(G) is of the order of the entire graph,
then we call it a giant component (GC).
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Definition 2.4. Let G(n, θn) be a random graph of size n depending on some
parameters θn = (θ1n, . . . , θ

d
n) ∈ [0, 1]d, d ≥ 1. Let (an)n∈N be a sequence in the

real interval [0, 1]. A property P is said to have a sharp phase transition with
respect the to converging sequence (an)n∈N and the parameter θin if

lim
n→+∞

P(P holds for G(n, θn)) =

{︄
0 if θin ≥ c · an, c > 1

1 if θin ≤ c · an, c < 1

or

lim
n→+∞

P(P holds for G(n, θn)) =

{︄
0 if θin ≤ c · an, c < 1

1 if θin ≥ c · an, c > 1

when all the other components of θn are fixed.

2.2 Erdös–Rényi Graphs
We now extend the definition of graph given in Section 1.2 introducing a simple

random component, which makes it a random graph. The following definition of
Erdös–Rényi graph (ERG) or binomial graph has been introduced in [17, 24, 18];
this model associates to the edges a probability of appearance in the simplest way
possible.

Definition 2.1. An Erdös–Rényi graph G(n, p) is a graph G = (V,E) with
n = |V | and where each possible edge has probability p of existing, i.e.

E = {{i, j} : ξi,j = 1, i, j ∈ V, i ̸= j}
ξi,j ∼ Be(p) i.i.d.

where Be(p) : Bernoulli distribution of parameter p.

It can be defined in a directed or undirected flavour. The notation used above
is for the undirected case. i.e. (i, j) = (j, i), while in the directed case we have:

E = {(i, j) : ξi,j = 1, i, j ∈ V, i ̸= j}
ξi,j ∼ Be(p) i.i.d.

where (i, j) ̸= (j, i) and ξi,j ̸= ξj,i.

Now we can describe some of the main properties of an Erdös–Rényi graph.

Expected degree. This definition allow us to easily compute the expected
degree. Consider the discrete random variable d(i) (or dIN(i), dOUT (i) in the
directed case) representing the degree value of the i ∈ V node of a binomial graph.
Given the Def. 2.1, we have that:

P(d(i) = k) =

(︃
n− 1

k

)︃
pk(1− p)n−1−k. (2.1)
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Figure 2.1: Examples of G(n, p) graphs with n = 100. On the left, p = 1
300

(isolated
regime); on the right, p = 1

50
(GC regime).

In other words, d(i) ∼ B(n − 1, p): Binomial random variable, so its expected
value and variance are:

E(d(i)) = (n− 1)p ;

Var(d(i)) = (n− 1)(1− p)p .
(2.2)

Connectivity regimes. Interesting properties of this class of graphs are the
asymptotic ones, usually described through sharp phase transitions with respect to
the probability parameter (see Def. 2.4). In literature, the results are only on the
undirected definition of the graph. To express them, is useful to consider p = pn
dependent on the graph size. Two classical and useful examples of sharp phase
transitions in binomial graphs are the ones regarding the connectivity regimes.
Here will be presented only the transitions actually used in the thesis. According
to the purpose of this work, the propositions stated below will not be proved.
Their proofs can be found in [17, 31, 21].

Theorem 2.2. Let P1 be the property "there are isolated vertices in G(n, pn)". It
has a sharp phase transition w.r.t. the sequence logn

n
of the form

lim
n→+∞

P(P1 holds for G(n, pn)) =

{︄
0 if pn ≥ c logn

n
, c > 1

1 if pn ≤ c logn
n

, c < 1 .

Furthermore, the property P ′
1: "the graph is connected" has probability of hold-

ing on G(n, pn) that goes to one when n goes to infinity and when

pn ≥ c
log n

n
for c > 1 .
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Theorem 2.3. Let P2 be the property "all the connected components in G(n, pn)
have size O(log n)". It has a sharp phase transition w.r.t. the sequence 1

n
of the

form

lim
n→+∞

P(P2 holds for G(n, pn)) =

{︄
0 if pn ≥ c

n
, c > 1

1 if pn ≤ c
n
, c < 1 .

Remark 2.4. In the case pn ≥ c
n

for c > 1 it is also proved that with high probability
a giant component arises, while all other components have size O(log n).

pn

1
n

Subcritical
regime

existence of
isolated vertices

logn
n

Supercritical
regime

GC arising

Connected
regime

all nodes absorbed
by the GC

Figure 2.2: ERG connectivity regimes schema.

2.3 Random Geometric Graphs
Now we will introduce the second model of interest, belonging to the family of

the spatial networks : the Random Geometric Graph (RGG). In general, a spatial
network (sometimes also geometric graph) is a graph in which the vertices or edges
are spatial elements associated with geometric objects, i.e. the nodes are located in
a space equipped with a certain metric [7]. The simplest mathematical realization
is a lattice or the RGG itself.

In the following we briefly introduce the basic concepts and results on RGG
from [39, 40].

Definition 2.1. A Random Geometric Graph G(n, r) is a graph G = (V,E)
with n = |V | and vertices distributed in [0, 1]d, d ≥ 1 independently and uniformly
at random, such that a connection between any two pairs of vertices i = (i1, . . . , id)
and j = (j1, . . . , jd) is present with probability one if the Minkowski distance
between i and j is lower or equal than a given positive cut-off constant (radius) r,
i.e. vertices i and j are connected if and only if(︃ d∑︂

k=1

|ik − jk|p
)︃ 1

p

≤ r .
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Figure 2.3: Examples of G(n, r) graphs with n = 50, d = 2, p = 2. Starting from
the left, the radius assumes the values 0.1, 0.2 and 0.3 respectively.

As clear from the definition just stated, the RGGs are only meant to be defined
as undirected graphs.

In this work the only RGG model that will be taken into account is the planar
one, with d = 2, and where the used distance is the Euclidean distance, i.e. p = 2.
This kind of networks were introduced and studied for the first time in [25].

Connectivity regimes. Also the RGGs can be proved to have different stages
of connectivity depending on the radius parameter [13, 40]. Let now be r = rn
dependent on the network size.

Proposition 2.2. Let X be the random variable representing the number of iso-
lated vertices in G(n, rn). Consider the indicator Xi = 1 if i: isolated node, Xi = 0
otherwise. Then

E(X) =
∑︂

i: node

E(Xi) = n(1− πr2n)
n−1 .

Remark 2.3. The mean value computed above can be approximated as

E(X) ∼ ne−πr2nn−O(r4nn) = µe−O(r4nn)

where µ = ne−πr2nn. How the µ sequence asymptotically behaves characterizes the
G(n, rn) connectivity.

Theorem 2.4. Let µ be the quantity defined in Remark 2.3. The connectivity of
G(n, rn) is characterized in the following way:

• if µ → 0 then a.a.s.1 the G(n, rn) is connected;

1a.a.s.: asymptotically almost surely.
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• if µ = θ(1) then a.a.s. the G(n, rn) the giant component arises;

• if µ → +∞ then a.a.s the G(n, rn) is disconnected.

Corollary 2.5. Let P1 be the property "there are isolated vertices in G(n, rn)". It

has a sharp phase transition w.r.t. the sequence
√︂

logn
πn

of the form

lim
n→+∞

P(P1 holds for G(n, rn)) =

⎧⎨⎩0 if rn ≥ c
√︂

logn
πn

, c > 1

1 if rn ≤ c
√︂

logn
πn

, c < 1.

Theorem 2.6. Let P2 be the property "all the connected components in G(n, rn)

have size O(log n)". It has a sharp phase transition w.r.t. the sequence
√︂

λc

n

(experimentally λc ∼ 2.0736) of the form

lim
n→+∞

P(P2 holds for G(n, rn)) =

⎧⎨⎩0 if rn ≥ c
√︂

λc

n
, c > 1

1 if rn ≤ c
√︂

λc

n
, c < 1.

rn

√︂
λc

n

Subcritical
regime

existence of
isolated vertices

√︂
logn
πn

Supercritical
regime

GC arising

Connected
regime

all nodes absorbed
by the GC

Figure 2.4: RGG connectivity regimes schema.



Chapter 3

LTR on Random Social Graphs

In order to apply the centrality measures introduced in Section 1.3 to random
graphs we need to consider them as random social networks, i.e. random networks
on which an influence process can be run.

Definition 3.1. A random social graph is an influence graph (G,w, f) as de-
fined in Def. 1.1 where G is a random graph, i.e. a graph whose conformation is
defined through a probability distribution.

For the graph models introduced in Section 2 the weight function will be con-
stantly equal to one, so from now on we will refer at it as a pair (G, f) since these
are the only not trivial elements.

The labeling function f that will be used in this work will always be a deter-
ministic function. In particular, only two kind of labeling functions will be used
in this thesis.

