
University of Padua

Department of Information Engineering

Master’s Thesis in

Computer Engineering

People tracking and following with a
smart wheelchair using an omnidirectional

camera and a RGB-D camera

Supervisor Candidate

Prof. Enrico Pagello Federico Zanetello

Co-Supervisor

Prof. Chen Weidong (Shanghai Jiao Tong University)

Academic Year 2013/2014

Ai miei genitori, che, nonostante le tante difficolta’, mi
hanno supportato e sopportato ogni giorno, dall’inizio alla

fine, di questa lunga e straziante battaglia.

”It’s better to light a candle than curse the darkness”
Peter Benenson - 1961

Abstract

This thesis has been carried out within a project at ARL (Autonomous
Robot Lab) and IAS-Lab (Intelligent Autonomous Systems Lab) of Shanghai
Jiao Tong University and University of Padua respectively. The project
implements a new service that enables a wheelchair user and another person
to have a normal talk while strolling freely around the environment, without
the need of any interaction towards the wheelchair, called JiaoLong.
From the wheelchair point of view, the goal consists mainly in two steps:
detect the person whom the wheelchair user wants to talk with and follow
her by standing by her side.
The project started from scratch: as further explained in the upcoming
chapters, we chose to use one RGB-D camera, since there are many related
works available based on this sensor, and one omnidirectional camera, made
by ARl of Shanghai Jiao Tong University, since a single image frame contains
all the information we needed about the wheelchair surrounding scene. The
approach we followed is quite simple: first we detect the person that the user
wants to talk with with the RGB-D camera, and then the smart wheelchair
will put itself aside her by using the RGB-D camera as an obstacle detector
and the omnidirectional camera as a person tracking gizmo. This approach
exploit most of the advantages of the two sensors while concealing their
disadvantages by using one camera instead of the other.
In this thesis we used many tools from many different sources that made the
work more exciting since the results never put us down. The work reaches
near state of the art performance and very high frame rates in our distributed
ROS-based CPU implementation.

7

8

Contents

1 Introduction 13
1.1 Summary . 13
1.2 Related works . 13
1.3 Proposed solution . 14
1.4 Content . 14

2 Work Environment 17
2.1 Microsoft Kinect . 17

2.1.1 Video Stream . 17
2.1.2 Software Technology 18

2.2 Omnidirectional Camera . 18
2.3 JiaoLong . 19

2.3.1 Hardware and Software technology 20
2.3.2 Shared Control . 20

2.4 ROS . 22
2.4.1 Computation graph architecture 23

2.5 Libraries . 24
2.5.1 PCL . 24
2.5.2 OpenNI . 25
2.5.3 OCamCalib . 26
2.5.4 OpenCV . 27

3 System Overview 29
3.1 Sensors positions . 30
3.2 Sensors inner calibration . 31
3.3 Omnidirectional camera calibration 31
3.4 Sensors communication . 34

4 People Detection 35
4.1 Ground Based People Detection Algorithm 35

5 Calibration between Omnidirectional camera and Kinect cam-
era 37
5.1 Cam2World vs. World2Cam 37

9

5.1.1 World2Cam . 38
5.1.2 Cam2World . 38

5.2 The conversion . 38
5.2.1 Offset . 38
5.2.2 Pitch . 40

5.3 The cameras communication 41

6 People Tracking 45
6.1 Mean Shift . 45
6.2 Mean Shift Example . 48
6.3 CamShift . 49
6.4 CamShift example . 49

7 Motion control 51
7.1 Linear & Angular Speed . 51

7.1.1 Linear speed . 52
7.1.2 Angular speed . 52

7.2 Obstacle Avoidance . 57
7.2.1 Change of Goal . 57

7.3 System Evaluation . 57
7.3.1 Introduction to the tests 58
7.3.2 Wheelchair position after reaching the target 58
7.3.3 Wheelchair position after reaching the target 58

8 Conclusions 61

A Omnidirectional camera 101 67
A.1 Effective Viewpoint, Virtual Perspective Camera 67
A.2 Intrinsic and extrinsic parameters 67

10

List of Figures

2.1 Microsoft Kinect . 17

2.2 Figure 2.2(a) shows us an example of a common camera, the
Webcam Philips SPZ5000. Figure 2.2(b) shows us a glass
holding the omnidirectional mirror inside. 18

2.3 The Shanghai Jiao Tong University Smart Wheelchair JiaoLong 19

2.4 The Shanghai Jiao Tong University Smart Wheelchair JiaoLong 20

2.5 Graphical representation of nodes (ellipses) and topics (rect-
angles). 24

2.6 The OpenNI abstract layered architecture. 26

3.1 Figure 3.1(a) displays the actual JiaoLong Smart Wheelchair.
Figure 3.1(b) is a scheme with the sensors position in the
JiaoLong Smart Wheelchair 30

3.2 Sample of snapshots used during the calibration of our omni-
directional camera . 32

3.3 Figure 3.3(a) shows us the extract grind corners phase, figure
3.3(b) shows where the checkboard was in each picture (each
picture has a different color), figure 3.3(c) shows us the tool-
estimated omnidirectional camera mirror shape, and figure
3.3(d) shows us the complete error analysis of the pictures
taken for the calibration . 33

5.1 A graphical example of the two sensors pointing at the same
point . 39

5.2 Figure 5.2(a) shows us an over simplified scheme of the side
view of the sensors as they are mounted on the wheelchair,
empathizing the rotation of the Kinect sensor. Figure 5.2(b)
shows us exactly the same thing, but in a 3d world, displaying
all the axes of the two different coordinate systems. Note
that the omnicamera coordinate system is centered on its own
virtual perspective. 40

5.3 First step of the camera communication 42

5.4 Examples of the second step of the camera communication . . 42

11

6.1 Example of the Mean Shift algorithm in action 48
6.2 Example of the differences between Mean Shift and Cam Shift

algorithms on action: Figure 6.2(a) shows us the MeanShift
behaviour, while figure 6.2(b) shows us the CamShift algo-
rithm behaviour . 50

7.1 Omnicamera planes . 53
7.2 Example of 3D vector with all its characteristic properties . 53
7.3 Detail of 7.2 concerned in this phase. Please notice that in-

stead of d we are computing the distance l, that is in the same
place as d but much shorter. 53

7.4 Detail of 7.2 concerned in this phase. Please notice that,
instead of h, we now use z, instead of d we now use l, and
instead of p we use ‖p‖ . 54

7.5 Smart Wheelchair states, remember that these states are de-
fined by the bottom point of the walking user. 56

7.6 Heatmap of the target position after the wheelchair has reached
it. 59

7.7 Heatmap of the target position while the wheelchair is follow-
ing it. 59

A.1 Graph showing the view points of the omnicamera. 67
A.2 Virtual perspective projection camera at the focus of hyperbole 68

12

Chapter 1

Introduction

1.1 Summary

As the proportion of elderly population has increased consistently over the
past decades, more and more smart wheelchairs, also known as wheelchairs
equipped with traditional mobile robots technology, are developed to assist
and help old and disabled people during their daily lives. By using smart
wheelchairs, people could get rid of onerous maneuvers and dangers like col-
lisions with other objects and user falls. The enhancements of independent
mobility by a smart wheelchair also help people to rebuild their confidence
on social skills. Since people’s control ability could be affected by various
factors, such as inherent control ability, fatigue, environmental visibility,
and distractions, the purpose of this work is to implement a new service in a
smart wheelchair, described in chapter 2.3, that will allow a natural conver-
sation to take place between the smart wheelchair user and somebody else
without the need of interacting with the wheelchair at all during the whole
length of the conversation. From the smart wheelchair point of view, this
service can be executed in these three functional steps:

1. Detect the person whom the smart wheelchair user wants to talk with;

2. Track her;

3. Stay by her side while the conversation is taking place;

1.2 Related works

There are many works about person following robot. The big difference in
our project is that the mobile robot, our wheelchair, doesn’t have to simply
follow the person but to stay by her side, in order to let the wheelchair user
and the target to have a natural conversation. Probably, the most important
related works are:

13

• Person Following Robot ApriAttenda™ [25]
This robot, from Toshiba corporation1, uses stereo vision for target
detection and target tracking while it uses ultrasonic sensors for ob-
stacles avoidance while following the person. The main problems with
this solution are:

– the robot easily loses the person during the tracking;

– the robot can’t both stand aside the person and follow her at the
same time due to its limited degree of freedom of the head;

• USC’s Segway RMP [14]
Very similar to our final product, this robot uses one omnicamera and
one Laser rangefinder (LRF) for target detection, target tracking and
obstacles avoidance while following the person. The final work is quite
effective, trustworthy and the Segway can keep following the person
even when it is far away. The only drawback of this solution is that
is not made for the same purposes as ours: it can’t both follow and
stand by the person side at the same time;

Regarding the tracking side of the work, several approaches for people track-
ing have been developed over the last years. The most widely used approach
is visual tracking [26] [15] [24] [13]. Most of the existing techniques differ
mainly in the features or models that they use to extract people meta-
information from the images. Since most of these algorithms use standard
still cameras, they are little to no use in our project: we will have to build
a new algorithm.

1.3 Proposed solution

Our solution is similar to the USC’s Segway RMP described above. The
project consists in the JiaoLong smart wheelchair, introduced in chapter
2.3, equipped with two sensors: one omnidirectional camera and one RGB-D
camera.In the upcoming chapters we will discuss in detail the main reasons
on why we decided to use those sensors and present you how everything
works together.

