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A B S T R A C T

In this work, recent and classical results on causality detection and predicabil-
ity of a complex system have been reviewed critically. In the �rst part, I have
extensively studied the Convergent Cross Mapping method [1] and I tested it
in cases of particular interest. I have also confronted this approach with the
classical Granger framework for causality [2]. A study with a simulated Lotka-
Volterra model has shown certain limits of this method, and I have obtained
counterintuitive results.

In the second part of the work, I have made a description of the Analog
method [3] to perform prediction on complex systems. I have also studied the
theorem on which this approach is rooted, the Takens’ theorem. Moreover, we
have investigated the main limitation of this approach, known as the curse of di-
mensionality: when the system increases in dimensionality the number of data
needed to obtain su�ciently accurate predictions scales exponentially with di-
mension. Additionally, �nding the e�ective dimension of a complex system is
still an open problem. I have presented methods to estimate the e�ective di-
mension of the attractor of dynamical systems known as Grassberger-Procaccia
algorithm and his extensions [4]. Finally, I have tested all these data driven ma-
chineries to a well-studied dynamical system, i.e. the Lorenz system, �nding
that the theoretical results are con�rmed and the data needed scales asN ∼ εd.
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I N T R O D U C T I O N

The aim of this work is to study how to infer information on a complex dy-
namical system only from data and without explicitly knowing the underlying
dynamics nor the relevant parameters of the systems.

When trying to predict the future of a system, one has to choose one of two
main approach to the problem: the �rst is to understand the laws that govern
the evolution of the system (if any) thus creating theoretical models that can
explain and reproduce the observed system behaviour - described by data - and
can also make predictions on its evolution, known as generative models [5, 6].
The alternative approach is more inductive and it attempts to predict the sys-
tem evolution by inferring statistical models directly from the data, in this case
called discriminative models [5, 6]. In this second approach one does not care of
causes, but it only exploits statistical correlations to make predictions.

The scienti�c method used extensively in physics, from Galileo onward, has
always been built upon the �rst kind of strategy. Observations, experiments and
mathematical theoretical frameworks are used to to understand the fundamen-
tal and universal laws that govern the inanimate matter world. They are thus
translated in models with parameters, and data are used to estimate them and
to make new predictions. Finally experiments are done to falsify these models,
closing the never closed loop of a scienti�c discovery. This has been, for exam-
ple, the case of the Standard Model, with the recent discover of Higgs Boson
[7]: the Standard Model have been developed in the second half of ’900, and
Higgs has published his paper in 1964 [8], a whole 50 years before the actual
experimental con�rm of the particle (made in 2012 at LHC [9, 10]).

In fact, physicists have always been skeptical about the second - data based
- inductive approach. Indeed, Physics emerged from the awareness that mathe-
matics could be used as a language to reason about and describe natural world
[11]. The goal of physics has been to isolate the causation phenomena described
by mathematical models that are able to generate synthetic data prior to any ob-
servations. In general, physicists do not think of these models being generative
because what else could they be? But it is a choice nonetheless. Surely, the de-
velopment of theoretical physics has been allowed by the possibility to access
to the most outstanding experiments in science that thanks to the relentless
e�orts of experimental physicists have reached a precision incomparable with
other branches of science. In fact, when physicists confront problems in biol-
ogy, economics and social sciences, the available data are of a poor quality and
with a very complex structure. And in most of these cases we are very far from
identifying �rst principle laws that govern the dynamics of these systems.

Conversely, many successful applications of arti�cial intelligence use models
essentially as black boxes: they map a set of known inputs and outputs (training
data) by determining a set of parameters that give good performance when

1



2 introduction

generalized to pairs of input and output (test data) not used in the training.
In recent years, therefore, the always increasing amount of data available to
scientist is leading some very deep question about the approach that should be
used when studying complex systems.

It is of great interest, then, the possibility of infer at least some properties of
the system without the needs to create the full model and �t it to data, or at
least to understand when this task is at least applicable. A very important and
widespread example of this approach are neural networks: by using a set of
techniques that are best thought of as a supervised learning approach, treating
the experimental/observational data as a direct input, which is then used to
iteratively improve the prediction power of the statistical model.

outline of the work

The approach I will present in this work is a compromise between the ability
to predict and the desire to gain some insight about the structure and the pro-
cesses driving the system dynamics. For example, one would like to understand
if there are variables more "important" than others, or if some of them have a
fundamental role in predicting others. In this thesis, I will thus focus on two
distinct problems: the detection of causal relationship and the determination
of e�ective variables’ number (i.e. the dimensionality of the system), giving us
crucial information for the understanding of the analyzed system.

Accordingly the thesis is divided in two main parts. The �rst one is about
the concept of causality: what it is and methods to measure and detect it. Here
(Chapter 1) I have �rstly made a survey of the methods known up to now, focus-
ing in one of the newer and more promising one, which is Convergent Cross-
Mapping (CCM). Then (in Chapter 2) I have studied a toy Lotka-Volterra (LV)-like
model exploring what happens to the causality predicted by CCM method vari-
ating some of its parameters.

The second part, instead, focus on methods to estimate the number of e�ec-
tive variables, in order to give an hint about predictability. I devote a chapter
(Chapter 3 on page 29) for a theoretical review of the tools used to estimate the
dimensionality of a system (through an approach introduced by Grassberger
and Procaccia [4]) and to make prediction by means of the historical record of
the system (the so called Analog method [3]), and another one (Chapter 4 on
page 43) where I apply this approach on a complex system.



1
G E N E R A L D E F I N I T I O N O F
C A U S A L I T Y , G R A N G E R C A U S A L I T Y
A N D C O N V E R G E N T
C R O S S - M A P P I N G M E T H O D

In this chapter I will �rst introduce the concept of causality in some of its many
variants, then focusing on the description of CCM [1] method and its generaliza-
tions [12].

the concept of causality

While causality is a concept that is widespread in common language, it did not
had a consistent formal de�nition for time series until half of the ’900, and even
now there are many variant of the same concept.

The problem is that, while we have a grasp of what we mean by saying that a
certain phenomena cause another, putting these words in a more formal mathe-
matical language is not an easy tasks. When dealing with events that occurs in
time, probably the �rst relevant problem is to understand how one time series
can be related to the others. This problem was partially solved by Galton and
Pearson with the introduction of correlation [13].

Even if correlation is a good way to measure similarity between two time se-
ries, to imply causation from correlation is a logical fallacia, as was clear even to
Pearson itself (see [14] for a detailed discussion of this problem from the point
of view of Pearson and his student Yule). This problem was �nally overcame
by Granger in 1969 [2], with a big perspective shift: the causal relation must
come from the ability to use informations encoded in one series to make state-
ments about the other. In this sense, Granger idea was the �rst step toward an
information theory framework, even though the tools used in his de�nition are
purely statistical.

A possible and intuitive de�nition for a phenomenon to cause another one
is that the former (cause) should pass some kind of information to the latter
(e�ect), thus creating a directed interaction between the two. Another way of
thinking this concept is that from the (cause) we should be able to predict in
some way the (e�ect). Finally, changing perspective, one can think that the e�ect
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4 causality and convergent cross-mapping

should help the prediction, given that it must in some way encode informations
about the cause. These three naively presented approach to causality are the
most used ones, de�ning the three main categories of techniques currently used
to make causal inference: Transfer Entropy, Granger Causality and Convergent
Cross Mapping.

granger causality and transfer entropy

I will begin this survey with Granger Causality (GC), introduced in 1969 [2] and
based upon Wiener’s work [15] about predictability. Informally, given X and Y
two stationary stochastic variables, Y is said to Granger cause X if the ability to
predict X is improved by incorporating information about Y.

Rephrased, given two time series, under the GC framework, one is considered
the cause and one the e�ect if informations encoded in the former are helpful in
order to predict the latter. This is consistent with our experience, but we want
to formalize this concept.

In order to give a formal de�nition we have to �rst introduce some notation.
Let denote Xt as a stationary stochastic process and Xt the set of past values of
Xt, which is to say the set {Xt−j} with j ∈ {1, 2, . . . ,∞}. We de�ne also Ut to
be all the information in universe accumulated until time t andUt− Yt all this
information apart from a speci�ed series Yt. Moreover, denoted the prediction
ofAt using the setBtwith Pt(A|B), we de�neσ2(A|B) to be the variance of the
series of predictive error εt(A|B) = At − Pt(A|B), σ2(A|B) = 〈εt(A|B)2〉−
〈εt(A|B)〉2.

Then we can write the following de�nition:

1.1 Definition (Granger Causality). LetXt and Yt be two stationary stochas-Granger de�nition of causality
tic processes. If and only if σ2(X|U) < σ2(X|U− Y), then we say that Yt
Granger cause Xt (which we will indicate as Yt

Grg−→ Xt).

This de�nition means that we improve our ability of predicting X (measured
by the variance of the series of predictive errors σ2) using all the information
in the universe with respect to the prediction obtained excluding information
about Y.

This very same de�nition can be extended naturally to the concept of feed-
back, which means that Xt

Grg−→ Yt and at the same time Yt
Grg−→ Xt:

1.2 Definition (Granger feedback). We say that feedbak between Xt and YtGranger de�nition of feedback

is occurring (Xt
Grg←→ Yt) if:

• σ2(X|U) < σ2(X|U− Y) and
• σ2(Y|U) < σ2(Y|U−X).

The last concept that is interesting for our scope is the causality lag, which
represent the time that occurs for a series Y to cause X. Technically, it is de�ned
as:



1.1 granger causality and transfer entropy 5

1.3 Definition (Granger Causality lag). If Yt
Grg−→ Xt, we de�ne the causal- Granger de�nition of causality

lagity lag m to be the least value k such that σ2(X|U− Y(k)) < σ2(X|U− Y(k+

1)), which means that knowing the values Yt−j for j = 0, 1, . . . ,m− 1 does
not improve our ability to predict Xt.

This de�nitions are probably the most used for causality in a wide variety
of �elds from economy and �nance to demography, social science and biomed-
ical applications (for some interesting, even if far from the scope of this work,
examples see [16–18]).

transfer entropy

Transfer Entropy (TE) is an information theoretic measure that quantify the
overlap of information content of two systems and, more importantly, the dy-
namics of information transport, thus exploiting eventual relation of causality.
It has been introduced by Schreiber [19] in 2000 and ever since has been used in
a wide range of applications (see [20] for an example of application of transfer
entropy to the study of Ising model).

The de�nition starts from Shannon entropy, which de�nes the quantity of
information (bits) needed to optimally encode independent draws of a discrete
random variable I, which follow a probability distribution function p(I) (the
possible states available to I are i ∈ I):

HI = −
∑
i∈I

p(i) logp(i), (1.1)

where the base of the logarithm determines the units used for bits (for example
2 in the usual bit). From this de�nition, we understand that we can optimally
encode a signal if we know the correct probability distribution p(i). If we use
instead q(i), we will use a wrong number of bit quanti�ed by Kullback entropy:

KI =
∑
i

p(i) log
p(i)

q(i)
.

In other words the Kullback entropy gives us a measure of our misunderstand-
ing of the variable that we want to study: we think that its probability distribu-
tion is q(i), and we thus need HI|q bits to encode the possible states. In reality,
though, the probability distribution is p(I), and the Kullback entropy measures
exactly the di�erence in entropy between the correct probability distribution
and our wrong guessed one.