Definition 3.2. Let G be a random graph on |V | = n vertices. We define the
following labeling functions for i ∈ V :

f1(i) = t · (n− 1) ;

f2(i) = t · |pred(i)| .

where pred(i) will reduce to the neigh(i) set when the graph is undirected and
t ∈ [0, 1].

The f2 labeling function is coherent with the concept of resistance described in
Section 1.2. The f1 is not the classical definition on threshold used in the LTM,
it is an approximation: the number of nodes in the neighbourhood of a specific
i ∈ V is estimated from above by n − 1, the maximum number of connections a
node can have.

27



28 CHAPTER 3. LTR ON RANDOM SOCIAL GRAPHS

Given the random nature of the graph structures, the quantities computed
by Algorithm 1 will be random variables. These will be the quantities measured
during the experiment simulations.

All the random variables that will be introduced later on in this section will be
defined as functions from the set of vertices, while in fact the set of events they are
associated with is the family of possible conformations of the graph that involves
a fixed node. This is just an abuse of notation used in order to let the formulation
be more understandable.

In the following we write [n] for the set of natural numbers from 0 to n.

Definition 3.3. Let (G, f) be a random social graph on |V | = n vertices. The
discrete random variable level(i, j) is defined ∀i, j ∈ V as

level(i, j) : "Level at which j is reached starting from {i} ∪ neigh(i)"
level : V × V → [n− 1] ∪ {−1}.

If a node is never reached during the influence expansion the variable assumes
the value -1. If a node is in {i} ∪ neigh(i), it assumes the value zero.

From this definition, two other random variables can be introduced.

Definition 3.4. Let (G, f) be a random social graph on |V | = n vertices. The
discrete random variable maxlevel(i) and the real random variable avglevel(i) are
defined as:

maxlevel(i) = max
j∈V

level(i, j), maxlevel : V → [n− 1] ;

avglevel(i) =
1

n

n∑︂
j=1

level(i, j), avglevel : V → (−1, n− 1).

Remark 3.5. The level(i, j) random variable corresponds to the level defined in
Def. 1.6; the maxlevel(i) corresponds to the max_leveli∪neigh(i). The average level
has no directed correspondence with the quantities defined in Section 1.2, it is the
mean of all the levels attribute computed by Alg. 1.

Definition 3.6. Let (G, f) be a random social graph on |V | = n vertices. The
discrete random variable metric(i) is defined as:

metric(i) : "Number of nodes influenced starting from {i} ∪ neigh(i)"
metric : V → [n− 1] \ {0}.



Chapter 4

Experiments

The aim of this work is to detect and, if possible, formally prove some prop-
erty that the LTR has on random social graphs. In particular, the interest is to
understand how the definition of the labeling function influences the ranking and
check if some of the observed properties shows a phase transition.

Experimental tests on ERG and RGG have been carried with this purpose, in
order to explore the behaviour of our metric on different connectivity regimes of
the graphs.

4.1 Implementation
All simulation codes are in Python 3. In order to decrease the running time of

the simulation, the Numba library1 and a parallelized implementation2 have been
employed. Since Numba is able to work only with Python Standard Library and
with the NumPy3 library, the adjacency matrix representation has been chosen for
the graphs. Some tests have been performed in a preliminary stage to prove that
this implementation is more convenient than using adjacency list, SciPy4 sparse
matrix or NetworkX5 graph structure if the aim is minimize the time consumption.
This choice is clearly a trade-off since the used representation is more memory
consuming.

Due to the high dimension of the generated data, all the simulation were run
on a cluster of computers from the Computer Science Department at UPC6.

1Numba: A High Performance Python Compiler, http://numba.pydata.org/
2Multiprocessing from Python Standard Library, https://docs.python.org/3/library/

multiprocessing.html
3Fundamental package for scientific computing with Python, https://numpy.org/
4https://docs.scipy.org/doc/scipy/reference/sparse.html
5Network Analysis in Python, https://networkx.github.io/
6/rdlab, https://rdlab.cs.upc.edu/
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Subcritical Supercritical Connected

ERG 1
10n

, 1
2n

2
3n

+ logn
3n

, 8 · 10−1, 7 · 10−1, 6 · 10−1,

1
3n

+ 2 logn
3n

1 · 10−1, 1 · 10−2, x · 10−3,

(x = 9 for n = 103, x = 5 oth.)

RGG
√︂

1
10n

,
√︂

1
2n

2
3

√︂
λc

n
+ 1

3

√︂
logn
n

, 8 · 10−1, 7 · 10−1, 6 · 10−1,

1
3

√︂
λc

n
+ 2

3

√︂
logn
n

3 · 10−1, 1 · 10−1, x · 10−3,

(x = 6 for n = 103, x = 4 oth.)

Table 4.1: Random graph parameters per connectivity regimes.

4.1.1 Graphs generation
A set of G(n, pn) and G(n, rn) graphs has been considered in order to study the

LTR behaviour. Different experiments have been carried on, each of them focusing
on a specific aim by changing the parameters of interest. In all of them the different
random graphs have been varied by changing the n and the peculiar parameter pn
or rn (values shown in Tab. 4.1). For each G(n, pn) graph, both the undirected and
directed cases have been analysed (for the directed case, neigh(i) = succ(i)); for
the G(n, rn) only the undirected one make sense to be defined. In this work only
the images on undirected ERGs will be included because of the high similarity the
results on the directed case have shown to them.

Given the phase transitions described in Section 2, the initial probabilities/radii
(Table 4.1) have been chosen depending of the current size of the graph. In partic-
ular, the probabilities in the subcritical and supercritical regimes were defined as
a formula including the n parameter in order to optimally cover these phases. For
the connected regime, which represents the largest part of the (0, 1) real interval,
the probabilities have been set manually. At an initial stage the value of n only
varies in {1000, 5000, 10000}.

We considered the labeling functions defined in Def. 3.2:

◦ f1(i) = t · (n − 1), t ∈ [0, 1]: this labeling function considers as threshold
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n pn Sample size f1 Sample size f2

103 pn < 0.1 no sample no sample

pn ≥ 0.1 102 102

5 · 103 pn < 0.01 103 103

pn ≥ 0.01 102 102

104 pn < 0.01 103 102

pn ≥ 0.01 102 102

Table 4.2: ERGs sample sizes per probability ranges.

n rn Sample size f1 Sample size f2

103 rn < 0.3 no sample no sample

rn ≥ 0.3 no sample 102

5 · 103 rn < 0.3 103 103

rn ≥ 0.3 102 102

104 rn < 0.3 103 102

rn ≥ 0.3 102 102

Table 4.3: RGGs sample sizes per radius ranges.
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the percentage t of the theoretical maximum number of neighbours a node
can have, i.e. n− 1. It will be referred as the max neighbour threshold.
It does not take into account the topology of the graph and it is fixed for
every node;

◦ f2(i) = t · |neigh(i)|, t ∈ [0, 1]: this labeling function considers as threshold
the percentage t of the number of neighbours a node have. It will be referred
as the neighbour threshold. It changes for every node and depends on the
topology of the graph.

In the fist stages of the experiments, the exploratory ones, the discrete set in which
t has been taken is {0.25, 0.5, 0.75, 1}.

For each influence random graph (G, f) considered in the experiment, we set
the number of extracted sample of the graph’s probability distribution to k = 50
(from now on, referred realizations), in order to better generalize the behaviors
observed.

4.1.2 Ranking computation
The simulation of influence expansion outputs a dataset containing for each of

the k realizations of the graphs and for each node i:

◦ resistance attribute: the value of t used to obtain the data in the row of
the dataset;

◦ metric attribute: the LTR value, not normalized with the graph size. It is
the number of influence nodes. Realization of the metric(i) random variable
defined in Section 3;

◦ max_level attribute: the maximum expansion level reached during the sim-
ulation. Realization of the maxlevel(i) random variable defined in Section
3;

◦ avg_level attribute: the average expansion level of the simulation. Real-
ization of the avglevel(i) random variable defined in Section 3.

The resistance t that defines the value assumed by the labeling function is put as
an attribute because of how the influence expansion was implemented. Generated
a random graph G, the t parameter is varied at each simulation in order to have
different influence graphs. Of course it is not an output but a parameter that
defines the input, but it is left in the list just to make the data more readable.

These data are the processed in order to obtain two kind of information: one
on each node, computing the average metric, max_level, avg_level values on
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all the realizations; the other on the whole influence graph (G, f), calculating the
averages of the same attribute on all the realizations and on all the nodes.

In order to ease the LTR computation not all the nodes of the graphs will
be used. A sample is extracted by picking a number of nodes equal to a sample
size variable, by using a uniform distribution on V . The values assigned to this
variable change depending labeling function selected. A resume of the sizes used
in the numerical simulations are shown in Tab. 4.2 for the ERGs, in Tab. 4.3 for
the RGGs.

