
Master Thesis in Computer Engineering

Skeleton-based online action recognition using
inertial sensors in industrial scenarios

Master Candidate Supervisor

Riccardo Vendramin Prof. Stefano Ghidoni

Student ID 2087923 University of Padova

Co-supervisor

Prof. Matteo Terreran

University of Padova

Academic Year

2023/2024

Abstract

Online action recognition is crucial in industrial settings to boost productivity,

enhance safety, and streamline automation. This research leverages inertial sen-

sors attached to the body to generate precise skeleton representations, facilitating

real-time recognition of complex actions performed in industrial environments.

The primary goal is to accurately distinguish between actions that exhibit high

interclass similarity across different tasks and significant intraclass variety across

different subjects. We employ the InfoGCN++ neural network, known for its

effectiveness in online skeleton-based action recognition. Our experiments were

conducted on both the AnDy dataset, which includes industrial actions like pick,

place, and carry, and a custom dataset which simulate the assembly of a chair,

with actions such as screwing and place components. The model demonstrated

the ability to learn actions well and generalize effectively to new subjects. How-

ever, it struggled to generalize to new assembly process scenarios. Fine-tuning

the model improved its performance, enabling it to better differentiate between

similar actions in these new environments. These findings demonstrate the po-

tential of combining inertial sensors with advanced neural networks for precise,

real-time action recognition in industrial settings, offering practical applications

for human action monitoring, ergonomics, and process optimization.

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xvii

List of Code Snippets xvii

List of Acronyms xix

1 Introduction 1

2 Literature review 7

2.1 Offline skeleton-based action recognition 8

2.2 Online skeleton-based action recognition 10

2.3 Ergonomics assessment . 11

3 Skeleton-based action recognition methodology 15

3.1 Skeleton model . 16

3.2 Model . 19

3.2.1 INFOGCN++ . 19

3.2.2 Model customizations . 29

3.3 Ergonomics assessment . 32

4 Experiments and results on AnDy dataset 35

4.1 Dataset . 36

4.1.1 AnDy Dataset . 36

4.1.2 Data rearrangement . 37

4.2 Train and Evaluation . 40

4.2.1 Results and discussion . 42

v

CONTENTS

4.3 Subject cross-validation . 44

4.3.1 Results and discussion . 44

5 Experiments and results on custom dataset 47

5.1 Custom data collection . 49

5.2 Inference on custom dataset using AnDy weights 53

5.2.1 Results and discussion . 54

5.3 Inference on custom dataset using AnDy weights after fine tuning 56

5.3.1 Results and discussion . 57

5.4 Data augmentation and dataset balancing 60

5.4.1 Results and discussion . 61

6 Conclusions and Future Works 63

6.1 Summary . 63

6.2 Limitations . 64

6.3 Future developments . 65

6.4 Final conclusions . 66

References 67

vi

List of Figures

1.1 Skeletal data estimated from rgb camera 2

1.2 Model based on skeletal data measured with inertial sensors . . . 2

2.1 Number of research publications on human action recognition

over the decade 2012-2022 [14] . 7

2.2 RULA assessment worksheet . 13

3.1 A general overview of our work . 16

3.2 On the left: musculoskeletal model. It highlights the correspon-

dence between sensors, joints and links. On the right: raw model

of skeleton based on joint positions and links 17

3.3 An overview of the InfoGCN++ framework workflow 20

3.4 Example of graph and its adjacency matrix: rows and columns

indexes represent nodes. If cell (i,j) is a 1, it means there is an

edge between node i and node j . 29

4.1 The high-level workflow of the data rearrangement from AnDy

to the right format for our model 38

4.2 Confusion Matrix of inference on AnDy dataset 43

4.3 AnDy dataset train and evaluation Area Under the Curve (AUC) 44

4.4 Train and evaluation AUC of cross-validation with subjects 1 and

2 of AnDy . 46

5.1 The chair used for our sequence of actions, at an intermediate

stage of the assembly process . 49

5.2 Experimental setup: in particular this is the initial situation, with

one side part on the work table, other components on the left and

screws is the red container on the right 49

5.3 Example of side part component of the chair 50

xi

LIST OF FIGURES

5.4 Example of crossbars component of the chair 50

5.5 Laboratory setup schema for the acquisition of the custom dataset 51

5.6 Examples of variations of reaching action: reaching a screw with

one hand, reaching with screwdriver, reaching chair component

with two hands. 52

5.7 Examples of variations of placing action: place object with left

hand far away from the body, place object with two hands, place

object with right hand close to the body. 53

5.8 Examples of variations of screwing action: two hands with hori-

zontal key, two hands with vertical key, one hand 53

5.9 Screwing action in AnDy dataset 54

5.10 Screwing action in our routine . 54

5.11 Confusion Matrix of inference on subjects 1 and 2 of custom

dataset, evaluated using weights computed after 70 epochs of

training on 70% of AnDy . 55

5.12 The evolution of overall accuracy over different fine-tuned mod-

els. In the y-axis it is shown the accuracy value, in the x-axis the

number of subjects used during fine-tuning 58

5.13 The evolution of AUC over different fine-tuned models. In the

y-axis it is shown the AUC value, in the x-axis the number of

subjects used during fine-tuning 58

5.14 The evolution of accuracy of each label over different fine-tuned

models. In the y-axis it is shown the accuracy value, in the x-axis

the number of subjects used during fine-tuning 59

5.15 Confusion Matrix of inference on subjects 1 and 2 of custom

dataset, evaluated using model fine-tuned on augmented custom

dataset . 61

xii

List of Tables

3.1 Body parts tracked with a sensor 18

3.2 Segments of the skeleton model . 18

3.3 Joints of the skeleton model . 18

4.1 Accuracy of each label for AnDy dataset evaluation 43

4.2 Accuracy of cross-subjects validation experiments between the 12

participant of AnDy. 45

5.1 Accuracy of each label for custom dataset evaluation 56

5.2 Initial distribution of samples per label 60

5.3 Final distribution of samples per label after data augmentation . . 60

5.4 Accuracy per label of model fine-tuned on augmented dataset . . 61

xiii

List of Algorithms

1 Feeder Data Loading . 23

2 Preprocessing . 25

3 Training Procedure for Skeleton-based Action Recognition 26

4 Real-Time Action Recognition . 32

5 Dataset creation . 38

xvii

List of Code Snippets

3.1 Freezing layers for fine tuning . 31

4.1 Snippet of example of annotation file 39

4.2 Command to train model on AnDy dataset 40

xix

List of Acronyms

HAR Human Action Recognition

IMU Inertial Measurement Unit

RNN Recurrent Neural Network

CNN Convolutional Neural Network

GCN Graph Convolutional Network

STGCN Spatio-Temporal Graph Convolutional Network

AGCN Adaptive Graph Convolutional Network

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

SA-GC Self-Attention Graph Convolution

WMSDs Work-related musculoskeletal disorders

AUC Area Under the Curve

ROC Receiver Operating Characteristic

EAWS European Assembly Worksheet

RULA Rapid Upper Limb Assessment

OWAS Ovako Work Posture Analysis System

JSA Job Safety Analysis

PERA Postural Ergonomic Risk Assessment

xix

LIST OF CODE SNIPPETS

OSHA Occupational Safety and Health Administration

HMM Hidden Markov Model

ROS Robot Operating System

GRU Gated Recurrent Unit

SGN Semantic-Guided Network

HCN Hierarchical Co-occurrence Network

AUC Area Under the Curve

xx

1
Introduction

Action recognition is the task of automatically analyzing, recognizing and

classifying human movements from various data inputs. This research field

of action recognition has gained significant traction in recent years due to its

wide range of applications. Nowadays Human Action Recognition (HAR) is

exploited in surveillance to detect dangerous movements [1], healthcare [2] and

rehabilitation [3], human-robot interaction and collaboration [4] and smart en-

vironments [5]. Early methods developed to address this task relied heavily on

visual data [6], utilizing advancements in computer vision to detect and classify

actions from video footage. Traditional techniques focused on handcrafted fea-

tures [7] [8], experimenting with different features and approaches to represent

actions in order to enhance performances [9]. The advent of deep learning has

revolutionized the field, enabling more robust and accurate recognition meth-

ods through convolutional and recurrent neural networks [10]. In parallel with

the exploitation of new deep learning architectures and the use of machines

with increasingly greater computing power, researchers explored different data

modalities, such as skeleton, depth cameras, infrared cameras, point cloud, event

stream, audio, accelerations of body parts measured through sensors, and radar

[11]. Generally, visual modalities are very effective for HAR. Among them,

RGB video data is the most common data type, which has been widely used in

surveillance and monitoring systems, but it is limited from suffering from oc-

clusions, poor lighting conditions, and privacy concerns. Skeleton data, which

encodes the positions, and so trajectories, of human body joints, is feasible and

efficient for HAR when the action performing does not involve objects or scene

1

context. Another advantage of skeletons is that they could be estimated from

video but also computed from other sensors, in particular inertial sensors. They

offer data richness, providing robust measurements useful to compute accurate

skeleton representation, which are unaffected by environmental factors - like

lighting condition - and ensure user privacy. In contracts, using cameras is

faster, cheaper and require shorter setup time, but skeleton data based on vision

suffers from view occlusions, lighting conditions, and the 3D data is an estimate,

which leads to less precise measurements. However, inertial sensors come with

their own set of challenges too, including sensor drift, noise, and the need for

precise placement.

Figure 1.1: Skeletal data estimated
from rgb camera

Figure 1.2: Model based on skeletal
data measured with inertial sensors

Since each data modality has its strengths and limitations, methods which

combine different modalities have shown to achieve a better accuracy [12]. State-

of-the-art methods nowadays leverage multimodal data and sophisticated algo-

rithms to achieve high performance in complex environments. We will briefly

see some approaches on chapter 2

Despite the progress, action recognition still faces several challenges. One

of the primary challenges is the high intra-class variability, where the same

action can be performed differently by different individuals or even by the same

individual under varying conditions. This variability can arise from differences

in speed, style, body morphology, and execution dynamics, making it difficult

to have a model that accurately recognizes actions across different subjects.

2

CHAPTER 1. INTRODUCTION

Another challenge is the opposite problem: inter-class similarity, where distinct

actions share similar movements or joint configurations, leading to potential

mistakes in classification. Then there are a list of technical limitations, for

example environmental factors, such as occlusions, lighting conditions, and

background clutter, in addition to sensor limitations, like noise, drift, and loss

of data. Finally, another challenge is real-time inference where the main difficult

arise from the need to process and analyze large volumes of high-dimensional

data in real-time, requiring efficient algorithms that can find a well performing

trade-off between accuracy and computational efficiency. Online skeleton-based

action recognition involves the real-time analysis and classification of human

actions without requiring the entire sequence to be observed beforehand. The

key advantage of online recognition is its ability to provide immediate feedback,

making it particularly useful in dynamic environments, where quick response

times are crucial. Moreover, it allows for continuous monitoring and can adapt

to ongoing activities, offering a more flexible and responsive solution compared

to traditional offline methods, and open to a world of real-world applications,

from health-care to industry scenarios.

One scenario where all the challenges mentioned above of action recognition

are present is an industrial assembly line. Workers frequently perform similar

actions, such as reaching components and placing them or assembling parts and

use a manual tool, making it difficult to distinguish between subtle variations.

For example, reaching an object and placing are two actions with a very similar

movement of the arm. On the other side different workers can perform action

in a different way, for example picking parts with one or two hands, or in other

cases using right or left hand. In this environment, real-time action recognition

is a crucial task, since it is needed for interactive systems, and it allows to mon-

itor productivity, identify errors and improve human and robot collaboration,

ensuring an increase of both productivity and safety. In addition, in industrial

context, the comprehension of human behaviour gains more value due to the fact

that there is an intersection with ergonomics. In this environment, ergonomics

is about the monitoring, assessing and even correcting human posture during

work shifts, and the processing and recognition of human movements has a key

role for improving the ergonomics of workstations, allowing for a reduction of

Work-related musculoskeletal disorders (WMSDs) and injury risk. In particular,

real-time action recognition provide enough information to develop collabora-

3

tive robots, which could be employed to help the worker to avoid repetitive

dangerous movements and maintain a healthy posture.

The motivation for this work stems from the need for accurate and real-time

action recognition systems that can operate effectively in industrial contexts,

where actions are often repetitive and similar. In this work, we focused on ac-

tion recognition in industrial settings, particularly considering various assembly

tasks. The main objective was to investigate the ability of one state-of-the-art

network to distinguish between very similar actions in real-time, and make some

minor adjustments to the model to achieve our goal. To exploit the most accurate

representation of these movements, we explored the use of inertial sensors and

skeleton-based networks. The choice to employ inertial sensors has also other

advantages: skeletal data has a lower-demanding computational cost with re-

spect to video processing and they perform well also in narrow and occluded

spaces, making them perfect for workstations in industry lines, which often are

confined spaces. The set of action chosen to achieve our goal is from the AnDy

Dataset [13], that we present in detail in section 4.1.1. It is a dataset recorded

with inertial sensors which contains actions that are part of an assembly pro-

cess. We firstly investigate how the model perform on this data with a set of

experiments, for example cross-validation between subjects. Then we used the

model trained on AnDy on a smaller dataset collected in our lab, which contains

actions belonging to the assembly of a chair and which are similar to the ones in

AnDy. The purpose was to explore how a trained model has learned the actions

and can generalize its knowledge to a different scenario. To improve accuracy

we also explore the technique of fine-tuning, which led to a better final result.

This research aims to contribute to the field of action recognition, addressing

the limitations of current methods and improving the robustness and efficiency

of online action recognition systems.

4

CHAPTER 1. INTRODUCTION

This document is organized as follows:

• Chapter 2 will take an overview over literature about human offline and

online action recognition and ergonomics assessment, reviewing existing

methodologies and highlighting their strengths and weaknesses.

• Chapter 3 will explain the approach for the proposed solution and the

methodology in details.

• Chapter 4 will describe the experiments conducted on AnDy dataset,

alongside their motivation, results and a critical analysis.

• Chapter 5 will outline the process of data collection, and then illustrate

experiments on custom dataset, followed by a discussion on results.

• Chapter 6 will provide a summary of the work, an insight on its limitations,

followed by a look to future developments and then a final conclusion.