The de�nition of Mutual Information follows from this one, and represents
the number of bit that we wrongly use when thinking that two phenomena are
independent while they are correlated instead:

MIJ =
∑
ij

p(i, j) log
p(i, j)
p(i)p(j)

. (1.2)

This quantity does not take into account the dynamics of information, simply
telling that the two systems are related, and is obviously symmetric for the
exchange of I and J.



6 causality and convergent cross-mapping

In order to consider dynamics of informations, which means some sort of
directed �ow, we should generalize a similar concept to the study of entropy’s
rates. This extension can be made by observing deviation from the generalized
Markov property of the process1: in absence of information �ow (and thus of
causal relation) from J to I the state of J has no in�uence on transition prob-
abilities of I. The di�erence in entropy between the model in which the two
processes are unrelated and the one in which they indeed are can be, again,
measured with a Kullback-like entropy, which we call Transfer Entropy:

TJ→I =
∑
ij

p
(
in+1|i

(k)
n , j(l)n

)
log

p
(
in+1|i

(k)
n , j(l)n

)
p
(
in+1 | i

(k)
n

) , (1.3)

i.e. given our null model that there is no causal relation between the two vari-
ables, the TE tell us how much we are wrong, in the sense that it quantify the
quantity of extra information that we have to employ in order to describe the
two variables as unrelated, without considering that a dipendence exist instead.

We highlight that this concept can be extended to continuous state systems
with almost no e�ort by taking a limit of a coarse graining procedure, as ex-
plained in [19].

The practical de�nition of causality is thus:

1.4 Definition (TE causality). Let Xt and Yt two stochastic processes and letTransfer Entropy de�nition of
causality TX→Y and TY→X be the TE between the two as expressed from equation (1.3).

Then we say that Xt cause Yt if the information �ow has a net value in the
direction X→ Y, which means that TX→Y > TY→X.

In 2009, Barnett et Al. [21] proved that, for Gaussian variables, TE and GC
are completely equivalent, thus unifying the two �elds in this sense and giv-
ing a solid information theoretical ground to GC, con�rming our intuition that
Granger framework was a �rst step into moving from a simple statistical corre-
lation to a more information theoretical de�nition of causality.

why do we need to overcome granger framework?

GC framework is based upon linear regression, and thus is not suited to takle
nonlinear dynamical problems.

In fact, even if it is often overlooked in many applications, the GC framework
heavily employs separability of variables: information content of one time se-
ries needs to be separated from the universe information set in order to deter-
mine if that variable is (or is not) causative in the model. While this request
might looks trivial, and indeed it is in most applications, the nonlinear coupled
dynamical systems are an important exception.

1 We say that a pair of processes obey a generalized Markov property if:

P
(
in+1|i

(k)
n

)
= P

(
in+1|i

(k)
n , j(l)n

)
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In order to understand this subtle implication, we should �rst understand
exactly what is meant by separability by looking to an example in which this is
indeed the case: a pair of coupled stationary Markov processes2. In this context,
coupling means that transition probabilities for the process (Xt) which is caused
depends on the state of the process (Yt) which is the cause (thanks to the Markov
property we can avoid to write all the precedings states):

P(Xti → Xti+1) = P(Xti+1 | Xti , Yti)

It is then clear that ignoring informations about Yt removes all the infor-
mation about causality: depending on the exact functional form of P(Xti+1 |

Xti , Yti) the loss can be small or quite relevant, and this gives us (by means of
GC or TE approaches) a quanti�cation of the causality relation.

In a linear dynamical system, the idea is almost the same: state Xt depends
only on the state Xt−1 and, if there is a coupling with another variable, on
the state Yt−1. Thus, removing Yt from our information set modify our ability
of predicting Xt, and GC or TE frameworks assure us that we can employ this
di�erence to detect the causality relation.

As we will understand better and in a formal way (by means of the powerful
Takens’ theorem) in the following section, let just analyze a simple case that
can help in the visualization of the issue that appears in the case of nonlinear
coupled dynamical systems. Consider, for example, this coupled logistic system:

X(t+ 1) = Ax X(t) [1−X(t) −βx Y(t)]
Y(t+ 1) = Ay Y(t) [1− Y(t) −βy X(t)] .

(1.4)

In this system, we can rearrange the equations to use the values of Y(t) and
Y(t+ 1) to express X(t) and vice versa, which means that we exploit the infor-
mation about one time series to estimate the other one. This gives:

βx Y(t) = 1−X(t) −
X(t+ 1)

Ax X(t)

βy X(t) = 1− Y(t) −
Y(t+ 1)

Ay Y(t)
.

(1.5)

In these equations, though, Xt depends on Yt and its future state, but if we
reinsert them back into equation (1.4), we obtain:X(t) =

Ax
βy

[
(1−βxYt−1)g(Y) −

1
βy
g(Y)2

]
Y(t) =

Ay
βx

[
(1−βyXt−1)g(X) −

1
βx
g(X)2

]
,

(1.6)

2 A stationary stochastic Markov process is de�ned as a sequence of events Xti , where ti are or-
dered increasingly, for which the transition between a state and another (which is, the evolution
from Xti and Xti+1

) is probabilistic (stochastic process), depends only on the last state (Markov
property) and the process itself has a constant temporal average (stationarity). See [22] for an
introduction to stochastic processes.
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where

g(i) =

(
1− it−1 −

it

Aiit−1

)
.

These equations can be written as:X(t) = F(Yt, Yt−1)

Y(t) = G(Xt,Xt−1),
(1.7)

which means that we can reinsert them inside equation (1.4) in order to obtain
a decoupled system:X(t+ 1) = Ax X(t) [1−X(t) −βx G(Xt,Xt−1)]

Y(t+ 1) = Ay Y(t) [1− Y(t) −βy F(Yt, Yt−1)] .
(1.8)

This apparently simple rearrangement of variables yields a profound conse-
quence on GC framework: in fact, if we look at the causality relation between
X and Y (represented in this case by the coe�cient βy), we see that GC can-
not be applied anymore: we have e�ectively removed X from the dynamic of
Y in the second of the two equations, but we have not lost any ability in pre-
dicting Y. The two systems leads to the same solutions, and then (if using GC
or TE de�nitions) we would have incorrectly assumed that the two series are
independent.

As a simple real world example, consider the obvious causal relation between
weather and the number of umbrella used in a given day. If we record the num-
ber of umbrellas used for quite a long period of time, we might use this kind
of historical information to predict the number of umbrellas in the following
day. The key point is that, the number of umbrella already contains informa-
tion about the weather, and so considering explicitly also this time series does
not improve our ability of prediction, and then GC would exclude this causality
relation (incorrectly).

This reasoning, as we will see in the following section, will be generalized
to almost all nonlinear dynamical system, with the exception of strongly cou-
pled ones, in which the relative in�uence is so strong that the two series are
e�ectively only one.

convergent cross-mapping

Given what we have just seen, an approach to study the causal relations for
nonlinear dynamical time series is needed. One method has been proposed by
Sugihara in 2012 [1] and involves a change of the point of view: in this ap-
proach, Xt

CCM−→ Yt if is Yt that help us in predicting Xt, instead of the opposite
perspective, typical of GC framework.

Rephrased, the CCM approach test for causality between X and Y by measur-
ing the extent to which the historical record of Y values can reliably estimate
states of X (and vice versa).
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In order to understand why this can happen, we will need to introduce Tak-
ens’ theorem, the main result of this chapter.

takens’ theorem and convergent cross-mapping

From a theoretical point of view, two time series are causally linked if they are
generated from the coupled dynamical equations describing the evolution of
the system under analysis.

For many dynamical system, there exist a subset of the phase space (called
attractor) that is the smallest that has the following properties:

• is forward invariant: if a point is inside the attractor, it will forever be
inside;

• there exist a neighbor of this set (called basin of attraction) and the point
of this neighbors will eventually fall inside the attractor in the future.

For almost all physical problems, the time series observed in nature that are
generated from the same dynamical system (of dimension d) shares a common
attractor, which means that they are di�erent component of a d dimensional
vector that evolves inside the attractor set. If the dynamical system is di�eren-
tiable, then the attractor has a di�erential manifold structure and, moreover, it
is a topological manifold if it is embedded in Rd with the euclidean topology. In
�gure 1.1 is represented an example of attractor, referred to the famous Lorenz
system [23] de�ned in (1.12). It is clear that all the trajectory that leaves a point
inside the classical butter�y shape stays inside the same set, revolving around
the double center forever.

Takens’ reconstruction theorem [24], of which a proof is given in Appendix A
on page 49, gives us a powerful instrument to examine such attractors:

1.5 Theorem (Takens’ theorem for dynamical systems).
LetM be the compact manifold represented by the attractor of the system (with Takens’ theorem for dynamical

systemsdimension d). Let (Φτ,X) be:

• Φτ : M → M a smooth (at least C2) di�eomorphism: the �ux of the dy-
namics system after a time delay τ (we remember that Φ2τ = Φ2τ),

• X : M→ R a smooth (at least C2) function, the projection of the attractor
over one of the variable of the system (which is to say, the time series of this
variable).

Then, it is a generic property that the (2d+ 1)-fold observation map (p is a point
inM):

H[Φ,X] : M → R2d+1

p 7→ (X(t),X(t− τ), . . . ,X(t− 2dτ))

is an embedding ( i. e. H is a bijection betweenM and its imageMX after H, and
bothH andH−1 are continuous). By generic we mean that the set of pairs (Φ,X)
for which this property is true is open and dense in the set of all pair (ϕ,h) with
ϕ : M→M a C2 di�eomorphism and h : M→ R a C2 function.
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Figure 1.1: Schematic representation of the shadow manifolds obtained thanks to Takens’ recon-
struction theorem.

What this theorem tells us is that, under certain mild hypotesis, we can �nd
an exact (from a topological point of view) copy of the behaviour of the system
using only one of the variables and his past history. This explains why in the
previous section we could manage to rearrange the coupled logistic system to
express each variable only in term of itself and his past value.

Moreover, this allows us to make prediction: if we can reconstruct the dy-
namic thanks to one variable, and our reconstruction is topologically equiva-
lent, we can use the reconstructed attractor to predict the value of the other
variable.

Given a point p ∈ M of the attractor, we choose the variable X to obtain
its projection in one coordinate and then, by means of Takens’ theorem, we
create the di�eomorphic copy of the attractorMx, in which lives the copy px ∈
Mx of the original point p. Takens’ theorem assure us that the topologies over
the two manifolds are homeomorphic, and thus the neighbors Up and Upx are
di�erentially the same, which means that to each point q ∈ Up corresponds
one to one a point qi ∈ Upx .

convergent cross-mapping

We can then create a constructive method to obtain an estimate of one projec-
tion from another one.

Let’s call the two series we are interested in X(t) and Y(t), the attractor man-
ifold M of dimension d, E = 2d+ 1 the reconstruction dimension and τ the
time lag we are interested in (this will usually correspond to the lag between
two points in the time series, or a fraction of the period of the solution. More
about this choice will be told in Chapter 3).