4.2 First Experiment: max neighbour threshold on
ERG

In this Section we will go through the results obtained by the first experiment:
the application of the LTR on influence graphs (G, f1), G: binomial graph. In
Phase 1 a preliminary analysis of the results is provided, the parameters used
are the basic one described in the Implementation section; on the basis of the
observations done at this stage, Phase 2 and Phase 3 will give and discuss the
results of the experiments done choosing suitable refinements on the parameters.

4.2.1 Phase 1
This phase of the first experiment is aimed to get a general idea of how the

influence expansion behaves on ERG’s different connectivity regimes with f1 la-
beling function. Here, only the basic parameters defined in the previous section
are used.

The analysis of the generated data (Appendix A.1) can be resumed in the
following observations:

1. max_level ≤ 1 almost on all nodes, resistances and probabilities, with some
exceptions for high probability values (Figures 4.1a, 4.1b). This indicates
that in most of the cases the influence algorithm is not able to activate nodes
with a distance from the initial activation set X higher than 1 (coherent
with the results obtained in [23] about the BOLTR). For pn < 0.6 it happens
because the probability value is too low to have enough links; in the other
cases, because the graph is highly connected and the nodes are reached in
time 1 or never reached;

2. avg_level ≤ 0 for probabilities before the connected regime or above but
near the critical point and for all nodes (Figure 4.1a), which indicates that
the number of inactive and never reached nodes (level = −1) is high with
respect to the number of activated ones;
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(a) Example for the Observations 1 to 4.

(b) Example for the Observations 1, 4 and 5.

Figure 4.1: Undirected case, n = 1000. On the x axis the values of t used (not the
complete interval, just Phase 1 discrete set); on the y axis the values assumed by
the parameter in the title.

3. max_level = 0 for at least one node for probabilities before the connected
regime (Figure 4.1a), which means that there are no activated nodes outside
of the initial set {i} ∪ succ(i);

4. the parameter t seems to have a low influence on how the algorithm behaves
(Figures 4.1a, 4.1b). This is noticeable by the fact that almost all the results
show a mean value represented as a straight line. This is explicable by the
hard requirement f1 represents, being defined as a percentage of maximum
number of node an actor can be connected with. A difference is only visi-
ble for probability values close to 1, which means that the expected degree
E(d(i)) = (n − 1)pn (Eq. (2.1)) of each node is near to the value n − 1, so
it is expected to have more nodes with the structural possibility to be ac-
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Figure 4.2: Phase transitions for Properties 0 and 1, average truth values on the
y axis. Data shown for t = 0.5, n = 103, max neighbours undirected case.

tivated. Another explanation, which does not exclude the previous one but
complete it, is that when d(i) ∼ E(d(i)) the value of t impedes the expansion
to proceed outside the initial activation set when t > pn;

5. metric shows a change of behaviour for high probability values and t ∈
[0.25, 0.5] (Figure 4.1b), coherent with the inflection point observed in [16].
In correspondence of the changing point, the max_level variable assumes
values ≥ 1 for pn = 0.7.

These first patterns allow the next simulation to be organized in the following
way: Phase 2 will be aimed to define and deeper explore the observation about
the levels (max_level and avg_level); Phase 3 will analyse the behaviour of the
metric parameter.

4.2.2 Phase 2
Looking at the results given by the Phase 1, two properties about the max_level

and avg_level parameters can be formulated.
In order to analyse the behaviour of this property and see if it possible to detect

a phase transition, some new graphs have been generated with pn ∈ [0.01, 0.05]
and n varied in [103, 104] with steps of 103.
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Figure 4.3: Threshold sequences possible formulas. Data shown for t = 0.5, repre-
sented the last probability values for which the property holds in every realization.

Property 0. The Observation 3 can be formalized as

P0 : ”∃i | max_level(i) = 0”

which means that, after the simulation of influence expansion started from node
i, the only actors resulting activated are the ones in the initial set.

In Appendix A.2.1 and A.2.3 the images representing the results are shown: in
the former set of images the truth values assumed by the property are displayed
versus the corresponding probability values; in the latter, it can be seen an ap-
proximation of the threshold sequence of the phase transition. A representative
example is reported in Figure 4.2. It is clear from these representation of the data
that the t parameter is not influential at all.

In Figure 4.3 a possible formulation of the threshold sequence is compared
with the data. Looking at the picture on the left, the one representing the last
probability values for which the property holds in every realization for P0, a clear
shape of Θ( logn

n
) can be noticed. This function will be the threshold guess we will

prove in the next section.

Property 1. The Observations 1 and 2 can be combined in a unique property

P1 : ”∃i | max_level(i) ≤ 1 ∧ avg_level(i) ≤ 0”

where i ∈ V : node of the graph. In this way we are capturing the inability of the
influence to be spread along the graph when the probability value is low.

The results about the phase transition existence and its possible threshold
sequence are represented in Appendix A.2.2 and A.2.3. It is clearly shown a sharp
phase transition, that seems to start being false for bigger values of pn. This
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Figure 4.4: Behaviour of the metric and the maximum level parameters around
the inflection point, shown for n = 10000.

indicates that P1 probably has a wider transition gap with respect the property
P0. In addition, it can be seen that even in this case the transition seems to be
independent from the value of t.

In Figure 4.3 the data-estimated transition threshold is compared with some
functions. The image on the right shows an identical behaviour to the one of the
P0 property, so the threshold guess will be the same logarithmic sequence Θ( logn

n
).

4.2.3 Phase 3
The Observation 5 of the Phase 1 does not give enough information to formulate

any kind of hypothesis about the inflection point behaviour and the corresponding
peak in max_level detected for pn = 0.7. It can be better explored: it is probable
that, for probability values which are high enough to activate the whole graph,
there exists a value t for which an inflection point is observed and max_level ≥ 1.

A refinement of the t values has been done by covering the [0.2, 1] interval with
discrete values at distance 0.025 for probability values pn ∈ {0.6, 0.7, 0.8}.

The images related to this simulations are visible in Appendix A.1.2: in the first
set of images it is clear that for each considered size there exists a inflection point
almost independent from n but strongly dependent on the probability parameter
pn, increasing with its values.

It can be noticed in Appendix A.1.2 that the inflection point of the metric is
characterized by the different behaviours depending on t (zoom on Figure 4.4):

1. an initial phase in which the metric value is still maximum but assumed after
different time steps of the influence expansion. In this phase a vertical line
appears in the plots;
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2. a critical phase in which the algorithm finds more difficult to spread the
influence (the metric value is not always maximum) but the maximum level
reached has a peak;

3. a final phase in which the metric value is more stable and the maximum
levels decrease again to one. The former oscillates around a high value of
influenced nodes different from the maximum, the latter becomes stable at
one.

The final phase is reached for t > pn. This Observation will be theoretically
explained in the next chapter.

The presence of an inflection point for the metric was already know from [16],
even if only on real-world data. What it is interesting to notice here is that for
this specific model of random graph and this labeling function, the inflection point
is detected in a different range of t: on the data analysed in the cited work, the
range was [0.2, 0.5], while in this case for the probabilities 0.6, 0.7, 0.8 we found
respectively the ranges [0.3, 0.4], [0.45, 0.55], [0.6, 0.7].

In addition, an unexpected behaviour of the max_level parameter has been
noticed around these point.

4.2.4 Notes on the directed case
This paragraph is meant to show in brief that the results obtained for the

undirected random social graphs are valid also for the directed ones, with the only
difference that in the second case we do not have any known connectivity phase
transition.

We can clearly see in Figures 4.5b and 4.5a that the observations done in Phase
1 on the undirected (G, f1) are still valid. It can also be seen that the properties
0 and 1 show the same phase transitions.

About the inflection point and the three phases noticed when considering the
relation between metric and max_level, they do not present any difference. More-
over, the metric data seem to have a Gaussian distribution.

4.3 Second Experiment: neighbour threshold on
ERG

In this Section we will go through the results obtained by the second experi-
ment: the application of the LTR on influence graphs (G, f2), G: binomial graph.

In Phase 1 a preliminary analysis of the results is provided, when the parame-
ters used are the basic ones described in the Implementation section; on the basis
of the observations done at this stage, Phase 2 and Phase 3 will discuss the other
experiments based on refinements of the parameters.
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(a) Low probabilities behaviour.

(b) High probabilities behaviour.

Figure 4.5: Directed case, n = 1000. On the x axis the values of t used (not the
complete interval, just Phase 1 discrete set); on the y axis the values assumed by
the parameter in the title.

4.3.1 Phase 1
In this second framework, the Phase 1 is again exploratory. The influence

expansion is performed on ERG’s different connectivity regimes with f2 labeling
function. As before, only the basic parameters defined in the previous section are
used. Note that for Ei,k we are computing the average in the data, i.e. sample
average, not the theoretical one.