5

2
Literature review

Human action recognition has emerged as a critical area of research in com-

puter vision and machine learning, because of its wide range of applications

in several fields as surveillance, healthcare, human-computer interaction, and

more. Because of this, researchers are showing increasing interest in human ac-

tivity recognition, as shown by the growing number of research publications in

the field over the last ten years as we can see in 2.1. In this chapter we will review

Figure 2.1: Number of research publications on human action recognition over
the decade 2012-2022 [14]

the state-of-the-art methods to address this task, which is, learn to recognize a

human movement and classify it as a particular action from a set of labels. The

HAR problem is in this sense a classification problem. Recent works in action

7

2.1. OFFLINE SKELETON-BASED ACTION RECOGNITION

recognition research have focused on improving the accuracy and efficiency of

recognition systems by leveraging advanced deep learning techniques. The field

has evolved from simple gesture recognition to more complex and nuanced ac-

tion understanding, incorporating various data modalities such as video, depth

maps, skeletal data, body sensors and combination of them.

For the purposes of this research, we focused specifically on skeleton-based

action recognition. This approach utilizes a simplify model of the human skele-

tal structure to identify and classify human actions. The skeleton is modeled

as a graph, where each node represent a joint and each edge represent a bone.

Joints 3D position are estimated from cameras or from body sensors like Inertial

Measurement Unit (IMU). Skeleton-based action recognition has emerged as a

prominent field of research due to the increasing availability and accuracy of

3D skeleton data. This modality, which represents human actions through the

trajectories of skeletal joints, offers a robust and semantically rich way of under-

standing human movements, making them suitable for real-world applications.

The findings and discussions of literature review related to skeleton-based

action recognition are presented in three subsections: offline recognition, online

recognition, and ergonomic assessment.

2.1 Offline skeleton-based action recognition

First approach to this task is offline, which means performing the recogni-

tion task starting from a complete set of data, usually a dataset widely used

in literature to allow for performance comparison. Offline skeleton-based ac-

tion recognition counts a lot of works, as presented in recent surveys on this

topic: in the GitHub repository Awesome Skeleton-based Action Recognition1

a collection of previous works is available. With the remarkable development

and outstanding performance of deep learning methods in various computer

vision areas, many types of deep learning architectures are employed in this

field [15]: Recurrent Neural Network (RNN) based methods leverage skeleton

sequences as natural time series data, treating joint coordinates as sequential

vectors, aligning well with the RNNs capacity for processing time series in-

formation [16]. To enhance the learning of temporal context within skeleton

1https://github.com/firework8/Awesome-Skeleton-based-Action-Recognition

8

https://github.com/firework8/Awesome-Skeleton-based-Action-Recognition

CHAPTER 2. LITERATURE REVIEW

sequences, many variants like Long Short-Term Memory (LSTM) [17] [18] and

Gated Recurrent Unit (GRU) [19] have been employed and several variants have

been developed. While RNN-based methods excel in processing temporal evo-

lution, their main downside is the lack to capture spatial information of the

input data: Convolutional Neural Network (CNN) complement RNN-based

techniques, as they are effective in capturing spatial patterns and also joints

relationships of the input data [20]. Additionally, a relatively recent approach,

the Graph Convolutional Network (GCN) has gained attention for its ability to

model skeleton data in a natural topological graph structure, with joints and

bones as vertices and edges, respectively. From the general idea of the GCN,

other architectures have been developed as Spatio-Temporal Graph Convolu-

tional Network (STGCN) to consider the spatial and temporal evolution of the

graph [21]. Advancements in skeleton-based action recognition have also been

made through hierarchical modeling techniques [22]: instead of processing the

entire skeleton as a single entity, researchers have proposed dividing the skele-

ton into multiple parts according to human physical structure. These parts are

then individually processed by separate subnetworks, which are hierarchically

fused at higher network layers. An end-to-end hierarchical RNN model has been

developed that effectively captures the long-term contextual information of tem-

poral sequences. This approach has demonstrated state-of-the-art performance

with high computational efficiency, outperforming other deep RNN architec-

tures and traditional methods on several publicly available datasets, for example

the two NTU RGB-d datasets[23] [24], which are the most widely use in this field.

More recently, transformer-based methods capture the spatial-temporal relation

of the input 3D skeleton data mainly based on its core multihead self-attention

(MSA) mechanism. Offline action recognition had gained enough importance

that exist open-source frameworks for this task, as MMAction2. This framework

allows to train and test different models, customize them and use them on exist-

ing or custom datasets. There is a specific section for the skeleton-based models,

containing four different architectures: PoseC3D, 2s-AGCN, STGCN [25] and

STGCN++. The advantage of using this type of framework is to have full access

to state-of-the-art methods used, debugged and improved by a big community

of researchers.

2https://mmaction2.readthedocs.io/en/latest/

9

https://mmaction2.readthedocs.io/en/latest/

2.2. ONLINE SKELETON-BASED ACTION RECOGNITION

2.2 Online skeleton-based action recognition

As offline action recognition, multi-view cameras are widely used also for

this task, but when needed a fast processing of the video even small changes

of the skeleton perspective could lead to massive errors in the recognition of

the movement. One of the main challenges in skeleton-based action recognition

is dealing with large variations in viewpoints, which can significantly impact

the accuracy of action recognition models. A novel approach to address this

issue involves the use of view-adaptive recurrent neural networks (RNNs) with

Long Short-Term Memory (LSTM) architecture [26]. This method allows the net-

work to automatically regulate observation viewpoints during the occurrence

of an action, transforming the skeletons from various views into more consis-

tent viewpoints. Unlike traditional methods that re-position skeletons based on

predefined criteria, this adaptive approach ensures that the continuity of the

action is maintained while significantly improving performance on benchmark

datasets. Despite the success of RNNs, they suffer from limitations such as

non-parallelism and the gradient vanishing problem, which can hinder opti-

mization. To overcome these challenges, a new approach based on Transformer

architecture has been proposed. The OadTR framework, an encoder-decoder

model, captures the relationships and global interactions between historical

observations and predicts future context simultaneously. This model not only

achieves higher training and inference speeds but also significantly outperforms

state-of-the-art RNN-based methods in terms of accuracy, as demonstrated in

[27]

In recent years, skeleton-based action recognition has evolved significantly,

particularly in online settings where real-time recognition is essential. One of

the core challenges in this area is managing variations in viewpoints that can

severely impact the performance of action recognition models. Traditional ap-

proaches, like those using Recurrent Neural Networks (RNNs) with Long Short-

Term Memory (LSTM), focus on learning temporal dependencies in sequential

data. A novel advancement in this space is the view-adaptive RNNs, which

can dynamically adjust the observation viewpoints during an action, ensuring

more consistent recognition by transforming skeletons from varying angles into

unified viewpoints. This approach, introduced by [26], significantly enhances

performance on benchmark datasets compared to methods that rely on prede-

fined criteria for repositioning skeletons. However, RNN-based approaches still

10

CHAPTER 2. LITERATURE REVIEW

suffer from limitations like non-parallelism and gradient vanishing, which affect

optimization efficiency.

To address these limitations, Transformer architectures have gained traction.

A notable model, the OadTR framework [27], introduces an encoder-decoder

structure to tackle online action recognition. The encoder focuses on extracting

relationships and global interactions from historical data, while the decoder an-

ticipates future clip representations to predict upcoming actions. This approach

not only enhances recognition accuracy but also achieves faster training and in-

ference speeds compared to traditional RNNs, but also significantly outperforms

state-of-the-art RNN-based methods in terms of accuracy, as demonstrated by

its authors.

In addition to camera-based skeleton tracking, wearable sensor-based hu-

man action recognition has emerged as a powerful alternative for real-time

applications. A recent model, the Bidirectional-Gated Recurrent Unit-Inception

(Bi-GRU-I) [28], was developed to improve the accuracy of HAR using inertial

sensors. This model integrates Bi-GRU layers and Inception layers, capturing

both temporal and spatial features from inertial signals while maintaining a

lower parameter count. The Bi-GRU-I model has demonstrated superior perfor-

mance on multiple datasets highlighting its robustness in recognizing human

actions with minimal sensor configurations.

In online skeleton-based action recognition, integrating spatial and tempo-

ral features plays a crucial role in improving recognition accuracy. A recent

approach leverages a distributed camera network to enhance human pose es-

timation in occlusion scenarios by fusing multiview skeleton data [29]. This

method introduces a group sampling mechanism, which selectively fuses past

and current action frames, addressing the redundancy in neighboring frames

and incorporating long-term contextual information. The combination of spatial

skeleton features (geometrical data) and temporal motion features ensures that

both dimensions are adequately represented in the recognition process. Evalua-

tions on datasets show impressive accuracy levels, illustrating the efficacy of this

approach for real-time action recognition with distributed camera networks.

2.3 Ergonomics assessment

Human action recognition together with motion capture technologies like

inertial sensors, has evolved as a key technologies in monitoring and assessing

11

2.3. ERGONOMICS ASSESSMENT

workers’ movements, enabling real-time feedback on task execution and pos-

ture. This, in turn, helps prevent injuries caused by repetitive strain or poor

ergonomics and supports the optimization of workflows for efficiency. Over the

past decades, numerous approaches have emerged to assess ergonomics and

worker safety, as presented by surveys as [30] [31] [32]. These methods primar-

ily aim to evaluate risk factors that contribute to dangerous works, focusing on

posture and movements and excluding environmental and chemical exposures.

Traditionally, ergonomics assessment is divided into three broad categories: sub-

jective judgments, systematic observations, and direct measurements. Subjec-

tive judgments involve self-reported questionnaires or expert interviews, while

systematic observations are expert-led procedures based on visual assessments

of the workplace, often supported by video recordings. Technological advance-

ments, particularly in sensor technology, have automated many of these obser-

vational methods. Direct measurements, on the other hand, utilize sensors to

capture precise, real-time data on physical strain, which can be further pro-

cessed using ad-hoc models. In the realm of ergonomics assessment, tools such

as the European Assembly Worksheet (EAWS) [33] and the Rapid Upper Limb

Assessment (RULA) [34] have become essential for evaluating physical work-

load and identifying risks associated with WMSDs. Alongside these, many

other well-established tools are used to assess ergonomic risks in various indus-

trial tasks. These include the O (OWAS), the Occupational Safety and Health

Administration (OSHA) guidelines, the Job Safety Analysis (JSA), the Postural

Ergonomic Risk Assessment (PERA), and the Moore-Garg Strain Index. Each of

these tools addresses specific aspects of ergonomics, such as posture, force, or

repetition, providing comprehensive frameworks for evaluating and mitigating

the risk factors associated with WMSDs in different work environments. EAWS

is widely used in industrial settings to assess overall physical strain, offering a

systematic approach to evaluate postures, forces, and repetitive movements. It

assigns a risk score based on task-related physical demands, categorizing the

results into a traffic light system (green, yellow, red) to indicate low, moderate,

or high levels of ergonomic risk. EAWS is particularly effective for comprehen-

sive assessments in manufacturing and assembly environments, as it ensures

compliance with international standards while allowing for easy integration

into workplace ergonomics programs. Similarly, RULA provides a quick and

simple way to evaluate the ergonomic risk of upper-limb tasks, particularly

those involving repetitive or static postures, focusing more on a posture-based

12

CHAPTER 2. LITERATURE REVIEW

evaluation. By assigning scores to various body segments, including the neck,

trunk, and arms, RULA produces a cumulative risk score that guides corrective

actions, as it is possible to see in its worksheet reported in figure 2.2. It focuses

on the risk factors associated with neck, shoulder, and arm movements, making

it an effective tool for pinpointing high-risk tasks where immediate ergonomic

interventions are necessary. A novel approach to ergonomics assessment in-

Figure 2.2: RULA assessment worksheet

volves the use of multiple ergonomic indexes to provide a more comprehensive

evaluation of physical workload and risks. By combining different indexes, this

methodology accounts for various contributors to work-related musculoskeletal

disorders, ensuring a more robust and personalized analysis of the factors af-

fecting workers. For example, framework presented in [35] introduces an online

system that continuously monitors workers kinematic and dynamic quantities,

providing real-time estimates of physical load during typical manufacturing

tasks. Through statistical and surface electromyography analyses, the most rele-

vant ergonomic indexes for each task are identified, ensuring that the evaluation

aligns with both task-specific and worker-specific requirements. Multi-index

13

2.3. ERGONOMICS ASSESSMENT

approaches not only enhances the precision of ergonomic assessments but also

supports the adoption of preventive measures by identifying key physical risk

factors earlier and more effectively than traditional single-index tools.

Machine learning and deep learning techniques play a pivotal role in modern

ergonomics assessment, automating the detection and classification of postures

and movements to evaluate physical strain. Among these, Hidden Markov

Model (HMM) have been successfully applied in the field. For instance, one

study [36] proposes an automatic ergonomic assessment system based on pos-

ture recognition using HMMs, trained with data from inertial sensors. In this

approach, a taxonomy of activities, compatible with standard ergonomic work-

sheets like EAWS, is defined to categorize actions and postures. The system is

trained and tested using data from participants mimicking industrial tasks, and

dedicated feature selection methods are employed to enhance recognition per-

formance. This methodology shows promising results in accurately identifying

ergonomically relevant postures and actions, providing a robust framework for

automatic risk assessment in industrial settings. Other machine learning mod-

els like k-Nearest Neighbors (kNN), Decision Trees (DT), and Generalized Lin-

ear Models (GLMs) further contribute to the classification and risk evaluation,

providing a comprehensive set of methodologies for detecting and mitigating

ergonomic hazards. Deep learning methods further enhance ergonomic assess-

ment by capturing more complex patterns in data. Artificial Neural Networks

(ANNs) are widely used for this purpose, and include models such as Mul-

tilayer Perceptron (MLP), Convolutional Long Short-Term Memory (CLSTM),

Static Neural Networks (SNN), Convolutional Neural Networks (CNN), and

Learning Vector Quantization (LVQ). These architectures allow for the auto-

matic extraction of features from data, enabling more accurate and real-time

assessments of ergonomic risks.

14

3
Skeleton-based action recognition

methodology

In this chapter, we will describe the methodology employed in this thesis.

This work leverage a state-of-the-art skeleton-based action recognition model as

a starting point for a custom development. The chapter aims to explain the oper-

ational blocks of our work, which are depicted in figure 3.1, and it is organized

as follows: we begin by introducing the skeleton model, which serves as the

core representation of human poses and movements in our system. This model

captures key joint positions and skeletal structure, providing robust features for

action recognition. Following this, we dive into the architectures and algorithms

utilized in this work. We outline the base model selected for customization, dis-

cussing its original design and the reasoning behind its selection. Subsequently,

we detail the modifications and improvements made to the model, aimed at

optimizing it for the specific context we are dealing with. Next, we describe the

dataset used in this study, including its characteristics, structure, and relevance

to the task of action recognition. The dataset provides the necessary data for

training, validating, and testing the model, and its selection is critical to ensuring

the model’s effectiveness in real-world scenarios.