1.6 Algorithm (Convergent Cross-Mapping).Algorithm for Convergent
Cross-Mapping

• Choose a projection direction X.
• Create the shadow manifold Mx by de�ning (for each t > E − 1) the

points X(t) = (X(t),X(t− τ), . . . ,X(t− τ(E− 1))).
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• For each point Y(t̃), choose the corresponding X(t̃) and look for its E+ 1
nearest neighborhood.

• Calling tk the time index of thekth-nearest neighborhood, calculate some
weights wk based on the distances between X(tk) and X(t̃).

• Finally calculate Ŷ(t̃) as a weighted sum

Ŷ(t̃) =
∑

k6E+1

wkY(tk).

As one can see, this algorithm provide an estimated time series Ŷ(t̃) (exclud-
ing the �rst E− 1 points for which we cannot create the shadow projection)
that can be evaluated against the real Y(t̃), for example by calculating Pearson
Correlation Coe�cient (PCC) Pcc(Ŷ, Y)3. We will call the correlation between
Ŷ given X and Y as Pcc(X, Y), and usually we will use the parameter C(X, Y)
de�ned as:

C(X, Y) = [Pcc(X, Y)]2 (1.9)

In order to calculate weights wk one should �nd a function that makes the
nearest points more important: we want to give more importance to the nearest
point, because they have a closer history. The function used by Sugihara is

wk =
1

W
max

(
exp

[
−
‖Xk−Xt‖
dmin

]
,wmin

)
(1.10)

with W =
∑
kwk, Xk the kth-nearest neighborhood, dmin = ‖Xt̃ − X0‖ the

distance between xt̃ and its nearest neighborhood andwmin = 10−6 a security
threshold for computational issues. If dmin = 0, it means that the nearest point
is actually superimposed to Xt̃, and then the sum is reduced to just that point
(assigning all other weights to 0)

properties of convergent cross-mapping

CCM has many important property that can help us with our task of identifying
causality. The �rst is the one that gives part of the name to the method:

Property 1.7 (Convergence): Calling L the lenght of the time series used to Cross-Map, Property of convergence of
Cross-Mappingif the hypothesis of Takens’ theorem are satis�ed, Pcc[L] is a function that converge to 1

as L approaches in�nite, formally:

lim
L→∞ Pcc[L] = 1

3 PCC is de�ned for a population as

Pcc(X, Y) =
Cov(X, Y)
σXσY

.

For a sample xi and yi of size n this expression be rewritten in a more computationally conve-
nient way as:

Pcc(X, Y) =
n
∑
i xiyi −

∑
i xi

∑
i yi√

n
∑
i x
2
i − (

∑
i xi)

2
√
n
∑
i y
2
i − (

∑
i yi)

2
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Figure 1.2: The prediction ability for the cross-mapping between two time series in a prey-
predator system, versus the length of the time series used to create the shadow man-
ifold and make prediction. For each length an estimated series has been calculated,
and the PCC with the corresponding true series has been calculated. The solid line
represent the �t from Equation 1.11. The data comes from [25] and are freely avail-
able at https://robjhyndman.com/tsdldata/data/veilleux.dat.

This property, exempli�ed in Figure 1.2, ensure us that, given a su�cient
observation time, each series will predict the others in the same attractor with
perfect ability.

In order to test the quality of a prediction, then, one can explore how fast the
estimated series converge to the measured one, for example by evaluating a �t
of the data with an exponential law:

Pcc(L) = ρ0 −αe−γL (1.11)

where ρ0 should be as near to 1 as possible while γ is the speed of convergence.
The fact that ρ0 is not always 1 is not unexpected nor a problem: the pres-

ence of noise (both due to the model and the measurement) hinder slightly this
method, because as seen from Theorem 1.5 on page 9 we need the time �ux of
the dynamics system to be C2, which cannot be said for a Stochastic Di�eren-
tial Equation (SDE) in general4. Anyway, if the noise is su�ciently small, this
approach works in the same way, but the prediction will not converge exactly
to the measured one.

Moreover, as I will discuss in Section 1.3 on page 15 and show in Chapter 2
on page 17, the injection of a small quantity of noise will help the detection of
causality relations.

Another important property which deserves to be mentioned is another di-
rect consequence of the Taken’s theorem:

Property 1.8 (Choice of projection): The quality of the prediction depends on theProperty of the choice of
projection projection chosen. Moreover, in certain cases, exists projections that cannot predict other

variables.

4 For some particular class of SDE an extension of Takens’ theorem has even been proven, see [26]

https://robjhyndman.com/tsdldata/data/veilleux.dat
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This property comes naturally when we think about the structure of the
shadow manifold described in Theorem 1.5: we just need that the function
X : M → R to be "bad" in some sense, and the entire projection will be hin-
dered. For example, if the function maps two point that in the attractor are far
away very close to each other (as is the case with the Z axis in �gure 1.3 on the
next page) the only way to distinguish them will be with their past history, and
the prediction will be worse. In the worst case, the projection will make two or
more entire portions of the attractor indistinguishable, becoming completely
useless for predictions.

An example of this behaviour is shown in Figure 1.3, where the Lorenz at-
tractor [23] is depicted, as obtained from the three dimensional system:

Ẋt = σ (Yt −Xt)

Ẏt = Xt (ρ−Zt) − Yt

Żt = XtYt −βZt.

(1.12)

with σ = 10, β = 8/3 and ρ = 28.
In this case, projecting overZ-axes does not allow a good reconstruction, due

to the fact that the projection itself does not represent correctly the attractor.

convergent cross-mapping as a method to detect causality

The key concept from Sugihara [1] is that, given two time series from the same
attractor, one can say that there is a causal relation (in Sugihara sense, or CCM
sense) if at least one of them can predict the other. If both of them give good
prediction, causality �ow from the one that is predicted better to the other, but
in this case it is better to talk about a feedback relation, in which both variable
in�uence each other.

We de�ne a parameter ∆(X, Y) in order to have a clearer de�nition of causal-
ity: given two time seriesXt and Yt and their Cross-Mapped correlation squared
(as de�ned in equation (1.9)) C(X, Y) and C(Y,X), we de�ne

∆(X, Y) = C(Y,X) −C(X, Y).

This allow us to make the following statement:

1.9 Definition (CCM causality). Given two time series Xt and Yt from the CCM causality de�nition
(Sugihara causality)same attractor, we say that:

X
CCM−→ Y i� ∆(X, Y) > 0,

or, in words, X CCM cause Y if the ability of Y of predicting X is better than the
ability of X of predicting Y (and so C(Y,X) is bigger than C(X, Y)).

This de�nition give us an operative method to inquire causality: by creating
shadow manifold from all the variables and estimating the other series, we can
obtain a picture of causality relations in the system.

The peculiarity of this method is that it works in a di�erent setting with
respect to Granger framework, expanding the range of problems that can be
tackled, and as such has been used in a wide range of �elds [27, 28].
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Figure 1.3: The Lorenz attractor (equations (1.12)) and the correlation evaluated with increasing
time series length. From �gure 1.3b appears that variable Z is not a good predictor
(its skill is way smaller than that of the others). The reason of this problem is bounded
to the shape of the attractor (�gure 1.3a) and the choice of projection. As appears
clearly from the three projections (�gure 1.3c), the Z axes cannot distinguish from
the two centers around which the dynamics evolves. This means that, when seen
from Z’s perspective, it is exactly the same being in the �rst or in the second center,
and so its predictions are inevitably unreliable.
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problem of convergent cross-mapping and ex-
tensions

Unfortunately, though, also this method presents some problems that can hin-
der severely its applicability and that have been highlighted by McCracken et
Al. in 2014 [12].

Mainly, the problem is that this method appears not to work in some range
of parameters or for some particular systems, for which Taken’s hypotesis does
not apply. More precisely, McCracken discusses two cases in particular: the �rst
di�culties appears when the system is strongly coupled. In this case, the strong
coupling allows for both projections to be equally good at predicting the time
series evolution and the method fails in detecting causality. In some cases, the
presence of a strong coupling is evident from the data (for example if more
than one variable has the same, strong periodicity, probably one of them is
coupled strongly to the others and drives them) or is known from previous
measurements or models. In those cases, probably Granger causality is a better
test.

In the second case the method does not work depending on the shape of the
attractor, and this is in generally di�cult to say even a posteriori! In this case
CCM may provide an unreliable result, but we do not have even a way to know
if we are actually in this situation or not. In other word there is not a systematic
way to know if CCM is working or not. This problem has been addressed in [12],
where some systems are investigated within a certain range of parameters and
CCM appears to change its prediction.

This issue is closely related to the attractor manifold and the chosen projec-
tion, and it is due to property 1.8 on page 12. In fact, if the attractor is shaped
in such a way that one of the natural projection is not well suited for recon-
struction (because it does not respect the hypotesis of Takens’ theorem), then
creating a reconstructed version of the attractor made with it will not be home-
omorphic to the target one. This means that our prediction will become unreli-
able, but if we are not aware that the problem is in the hypotesis of the theorem,
we might think that this is a genuine e�ect of causality. For example, if we cal-
culate ∆(X,Z) or ∆(Y,Z) for Lorenz attractor (see Figure 1.3 on the preceding
page) we �nd immediately that Z is strongly driven from both X and Y, which
is de�nitely not true. Obviously, in this example one could see this e�ect just
by watching the trajectories, but other systems can be much more subtle.

A possible simple solution to this problem could be to change the projection
function, but of course this undermines the scope of the work, which is to un-
derstand the relation between variables and not between function of variables.

pairwise asymmetric inference

In order to solve this problem, in [12] a variant to CCM method, called Pairwise
Asymmetric Inference (PAI), has been proposed.
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Consider a 2d+ 2 dimensional manifold created as the image of:

Ĥ[Φ,X, Y] : M → R2d+1

p 7→ (X(t),X(t− τ), . . . ,X(t− 2dτ), Y(t))

EstimatingXwith this shadow manifold is like measuring the extent to which
a single time step of Y improves the ability to estimate X, similar to what
Granger de�nes as causality.

Then, after callingC(X,XY) the correlation squared between this estimation
and the original time series X, one can de�ne:

∆̂(X, Y) = C(X,XY) −C(Y, YX),

and then, as done before, link this parameter to the causality direction: if ∆̂ > 0
then the addition of a single time step of Y improves the estimation of X more
than what adding a single step of X does for Y, thus implying that Y contains
more information about X than the other way around and so that X causes Y.
We can thus de�ne the PAI causality as:

1.10 Definition (PAI causality). Given two time series Xt and Yt from thePAI causality de�nition

same attractor, we say that:

X
PAI−→ Y i� ∆̂(X, Y) > 0,

or, in the same way, X PAI cause Y if the addition of a single time step from time
series Y improves the self estimation of X better than what a single time step
of X does when added to Y (and so C(X,XY) is bigger than C(Y, YX)).

The interesting thing about this alternative de�nition is that it shift back the
perspective to something similar to Granger de�nition, but keeping the Takens’
structure typical of the study of dynamical systems. In fact, we are evaluating
if (and how much) the addition of one variable improves our ability to predict
the other one.