1.4 Content

This document is structured as follows:

• Chapter 2: describes the main hardware and software used to build
the system;

1http://www.toshiba.co.jp

14

http://www.toshiba.co.jp

• Chapter 3: describes the approach we followed to set up the system;

• Chapter 4: describes the people detection algorithm within the kinect;

• Chapter 5: describes in details the calibration algorithm between the
omnidirectional camera and Kinect;

• Chapter 6: describes in details how the people tracking algorithm
works;

• Chapter 7: describes how the machine chooses a goal and how the
motion control works;

• Chapter 8: contains the work conclusions and proposes further imple-
mentations and improvements;

15

16

Chapter 2

Work Environment

2.1 Microsoft Kinect

Fig. 2.1: Microsoft Kinect

Microsoft Kinect is an accessory for the Microsoft Xbox 360 video game
platform. It is considered a ”controller-free gaming and entertainment expe-
rience”. In fact, it can interpret 3D scene information using a RGB camera,
a depth sensor and a multi-array microphone.
The depth sensor consists of an infrared laser projector, which creates a
grid of points, combined with a monochrome CMOS sensor, which captures
video data in 3D under any ambient light conditions creating a depth map.
The sensor has an angular field of view of 57° horizontally and 43° vertically,
while the motorized pivot is capable of tilting the sensor up to 27° either up
or down. The horizontal field of the Kinect sensor at the minimum viewing
distance of 0.8 m is therefore 87 cm, and the vertical field is 63 cm, resulting
in a resolution of just over 1.3 mm per pixel.

2.1.1 Video Stream

Reverse engineering has determined that the Kinect’s various sensors output
video at a frame rate of 9 Hz to 30 Hz depending on resolution consisting

17

in two different streams:
The first one is provided by the RGB camera which uses 8-bit VGA reso-
lution (640x480 pixels) with a Bayer color filter, the other one, instead, is
produced by the monochrome depth sensor with the same resolution and
2,048 levels of sensitivity (11 bits).

2.1.2 Software Technology

The software technology provided to the Xbox developers enables advanced
gesture recognition, facial recognition and voice recognition as well as track-
ing up to six people simultaneously (declared, but it is able to track probably
as many people as they can fit in the field-of-view of the camera), including
two active players for motion analysis with a feature extraction of 20 joints
per player.
While this is all true under a Microsoft Windows environment, in our project
we worked under a Linux Ubuntu environment, which is not supported by
official Microsoft sources. However, as we’ll show in the next few chapters
(chapter 2.5.2), a similar software technology is provided by a non-profit
organization called OpenNI1, in which one of the main members is Prime-
Sense, the company behind the technology used in the Kinect. Under this
organization PrimeSense released an open source version of the drivers for
the sensor: thanks to this and the community behind OpenNI, the differ-
ences between the two environments (Microsoft Windows and Linux) are
getting slimmer and slimmer: it has become quite easy to use the Kinect
even under an officially non-supported Operating System.

2.2 Omnidirectional Camera

(a) (b)

Fig. 2.2: Figure 2.2(a) shows us an example of a common camera, the
Webcam Philips SPZ5000. Figure 2.2(b) shows us a glass holding the om-
nidirectional mirror inside.

1http://community.openni.org/openni

18

http://community.openni.org/openni

While a camera with standard lenses normally has a field of view that ranges
from a few degrees to, at most, 180°, an omnidirectional camera is a camera
with a 360° field of view in the horizontal plane. The main advantage of
this kind of camera over a standard one is clearly the new wider and more
accurate perception capacity, especially if used in a mobile robot.
The omnidirectional camera used in this project is composed by a Point Gray
Chameleon®2 camera and a customized curved mirror. The Chameleon
camera is a USB 2.0 1.3 MegaPixels digital video camera that uses a Sony
EXview HAD CCD®sensor, which allows to capture images up to 1296x964
of resolution at 18 FPS.

2.3 JiaoLong

Fig. 2.3: The Shanghai Jiao Tong University Smart Wheelchair JiaoLong

JiaoLong is a smart wheelchair built by the Autonomous Robot Lab of
Shanghai Jiao Tong University. The main goal of this smart wheelchair is
to help its target users, that are mainly elderly or people with a various
range of disabilities such as visual defects and trembling hands, during their
movements around the environment in their daily lives.
Figure 2.4 shows us that there are three interactive ways to input the human
guidance: the first one is a standard microphone, used for voice commands,
the second and third ones are an omnidirectional joystick and a touch screen,
used both for physical and more straight forward commands. Obviously
this means that the JiaoLong users can interact with and control the robot
through voice (microphone) and hands (joystick, touchscreen). The touch-
screen also provides all kind of real-time information to its users, such as
their location in a global map and the current speed of the wheelchair.

2http://ww2.ptgrey.com/USB2/chameleon

19

http://ww2.ptgrey.com/USB2/chameleon

Fig. 2.4: The Shanghai Jiao Tong University Smart Wheelchair JiaoLong

2.3.1 Hardware and Software technology

The machine length, width and height are respectively 110cm, 90cm and
105cm. Its power is provided by a group of 12V batteries which allow the
wheelchair to operate autonomously up to 8 hours continuously. The back
wheels adopt DC motors which are controlled by a motor controlling board
(DSP 2407) adopting two wheeled differential driving. The maximum trans-
lational and rotational speeds of the wheelchair are 500 mm/s (1.8 km/s) and
50 deg/s (0.8727 rad/s) respectfully. The smart wheelchair has an Industrial
Computer (WinXP, Intel Core2 Duo @ 2.0GHz CPU) for management of
interactive information, and a Laptop (Linux, Intel ATOM N270 @ 1.6GHz
CPU) for real-time execution of the navigation algorithm and every other
computation that regards our project. The sensors are: an encoder-based
odometer, a Laser Range Finder (LRF, SICK LMS100), and an RGB-D
camera (Microsoft Kinect).

2.3.2 Shared Control

Shared control is a common algorithm used for human and wheelchair coop-
eration. The one used in our project is based on two key parts: the reactive
controller and the weight optimizer. The reactive controller provides obsta-
cle avoidance help using Minimum Vector Field Histogram (MVFH) [1] [10]
and Vector Force Field (VFF) [3] [2] methods. The weight optimizer op-
timizes three indicators, which will be discussed in the following section
obtaining an equilibrium between the machine reactive control and the user
control.

20

Weight Optimization

In the previous work [18], indicators of wheelchair’s performance were pro-
posed: safety, comfort and obedience. Safety measures the wheelchair proba-
bility of collision. Comfort measures the smoothness of the wheelchair speed.
Obedience measures the degree of the machine obedience to the user’s com-
mands. These indices are introduced in the three following paragraphs:

Safety

safety = 1− exp(−α ∗ dis) (2.1)

Where α is a constant, and dis represents the distance in millimeters between
the wheelchair and closest obstacle in its path. dis is determined by the
current and desired speed of the wheelchair and by the obstacles distance
around the wheelchair. Since the kinematic model is inaccurate in predicting
long-term movement, we only predict the path for the next 4 seconds. The
negative exponential function is used to normalize the index, and to make
the comparison between the three indices (Safety, Comfort, and Obedience)
easy.

Comfort

comfort = exp(−β|ω − ω0|) (2.2)

Where β is a constant. To avoid violent change in motion command, we de-
fine ω as a linear combination of ωuser and ωmatch, where ωuser is the desired
rotational speed from the user and ωmatch is the desired rotational speed gen-
erated by the reactive controller. Since the wheelchair’s translational speed
is given directly by the user and it won’t change unless a collision is about to
happen, there is no component that reflects the translational speed change
in the equation.

Obedience

obedience = exp(−γ|ξ − ξ∗|) (2.3)

Where γ is a constant and ξ∗ is the orientation calculated from the user’s
input vuser and ωuser while ξ is the orientation determined by ν and ω.

The aim of weight optimization is to maximize all three indicators. However,
these three indices, under typical circumstances, are normally contradictory
to each other. For example when a wheelchair is traveling through a crowd,
the most influent index should be safety. Therefore, there is no absolute
optimal solution for the three equations (equations 2.1, 2.2, and 2.3).
An evaluation function of this problem is needed to achieve an effective so-
lution. It was found that increasing a certain index which is already above a

21

certain value will make the other two indices drop drastically. For example,
enforcing an increment to safety to when it’s already above 0.9 will make
the wheelchair always choose the most spacious path, and the user will feel
like the wheelchair is not moving under his control at all. Therefore, the
principle we chose to solve this problem is to always increment the smallest
of the three indexes. In accordance with this principle, we use the minimax
method to simplify the previous equation into a single objective problem:

maxk(min(safety, comfort, obedience))
s.t
ν(t) = νuser(t)
ω(t) = kωuser(t) + (1− k)ωmach(t)
1 ≥ k ≥ 0

(2.4)

The precedence relation among indices will change naturally when facing
different situations. For example, when a user is cruising in a spacious room
with a wheelchair, the possibility of hitting an obstacle is small, i.e. safety
has a high value. In this case max(min(safety, comfort, obedience)) =
max(min(comfort, obedience)), then comfort and obedience become prior-
ities. Whereas when a user is passing through the crowd, the possibility
of a collision may significantly increase. Then safety could be taken into
consideration as a priority since max(min(safety, comfort, obedience)) =
max(safety).
A user with good control abilities can drive a wheelchair smoothly and safely,
in this situation max(min(safety, comfort, obedience)) = max(obedience),
so the wheelchair will be driven completely under the user’s will. When the
user’s control ability drops, he would not be able to preserve smoothness
and safety. In this case, the reactive controller will take over the control of
the wheelchair and assist the user.