15

3.1. SKELETON MODEL

Figure 3.1: A general overview of our work

3.1 Skeleton model

Skeleton data are acquired using the Xsens MTw Awinda system [37], a state-

of-the-art wireless motion capture solution designed for accurate and efficient

measurement of human body movements. The Xsens Awinda system is com-

posed of a set of 17 wireless sensors, each embedded with 3D accelerometers,

gyroscopes, and magnetometers. These sensors are strategically placed on the

subject’s body at specific anatomical locations listed in table 3.1 to capture the

3D orientation, angular velocity, and acceleration of each segment, from which

other measurements such as joint positions or relative angles can be calculated

by the algorithm that fits data into the musculoskeletal model. The sensors

communicate wirelessly with a central station that collects the data and streams

it to a computer for real-time processing or storage. This system is particularly

advantageous due to its high degree of mobility and ease of setup, making it

suitable for various applications, including biomechanics, sports science, and

animation.

The skeletal model used in this study is based on the Xsens MVN Animate

software, which provides a detailed and anatomically accurate human skeleton

model 3.2. According to the MVN user manual 1, the skeletal model consists of

1https://www.movella.com/hubfs/MVN_User_Manual.pdf?__hstc=233546881.

1fa5198786ade7bb8cace6bc2dd887f0.1663745187069.1670940876901.1670945468596.

94&__hssc=233546881.14.1670945468596&__hsfp=700330257

16

https://www.movella.com/hubfs/MVN_User_Manual.pdf?__hstc=233546881.1fa5198786ade7bb8cace6bc2dd887f0.1663745187069.1670940876901.1670945468596.94&__hssc=233546881.14.1670945468596&__hsfp=700330257
https://www.movella.com/hubfs/MVN_User_Manual.pdf?__hstc=233546881.1fa5198786ade7bb8cace6bc2dd887f0.1663745187069.1670940876901.1670945468596.94&__hssc=233546881.14.1670945468596&__hsfp=700330257
https://www.movella.com/hubfs/MVN_User_Manual.pdf?__hstc=233546881.1fa5198786ade7bb8cace6bc2dd887f0.1663745187069.1670940876901.1670945468596.94&__hssc=233546881.14.1670945468596&__hsfp=700330257

CHAPTER 3. SKELETON-BASED ACTION RECOGNITION METHODOLOGY

23 segments (bones) and 22 joints, listed respectively in tables 3.2 and 3.3. The

tracked joints include key anatomical locations such as pelvis, some vertebrae,

head, shoulders, elbows, wrists, hips, knees, and ankles. These joints are critical

for capturing the full range of human motion and are essential for tasks such

as action recognition. The Xsens system tracks the position and orientation of

these joints in real-time, allowing for the precise reconstruction of the skeletal

structure and its movements. The accuracy of joint tracking is facilitated by the

placement of sensors on both proximal and distal ends of each bone segment,

ensuring that even complex motions, such as twisting or bending, are accurately

captured. The accuracy of the data is sensitive to the correct placement and

calibration of the sensors, in addition to inserting body measurement of the

subject. The resulted detailed skeletal representation is crucial for the effective

recognition and analysis of human actions, as it allows for the extraction of

meaningful motion features that are directly related to the dynamics of the

human body.

Figure 3.2: On the left: musculoskeletal model. It highlights the correspondence
between sensors, joints and links.
On the right: raw model of skeleton based on joint positions and links

17

3.1. SKELETON MODEL

Index Tracker

1 Pelvis
2 T8
3 Head
4 Right shoulder
5 Right upper arm
6 Right forearm
7 Right hand
8 Left shoulder
9 Left upper arm
10 Left forearm
11 Left hand
12 Right upper leg
13 Right lower leg
14 Right foot
15 Left upper leg
16 Left lower leg
17 Left foot

Table 3.1: Body parts
tracked with a sensor

Index Segment

1 Pelvis
2 L5
3 L3
4 T12
5 T8
6 Neck
7 Head
8 Right shoulder
9 Right upper arm
10 Right forearm
11 Right hand
12 Left shoulder
13 Left upper arm
14 Left forearm
15 Left hand
16 Right upper leg
17 Right lower leg
18 Right foot
19 Right toe
20 Left upper leg
21 Left lower leg
22 Left foot
23 Left toe

Table 3.2: Segments of
the skeleton model

Index Joint

1 L5-S1
2 L4-L3
3 L1-T12
4 T9-T8
5 T1-C7
6 C1-Head
7 C7-Right shoulder
8 Right shoulder
9 Right elbow
10 Right wrist
11 C7-Left shoulder
12 Left shoulder
13 Left elbow
14 Left wrist
15 Right hip
16 Right knee
17 Right ankle
18 Right ball foot
19 Left hip
20 Left knee
21 Left ankle
22 Left ball foot

Table 3.3: Joints of the
skeleton model

18

CHAPTER 3. SKELETON-BASED ACTION RECOGNITION METHODOLOGY

3.2 Model

Traditional methods typically require the complete observation of an action

before making a classification, which is impractical in dynamic environments

and even in real-time streaming of data, as in our case. To address this, we

needed a model being able to base the prediction only on previous frames,

without knowing, during the inference phase, the whole sequence of skeletons.

After a wide research we choose to exploit the InfoGCN++ framework [38],

specifically designed for online skeleton-based action recognition.

3.2.1 INFOGCN++

InfoGCN++ [38] is a state-of-the-art model developed for online skeleton-

based action recognition. Building upon the original InfoGCN model, which

achieved notable accuracy, InfoGCN++ addresses a critical limitation of previ-

ous models, which is the necessity for complete observation of action sequences

before classification. InfoGCN++ enables recognition based on partial observa-

tions, making it suitable for situations that require immediate responses. The

code implementing this model is available in a public GitHub repository 2

2https://github.com/stnoah1/infogcn2/tree/main

19

https://github.com/stnoah1/infogcn2/tree/main

3.2. MODEL

Architecture

The overall architecture of InfoGCN++ is shown in figure 3.3 and consists of

four essential components: an embedding layer, an encoder, a future motion

predictor, and task-specific decoders. The embedding layer, encoder, and ac-

tion classification decoder are inherited from the offline version of the model

InfoGCN [39], while the future motion predictor and future motion prediction

decoder are newly introduced to augment the model’s ability to anticipate and

recognize actions in real time. The architecture is designed to handle continuous

skeleton data, ensuring that the spatial-temporal relationships between joints are

efficiently captured and processed. The operational workflow of InfoGCN++ can

be summarized as follows:

1. Data Embedding: Each incoming skeleton frame is embedded into a latent

space with spatial positional embeddings.

2. Encoding Observations: The encoder processes the sequence of embed-

ded frames, producing a spatio-temporal representation /C .

3. Predicting Future Representations: The future motion predictor extrap-

olates /C to predict future representations /̂
(C)
C+1:C+# .

4. Action Recognition and Motion Prediction: The task-specific decoders

classify the action and predict future skeleton frames.

As new frames become available, the process repeats, continuously refining

the predictions and classifications.

Figure 3.3: An overview of the InfoGCN++ framework workflow

20

CHAPTER 3. SKELETON-BASED ACTION RECOGNITION METHODOLOGY

Now we will introduce more in detail each of the four main elements of

InfoGCN++.

1. Embedding Layer The embedding layer is responsible for transforming 3D

skeleton data into a latent space that can be further processed by the encoder.

Each skeleton frame, represented as -C ∈ R+×3, where + denotes the number of

joints, and 3 are the spatial coordinates, is linearly projected into a latent space

of dimension �. This process is mathematically described as:

�
(0)
C = Linear(-C) + PE (3.1)

where PE ∈ R+×� represents learnable spatial positional embedding that

incorporate joint position information and their relations. This step is essential

for encoding the spatial relationships among the joints in a way that can be

utilized for further processing.

2. Encoder The encoder converts the features from the embedding layer into

a spatio-temporal representation, /C ∈ R+×� , of the sequence up to the current

time C. The encoder consists of two main modules:

• Spatial Modeling Module: Employs Self-Attention Graph Convolution (SA-GC))

layers to model spatial dependencies among joints.

• Temporal Modeling Module: Implements a Transformer encoder with a

causal mask, enabling it to focus only on past frames, which is crucial

for real-time applications.

The encoder processes the sequence of embedded frames �1:C , producing a

representation /C according to the following formula:

/C = Encoder(�1:C) (3.2)

The temporal modeling in the encoder relies on the causal mask, which

ensures that only past and present frames are considered, simulating a real-time

scenario. The attention mechanism, which is applied to individual joints 8, is

computed as follows:

AttentionC[8] = Softmax

(
&C[8] ⊤1:C[8]√

�

)
+1:C[8] (3.3)

21

3.2. MODEL

where &C , C , +C are the queries, keys, and values computed by the SA-GC

layers. The attention is calculated separately for each joint 8, aggregating spatial

features for the temporal modeling process.

3. Future Motion Predictor The future motion predictor is a novel element

introduced in InfoGCN++ that allows the model to anticipate future movements

based on the current observation. By framing the prediction task as an extrapo-

lation problem, the future motion predictor utilizes Neural Ordinary Differen-

tial Equations (Neural ODEs) to model the continuous latent dynamics of the

skeleton, implemented thanks to torchdiffeq the Differentiable ODE Solvers for

pytorch.

The prediction of future frames is formulated as an Initial Value Problem

(IVP) and is solved using the observed representation /C as the initial condition:

/̂
(C)
C:C+# = ODESolve(5� , /C , (C , . . . , C + #)) (3.4)

Here, /̂
(C)
C+= represents the predicted representation of the =-th future frame,

and 5� is the ODE function parameterized by a neural network. The ODE

function is designed to capture the temporal evolution of the latent features

using SA-GC layers and temporal positional embeddings PEtemporal ∈ R)×� . The

temporal positional embeddings are used to inject temporal information into the

ODE function, allowing the model to account for the time-variant properties of

the sequence.

4. Task-Specific Decoders InfoGCN++ employs multi-task learning, with two

separate decoders that work simultaneously:

• The action classification decoder is responsible for predicting the action cat-

egory from the observed and predicted representations.

• The future motion prediction decoder reconstructs future skeleton frames from

the predicted representations, enhancing the model’s ability to anticipate

future movements.

By training the model to perform both tasks action recognition and future

motion prediction InfoGCN++ learns to create rich and robust representations

of the observed sequence.

22

CHAPTER 3. SKELETON-BASED ACTION RECOGNITION METHODOLOGY

Data loading and preprocessing

The data feeder is an algorithm which goal is to prepare and supply data

to the model. It ensures that the model receives data in the correct format, at

the appropriate time, and with any necessary preprocessing or augmentation.

It is responsible for loading, batching, transforming and normalizing, window-

ing and masking skeletons. This element of the model is designed from the

authors starting from implementation of Semantic-Guided Network (SGN) [40],

Hierarchical Co-occurrence Network (HCN) [41] and a system for skeleton-based

action recognition called Predict and Cluster [42].

The data loading and preprocessing pipeline is crucial for preparing skeleton-

based action recognition models. As reported in algorithm 1, the data initializa-

tion begins by determining whether the data is for training or testing. Depending

on the split, either the training or test data is loaded into a dictionary structure

(data_dict) that at this point contains list of file names - one file for each action

- with their length and their label. The algorithm also initializes skeleton bone

connections and gathers the corresponding labels for each data sample. The

load_data() function is then invoked to load the raw skeleton data from files into

memory.

Algorithm 1 Feeder Data Loading

Input: data_path, split
if split is ’test’ then

Set train_val to ’test’ and load test data into data_dict
else

Set train_val to ’train’ and load training data into data_dict
end if
Initialize skeleton bone connections and an empty list label
for each data_sample in data_dict do

Append the label from data_sample to the list
end for
Call load_data() function

Function: load_data()
Initialize an empty list data
for each data_sample in data_dict do

Load skeleton data from the corresponding file and append to data
end for

Once the data is loaded, algorithm shown in 2 handles essential transfor-

23

3.2. MODEL

mations, normalization, windowing, and masking operations to ensure the

model receives well-prepared inputs. For training, random transformations

are applied to each skeleton sample to introduce variations that help the model

generalize better. These transformations include random rotations and scaling.

The skeleton data is centered on the first joint, transformed using these sam-

pled parameters, and then normalized to ensure consistency across samples. A

random windowing strategy is applied to select temporal segments from the

data. For the test set, a deterministic approach is followed, with no random

transformations and windowing, ensuring a consistent evaluation process.

In addition to these operations, the algorithm handles optional bone and

motion feature extraction. If bone information is required, it computes vectors

between connected joints to capture the relative positions of bones. Similarly, if

motion features are needed, the algorithm calculates frame-to-frame differences

to represent movement patterns.

The final data is reshaped and transposed into the (C, T, V) format, where C

represents the number of input channels, which is the number of coordinates,

T represents the number of frames, and V is the number of joints. A mask

of ones is also created to mark the valid data points, ensuring that the model

can differentiate between real data and padding when processing sequences of

varying lengths.

This preprocessing approach is designed to prevent overfitting by introduc-

ing random variations during training and by maintaining consistency during

testing, allowing the model to generalize across different subjects and scenarios.

24

CHAPTER 3. SKELETON-BASED ACTION RECOGNITION METHODOLOGY

Algorithm 2 Preprocessing

Input: index
Output: data, label, mask, index
Retrieve label and value corresponding to index
if train_val is ’train’ then

Randomly sample transformation parameters:
agx ∼ Uniform(−60, 60),
agy ∼ Uniform(−60, 60),
s ∼ Uniform(0.5, 1.5)
Center value on the first joint
Apply random transformation using rand_view_transform
Reshape and normalize the transformed skeleton data
Sample window_size random indices and extract data

else
Set agx, agy, and s to 0, 0, and 1.0, respectively
Center value on the first joint
Apply deterministic transformation using rand_view_transform
Normalize the transformed skeleton data
Perform windowing using evenly spaced indices

end if
if data contains bone information then

Initialize data_bone
for each bone index do

Compute bone vector by subtracting corresponding joint pairs
end for
Set data to data_bone

end if
if data contains motion information then

Initialize data_motion
Compute motion vectors by taking the difference between consecutive
frames
Set data to data_motion

end if
Reshape and transpose data into format (C, T, V)
Create a mask of ones with the same shape as data
return data, label, mask, index

25

3.2. MODEL

Training algorithm

The training algorithm for skeleton-based action recognition is designed

to process sequences of skeletal data and predict the action category for each

observation in real time. The model uses an encoder to extract relevant features

from the input sequence and a prediction mechanism to anticipate future frames.