2
A P P L I C AT I O N S O F C O N V E R G E N T
C R O S S - M A P P I N G A L G O R I T H M O N A
M O D E L E C O S Y S T E M

In order to test the CCM method and its limits, we apply it on times series gener-
ated through a multi-species population dynamics model known as generalized
Lotka-Volterra [29] (LV).

description of the system

The model is described in equations (2.1), where K is the carrying capacity for
preys (whose population is indicated by X), Y is the predators population and E
denotes state variable for the environment that is coupled with population dy-
namics. The equations are stochastic as white noise [22] is added to the system.
Three distinct sources of noise have been considered:

1. An environmental noise, additive for E, whose strength is identi�ed by
its standard deviation σE;

2. Demographic (multiplicative white) noise in both predator and prey pop-
ulation dynamics with intensity σX and σY , respectively;

3. A measurement noise, for both X and Y, mimicking uncertainties ob-
tained by adding to the �nal series a white Gaussian noise with standard
deviation σMeas.

The most general formulation of this system is thus:
E(t) = sinωt+ σEdW

Ẋt = aXt

(
1− Xt

K

)
− bXtYt + σXXtdW

Ẏt = (−c+ γE(t)) Yt + dXtYt + σYYtdW

(2.1)

where dW represents symoblically the in�nitesimal increments of a Wiener
random walk processWt =

∫
ξtdt with ξt = N(0, 1).

17
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The parameters that I have �xed are:

a = 1.5 b = 0.5 c = 1.5 d = 1.5

ω = 1

X0 = 1 Y0 = 1.

while coupling with environment γ, carrying capacity K and noises’ standard
deviations have been varied.

To integrate this SDE system I have implemented a stochastic Runge-Kutta
second order method (also known as improved Euler or Heun method, see [30,
31] for an overview of numerical methods for SDE solutions), given by the up-
date equation:

xi = xi + f(ti, xi)δt+ g(ti, xi)dW

xi+1 = xi +
δt

2

[
f(ti, xi) + f(ti+1, xi)

]
+

dW
2

[
g(ti, xi) + g(ti+1, xi)

] (2.2)

I have used a δt of 1× 10−2 s, and integrated over a period of 150 s. Then
I downsampled the resulting series with a factor 50 and excluded the �rst 50
seconds of the dynamics (to avoid transient regime), thus obtaining series of
200 points.

Before the application of CCM-method algorithm, I have standardized the
time series, subtracting the mean value and dividing by their standard devia-
tion. It is important to note that this procedure is done after the generation of
the time series, and that change the meaning of X and Y in this context: in fact,
the two variables loses their sense as population values (that should be always
bigger or equal to zero). The reason is simply for computational and graphical
convenience, because in this way the two series becomes comparable both from
a numerical point of view (�nite precision e�ect have less in�uence if both se-
ries have comparable excursion) and a visual one (in this way the two series
can be compared in the same plot even if they originally are very di�erent).

Finally we have applied the CCM method to infer causality relations amongX,
Y and E for di�erent set of paramters. For each of the parameters combination,
I have repeated this entire procedure 10 times and averaged the results of CCM.

expected result from intuition

From the choice of parameters for the system that we have done, we expect the
correlations directions to be as follows:

X
CCM−→ Y ⇐⇒ ∆XY > 0 (2.3)

E
CCM−→ Y ⇐⇒ ∆EY > 0 (2.4)

E
CCM−→
Y
X ⇐⇒ ∆EX > 0 (2.5)

where I have underlined that the environment cause X through Y.
Obviously, the condition in equation (2.3) is the trickiest one: there is a two-

way relationship between X and Y and, according to Sugihara, the CCM method
should be able to discern that d > b.
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Figure 2.1: In �gure are represented the �rst 100 s of the dynamics for the system (2.1) without
environmental coupling. When K is small, the series converges quickly to the equi-
libria solutions (X∞, Y∞) (in this case, after the standardization, the equilibria are
almost (0, 0): reaching quickly the equilibrium means that the mean value for each
series will be almost equal to (X∞, Y∞) and thus the standardization removes it ex-
actly), while for K very big the dynamics is a dumping cycle (however, the dumping
is small and the dynamics approach the equilibrium as slow as 1/K, that we have
to wait a long time interval to see that the series reach X∞, Y∞). E(t) (the environ-
ment) is reported as a reference.
Points identi�ed with circles and stars shows the downsampling operation, while
the solid lines represents the entire solution.
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Observing again system (2.1), we notice that when there is no coupling with
environment, the system can be solved analytically by linearization of the equa-
tions around the equilibria (X∞, Y∞), see Figure 2.1 on the preceding page. The
only interesting equilibrium (in which neither of the variables goes extinct) is
given by:

X∞ =
c

d

Y∞ = −
a(c− dk)

bdk
.

The eigenvalues analysis of the linearized matrix shows that the two series
in the phase space follow a spiral that falls to the equilibrium with a speed that
depends (once �xed all the other parameters) on 1/K. Thus, in the case of a
small K the two series converge quickly to (X∞, Y∞), while if K is much bigger
that the other parameters, the equilibrium is reached after a long time.

Then, even if the second case is similar to an extended version of the transient
regime of the �rst one, it allows us to explore what happens when there is a
natural oscillation regime over the oscillations inducted by environment.

small carrying capacity

With a small carrying capacity (K = 5, we are in the situation depicted in
�gure 2.1a on the previous page), the system quickly relaxes to (0, 0) (after
standardization). If we exclude also the next 50 points, thus beginning measure-
ments after 100 s, the attractor is a point (a manifold of dimension d = 0) and
then the hypothesis of Takens’ theorem are not applicable anymore, leading to
a failure of CCM method. This fact is solved with the addition of model noise or
with a coupling with an external (driver) variable E(t).

effect of noise

The addition of model noise, most of the time, helps the detection of causality,
even though it generally worsen the quality of prediction. In fact, thanks to the
stochastic term, the solution deviates from (X∞, Y∞), and the dynamics can be
observed better. This is not the case for measurement noise, which does not
modify the dynamics nor the attractor shape.

In all this section I will focus on the e�ect of both kind of noise: for demo-
graphic noise, I will vary Σ = σx = σy = σE in the interval [0, 0.5] with step
of 0.05, while σMeas ∈ {0, 0.1}.

Without environmental coupling (γ = 0)

The result for this parameters setup are shown in Figure 2.2 on the facing page.
When environment is completely decoupled from the dynamics of Xt and Yt,
the importance of demographic noise is dominant. In fact, even a small quantity
of noise makes us deviate from (X∞, Y∞), allowing the possibility of prediction.
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Figure 2.2: Results for a system uncoupled from environment and with a small carrying capacity
(K = 5). In �gures 2.2a and 2.2b the series have no measurement noise (which means
σMeas = 0), while �gures 2.2c and 2.2d refers to time series with σMeas = 0.1. All
plots are represented for the variation over Σ = σx = σy = σE, which grows from
0 to 0.5.
Di�erent markers identi�es couples of time series (Diamonds indicate the couple
(X, Y), squares (E,X) and circles (E, Y)), while solid and dashed lines identify the
two possible directions of the coupling: the solid line corresponds to i Predict−→ j, the
dashed one with the same markers corresponds to j Predict−→ i.
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On the other hand, with no noise, because of the null dimensionality of the
attractor space, the CCM fails.

From Figure 2.2a and 2.2c one can see the expected results: correlation be-
tween series X and Y are moderately high (even if they decrease slightly with
increasing noise). As said before, the presence of a small demographic noise,
when the prediction ability is severely hampered by measurement noise, help
de�nitely to predict something.

Interestingly, in Figure 2.2a, the �rst point (which has Σ = 0 = σMeas) shows
a big prediction skill, even if there should be almost no dynamics at all. The
point is, from t = 50 s to approximately t = 100 s, the time series are not
yet completely �xed in (X∞, Y∞) and they oscillate a little bit. In fact, all the
prediction skill is based upon the �rst few points. This can be seen clearly if we
make CCM run only with points X(t), Y(t) with t > 100 s: the method does
not work1.

The other interesting feature is that ∆(X, Y) 6 0, in contrast with what we
expect from condition (2.3), and the di�erence even increase by increasing Σ
or σMeas. This shows that CCM method can gives prediction which are against
intuition.

With strong environmental coupling (γ = 2)

When we couple the system with environment by increasing the value of γ, we
�nd some interesting results, shown in Figure 2.3.

First of all, now ∆(E,X) and ∆(E, Y) are signi�cantly bigger than zero, and
also show a certain hierarchy that is similar to what expected (since X is caused
by E only through Y, we expect this causal relation to be weaker, or similarly
that E and X are worst in predicting each other).

Second, now for σMeas = 0we �nd∆(X, Y) > 0, which is more in accordance
with our expectations as expressed in equation (2.3).

effect of coupling with environment

Let us consider now the e�ect of coupling with the external driver, variating γ
between 0 (no coupling at all) and 2 (quite big coupling), as shown in Figure 2.4.

The most interesting thing that appears from the plot of the correlation co-
e�cient of �gures 2.4a, 2.4c is that increasing the coupling strength leads to a
degradation of the prediction of the causality relation between the environment
and the system (for σMeas > 0.1. Even more interestingly, the sign of ∆(X, Y)
changes (as clearly visible in �gure 2.4b) while increasing γ.

1 The problem does not come from CCM itself: predicting the evolution of something constant is,
in fact, quite trivial. The point is that it is a meaningless problem and, moreover, PCC is not well
de�ned for two constant process.
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Figure 2.3: Results for a system strongly coupled with environment (coupling constant γ = 2)
and with a small carrying capacity (K = 5). In �gures 2.3a and 2.3b the series have
no measurement noise (which means σMeas = 0), while �gures 2.3c and 2.3d refers
to time series with σMeas = 0.1. All plots are represented for the variation over
Σ = σx = σy = σE, which grows from 0 to 0.5.
Di�erent markers identify pair of time series (Diamonds indicate the couple (X, Y),
squares (E,X) and circles (E, Y)), while solid and dashed lines identify the two pos-
sible directions of the coupling: the solid line corresponds to i Predict−→ j, the dashed
one with the same markers corresponds to j Predict−→ i.



24 applications of convergent cross-mapping

0.0 0.5 1.0 1.5 2.0

γ

0.0

0.2

0.4

0.6

0.8

1.0

C
(I
,J

)[
γ
]

C(E,X)

C(E,Y)

C(X,E)

C(X,Y)

C(Y,E)

C(Y,X)

(a) C(i, j)

0.0 0.5 1.0 1.5 2.0

γ

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

∆
(I
,J

)[
γ
]

∆(E,X)

∆(E, Y)

∆(X, Y)

(b) ∆(i, j)

0.0 0.5 1.0 1.5 2.0

γ

0.0

0.2

0.4

0.6

0.8

1.0

C
(I
,J

)[
γ
]

C(E,X)

C(E,Y)

C(X,E)

C(X,Y)

C(Y,E)

C(Y,X)

(c) C(i, j)

0.0 0.5 1.0 1.5 2.0

γ

0.2

0.0

0.2

0.4

0.6

∆
(I
,J

)[
γ
]

∆(E,X)

∆(E, Y)

∆(X, Y)

(d) ∆(i, j)

Figure 2.4: Results for a system with a small quantity of noise (Σ = 0.05) and a small carrying ca-
pacity (K = 5). In �gures 2.4a and 2.4b the series have no measurement noise (which
means σMeas = 0), while �gures 2.4c and 2.4d refers to time series with σMeas = 0.1.
All plots are represented for the variation over γ, which grows from 0 to 2.
Di�erent markers identify pair of time series (Diamonds indicate the couple (X, Y),
squares (E,X) and circles (E, Y)), while solid and dashed lines identify the two pos-
sible directions of coupling: the solid line corresponds to i Predict−→ j, the dashed one
with the same markers corresponds to j Predict−→ i.
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big carrying capacity

By increasing the carrying capacity, as we have seen in Figure 2.1 on page 19,
we change consistently dynamics to the system.