The properties arising from data (Appendix A.3) can be resumed as:

1. the max_level variable behaviour is not as stable as observed in previous ex-
periment. Here the observation Ei,k(max_level) < 1 is true for t big enough
(in general, t ≥ 0.5) and for all the probability values (Figures 4.6a, 4.6b).
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As regards the variability of this parameters, is high in the low probability
values and strongly depends on t;

2. avg_level ≤ 0 for probabilities before the connected regime, for t big enough
and for all nodes (Figure 4.6a). This indicates that the number of inactive
and never reached nodes (level = −1) is high with respect to the number of
activated ones;

3. Ei,k(max_level) ≈ 0 for probabilities before the connected regime and t big
enough (in general, t ≥ 0.5), which means that there are no activated nodes
outside the initial set {i} ∪ succ(i) (Figure 4.6a);

4. the parameter t here has influence on the quantities observed (Figures 4.6a,
4.6b). Around t = 0.5 the Ei,k(max_level) and Ei,k(avg_level) variable
show an inflection point for pn < 0.6 and outside the subcritical regime.
Above pn = 0.6, in the highly connected regime, the behaviour is not clear
and should be better explored;

5. metric shows a change of behaviour for high probability values and t ∈
[0.5, 0.8], probably connected with the observation 4 (Figure 4.6b). In ad-
dition, especially for n = 103 it seems that for small values of t the Giant
Component is totally (or nearly totally) activated.

These observations are similar but less regular with respect t as the ones noticed
in the First experiment.

4.3.2 Phase 2
Starting from the observation done during Phase 1, the same properties defined

for the First Experiment can be analysed again here.

Property 0. The Observation 3 can be formalized as

P0 : ”∃i | max_level(i) = 0”.

Property 1. The Observations 1 and 2 can be combined in a unique property

P1 : ”∃i | max_level(i) ≤ 1 ∧ avg_level(i) ≤ 0”.

In order to analyse the behaviour of this property and see whether it possible
to detect a phase transition, some new graphs have been generated with pn ∈
[0.01, 0.05].

The refinement shows for P0 and P1 the same phase transitions already ob-
served in the previous experiment (see Appendix A.4.1, focus on 4.7). This was of
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(a) Example for the Observations 1 to 4.

(b) Example for the Observations 1, 4 and 5.

Figure 4.6: Undirected case, n = 5000 (a), n = 1000 (b). On the x axis the values
of t used (not the complete interval, just Phase 1 discrete set); on the y axis the
values assumed by the parameter in the title.

course expected for P0 since the step 0 of the influence expansion does not depend
on the resistance function defined on the node. It was less obvious for the P1, that
could have been more dependent on the labeling function and on the t value.

Because of this similarity, we will not repeat the discussion about the phase
transition sequence threshold, which was already carried out in the Phase 2 of the
First Experiment (Section 4.2).

A different property seems to arise in the supercritical phase when the labeling
function is f2, as underlined in Observation 5.

Property 2.
P2 : ”∃i | metrici = |GC|”.

This property is not studied in this thesis, but it is left as a possible future
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Figure 4.7: Phase transitions for Properties 0 and 1, average truth values. Data
shown for t = 0.5, n = 103, max neighbours undirected case.

work.

4.3.3 Phase 3
This phase of refinement is based on the Observation 5 of Phase 1, in particular

it is focusing on the inflection point shown only by the simulations on n = 103.
The data generated in the first phase are not informative since the values chosen
for the t parameter are not specific enough to identify some behaviour when the
LTR metric values decrease.

Picking new values for t of the form 0.x5, where x ∈ {2, 3, 4, 5, 6, 7, 8, 9}, the
data showed an inflection point for the metric with a behaviour close to the one
already observed for the previous experiment.

In addition, the same pattern of evolution of the relationship between the
metric and max_level parameters shown in Experiment 1 can be observed here.
They can be seen in Appendix A.3.2, while a focus is reported in Figure 4.8. For
time reasons, the refinement is here less precise: the three phases already described
in detail in Section 4.2.3 (initial, critical, final) are still visible but with a worst
resolution. However, we can easily infer that the behaviour may be exactly the
same.

The ranges in which the three phases are observed are the following: [0.75, 0.85]
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Figure 4.8: Behaviour of the metric and the maximum level parameters around
the inflection point, shown for n = 10000.

for pn = 0.8, [0.85, 0.75] for pn = 0.7, [0.75, 0.65] for pn = 0.6. They are different
from the ones observed in [16] on real-world data and also different from the results
obtained from the First Experiment: the ranges have extremes greater then in the
previous case, but of a similar size.

Again it can be noticed that the final phase, in which all the nodes are activated
at level 1 but the LTR is not maximum, is reached for t > pn.

4.3.4 Notes on the directed case
In this paragraph we will comparing the results on undirected random social

graphs and the directed ones. We can observe that the results are exactly the
same apart from one fact: the properties noticed in the directed graphs cannot
be related to connectivity regimes of the network since the results on the phase
transitions are valid only in the undirected case.

In Figures 4.9b and 4.9a the same pictures analysed in Phase 1 are reported,
but for the directed case. It is clear that the observations already done in Phase 1
are still valid. It can also be seen that the properties 0 and 1 show the same phase
transitions.

About the inflection point and the three phases noticed when considering the
relation between metric and max_level, they do not present any difference. More-
over, the metric data seem to have a Gaussian distribution.

4.4 Third Experiment: max neighbour threshold
on RGG

In this Section we will analyse the results obtained by the third experiment: the
application of the LTR on influence graphs (G, f1), G: random geometric graph.
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(a) Low probabilities behaviour.

(b) High probabilities behaviour.

Figure 4.9: Directed case, n = 1000. On the x axis the values of t used (not the
complete interval, just Phase 1 discrete set); on the y axis the values assumed by
the parameter in the title.

The simulations run on this model has just the aim of give a general idea on
how the LTR performs on RGGs. Because of this, just the initial parameters
described in Section 4.1.2 will be used in all the phases.

4.4.1 Phase 1
The third experiment’s exploratory phase gave the results shown in Appendix

B.1. The following list resumes the main features observed:

1. max_level ≤ 1 almost on all nodes, before connected regime and for the first
radii of the connected phase (Figures 4.10a, 4.10b). Again, the algorithm of
expansion shows a difficulty to reach nodes far from the initial set (coherent
with the results obtained in [23] about the BOLTR);
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(a) Example for the Observations 1 to 4, n = 5000.

(b) Example for the Observations 1, 4 and 5, n = 10000.

Figure 4.10: Parameter behaviour examples. On the x axis the values of t used
(not the complete interval, just Phase 1 discrete set); on the y axis the values
assumed by the parameter in the title.

2. avg_level ≤ 0 before connected regime and for the first radii of the con-
nected phase, on all nodes (Figure 4.10a). It indicates that the number of
inactive and never-reached nodes (level = −1) is high with respect to the
number of activated ones;

3. max_level = 0 for at least one node for probabilities before the connected
regime (Figure 4.10a), which means that there are no activated nodes outside
the initial set {i} ∪ neigh(i). The mean value of max_level is always above
zero before high rn. After, it is zero where it is not shown a peak;

4. the parameter t have a low influence on how the algorithm behaves when
rn < 0.3 (Figures 4.10a, 4.10b). Almost all the results show a mean value
represented as a straight line. Again we recall that f1 represents a hard
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Figure 4.11: Phase transitions for Properties 0 and 1, average truth values on the
y axis. Data shown for t = 0.5, n = 103, max neighbours case.

condition, being defined as a percentage of maximum number of node an
actor can be connected with;

5. metric shows an inflection for high radii values, rn > 0.6 (Figure 4.1b). For
n = 103, this is true also for rn = 0.3 which suggests that the connected
regimes could be better explored to find that the inflection point appears
for a wider range of radii. In correspondence to the changing point, the
max_level variable assumes values ≥ 1.

These observations are similar to the ones made for the First experiment, with
some slight differences. It can be underlined that even for a different model, f1
does not behave so differently depending on the value of t.

4.4.2 Phase 2
Since Phase 1 underlined a behaviour similar to the one observed in Experi-

ments 1 and 2, we can try to analyse the same properties.

Property 0. The Observation 3 can be formalized as

P0 : ”∃i | max_level(i) = 0”.
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Figure 4.12: Behaviour of the metric and the maximum level parameters around
the inflection point, shown for n = 10000.

Property 1. The Observations 1 and 2 can be combined in a unique property

P1 : ”∃i | max_level(i) ≤ 1 ∧ avg_level(i) ≤ 0”.

Even without the refinements on the radii values, the properties clearly show a
phase transition. All the results can be seen in Appendices B.2.1 and B.2.2, while
an example in shown in Figure 4.11.