An ordinary differential equation (ODE) solver is employed to model temporal

dynamics, ensuring robust predictions over time. The training procedure is

detailed below:

Algorithm 3 Training Procedure for Skeleton-based Action Recognition

Input: -1:) : Full observation of skeleton sequence.

Output: H̃
1:) : Action category of each observation.

for epoch← 1 to "0G�?>2ℎ do

for C ← 1 to) in parallel do

�C ← Linear(-C) {Embedding of each skeleton}

/C ← Encoder(�1:C) {Feature encoding of the sequence up to time C}

/̂C:C+# ← ODESolve(5� , /C , (C , . . . , C + #)) {Solve ODE to predict future

features}

-̂ C:C+# ← PredDecoder(/̂C:C+#) {Decode predicted skeleton sequence}

ĤC ← ClassDecoder(/̂C:C+#) {Classify action for current time step C}

end for

end for

The algorithm operates as follows:

• Input and Initialization: The input is a sequence of skeleton data -1:) ,

where -C represents the skeletal pose at time C. The objective is to predict

the action category H̃
1:) for each time step in the sequence.

• Epoch Loop: The training process runs for a predefined number of epochs,

"0G�?>2ℎ, during which the model iteratively improves its predictions.

• Time Step Processing: For each time step C, the following operations are

performed:

1. Feature Encoding: The input sequence up to the current time step, -1:C ,

is passed through an encoder to obtain a high-dimensional feature

26

CHAPTER 3. SKELETON-BASED ACTION RECOGNITION METHODOLOGY

representation, /C , which captures both spatial and temporal features

of the skeleton data.

2. ODE Solver: To model temporal dynamics and predict the future

movement over the next # time steps, the ODE solver, parameterized

by 5�, takes the encoded feature /C and generates predicted features

/̂C:C+# for future time steps.

3. Prediction Decoder: The predicted features /̂C:C+# are then decoded to

reconstruct the skeleton sequence -̂ C:C+# for the future frames.

4. Action Classification: The predicted features are passed through a

classification decoder to obtain the predicted action label ĤC for the

current time step C. This allows the model to classify actions based

on both historical and anticipated future data.

• Parallel Processing: The operations for each time step are performed in

parallel, which enables efficient processing of the full sequence during

training.

• End of Training: After processing the entire sequence for all epochs, the

model updates its parameters by minimizing the classification loss, aiming

to reduce the difference between the predicted labels Ĥ
1:) and the ground

truth labels H̃
1:) . The process repeats until the model converges or reaches

the maximum number of epochs.

This training procedure leverages temporal modeling and future prediction to

enhance action classification performance. The ODE solver models the dynamics

of skeleton movements, improving the model’s ability to anticipate future actions

and thus providing more accurate real-time recognition.

Multi-task Learning

Multi-task learning is a technique in deep learning where a model addresses

multiple related tasks simultaneously, rather than learning each task indepen-

dently. The goal is to leverage shared parameters and features between the tasks,

which can improve the model’s performance across all tasks by allowing it to

generalize better. The multi-task learning strategy in InfoGCN++ strengthens the

model’s action recognition capabilities by integrating future motion prediction

as an auxiliary task. This approach has several advantages:

27

3.2. MODEL

• Enhanced Representation Learning: By predicting future movements,

the model learns richer representations that capture not only the observed

dynamics but also potential future trajectories.

• Improved Discriminative Power: Early anticipation of actions improves

the model’s ability to distinguish between similar actions that may diverge

later in their execution.

• Reduced Recognition Latency: The ability to recognize actions from par-

tial observations reduces latency in time-sensitive applications.

28

CHAPTER 3. SKELETON-BASED ACTION RECOGNITION METHODOLOGY

3.2.2 Model customizations

Graph

The human skeleton model used in the MVN Analyze software is represented

as a graph, where vertices correspond to the skeleton’s joints, and edges repre-

sent the bones connecting them. This graph is implemented using a Graph class,

which manages the relationships between joints, including self-links, inward

connections, outward connections, and neighboring joints. These connections

are stored as ordered pairs of joint indices. Specifically, the inward connections

are defined based on the bone structure in the MVN skeleton, and the outward

connections are derived by reversing these pairs. Neighbor connections are then

obtained by combining both inward and outward connections.

The adjacency matrix, which captures the structure of the graph, is com-

puted based on these relationships, as remarked in figure 3.4. The Graph class

contains methods to compute various forms of the adjacency matrix, such as a

binary adjacency matrix, a normalized version, and a k-scale graph, using utility

functions from an external tools module. All these methods are borrowed from

the Graph class included in the InfoGCN++ code. The adjacency matrix plays a

critical role in capturing the spatial configuration of the skeleton and is essential

for tasks like action recognition and motion analysis.

1 2

34

5



0 1 0 1 0

1 0 1 0 1

0 1 0 1 0

1 0 1 0 0

0 1 0 0 0



Figure 3.4: Example of graph and its adjacency matrix: rows and columns
indexes represent nodes. If cell (i,j) is a 1, it means there is an edge between
node i and node j

In the MVN skeleton model, bones are represented by ordered pairs of joints,

and only the inward connections need to be explicitly defined. From these, the

class computes the outward and neighbor connections, ensuring that the full

graph structure is efficiently constructed. The details of this model can be found

in the MVN User manual, which provides the specifications for the joints and

29

3.2. MODEL

bones used in the software.

Fine Tuning

Fine-tuning is the process where a pre-trained model is adapted to perform

well on a new, often smaller, dataset by continuing the training process, but

typically only on the final layers of the model. The idea is to leverage the

knowledge the model has already learned from a larger and more generic dataset

and adjust it to better suit the specific task or data to be used for inference. This

approach is highly efficient because it allows you to adapt powerful, pre-trained

models to your own needs without needing to collect large amounts of data or

spend excessive time training from scratch. In our case, this is really helpful

to address the problem of inter-class similarity, being capable of discrimate

between similar movements and also to have a better knowledge of actions

which are performed in a slightly different way compared to the ones seen by

the model during training.

Fine tuning has three main steps:

• Pre-training on a large dataset: The model is first trained on a large, di-

verse dataset. This pre-training allows the model to learn general features.

• Freezing earlier layers: In the fine-tuning phase, most of the earlier layers,

which capture low-level features, are frozen, meaning their weights are

kept unchanged. Only the final layers, which are more task-specific and

responsible for the final outcome of the network, are updated based on the

new dataset.

• Adapting to new data: The model is then trained on a smaller, task-

specific dataset. During this process, only the final few layers are fine-

tuned, allowing the model to specialize in the new task while conserving

computational resources by avoiding full retraining.

More practically, the first point is achieved with the training procedure of the

model on a large dataset. The second step needs an adjustment to the function

which is responsible to load the model, which is called during the initialization

of the main process. Inspecting the model object, we can see the name of the

blocks and the layers of the architecture, so, after freezing all them, we can

unlock only the ones we are interested in continuing to train. Referencing to the

30

CHAPTER 3. SKELETON-BASED ACTION RECOGNITION METHODOLOGY

model structure, we decided to fine-tune the classification decoder and the last

three final convolutional layers. The code to achieve this is the following, and it

is inserted in the function load_model(), after the loading of the model and before

the loading of the pre-trained weights:

1 # Freeze all layers first

2 for param in self.model.parameters():

3 param.requires_grad = False

4

5 # Unfreeze only the ‘cls_decoder ‘ layers

6 for param in self.model.cls_decoder.parameters():

7 param.requires_grad = True

8

9 # Unfreeze the last Conv1d layers (c7, c8, c9 as the last layers

based on model architecture)

10 for conv_layer in [self.model.c7, self.model.c8, self.model.c9]:

11 for param in conv_layer.parameters():

12 param.requires_grad = True

Code 3.1: Freezing layers for fine tuning

Then, the third point in achieved executing training, we only need to change

some parameters: firstly we need to load the correct dataset to use for fine-

tuning, and then we need to load weights of a pre-trained model. The training

procedure will load the model, freeze the selected layers, load the pre-trained

weights, load the new dataset and start the standard training process.

Real Time Evaluation Function

In our real-time action recognition system, we developed a function that

processes a continuous stream of skeleton data, providing instant classification

of movements without relying on pre-recorded sequences. The system is de-

signed to handle incoming frames of skeleton data and stacking them into a

buffer. When the buffer reaches a predefined size, the frames are subjected to a

series of preprocessing steps including scaling, transformation, and normaliza-

tion. Once these transformations are complete, the data is passed to the model,

which performs action classification in real-time. This approach allows for the

efficient handling of skeleton data streams while maintaining high classification

accuracy.

The high-level pseudocode is shown in algorithm4, and outlines the steps

involved in this process.

31

3.3. ERGONOMICS ASSESSMENT

Algorithm 4 Real-Time Action Recognition

Initialize an empty buffer frame_buffer.
Set the model to evaluation mode.
while the stream is active do

if frame_buffer is not full then
Receive a new frame of skeleton data.
Append the new frame to frame_buffer.

end if
for each new frame received do

Append the frame to frame_buffer.
if the buffer exceeds the predefined size then

Remove the oldest frame from frame_buffer.
end if

end for
if frame_buffer is filled to the required size then

Preprocess the data: apply scaling, transformation, and normalization.
Feed the preprocessed data into the model.
Retrieve the predicted label from the model’s output.
Display or store the classification result.

end if
end while

3.3 Ergonomics assessment

We developed a simple ROS Node capable of processing skeleton data in real-

time to provide an ergonomic evaluation. Each skeleton is treated independently

from previous ones, making this approach a natural fit for tools like RULA,

which evaluates postures based on static snapshots. In our implementation, we

adapted the traditional RULA tables and scoring system to not only generate a

general risk factor but also to provide detailed feedback on how much each joint

deviates from its optimal ergonomic range. The node works by reading relative

joint angles from a skeleton, which is streamed in real-time over a dedicated

ROS topic, and comparing those angles to predefined ergonomic thresholds for

each joint.

The core of the analysis lies in a function which processes the joint angles for

different parts of the body, such as the upper arms, lower arms, wrists, neck, and

trunk. For example, the locate_upper_arm_position function determines whether

the upper arm’s angle falls within the ergonomic range of −20 to 20, which is

considered a physiological interval and therefore low risk for the shoulder. If

32

CHAPTER 3. SKELETON-BASED ACTION RECOGNITION METHODOLOGY

the joint angle is outside this range, the function calculates the degree by which

the arm is out of the safe range, returning a zero if it is within bounds or the

deviation value if its not. The same principle is applied to other joints, using the

range described in the RULA worksheet, reported previously in figure 2.2.

The node outputs a more granular evaluation than a standard RULA score.

For each joint, it either outputs a zero if the joint is within its ergonomic range or

a value in degrees showing how much the joint is outside the no-risk interval.

This detailed joint-specific feedback offers more meaningful information than a

single risk score and can be used by industrial robots to dynamically adjust the

work environment, as we will better discuss in section 6.3. For instance, robots

could adapt in real-time the height of a component to prevent workers from

raising their arms too high or change object orientation to avoid wrist twisting.

By providing this continuous, real-time feedback, the ROS node enables robots

to help workers maintain ergonomic postures, thereby reducing the risk of

musculoskeletal injuries.

33

4
Experiments and results on AnDy

dataset

This chapter provides a comprehensive exploration and motivation of the

experiments conducted using the AnDy dataset, alongside their results and a

critical analysis of the model’s performance. The AnDy dataset served as a cru-

cial foundation for training and initial validation of the action recognition model.

It also provided a valuable benchmark for evaluating the models ability to learn

various actions and generalize its performance to new subjects. Additionally,

the model trained on the AnDy dataset will be used in further experiments,

serving as a base for fine-tuning, both of which will be presented in the fol-

lowing chapter. We begin by detailing the experimental setup, including the

processes of data preparation, training, and evaluation, to assess the models

ability to generalize across different subjects and environments.

The results of these experiments, presented through both quantitative met-

rics and qualitative insights, offer a deeper understanding of the models behav-

ior when applied to pre-existing public datasets. We analyze how the model

handles variability in movements and how well it recognizes complex and sub-

tle actions that are critical for accurate classification. The chapter is structured

to not only present the results but also to provide a critical discussion on the

models strengths and limitations, laying the groundwork for potential improve-

ments. This sets the stage for evaluating the model’s performance in real-world

scenarios, which will be addressed in the following chapter.

35

4.1. DATASET

4.1 Dataset

For the purposes of the study, we required a dataset collected using the

Awinda system, to replicate data in our laboratory, and which contains actions

attributable to an industrial context. The research ended with the choice of the

AnDy Dataset [13].

4.1.1 AnDy Dataset

The AnDy Dataset is a comprehensive collection of human motion data,

specifically collected for research in industrial settings, with a focus on enhanc-

ing workplace ergonomics and improving the interaction between humans and

collaborative robots. The dataset was meticulously designed to address the need

for high-quality labeled data in the fields of robotics and human motion analy-

sis, particularly in the context of industrial tasks. The dataset captures a range

of postures and actions commonly observed in industrial environments, such as

those found on assembly lines. These activities were selected and structured to

reflect realistic industry-related scenarios. They are:

• Re (Reach): Moving an arm towards a target without holding an object.

• Pi (Pick): Picking up an object, starting from the moment of contact with

the object until the arm stops moving relative to the body.

• Pl (Place): Placing an object, similar to a reach but with an object in hand.

• Rl (Release): Returning the arm to a neutral position after manipulation.

• Ca (Carry): Transporting an object, starting after picking it up and ending

before placing it.

• Fm (Fine Manipulation): Dexterous manipulation of an object.

• Sc (Screw): A specific type of fine manipulation involving a rotational

screwing motion.

• Id (Idle): No activity with the hands.

The AnDy data collection procedure involves six sequences of this actions de-

signed by the authors, and each of the thirteen participant performed three of

36

CHAPTER 4. EXPERIMENTS AND RESULTS ON ANDY DATASET

them at random, each repeated five times. This approach ensured diversity

in the data, and resulted in a total of 15 trials per participant, with each trial

lasting approximately 90 seconds. In addition to action labeling, the AnDy

Dataset is distinguished by its detailed posture annotations. Three indepen-

dent annotators labeled the data, ensuring high reliability and accuracy in the

recorded actions. These posture annotations were inspired by the Ergonomics

Assessment Worksheet (EAWS) [33], a tool widely used in industries to evaluate

the ergonomic impact of various postures. This dual annotation of actions and

postures makes the AnDy Dataset particularly valuable for research focused on

improving workplace ergonomics and developing robotics solutions that en-

hance human well-being in industrial contexts. The dataset provides a rich

variety of data formats to facilitate reuse in different research domains. It in-

cludes whole-body kinematics recorded, finger pressure force, video recordings,

and comprehensive annotations.