In fact, by takingK� 1 (e.g.K = 500) we see that the ratio betweenK and all
the other parameters is of the order 102, which means that the quadratic term in
X can be almost neglected. This transform the system in a sort of classic LV, with
all of its well known dynamics. For example, the slightly dumped oscillations
can be considered a neutral limit cycle around a center equilibrium2.
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Figure 2.5: Results for a system uncoupled from environment and with a big carrying capacity
(K = 500). In �gures 2.5a and 2.5b the series have no measurement noise (which
means σMeas = 0), while �gures 2.5c and 2.5d refer to time series with σMeas = 0.1.
All plots are represented for the variation over Σ = σx = σy = σE, which grows
from 0 to 0.5.
Di�erent markers identify pair of time series (Diamonds indicate the couple (X, Y),
squares (E,X) and circles (E, Y)), while solid and dashed lines identify the two pos-
sible directions of the coupling: the solid line corresponds to i Predict−→ j, the dashed
one with the same markers corresponds to j Predict−→ i.

2 We call neutral limit cycle a cycle that is neither stable nor unstable, because it surrounded by
other limit cycle for a big portion of the phase space. This is a behavior typical of LV equations
[32].
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effect of noise

The presence of a �nite (even if big) K allows us to add a stochastic noise to the
system, making it di�erent from a classic LV model in which the cycles are not
attractively stable and a stochastic term makes the solutions diverge. Results
in this case are reported in �gures 2.5 and 2.6 for both cases of no and small
coupling. Interestingly, they show very similar features with respect to the case
K ∼ 1, namely the fact that according to CCM the causality between X and Y
changes direction as the coupling with environment increase.
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Figure 2.6: Results for a system strongly coupled with environment (coupling constant γ = 2)
and with a big carrying capacity (K = 500). In �gures 2.6a and 2.6b the series have
no measurement noise (which means σMeas = 0), while �gures 2.6c and 2.6d refers
to time series with σMeas = 0.1. All plots are represented for the variation over
Σ = σx = σy = σE, which grows from 0 to 0.1.
Di�erent markers identify pair of series (Diamonds indicate the couple (X, Y),
squares (E,X) and circles (E, Y)), while solid and dashed lines identify the two pos-
sible directions of the coupling: if a solid line corresponds to i Predict−→ j, the dashed
one with the same markers corresponds to j Predict−→ i.

effect of coupling with environment

Again, when studying the variation of prediction skills with di�erent couplings,
we �nd that the sign of ∆(X, Y), and thus our identi�cation of the causality
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Figure 2.7: Results for a system with a small quantity of noise (Σ = 0.05) and a big carrying
capacity (K = 500). In �gures 2.4a and 2.4b the series have no measurement noise
(which means σMeas = 0), while �gures 2.4c and 2.4d refers to time series with
σMeas = 0.1. All plots are represented for the variation over γ, which grows from 0

to 2.
Di�erent markers identi�es couples of series (Diamonds indicate the couple (X, Y),
squares (E,X) and circles (E, Y)), while solid and dashed lines identify the two pos-
sible directions of the coupling: the solid line corresponds to i Predict−→ j, the dashed
one with the same markers corresponds to j Predict−→ i.

direction, depends on the variation of γ. In fact, as can be seen by �gure 2.7,
when γ changes from γ 6 1 to γ > 1 the sign of ∆(X, Y) changes.

Again, the other interesting thing is that prediction ability decrease with the
increasing of γ, while the relation E CCM−→ X almost cannot be detected.

summary

The key of this example is that, by changing a parameter not directly linked to
the coupling X ↔ Y, one obtains opposite prediction from CCM method. Then,
one can be in a di�cult position when trying to make detection of causality,
depending on the exact dynamics of the system.

In fact, as we have seen, results obtained from CCM method applied to system
(2.1) show some peculiarity that we already expressed in section 1.3: CCM e�ec-
tiveness in detecting causal relationship does depend on the system parameters,
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and thus on the type of the population dynamics of the system in the ecosys-
tems and its coupling with the environment, which in principle should be the
thing that one would want to determine with this method.

K = 5 K = 500

γ = 0
σMeas = 0 ∆(X, Y) < 0 ∆(X, Y) < 0

σMeas = 0.1 ∆(X, Y) < 0 ∆(X, Y) < 0

γ = 2
σMeas = 0 ∆(X, Y) > 0 ∆(X, Y) > 0

σMeas = 0.1 ∆(X, Y) < 0 ∆(X, Y) < 0

Table 2.1: Summary of results obtained within this section for ∆(X, Y). The underlined row
shows that with a certain set of parameters the results obtained by CCM method are
unreliable.



3
T H E M E T H O D O F A N A L O G S A N D
T H E C U R S E O F D I M E N S I O N A L I T Y :
I S P R E D I C T I O N P O S S I B L E ?

In most cases and for many complex systems (�nance, brain activity, earth-
quakes, etc. . . ) we do not know the equations describing their evolution, or even
if we know them in theory, they cannot be computed exactly even with the most
powerful of the super computer (e.g. whether forecast). However, if the system
dynamics is regulated by deterministic (even if unknown) laws, and if we know,
through data, the past history of the system for enough time, can we predict its
future evolution?

In this chapter we present the method of analog, �rst introduced by Lorenz
in 1969, and that tries to answer to this fundamental question. Two main exten-
sions of this method exist, and will be also presented. The concept on which the
method is based is simple, and relies in the deterministic approach that From
the same antecedent follows the same consequent [3]: it is thus su�cient to �nd
a similar enough antecedent to make prediction about the consequent. This
fundamental approach has been criticized already in XIX century by Maxwell
stating [33]: It is a metaphysical doctrine that from the same antecedents follow
the same consequents. [. . . ] But it is not of much use in a world like this, in which
the same antecedents never again concur, and nothing ever happens twice. [. . . ]
The physical axiom which has a somewhat similar aspect is that from like an-
tecedents follow like consequents. In fact, Maxwell genius foresaw what now is
well known from chaos theory: the ubiquitous presence of irregular evolutions
due to deterministic chaos.

Nevertheless, we are now in the era of Big Data and there is a growing opti-
mism that what could not have been achieved in the past, it is now possible and
e�ective [34]. As Chris Anderson, former editor-in-chief at Wired magazine,
stated in a provocative way: This is a world where massive amounts of data and
applied mathematics replace every other tool that might be brought to bear. Out
with every theory of human behaviour, from linguistics to sociology. Forget tax-
onomy, ontology, and psychology. Who knows why people do what they do? The
point is they do it, and we can track and measure it with unprecedented �delity.
With enough data, the numbers speak for themselves. So, it is possible, if we have
enough data, to e�ectively predict the dynamics of complex system? Can the

29
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method of analogs be successfully applied on a di�erent range of disciplines
opening up new perspective in the predictive analytics?

Following a recent work of a group of Italian physicists [3] we will show that
unfortunately the optimism must be limited: in fact there is an intrinsic limita-
tion of the method that lies in the curse of dimensionality: if the system dimen-
sionality is very large (and typically is), then the applicability of the method is
spoiled, even using the largest data set available today.

method of analogs

The concept of the method of analogs, as said, is very straightforward in its
intuitive formulation and can be expressed as If a system behaves in a certain
way, it will do so again, in agreement with a strict deterministic view of the
world.

In order to present the method of analogs, as introduced by Lorenz [35, 36]
in its mathematical formulation, I will begin with a few notation.

Assume that xt describes the time series of a particular state of a complex
system (e.g. the expression activity of di�erent genes at time t). Suppose that
we have collectedN samples xk with k = 1, . . . ,N and that we want to forecast
what state the system will assume in the future, that is to say that we want to
predict the value of xN+τ.

The original idea is to search for a state among x1, . . . , xN−1, let us call it xk,
that is the most similar to xN, and then use its consequents as proxies for the
evolution of xN. Formally, calling ε-analog the nearest point to xN for which
holds ‖xk − xN‖ 6 ε, the prediction after τ time units is then:

x̂N+τ = xk+τ.

The �rst, simple, generalization is the so called Center of Mass (COM) predic-
tion, where we consider for our estimate all the ε-analogs of xN, which means
all the n points xki , i = 1, . . . n, for which holds ‖xN − xki‖ 6 ε. From this
set of points, we determine the evolution of its center of mass, which is the
weighted average of the analogs:

x̂N+τ =
∑
i

Wixki+τ,

where W is a suitable weight matrix, that in the simplest version of the method
is taken to be simply the n dimensional identity matrix or a more re�ned ex-
pression such as the one in equation (1.10).

A simple sketch to illustrate this variant of the method is presented in Fig-
ure 3.1 on the facing page. Intuitively, from this picture, one can understand
that the quality of prediction will depends strongly on ε and the number of
ε-analogs.

Crucially, an analytical approximation of the uncertainty of the prediction
can be done.
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Figure 3.1: Sketch of the method of analogs, where ε is the neighborhood dimension, Xki
is the

ith ε-analog and X̂N+τ is the estimate of future point.

In order to calculate the accuracy of prediction ‖x̂N+τ − xN+τ‖, one has to
estimate xN+τ. Assuming that at least one good analog has been found, then
the ε-analog xk can be assumed as a proxy of the present state xN, with an
uncertainty δ0 set apart, i.e. xk = xN + δ0, where δ0 6 ε.

Then, we can express the expansion of this uncertainty over time with the
Maximal Lyapunov Exponent (MLE)1, using the same approach of the discus-
sions about sensitivity to initial conditions typical of chaotic dynamical systems:

δτ ' δ0eλτ, (3.1)

therefore, by de�ning∆ as the maximal tolerance about the error on prediction,
we �nd that our estimated state will be ∆-accurate up to a time:

τ̃(δ0,∆) ≈ 1
λ

ln
∆

δ0
, (3.2)

i.e. the time of prediction scales logarithmically with ∆/δ0.
We thus have xN+τ = xk+τ+ δτ and substituting Eq. (3.1) the relative error

of the prediction is approximated by

‖x̂N+τ − xN+τ‖
x̂N+τ

≈ ‖xk+τ(1+ δ0e
λτ)‖

xk+τ
∝ δ0eλτ, (3.3)

and because the MLE is �xed by the dynamic of the system, the only way to
improve the prediction is to minimize δ0.

The other (less natural) extension to Lorenz’s version of the method of analogs
is called Local Linear (LL) prediction. As with all the methods in the analog
method framework, also for LL predictor one �nds the k ε-analogs of the point
xN. Then, instead of taking the (weighted) average of the successors of the
analogs to estimate the successor of xN, the predictor is obtained by �tting a
linear map L to the set of ε-analogs xi such that it minimize the di�erence
between L(xi) and xi+τ, and then applying this map to the point xN.