The P0 property is for sure not true in the connected regime. As we will later
see, it is only dependent on the structure of the graph instead of being influenced
also by the labeling function. This allows us to conjecture that P0 on RGGs will
have an asymptotic behaviour similar or equal to the one shown on ERGs.

As regards P1, from the data available now it seems to have a threshold se-
quence belonging to the connected regime: the radii 0.1 and 0.3 have truth values
always equal to True on all the data generated by us. So, it seems that this prop-
erty is not equivalent or similar to any of the already existing ones on connectivity.

Given the low number of radii considered in these phase, we will not try to
graphically guess the values of the threshold sequences for the two properties.

4.4.3 Phase 3
This phase is about the Observation 5 of Phase 1: the inflection point shown

by the metric parameter for high radii values. The full results can be seen in
Appendix B.1.

As done in the previous experiments, it has been looked carefully to the relation
between the metric and the max_level variables. In Figure 4.12 we can see that
the pattern initial phase - critical phase - final phase is almost equal to the ones
shown in ERGs. It is worth mentioning that, for rn = 0.8 and every n, even in
t = 1 the completely straight behaviour is not reached. However, the max_level
is never higher than one and there some kind of organization in horizontal lines.
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A refinement on the t parameters may surely reveal the very same pattern
observed in the previous experiments, so that some intervals for the inflection
point could be observed. It is left as future work.

4.5 Fourth Experiment: neighbour threshold on
RGG

In this Section we present and discuss the results of the fourth experiment: the
application of the LTR on influence graphs (G, f2), G: random geometric graph.

The simulations run on this model has just the aim of giving a general idea on
how the LTR performs on RGGs. Because of this, just Phase 1 is performed and
all the observations done are left to be deeper analysed in future works.

4.5.1 Phase 1
Now we will comment the preliminary results of the Fourth experiment, fully

available in Appendix B.3:

1. the max_level is always near zero in mean, apart from the (low) peaks
shown for high radii and for small values of the parameter t (t ≤ 0.5).
Examples of this observation can be seen in Figures 4.13a, 4.13b. As regards
the variability of this parameters, is high in the low probability values and
strongly depends on t;

2. avg_level ≤ 0 in the subcritical regime of connectivity, for all t and for all
nodes (Figure 4.13a). This indicates that the number of inactive and never-
reached nodes (level = −1) is high with respect to the number of activated
ones. In some cases, almost all the nodes are never visited since the mean
avg_level is near −1.In the other regimes, we always observe avg_level ≥
0;

3. the parameter t here has influence on the quantities observed (Figures 4.13a,
4.13b). Around t = 0.5 the Ei,k(max_level) and Ei,k(avg_level) variable
show an inflection point for rn ≤ 0.3. Strictly above rn = 0.3, in the highly
connected regime, the mean values cited before have low peaks correspondent
to various values of t;

4. metric clearly shows the presence of an inflection point when the radii is
in the connected regime (Figure 4.13b). In addition, it seems that for small
values of t the Giant Component is totally (or almost totally) activated.

Note that for Ei,k we are computing the average in the data, i.e. sample average,
not the theoretical one.
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(a) Example for the Observations 1 to 3, n = 1000.

(b) Example for the Observations 1, 3 and 4, n = 10000.

Figure 4.13: Parameter behaviour examples. On the x axis the values of t used
(not the complete interval, just phase 1 discrete set); on the y axis the values
assumed by the parameter in the title.

4.5.2 Phase 2
The data analysed in Phase 1 show a general behaviour in common with all

the other experiment, hence we will analyse the same properties.

Property 0.
P0 : ”∃i | max_level(i) = 0”.

Property 1.

P1 : ”∃i | max_level(i) ≤ 1 ∧ avg_level(i) ≤ 0”.

Property 1 could have been defined differently since max_level(i) always as-
sumes values near zero in mean (Observation 1), but in order to do a consistent
comparison with all the other experiments we decided to not change it.
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Figure 4.14: Phase transitions for Properties 0 and 1, average truth values on the
y axis. Data shown for t = 0.5, n = 103, max neighbours case.

As we can see in Figure 4.14, the P0 property has the expected behaviour: the
phase transition clearly happens in the same way as we saw in Experiment 3. It
is again independent from t and assumes value False in the connected regime.

Property P1 behaves in the same way as in the previous experiment for t > 0.25,
i.e. it shows a phase transition in the connected regime, but has a peculiarity: for
t = 0.25 we can observe in Figure 4.15 that the transition has a different shape, the
change of the truth value appears near the isolated regime. Then, we can affirm
that P1 somehow depends on t on random social graphs (G, f2), G : RGG.

Given Observation 4, another Property can be defined as done in the Second
Experiment:

Property 2.
P2 : ”∃i | metrici = |GC|”.

Again, the analysis of this property is left as a possible future work.

4.5.3 Phase 3
Here the Observation 4 of Phase 1 will be deeper analysed. In particular,

an inflection point for the metric parameter is noticed for every radius in the
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Figure 4.15: Phase transition for Property 1 and t = 0.25, average truth values on
the y axis. Data shown for n = 103, neighbours case.

Figure 4.16: Behaviour of the metric and the maximum level parameters around
the inflection point, shown for n = 1000.

connected regime. Hence, the representation of the relation between metric and
max_level is provided for all these radii in Appendix B.3.

In Figure 4.12 we can see that the pattern initial phase - critical phase - final
phase that has been already notice in all the other experiments as a characteri-
zation of the inflection point (or, inflection range). In the images generated for
this experiment, it can be seen that for rn = 0.8 and all values of n the unique-
horizontal-line behaviour typical of the final phase in ERGs is again not reached.
This is a common feature for the RGGs random social graphs with labeling func-
tion f1 or f2. It would be interesting to better investigate the theoretical reasons
why this happens, but is for now left as a future possible investigation.
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Chapter 5

Theoretical Results on ERG

In this section some of the evidences coming from the data collected through the
experiments on ERGs are translated in properties of the LTR. Both the labeling
functions defined in the experiments will be considered in the following properties,
with the restriction of considering t ∈ (0, 1]: this because the case t = 0 is trivial,
it makes the influence expansion reduce to a BFS visit of the graph. All the
definitions used are given in Section 3.

We start reporting a tool, a simplified version of Chernoff bounds taken from
document [14], used in the following proofs.

Proposition 5.1. Let X1, . . . , Xn independent random variables, Bernoulli dis-
tributed, each of them with probability parameter pi.
Let µ = E(

∑︁n
i=1Xi) =

∑︁n
i=1 pi. Then ∀ δ ∈ (0, 1) we have:

P

(︃ n∑︂
i=1

Xi < (1− δ)µ

)︃
≤ exp

(︃
− δ2µ

2

)︃
;

P

(︃ n∑︂
i=1

Xi > (1 + δ)µ

)︃
≤ exp

(︃
− δ2µ

3

)︃
.

5.1 Phase transition for the null maxlevel
As already pointed out in the analysis of the results done in Sections 4.2 and

4.3, the LTR metric on ERGs shows that for small probabilities the influence is
not able to spread along the graph. This is represented by the fact that there are
several nodes with a maximum expansion level equal to zero or one and with an
average expansion level smaller than zero.

The property P0 that arises from the experimental data can be reformulated
in the following way:

53
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Definition 5.1. Let i ∈ V be the seed of the influence expansion (LTR(i)). The
P0 property is defined such that:

P0 : "∃ i | maxlevel(i) = 0".

Remark 5.2. It is interesting to notice that the P0, being equivalent to asking

P0 : "∃ i s.t. the set{i} ∪ neigh(i) is a connected component of G",

is independent from the labeling function. It is a property that only depends on
the structure of the graph.

Theorem 5.3. The property P0 has a sharp phase transition with respect the
threshold sequence an = logn

n
of the form

lim
n→+∞

P(P0 holds for (G(n, pn)), f) =

{︄
0 if pn ≥ c logn

n
, c > 1

1 if pn ≤ c logn
n

, c < 1.

where G(n, pn) is an undirected ERG graph. The phase transition is independent
of the labeling function.

Proof. The proof of this theorem will distinguish between two cases, Part I and
Part II.

Part I: Case pn ≤ c logn
n

, c < 1

Under the hypothesis pn < c logn
n

, c < 1 we already know from Section 2.2 that the
probability of having at least an isolated vertex goes to one for n going to infinity.
Since picking an isolated vertex as seed of the LTR influence expansion will lead
to have maxlevel(i) = 0 and every node of the graph is picked as seed, then the
probability of P0 holding for G(n, pn) goes to one in this range of pn’s.