4.1.2 Data rearrangement

As input for the model, we needed sequences of skeletons structured in a

specific format and annotated with their labels and stored in JSON files, one

for each action. So, starting from the MVNX acquisitions of AnDy Dataset and

their labeling - labeling files are available in the dataset - we created new files

to rearrange skeleton data and stored them as expected by the model. The flow

chart of the data rearrangement is visible in figure 4.1

The modification of AnDy dataset was performed by a Python script that

reads as input the MVNX acquisitions and gives as output the new annotations

ready to be used by the neural network. The logic is straight-forward: the al-

gorithm reads the labeling file and looking for changes in the labels it stores

timestamps and labels, obtaining as result a time segmentation of the acquisi-

tions corresponding to single actions. Then, it extracts skeletons joints positions

corresponding to an action, which means skeletons whose timestamps are in-

side each of the intervals previously computed. A dictionary is created with the

structure expected from the model. After all the segments are processed and the

annotations created, they are stored as a JSON file. Pseudo-code of the dataset

creation algorithm could be seen in algorithm 5.

37

4.1. DATASET

Figure 4.1: The high-level workflow of the data rearrangement from AnDy to
the right format for our model

Algorithm 5 Dataset creation

Initialize an empty list annotations.

Assume the labels for each timestamp are given.

for acquisition in acquisitions do

Identify changes as the timestamps where label changes occur, along with

the associated labels.

Set last_timestamp to 0.

for current_timestamp in changes do

Extract action_frames between last_timestamp and

current_timestamp

Initialize an empty list skeletons.

for frame in action_frames do

Append the skeleton data of frame to skeletons.

end for

Create annotation as a list containing skeletons and the current label.

Append annotation to annotations.

Update last_timestamp to current_timestamp.

end for

end for

Store annotations

38

CHAPTER 4. EXPERIMENTS AND RESULTS ON ANDY DATASET

The format used to store the annotation is the same for every experiment

presented in this thesis. Since the model was originally tested on the UCLA

dataset [43] it was by default able to deal with the annotation format used by

that dataset, and we exploit it for our purposes. The format is a folder containing

the annotations, one stored in a different JSON file. The structure of the JSON

is very simple, it is has only three fields: file_name, skeletons, and label. file_name

is just a string with the name of the file, skeletons is an array containing the

sequence of all skeletons, with shape T x V x C, where T (time) is the length

of the sequence, V (vertices) the number of joints tracked and C (channels) the

number of coordinates for each joint. label is just a number which identify the

action related to this annotation, and in our case it goes from 0 to 7. More

particularly, label 0 is associated with "Idle", 1 with "Reaching", 2 with "Picking",

3 with "Placing", 4 with "Release", 5 with "Carry", 6 with "Manipulate" and 7

with "Screwing".

1 {

2 "file_name": "sa_s1_r3_1_a0_id6f6", //name of the file

3 "skeletons": [//array of skeleton

4 [// array of joints

5 [0.05901, 0.033815, 0.9560675], // joint’s coordinates

6 ... ,

7 [0.06543, 0.034362500000000004, 1.1704875000000001]

8],

9 ... ,

10 [

11 [0.055725000000000004, 0.0364675, 1.3764575],

12 ... ,

13 [0.0869425, 0.037567500000000004, 1.6061874999999999]

14]

15],

16 label: 0 // label of action represented by skeletons

17 }

Code 4.1: Snippet of example of annotation file

The following step is to split all the annotations into train and test data, and it

is accomplished using another python script which read all the files and split all

the files into two arrays following different logics, for example randomly or by

name, to achieve subject cross-validation. The script while splitting can consider

a balance factor that for our case was 0.7, so tho have 70% of the annotations in

the training set, and the other 30% in the validation and testing set.

39

4.2. TRAIN AND EVALUATION

4.2 Train and Evaluation

The first experiment is to train and evaluate the model on the AnDy dataset.

This will help understanding how accurate the model can be on high quality

annotations, and underline immediately strengths and weaknesses on the action

recognition of the eight actions of AnDy.

This experiment involves all the trials available within the AnDy dataset,

shuffled and randomly split between train set and validation set, with 70% of

the annotations in the training set and the other 30% on the test set.

We used the following command for the training, provided by the model’s

authors and adjusted for our case:

1 python main.py --half=True --batch_size=32 --test_batch_size=64 --

step 50 60 --num_epoch=70 --num_worker=4 --dataset=andy --

num_class=8 --datacase=andy --weight_decay=0.0003 --num_person=1

--num_point=23 --graph=graph.andy.Graph --feeder=feeders.

feeder_andy.Feeder --base_lr 1e-1 --base_channel 64 --window_size

120 --lambda_1=1e-1 --lambda_2=1e-3 --lambda_3=1e-3 --n_step 3

Code 4.2: Command to train model on AnDy dataset

As you can see, there are many hyper-parameters, and now we detail them

explaining their meaning and their role.

• –half=True: Activates mixed-precision training, which allows faster com-

putations and reduced memory usage by using half-precision floating-

point operations where appropriate.

• –batch_size=32, –test_batch_size=64: These define the number of sam-

ples per batch for training and testing respectively. A larger test batch size

can help speed up evaluation since it is less memory-intensive than train-

ing. This parameter is taken from the authors of the model.

• –step 50 60: Specifies at which epochs the learning rate should decay,

helping to fine-tune the model by gradually reducing the learning rate to

stabilize training. In this case, the learning rate decays at epoch 50 and 60.

This parameter is taken from the authors of the model.

• –num_epoch=70: Sets the number of training epochs to 70, defining how

many times the model will iterate over the entire training dataset.

40

CHAPTER 4. EXPERIMENTS AND RESULTS ON ANDY DATASET

• –num_worker=4: Defines the number of worker threads used for loading

data during training. Increasing this number can speed up data loading,

especially on systems with multiple cores.

• –dataset=andy, –datacase=andy: Specifies that the andy dataset and its

corresponding data configuration will be used during training and testing.

This parameter needs to have an exact match on the data directory.

• –num_class=8: The number of output classes in the classification task,

indicating that the model will classify the data into one of 8 possible

categories.

• –weight_decay=0.0003: A regularization parameter used to prevent over-

fitting by penalizing large weights during training, helping to maintain

generalization. This parameter is taken from the authors of the model.

• –num_person=1, –num_point=23: The number of people and the number

of joint points considered in the skeleton data. These parameters define

the structure and representation of the input data.

• –graph=graph.andy.Graph: Defines the graph structure used in the model

to represent the relationships between the joints. In this case, the andy

graph is employed. In this case we load the graph we modify the suit the

MVN skeleton.

• –feeder=feeders.feeder_andy.Feeder: Specifies the data feeder class,

which handles data loading, and preprocessing.

• –base_lr 1e-1: Defines the initial learning rate for the optimizer, set-

ting the pace at which the model adjusts weights during training. This

parameter is taken from the authors of the model.

• –base_channel 64: Sets the base number of channels for the models con-

volutional layers. This determines the width of the network and its ca-

pacity to learn features. This parameter is taken from the authors of the

model.

• –window_size 120: Refers to the size of the sliding window used for

temporal data sequences, controlling how much context from the time

dimension is used. The choice of 120 depends on the frame rate of our

41

4.2. TRAIN AND EVALUATION

skeletons, which is 240Hz. From the results published in [44], we know

that the temporal windows to perform accurate action recognition is be-

tween 250ms and 500ms, and that larger windows don’t lead to a more

precise classification. so we choose 120 frames, which means considering

windows of 0.5 seconds.

• –lambda_1=1e-1, –lambda_2=1e-3, –lambda_3=1e-3: These hyper-parameters

specify different regularization terms or weights for specific loss compo-

nents, balancing their contributions during training. These parameters are

taken from the authors of the model.

• –n_step 3: Defines the number of steps in sequence prediction, referring

to how many future time steps the model aims to predict.

4.2.1 Results and discussion

First significant results came from the experiments on AnDy dataset. As

you can see in Figure 4.2 and Table 4.1 the model achieves high performance

across all eight action labels, with accuracy rates consistently exceeding 0.90 for

each category. The model excels particularly in recognizing the labels "Picking"

and "Carry," with respective accuracies of 0.97 and 0.98. This suggests that the

model effectively distinguishes between these actions even when they involve

similar movements. For instance, the high accuracy of "Reaching" (0.96) and

"Placing" (0.95) demonstrates the model’s ability to differentiate between these

actions, which often appear visually similar. However, the model struggles a bit

more with distinguishing between "Manipulate" and "Screwing," as evidenced

by their lower accuracy of 0.92 and 0.93, respectively. The confusion between

these two labels highlights the challenges in classifying actions that require

similar hand movements and object interactions. Overall, the results reflect a

robust performance in action recognition, with a total accuracy of 95%.

42

CHAPTER 4. EXPERIMENTS AND RESULTS ON ANDY DATASET

Figure 4.2: Confusion Matrix of inference on AnDy dataset

Idle Reaching Picking Placing Release Carry Manipulate Screwing Total

0.94 0.96 0.97 0.95 0.95 0.98 0.92 0.93 0.95

Table 4.1: Accuracy of each label for AnDy dataset evaluation

Beside of accuracy, there are other interesting metrics that give us details

about the model behaviour. The AUC is a performance metric often used to

evaluate classification models by summarizing the trade-off between true pos-

itives and false positives. In the context of binary classification, AUC is com-

puted based on the Receiver Operating Characteristic (ROC) curve, which plots

the true positive rate (sensitivity) against the false positive rate (1 - specificity,

where sensitivity is the true negative rate) as the classification threshold is var-

ied. In multi-label classification, AUC is extended to measure the model’s ability

to discriminate between multiple classes, calculating the AUC for each label sep-

arately and then averages the results. A model with an AUC of 0.5 is equivalent

to random guessing, while an AUC of 1.0 represents perfect classification. The

metric is meaningful because it provides a single value that summarizes the

trade-offs between true positives and false positives, making it especially useful

in imbalanced datasets.

We reported AUC plots for AnDy experiment in figure 4.3, where the left

plot shows the training AUC over the course of training steps, while the right

plot shows the evaluation AUC. The training AUC plot demonstrates a steady

increase early on, reaching around 0.95, indicating that the model is learning to

discriminate between classes during training. The evaluation AUC plot follows

a similar trend, starting lower but stabilizing around 0.93, which is slightly

lower than the training AUC. This suggests that the model generalizes well to

unseen data, though there is minor fluctuation in the evaluation AUC, indicating

43

4.3. SUBJECT CROSS-VALIDATION

variability during evaluation. Both plots show strong overall performance with

minimal overfitting, as the gap between training and evaluation AUC is small.

Figure 4.3: AnDy dataset train and evaluation AUC

4.3 Subject cross-validation

The second set of experiments we conducted involved subject cross-validation

to evaluate how well the model generalizes to unseen subjects. This approach

allowed us to investigate the model’s performance when faced with new data

not involved in the training phase. For this, we divided the twelve participants

in the AnDy dataset to train six different models. Each model was trained on

a set of ten participants, with the remaining two reserved for evaluation. For

instance, in the first configuration participants 1 and 2 were used for evaluation,

while the other ten were used for training. This process was repeated across

the six models, with the final model being trained on the first ten subjects and

evaluated on the last two. These experiments were crucial not only for assessing

the models ability to generalize to new subjects but also for identifying potential

overfitting or underfitting issues during training. By examining the model’s

performance across different subject combinations, we could gain insights into

its robustness and adaptability.

4.3.1 Results and discussion

The next important result is from the cross-validation experiment. Here,

the main objective was not to asses whether the model is capable to learn and

recognize actions, but to emulate and investigate how the model deals with new

subjects. The cross-validation results, shown in figure 4.2, provide valuable

insights into the model’s performance when evaluated on subjects that were not

44

CHAPTER 4. EXPERIMENTS AND RESULTS ON ANDY DATASET

part of the training data. The accuracies range from 0.87 to 0.95 across different

subject pairs, with the highest accuracy observed for Subjects 11 and 12 (0.95).

This suggests that the model generalizes well to new subjects, indicating a low

risk of overfitting, where the model would perform exceptionally well on the

training data but poorly on unseen data. The relatively consistent accuracy

across various subject groups also implies that the model has not fallen into the

trap of underfitting, which would be reflected in uniformly low performance. In-

stead, the results demonstrate that the model effectively captures the underlying

patterns in the action recognition task, suggesting a robust ability to recognize

actions even when presented with novel subjects. These findings reinforce the

model’s effectiveness and reliability in real-world applications, where variability

in the subject population is expected.

Subjects for validation Accuracy Subjects for validation Accuracy

Subjects 1,2 0,88 Subjects 3, 4 0,87

Subjects 5,6 0,87 Subjects 7,8 0,90

Subjects 9,10 0,93 Subjects 11,12 0,95

Table 4.2: Accuracy of cross-subjects validation experiments between the 12
participant of AnDy.

In figure 4.4, we show the AUC metrics for both training and validation

during the first experiment of the cross-validation set, where two subjects are

used for validation and the remaining ten for training. This figure represents

the first of six experiments, and since the AUC plots follow similar trends across

all experiments, the observations here are generally applicable.

The training AUC demonstrates an initial rise before leveling off around

0.97, indicating that the model quickly learns to distinguish between the multiple

labels in the training data and improves steadily as training progresses. The high

final value suggests that the model has learned to separate the labels effectively

within the training set.

On the other hand, the validation AUC shows more fluctuation, starting

around 0.76 and improving to about 0.87 by the end. These fluctuations reflect

the model’s varying performance on the validation set at different stages of

training. This variability is common in real-world data, where the validation set

may contain more challenging or ambiguous examples, and the model’s perfor-

mance can vary depending on which patterns it has learned so far. However,

45

4.3. SUBJECT CROSS-VALIDATION

the overall upward trend suggests that the model is progressively learning to

classify correctly actions and generalizing better to unseen data, even though the

validation AUC remains slightly lower than the training AUC. The differences

from the final values is about 10% which mean there is a small overfitting of the

model, and the generalization over evaluation data could be slightly improved,

even though the performance is already high.