1 We recall that the Lyapunov exponents describe the behavior of vectors in the tangent space
of the phase space, and thus characterize the rate of separation of two points in�nitesimally
close in the phase space. The importance of the MLE follows directly from the fact that this rate
is exponential δt ∼ eλt and thus (if it is positive) the relevance of the bigger exponent will
obliterate all the other. For a more accurate introduction to Lyapunov exponents see [37].
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Even if this procedure is more re�ned than the COM approach, it is less intu-
itive and presents the same problem (namely the search for nearest neighbors)
of the simpler methods, and as such will not be discussed further.

takens’ embedding theorem and its application
to the method of analogs

In the above presented explanation of the method of analogs, we have consid-
ered x as a faithful representation of a given state of the system, and as such it is
considered to be a point of the d-dimensional phase space (x ∈ Rd) measured
with arbitrary precision.

Obviously, this is far from the reality of experiments, where measurements
have some noise determined by the experimental setup. Moreover, we can often
measure only one or a few scalar variables linked to the real state of the system
through some unknown projection function. In other words we actually do not
know the phase space of the system.

Nevertheless, we can use Takens’ embedding theorem 1.5 on page 9 or its
extensions2 in order to reconstruct the phase space and then apply the method
of analog on this reconstructed space to make predictions.

In Figure 3.2 an example of this approach is shown, applied to a �rst-di�erence
time series obtained from the tent map [40]:

xt+1 =

µxt xt <
1
2

µ (1− xt) xt > 1
2 .

(3.4)

In particular, we have studied the case µ = 2, which is interesting because
the generated time series has an autocorrelation function that goes to zero so
rapidly that the series is indistinguishable (with this approach) from a pure
white random sequence. In this example, the embedding dimension used is
E = 3, which is more than enough to display the complete dynamics of the
attractor (which has an attractor dimension 0.97± 0.03 [41], determined with
the Grassberger approach, see section 3.3), and a time lag τ = 1. As Figure 3.2b
shows, the prediction ability steeply decreases after few time steps in the future,
a symptom of the chaotic nonlinear dynamics (and the Lyapunov divergence of
orbits, equation (3.1)).

The reconstruction of the phase space is one of the main procedure used
when dealing with chaotic dynamical series, also because often just a simple
visual inspection of the data in the embedding space allows some understand-
ing of the system. This approach, though, does not overcome nor mitigate the
problems that will be examined in the later sections.

2 For example, if the attractor has a fractal dimension, Takens’ theorem cannot be applied but
its extension by Sauer et Al. [38] called Fractal Delay Embedding Prevalence Theorem still holds.
Other notable extensions are proved in [26, 39] and generalize the theorem to some stochastic
equations.
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Figure 3.2: In �gure 3.2a are shown 1000 points of a time series obtained as ∆t = xt+1 − xt
where xt is generated from the tent map (3.4). The �rst 500 points of the series are
used to construct the training attractor (with E = 3 and τ = 1), and then prediction
Tp step in the future are made for each of the next 500 points (excluding the last Tp
points for which we don’t have a "measured" version Tp step in the future). In �gure
3.2b is shown the PCC between the predicted points and the real ones as a function
of the number of step in the future we want to predict.

delay reconstruction and the problem of finding a good em-
bedding

In this section, I will explain some details of Takens approach to the method of
analogs following [42, § 3, 9].

Suppose that the only measure that we have access to is a scalar which is a
function of the (unknown) state vector x:

un = h (x(nδt)) + ηn

with h : M→ R some unknown scalar projection and ηn some white random
measurement noise. We can then de�ne the vector:

un =
(
un,un−τ,un−2τ, . . . ,un−(m−1)τ

)
(3.5)

where τ is the lag andm is the embedding dimension. In order to ful�ll the delay
embedding theorem requirements, the choice ofmmust be done in accordance
to a strict criterion, while the choice of τ is more free, even if some particular
values are better than others.

Choice of the embedding dimension

The choice of m is �xed by Takens’ theorem and its extensions, and must be
such that:

m > 2DM

whereDM is the dimension of the subsetM, called attractor, of the (unknown)
phase space in which the orbits of the system are bounded. If DM is non in-
teger, M is said to be a fractal attractor and this condition says that m must
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be strictly larger than twice DM, while if DM is an integer we get back the
familiar Takens’ claim thatm = 2DM + 1.

The problem is that most of the time we have no idea of the attractor dimen-
sion, and we may even do not know if an attractor exist at all (that is to say, we
don’t know if the system is regulated by a (non)linear deterministic dynamics
or if it is driven solely by a stochastic process).

Of course, if we choose a very high m̃, bigger than the truem, we will obtain
a correct embedding anyway, so one can be tempted to just set a very high m̃
and use that to make prediction. This approach, thus, leads to two non trivial
problems: one is linked to the number of analog within radius ε (and will be
addressed in the next section), while the other is more theoretical and linked to
the MLE: the larger ism, the more far in the past will be the last component of u,
which will be at a lagmτ. This implies that our algorithm for prediction is pro-
cessing (with the same weight) information that we know are almost unrelated
with the point of interest.

One of the most useful method to choose m is the so called method of False
nearest neighbours [43].

Let m̃ be the real but unknown embedding dimension, and let m < m̃ be
the dimension in which, using the available data, we perform the embedding
instead. The map that transform points from m̃ to m is a projection in which
some of the axes are eliminated (precisely m̃−m axes are eliminated). Thus,
points that are separated with a large distance along one axes that is deleted by
the projection appears, in the m-dimensional space, as neighbors even if they
are not so (in this sense the method is called of false neighbors).

If we call

dmi =
∥∥∥u(m)
i − u(m)

k(i)

∥∥∥
Max

the distance (inm dimensions) between ui and its nearest neighbors k(i)within
the maximum norm, we can express the fraction of false neighbors going from
dimensionm tom+ 1 as:

χ
(m)
fnn (r) =

1

N

N∑
i=1

Θ
(
dm+1
i

dmi
− r
)

, (3.6)

where Θ(•) is the Heaviside step function that counts the couple for which the
ratio between their distance inm+ 1 andm dimension is bigger than a certain
threshold r.

A visual explanation of this approach is represented in Figure ??.
A correction to this method, proposed by Hegger and Kantz [44], to account

for noise in the data (which keep the number of false neighbours steady be-
cause the embedding dimension of a random process is in�nite) is to consider
in Equation 3.6 only those points having a distance inm dimension

dmi <
σ

r
,

where we have de�ned σ to be the standard deviation of data. This correction
takes into account the simple but important fact that two points cannot be false
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Figure 3.3: Method of the False Nearest Neighbors for the Lorenz attractor. Each line represents
a di�erent embedding dimensionM. As can be seen, passing from dimensionM = 4

to dimensionM = 5 there is a sharp increase in the steepness of the curve describing
the number of false neighbors as a function of the ratio of the distance in the two
dimensions, suggesting that M = 5 is the correct embedding dimension. This is
in agreement with the known correlation dimension of Lorenz attractor, which is
slightly above two (DA ' 2.04), leading to an embedding dimension M̃ > 2DA '
4.

neighbors if already in m dimension their distance is larger than the standard
deviation times 1/r (on average they cannot be at a distance larger than σ).

Choice of time lag

The other free parameter in the delay embedding approach is the time lag τ,
which presents a further di�culty: in fact, even though theoretically this pa-
rameters does not have an importance in the phase space reconstruction (it does
not appear in the formulations of Takens’ theorems nor in its extension), from a
practical point of view choosing the right τ has some important consequences
in the ability to resolve the attractor and then to make e�ective prediction.

In fact, if τ is too short with respect to the characteristic time of the system
dynamics (such as the main period, if it exists), successive coordinates of the
delay vectors are strongly correlated, and all the points ui tend to places them-
selves around the diagonal of Rm.

Instead, if τ is chosen to be too large, the ui points are almost completely
uncorrelated and they �lls a very large cloud of Rm, becoming non informative.

There are two main statistical approaches to this problem, based on the au-
tocorrelation function and on the mutual information, respectively.

The �rst one is a minimalist approach, and it is based upon the idea that to
maximize the amount of information by extracting pair of points, they have
to be uncorrelated. Then, the best choice τ0 would be the delay that gives the
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�rst zero in the autocorrelation function3 R(τ0) = 0 (the �rst zero because,
albeit many roots of R(τ) exists, obviously as the distance in time increases the
correlation between two points decrease, but they are also less informative).
The problem of this approach is that the autocorrelation test only is reliable
for linear dependence, and as such it is not best suited for strongly non-linear
system.

The second approach [45], based on mutual information, consists in choos-
ing the time delay that corresponds to the �rst minimum of the mutual infor-
mation (1.2) between u(t) and u(t − τ). This assure us that the information
shared between u(t) and u(t− τ) is minimal and thus the information gain of
considering both of them is the biggest.

Obviously, both the autocorrelation function and the mutual information will
tend to zero with τ → ∞, and the interesting zero (minimum) will be the �rst
one.

The two approach are exempli�ed in Figure 3.4.

Figure 3.4: This �gure is taken from [45]. It represent two di�erent reconstruction of the Roux
attractor, one using the autocorrelation function (labeled with c) criterion and the
other one with the mutual information (labeled with I)criterion. The two chosen
time lags are shown in a scale that corresponds to the caratheristic time of the system,
which is the time of a quasi-periodic orbit.

a rule of thumb to �nd out the right time lag if the signal has a strongly
(quasi-)periodic component, is to choose τ to be between one half and one tenth
of the period, often around one quarter. Infact, if the system has an embedding
dimension between two and ten, this allows the spanning of most of the orbit
with each point in the embedded space. Unfortunately, if there is not a strong

3 with autocorrelation function we mean the function

R(τ) =
∑
t

X(t) ∗X(t− τ)

which is commonly used in signal processing.
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periodic component or if the system is very large, this reasoning cannot be
applied.

the curse of dimensionality: statistical diffi-
culties for good analogs and kac’s lemma

The accuracy estimation of the prediction given by (3.3) highlights how analogs
that are distant δ0 from the state xN will give exponentially distant far predic-
tion from the "real" one as a function of the future time. This result reminds
to the typical problem of sensitivity to initial conditions in dynamical systems
with chaotic behaviour: the same dynamics with initial condition that are dif-
ferent of a little amount δ0 will give exponentially (with time) far trajectories
[37].

However, if we look deeply in Eq. (3.3) things are di�erent in the two cases. In
fact, as shown in the work of Cecconi et Al. [3], the main issue in Eqs. (3.3) and
(3.2) is �nding good analogs, which means �nding points ε-near to the current
state with a su�ciently small ε that allows τ̃ to be large enough so that we can
actual make future predictions within a maximal tolerance in the error of the
prediction (∆).

However, as we will see in the next section, because of the curse of dimen-
sionality the amount of data needed to obtain a good analogs increases expo-
nentially with the system size.

dimensionality and degrees of freedom

The theory of ergodic dynamical systems is founded upon the principle that
long-term statistical properties of a system can be described with the time-
independent probability distribution µ(σ) of �nding the system in any speci�c
regionσ of the phase space which, for a system withdDegrees of Freedom (DoF),
is a region σ ⊂ Rd of the phase space.