Part II: Case pn ≥ c logn
n

, c > 1

Under the hypothesis pn ≥ c logn
n

, c > 1 we are in the connected regime of the
G(n, pn) graph. Here the graph is connected with probability one when n goes
to infinity. Given the definition of the maxlevel(i) random variable, if the initial
activation set is connected to any other node not in the set the property cannot
be true. This event actually takes place with probability one, so the property has
asymptotically probability zero in this regime.

The only remaining case is when all the nodes in the network are in the initial
activation set of i, i.e. they have at least a connection with i. This means that the
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degree of i is supposed to be equal to n− 1.
It is known that the following Simplified Chernoff bound holds (Prop. 5.3):

P

(︃
d(i) =

∑︂
j ̸=i

ξi,j > (1 + δ)pn(n− 1)

)︃
≤ exp

(︃
− δ2pn(n− 1)

3

)︃
(5.1)

for every δ ∈ (0, 1), for all i nodes. For δ small and pn ≥ c logn
n

, c > 1 this bound
goes to zero for infinite n, so the claim follows.

Expected number of nodes with null maxlevel. We can derive a closed
formula for the expected number of nodes s.t. maxlevel(i) = 0. We define a family
of Bernoulli random variables Yi : "{i}∪neigh(i) is a connected component of G",
iid with probability of success

P(Yi = 1) =
n−1∑︂
k=0

P(|neigh(i)| = k) · P(Yi = 1 | |neigh(i)| = k)

=
n−1∑︂
k=0

(︃
n− 1

k

)︃
pkn(1− pn)

(n−1−k) · (1− pn)
k(n−1−k)

=
n−1∑︂
k=0

(︃
n− 1

k

)︃
pkn(1− pn)

(k+1)(n−1−k)

(5.2)

where P(|neigh(i)| = k) =
(︁
n−1
k

)︁
pkn(1 − pn)

(n−1−k) since we are choosing k nodes
connected with i and the edges are independent Bernoulli r.v. of parameter pn.
Furthermore, P(Yi = 1 | |neigh(i)| = k) = (1− pn)

k(n−1−k) since we are excluding,
for all the k nodes in neigh(i), the possibility of having connections with the
outside (the n− 1− k nodes remaining). The connections among the nodes inside
neigh(i) are not relevant for the probability, so we do not add any expression of
their behaviour.

Then, the expected number of i with this property will be

E

(︃ n∑︂
i=1

Yi

)︃
=

n∑︂
i=1

E(Yi)

=
n∑︂

i=1

P(Yi = 1)

= n

n−1∑︂
k=0

(︃
n− 1

k

)︃
pkn(1− pn)

(k+1)(n−1−k) .

(5.3)
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5.2 Significant labeling functions
The goal of a centrality measure is to compute the number of actors a node of

the graphs can influence. Given this number, one can discriminate among nodes
with a low power of influence and nodes with a high one. Labeling functions that
only returns an LTR value equal to the initial activation set are considered not
enough informative, i.e. not significant.

Definition 5.1. A labeling function f of a random social graph (G, f), G = (V,E),
is said to be significant for G with respect the LTM if the influence expansion
process based on LTM is such that

∃ X = {i} ∪ neigh(i) ⊊ V | F (X) ̸= X.

Remark 5.2. Since we are considering random graphs, the significance of a labeling
function is not a deterministic concept, it is an event with an associated probability.

The Proposition 5.1 allows to determine values of the labeling functions that
can lead to significant results for the LTR. In the case of LTR on ERG graph, the
proposition can be reformulated as

Proposition 5.3. Let i be a node of the random social graph (G(n, pn)), f) where
G(n, pn) is a random variable corresponding to an ERG. Consider the iid Bernoulli
random variables ξij, i ̸= j of parameter pn representing the edges involving i. Let
µn := E(

∑︁n
j ̸=i ξij) = (n− 1)pn. Then ∀ δ ∈ (0, 1) we have:

P

(︃
d(i) =

n∑︂
j ̸=i

ξij < (1− δ)µn

)︃
≤ exp

(︃
− δ2µn

2

)︃
;

P

(︃
d(i) =

n∑︂
j ̸=i

ξij > (1 + δ)µn

)︃
≤ exp

(︃
− δ2µn

3

)︃
.

Stated all the instruments we need, we can prove the following results:

Lemma 5.4. Let an be a real sequence defined as

an = n exp (−c(n− 1)pn)

with c > 0, pn is a sequence of probabilities and n ∈ N. Then, when n goes to
infinity and p−1

n = o( n
logn

) the sequence converges to zero.
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Proof. Consider the an sequence formula: we know the asymptotic behaviour of
the exponential function plus the fact that c(n − 1)pn ≥ 0; we can study an’s
behaviour by analysing its natural logarithm.

log an = log n− c(n− 1)pn, (5.4)

which goes to −∞ when p−1
n = o( n

logn
), proving the statement.

Theorem 5.5. Let (G(n, pn), f) be a random social graph where G(n, pn) is a
random variable corresponding to an ERG and f ∈ {f1, f2}, as defined in Def. 3.2.
Then ∃ n̂ ∈ N such that ∀ n ≥ n̂ the labeling function f is almost surely not
significant for G when t > pn(1 + δ)k, δ ∈ (0, 1), k ≥ 1 and p−1

n = o( n
logn

).

Proof. Consider the Simplified Chernoff bounds for ERGs in Proposition 5.3 and a
fixed node i of the graph. The estimation from above of the probability of the d(i)
random variable to assume values near its mean is given by exponential sequences.
We know that:

0 ≤ P

(︃
d(i) < (1− δ)µn

)︃
≤ exp

(︃
− δ2µn

2

)︃
0 ≤ P

(︃
d(i) > (1 + δ)µn

)︃
≤ exp

(︃
− δ2µn

3

)︃
for every δ ∈ (0, 1), µn = (n− 1)pn.
Now consider the event

A =
n⋂︂

i=1

{d(i) > (1 + δ)µn}. (5.5)

Recalling basic properties of probability measures, we know that its probability
can be rewritten as

P(A) = 1− P

(︃ n⋃︂
i=1

{d(i) > (1 + δ)µn}C
)︃

(5.6)

≥ 1−
n∑︂

i=1

P

(︃
{d(i) > (1 + δ)µn}C

)︃
(5.7)

≥ 1− n exp

(︃
− δ2µn

3

)︃
. (5.8)

The formulation of these inequalities meet the requirements of Lemma 5.4. Hence,
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if we consider p−1
n = o( n

logn
), we know that ∃n̂ ∈ N s.t. the event A holds almost

surely ∀ n > n̂.
Given the LTM definition, it is clear that when

d(i) < f(i) ∀ i (5.9)

the only nodes that will contribute to the ranking value of î (i.e. the activated
nodes) will be the ones in the initial activation set {î} ∪ neigh(î). Given the
estimation proved above, we can say that if

(1 + δ)(n− 1)pn < f(i) (5.10)

for n > n̂, the influence does not propagate outside the initial set almost surely.
Now consider the two labeling function used in this work. It can be noticed that

f2(i) = t · |neigh(i)| ≤ t · (n− 1) = f1(i). (5.11)

Hence, using Equations (5.9) and (5.10), we can say that the values of the t
parameter that give a not significant labeling function almost surely are the ones
such that

t > pn(1 + δ)k (5.12)

when n is big enough, i.e. n ≥ n̂. The value of k will be exactly one when f = f1,
k = n−1

mini∈V |neigh(i)| when f = f2. The claim follows.

This results gives a sort of explanation of the behaviour shown in the Phases
3 of Experiment 1 and 2 (Sections 4.2.3, 4.3.3) when the value of δ is small, even
if the result obtained is proved for n sufficiently large.

5.3 Probability of extinction at level t
In Section 1.2 we have described the main features of the LTM influence ex-

pansion process. We have seen that the process dies out at most in n = |V | steps.
In this section we will analyse the probability of extinction of the process at level
t < n.

We assume that X = {i}∪neigh(i) for some i ∈ V , according to the definition
of LTR we have given in Section 1.3. The influence process stops at t when
Ft−1(X) = Ft(X). Since the Ft(X) is computed for a random graph, it is a
random variable with an associated probability of assuming a certain value. On
(G(n, pn), f1) ER influence graph, we have the extinction at level t < n with
probability
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ptext = P(|Ft − 1(X)| = |Ft(X)| | |Ft−1(X)| = y)

=

{︄∏︁
i∈Ft−1(X)C

∑︁f1(i)−1
k=0

(︁
y
k

)︁
pkn(1− pn)

y−k if f1(i)− 1 ≤ y

1 otherwise
.

(5.13)

The labeling function has been set as f1 since it is constant on all nodes. Using
the f2, which does not have this property, makes impossible to express the ptext in
this way. In addition, notice that ptext is not dependent on t, so ptext = pext.