Figure 4.4: Train and evaluation AUC of cross-validation with subjects 1 and 2
of AnDy

46

5
Experiments and results on custom

dataset

This chapter focuses on the experiments conducted using the custom data

acquired in our laboratory, designed to evaluate the action recognition models

performance in real-world, industrial scenarios. The dataset, which captures as-

sembly tasks performed by multiple subjects, serves as a challenging benchmark

for testing the model’s adaptability, generalization, and fine-tuning capabilities.

Throughout the chapter, we emphasize the rationale behind each experimental

setup, explaining how each was intended to test specific hypotheses regarding

the models performance in diverse contexts. We outline the processes of data

collection and annotation, detailing the specific experimental setups employed

to assess the models functionality in this applied setting. By illustrating the

step-by-step processes involved in training and evaluating the model, we aim to

provide a comprehensive understanding of the experimental workflow.

The results presented in this chapter include a detailed analysis of the model’s

quantitative performance and its ability to handle new, unseen data. We comple-

ment these metrics with qualitative observations, emphasizing how the model

performs in recognizing the intricate and dexterous movements associated with

real-world tasks. By delving into these different aspects, the chapter not only

highlights the technical performance of the model but also addresses broader

questions about its generalization capabilities, robustness to new data, and prac-

tical applicability in real-world scenarios. Through a critical discussion, we high-

light both the successes and limitations of the model in this practical application,

47

with a particular focus on its robustness and generalization capacity. The goal of

this comprehensive analysis is to provide a deeper understanding of the model’s

functionality and its potential to deliver accurate action recognition across di-

verse environments and tasks. This evaluation also lays the groundwork for

identifying future improvements and optimizations, discuss later on section 6.3

to enhance the model’s effectiveness in even more challenging applications. The

chapter concludes with an analysis of the models potential for further develop-

ment, suggesting avenues for future refinement and optimization based on the

insights gained from these experiments.

48

CHAPTER 5. EXPERIMENTS AND RESULTS ON CUSTOM DATASET

5.1 Custom data collection

To further enhance the evaluation of our action recognition model, we devel-

oped a custom dataset tailored to a specific real-world scenario: the assembly

of a chair. Figures 5.1 and 5.2 show a stage of the assembly of the chair and the

laboratory setup used for the dataset collection. This dataset is crucial for test-

ing the model’s performance in an environment distinct from the AnDy dataset,

ensuring its ability to generalize across different tasks. Even if it is always an

assembly process, as actions in AnDy, the scenario is changed and variations in

the movements are introduced. In fact, the chair assembly process involves a

complex and sequential series of actions that, while similar to the original AnDy

data in nature, are executed in a significantly different manner. This divergence

presents a novel challenge for the model, offering a valuable opportunity to

assess its adaptability and robustness in handling variations in how the same

actions are performed.

Figure 5.1: The chair used for our
sequence of actions, at an interme-
diate stage of the assembly process

Figure 5.2: Experimental setup: in
particular this is the initial situation,
with one side part on the work table,
other components on the left and
screws is the red container on the
right

The custom dataset was created by simulating a complete chair assembly

process, designed to represent a practical test case for the model. The chair used

for the experiment consists of two side parts, visible in Figure 5.3 which include

the legs, and four crossbars that connect these side parts, visible in Figure 5.4.

All the pieces are held together by three screws.

The experimental setup, illustrated in Figure 5.5, begins with one side part

of the chair already in place, while the remaining five parts must be retrieved

and assembled. These parts are placed on a table approximately three meters

49

5.1. CUSTOM DATA COLLECTION

away from the assembly station. The sequence has been carefully designed, and

the actions to be performed in order are as follows:

• Idle position

• 5x reach, pick, carry, and place part of the chair.

• 3x reach, pick, and place screws.

• Pick the Allen key.

• 3x screwing.

• Place the Allen key.

• Idle position

This sequence of actions strikes a balance between the original AnDy sequences

and a real-world assembly process, providing a meaningful and realistic evalu-

ation scenario for the model.

Figure 5.3: Example of side
part component of the chair

Figure 5.4: Example of
crossbars component of the
chair

50

CHAPTER 5. EXPERIMENTS AND RESULTS ON CUSTOM DATASET

Figure 5.5: Laboratory setup schema for the acquisition of the custom dataset

We collected data from 7 subjects, each of whom performed the entire as-

sembly sequence 10 times. The data was captured using a combination of

inertial sensors and a single RGB camera, ensuring comprehensive coverage of

the movements. All recordings were stored in ROS bag files, containing topics

for RGB video, timestamps, and skeletal data. These recordings were meticu-

lously annotated using a custom Python script, which assigned labels to each

frame of the RGB video data and added a new topic to the ROS bag containing

the corresponding labels for each timestamp. The ROS bag was then processed

using a modified version of the script described in section 4.1.2, which was

used to generate the necessary JSON files for further experimentation. This

allowed us to maintain consistency with the previously established data prepa-

ration procedures, ensuring the dataset was ready for use in subsequent model

evaluations.

Our dataset introduced new challenges that required the model to adapt to

a larger variety of action execution. Unlike the more structured sequences in

the AnDy dataset, our data involved a greater degree of variability in how the

same actions were performed. This increased complexity hindered the model’s

ability to generalize and accurately classify the actions, yet it aligns more closely

with real-world industrial scenarios. In such environments, each worker devel-

ops unique movement patterns based on their individual preferences, physical

characteristics, and the specific demands of their tasks. Therefore, incorporating

51

5.1. CUSTOM DATA COLLECTION

this diverse and realistic data is crucial for our study, as it enables the model

to better reflect the variability encountered in actual industrial settings. This

adaptation is essential for enhancing the model’s applicability and effectiveness

in monitoring and improving worker performance, ultimately contributing to

more efficient operations and improved safety protocols. As an example of this

variability in the subjects’ actions, the reach action was not limited to a single

form, as shown in Figure 5.6. Depending on the scenario, it may involve moving

closer to or further away from the body, using either one hand or both hands.

The specific object to be picked and its position further influenced how the

reaching action was executed, introducing additional variability for the model

to account for. Another notable example is the placing action, as shown in figure

5.7, where subjects exhibited different strategies. A subject might use their dom-

inant hand, either the left or the right, or both hands together, depending on

the ease and comfort of the task. The model had to recognize and differentiate

between these variations, complicating the learning process. Additionally, the

"screwing" action involved even more subtle distinctions, as you can notice in

figure 5.8. Not only did the hand positions vary, but the orientation of the tool

also shifted based on the subject’s preferences. These small yet critical varia-

tions in execution posed significant challenges for the model’s ability to correctly

identify and classify the actions across different subjects and instances.

Figure 5.6: Examples of variations of reaching action: reaching a screw with one
hand, reaching with screwdriver, reaching chair component with two hands.

52

CHAPTER 5. EXPERIMENTS AND RESULTS ON CUSTOM DATASET

Figure 5.7: Examples of variations of placing action: place object with left hand
far away from the body, place object with two hands, place object with right
hand close to the body.

Figure 5.8: Examples of variations of screwing action: two hands with horizontal
key, two hands with vertical key, one hand

5.2 Inference on custom dataset using AnDy weights

The experiment on the data collected in our lab used the first two subjects

for evaluation to see how performance changes under different model condi-

tions. This will hold for all the experiment on our data, to have a more objective

benchmark when comparing different models: we will see for example how

classification accuracy will increase on these subjects under different configura-

tions.

After creating our custom dataset, we tested the model trained on the AnDy

dataset. We tried firstly to test on data annotated in a very strict way, but this

resulted in a low accuracy, so we relabeled the data trying to match more the

actions in AnDy. At the end, we tried also to consider only the first part of the

53

5.2. INFERENCE ON CUSTOM DATASET USING ANDY WEIGHTS

sequence, which means to test the model only on the pick and place of the chair

components, excluding the screwing part. This is because the action of screwing

is significantly different between AnDy, where it is the fasten of a nut on a shelf,

and our sequence, where it is about the screwing of a screw with an Allen key.

Figure 5.9: Screwing action in AnDy
dataset

Figure 5.10: Screwing action in our
routine

5.2.1 Results and discussion

This set of experiments was conducted on our custom dataset, using the

model trained on AnDy and evaluated on subjects 1 and 2. The results, shown in

Figure 5.11 and Table 5.1, underline several issues with the model’s performance.

The overall accuracy for each label varies significantly, highlighting areas where

the model struggles to generalize to new data.

For the label "Idle," the model achieves an accuracy of only 0.56, misclas-

sifying many samples as "Carry". This happens due to similar body motion,

since both these actions include the walking phase between stations, and the

differences are nuances in the arm position.

"Reaching" shows a much better performance with an accuracy of 0.85, sug-

gesting that the model can effectively recognize this action. However, some con-

fusion still occurs with "Picking" and "Placing," which is understandable given

the similarity between these actions in terms of arm and hand movements. This

holds also for the label "Picking", which achieves a moderate accuracy of 0.70.

though the confusion with the manipulation action is notable.

54

CHAPTER 5. EXPERIMENTS AND RESULTS ON CUSTOM DATASET

One of the most concerning results is for the label "Placing," which has an

extremely low accuracy of 0.07. The vast majority of "Placing" samples are being

confused with "Reaching". This suggests that the model is almost entirely failing

to recognize "Placing" as a distinct action, treating it more like the initial reach

toward the object, which is a critical problem in the model’s performance. This

problem stems from the difference between the place action of AnDy and the

one performed in our laboratory.

Similarly, "Release" is another weak point, with an accuracy of 0.27. The

model confuses this action with "Idle" and "Carry," suggesting that the transition

from object handling to releasing is not being effectively captured by the model,

perhaps due to the fact that this movement is often performed at the same time

of some other body movements.

"Carry" has an accuracy of 0.52, which is somewhat better than the previous

labels but still underperforms. The confusion with "Idle" and "Reaching" points

to the model’s difficulty in recognizing the continuity of carrying actions.

"Manipulate" and "Screwing" also show concerning results, with accura-

cies of 0.51 and 0.29, respectively. "Manipulate" is frequently confused with

"Screwing," which is because, they have similar body position and subtle hands

movements, differentiated only by different object handling. In addition, AnDy

participants perform the screwing action of a horizonal axis, while for the pur-

poses of the chair assembly we screw nuts vertically. This means that the model

has to evaluate an action different from the one used during training.

Figure 5.11: Confusion Matrix of inference on subjects 1 and 2 of custom dataset,
evaluated using weights computed after 70 epochs of training on 70% of AnDy

Since accuracy of the model is very low, we try re-annotate all the data with

more focus on labeling actions to match the ones on the training dataset. This

means not considering only the exact movements, but more the intention behind.

55

5.3. INFERENCE ON CUSTOM DATASET USING ANDY WEIGHTS AFTER FINE TUNING

Idle Reaching Picking Placing Release Carry Manipulate Screwing Total

0.56 0.85 0.70 0.07 0.27 0.52 0.51 0.29 0.47

Table 5.1: Accuracy of each label for custom dataset evaluation

We provide a practical example for more clarity: consider the action of move

the screwdriver to the screw and start screwing. For the definition provided

in the AnDy paper, since we have an object in the hand it should be "Placing",

but since the intention is not to drop something, the movement is more similar

to "Reaching". Then, consider you start screwing and then you help yourself

with the other hand to keep the screw in place or adjust the parts positions: this

should be "Manipulation" since it is a free movement of the arm, but at the end it

is part of the screwing action. After this relabeling of our sequences, even if we

obtain just a small increase of the overall accuracy, from 0.47 to 0.50, there are

some interesting improvements to notice: the biggest is for the "idle" label, that

reach an accuracy of 0.76 starting from 0.56. Also reaching, placing, release and

manipulate have some smaller gains, while carry and screwing remain stable.

In summary, while the model performs well for certain actions like "Reach-

ing," it struggles significantly with more nuanced or transitional actions like

"Placing," "Release," and "Screwing." This indicates potential overfitting to the

training data and poor generalization to the custom dataset, where specific

movements are either too subtle or too similar for the model to differentiate ac-

curately. The confusion between labels suggests the need for further refinement

in the model architecture or the training process, particularly for actions that

involve fine motor control or transitions between states.

5.3 Inference on custom dataset using AnDy weights

after fine tuning

To improve the model’s accuracy, we applied the technique of fine-tuning,

focusing specifically on adjusting the final layers of the model using our custom

dataset. The aim was to assess how adding new data influences the model’s

performance. To do this, we fine-tuned five separate models, all initialized

with the same pretrained weights, gradually increasing the number of subjects

used for fine-tuning from one to five. The initial weights for these experiments

were taken from the 70th epoch of training on 70% of the AnDy dataset. The

56

CHAPTER 5. EXPERIMENTS AND RESULTS ON CUSTOM DATASET

fine-tuning involved the last three fully connected convolutional layers and the

decoder responsible for the action classification. For consistency, we evalu-

ated the performance of all models on the same two subjects as in previous

experiments, allowing us to make direct comparisons and observe the impact of

incorporating additional data.

5.3.1 Results and discussion

In the fine-tuning experiments, there was a significant improvement in ac-

curacy, rising from 0.5 to 0.76 as the number of subjects used for fine-tuning

increased from zero to five as shown in figure 5.12. AUC gained a remarkable

improvement too, as reported in figure 5.13, starting from 0.55 without any fine-

tuning and reaching 0.79 when the model is tuned on all five subjects. While

this marked a notable enhancement in overall performance, certain action labels

were sacrificed in the process. As reported in figure 5.14 the accuracy trend for

individual actions is not consistently increasing. In several cases, such as "Idle,"

"Reaching," "Carry," and "Screwing," the final accuracy obtained is not the high-

est in this experiment set. A special case is the "Manipulate" action, which shows

significantly lower accuracy compared to the others due to its complex nature.

The dexterous movements involved in fixing chair parts were often misclassified

as actions like reaching, placing, or even screwing, especially when the hands

were positioned close together, leading to ambiguity in the recognition process.

Without considering this outlier label the overall accuracy of the model with

the maximum data used in the fine tuning goes up to 0.85. During the fine-

tuning phase, it is interesting to observe that the model appears to deliberately

lower its accuracy on specific actions in favor of improving overall performance.