If the evolution is conservative (as in Hamiltonian mechanics), it conserves
volumes in the phase space, then the probability dµ(x) of �nding the system
in a small region dV around x is proportional to the measure of dV . Instead,
in dissipative systems, volumes in the phase space are contracted (on average)
until probability dµ(x) is concentrated in a subsetM ⊂ Rd of dimensionDM
called attractor. DM is thus what we call the system e�ective dimension, i. e.
the dimension of the subspace of the phase space that is really spanned by the
system.

Formally, the dimensionDM describes the small-scale behavior of µε of �nd-
ing points x ∈ M inside the d-dimensional sphere Bdy (ε) of radius ε and cen-
tered around y:

µ
(
Bdy (ε)

)
=

∫
Bdy (ε)

dµ(x) ∼ εDM (3.7)
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Thus, in dissipative systems, trajectories of the system are e�ectively de-
scribed by a number DM < d of DoF, even though they are de�ned in a d-
dimensional space. If DM is non integer, the attractor is said to be fractal, and
this condition is typical for chaotic systems (consider for example [46])4.

In order to obtain an estimate ofDM, we follow the approach of Grassberger
and Procaccia [4], �rst de�ning the correlation sum as a function of the distance
ε:

C(ε) ≡ lim
N→∞ 1

N2

N∑
i,j=1

Θ
(
ε−

∥∥xi − xj
∥∥) . (3.8)

This de�nition can be rewritten in term of the standard correlation function

c(r) =
N∑
i,j

[
〈xi(0)xj(r)〉− 〈xi(0)〉 〈xj(r)〉

]
as

C(ε) =

∫ε
0

dr c(r) .

The key point proved by Grassberger and Procaccia is that this function be-
haves as a power law of ε with an exponent ν when ε is su�ciently small:

C(ε) ∼ εν (3.9)

and that this exponent is an estimate of the system dimensionality, ν ∼ DM.
In �gure 3.5 is represented the estimation of ν from the Correlation sum (3.8)
using a simple counting algorithm. It is important to observe that the power law
scaling holds only for small ε, which will have consequences in the following
discussion. In order to understand intuitively the Grassberger-Procaccia claim,
we see that the de�nition of correlation sum (3.8) can be thought as the fraction
of ε-analogs of a certain point xk̃ averaged over all the points xk of the time
series.

Now we can see the analogy with ergodic theory: because (3.8) is an estimate
of the averaged probability of �nding the system in a sphere of radius ε, by
exploiting relations (3.7) and (3.9) we can derive:

εν ∼ C(ε) ≈ 〈µε〉 ∼ εDM =⇒ ν ≈ DM ≈ D.

In the following, I will use D as a uni�ed symbol for both ν andDM, neglecting
the small di�erence between the two.

The Grassberger-Procaccia exponent ν, which is called correlation dimension,
is computationally (at least in principle) easy to compute: it is su�cient to cal-
culate the function in the limit (3.8) for some value of ε and then �t the power
law (3.9).

Before explaining the reason of why this happens only in principle, I will
introduce the relation between correlation dimension and recurrence time (and
Poincaré recurrence theorem).

4 In general, attractor are inhomogeneous inDM, and to di�erent Y corresponds di�erentDM. In
this thesis we will ignore this technicality and study only attractor with a single fractal dimension
DM. For a more detailed discussion, that goes beyond the scope of this work, about multifractal
attractor see [47]
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Figure 3.5: Estimate of the correlation dimension ν from the correlation sum for the Lorenz
attractor.

relation between correlation dimension and poincaré recur-
rence theorem

We recall the classical result of Poincaré recurrence theorem [48], phrased in a
mathematical language that applies to our problem:

3.1 Theorem (Poincaré recurrence theorem).
Lets call Φt the �ow of a volume-preserving di�erential system with bounded Poincaré recurrence theorem

orbit.
Then, for each open set U of the phase space almost all the orbits Φt(x) with

x ∈ U, intersect U in�nitely many times, which means that there exists in�nitely
many τ such thatΦτ(x) ∈ U. Thus, the set of points x ∈ U for which this property
does not hold has zero measure.

Even if the theorem stresses that Φt must be volume-preserving, one can
extend this result even to dissipative systems, provided that U ⊂ M, which
means that the only trajectories that return in�nitely many times are the ones
that start from the attractor.

Moreover, another straight extension is the one to ergodic systems, consider-
ing the measure on the bounded phase space as the invariant probability µ(σ),
then the points that does not return have zero probability. In this framework
the recurrence time τσ(x0) can be de�ned as the time that the trajectory that
�ows from a point x0 needs in order to return inside the set σ that contains x0,
which can be written as:

τσ(x0) = inf
k

{k > 1 | xk ∈ σ} δt. (3.10)

Averaging this time over all point in σ one obtains the average recurrence
time for points in σ:

〈τσ〉 =
1

µ(σ)

∫
σ

dµ(x) τσ(x) (3.11)
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Now, we recall the classical Kac’s result [49] that states:

3.2 Theorem (Kac’s lemma).
For an ergodic system, given σ ⊂M a non empty subset on the attractorM, µ(σ)Kac’s lemma

an invariant probability measure onM and τσ(x) de�ned as in equation (3.10),
then: ∫

σ

dµ(x) τσ(x) = 1,

which means that, recalling equation (3.11), the average recurrence time is:

〈τσ〉 =
1

µ(σ)
.

In other words, the average recurrence time to a region σ of the attractor is just the
inverse of the probability of �nding the system in a state inside σ.

This result can be seen as one of the foundation principle of statistical me-
chanics [3]: in fact, for a systems in Rd (and thus with d DoF) and with an
accessible volume Ld (which is the mean excursion of each component of x), if
the phase space volumes is preserved and we consider σ as the hypercube of
linear dimension ε,then

µ(σ) ∼
(ε
L

)d
=⇒ 〈τσ〉 ∼

(
L

ε

)d
.

This means that the recurrence time grows exponentially with d, which means
that for system of macroscopic size (where d is typical of the order ∼ 1023, for
example, but this holds even in much smaller system of around 103 particles)
〈τσ〉 becomes enormous for any σ. This is the classical concept of irreversibility
as stated by Boltzmann himself (even without knowing Kac’s lemma) [50].

However this results also means that the chance of �nding good analogs de-
crease exponentially with the dimension of the system.

conseqences on the method of analogs

Let’s consider a time series x1, . . . xk of points sampled at a time interval δt.
We call K(ε) the number of ε-analog of the last point xk that have been found
in this series. Then, the average time between two such ε-analog of xk (which
gives us an estimate of the time needed to return ε-close to xk) is:

τk =
(k− 1)δt

K(ε)
. (3.12)

Consider the correlation sum de�ned in equation (3.8), then we can implicitly
de�ne Ck(ε)

C(ε) =
1

N

N∑
k

Ck(ε)



3.3 statistical difficulty in method of analogs 41

that represents the fraction of ε-analog of the kth point of the series over the
total data points N. Clearly, given this de�nition and equation (3.12)

Ck(ε) =
K(ε)

k− 1
=
δt

τk
. (3.13)

In order to make a∆-accurate estimate in predicting the last point xN through
the past trajectoriy, we need at least N > τN. Recalling the scaling law (3.9)
and using the relation (3.13), we prove that the number of points needed scales
as:

N ∼ ε−D, (3.14)

which is inversely proportional to the accuracy ε (as expected) but also expo-
nential in D. This results highlights how for large systems (where the attractor
dimension can larger than 10) prediction becomes almost impossible at a rea-
sonable ε.

Moreover, it states the precise limit of the Grassberger-Procaccia procedure
to estimate the correlation dimension, given that the larger the correlation di-
mension the larger is the number of points that are needed to sample the attrac-
tor with a given accuracy ε, also considering that the scaling (3.9) holds in the
limit ε→ 0.

Of course one of the main challenge is to estimate both D and ε for real
system, when only a set of time series are known.

For example, in one of his work, Smith [51] proposed an estimae of ε in
order to calculate the e�ective dimension D using the Grassberger-Procaccia
algorithm. In particular, he found that the minimum number of point that needs
to be measured from the attractor (following the scaling law in equation (3.14))
is

N ∼ 42D.

This means that for a D ' 5, N should be already of the order ∼ 108 to
obtain a consistent estimate of the system relevant parameters.





4
T H E C U R S E O F D I M E N S I O N A L I T Y , A
N U M E R I C A L E X A M P L E

In this chapter I will provide some numerical example of the considerations
made in chapter 3 on page 29, studying a simple system (the so called Lorenz
attractor [23]).

description of the system: lorenz attractor in
3 dimension

The �rst example is the classical three dimensional Lorenz attractor, that is de-
scribed by

Ẋt = σ (Yt −Xt)

Ẏt = Xt (ρ−Zt) − Yt

Żt = XtYt −βZt.

(4.1)

with σ = 10, β = 8/3 and ρ = 28.
In order to simulate this system I have implemented the same second order

Runge-Kutta method as in chapter 2 equation (2.2), using a time step δt = 0.01,
which I then downsampled of a factor 50 in order to get a sampling frequency
of 2Hz.

For each time series, I have runned the algorithm ten times choosing random
initial condition inside the attractor basin, then averaging over the results in
order to avoid statistical coincidence.

grassberger-procaccia algorithm for the cor-
relation dimension

The �rst algorithm that I have studied is the Grassberger-Procaccia algorithm
to estimate the correlation dimension, which has been obtained by Grassberger
and Procaccia using a time series of 15 000 points [4] and is equal:

D = 2.05± 0.01. (4.2)

43
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In Figure 4.1 the correlation dimension is estimated using time series of in-
creasing length. It can be seen that the methods produces wrong results if the
number of data is to small.

In fact, as shown in the previous chapter, the minimum number of points to
get a reliable estimation of D is, according to Smith’s work [51],

Nmin = 42D ' 2125 points. (4.3)
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Figure 4.1: Correlation function as calculated by the Grassberger-Procaccia algorithm [4], rep-
resented in a log-log plot. The di�erent colors corresponds to di�erent length of the
input time series, and the lines represent the best �t obtained for the time series with
one thousand points and the one with one hundred thousands points. The straight
lines represents the best �tting power law C = aεD to two series of data (the short-
est and the longest one). It can be noted that the points obtained with the series of
5000 points follows almost exactly the line with D = 2.05.
The solid range of the lines represents the range of data used for the �t.

The best result for the correlation dimension obtained �tting a power law
C = aεD is (using the time series with 100 000 points)

D̂105 = 2.047± 0.002 (4.4)

which is perfectly compatible with the values determined by Grassberger and
Procaccia, in equation (4.2).

However, also calculating the �t with 5000 points yields a result compatible
with the expected one:

D̂5·103 = 2.03± 0.02,

while the �t with 1000 points gives a wrong result as D̂103 = 2.67± 0.1.
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Obviously, in order to make the �t, points with ε to large have been discarded,
because the power law holds only in the limit ε→ 0. A clear example is given
by �gure 4.1, in which only the points in range [10−3, 101] have been used to
�t the powelaw with 105 data points, and an even smaller range for the other
series.

center of mass prediction algorithm

Then I have implemented a prediction algorithm based upon the method of
analog (speci�cally, I used a COM algorithm using weights as given in equation
(1.10)). In this case, the minimum number of points required to apply the method
is estimated to scale as

Nmin ∼ ε−D
r ,

where I have de�ned εr to be the relative goodness of the analog, i.e.