Since the labeling function is the f1(i) = τ · (n − 1), τ ∈ [0, 1], constant on
all nodes, we can rewrite the probability of extinction at level t knowing the t− 1
state as

pext =

⎧⎨⎩
(︃∑︁τ(n−1)−1

k=0

(︁
y
k

)︁
pkn(1− pn)

y−k

)︃n−y

if τ · (n− 1)− 1 ≤ y

1 otherwise
. (5.14)

Consider the series on k without the exponent n − y. Let’s assume that the
variable y is dependent on n, y = yn ≤ n since the process did not die yet, and
τ · (n− 1)− 1 ≤ y in order to have a meaningful binomial factor. We can rewrite
in the following way:

an =

τ(n−1)−1∑︂
k=0

(︃
yn
k

)︃
pkn(1− pn)

yn−k

=

yn∑︂
k=0

(︃
yn
k

)︃
pkn(1− pn)

yn−k −
yn∑︂

k=τ(n−1)

(︃
yn
k

)︃
pkn(1− pn)

yn−k

= 1−
yn∑︂

k=τ(n−1)

(︃
yn
k

)︃
pkn(1− pn)

yn−k

= 1− a′n

(5.15)

since the first term is the normalized binomial series, known to be equal to 1 for
every value of yn, pn. Hence, for the Cauchy convergence criterion we have that
a′n goes to zero. This means that the whole an sequence is convergent to 1 for n
going to infinity.

Now we can analyse the possible behaviours of yn with respect to n. We
already know that if τ > pn the f1 labeling function is not significant for G(n, pn).
This means that the process stops at level 1. If τ < pn, then we can check if
τ · (n− 1) ≤ yn. This condition is equivalent to τ ≤ yn+1

n−1
.

The possible cases are:
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1. yn+1
n−1

→ 0. In this case, for n going to infinity, we do not have any τ that
respects the condition τ ≤ yn+1

n−1
. The pext is one, so the process dies almost

surely;

2. yn+1
n−1

→ l. For τ ≤ min{l, lim infn pn} we have that the process could survive.
The behaviour of pext has to be studied;

3. yn+1
n−1

→ 1. For all τ we have that the process could survive. The behaviour
of pext has to be studied.

Let’s consider the whole expression of pext when τ ≤ yn+1
n−1

, Equation (5.15).
We have:

pext = an−yn
n = exp

(︃
(n− yn) log an

)︃
. (5.16)

We can analyse the asymptotic behaviour of the argument of the exponential.

(n− yn) log an = (n− yn) log(1− a′n)

≈ −(n− yn)a
′
n

(5.17)

since we know that a′n goes to zero. The quantity n − yn can only converge to a
constant λ or positively diverge.

In the first case, which is equivalent to cases 2 and 3 of the list above (i.e. yn ≍
n), (n − yn) log an → 0 so pext → 1. The process of extinction at level t happens
almost surely for n going to infinity.

In the second case, which is equivalent to case 1 of the list above, we already
know that the process extinction at level t happens almost surely for n going to
infinity.

Hence, we can conclude that for n big the process will die at level t < n almost
surely no matter which asymptotic behaviour the active set size yn have. As we
already noticed, pext does not depend on t, so the result is true for all the levels.
Then, we can say that the process stops at level 1 almost surely when n is big
enough, independently of the behaviour of pn.
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Conclusion

In this thesis we have analysed the behaviour of the LTR (FLTR in the directed
case), an influence-based centrality measure, on random social graphs models. The
study extends the previous works on real cases data, finding both similarities and
differences.

Two labeling functions have been used in the experiments: the neighbour thresh-
old and the max neighbour threshold.

The first one, defined as the percentage t of neighbours required to be active,
is the classical definition that has been used in all the background studies.

The second one is the percentage t of the quantity |V | − 1, i.e. the maximum
number of connections a node can have in G = (V,E). It represents an approx-
imation of the neighbour function, since it is not taking into account the actual
realization of the random graph but it is considering the maximum value the degree
random variable can assume.

Four different experiments have been performed, with different random graph
models and labeling functions.

In experiments one and two has been performed the influence expansion on
Erdös–Rényi Graphs G(n, pn). The main focus has been on the undirected defini-
tion of the graphs, since the connectivity phase transitions are proved only in this
case. However, it has been observed that the directed case give the same results.

As regards the LTR with max neighbour threshold, it has shown an impossibil-
ity to let the influence spread outside the initial activation set and its immediate
adjacent vertices when the probability pn is not in the connected regime. This
observation is translated into two properties, P0 and P1

Property 0.
P0 : ”∃i | max_level(i) = 0”.

Property 1.

P1 : ”∃i | max_level(i) ≤ 1 ∧ avg_level(i) ≤ 0”.

61
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that have empirically shown to have a sharp phase transition. Both of them
seem to be independent of the percentage parameter that defines the labeling
function. In addition, some interesting behaviors for the metric parameter itself are
observed: the metric distribution on nodes is Gaussian when not trivial (i.e. only
one value assumed); for high probability values in the connected regime, the metric
shows to have an inflection point when the t percentage is increased. Around the
inflection point the metric assumes more distinguished values and the maximum
level parameter has a peak. In other words, there is an interval of t values for which
the LTR centrality better characterized the ability of a vertex to influence the other
nodes and this influence is better distributed in time. For the probabilities 0.6,
0.7, 0.8 we found respectively the inflection ranges [0.3, 0.4], [0.45, 0.55], [0.6, 0.7].

A scheme of the influence range evolution is here given:

1. an initial phase in which the metric value is still maximum but assumed
after different time steps of the influence expansion;

2. a critical phase in which the algorithm finds more difficult to spread the
influence (the metric value is not always maximum) but the maximum level
reached has a peak;

3. a final phase in which the metric value is more stable and the maximum
levels decrease again to one.

The LTR with neighbour threshold have given similar results below the con-
nected regime: P0 and P1 have shown the same phase transition and are inde-
pendent by the percentage parameter. Moreover, another property P∈ has been
noticed but not further explored.

Property 2.
P2 : ”∃i | metric(i) = |GC|”.

Also, the observations on the metric parameter are similar: the distribution is
still Gaussian; the inflection range is again observed with the same evolution with
respect to the t parameter. The ranges are slightly different: [0.75,0.85] for pn =
0.8, [0.85,0.75] for pn = 0.7, [0.75,0.65] for pn = 0.6.

Experiments three and four have preliminary analysed the LTR on Random
Geometric Graphs. The simulations have been performed without refining the
initial parameter definition, due to a lack of time. However, the results obtained are
still enough to recognize a similarity between this analysis and the one performed
on Binomial Graphs.

For the LTR with max neighbour threshold, the P0 and P1 properties were still
observed and showed a phase transition. The first one still changes behavior when
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the subcritical regime ends; the second one shows a threshold sequence with values
in the connected regime. Again, these results do not change with the percentage
parameter. Also, the inflection points show the same characteristics for the metric
and the maximum level parameters, but we do not have enough data to determine
an inflection range.

Regarding the LTR with neighbour threshold, the P0 showed the same phase
transition. The P1 property showed the same behavior described for the previous
threshold function apart for small values of the t parameter: in that case, the phase
transition appears between the subcritical and the supercritical regimes. The P2

property is observed but not explored. The inflection point is still observed, but
again the data are not enough to clearly observe where the inflection point starts
and ends.

In general, the empirical results on the two models are similar: the only inter-
esting difference the data generated for RGGs showed is that the P1 is dependent
on the percentage parameter. Apart from that, we can affirm that the two labeling
functions have a highly similar behavior. The features lost when using the approx-
imated version are the P2 property (still not studied in depth) and the position
of the inflection range (only determined on ERGs). It is important to underline
that the running time is much lower for the experiments with the max neighbours
thresholds with respect to the ones with the neighbour thresholds. A clear exam-
ple is the running time for n = 103: with f = f1 the numerical simulations were
all finished after 3 hours, with f = f2 each experiment with n and pn fixed needed
at least 1 hour to end.

The last part of the thesis is about a theoretical analysis of the problem studied:
some properties arose from the experiments are formally proved for the ER model.

First, we have analysed and proved the phase transition for the P0 property. It
is shown that the property is independent of the labeling function definition and
that it has a sharp phase transition with respect to the sequence logn

n
. In addition,

the expected number of nodes with this property has been computed.
The second part focuses on the labeling functions. We have given a definition of

a significant labeling function for a graph. It has been used to give an explanation
for the final phase for high values of n and (G(n, pn), f) ERG: it depends on the
fact that the degree tends to assume values near the mean as the graphs size
increases. Then, when t > pn it is impossible for the influence to spread outside
the initial activation set.

The last one is about the probability of extinction of the process at level t < n:
given an ER social graph (G(n, pn), f) and the number of influenced nodes yn at
the previous level, the probability that process stops is computed when f = f1.
Its asymptotic value for n big is computed depending on the behaviour of yn: we
have shown that in all the possible cases the probability of extinction goes to one



64 CHAPTER 6. CONCLUSION

for every t < n when n is big. In other words, we have proved that the probability
of extinction at level 1 is asymptotically almost sure.