This behavior suggests that the model is prioritizing the recognition of more

complex or generalizable features at the cost of precision in certain tasks. By

doing so, it enhances its ability to perform well across a broader range of actions,

reflecting a strategic adjustment aimed at optimizing global performance rather

than focusing narrowly on individual actions. This indicates that the model

prioritizes actions that contribute more significantly to general accuracy. This

trade-off suggests a balancing mechanism within the model’s optimization pro-

cess, where improving general performance comes at the cost of certain specific

actions. Another important result concerns the amount of data needed for ef-

fective training. We have demonstrated that fine-tuning is beneficial, but for a

57

5.3. INFERENCE ON CUSTOM DATASET USING ANDY WEIGHTS AFTER FINE TUNING

complex model like this, a large amount of data is essential to train it properly,

even in the fine-tuning phase. The model is capable of distinguishing between

very similar movements, which is one of its strengths. However, this also means

that it can interpret the same action differently when it is performed with minor

variations. To overcome this challenge, considering data-augmentation, which

is generating new data from the collected one, adding noise or geometrical

transformations, and collecting a larger dataset are both valid solutions. By

providing the model with extensive examples, we teach it the full range of ways

an action can be performed, helping it to generalize better and recognize the

action consistently despite small differences in execution.

Figure 5.12: The evolution of overall
accuracy over different fine-tuned
models. In the y-axis it is shown
the accuracy value, in the x-axis
the number of subjects used during
fine-tuning

Figure 5.13: The evolution of AUC
over different fine-tuned models. In
the y-axis it is shown the AUC value,
in the x-axis the number of subjects
used during fine-tuning

58

CHAPTER 5. EXPERIMENTS AND RESULTS ON CUSTOM DATASET

Figure 5.14: The evolution of accuracy of each label over different fine-tuned
models. In the y-axis it is shown the accuracy value, in the x-axis the number of
subjects used during fine-tuning

59

5.4. DATA AUGMENTATION AND DATASET BALANCING

5.4 Data augmentation and dataset balancing

As previously discussed, the performance of action recognition models can

be limited by two critical issues: insufficient data and an imbalanced dataset.

In such cases, as previously discussed, certain labels may dominate the dataset,

skewing the models learning process and and consequently leading to biased

metrics during evaluation. To address these issues, we employed data augmen-

tation to artificially increase the number of samples, ensuring a bigger quantity

of data and at the same time a more balanced distribution across all categories.

The data augmentation process was carried out by first calculating the num-

ber of samples per label, which show that some labels are over or under repre-

sented, as reported in Table 5.2. A multiplier was then computed for each label

based on its relative frequency, which was used to determine the probability of

generating new samples for that label. New samples were created by applying

a combination of a rotation around the z-axis and the addition of normal noise

to the each skeleton data, simulating natural variations in movement. This aug-

mentation process was repeated until the number of samples for each label was

approximately equal: Table 5.3 reports the final number of samples for label.

Idle Reaching Picking Placing Release Carry Manipulate Screwing

315 625 477 459 429 271 78 161

Table 5.2: Initial distribution of samples per label

Idle Reaching Picking Placing Release Carry Manipulate Screwing

702 840 774 766 748 691 624 664

Table 5.3: Final distribution of samples per label after data augmentation

Then, using this enlarged dataset we fine tune the model starting from the

weights used also for the other fine tuning experiments, following the same

procedure already outlined.

60

CHAPTER 5. EXPERIMENTS AND RESULTS ON CUSTOM DATASET

5.4.1 Results and discussion

The results obtained after fine-tuning the model using the augmented dataset

demonstrate a substantial improvement in overall performance, with an accu-

racy of 0.78 . These metrics indicate another slight improvement compared to

earlier fine-tuning experiments without data augmentation, where the model

achieved an accuracy of 0.76. Despite this improvement, the accuracy across in-

dividual action labels reveals some variation, as shown in Table 5.4 and in Figure

5.15. Certain actions, such as "Idle" (0.99) and "Carry" (1), exhibit near-perfect

recognition, suggesting that the model excels in identifying relatively static or

clearly defined tasks. However, more actions, like "Manipulate," show signif-

icantly lower accuracy (0.23), similar to the previous fine-tuning experiments.

This underperformance could be explained by the spreading of systematic prob-

lems, such as the nature of the movement, also in the augmented data.

Figure 5.15: Confusion Matrix of inference on subjects 1 and 2 of custom dataset,
evaluated using model fine-tuned on augmented custom dataset

Idle Reaching Picking Placing Release Carry Manipulate Screwing Total

0.99 0.76 0.92 0.70 0.76 1 0.23 0.82 0.78

Table 5.4: Accuracy per label of model fine-tuned on augmented dataset

The augmented data appears to have improved recognition of most actions

compared to earlier fine-tuning without augmentation, where the model strug-

gled to consistently classify such movements. However, the augmentation did

not fully resolve issues with the "Manipulate" label, where the model contin-

ued to struggle due to the ambiguous nature of hand movements during chair

assembly. These results reflect and confirm the model’s tendency to sacrifice

accuracy on more complex actions in favor of improving performance on easier

or more generalizable ones. This observation is consistent with the behavior

61

5.4. DATA AUGMENTATION AND DATASET BALANCING

noted during the initial fine-tuning phase, where the model appears to priori-

tize actions that have a greater influence on overall accuracy, and shows that this

behaviour is not fully driven by the balance of the dataset used.

Despite these challenges, the use of data augmentation has proven bene-

ficial in improving the model’s ability to generalize across a range of actions,

particularly for those that were underrepresented in the original dataset. The

augmented dataset allowed the model to better recognize actions but also remark

the challenges of this industrial scenario and underline difficulties in learn am-

biguous actions, suggesting that further refinements, possibly involving more

targeted augmentation strategies or additional training data, are necessary to

achieve better accuracy.

62

6
Conclusions and Future Works

6.1 Summary

This thesis has explored the application of online human action recognition

in industrial scenarios. The research aimed to develop a robust system that can

classify human actions based on skeleton data, with the goal of achieving an

high accuracy in real-time action classification. To meet the real-time demands

of action recognition in such a context, we adopted and adjusted the state-of-

the-art InfoGCN++ model. This graph convolutional neural network was chosen

for its capability to effectively model complex skeleton data and capture spatio-

temporal dependencies crucial for recognizing human actions, and for being

able to handle classification without the whole action sequence. Given the in-

dustrial setting, the system needed to handle both repetitive, well-structured

movements as well as slight variations in movement patterns that occur in

real-world environments. The model was trained on the AnDy dataset, which

contains sensor acquisition and labeling of sequences of industrial actions and

was finally fine-tuned with a custom dataset collect in our laboratory to optimize

performance for real-time action recognition. Experiments were conducted to

assess the model’s performance under various conditions. Results showed that

InfoGCN++ achieved high accuracy, with the model demonstrating strong learn-

ing capabilities and generalizing well to previously unseen subjects. Although

the model performed well in most cases, action variations and differences in

movements introduced inconsistencies in the recognition performance. This

63

6.2. LIMITATIONS

was a critical challenge in the industrial context, where workers often perform

the same task differently based on individual habits, fatigue, or other factors.

Initial inference on actions that featured such variations showed a noticeable

drop in performance, which was not satisfactory for real-world application. To

address this, we exploited fine-tuning technique. By refining the model using

this method, the performance improved significantly. Fine-tuning allowed the

model to adapt better to the nuances of movement variation, ultimately achiev-

ing a maximum accuracy of 0.85. This marked improvement highlighted the

importance of model adaptability in real-time, real-world environments.

6.2 Limitations

One of the primary limitations of our project lies in inter-class similarity,

which led to poor classification accuracy for certain labels, such as "manipu-

lation." The actions within this class shared many overlapping characteristics,

making it difficult for the model to clearly distinguish between subtle variations

in movement and actually limiting the capability of the model to classify well

all the actions. Our small dataset used for fine-tuning suffer also of unbalance:

some actions for example manipulation has less training samples with respect to

reaching.

Furthermore, our dataset included only a small set of actions, which limited

the scope of the project. While the results were promising for the actions studied,

expanding the action set could introduce more confusion for the model, as

additional classes might share similarities or present new challenges, potentially

leading to reduced accuracy.

Another critical limitation is the system’s lack of context-awareness. The in-

ertial sensors we used could only capture motion data, without considering any

environmental factors. This significantly limited classification in scenarios like

"pick and place", where differentiating between picking up different objects or

performing similar tasks in varying contexts could be important. To overcome

this, future work could integrate the system with a camera and incorporate com-

puter vision algorithms to provide context-awareness, enabling more accurate

and reliable action recognition across diverse scenarios.

64

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

6.3 Future developments

Future developments of this project could focus on several critical areas to

enhance both performance and applicability. One area of improvement is hyper-

parameters tuning and optimizing training parameters such as the learning rate,

batch size and weight decay. These adjustments could help refine the model’s

learning dynamics, enabling faster convergence and better generalization. In

this project we trust results published by the model’s authors without testing

ourselves different configurations of the model.

Additionally, since fine-tuning improved performance in this project, further

improvements could be achieved through fine-tuning on a larger dataset. A

common technique to generate more data is data-augmentation. This process

aims to generate new artificial data from the real skeleton, adding noise to

joint positions and rotate and translate the skeleton sequence. The drawback

of this technique is that if original data contains some systematic error, it will

propagate to new data. So, could be necessary to collect a bigger dataset, with

new sequences and more subjects. Another experiment at this point could be

comparing performances of a model trained on a general-purpose dataset and

then fine-tuned between a model directly trained on a dataset tailored to the

specific industrial environment where to use this system. Expanding the action

set to include more complex or nuanced movements is another option to explore,

though this would require careful consideration to avoid inter-class confusion.

The integration of a camera and a computer vision algorithm to recognize objects

will help in differentiating similar actions that interact with different objects.

Furthermore, future work should aim to integrate the models ergonomics

assessment capabilities directly into the action recognition framework. By em-

bedding ergonomics evaluation, the system could not only classify human move-

ments but also assess the ergonomic risks associated with each action in real-

time. This could be achieved using the model to learn good and bad postures

using labels inspired by some ergonomics assessment tools as EAWS, or to learn

general body movements and assign them a risk factor, always computed with

some ergonomics tool. Both approaches will provide information about healthy

and risk-free actions and provide both insights into worker posture and an op-

portunity to intervene in unsafe or inefficient practices before injury occurs.

Ultimately, the broader vision of this project lies in advancing toward human-

robot collaboration. In such systems, robots would work alongside human oper-

65

6.4. FINAL CONCLUSIONS

ators, dynamically adjusting to their actions while ensuring safety and optimal

ergonomics. This means integrating our work in a more complex system, where

our output become input for the algorithm responsible for the robot behaviour,

to make it aware of what the human is doing and what his intentions are, and

make it behave and react accordingly. To support this, future versions of the

system could incorporate environmental context and object recognition, possi-

bly through the integration of vision-based algorithms. This would enable the

system to recognize not just human actions, but also the surrounding environ-

ment, allowing robots to anticipate and respond to both human behavior and

external factors, creating a seamless, adaptive collaborative workspace.

6.4 Final conclusions

In conclusion, this thesis has demonstrated the potential of advanced action

recognition models, specifically InfoGCN++, to be adapted for real-time applica-

tions in industrial settings. Through extensive experimentation and refinement,

the system achieved high accuracy and generalization capabilities, particularly

when dealing with repetitive, well-structured tasks. However, challenges re-

main in handling inter-class similarity and movement variation, as well as the

lack of context-awareness, all of which are critical in complex, real-world envi-

ronments. Despite these limitations, the integration of fine-tuning techniques

improved performance, showcasing the model’s adaptability. Looking forward,

the incorporation of ergonomics assessments, expansion to larger datasets, and

integration with vision systems offer promising avenues for enhancing the sys-

tem’s effectiveness. Ultimately, this work contributes to the ongoing effort to

develop intelligent, context-aware systems for human-robot collaboration, with

the potential to improve both productivity and worker safety in industrial envi-

ronments. The results underscore the importance of continued research in this

field, as the fusion of action recognition and ergonomics could play a crucial

role in shaping the future of smart, collaborative workplaces.

66

References

[1] Vikas Pogadadanda et al. “Abnormal Activity Recognition on Surveil-

lance: A Review”. In: 2023 Third International Conference on Artificial In-

telligence and Smart Energy (ICAIS). 2023, pp. 1072–1077. doi: 10.1109/

ICAIS56108.2023.10073703.

[2] Venet Osmani, Sasitharan Balasubramaniam, and Dmitri Botvich. “Hu-

man activity recognition in pervasive health-care: Supporting efficient

remote collaboration”. In: Journal of Network and Computer Applications 31.4

(2008), pp. 628–655. issn: 1084-8045. doi: https://doi.org/10.1016/j.

jnca.2007.11.002. url: https://www.sciencedirect.com/science/

article/pii/S1084804507000719.

[3] Bappaditya Debnath et al. “A review of computer vision-based approaches

for physical rehabilitation and assessment”. In: Multimedia Systems 28.1

(Feb. 2022), pp. 209–239. issn: 1432-1882. doi: 10.1007/s00530- 021-

00815-4. url: https://doi.org/10.1007/s00530-021-00815-4.

[4] Nicole Robinson et al. “Robotic Vision for Human-Robot Interaction and

Collaboration: A Survey and Systematic Review”. In: J. Hum.-Robot Interact.

12.1 (Feb. 2023). doi: 10.1145/3570731. url: https://doi.org/10.1145/

3570731.

[5] Colin Dixon et al. “An operating system for the home”. In: Proceedings of

the 9th USENIX Conference on Networked Systems Design and Implementation.

NSDI’12. San Jose, CA: USENIX Association, 2012, p. 25.

[6] Ronald Poppe. “A survey on vision-based human action recognition”. In:

Image and Vision Computing 28.6 (2010), pp. 976–990. issn: 0262-8856. doi:

https://doi.org/10.1016/j.imavis.2009.11.014. url: https://www.

sciencedirect.com/science/article/pii/S0262885609002704.

67

https://doi.org/10.1109/ICAIS56108.2023.10073703
https://doi.org/10.1109/ICAIS56108.2023.10073703
https://doi.org/https://doi.org/10.1016/j.jnca.2007.11.002
https://doi.org/https://doi.org/10.1016/j.jnca.2007.11.002
https://www.sciencedirect.com/science/article/pii/S1084804507000719
https://www.sciencedirect.com/science/article/pii/S1084804507000719
https://doi.org/10.1007/s00530-021-00815-4
https://doi.org/10.1007/s00530-021-00815-4
https://doi.org/10.1007/s00530-021-00815-4
https://doi.org/10.1145/3570731
https://doi.org/10.1145/3570731
https://doi.org/10.1145/3570731
https://doi.org/https://doi.org/10.1016/j.imavis.2009.11.014
https://www.sciencedirect.com/science/article/pii/S0262885609002704
https://www.sciencedirect.com/science/article/pii/S0262885609002704

REFERENCES

[7] A.F. Bobick and J.W. Davis. “The recognition of human movement using

temporal templates”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence 23.3 (2001), pp. 257–267. doi: 10.1109/34.910878.