2.4 ROS

Robot Operating System3 (ROS) is a software framework for robot software
development, providing operating system-like functionality on a heteroge-
neous computer cluster. As of 2014, development continues primarily at
Willow Garage4, a robotics research institute/incubator, with more than
twenty institutions collaborating in a federated development model.
ROS provides standard operating system services such as hardware abstrac-
tion, low-level device control, implementation of commonly used function-
ality, message-passing between processes, and package management. It is
based on a graph architecture where processing takes place in nodes that may
receive, post and multiplex sensor, control, state, planning, actuator and

3http://www.ros.org
4http://www.willowgarage.com

22

http://www.ros.org
http://www.willowgarage.com

other messages. The library is geared toward a Unix-like system (Ubuntu
Linux is listed as supported while other variants such as Fedora and Mac
OS X are considered experimental).
ROS has two basic ”sides”: The operating system side, called ros, as de-
scribed above and ros-pkg, a suite of user contributed packages (organized
into sets called metapackages) that implement functionality such as simul-
taneous localization and mapping, planning, perception, simulation etc.
Despite the importance of robot reactivity, ROS is not a real-time OS,
though it is possible to integrate ROS with real-time code.
ROS is released under the terms of the BSD license, and is open source
software. It is free for commercial and research use.

2.4.1 Computation graph architecture

As already mentioned, ROS is based on a graph architecture. From the
computational point of view the graph is the peer-to-peer network of ROS
processes that share data. So let’s have a quick overview of these graph
concepts.

Nodes.
A node is substantially a process that performs computation: it is
where all the main operations are done, and it is also the main entity
in the graph. ROS wants a robot to be composed by multiple nodes,
each one of them with a specific function. Nodes communicate among
them using streaming topics, RPC services or the Parameter Server.

Messages.
A message is intended to be as simple as a data structure comprising
typed fields. Standard primitive types are supported, as are arrays of
primitive types or previously defined messages.

Topics.
ROS Messages are managed as in a Distributed Event Based Systems:
this means that nodes have to follow the publisher/subscriber seman-
thic. A topic is a named bus over which nodes exchange messages.
Topics have anonymous publish/subscribe semantics, which decouples
the production of information from its consumption and are intended
for unidirectional, streaming communication. There can be multiple
publishers and subscribers to each topic.

Services.
The publish/subscribe model is a very flexible communication paradigm,
but it is not appropriate for RPC request/reply interactions. Re-
quest/reply is done via a service which is defined by a pair of messages:
one for the request and one for the reply.

23

Master.
Name service for ROS. It provides name registration and lookup to the
rest of the computation graph. Without the Master, nodes would not
be able to find each other, exchange messages, or invoke services: this
is also why the master must be launched before anything ROS-related.

Parameter Server.
It is a shared, multi-variate dictionary that is accessible via network
APIs. Nodes can use this server to store and retrieve parameters at
runtime.

Bags.
Bags are a format for saving and playing back ROS message data.
They are an important mechanism for storing data, such as sensor
data, that can be difficult to collect but is necessary for developing
and testing algorithms.

An example of a graph created during a ROS session is visible in figure 2.5

Fig. 2.5: Graphical representation of nodes (ellipses) and topics (rectan-
gles).

2.5 Libraries

2.5.1 PCL

The Point Cloud Library5 (PCL) is a large scale, open project for point
cloud processing [20].
The PCL framework contains numerous state-of-the art algorithms including
filtering, feature estimation, surface reconstruction, registration, model fit-
ting and segmentation. These algorithms can be used, for example, to filter
outliers from noisy data, stitch 3D point clouds together, segment relevant
parts of a scene, extract keypoints and compute descriptors to recognize ob-
jects in the world based on their geometric appearance, and create surfaces
from point clouds and visualize them. It is well integrated into ROS which
also provides some functionalities as ready to use nodes.

5http://www.pointclouds.org

24

http://www.pointclouds.org

PCL is released under the terms of the BSD license and is open source
software. It is free for commercial and research use and it is supported by
companies such as Google, NVidia and Toyota.

2.5.2 OpenNI

OpenNI6 (Open Natural Interaction) [27] is a multi-language, cross-platform
framework that defines APIs for writing applications utilizing Natural In-
teraction.
NI (Natural Interaction) refers to the concept that Human-Machine-Interaction
is achieved by human senses and, most of all, vision and hearing. OpenNI
aims to define a standard API that is able of dealing with both vision and
sensors, and a vision and audio perception middleware, allowing communi-
cation between the two components.
OpenNI provide two types of APIs:

1. implemented APIs: allow to deal with the sensor device;

2. not implemented APIs: allow to deal with the middleware components.

The clear distinction between sensors and middleware components is based
on the ”write once, deploy everywhere” principle. In fact OpenNI allows
the porting of applications and moreover enables to write algorithm that
works with known raw data independently from the sensor that has gener-
ated them. From the producer point of view, instead, OpenNI offers the
possibility of building sensors for applications by just providing raw data
and not APIs on how to deal with them. An application of OpenNI is for
example the tracking of real-life 3D scenes.
OpenNI is an open source API that is publicly available.
The OpenNI Framework is an abstract layer (Figure 2.6) that provides the
interface for both physical devices and middleware components. Multiple
components can register to this framework based on the specific API and
they are called modules.
A module is responsible for producing and processing the data of the sensor
and the currently supported ones are:

1. 3D sensor;

2. RGB camera;

3. IR camera;

4. audio device.

Based on this, OpenNI provides also the following middleware components:

6http://community.openni.org/openni

25

http://community.openni.org/openni

Fig. 2.6: The OpenNI abstract layered architecture.

1. full body analysis;

2. hand point analysis;

3. gesture detection;

4. scene analyzer (segmentation, clustering and coordinates framing).

OpenNI relies on Production Nodes. They represents the productive part of
the system, that is they create the data required for the interaction. These
data can be either low level ones, RGB for example, either composited ones.
In fact production nodes can also control lower level production nodes and
they can in turn be used by higher level ones. In order to define communi-
cation and hierarchy these nodes are organized in production chains.

2.5.3 OCamCalib

The OcamCalib (Omnidirectional Camera Calibration Toolbox for Matlab)
allows the user (even inexpert users) to calibrate any central omnidirectional
camera, that is, any panoramic camera having a single effective viewpoint
The Toolbox implements the procedure initially described in the paper [22]
and later extended in [23], [21], and [19].
The Toolbox permits the user to easily and quickly calibrate the omnidi-
rectional camera through two steps. First, it requires the user collect a
few pictures of a checkerboard shown at different positions and orientations.
Then, the user is asked to extract the corner points.
After the calibration, the toolbox provides two functions (cam2world and
world2cam) which express the relation between a given pixel point and its
projection onto the unit sphere (this is a 3D vector emanating from the sin-
gle effective view point). This relation clearly depends on the mirror shape

26

and on the intrinsic parameters of the camera. The novel aspects of the
OCamCalib Toolbox with respect to other toolboxes are the following:

• The toolbox is the only one with Automatic Corner Extraction (no
manual extraction is required).

• The toolbox does not require a priori knowledge about the mirror
shape.

• It does not require calibrating the perspective camera separately: the
system camera-mirror is treated as a unique compact system that en-
capsulates both the intrinsic parameters of the camera and the param-
eters of the mirror.

• The detection of the image center is performed automatically. It does
not require the visibility of the circular external boundary of the mir-
ror. Unlike other toolboxes, which require the visibility of the external
boundary of the mirror to determine the image center, the OCamCalib
Toolbox automatically identifies the center without any user interac-
tion!

The calibration performed by the OCamCalib Toolbox is based on the fol-
lowing hypotheses:
The camera-mirror system possesses a single effective viewpoint, or also a
”quasi” single viewpoint. In fact, the Toolbox is able to provide an optimal
solution even when the ”single view point property” is not perfectly verified
(for instance when the camera optical center is not exactly in the focus of
the hyperbola or also for spherical mirrors). The Toolbox showed to give
very good calibration results even in the latter case (reprojection error <
0.5 pixels!).

2.5.4 OpenCV

OpenCV (Free Open Source Computer Vision) is a cross-platform library
of programming functions mainly aimed at real time computer vision [4]
[12] . Example applications of the OpenCV library are Human-Computer
Interaction (HCI), object identification, segmentation and recognition, face
recognition, gesture recognition, motion tracking, ego motion, motion un-
derstanding, structure from motion (SFM), stereo and multi-camera cali-
bration and depth computation, mobile robotics. As for PCL, OpenCV is
completely integrated into ROS which also provides image type conversions
between OpenCV and ROS formats. It has a BSD license and it is free for
commercial or research use.

27

28

Chapter 3

System Overview

While tracking and following a person with a Microsoft Kinect in a robot
is not very complicated, the problem is taken to a whole new level when
the person, like in our case, is constantly out of the Kinect frame. This
happens because, in our project, the tracked person must stay by the side of
the wheelchair and because the narrow angle vision of the Microsoft sensor
simply can’t look at both obstacles in front of the wheelchair and at the
person at the same time. Remember that the main function for the Kinect
in our project is not to track the person but to cover part of the navigation
job in the machine, providing information about the environment in front
of it, such as obstacles and more.
The first solution that probably comes into everybody’s mind when thinking
on how to fix this problem is to implement and use more than one Kinect
sensor at the same time. While this is completely feasible, with this solu-
tion two main problems must be considered immediately: the first one is
the higher cost that comes with the requirement of buying more than one
Kinect; the second is the more powerful system machine horsepower that
this solution needs in order to process all the data coming from more than
one Kinect sensors in real time. Both those new issues represent what we
are trying to avoid by all costs in order to keep the machine affordable to
the consumer market.
The solution we provided, instead, is a combination of a Kinect sensor and
an omnidirectional camera, cheaper than a single Kinect sensor: thanks to
the 360° field of view of the omnidirectional camera, the machine can always
track the person even if she can’t be seen in the Kinect frame for a long
period of time. Furthermore, working with the omnicamera 2d image frame
requires way less machine horsepower than working with another (or more)
point cloud provided by another hypothetical Kinect sensor.