εr =
xN − xk
‖xN‖

and I have used the correlation dimension estimated in the previous section in
equation (4.4).

This means that, if we consider a goodness ε = 0.1, we expect to need
Nmin ∼ 102 = 100 points to get su�ciently good ε-analog. Remembering the
sensitivity to initial condition expressed by equation (3.1), we expect the pre-
diction to worsen if we tries to predict to far in the future. In [52] the MLE is
estimated to be λM = 0.906, which means that after one second of evolution,
the goodness of the analog decrease to approximately one half, and after two
seconds it worsen by a factor 6. This e�ect should be observed by repeating the
prediction at increasing time in the future.

In order to evaluate this result, I have simulated the system for di�erent times,
then taking the �rst half of the series as the training set (which represents the
historical information about the system) and the second half as the test set. For
each point of the test set I have made the prediction τ step into the future (ex-
cluding clearly the last τ points) using the �rst half as the set of the possibles ε
analogs. In order to test the goodness of prediction, I have extended the de�ni-
tion of PCC in order to take into account the dimensionality of the system, and
I have thus de�ned:

ρ =

∑
i(xi − x)(yi − y)√
(xi − x)

√
(yi − y)

. (4.5)

In �gure 4.2 are reported the result of the correlation between the predicted
and the measured valued (averaged over the length of the predicted series) as
a function of the number of steps into the future made during prediction. The
di�erent length of the time series implies di�erent initial goodness of the analog,
and thus accuracy of the prediction. From the plot, the decreasing in accuracy,
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Figure 4.2: Correlation coe�cient ρ as a function of the time step into the future τ. The corre-
lation measure is de�ned in equation (4.5). It appears clear that the initial precision
depends on the number of data, but also the possibility of mantaining a good preci-
sion into the future depends on this parameter (as already seen with the Lyapunov
maximal exponents in (3.1)).

due to the MLE appears clearly, mostly for the plot with few points in the data
set.

It is worth notinjg that the relatively small number (of the order of 103) of
data point used for this method scale exponentially with the dimensionality, as
already seen in equation (3.14) in the previouos chapter.



5
C O N C L U S I O N S

In this work I have reviewed some recent results on causality detection and
predictability of a complex non linear system, for which we may not know the
laws governing its dynamics, but we possibly have many ("big") data describ-
ing its behaviour in time. We have thus analyzed two main research question,
namely: the determination of the causal laws that relate variables and the num-
ber of e�ective DoF of the system ("the system dimensionality"), together with
the possibility of making prediction based on the recorded history of the sys-
tem.

Alternative to the classical physics approach, based on building generative
models unveiling causal relationships among variables, here I have presented
a "data driven" inductive approach that tries to infer these information solely
through the data describing the system’s dynamics.

First of all, I have examined a number of de�nitions of causality (in chapter 1)
that have been developed in the last years, and I have critically highlighted, both
from a theoretical point of view and through speci�c examples, their limitation.

In particular I have presented the CCM algorithm, which is based on the pow-
erful Takens’ theorem of time delay embedding. I have shown how its success
may depend on many di�erent and often uncontrollable factors: the degree of
non-linearity of the dynamics, the presence or not of oscillatory cycles, the pres-
ence or not of noise. In fact, in Chapter 2 I have studied a simple toy model with
some free parameters that allowed me to generate several type of non linear
times series with di�erent couplings, and then tests if the output of the CCM
algorithm recovers the known relationships. Results of the this experiment are
summarised in Table 2.1 on page 28.

In the second part of the thesis, I have studied the problem of system dimen-
sionality detection and predictability, which are strictly related. First, I have
presented the method of the analog with its variants, explaining the determin-
istic foundation of the method, its merits and limitations. In particular I have
discussed the so called "curse" of dimensionality, i.e. the intrinsic limitation of
applicability of the method to system of high dimensionality, even if many data
are available. To quantitive understand the minimum amount of data needed
for e�ective predictability is thus strictly related to the capacity to infer the sys-
tem dimension. I have presented two di�erent approaches to this problem, one
based upon the Grassberger-Procaccia algorithm and the other one founded on
the Takens’ theorem. Both of the methods, however, need the statistics of near-
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est neighbors as input in order to determine the e�ective dimensionality of the
system. I have then derived a scaling law for the minimum number of data re-
quired to make valid prediction (and at the same time to correctly estimate the
e�ective dimension), showing that this number grows exponentially with the
dimension of the system. This result is what is called the curse of dimensionality.

In Chapter 4 I have then shown a simple example of a system for which I have
estimated the e�ective dimension and predicted the future behaviour, showing
that the minimum number of points needed to make reliable estimate agrees
with the theoretical expectations.

An interesting development of this work is the application of these methods
to a real world examples, so to infer the possibility to apply a purely data driven
approach to make predictions for practical applications (i.e. cancer detection).
Clearly, a �rst step should be the study of a system for which a model already
exists, in order to verify that technical di�culties (like noise or systematic errors
in the dataset) does not hinder the estimations, and eventually studying some
methods to overcome the obstacles.

In conclusion, I can summarize my work by saying that, even if physicists
have always been skeptical about a data driven approach to the description of
nature, this point of view is nonetheless worth of more credit, especially in
the era of "big data", where we have for the �rst time an amount of data on
di�erent type of systems that can be really exploited in order to improve many
societal problems from medicine to tra�c. Of course this data driven approach
must be made with extreme attention and sensibility, without over-claiming the
generality of the results, and testing the speci�c conditions on which they hold.

On the other hand, I have shown that even for a relative simple, of low dimen-
sion, and controlled case of complex system (as the multi-species Lotka-Volterra
or the Lorentz dynamics), the optimism of who says that "this is a world where
massive amounts of data and applied mathematics replace every other tool that
might be brought to bear" needs to be confronted with the reality of nature,
which most of the time is more di�cult than expected.



A
P R O O F O F TA K E N S ’ T H E O R E M .

I give here a proof of Takens’ delay embedding theorem, �rstly proved in the
form we have used by Takens in 1981 [24], even if similar results were proven at
the same time by other authors (see [53, 54]). Since then, many extension have
been proved (see for example [26, 38, 39, 55]), and other author have provided
alternative proofs [56].

A.1 Theorem (Takens’ time delay reconstruction theorem).
LetM be a compact manifold of dimension d. Let (ϕ,h) be:

• ϕ : M→M a smooth (at least C2) di�eomorphism,
• h : M→ R a smooth function.

Then, it is true that the (2d+ 1)-fold observation map H[ϕ,h] : M → R2d+1

de�ned by:

x 7→ (h(x),h(ϕ(x)), . . . ,h(ϕ2d(x))) (A.1)

is an immersion ( i. e. H is one-to-one betweenM and its image after H, and with
both H and H−1 di�erentiable).

Proof. The proof of the theorem goes along several passages, that begins from
a simple, particular case and generalize afterwards.

• As a beginning, we assume that if x is a point with period k of phi (which
means thatϕk(x) = x) and k 6 2d+ 1, all eigenvalues of dϕkx are di�er-
ent and di�erent from 1. We also assume that no di�erent �xed point ofϕ
share the same image after h. ForH[ϕ,h] to be an immersion near a �xed
point x, the co-vectors dhx, dhϕx, . . . , dhϕ2mx must span T∗x(M). This
is true for each h given thatϕ satis�es the above mentioned condition at
each �xed point.

• In the exact same way one proves that H[ϕ,h] is generically an immer-
sion and even an embedding when restricted to the periodic points with
period k 6 2m+ 1. So we may assume that for generic (ϕ,h) we have
H[ϕ,h], restricted to a compact neighborhood V of the set of points with
period k 6 2m+ 1 is an embedding. Now this means also that for some
(ϕ,h) ∈ U, which is a neighborhood of (ϕ,h), H[ϕ,h]|V is an embed-
ding.
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50 proof of takens’ theorem.

• From this, we show that exists some (ϕ,h) ∈ U, arbitrarily near to (ϕ,h)
for which H[ϕ,h] is an embedding.
For any point x ∈ M, which is not a point of period k 6 2m+ 1 for ϕ,
the co-vectors dhx, dhϕx, . . . , dhϕ2mx ∈ T∗xM can be perturbed inde-
pendently by perturbing y.
Hence arbitrarily near h there is h such that (ϕ,h) ∈ U and such that
H[ϕ,h] is an immersion. Then there is a positive ε such that whenever
0 < ρ(x, x ′) < ε, H[ϕ,h](x) 6= H[ϕ,h](x ′) (with ρ some �xed metric
on M). There is even a neighborhood U ′ ⊂ U of (ϕ,h) such that for
any (ϕ,h) ∈ U ′, H[ϕ,h] is an immersion and H[ϕ,h](x) 6= H[ϕ,h](x ′)
whenever x 6= x ′ and ρ(x, x ′) 6 ε. From now on we also assume that
each component of V has diameter smaller than ε.

• Finally, we have to show that in U ′ we have a pair (ϕ,h) with H[ϕ,h]
injective. For this we need a �nite collection {Ui}

N
i=1 of open subsets of

M, covering the closure ofM \ {
⋂2m
j=0ϕ

j(V)} and such that:
1. for each i = 1, . . . ,N and k = 0, 1, . . . , 2m, diameter ϕk(Ui) < ε;
2. for each i, j = 1, . . . ,N and k, l = 0, 1, . . . , 2m, ϕk(Ui) ∩Uj 6= ∅

and ϕl(Ui)∩Uj 6= ∅ imply that k = l;
3. for ϕj(x) ∈M \ (

⋃
iUi), j = 0, . . . , 2m, x ′ /∈ V and ρ(x, x ′) > ε,

no two points of the sequence x,ϕ(x), . . . ,ϕ2m(x), x ′,ϕ(x ′), . . . ,
ϕ2m(x ′) belong to the same Ui.

We take a partition of the unity {λi} that correspond to the �nite set of
Ui (that is, λi is non negative, has support Ui and

∑
i λi(x) = 1 for all

x ∈M \ V).
Consider the map ψ : M×M×RN → R2m+1 ×R2m+1 which is de-
�ned in the following way

ψ(x, x ′, ε1, . . . , εN) = (H[ϕ,hε](x),H[ϕ,hε](x ′))

where ε stands for (ε1, . . . , εN) and hε = h+
∑
i εiλi.

We de�neW ∈M×M asW = {(x, x ′) ∈M×M | ρ(x, x ′) > ε and not
both x, x ′ ∈ inv(V)}. ψ, restricted to a small neighborhood of W × 0 is
transverse with respect to the diagonal of R2m+1×R2m+1. This follows
immediately from all the conditions imposed on the covering with Ui.
From this, we conclude that there are arbitrarily small › ∈ N such that
ψ(W × ›) ∩ ∆ = ∅. If also for such an › holds that (ϕ,hε) ∈ U then
H[ϕ,hε] is injective and hence an embedding.

• This proves that for a dense set of pairs (ϕ,h), H[ϕ,h] is an embedding.
Since the set of all embeddings is open in the set of all mappings, there is
an open and dense set of pairs (O, Y) for whichH[ϕ,h] is an embedding.

This proves the theorem.
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