[8] Ziming Zhang et al. “Motion Context: A New Representation for Hu-

man Action Recognition”. In: Computer Vision – ECCV 2008. Ed. by David

Forsyth, Philip Torr, and Andrew Zisserman. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2008, pp. 817–829. isbn: 978-3-540-88693-8.

[9] Hong-Bo Zhang et al. “A Comprehensive Survey of Vision-Based Human

Action Recognition Methods”. In: Sensors 19.5 (2019). issn: 1424-8220. doi:

10.3390/s19051005. url: https://www.mdpi.com/1424-8220/19/5/

1005.

[10] Karen Simonyan and Andrew Zisserman. “Two-Stream Convolutional

Networks for Action Recognition in Videos”. In: Advances in Neural Infor-

mation Processing Systems. Ed. by Z. Ghahramani et al. Vol. 27. Curran Asso-

ciates, Inc., 2014. url: https://proceedings.neurips.cc/paper_files/

paper/2014/file/00ec53c4682d36f5c4359f4ae7bd7ba1-Paper.pdf.

[11] Zehua Sun et al. “Human Action Recognition From Various Data Modal-

ities: A Review”. In: IEEE Transactions on Pattern Analysis and Machine In-

telligence 45.3 (2023), pp. 3200–3225. doi: 10.1109/TPAMI.2022.3183112.

[12] Chuankun Li et al. “DFN: A deep fusion network for flexible single and

multi-modal action recognition”. In: Expert Systems with Applications 245

(2024), p. 123145. issn: 0957-4174. doi: https://doi.org/10.1016/j.

eswa.2024.123145. url: https://www.sciencedirect.com/science/

article/pii/S0957417424000101.

[13] Pauline Maurice et al. “Human Movement and Ergonomics: an Industry-

Oriented Dataset for Collaborative Robotics”. In: The International Journal

of Robotics Research (2019).

[14] Md Golam Morshed et al. “Human Action Recognition: A Taxonomy-

Based Survey, Updates, and Opportunities”. In: Sensors 23.4 (2023). issn:

1424-8220. doi: 10.3390/s23042182. url: https://www.mdpi.com/1424-

8220/23/4/2182.

68

https://doi.org/10.1109/34.910878
https://doi.org/10.3390/s19051005
https://www.mdpi.com/1424-8220/19/5/1005
https://www.mdpi.com/1424-8220/19/5/1005
https://proceedings.neurips.cc/paper_files/paper/2014/file/00ec53c4682d36f5c4359f4ae7bd7ba1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/00ec53c4682d36f5c4359f4ae7bd7ba1-Paper.pdf
https://doi.org/10.1109/TPAMI.2022.3183112
https://doi.org/https://doi.org/10.1016/j.eswa.2024.123145
https://doi.org/https://doi.org/10.1016/j.eswa.2024.123145
https://www.sciencedirect.com/science/article/pii/S0957417424000101
https://www.sciencedirect.com/science/article/pii/S0957417424000101
https://doi.org/10.3390/s23042182
https://www.mdpi.com/1424-8220/23/4/2182
https://www.mdpi.com/1424-8220/23/4/2182

REFERENCES

[15] Bin Ren et al. “A Survey on 3D Skeleton-Based Action Recognition Using

Learning Method”. In: Cyborg and Bionic Systems 5 (2024), p. 0100. doi:

10.34133/cbsystems.0100. eprint: https://spj.science.org/doi/

pdf/10.34133/cbsystems.0100. url: https://spj.science.org/doi/

abs/10.34133/cbsystems.0100.

[16] Guy Lev et al. “RNN Fisher Vectors for Action Recognition and Image

Annotation”. In: Computer Vision – ECCV 2016. Ed. by Bastian Leibe et al.

Cham: Springer International Publishing, 2016, pp. 833–850. isbn: 978-3-

319-46466-4.

[17] Jun Liu et al. “Global Context-Aware Attention LSTM Networks for 3D

Action Recognition”. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). July 2017.

[18] Jun Liu et al. “Spatio-Temporal LSTM with Trust Gates for 3D Human

Action Recognition”. In: Computer Vision – ECCV 2016. Ed. by Bastian

Leibe et al. Cham: Springer International Publishing, 2016, pp. 816–833.

isbn: 978-3-319-46487-9.

[19] Seunghyeok Shin and Whoi-Yul Kim. “Skeleton-Based Dynamic Hand

Gesture Recognition Using a Part-Based GRU-RNN for Gesture-Based

Interface”. In: IEEE Access 8 (2020), pp. 50236–50243. doi:10.1109/ACCESS.

2020.2980128.

[20] Guilhem Cheron, Ivan Laptev, and Cordelia Schmid. “P-CNN: Pose-Based

CNN Features for Action Recognition”. In: Proceedings of the IEEE Interna-

tional Conference on Computer Vision (ICCV). Dec. 2015.

[21] Sĳie Yan, Yuanjun Xiong, and Dahua Lin. “Spatial Temporal Graph Con-

volutional Networks for Skeleton-Based Action Recognition”. In: Proceed-

ings of the AAAI Conference on Artificial Intelligence 32.1 (Apr. 2018). doi:

10.1609/aaai.v32i1.12328. url: https://ojs.aaai.org/index.php/

AAAI/article/view/12328.

[22] Yong Du, Wei Wang, and Liang Wang. “Hierarchical recurrent neural

network for skeleton based action recognition”. In: 2015 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 2015, pp. 1110–1118.

doi: 10.1109/CVPR.2015.7298714.

69

https://doi.org/10.34133/cbsystems.0100
https://spj.science.org/doi/pdf/10.34133/cbsystems.0100
https://spj.science.org/doi/pdf/10.34133/cbsystems.0100
https://spj.science.org/doi/abs/10.34133/cbsystems.0100
https://spj.science.org/doi/abs/10.34133/cbsystems.0100
https://doi.org/10.1109/ACCESS.2020.2980128
https://doi.org/10.1109/ACCESS.2020.2980128
https://doi.org/10.1609/aaai.v32i1.12328
https://ojs.aaai.org/index.php/AAAI/article/view/12328
https://ojs.aaai.org/index.php/AAAI/article/view/12328
https://doi.org/10.1109/CVPR.2015.7298714

REFERENCES

[23] Amir Shahroudy et al. “NTU RGB+D: A Large Scale Dataset for 3D Human

Activity Analysis”. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). June 2016.

[24] Jun Liu et al. “NTU RGB+D 120: A Large-Scale Benchmark for 3D Human

Activity Understanding”. In: IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 42.10 (2020), pp. 2684–2701. doi: 10.1109/TPAMI.2019.

2916873.

[25] Sĳie Yan, Yuanjun Xiong, and Dahua Lin. “Spatial temporal graph convo-

lutional networks for skeleton-based action recognition”. In: Proceedings of

the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Inno-

vative Applications of Artificial Intelligence Conference and Eighth AAAI Sympo-

sium on Educational Advances in Artificial Intelligence. AAAI’18/IAAI’18/EAAI’18.

New Orleans, Louisiana, USA: AAAI Press, 2018. isbn: 978-1-57735-800-8.

[26] Farhood Negin et al. “A hybrid framework for online recognition of activ-

ities of daily living in real-world settings”. In: 2016 13th IEEE International

Conference on Advanced Video and Signal Based Surveillance (AVSS). 2016,

pp. 37–43. doi: 10.1109/AVSS.2016.7738021.

[27] Xiang Wang et al. “OadTR: Online Action Detection with Transformers”.

In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021,

pp. 7545–7555. doi: 10.1109/ICCV48922.2021.00747.

[28] Lina Tong et al. “A Novel Deep Learning Bi-GRU-I Model for Real-Time

Human Activity Recognition Using Inertial Sensors”. In: IEEE Sensors

Journal 22.6 (2022), pp. 6164–6174. doi: 10.1109/JSEN.2022.3148431.

[29] Guoliang Liu et al. “Online human action recognition with spatial and

temporal skeleton features using a distributed camera network”. In: In-

ternational Journal of Intelligent Systems 36.12 (2021), pp. 7389–7411. doi:

https://doi.org/10.1002/int.22591. eprint:https://onlinelibrary.

wiley.com/doi/pdf/10.1002/int.22591. url:https://onlinelibrary.

wiley.com/doi/abs/10.1002/int.22591.

[30] Marta Lorenzini et al. “Ergonomic human-robot collaboration in industry:

A review”. In: Frontiers in Robotics and AI 9 (2023). issn: 2296-9144. doi:

10.3389/frobt.2022.813907. url: https://www.frontiersin.org/

journals/robotics-and-ai/articles/10.3389/frobt.2022.813907.

70

https://doi.org/10.1109/TPAMI.2019.2916873
https://doi.org/10.1109/TPAMI.2019.2916873
https://doi.org/10.1109/AVSS.2016.7738021
https://doi.org/10.1109/ICCV48922.2021.00747
https://doi.org/10.1109/JSEN.2022.3148431
https://doi.org/https://doi.org/10.1002/int.22591
https://onlinelibrary.wiley.com/doi/pdf/10.1002/int.22591
https://onlinelibrary.wiley.com/doi/pdf/10.1002/int.22591
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22591
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22591
https://doi.org/10.3389/frobt.2022.813907
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2022.813907
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2022.813907

REFERENCES

[31] Filip Rybnikár et al. “Ergonomics Evaluation Using Motion Capture Tech-

nologyLiterature Review”. In: Applied Sciences 13.1 (2023). issn: 2076-3417.

doi: 10.3390/app13010162. url: https://www.mdpi.com/2076-3417/

13/1/162.

[32] Leandro Donisi et al. “Wearable Sensors and Artificial Intelligence for

Physical Ergonomics: A Systematic Review of Literature”. In: Diagnostics

12.12 (2022). issn: 2075-4418. doi: 10.3390/diagnostics12123048. url:

https://www.mdpi.com/2075-4418/12/12/3048.

[33] B. Britzke K. Schaub G. Caragnano and R. Bruder. “The European As-

sembly Worksheet”. In: Theoretical Issues in Ergonomics Science 14.6 (2013),

pp. 616–639. doi: 10.1080/1463922X.2012.678283. eprint: https://doi.

org/10.1080/1463922X.2012.678283. url: https://doi.org/10.1080/

1463922X.2012.678283.

[34] Lynn McAtamney and Nigel Corlett. “Rapid upper limb assessment (RULA)”.

In: Handbook of human factors and ergonomics methods. CRC Press, 2004,

pp. 86–96.

[35] Marta Lorenzini, Wansoo Kim, and Arash Ajoudani. “An Online Multi-

Index Approach to Human Ergonomics Assessment in the Workplace”.

In: IEEE Transactions on Human-Machine Systems PP (Jan. 2022), pp. 1–12.

doi: 10.1109/THMS.2021.3133807.

[36] Adrien Malaisé et al. “Activity Recognition for Ergonomics Assessment

of Industrial Tasks With Automatic Feature Selection”. In: IEEE Robotics

and Automation Letters 4.2 (2019), pp. 1132–1139. doi: 10.1109/LRA.2019.

2894389.

[37] Monique Paulich et al. “Xsens MTw Awinda: Miniature Wireless Inertial-

Magnetic Motion Tracker for Highly Accurate 3D Kinematic Applica-

tions”. In: (May 2018). doi: 10.13140/RG.2.2.23576.49929.

[38] Seunggeun Chi et al. InfoGCN++: Learning Representation by Predicting

the Future for Online Human Skeleton-based Action Recognition. 2023. arXiv:

2310.10547 [cs.CV]. url: https://arxiv.org/abs/2310.10547.

[39] Hyung-Gun Chi et al. “InfoGCN: Representation Learning for Human

Skeleton-based Action Recognition”. In: 2022 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR). 2022, pp. 20154–20164. doi:

10.1109/CVPR52688.2022.01955.

71

https://doi.org/10.3390/app13010162
https://www.mdpi.com/2076-3417/13/1/162
https://www.mdpi.com/2076-3417/13/1/162
https://doi.org/10.3390/diagnostics12123048
https://www.mdpi.com/2075-4418/12/12/3048
https://doi.org/10.1080/1463922X.2012.678283
https://doi.org/10.1080/1463922X.2012.678283
https://doi.org/10.1080/1463922X.2012.678283
https://doi.org/10.1080/1463922X.2012.678283
https://doi.org/10.1080/1463922X.2012.678283
https://doi.org/10.1109/THMS.2021.3133807
https://doi.org/10.1109/LRA.2019.2894389
https://doi.org/10.1109/LRA.2019.2894389
https://doi.org/10.13140/RG.2.2.23576.49929
https://arxiv.org/abs/2310.10547
https://arxiv.org/abs/2310.10547
https://doi.org/10.1109/CVPR52688.2022.01955

REFERENCES

[40] Pengfei Zhang et al. “Semantics-Guided Neural Networks for Efficient

Skeleton-Based Human Action Recognition”. In: June 2020, pp. 1109–1118.

doi: 10.1109/CVPR42600.2020.00119.

[41] Chao Li et al. “Co-occurrence Feature Learning from Skeleton Data for

Action Recognition and Detection with Hierarchical Aggregation”. In:

July 2018, pp. 786–792. doi: 10.24963/ijcai.2018/109.

[42] Kun Su, Xiulong Liu, and Eli Shlizerman. “PREDICT & CLUSTER: Unsu-

pervised Skeleton Based Action Recognition”. In: 2019. arXiv: 1911.12409

[cs.CV]. url: https://arxiv.org/abs/1911.12409.

[43] Jiang Wang et al. “Cross-View Action Modeling, Learning, and Recogni-

tion”. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition.

2014, pp. 2649–2656. doi: 10.1109/CVPR.2014.339.

[44] Oresti Banos et al. “Window Size Impact in Human Activity Recogni-

tion”. In: Sensors 14.4 (2014), pp. 6474–6499. issn: 1424-8220. doi: 10.3390/

s140406474. url: https://www.mdpi.com/1424-8220/14/4/6474.

72

https://doi.org/10.1109/CVPR42600.2020.00119
https://doi.org/10.24963/ijcai.2018/109
https://arxiv.org/abs/1911.12409
https://arxiv.org/abs/1911.12409
https://arxiv.org/abs/1911.12409
https://doi.org/10.1109/CVPR.2014.339
https://doi.org/10.3390/s140406474
https://doi.org/10.3390/s140406474
https://www.mdpi.com/1424-8220/14/4/6474