29

3.1 Sensors positions

Once we settled down on which sensors we were going to use, the next
challenge was to find out where to setup both sensors in the machine, in
order to work properly and efficiently. Since the assigned smart wheelchair
has been already used with both these sensors in previous works with similar
purposes as ours, we chose to trust these previous works and use the same
position for both sensors.
In more detail, we have that:

(a) (b)

Fig. 3.1: Figure 3.1(a) displays the actual JiaoLong Smart Wheelchair.
Figure 3.1(b) is a scheme with the sensors position in the JiaoLong Smart
Wheelchair

• The Kinect sensor is located 122cm above the ground and 70cm from
the back of the seat of the user.

• Since the main purpose of this sensor is to give useful information
to the Navigation stack of the machine, the Microsoft sensor is not
parallel to the ground but slightly tilted towards the floor, allowing a
more precise information about the obstacles that are in front of the
wheelchair. To be more specific, the pitch of the camera is 0.25 rad
(14.3°) while the yaw and roll are obviously 0 rad.

30

• The Omnidirectional camera’s base is located at 161cm above the
ground, with the virtual perspective camera at 171cm, and 52.5cm
from the back of the seat of the user (with the virtual perspective
camera at 56cm). This location guarantees the visibility of the tracked
person in the camera frame in as many conditions and positions as pos-
sible without making the sensor too annoying to the smart wheelchair
user. Because of reasons explained in the next chapters, this time the
camera is parallel to the ground.

This way both centers of the cameras are aligned and we had little job to do
for setting these sensors up into the machine. The pitch of the Kinect sensor
will introduce a few troubles with the camera’s calibration but nothing that
we couldn’t manage, as we’ll see in a few chapters (chapter 5.2.2).

3.2 Sensors inner calibration

Thanks to the work done within the OpenNI framework, the Kinect calibra-
tion is nothing to concern about: everything has already been take care of
in the OpenNI grabber framework of PCL.

Since the omnidirectional camera is custom made, we cannot obviously apply
the same line of thought for this second camera. As introduced in chapter
2.5.3, the omnidirectional camera calibration needs to use OcamCalib tool-
box developed by Davide Scaramuzza. By calibrating this kind of camera
that, remember, is just a linear perspective camera with a parabolic mirror
in front of it, we are allowed to generate linear perspective images that are
free of distortion or to obtain useful information from the omnicamera image
frame.
But before diving into that, we suggest you to refresh your memory on how
an omnicamera works by reading our introduction of some foundamentals
on the omnidirectional sensor in our appendix A.

3.3 Omnidirectional camera calibration

Once the camera is set up, the first thing to do is take pictures. Since we still
are in the calibration phase, we have to use a calibration pattern that will
be recognized afterwards by our calibration tool. The calibration pattern
for the OcamCalib tool is a common black and white chessboard that has
to be printed and placed on a flat rigid surface that guarantees the pattern
to stay flat for all the duration of the calibration.
The images taken (figure 3.2) should have the whole chessboard as close as
possible to the optics of the omnidirectional camera while always showing
clearly all the chessboard four corners. Also, in order to obtain the best cal-
ibration results as possible, the calibration pictures, together, should have

31

(a) (b)

(c) (d)

Fig. 3.2: Sample of snapshots used during the calibration of our omnidi-
rectional camera

the checkerboard to cover all the visible area of the camera (all around the
parabolic mirror). Once these pictures are ready, the next phase of the cal-
ibration is also the most important one: in this phase the OcamCalib tool
will extract all the grid corners from all the pictures. This phase teaches to
the OcamCalib tool what the omnidirectional camera sees and in which way,
in fact, thanks to this phase, the tool will be able to estimate the camera’s
mirror shape, absolutely fundamental for the scope of the calibration.
Once this last phase is complete, OcamCalib tool will have a few more little
things to do in order to improve the calibration results.
The first of which is the image center estimation: it would be ideal that
the pixel at the center of the 2D image would also be the effective center of
the omnidirectional image, unluckily, most of the time, this is not the case:
this is the reason why the OcamCalib tool runs a routine that iteratively
just applies a linear estimation method to each image used in the corner
extraction phase to estimate where the effective center is.
Once the center position is computed, the OcamTool offers another phase,
called Calibration Refinement Service, which refines all the calibration pa-
rameters again, including the position of the effective image center, using a
non-linear method called Levenberg-Marquadt algorithm, which gives back
improved calibration results. The optimization is performed by attempting
to minimize the sum of squared reprojection errors.
The non-linear refinement is done in two steps. First, it refines the ex-
trinsic camera parameters, that is, the rotation and translation matrices of

32

(a) (b)

(c) (d)

Fig. 3.3: Figure 3.3(a) shows us the extract grind corners phase, figure
3.3(b) shows where the checkboard was in each picture (each picture has
a different color), figure 3.3(c) shows us the tool-estimated omnidirectional
camera mirror shape, and figure 3.3(d) shows us the complete error analysis
of the pictures taken for the calibration

33

each checkerboard with respect to the camera (i.e. RRfin). Then, it refines
the camera intrinsic parameters (i.e. ocam model). As the extrinsic and
intrinsic parameters are not independent, the refinement may need a few it-
erations to converge to a solution that minimizes both intrinsic and extrinsic
parameters. [22] [23] [21] [19]

3.4 Sensors communication

As we can read from the last 20 years of literature, detecting and tracking
people by using only an 2D image frame is not an easy task, especially when
the image frames come from an omnidirectional camera mounted on a mo-
bile robot: this is why in this project we chose to detect the person whom
our wheelchair user wants to talk with by using the Kinect camera. This
obviously requires that person to stand in front of the wheelchair in order
to be detected.
Once detected, the person tracking algorithm will be handled by the omni-
directional camera. As we shall see in chapter 5, this kind of collaboration
between the two sensors requires one more calibration: this time we’re talk-
ing about a calibration that is not within the cameras but between them.
Furthermore, the people detection algorithm part is described in detail in
chap 4, while the people tracking part in described in detail in chapter 6.

34

Chapter 4

People Detection

Although we said that the Microsoft sensor is mainly used to avoid obstacles
in the environment, in our project the Kinect camera is also used for one
more fundamental step: people detection. This step is the first one out of
three (as we introduced in the section 1.1), in our project: once the person
has been detected, the Kinect is free to go back permanently to its usual
function of obstacle avoidance, while the omnidirectional camera will start
to track the person with the information received by the Microsoft sensor.

4.1 Ground Based People Detection Algorithm

By default, the Kinect camera gives us an everlasting flow of point clouds
data, so what should we do in order to detect people?
Thankfully there’s a work, called ground based people detection [16], pub-
licly available in the official site of the Point Cloud Library1 that we can use
freely within our project:
During its initialization, the algorithm asks the user to point out where
the ground plane (as know as the floor) is from one RGB-D frame that is
displayed on the touchscreen of the wheelchair as soon as the algorithm is
launched: while not completely necessary, this initialization enhances the
outcome of the detection and further avoids fake positives. Since the po-
sition of the Kinect sensor mounted on the wheelchair never changes, this
initialization can be, and in our work is, completely skipped in our work by
calibrating it offline. This also results in a better integration of the algo-
rithm within the JiaoLong wheelchair.
Once the initialization phase is completed, all the RGB-D data coming from
the Kinect is processed by a detection module that alters the point cloud
data by removing the points of the ground and it performs a 3D clustering
of the remaining points. Furthermore, in order to keep only those points
that are more likely to belong to the class of people, the method applies a

1http://www.pointclouds.org

35

http://www.pointclouds.org

HOG-based people detection algorithm to the RGB image of the resulting
clusters. All these actions are made by working directly on the point cloud
received from the camera.
The 3D clustering is probably the most important part of this method and
it uses some human shaped SVM models: in machine learning, Support Vec-
tor Machines (SVM) are supervised learning models with associated learning
algorithms that analyze data and recognize patterns, used for classification
and regression analysis. An SVM model is a representation of the examples
as points in space, mapped so that the examples of the separate categories
are divided by a clear gap that is as wide as possible.
Thanks to this model of recognition, every cluster of the remaining points of
our point cloud is evaluated and given an HOG confidence (as know as the
confidence that the analyzed cluster represents a real-world person): once
the method finds a cluster with HOG confidence higher than a certain cus-
tomized threshold, the algorithm stops, draws a bounding box around the
detected person, and publishes details about that person over a dedicated
ROS topic: details that will be promptly read by the omnidirectional cam-
era node.
After this message publication, the algorithm quits, leaving the Kinect sen-
sor to its usual job in the navigation part.

36

Chapter 5

Calibration between
Omnidirectional camera and
Kinect camera

As introduced in section 3.4, another challenge that we had to face during
the project was making the communications between the Microsoft Kinect
camera and the Omnidirectional camera possible. By communication we
mean that if the Kinect camera wants to point at something in its point
cloud, we can view exactly the same point in the omnicamera’s 2D image.
By exchanging information that both sensors can see in their own frame,
there could be many new important developments in the field of robotics,
and computer engineering in general.
Once the inner calibration of both cameras is completed (Chapter 3), the
only job left to do is the transformation of the information seen from the
point cloud data into information seen on the 2D frame image and viceversa.
The task is even harder when we consider the low-precision of both cameras
and the different tilt position (as stated in section 3).
Furthermore, converting a random point from the Kinect point cloud into
a pixel of the omnidirectional camera 2D image frame is nearly impossible
unless some hypothesis on the point are made.

5.1 Cam2World vs. World2Cam

Note: we suggest you, again, to refresh your omnicamera knowledge by
reading the appendix A.

A fundamental part of this section has been thoroughly taken care of by
[22] [23] [21] [19], this toolbox not only provides the omnidirectional camera
calibration tool, but also two class methods (CAM2WORLD and
WORLD2CAM) which expresses the relation between a given pixel and its

37

projection onto the unit sphere (that is a 3D vector emanating from the
single effective view point). This relation clearly depends on the mirror
shape and on the intrinsic parameters of the omnidirectional camera: this,
in fact, is the reason why we need to calibrate the camera first.