Some problems defined in this thesis can be better explored in future work.
As already pointed out, the analysis of the P2 property can be an interesting
study to perform, since it would characterize the metric on the Giant Component
(supercritical) phase. In addition, the theoretical formulation and proof of the P1

and P2 phase transitions could be an interesting focus for future work, since it
could have useful applications in network analysis.

Experiments three and four give preliminary results. All the simulations about
the LTR on Random Geometric Graphs should be considered as a starting point
for a deeper study, both empirical and theoretical.

Lastly, it would be interesting to perform a study similar to the one done in this
thesis on other random network models. Some examples are the Barabási–Albert
model and the Watts–Strogatz model (also known as small world model), more
interesting since they can better represent the main features of the majority of
real-world networks.
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Appendix A

Images for Erdös–Rényi Graphs

A.1 LTR with max neighbour threshold
Outputs per node computed as the average on all the realizations, here only

shown for the initial probability and t sets.

Figure A.1: n = 1000, undirected. Violet line: mean value, Blue area: [min, max]
range.
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Figure A.2: n = 5000, undirected. Violet line: mean value, Blue area: [min, max]
range.
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Figure A.3: n = 10000, undirected. Violet line: mean value, Blue area: [min, max]
range.
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A.1.1 Distribution the LTR with max neighbour threshold

Here the approximated density of the metric parameter is given, plus a nor-
mality test (QQplot). x axis: Ei,k(metric); y axis: probability.

Figure A.4: n = 1000, undirected.
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Figure A.5: n = 5000, undirected.
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Figure A.6: n = 10000, undirected.
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A.1.2 Refinement on high probabilities: inflection point.
Here represented the results for the refined t parameter (according to First

experiment phase 3, Section 4.2) and sample size 100.

Figure A.7: n = 1000, undirected. Violet line: mean value, Blue area: [min, max]
range.

Figure A.8: n = 5000, undirected. Violet line: mean value, Blue area: [min, max]
range.
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Figure A.9: n = 10000, undirected. Violet line: mean value, Blue area: [min, max]
range.

A representation of the behaviour of the metric versus the max_level param-
eters is here provided to better characterize the inflection point.

Figure A.10: n = 1000, undirected.
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Figure A.11: n = 5000, undirected.

Figure A.12: n = 10000, undirected.
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A.2 Phase transitions with max neighbour thresh-
old

A.2.1 P0 phase transitions with max neighbour threshold

(a) n = 1000, undirected. (b) n = 5000, undirected.

(c) n = 10000, undirected.

Figure A.13: Representation of the mean truth value assumed by the P0 property,
mean computed on all the realizations.
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A.2.2 P1 phase transitions with max neighbour threshold

(a) n = 1000, undirected. (b) n = 5000, undirected.

(c) n = 10000, undirected.

Figure A.14: Representation of the mean truth value assumed by the P1 property,
mean computed on all the realizations.
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A.2.3 Threshold sequences approximations

Representation of the last/first value of pn for which the considered property
was true/false in every realization. Here are shown the results only for the undi-
rected case.

Figure A.15: undirected graphs, last probability for which the properties were
always true.
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Figure A.16: undirected graphs, first probability for which the properties were
always false.
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A.3 LTR with neighbour threshold
Outputs per node computed as the average on all the realizations, here only

shown for the initial probability and t sets.

Figure A.17: n = 1000, undirected. Violet line: mean value, Blue area: [min, max]
range.
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Figure A.18: n = 5000, undirected. Violet line: mean value, Blue area: [min, max]
range.
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Figure A.19: n = 10000, undirected. Violet line: mean value, Blue area: [min,
max] range.
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A.3.1 Distribution of the LTR with neighbour threshold
Here the approximated density of the metric parameter is given, plus a nor-

mality test (QQplot). x axis: Ei,k(metric); y axis: probability.

Figure A.20: n = 1000, undirected.
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Figure A.21: n = 5000, undirected.
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Figure A.22: n = 10000, undirected.
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A.3.2 Refinement on high probabilities: inflection point.
Here represented the results for the refined t parameter (according to Second

experiment phase 3, Section 4.3) and sample size 100.

Figure A.23: n = 1000, undirected. Violet line: mean value, Blue area: [min, max]
range.

Figure A.24: n = 5000, undirected. Violet line: mean value, Blue area: [min, max]
range.
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Figure A.25: n = 10000, undirected. Violet line: mean value, Blue area: [min,
max] range.

A representation of the behaviour of the metric versus the max_level param-
eters is here provided to better characterize the inflection point.

Figure A.26: n = 1000, undirected.
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Figure A.27: n = 5000, undirected.

Figure A.28: n = 10000, undirected.



94 APPENDIX A. IMAGES FOR ERDÖS–RÉNYI GRAPHS

A.4 Phase transitions with neighbour threshold
A.4.1 P0 phase transitions with neighbour threshold

(a) n = 1000, undirected. (b) n = 5000, undirected.

(c) n = 10000, undirected.

Figure A.29: Representation of the mean truth value assumed by the P0 property,
mean computed on all the realizations.



A.4. PHASE TRANSITIONS WITH NEIGHBOUR THRESHOLD 95



96 APPENDIX A. IMAGES FOR ERDÖS–RÉNYI GRAPHS

A.4.2 P1 phase transitions with neighbour threshold

(a) n = 1000, undirected. (b) n = 5000, undirected.

(c) n = 10000, undirected.

Figure A.30: Representation of the mean truth value assumed by the P1 property,
mean computed on all the realizations.
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Images for Random Geometric Graphs

B.1 LTR with max neighbour threshold
Outputs per node computed as the average on all the realizations, here only

shown for the initial probability and t sets.

Figure B.1: n = 1000. Violet line: mean value, Blue area: [min, max] range.
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Figure B.2: n = 5000. Violet line: mean value, Blue area: [min, max] range.
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Figure B.3: n = 10000. Violet line: mean value, Blue area: [min, max] range.
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B.1.1 Distribution the LTR with max neighbour threshold

Here the approximated density of the metric parameter is given, plus a nor-
mality test (QQplot). x axis: Ei,k(metric); y axis: probability.

Figure B.4: n = 1000.
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Figure B.5: n = 5000.



102 APPENDIX B. IMAGES FOR RANDOM GEOMETRIC GRAPHS

Figure B.6: n = 10000.
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B.1.2 Inflection point: Metric vs Maxlevel
A representation of the behaviour of the metric versus the max_level param-

eters is here provided to better characterize the inflection point.

Figure B.7: n = 1000.

Figure B.8: n = 5000.
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Figure B.9: n = 10000.
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B.2 Phase transitions with max neighbour thresh-
old

B.2.1 P0 phase transitions with max neighbour threshold

(a) n = 1000. (b) n = 5000.

(c) n = 10000.

Figure B.10: Representation of the mean truth value assumed by the P0 property,
mean computed on all the realizations.
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B.2.2 P1 phase transitions with max neighbour threshold

(a) n = 1000. (b) n = 5000.

(c) n = 10000.

Figure B.11: Representation of the mean truth value assumed by the P1 property,
mean computed on all the realizations.
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B.3 LTR with neighbour threshold

Outputs per node computed as the average on all the realizations, here only
shown for the initial probability and t sets.

Figure B.12: n = 1000. Violet line: mean value, Blue area: [min, max] range.
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Figure B.13: n = 5000. Violet line: mean value, Blue area: [min, max] range.
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Figure B.14: n = 10000. Violet line: mean value, Blue area: [min, max] range.
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B.3.1 Distribution the LTR with neighbour threshold
Here the approximated density of the metric parameter is given, plus a nor-

mality test (QQplot). x axis: Ei,k(metric); y axis: probability.

Figure B.15: n = 1000.
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Figure B.16: n = 5000.
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Figure B.17: n = 10000.
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B.3.2 Inflection point: Metric vs Maxlevel

A representation of the behaviour of the metric versus the max_level param-
eters is here provided to better characterize the inflection point.

Figure B.18: n = 1000.

Figure B.19: n = 5000.
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Figure B.20: n = 10000.
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B.4 Phase transitions with neighbour threshold
B.4.1 P0 phase transitions with neighbour threshold

(a) n = 1000. (b) n = 5000.

(c) n = 10000.

Figure B.21: Representation of the mean truth value assumed by the P0 property,
mean computed on all the realizations.
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B.4.2 P1 phase transitions with neighbour threshold

(a) n = 1000. (b) n = 5000.

(c) n = 10000.

Figure B.22: Representation of the mean truth value assumed by the P1 property,
mean computed on all the realizations.
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