5.1.1 World2Cam

m = world2cam(M,ocam model) (5.1)

World2Cam projects a 3D point on to the image and returns the pixel co-
ordinates. M is a 3xN matrix containing the coordinates of the 3D points:
M = [X;Y ;Z]. ocam model contains the model of the calibrated camera
(as known as the outcome of the inner calibration). m = [rows; cols] is a
2xN matrix containing the returned rows and columns of the points after
being reproject onto the image.

5.1.2 Cam2World

m = cam2world(M,ocam model) (5.2)

Back-projects a pixel point to the unit sphere M. M = [X;Y ;Z] is a 3xN
matrix with which contains the coordinates of the vectors emanating from
the single-effective-viewpoint to the unit sphere, therefore, X2+Y 2+Z2 = 1.

m = [rows; cols] is a 2xN matrix containing the pixel coordinates of the
image points. ocam model contains the model of the calibrated camera.

Since these functions request and return only a direction in the real world,
we must assume that whatever is visible from the Kinect sensor is also visi-
ble by the omnicamera, while this is not always true in general, we can rest
assured that this is the case in our application. Thanks to this hypothesis all
our conversions can be made easily just by using the functions introduced.

5.2 The conversion

5.2.1 Offset

As we saw in the previous section (section 5.1), world2cam can identify a
pixel in the omnicamera 2D frame just by knowing the direction (pixel point
m onto the unit sphere) of the point from the virtual perspective camera.
Thanks to this method and the information published by the Kinect (see
chapter 4.1) we meet all the requirements for identifying the same point seen
from the Kinect point cloud into the omnicamera 2D image.
Let’s say that we have one point from the point cloud that we want to see in

38

the omnicamera image frame: thanks to how the point cloud is built, we have
the direction, a 3D vector, pointing from the center of the Kinect to exactly
that point, according to the Microsoft sensor axes. This 3D vector contains
also information on the distance of the desired point from the Kinect, but
is not needed for what’s next.

Fig. 5.1: A graphical example of the two sensors pointing at the same point

The first thing that shall be done is converting this direction into one com-
patible with the omnicamera axes, obtaining a 3D vector emanating from
the single effective view point of the omnidirectional camera and pointing
directly to the same point seen from the Kinect camera (as seen in figure
5.1). This is done by converting each axis value from the Kinect coordinate
system into the correspondent ones in the omnicamera coordinate system.
The following steps outline this conversion:

• The x-axis value of the omnicamera is the opposite value as of the
x-axis of the Kinect: so if in the Kinect sensor z-axis has the value
of +3, in the omnicamera the same value will be -3, also, we have to
consider the offset between the omnicamera and the Kinect (chapter
3.1) in this direction, we do this by adding 14cm (as seen on figure
3.1(b)) to the final result;

• The y-axis of the omnicamera is the same as the x-axis of the Kinect,
we also don’t have to add any offset in this direction;

• The z-axis, like the x-axis, must change the sign of the value of the
Kinect y-axis and also consider the offset of 49cm between the two
cameras (as seen on figure 3.1(b));

39

Mathematically speaking, the coordinates translation conversion leads to
these three equations:

Omni Coordx = −(Kinect Coordz + 0.14)

Omni Coordy = Kinect Coordx

Omni Coordz = −(Kinect Coordy + 0.49)

(5.3)

5.2.2 Pitch

(a) (b)

Fig. 5.2: Figure 5.2(a) shows us an over simplified scheme of the side view of
the sensors as they are mounted on the wheelchair, empathizing the rotation
of the Kinect sensor. Figure 5.2(b) shows us exactly the same thing, but in
a 3d world, displaying all the axes of the two different coordinate systems.
Note that the omnicamera coordinate system is centered on its own virtual
perspective.

Another very important aspect that must be considered during the coordi-
nates conversion is the different rotation of the cameras (picture 5.2).
As we said in (chapter 3.1) the roll and the yaw are the same in both the
cameras, but the pitch isn’t. The Kinect sensor is slightly tilted (0.25 rad)
toward the ground to better catch the obstacles in front of the wheelchair.
We must take account of this difference while converting the coordinates
from the Kinect to the Omnidirectional system.
Luckily, this matter is simply taken care of by using the trigonometry theory
that stands behind the pitch difference among the cameras.
Let’s imagine for a moment that the Kinect sensor was parallel to the ground

40

(pitch value 0 rad), now let’s tilt it a little toward the ground: by doing this
rotation, the coordinate system of the Kinect sensor will tilt as much as
the camera itself and the z-axis and y-axis will measure different values if
compared with the values measured from the previous sensor’s position.
Even though the pitch angle is small, is not a good idea to ignore this
rotation: the error made in the conversion would be way too unbearable,
bringing to large errors in the conversion. Since the pitch rotation, like the
roll and the jaw, involves only two axis, the following steps tell us what we
must do to convert the direction of a point seen by the tilted Kinect to the
direction of the very same point seen by a non-tilted Kinect in the same
location:

• X-axis: nothing changes, no operations needed;

• Y-axis: by looking at the picture (Figure 5.2(a) and Figure 5.2(b)),
you can see that the new registered value can be seen as the hypotenuse
of a right-angled triangle in which we’d like to know the length of the
vertical side. This is simply accomplished by multiplying the recorded
value by the cosine of 0.25 radians.

• Z-axis: in here we must follow the same logic applied to the Y-axis
above. This time, as we can see from the picture (same as before)
the registered value from the Kinect is the length of the inclined side
and we must find out the length of the hypotenuse. Thanks to the
trigonometry theory we know that this can be accomplished just by
dividing the registered value by the cosine of 0.25 radians.

Mathematically speaking, the Kinect coordinates pitch leads to these three
equations:

Kinect Coordx = Kinect Coordx

Kinect Coordy = Kinect Coordy ∗ cos(0.25)

Kinect Coordz =
Kinect Coordz

cos(0.25)

(5.4)

Since this conversion changes the values of the direction a lot, we should do
this pitch conversion first, and only afterwards we are free to proceed with
the offset conversion introduced above.

5.3 The cameras communication

Once we understood how to convert one point from one camera to the other,
it is time to use this new knowledge in practice into our project.
As we’ve seen already (section 1.1), the first step in our solution is the people

41

Fig. 5.3: First step of the camera communication

Fig. 5.4: Examples of the second step of the camera communication

42

detection with the Kinect camera: once the person is detected, the Kinect
node defines a bounding box in the 3D world (the point cloud) that sur-
rounds the person among all the three dimensions, as seen on figure 5.3 and
described in section 4. The box, called bounding box, is composed by many
3D points that can be extracted for further developments: in our cases we
extract the top and the bottom point of the bounding box. With just these
two points we can obtain a lot of information from the omnicamera image
frame and that’s all we need from this Kinect node: once those two points
are published, the Kinect people detection node will shut down, leaving the
Kinect free to work with the navigation node.
Obviously this first step is not ended since we are still missing the people
detection in the omnicamera frame: in order to detect the person, the first
thing to do is reading the coordinates published by the Kinect node. Thanks
to the conversion we just introduced (section 5.2), we can now obtain two
points in the 2D image frame pretty quickly.
By considering those two points as two opposite corners of a rectangle we
can quickly define a 2D bounding box surrounding the person in our camera
frame. Since the top and the bottom of these 3D bounding boxes are usu-
ally vertically close, we enlarge the 2D bounding box in order to get a better
detection of the person. Furthermore, because of the pitch of the Kinect
camera that cuts most of the detected persons head off in the Kinect Image
frame, we also expand the 2D bounding box vertically by 30cm: we have
to do this because otherwise the 3D bounding box would not surround the
tracked person head, leaving the real people detection a bit off. Anyway,
this task is easily computed by adding 30cm to the top point published by
the Kinect camera prior its conversion in the correspondent 2d omnicamera
point.
Once we have the final 2D bounding box, it’s time to proceed to the second
step of the solution.

43

44

Chapter 6

People Tracking

Once the person has been detected by the Kinect camera and her position
has been transferred from the Kinect node to the omnidirectional one, the
next challenge, and our second project step (section 1.1), is to do the visual
tracking of that person.
Most of the 2d image tracking algorithms are based on the description of the
image region where the subject is detected, while many of them are based
on the texture or edge histograms, the best results are obtained by those
based on the colour histogram. [26] [15] [24] [13]
The histogram gives us a global statistic description of the target to track,
losing by any means the spatial information of the target. Furthermore, the
computation of an histogram from an image frame is pretty quick and easy
to implement even in a real time application.
As intuitable, colour histograms are very resilient against change of size and
movements of the target in the camera frame. The downside is that, by
using only a single colour histogram, we can’t distinguish two subjects with
very similar colors.

6.1 Mean Shift

One possible approach is presented in [17], but the method that really
changed the tracking algorithms with the use of colour histograms is the
Mean shift [9]. Mean shift is a non-parametric feature-space analysis tech-
nique that give us a procedure for locating the maxima of a density function
given discrete data sampled from that function (the histogram, in our case).
Application domains of the mean shift include cluster analysis in computer
vision and image processing. The simplest of such algorithms would create
a confidence map in the new image based on the color histogram of the
object in the previous image, and use the mean shift to find the peak of
a confidence map near the object’s old position. The confidence map is a
probability density function of the new image, assigning each pixel of the

45

new image a probability, which is the probability of the pixel colour occur-
ring in the object in the previous image.

The probability density of the subject, as known as the color histogram,
is estimated by using a decreasing monotone kernel. The Kernel needs to
sadisfy some general properties, as discussed in [11] e [6]. It’s recommended
to use the Kernel with Epanechnikov profile [7], defined in general as:

KE(x) =


1

2
c−1
d (d+ 2)(1− ‖x‖2) if‖x‖ < 0

0 otherwise

(6.1)

Where d is the number of dimensions of the space where we work in, c−1
d is

the d-dimensional unit sphere and x is the target point coordinates (pixel,
in our case).

In our case the frame from a videocamera is a 2d image: the Epanechnikov’s
kernel formula becomes:

KE(x) =


2

π
(1− ‖x‖2) if‖x‖ < 0

0 otherwise

(6.2)

The similarity between the target model and the target candidates in the
next frame is measured using the metric derived from the Bhattacharyya
coefficient [8]. In our case, the Bhattacharyya coefficient has the meaning
of a correlation score. The similarity function defines a distance among
target model and candidates. To accommodate comparisons among various
targets, this distance should have a metric structure. We define the distance
between two discrete distributions as:

p[p(y), q] =
∑
z

√
pz(y)qz (6.3)

Where qz indicates the target histogram and pz indicates the histogram of
candidate region of interest in the frame.

Given a set {xi}i=1...n of n points in the d-dimensional space Rd, the multi-
variate kernel density estimate with kernel K(x) and window radius (band-
with) h, computed in the point x is given by

f̂(x) =
1

n

1

hd

n∑
i=1

K

(
x− xi
h

)
(6.4)

It can be shown [8] that maximizing the Bhataccharyya’s coefficient is equal

46

to maximizing the value of

n∑
i=1

wiK

(∣∣∣∣∣y − xih

∣∣∣∣∣
2)

(6.5)

Where h indicates the kernel’s bandwith length and the wi parameters are
computed as:

wi =

m∑
u=1

√
q̂u

p̂u(ŷ0)
δ[b(xi)− u] (6.6)

In which δ is the Kronecker’s function and where q̂u and p̂u are the values of
the bin u of the target’s histogram and the candidate’s histogram, respec-
tively. ŷ0 indicates the current position of the center of the candidate.

The vector, called Mean shift vector and seen in figure 6.1, is computed
at every iteration and always points towards the direction of the maximum
increase in the probability density of the target position in the current frame.
It is computed as:

ŷ =

n∑
i=1

xiwig

(∣∣∣∣∣ ŷ0 − xih

∣∣∣∣∣
2)

n∑
i=1

wig

(∣∣∣∣∣ ŷ0 − xih

∣∣∣∣∣
2) (6.7)

where the function g(. . .) indicates the derivative function. Since the Epanech-
nikov’s kernel is a constant, the derivative function is quite simple and it is
reduced to a simple weighted average:

ŷ =

n∑
i=1

xiwi

n∑
i=1

wi

(6.8)

In conclusion, it is possible to reach a local maximum by iterating the pro-
cess multiple times. It’s worth noting that the module of the mean shift
vector is longer when the starting position of our current centroid is far
from the local maximum, and it decreases as the centroid gets closer to it.
This condition is necessary for the procedure to stop [7].

Therefore, the mean shift procedure, as know as the procedure that will
locate a local maximum in our density by starting from a point x, called
centroid, can be summarized in these three steps:

1. Computation of Mean Shift vector starting from the centroid;

47

2. Translation of the search window in the quantity defined by the Mean
Shift vector;

3. If the mean shift vector’s length is lower then a certain threshold, the
procedure ends, otherwise we re-start again from the step 1;

6.2 Mean Shift Example

The intuition behind the meanshift is simple. Consider you have a set of
points. (It can be a pixel distribution like histogram backprojection). You
are given a small window (may be a circle) and you have to move that window
to the area of maximum pixel density (or maximum number of points). An
example is illustrated in the simple figure 6.1.

Fig. 6.1: Example of the Mean Shift algorithm in action

The initial window is shown in blue circle with the name ”C1”. Its original
center is marked in a blue rectangle, named ”C1 o”. But if you look fo the
new centroid of the points inside that window, you will get that the point
”C1 r”, marked in small blue circle, is the real centroid of window. Surely
they don’t match at the moment. So in this step we move our window such
that circle of the new window matches with the centroid just spotted. Now,
again find the new centroid. Most probably, it won’t match. So move it
again, and continue the iterations such that center of window and its cen-
troid falls on the same location (or with a small desired error). Finally what
you obtain at the end of the algorithm is a window with maximum pixel dis-
tribution: in figure 6.2(a) this window is marked with a green circle, named
”C2”.
When the object moves, obviously the movement is reflected in histogram
backprojected image. As a result, the meanshift algorithm moves our win-
dow to the new location with maximum density.

48

6.3 CamShift

The drawback of the mean shift procedure is that it is not dynamic at all,
infact the Mean Shift algorithm works well on static probability distributions
but not on dynamic ones like a movie or a video streaming. For this kind
of meta data we need an algorithm that has a window that adapts with the
size and the rotation of the target. This is why we have to look for a more
complex solution, solution that is found in an algorithm called Camshift
(Continuously Adaptive Meanshift) [5].
Camshift’s is able to handle dynamic distributions by readjusting the search
window size for the next frame based on the zeroth moment of the current
frames distribution. It also computes the orientation of the best fitting
ellipse to it. This allows the algorithm to anticipate object movement and
to quickly track the object in the next scene. Even during quick movements
of an object, Camshift will be able to correctly track said object.
Note that this method is not a completely new one but just an expansion of
the Meanshift one (as the name suggested): the new algorithm still works
by tracking the histogram of the subject as in its predecessor.
The Camshift is implemented as such:

1. Initial location of the 2D search window was computed.

2. The color probability distribution is calculated for a region slightly
bigger than the mean shift search window.

3. Mean shift is performed on the area until suitable convergence. The
zeroth moment and centroid coordinates are computed and stored.

4. The search window for the next frame is centered around the centroid
and the size is scaled by a function of the zeroth movement.

5. Go to step 2.

6.4 CamShift example

There is very little to say more about the Camshift: It applies meanshift
first. Once meanshift converges, it updates the size of the window as, s =

2 ×
√

M00
256 . It also calculates the orientation of best fitting ellipse to it.

Again it applies the meanshift with new scaled search window and previous
window location. The process is continued until required accuracy is met.
An example can be seen in figure 6.2(b)

49

(a) (b)

Fig. 6.2: Example of the differences between Mean Shift and Cam Shift
algorithms on action: Figure 6.2(a) shows us the MeanShift behaviour, while
figure 6.2(b) shows us the CamShift algorithm behaviour

50

Chapter 7

Motion control

In the last few chapters we have introduced the first two steps, out of three
of our algorithm: we described how the machine detects a person (step 1,
chapter 4), how the sensors tracks her (step 2, chapter 6), and how both
sensors work together (step 1 again, chapter 3 and 5).
At this point, as our last step, what we need to do is converting all the infor-
mation gained from the sensors into an actual action taken by our machine
in order to accomplish the main goal of this project: allow a natural conver-
sation to take place between a person and the smart wheelchair user without
the need to control the wheelchair during the length of the conversation.

7.1 Linear & Angular Speed

Once the person is being tracked by the omnidirectional camera, the ma-
chine always knows, or at least has an estimation of, where the person is.
Remember that, since the DC motors of the wheelchair allow a maximum
translational speed of 500 mm/s (1.8 km/h, a little over 1 mile per hour),
we must assume that the person to follow doesn’t run or goes too fast. By
doing so, the only other thing that we have to take into account is the direc-
tion of the wheelchair movement at any given point of time. The goal is to
have the wheelchair user and his partner to be by each other side: the eas-
iest and ideal thing to do is to send a new command, with the new wished
linear speed (velocity) and angular speed (direction), at every new frame
received from the omnicamera. Since our algorithms usually take more than
a few milliseconds to compute, we implemented a buffer in which we keep
only the latest omnicamera frame received. By doing so, we dump older un-
used frames received during the last computation and we compute only the
most recent one at our disposal. Obviously this will make the work of the
Camshift algorithm (section 6.3) harder, but it’s something that we must
give in for real-time’s sake.
Note that, thanks to our people’s tracking algorithm, there will not be any

51

problems even if the person changes direction suddenly or, eventually, slowly.
In practice, the outcome of our method replaces the human-controlled joy-
stick (or the other command interfaces, all introduced in section 2.3) during
the whole conversation.

7.1.1 Linear speed

As introduced earlier, the maximum speed of the wheelchair is rather slow.
When the wheelchair is at its top speed, the machine is as fast as a human
being walking at a normal pace: what we must take care of is to make sure
that the change of the linear speed is as smooth as possible, this is accom-
plished by adjusting the liner speed commands carefully at every change of
state (we will introduce the concept of ”state” in an dedicated upcoming
section) in order to let the wheelchair user to have a pleasant ride.

7.1.2 Angular speed

The only thing left to do now is to determine how to choose the direction
of the wheelchair movement properly: we know the exact position of the
person in the omnicamera frame at any given time, obviously, we also know
the exact position of the omnidirectional camera in the wheelchair.
Thanks to these pieces of information, we can estimate how far the person
is from the smart wheelchair.

Target Distance

While the distance estimation of any given point from the omnicamera frame
is a nearly impossible to compute without any further assistance, we can eas-
ily find out the distance of any given point if we are assured that the chosen
point lies on the ground, called Ground Plane in picture 7.1. With this
hypothesis and by knowing that the omnicamera’s vertical axis is perpen-
dicular to the ground, the task of estimate this distance is quite easy thanks
to, again, the trigonometry theory:
The height h of the omnicamera is obviously known and constant, by know-
ing the direction p (please note that thanks to our omnicamera we know only
the direction, not the distance of each one of the x,y,z axes: our p vector is
always a unit vector) of the bottom point of the person in the camera frame
we can compute the person distance from the wheelchair as follow:
Let’s call p = [x,y,z] the 3D unit vector that emanates from the effective

point of view towards the desired ground point (please refer to figure 7.2).
To obtain our distance we have to separate the problem in three phases.
Note that this is only one of the many ways that lead to the same result:

Phase 1

52

Fig. 7.1: Omnicamera planes

Fig. 7.2: Example of 3D vector with all its characteristic properties

Fig. 7.3: Detail of 7.2 concerned in this phase. Please notice that instead
of d we are computing the distance l, that is in the same place as d but
much shorter.

53

In this phase we are going to compute the length of the triangle’s
hypotenuse formed by the x and the y edge. Let l be that length,
then this can be computed by resolving the system of equations:{

y = l ∗ cos(b)
x = l ∗ sin(b)

(7.1)

Obtaining:

l =
y

cos

(
atan

(
x

y

)) = y

√
1 +

x2

y2
(7.2)

Remember that this length l is NOT the same length as our desired
distance d, because our values of x and y refer only to the 3D unit
vector (the figure may make you think otherwise).

Phase 2

Fig. 7.4: Detail of 7.2 concerned in this phase. Please notice that, instead
of h, we now use z, instead of d we now use l, and instead of p we use ‖p‖

In this phase we are going to compute the vertical angle α of our 3d
unit vector p:
Again, thanks to the trigonometry theory, the angle is obtained by
resolving the system of equations{

z = ‖p‖ ∗ cos(α)
l = ‖p‖ ∗ sin(α)

(7.3)

Obtaining

α = arctan

(
l

z

)
(7.4)

Phase 3
At this point we have both the height h of the effective point of view

54

of the omnidirectional camera, measured in real life with a meter tool,
and the vertical angle α, just computed in the last phase: nothing can
now stop us to use the trigonometry theory again to finally compute
the desired distance d. {

h = ‖p‖ ∗ cos(α)
d = ‖p‖ ∗ sin(α)

(7.5)

Obtaining

d = h ∗ tan(α) = h ∗ l
z

= h ∗ y
z
∗

√
1 +

x2

y2
(7.6)

Where we used the result from phase 2 in the first step and the result from
phase 1 in the second step.

Target Goal

Another fundamental aspect for defining what the next speed command will
be is the position of the actual bottom point of the person in comparison
with its wished position: by doing some tests we found out that the best
position for the bottom point in order to let the users have a normal talk is
slightly on the left (or on the right) of the back of the wheelchair, resulting
in having the machine always around 40cm away from the walking person.

States

Now that we have introduced how we compute the distance and how we set
the goal, it is time to introduce the wheelchair states, states that actually
define the linear and angular speed of the robot.
All the wheelchair states are based on the different position that the actual
bottom point of the person assumes in comparison with its target position.
At any given moment the wheelchair will assume one of states showed in
figure 7.5: the wheelchiar will change state every time the actual bottom
point lies on another of those enlightened areas.

The first and easiest state, colored purple in the figure 7.5, is the one based
on the user distance: if the person bottom point is less than 20 cm away
from the target goal, then this state tells the wheelchair to simply go straight
ahead, when the tracked person is in this position we can assume that the
conversation is happening smoothly.

The other four different states are based on the position of the person, two
of which are further split in two stops, and are defined in order to make the
smart wheelchair to be by the walking user side:

55

Fig. 7.5: Smart Wheelchair states, remember that these states are defined
by the bottom point of the walking user.

• When the person is behind on the right side of the target goal, stop the
wheelchair and let the person reach you. If the person is far behind on
the right, stop and turn right. Those two states are colored respectfully
light and dark orange in the figure 7.5;

• When the person is slightly in front of the wheelchair on the right or
on the right side of the target goal, go straight ahead. If the person
is far, stop and turn right. Those two states are colored respectfully
light and dark green in the figure 7.5;

• When the person is in front of the target goal, just go straight ahead.
The state is colored blue in the figure 7.5;

• If the person is on the left side of the goal, stop and turn left. This
state is colored brown in the figure 7.5;

Obviously those are the states when the goal is set on the right of the
wheelchair, the same way of thinking is applied when the goal is set on the
left of the wheelchair, but with all the cases mirrored on the image frame.

From the coding perspective of view, these states are defined by the position
and inclination of the imaginary straight line that connects the bottom point
goal with the actual bottom position: aside the distance-only-dependent
state, to disclose in which state the wheelchair is, we must compute this

56

inclination and compare the positions of the two points (actual position and
goal position). Once we understood if the actual bottom point is on the left
or on the right of the goal position, we can detect in which state the ma-
chine is by comparing the inclination of the straight line introduced above
with some predefined inclinations that we experimented: since all our cases
together surround the bottom point goal completely, the wheelchair will lie
in one of those states at every single update.
Because we are working with humans, when a change of state happens, this
doesn’t mean that the wheelchair will adjust the direction or stop suddenly
in order to reflect the new state: every change will see a smooth transition
of the linear and angular speed, in the interest of preserving the comfort of
both the wheelchair user and the walking person.

7.2 Obstacle Avoidance

Now that we are able to send commands to the wheelchair, we should take
care of one final detail before wrapping up: what if there’s an obstacle in
our route? As stated previously, we use the omnicamera only to track the
person, while the Kinect is doing the obstacle avoidance. This means that
our omnicamera node doesn’t know anything about the environment. This
problem is resolved by our shared control (chapter 2.3.2): in fact, thanks to
the safety index, our robot will never hit any obstacle and will, eventually,
circle around the tracked user in order to move the goal from one side to the
other of the wheelchair.

7.2.1 Change of Goal

As said in the previous paragraph, the omnicamera node doesn’t have any
information about the environment. To overcome this weakness, our obstacle
avoidance node publishes information on when there are too many obstacles
on the left or on the right in front of the wheelchair: these messages will tell
the omnicamera node, that listens to this specific topic, when it is time to
swap from the left-positioned goal to the right-positioned one or viceversa.
Obviously, we pay attention to these messages only when the wheelchair is
moving straight ahead, otherwise we simply ignore them.

7.3 System Evaluation

In this chapter we’ll show the performance of the motion control, that is
what matters from the client point of view.

57

7.3.1 Introduction to the tests

To do this evaluation we studied two major points: how well the smart
wheelchair reach the target person and how well the wheelchair stays by the
target side during the conversation.
In order to do this evaluation we had to change the code a little, making
the system’s performance worse than the real scenario. Nevertheless, the
machine response was more than positive as shown in the next sections.
The first test records the target position once the wheelchair has reached
it, while the second test record the target position while the wheelchair is
following it, computing a target position chronology very useful for studying
it later.

7.3.2 Wheelchair position after reaching the target

This first test records a data set of the position of the target once the
wheelchair has reached it. We did this test several times, with the different
person starting positions:

• 1,5 m in front of the robot, 25° on the left.

• 1,5 m in front of the robot.

• 1,5 m in front of the robot, 25° on the right.

• 3 m in front of the robot.

Results

These positions were chosen in order to the target to be visible from the
Kinect camera. The recorded position of the target is taken 500 milliseconds
after the target has entered the purple state of figure 7.5, described in section
7.1.2.
The figure 7.6 represents the Heatmap of our dataset: as we can see the
person position on average is exactly where it is supposed to be, remember
that once the wheelchair reaches the person, she should start moving in order
to explore the environment and have the talk with the wheelchair user.

7.3.3 Wheelchair position after reaching the target

This second test records a data set of the target positions after the wheelchair
has reached it. While the first test is just a snapshot of a precise moment, this
second test is an mean average of the target position during the talk. Even
in this case we did the test several times, with different starting positions of
the target person:

• 1,5 m in front of the robot, 25° on the left.

58

Fig. 7.6: Heatmap of the target position after the wheelchair has reached
it.

• 1,5 m in front of the robot.

• 1,5 m in front of the robot, 25° on the right.

• 3 m in front of the robot.

results

Fig. 7.7: Heatmap of the target position while the wheelchair is following
it.

For an introduction on how to read the graph please reference to the previ-
ous subsection.
In this second test we can clearly see that our algorithm takes feedback
actions: the wheelchair user is on average slightly behind the target user
especially when he turns away from the wheelchair. Aside that, this algo-
rithm is an excellent starting point and removes the hassle to control the
wheelchair to its user.

59

An algorithm improvement could be an integration of a target user face di-
rection detection in order to predict where the target is heading to, obtaining
a foreseeing algorithm that will have a even better feedback action.

60

Chapter 8

Conclusions

In this thesis we presented a complete work, started from scratch, on how
a smart wheelchair may allow a natural conversation to take place between
anybody and a smart wheelchair user without the need to interact with the
wheelchair during the whole length of the conversation. We have used many
technologies: some new and some old, but their collaboration brought in the
table completely new technologies that can empower future works in many
fields.
We also have encountered many problems that made us to implement new
technologies, especially the collaboration between the omnidirectional cam-
era and the Microsoft Kinect sensor, that opened a wide range of future
implementations of this kind in several other projects.

Obviously, this work could be further improved in many aspects, such as:

Implementation of an improved tracking algorithm (chapter 6)

• Camshift is just the standard tracking algorithm: by implement-
ing something more specific to our needs (maybe a people track-
ing algorithm made exactly for using it with an omnidirectional
camera) the tracking experience could be improved even further
as this could also means less errors during the tracking phase;

• Missing person catch up: what if the person cannot be seen in
the omnicamera frame anymore? This can happen, for example,
when the tracked user walks around a corner and our wheelchair
is far behind it. In this case the robot should figure out what
happened and take action accordingly;

• If we don’t want to change the Camshift algorithm, a nice im-
provement would be the update of the color histogram at every
computed frame: this way the algorithm would work better when
the environment light conditions change;

61

Smarter motion control

• By implementing an algorithm for the face direction detection of
the tracked user, the smart wheelchair could use this new informa-
tion to change its behavior and to improve the overall experience
of the upcoming and/or ongoing talk;

Implementation of new sensors

• the second-generation of the Kinect sensor is better in every as-
pect in comparison with its predecessor and, especially, it has a
wider angle of view both horizontally and vertically. This could
bring to faster and more precise people detection, along other
things such as better obstacle avoidance and further maximum
distance for detecting obstacles. A better omnidirectional camera
is much more needed, since the colors of the current one tend to
be blueish in any given condition, bringing to an inefficient color
histogram and, consequently, an inefficient tracking algorithm;

Better people bag for the Kinect node

• In the case that the Kinect sensor wouldn’t be updated as sug-
gested earlier, the Kinect node would benefit of a better people
bag for the people detection: the people bag is something that
our algorithm needs to understand what a person is. The bag
contains a number of examples of people in different positions, so
that the algorithm can try to identify new people in any point
cloud given. Since the first generation of Kinect mounted on the
wheelchair wouldn’t see the heads of the people anyway, a people
bag with the people’s head cut off would result in a faster and
more suitable algorithm for the project. Obviously this is not
the case anymore if it will be decided to implement in the new
generation of the Kinect sensors in the wheelchair.

62

Bibliography

[1] D. Bell. Modeling human behavior for adaptation in human machine
systems. Ph.D. dissertation, Univ. Michigan, 1994.

[2] J. Borenstein and Y Koren. Histogramic in-motion mapping for mobile
robot obstacle avoidance. Robotics and Automation, IEEE Transactions
on (Volume:7 , Issue: 3), pages 535–539, 1991.

[3] J. Borenstein and Y Koren. The vector field histogramâĂŤfast obstacle
avoidance for mobile robots. Robotics and Automation, IEEE Transac-
tions on (Volume:7 , Issue: 3), pages 278–288, 1991.

[4] Adrian Bradski. Learning OpenCV, [Computer Vision with OpenCV
Library ; software that sees]. O‘Reilly Media, 1. ed. edition, 2008. Gary
Bradski and Adrian Kaehler.

[5] G.R. Bradski. Real time face and object tracking as a component of
a perceptual user interface. Proceedings of Fourth IEEE Workshop on
Applications of Computer Vision, pages pp.214,219, 1998.

[6] D. Comaniciu. Non parametric robust methods for computer vision.
PhD Thesis, The State University of New Jersey, pages 5–17, 2000.

[7] D. Comaniciu and P. Meer. Mean shift: A robust approach toward
feature space analysis. IEEE Trans. Pattern Analysis and Machine
Intelligence, pages 603–619, 2002.

[8] Comaniciu D., Ramesh V., Meer P. Real-time tracking of non-rigid
objects using mean shift. Proceedings. IEEE Conference on Computer
Vision and Pattern Recognition, pages 142–149, 2000.

[9] P. Meer D. Comaniciu, V. Ramesh. Kernel-based object tracking. Pro-
ceedings of IEEE International Conference on Pattern Analysis and
Machine Intelligence, pages 564–575, 2006.

[10] David A. Bell, Simon P. Levine, Yoram Koren, Lincoln A. Jaros, Johann
Borenstein. Design criteria for obstacle avoidance in a shared-control
system. Proc. RESNA Int. Conf., Washington, DC, page 581âĂŞ583,
1994.

63

[11] L. Hostetler K. Fukunaga. The estimation of the gradient of a density
function, with application in pattern recognition. IEEE Transactions
on Information Theory, pages 32–36, 1975.

[12] Robert Laganière. OpenCV 2 Computer Vision Application Program-
ming Cookbook. Packt Publishing, May 2011.

[13] Parag Batavia Marin Kobilarov, Jeff Hyams and Gaurav S. Sukhatme.
People tracking and following with mobile robot using an omnidirec-
tional camera and a laser. IEEE International Conference on Robotics
and Automation (ICRA), pages 557–562, 2006.

[14] Marin Kobilarov, Jeff Hyams, Parag Batavia and Gaurav S. Sukhatme.
People tracking and following with mobile robot using an omnidirec-
tional camera and a laser. IEEE International Conference on Robotics
and Automation (ICRA), pages 557–562, 2006.

[15] Matsumura, A., Y. Iwai, and M. Yachida. Tracking people by using
color information from omnidirectional images. Proceedings of the 41st
SICE Annual Conference, pages 1772–1777, 2002.

[16] Matteo Munaro, Filippo Basso and Emanuele Menegatti. Tracking peo-
ple within groups with rgb-d data. Proceedings of the International
Conference on Intelligent Robots and Systems (IROS), 2012.

[17] P. Perez, C. Hue, J. Vermaak, M. Gangnet. Color based probabilistic
tracking. Springer-Verlag Berlin Heidelberg, pages 665–670, 2002.

[18] Qinan Li, Weidong Chen, and Jingchuan Wang. Dynamic Shared Con-
trol for Human-Wheelchair Cooperation. IEEE International Confer-
ence on Robotics and Automation (ICRA), 2013.

[19] Rufli, M., Scaramuzza, D., and Siegwart, R. Automatic Detection of
Checkerboards on Blurred and Distorted Images. Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2008.

[20] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Li-
brary (PCL). In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), Shanghai, China, May 9-13 2011.

[21] Scaramuzza, D. Omnidirectional Vision: from Calibration to Robot
Motion Estimation. ETH Zurich, PhD Thesis no. 17635. PhD The-
sis advisor: Prof. Roland Siegwart. Committee members: Prof. Patrick
Rives (INRIA Sophia Antipolis), Prof. Luc Van Gool (ETH Zurich).
Chair: Prof. Lino Guzzella (ETH Zurich), 2008.

64

[22] Scaramuzza, D., Martinelli, A. and Siegwart, R. A Flexible Technique
for Accurate Omnidirectional Camera Calibration and Structure from
Motion. Proceedings of IEEE International Conference of Vision Sys-
tems (ICVS), 2006.

[23] Scaramuzza, D., Martinelli, A. and Siegwart, R. A Toolbox for Easy
Calibrating Omnidirectional Cameras. Proceedings to IEEE Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2006.

[24] M. Yachida T. Mituyosi, Y. Yagi. Real-time human feature acquisition
and human tracking by omnidirectional image sensor. IEEE Interna-
tional Conference on Fusion and Integration for Intelligent Systems,
MFI2003, page 258 âĂŞ 263, 2003.

[25] Takashi Yoshimi, Manabu Nishiyama, Takafumi Sonoura, Hideichi
Nakamoto, Seiji Tokura, Hirokazu Sato, Fumio Ozaki, Nobuto Mat-
suhira, Hiroshi Mizoguchi. Development of a Person Following Robot
with Vision Based Target Detection. IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 5286–5291,
2006.

[26] Teixeira T. and Savvides, A. Lightweight people counting and localizing
in indoor spaces using camera sensor nodes. ICDSC, IEEE, pages 36–
43, 2007.

[27] Norman Villaroman, Dale Rowe, and Bret Swan. Teaching natural user
interaction using openni and the microsoft kinect sensor. In Proceedings
of the 2011 conference on Information technology education, SIGITE
’11, pages 227–232, New York, NY, USA, 2011. ACM.

65

66

Appendix A

Omnidirectional camera 101

A.1 Effective Viewpoint, Virtual Perspective Cam-
era

Fig. A.1: Graph showing the view points of the omnicamera.

The Omnidirectional camera’s parabolic optics ensure that it has a single
effective center of projection, known as Effective Viewpoint or as Virtual
Perspective Camera, and also that this point is the single point through
which all rays from a scene must pass on their way to the camera’s lens.

A.2 Intrinsic and extrinsic parameters

It is quite important to estimate the objects position in the real 3D world
from the 2D image obtained by the omnicamera: to allow this we need to
know all the intrinsic and extrinsic parameters of our camera.

67

Fig. A.2: Virtual perspective projection camera at the focus of hyperbole

The intrinsic parameters, as the name reveals, are those parameters defined
within the camera, among them we have:

• f, Focal length (zoom);

• ox,oy: coordinates of the optical center;

• sx, sy: sensor pixel size in mm;

• k1,k2: radial distortion coefficients;

These parameters allow us to map the geometric coordinates in the real
world with the pixels in the digital frame. The extrinsic parameters, in-
stead, are those parameters that tell you the position and orientation of the
omnidirectional camera in the real world.

68

	1 Introduction
	1.1 Summary
	1.2 Related works
	1.3 Proposed solution
	1.4 Content

	2 Work Environment
	2.1 Microsoft Kinect
	2.1.1 Video Stream
	2.1.2 Software Technology

	2.2 Omnidirectional Camera
	2.3 JiaoLong
	2.3.1 Hardware and Software technology
	2.3.2 Shared Control

	2.4 ROS
	2.4.1 Computation graph architecture

	2.5 Libraries
	2.5.1 PCL
	2.5.2 OpenNI
	2.5.3 OCamCalib
	2.5.4 OpenCV

	3 System Overview
	3.1 Sensors positions
	3.2 Sensors inner calibration
	3.3 Omnidirectional camera calibration
	3.4 Sensors communication

	4 People Detection
	4.1 Ground Based People Detection Algorithm

	5 Calibration between Omnidirectional camera and Kinect camera
	5.1 Cam2World vs. World2Cam
	5.1.1 World2Cam
	5.1.2 Cam2World

	5.2 The conversion
	5.2.1 Offset
	5.2.2 Pitch

	5.3 The cameras communication

	6 People Tracking
	6.1 Mean Shift
	6.2 Mean Shift Example
	6.3 CamShift
	6.4 CamShift example

	7 Motion control
	7.1 Linear & Angular Speed
	7.1.1 Linear speed
	7.1.2 Angular speed

	7.2 Obstacle Avoidance
	7.2.1 Change of Goal

	7.3 System Evaluation
	7.3.1 Introduction to the tests
	7.3.2 Wheelchair position after reaching the target
	7.3.3 Wheelchair position after reaching the target

	8 Conclusions
	A Omnidirectional camera 101
	A.1 Effective Viewpoint, Virtual Perspective Camera
	A.2 Intrinsic and extrinsic parameters

